
AN ARABIC PROGRAMMING ENVIRONMENT

By

ABDULMALIK S. AL-SALMAN

Bachelor of Science
King Saud University
Riyadh, Saudi Arabia

1988

Master of Science
University of Georgia

Athens, Georgia
1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

July, 1996

I t

I D
Ip

AN ARABIC PROGRAMMING ENVIRONMENT

Thesis Approved:

H.

Dean of the Graduate College

11

ACKNOWLEDGMENTS

Praises be to ALLAH, the Lord of the universe, without his bounty I would not

have come to Oklahoma or finished this work.

I wish to express my deep gratitude and sincere appreciation to my maJor

professor, Dr. K. M. George, for his scientific guidance, moral support and continuos

encouragement and understanding. My thanks are extended to the members of my

advisory committee, Dr. G. E. Hedrick, Dr. K. Gasem, and Dr. H. Lu, for their valuable

suggestions and encouragement during the course of this project.

I would also like to give a special appreciation to my parents and my wife for their

support and encouragement all the time. I am also thankful to all my friends in Stillwater

who made my staying here very enjoyable.

I also forward my thanks to my home country, Saudi Arabia, the land of goodness.

111

TABLE OF CONTENTS

Chapter

1. IN"TRODUCTION 1

1.1 OBJECTIVES AND MOTIVATION 2
1.2 DESIGN GUIDELINES 3

2. CHARACTERISTICS OF THE ARABIC LANGUAGE•....... 6

3. RELATED WORK •..•..•..•..••.••••.••..•••• · .•......... 11

3.1 STANDARDIZATION 13
3.2 INPUT AND OUTPUT FACILITIES 15
3.3 ARABIC PROGRAMMINGLANGUAGES 17
3.4 PASCAL COMPILERS 19

4. THE APE DESIGN AND IMPLEMENTATION •....•.••...•.••• 21

4.1 MAIN WINDOW 22
4.2 APE DIALOG BOXES 27
4.3 COMPILATION AND EXECUTION PROCESS .. : 33
4.4 APE ALGORITHMS 37
4.5 HELP WINDOWS 50

5. DESIGN AND IMPLEMENTATION OF THE ARABIC
.PASCAL COMPaER 53

5.1 THE SCANNER 54
5.2 THE PARSER 59
5.3 THE CODE GENERATOR 84
5.4 THE ERROR HANDLER , 92
5.5 EXAMPLES OF ARABIC PASCAL PROGRAMS 92

6. CONCLUSION AND FUTURE WORK •••••••••.•..••••..••..• 95

6.1 SYSTEM REQUIREMENTS 96
6.2 SYSTEM LIMITATIONS 97
6.3 FUTURE WORK 97

RE FE REN CES . 99

lV

Appendix

A. APE MESSAGES 111

A. I INFORMATIVE MESSAGES 111
A.2 ERROR MESSAGES 112
A.3 DIALOG MESSAGES 114

B. LIST OF WORDS AND SYMBOLS IN THE

ARABIC PASCAL ·- 115

B.l RESERVED WORDS : 115
B.2 REDEFINED IDENTIFIERS AND TYPES 116
B.3 BUil.,T-INFUNCTIONS AND PROCEDURES 116
B.4 SYMBOLS 117

C. SYNTAX DIAGRAMS FOR THE ARABIC PASCAL 118

D. ERROR MESSAGES 127

D. l COMPILER ERROR MESSAGES 127
D.2 RUN-TIME ERROR MESSAGES 130

E. TEST PROGRAMS ••.•.••..•..•....•...............•.. 131

V

LIST OF TABLES

4.1 Actions related to the MDI Dialog Box 38

4.2 Actions related to the File Dialog Box 40

4.3 Actions related to the Text window 41

4.4 Actions related to the Find Dialog Box , 44

4.5 Actions related to the Replace Dialog Box , 44

4.6 Actions related to the GoTo line Dialog Box 45

4.7 Actions related to the Print Dialog Box 46

4.8 Actions taken by the Option handler 47

5 .1 Sizes (in bytes) of deferent data types . 66

5.2 Standard functions .. 82

5.3 Standard procedures 82

5 .4 Simple relations and operations in Arabic Pascal and Assembly 91

Vl

LIST OF FIGURES

Figure

4.1 Main User-Windows Interactions 22

4.2 A snapshot of the Main Window 23

4.3 The main window after closing all files 23

4.4 Drop-down Submenus 24

4. 5 Examples of a Dialog Box and a message window. 25

4.6 File Dialog Box (With Open File Title) 28

4. 7 Find and Replace Dialog Box . 31

4.8 GoTo Dialog Box .. 32

4.9 Print Dialog Box ... 32

4.10 A snapshot of the compilation windows (unsuccessful compilation) 35

4.11 A snapshot of the compilation windows (successful compilation) 36

4. 12 The APE including the execution window. 3 6

4.13 Software Architecture of the APE 37

4.14 The main help window . 51

4.15 Partial display of the APE interface help window 52

4.16 Partial display of the Arabic Pascal help window 52

5 .1 Organization of the Arabic Pascal Compiler. .. 53

5.2 Symbol Table Node Data Structure 64

5.3 An Example ofa symbol table 65

5.5 Scope structure of a Pascal program 67

5.6 A Snapshot of the Scope Stack of the program in Figure 5.5 68

Vll

NOMENCLATURE

APC Arabic Pascal Compiler

APE Arabic Programming Environment

Vlll

CHAPTER 1

INTRODUCTION

Throughout the world, computers play an important role in people's life. The

concept of literacy starts to shift from not knowing how to read and write to not knowing

how to operate and utilize computers. For instance, in Saudi Arabia many houses have

computers either to be used for scientific purposes or just for entertainment. Computer

classes have been introduced in all high schools. Education planners in Saudi Arabia are

nowadays thinking seriously of introducing computer classes not only in middle schools,

but also in elementary· schools [Min87, DAM92, · Gne94, FE95, GFA95, Man95]. The

main difficulty facing such planing is the lack of good skills in English language prior to

college. Thus, to enhance computer teaching in Arab countries is to Arabize computers in

all levels: hardware interfaces such as operating systems, software interfaces such as

applications, and programming languages.

Every Arab national feels and appreciates the extreme importance of computer

Arabization. Computer Arabization can be defined as the conversion of well-tested and

well-proven computer software to enable Arabic-speaking users to utilize it effectively and

efficiently. This work is a small contribution to this end.

This dissertation is comprised of six chapters, including this introduction. The rest

of this chapter states the main objectives and motivations. It also defines the design

guidelines for developing the Arabic Programming Language Environment. Chapter 2 is

1

devoted to explain the main characteristics of the Arabic language. Understanding these

characteristics is essential for designing an Arabic software. Chapter 3 discusses related

work. Chapter 4 describes the design and implementation of the Arabic Programming

Environment (APE). Chapter 5 explains the design and implementation of the Arabic

Pascal Compiler (APC). The APE and APC complement each other. Chapter 6 concludes

the work and states the avenues for future work.

The dissertation also has five appendixes. Appendix A lists and explains the APE

messages. Appendix B lists the words and symbols that are used in the Arabic Pascal

language. Appendix C shows the syntax diagrams for the Arabic Pascal language.

Appendix D lists and explains the compilation error messages and the run-time error

messages. Finally, Appendix E lists a set of test programs used as a validation suit.

1.1 OBJECTIVES AND MOTIVATION

The mam objective towards the Arabization of computing is to be able to write

programs in Arabic. Arabic programming languages and their environments should be

available as other international programming languages to enhance the advancements in

the Arab world. Programming language environment is an integrated set of tools for

program development such as editor, compiler, linker, and debugger. So, it is substantially

different from any Arabic word processors available in the market. Arabic language, in

general, has many unique features that makes it different from all European languages.

Consequently, developing an Arabic environment is different from developing an

environment for other languages. Because of the importance of understanding the Arabic

characteristics, we have dedicated a chapter, Chapter two, for describing those

characteristics.

2

Arabic Pascal design and implementation was motivated by the need of a simple,

structured, and powerful Arabic programming language to be used as a general purpose

programmmg language, especially in teaching programming concepts. From an

educational point of view, it is obvious that learning new concepts is more effective if the

native language is used. Few years ago, such a project was not applicable because there

were no mature Arabic environment systems that can handle efficiently the Arabic

characters. Moreover, there was no need for such project because most computer users

and programmers were educated adults who knew the English language and could easily

program in English. However, this situation has changed.

1.2 DESIGN GUIDELINES

Several key factors · influence the design of the environment. The Arabic

environment should have the ability to read and display Arabic characters. Moreover,

everything in the editor (writing direction, menus, tool-bar, status-bar, etc.) should be

presented from right to left to accommodate the Arab users. These two features pose the

major obstacle to developing such an environment. Also, to address a wide group of users

and programmers, this work has to be built on top of a popular machine that can support

Arabic character set. This led to using IBM PC and compatibles which are popular and

widely available machines with numerous clones. They also support a reasonable Arabic

interface under both MS-DOS and MS-Windows.

Since MS-Windows has a better user interface than MS-DOS, MS-Windows is

chosen as the base platform for the work. MS-Windows version 3. 0 and later can support

Arabic characters with some applications for Arab users. What remains to be done is to

develop some tools that are able to handle right alignments. The Arabic programming

3

environment can be viewed as an editor complemented with compiling and running

facilities. The editor should accept Arabic text with basic tools for editing, such as opening

a file, saving it, cutting, copying, and pasting. Chapter 4 explains in detail the APE

interface and its capabilities.

To address wide group of programmers, The selected programming language has

to be well-known in its original design. Therefore, the shift from English programming

language environment to Arabic programming language environment has to be minimal at

least in this stage of Arabization. May be later, when many programmers get a long with

Arabic programming languages, more independent Arabic programming languages can be

designed. We have chosen Pascal language as a model to follow for many reasons. Among

these are:

• Pascal is the most widespread programming language in the education field in Saudi

Arabia and to some extent in other countries as well.

• Pascal is a fairly · small language with relatively· simple syntax that can easily be

understood.

• Pascal is a structured language.

Instead of defining a new programming language that may have no link to any existing

language, we chose to follow the standard Pascal [Coo83, Tib81].By doing this, the

ability to switch from English Pascal to Arabic Pascal becomes easy for teachers who

know English Pascal and want to teach their students the Arabic Pascal. Similarly,

switching from Arabic Pascal to English Pascal becomes easy for students who want to

pursue the field of programming language or want to study some other English

programming languages like C or FORTRAN. The Arabic Pascal, however, is not oriented

to any specific purpose or group; it is a general purpose programming language that can

be utilized by beginners as well as experts.

4

Translating the English Pascal to Arabic Pascal can be done in an easy, but

inefficient way, that is translating the Arabic syntax (source code) to English and then

feeding it to the regular English Pascal compiler. Unfortunately, this approach does not

solve the problem of English difficulties due to the following reasons:

• Users will receive all compiler messages in English. These are difficult to be understood

by a person who is not proficient in English.

• Debugging the source program is almost impossible.

• There is no way to improve or modify the programming language to suit the Arabic

native speakers.

• It is important to build a complete and coherent project that contains only Arabic

interface.

Accordingly, the Arabic Pascal language and compiler should be a stand alone software,

not a front end to any Latin high level programming language.

5

CHAPTER 2

CHARACTERISTICS OF THE ARABIC LANGUAGE

To effectively build a good Arabic software, one should fully understand the main

characteristics of the Arabic language. The Arabic language has many unique features that

are different from many other languages. The following is a list of the main characteristics

of the Arabic language [AA89, AA93, Ben87, Cas85, EEN89, Ham89, Ham94a, KH93].

1. Arabic, like other Semitic scripts, is written and read from right to left.

2. While text is written from right to left, numbers can be written and read from right to

left. or from left to right. Most Arabs read numbers and write them from left to right.

3. It has 28 basic characters.

4. In addition to the basic 28 characters, Arabic has special letters such as

and HAMZA letters such as

5. Even though the basic alphabet consists of 28 letters, it is extended to some 90

elements by additional shapes, marks, and vowels [TA90].

6. Some Arabic characters can be fused to form new shapes. For example, ''i' 1s

composed of 'J' and '1'. '1' is also composed of 'f' and 'f' [TA90].

6

7. Arabic is a cursive script --like English handwriting-- links the letters of a single word.

8. Arabic script is extremely complex due to the context sensitivity of its written

characters. Letters have up to four different forms: isolated, at the beginning, in the

middle, and at the end of a word.

9. Most of the characters have three shapes depending on their position within the word.

10. All characters are consonants except the letters Alif, Waw, and Ya [Sim90]. Actually,

these three characters are consonants with attached vowel sounds.

11. Most characters (17 out of 28) have a dot, two dots, orthree dots associated with the

character and can be above, below, or inside the character.

12. Arabic also may use stretch character forms to add emphasis or aesthetics to the

written word.

13. No upper or lower cases exist in Arabic.

14. Arabic has vowels. Vowels are special sha,pes with Arabic words. It is good to have

them in writing to avoid possible ambiguity, but they are not necessary in most cases.

The vowels can be inferred from the context. Nowadays, most writers ignore them

[Bec87].

15. Similar to accent marks in European languages, Arabic has diacritical signs. These

signs are used to mark short vowels and emphasize or loosen a letter's sound [TA90].

16. A special feature of the Arabic alphabet is the large number of diacritics, points, and

slashes, which are used to differentiate consonants or to represent vowels.

17. Some groups of characters have the same shape with slight change in the number of

dots or the position of these dots [Jam91]. The dots and their positions are important

in distinguishing between different characters [Gor90].

18. The Arabic characters are written cursively with frequent vertical overlap in

handwritten form. For example, the first three characters of '~' can be written by

7

hand above each other. Even in the printed characters, vertical overlapping is clear in

the first two characters in the last example.

19. The pronunciation of the character, and hence the meaning of the word containing that

character, differs according to the diacritic imposed over it. For example, '~'

(sentences) is completely deferent from '~' (camel) even though they have the same

set of characters.

20. Arabic, like Latin, is a synthetic language rather than a predominantly analytical

language, such as English [FF93]. That means that the syntactical relationship of

nouns, for instance, is indicated by case endings and that verbs are inflected by means

of prefixes, infixes and suffixes to indicate the various persons, numbers, genders,

derived forms, moods and tenses. On the other hand, a language such as English a

separate noun or pronoun is required to indicate the person, number, etc.

21. A major characteristic feature of the Arabic language is that most of its words are built

up from roots, whereas English words are generated from stems [AA94]. Surface affix

removal processes produce word stems while deep affix removal processes produce

word root [Alk9 l].

22. The key to searching the Arabic lexicon is the root of the word, whereas the stem is

the · key in English. A lexicon is a list of words in which each word is associated with

its syntactic properties [AA94]. The most important property is the syntactic category

such as whether the word is a verb or a noun.

23. The Arabic language is an inflectional language whereas English is an analytic

language [AA94]. The derivation in Arabic is based on morphological patterns and the

verb in Arabic plays a greater inflectional role than in English.

24. Particles and affixed pronouns can be combined to Arabic words. This characteristic is

not available in English.

8

25. The structure of Arabic language is different from that oflndo-European languages,

including English. For instance, the phrase "PACKED ARRAY'' should be reversed in

Arabic to "o Y.r u ~". This is because in the Arabic language the adjective follows

the nominal phrase, contrary to the English.

26. The Arabic language accepts the principle of abbreviation. Both types of abbreviation,

forming a word from the first letters of a sequence -of words and selecting a prefix or a

postfix from a word was popular in many Arabic works of literature. For examples,

Arabs used to write "~" to stand for "i-1-J ~ 1» 1 ~", "...,.1" as a an abbreviation for

'\.st:i1", and "G" as a postfix for ''G..!.>-".

27. Finally, Arabic is highly flexible in word order, whereas English imposes a large

number of constraints on word order.

Not all of the above characteristics affect the Arabic Pascal language and its

environment. The features that deal with the formation of words, the structure of

sentences, or the different shapes of characters are not directly related to this work.

However, the following issues are affected by the characteristics of the Arabic language.

• The Arabic Pascal environment writes text from right to left. For numbers, we have

adopted the MS-Windows approach. This approach lets the cursor move to the left

while the newly entered digit appears to the right of the previous digits. In other words,

the user starts by typing the most significant digit. This approach may cause some

editing problems (deleting, copying, selecting, etc.) because the cursor position does

not match with the insertion position. However, this approach simulates the way of

writing by the majority of Arabs.

• For the sake of simplicity and flexibility, the Arabic Pascal does not accept the

diacritical signs. Most Arabs easily can read a text without the need for diacritical signs.

9

• Even though the standard Pascal does not allow the underscore character as part of

identifiers as well as keywords, the Arabic Pascal does. The reason is that the Arabic is

a script language (links the letter of a single word). Unlike English, it is hard to read the

concatenation of two words without a space or an underscore. For example, the

translation of "GOTO" can be either "J~~1" or "Jl_ ~~1". The former translation is hard

to read. The underscore character is inserted between concatenated words to increase

the readability.

• The Arabic Pascal applies the principle of abbreviation whenever applicable. For

example, the translation of "EOF" is "c y./' which stands for '\ , ... J.. _ ~4../'. Another

example is '\:,,,." as a translation for "COS".

• The letter "1" is sometimes used instead of "i'' or "!". To give some kind of flexibility to

the Arabic Pascal, the letter "1" can be used instead of "i" or "!" for keywords only, not

user identifiers. The same criterion is applied for":;" and"•" at the end of keyword, and

'\/' and ''i..s" also at the end of keyword* . Therefore, "1~1" and "1~1", "~ y-J:" and ";.s. y-J:",

"tj?" and ",.j ?", etc. are the same keywords.

In fact, the letters are not interchangeable from the orthagraphic point of view, but some Arabs use

them as interchangeable letters. The Arabic Pascal tolerates this common mistake.

10

CHAPTER 3

RELATED WORK

Software developed for English and other European languages may not be

convenient for Arab users because of the nature of the language and its writing system.

For example, Arabic editing environments are different from European ones. These

differences exist not only in character shapes and direction of writing, but also in language

structure as mentioned in Chapter 2.

The development in computer Arabization may also serve many other languages

that are derived from the Arabic language or at least use a similar character set, such as,

Farsi, Urdu, Malay. Therefore, almost all applications that are developed for the Arabic

language can be adapted easily to these languages.

Arabized computers become essential in the Arab world with the widespread use

of computers in education, business, and other aspects of life. However, the use of

computers in many Arab countries was, and may still be, in its infancy compared with the

West. A mission report published by the United Nations Development Program Regional

Bureau for Arab States in 1984 stated that all areas of computer applications are missing

except to some degree in management business applications [UN84]. This mission

described that there is a very little utilization of computers in health, education, biology,

agriculture, physics, geology, mining, construction, project management, and engineering

design.

11

Mahjoub and Mandorah [MM87] explained the main reasons for the slow

development of computer sciences in the Arab world as:

1. weak educational programs in the universities,

2. absence of national programs to introduce technology to the public,

3. lack of good Arabic software,

4. lack of Arabic text books and references,

5. high cost of Arabic computer systems, and

6. weak research activities in computer science with lack of communication and

coordination among the Arab researchers.

Arabization is the process of making computers accessible to the Arab users by

utilizing only the Arabic language. Since the Arabic language has several unique

characteristics, which differ from the English or Latin languages, the Arabization of

computers is significantly different from English or Latin modes. There are many aspects

or avenues where. the Arabization of computers took place. Among these aspects are

standardization [MM87, Smi90, Bak87], information systems [Mou87, BKN86, AG90,

Mor90, Tek90, Ali90,Alk91, Abu92, Alk92, Ham94b], pattern recognition [Ami88, ES89,

Gor90, AU92, Aly89, Jam91, AHD94, Mah94, AMG94, EG88, GUA92, NA94, AFC94,

AG95], artificial intelligence and expert systems [NEE88, EEN89, AH88, Ibr91, Als92,

AA93, KH93, ELS93, QHA93, MM94], Arabic morphological analysis [Cha87, EH89,

RS93, FF90, Fed92, FF93, AMA94a, AA91, AA94, Ali87, Ali88, Ali89, Ali90, NH94],

input and output facilities [Cas85, Kha86, Del86, TNS86, Bec87, Smi90, Alk90, KC91],

word processing (including spelling and grammar checking) [AA88b, Mic93, ELS93,

Ham94a], operating systems [Kal85, MM87, Tay87, AA88a, Sau86, Ela90, Tab90,

Mic92, Tab93], transliteration and translation [IDF89, AFC94, NM91, MM95, MT95],

Islamic sciences [AM95, Ali87, AK88, MA94, Abd90, Ahm94, Hil90, Ala90, Alm90,

12

Man90, MA94, Far90, Ald94], programming languages [MM87, Alkh, Najla, Bas95,

A YE90, DM86, Ela86, CS92, CS95], and other fields in computer science [Del85,

ZRN87, Ale94, EB90, AM94, Gne94, MA85, HE86, Bak86, Ela87, Far89, AM87,

Mac90, Eld87, FE95]. The following three sections briefly discuss the status and the

advancements in the most relevant issues to my work, namely: standardization, input and

output facilities, and programming languages. The fourth section reviews the history of

Pascal compilers. Before discussing these issues, we should point out that the accessibility

of information and literature in the Arabization subject is difficult due to the lack of

information exchange among the Arab countries and the lack of electronic (automated)

information availability. For example, if a conference proceeding or a paper is published in

one of the Arab countries, it is difficult to know about it or to access it unless it is

distributed to other countries (which is not the case for many reasons, such as political

situations).

3.1 STANDARDIZATION

There are at least three aspects m the Arabized computers that need

standardization: character coding, keyboard layout, and Arabic computer terms.

Unfortunately, there is not enough progress in the process of standardization in both

character coding and computer terms. The absence of an agreed upon set of standards for

character coding has a very negative impact on the process of Arabization. The keyboard

has, to some extent, a standard layout inherited from the Arabic typewriters. The

differences in the keyboard layout exist on the auxiliary marks and the special characters.

The absence of a responsible organization in the Arab world to take care of

standardization led to many Arabic character coding systems. The first attempt to

standardize the Arabic characters coding was done by Saudi Arabian Standards

13

Organization (SASO) in 1980 by calling for an international symposium [MM87].

However, the weak interaction between the researchers and manufacturers resulted in the

hasty adoption of standards. The various features of the Arabic language coupled with the

absence of an agreed set of standards for character coding and keyboard layout have led to

several approaches in Arabization, some examples of these approaches can be found in

[ASM82, Mah85, Man85, Dav86, Sau86, Mic88, Almua].

As yet, there is no standard code (ASCII) for Arabic characters. For example,

NCR has almost six different character maps for its Arabic terminals and printers; and

IBM has at least 12, seven of them at least for the IBM PC [cf Smi90]. Arabized MS

Windows has different character set from the Arabized MS DOS. In other words, an

Arabic text that is written using 'EDIT' under MS DOS cannot be viewed with

'NOTEPAD' under MS Windows. This led to inconsistency in every software that needs

to support both Arabic DOS and Arabic Windows.

Since the shape of the character is determined by the character itself and adjacent

characters, there are two approaches for character coding:

1. Each character has a single code regardless of its shape.

2. Each character shape has its own code. In this case a single character may have up to

four different codes. The total number of codes is over ninety.

Most computer systems use the first approach to avoid the large number of codings. The

appropriate shape can be determined by a software depending on the contextual analysis.

On the other hand, the standardization of computer terms in Arabic language is not

better than the standardization of character coding. An attempt to put some rules and

boundaries for the Arabization of terms was conducted by Bakry [Bak87]. The failure in

Arabized computer terms start even in the translation of the word "computer" itself There

are at least three translations: '\ 1.>-", "...,, rG-", and"; _y.,,,S". The last translation is actually

14

writing the word "computer" as is in Arabic (transliteration).The same criterion is applied

for many other terms.

3.2 INPUT AND OUTPUT FACILITIES

An Arabic text must confront three main classes of problems when displayed on

screen or printed by a printer [Del86, Bec87, Smi90]. The first class is caused by the

Arabic cursive nature. The computer must be able to handle a sequence of isolated typed

characters and display or print them in a smooth flow Arabic text. This process is called

contextual formatting. Automatic text concatenation requires an algorithm that accepts

Arabic characters and then alters or selects the proper shapes of the entered characters

according to their positions within a word; then displays the text on screen in a

syntactically correct manner [KC91]. Since there are over 90 shapes, the correct shape

within the a word needs a complex analysis [KC91]. Not only do we face this huge

number of shapes, but also some shapes. require double width, for example 'j in its

isolated or ending forms.

To illustrate the dependency of the character shape on the position of the character

within the word, let us take the character'...,! (Ha). It has four different shapes:

1. Isolated. For example 'or/.

2. At the beginning. For example \y!.

3. In the middle. For Example '-*"'.

4. At the end. For example '......, J..1...'.

Moreover, Arabic characters in a word are either connectable or not connectable

to its successor according to the characteristics of the character. The process of

connecting or disconnecting a character requires a complex analysis [KC91]. The Arabic

version of MS-Windows provides all the required analyses to display the Arabic text.

15

The second class of problems comes when numerals are embedded in the text.

Arabic or Indian numerals can be written starting from right to left or left to right. Also

they can be read starting from right or starting from left [Del86]. Currently, there is no

standard for implementing numerals in Arabic computer systems. In some systems, when

entering numerals, the cursor stays in one place and the numerals stream off to the left,

since numerals run left to right [Smi90].

The third class of problems in displaying text arises when a mixture of Arabic and a

European language has to be used. The computer must be able to intermix right-to-left

and left-to-right characters and place each character in its proper relative position in the

text line. This process is called directional layout. To illustrate the problem of directional

layout, let us take an example of an early attempt to mix English with Arabic text in the

NCR system [Cas85]. In that system, the English text needs to be reversed. Therefore, the

name "AbdulMalik Al-Salman" needs to be keyed into an Arabic document as "namlaS-lA

kilaMludbA". Of course, newer systems introduced easier methods for the mixed

documents. Examples of bilingual editors on the IBM PC are the Arabic Word Perfect and

the Arabic MS Word [Mic93].

Printing the Arabic script needs more effort than displaying the text on the

computer screen because it involves some hardware problems such as printer head

movement. Printing Arabic scripts also needs a complex analysis, similar to the screen

display. Furthermore, printing an Arabic text depends on the type of the printer; the dot

matrix printer needs more management than laser printer [kha86]. At the beginning of the

last decade, Arabic printers were limited and they also lacked standardization. This fact led

to the limitation of using computers in the Arab world. In conclusion, Arabic printers

should have the ability to print from right to left, to print also from left to right for

bilingual texts, and to perform contextual analysis.

16

3.3 ARABIC PROGRAMMING LANGUAGES

Experimentation with Arabic programmmg language environments has been

limited and the work on Arabized programming language has been relatively sparse. There

are two definitions for Arabization of programming languages [1\1J\187]:

1. Programming language Arabization is to be able to perform input/output in Arabic. This

approach is very easy to achieve when the computer screen and printer can deal with

Arabic characters. However, it does not enhance the process of computer Arabization.

2. Programming language Arabization is to write programs in Arabic language which ,of

course, include the I/0. This approach is followed in this dissertation.

Most of the early programming languages reported in the literature are either a

translation of the BASIC programming language or similar in nature to BASIC language.

Al-Khawarizmi is a BASIC-like programming language that runs under the CP/M

operating system [Alkh]. It has control statements, but not iteration statements. BASIC

~ (SAKHR) is a translation of the BASIC programming language [Bas95]. It runs

under f"- (SAKHR) computers. A third Arabic programming language is Najla [Najla]. It

is one of the best translations of BASIC with some enhancements. This programming

language is running under AlFarabi computers. One of the problems of the previous

Arabic programming languages is they are built for non-popular machines. The fourth

Arabic programming language is ARabic Baslc (ARBI) [AYE90]. It is an Arabic

programming language that runs under MS DOS. It is compatible with GWBASIC. In

ARBI, the Latin characters may appear only in the I/0 statements.

Dehlawi and Mandorah listed several programming languages that are similar in

nature to Latin BASIC or assembly language [DM86]. The first language is called "'-:-!..J-"

17

(GAREB). The name is the abbreviation of the "..;.,~l:..1.1 ~f' ~!~"(Arabic Computer

Programming Language). It is a subset of the BASIC language; and it was built in

AlMousel University, Iraq [DM86]. The second language is called ''.r j)~I" (Al-

Kawarizmi). It is different from the one mentioned before. This language was designed to

be used by children under 15 years old. It is also a subset of the BASIC language. The

third one is an Arabic assembly language. It was designed for a hypothetical machine just

to simplify the concept of assembly language to Arab students.

Another programming language that is also related to Arabic was developed by

Suleiman and Citrin [SC92, SC95]. The objective of that project is to build a visual

programming language that can support any language including Arabic. That project

supports the thesis that visual languages are well suited for programmers whose native

language is not English. A visual programming language presents most of the syntactic

and semantic information in a "BLOX-like" notation (regularized version of flowcharts)

[SC95]. The idea of visual programming saves some effort in writing the source code, but

it has some drawbacks. It is neither suitable for large programs nor for sophisticated ones

that require dealing with records and pointers. Moreover, writing the source code usually

takes only a short time compared with the process of debugging the program to make it

running. In that project, there was no mention of how the debugging takes place. Finally,

it is hard for a person to switch from the visual programming environment to the textual

environment when he or she needs to learn more in computer science. We, however,

follow the textual environment approach believing that it is more appropriate for the

general purpose programming languages.

Finally, a theoretical specification for an Arabic programming language was

introduced by El-Affendi [Ela86]. Its structure was translated from Modula, Pascal, and

some other languages. It supports five basic types: real, integer, character, boolean, and

18

pointer. Moreover, it has four data structures: array, record, file, and set. There are three

control statements: if . . . then, repeat . . . until, and case statement. Some issues are not

defined in that specification. Among these are input/output handling, reserved words,for

statement, while statement, mathematical operators, and built-in functions and procedures.

However, it would be a good attempt if it were implemented.

3.4 PASCAL COMPILERS

It is unknown when exactly the first compiler was constructed as the first

programmmg language is undetermined [Sam72]. In general, the concept of high level

programmmg languages started in the early 1950's. Among the oldest programming

languages (with their compilers) are FORTRAN, COBOL, and ALGOL 60. Throughout

the 1950's and 1960's, compilers were considered very difficult programs to construct.

For instance, the first complete FORTRAN compiler took about 18 staff-years to

construct [ASU86].

The first known Pascal compiler was developed in 1968 [Wir71]. That compiler

was written in FORTRAN. The second compiler was written in Pascal itself in late 1969.

After being written, the compiler was then translated by hand into CDC 6000 assembly

language and into ICL 1900 assembly language [WQ72]. The first portable version of

Pascal compiler, developed in 1975, is the Pascal- P-compiler [Ber78, PD82]. Rather than

producing code for any particular machine, it produces an intermediate code, known as P­

code, for a hypothetical stack machine. The P-compiler itself was written in Pascal and

compiles a subset of the Standard Pascal. A practical implementation of the P4 Pascal

compiler was designed for the Intel 8085A microcomputer [DP80].

19

The principles and techniques for building compilers have been discussed deeply

and widely in many sources [ASU86, Bac79, CJ88, DP80, Eld94, Gri71, Hed75, Mak91,

PD82, PP92, Pys88, Wir71, WQ72, Hol90, Hen90]. On the other hand, there are many

commercially available compilers for Pascal (usually extended version of Pascal) as well as

other programming languages. An example of a Pascal language and compiler is Turbo

Pascal [BTP89].

20

CHAPTER4

THE APE DESIGN AND ™PLEMENTATION

The APE [Als96] is designed to be an environment analogous to the programming

environments in the PCs. To the best of my knowledge, the APE is the first Arabic

programmmg language environment under MS-Windows. Editing, compilation, and

execution environments are all under MS-Windows. Editing and compilation windows

have been implemented using Visual Basic [Ama94b]. The execution window has been

implemented using C language and low-level MS-Windows system calls. The execution

window has to be controlled only by the user program, not by the user. In other words,

the user should be prevented from altering the window's output. Moreover, once the input

is entered, it cannot be changed.

The APE is a multiple-document environment that runs under the Arabic version

of MS-Windows. Therefore, the programmer can open more than one file at the same

time, but only one file is active at a time. The APE has only one Toolbar and one

Statusbar, and all commands are routed to the active file. The highlighted window is the

window that has the focus (active window). Figure 4.1 illustrates the main user-windows

interactions.

This chapter has five sections. Section 4.1 explains the design of the main window.

Section 4.2 shows the various dialog boxes in the APE. Section 4.3 discusses the

21

compilation and execution process. Section 4.4 explains the main APE algorithms. The

last section shows some of the APE help windows.

Help for .. El Com~,!1

Top Window .. I or Dialog Box Dismiss Text End
Window ~

Legend

Independent Window D
APE Sub-Window D
Event --

Help
(Main)

Text Window

Compilation
Window

Fl

Help fo r
Arabic Pascal

Execute
---- 1 Execution

Window

Di sm iss

Figure 4.1 Main User-Windows Interactions

4.1 MAIN WINDOW

When the user runs the APE, the main window (Figure 4.2) will show up on the

screen. The window is maximized with a single, empty file window. The following

subsections explain the various areas in that window.

4.1.1 The software/file title

This area has the software title '\-1.,.J1 J\5'...,1/' (Arabic Pascal), followed by the file

name. When a user runs the software, the file name will be ", :01y _0)~" (Untitled : 1). Since

the text window is in its maximized mode, the software title and the file name come in the

same area. If the text window is not in its maximized mode, the file name will appear only

on top of the text window, which is separate from the software title. As provided by the

MS-Windows, the "US" icon converts the writing mode to English when clicked. The "t"

22

icon converts the writing mode to Arabic. The default mode in the APE is Arabic. If all

files are closed, the main window (called MDI Window) will look like Figure 4.3.

software/file Title Main menu Tool bar

Text Editor (Window)

Figure 4.2 A snapshot of the Main Window

Figure 4.3 The main window after closing all files (MDI Window)

4.1.2 Main Menu

Figure 4.4 (a-f) shows the drop-down submenus in the main window that has at

least one file. The following is a translation of these menus (top to bottom). The help

menu does not have submenu.

23

(a) File (New, Open, Close, Save, Save As, Print, Exit, List of the most recently

used files) .

(b) Edit (Undo, Cut, Copy, Paste, Select All, Date and Time).

(c)Find (Find Only, Find and Replace, GOTO line, GOTO end).

(d) Compilation (Compile, Run, End of Compilation). Section 4.3 gives more

explanation about the compilation process.

(e) Options (Toolbar, Statusbar, Font reduction, Font enlargement). The toolbar and

statusbar items are used to make the toolbar and the statusbar, respectively,

visible or not visible.

(f) Window (Cascade, Tile, Arrange-icons, List of opened files) .

(g) Help. (see Section 4.5).

Ctrl+O
F1 2

F2
FJ

Ctrl+P

Ctrl+Q

1:.1!)

~
~
i..i..

r,:!_l,l,;t,.

~ L:J.

~

C :\UTI UTI E\ARAB _ EO 2\o . • p
C:\TC\CO MPILER\tc s t.op

C:\TC\SORT.AP
C:ITC\s ort.oo

Ctrl+X ~
Ctrl+C ~
Ctrl+V J"°:!

Del ..i~

.%Jl~I
.:.:..:i_.Jl_,i!-,,..,~I

Ctrl+R Jl~I

Ctrl+G ~ .sJ! .,....:i1

Ctrl+E ""~I ,s,JJ .,....:i1

(a) (b) (c)

(d)

.::.L.,~I i..._.J ,I

INJI .J • .'~"

b.JI ~

(e)

",,jl~
r_....)l~..I:'

1:c:,1~_w~l
C:\TC\COMPILER\TEST.AP !.

r:c:,J~ _c:,.,~ r. ,1

(f)

Figure 4.4 Drop-down Submenus

If the main window has no opened files (as shown in Figure 4.3), the main menu

consists of only three submenus: file , options, and help. The file submenu has only new,

open, exit, and the list of the most recently used files . The options sub menu has toolbar

and statusbar.

24

Due to the absence of character set coding standardization, the APE requires the

file names to be in English. If the file name is written in Arabic, it may appear as a junk of

symbols under the MS-DOS. Also, due to the inconsistency in the Arabic keyboard layout

and the absence of the translation of the function keys, the APE uses English short-cut

keys, such as F3 and Ctrl+P.

It should be pointed out that all dialog boxes are provided in Arabic including the

command buttons. Moreover, all messages are displayed in Arabic. Figure 4.5 (a) shows

the Find Dialog Box, and Figure 4. 5 (b) shows an example of a message window given to

the user when trying to leave a document without saving. The details of the dialog boxes

are explained in Section 4.2. The list of possible messages the user can get from the APE

is explained in Appendix A.

"'I~ ~I
~------ ~

(a) A Find Dialog Box

._,,,.:; ;j [1 :.:,I~ .:,_,.i.,]t.JI ,.,J ~
\' .::.I J,;!Ll)I J.A.. ~.j' J.

(b) Saving file message

Figure 4.5 Examples of a Dialog Box and a message window

4.1.3 Tool bar

It has nine icons. The first three (from the right) are for file operations: open a new

file, open an old file, and save the current file. The next three are for editing operations:

cut, copy, and paste a selected text. The seventh icon is for printing. The user can print the

source program, the compilation output, and the results of running the program. The print

command can only print a displayed window. In other words, if a window (source code,

compilation output, or result) has been dismissed by the user, the print command cannot

print the information that was in that window. The eighth icon is used for compiling

25

command. The last icon (not visible in Figure 4.2) is used for executing a successfully

compiled program. The left side of this bar is used for displaying a brief explanation of the

tool bar icons and status bar items when the mouse passes over them.

4.1.4 Text Editor

When a new file is displayed on the screen, the cursor will be placed in the

rightmost side of the first line. The default mode of writing is Arabic. Since this editor is

designed for programming purposes, the APE allows only one font style "Simplified

Arabic Fixed." This font has been chosen because all characters have the same width in it,

which is recommended in writing programs. While writing, the cursor will move to the

left. When the text cursor reaches the left edge of the enclosing window, the cursor stays

at the left edge, and scrolls the previous text to the right to accommodate the newly typed

characters. Similarly, reaching the bottom line in the window causes an automatic upward

scrolling to accommodate the new text. The horizontal scroll bar is used to move the

contents of the text window horizontally through the editing area. Note that the indicator

of the horizontal scroll bar is placed in the right-most of the bar. Similarly, the vertical

scroll bar (in the left side of the editing area) is used to move the contents of the text

window vertically through the editing area. The vertical scroll bar is placed to the left hand

side to suit the Arabic language nature. Pressing ENTER causes the cursor to jump to the

beginning of the next line (rightmost side). It should be pointed out that some keyboard

keys work in reverse manner in the Arabic mode. These keys are

a) Backspace key deletes the previous character (the character in the right of the cursor),

b) Home key returns the cursor to the rightmost character of the current line,

c) End key sends the cursor to the last character in the Arabic text (the lower left

character), and

d) Tab key will cause the cursor to jump eight spaces to the left.

26

The functions of the other keys remain the same as the English mode.

To edit (cut, copy, etc.) a part of the file, that part has to be selected (highlighted).

The selection in the Arabic text should be compatible with the Arabic direction of writing.

For example, if the user starts the selection in the middle of a line and drags-down, the

left-hand side of the first line should be selected (not the right-hand side as the case in

English text).

4.1.5 Status bar

It consists of five items. They are from right to left as follows:

a) Current line number and column number. It indicates the current cursor position. ·

Double clic!Qng on this item causes the GOTO line Dialog Box to appear.

b) Number of lines. It shows the last line riumber. Double clicking on this item causes the

cursor to jump to the end of the file.

c) Modification indicator. This item indicates if the file has been altered or not. If the file

is new or not modified since its load time, this item is blank. Whenever a printable

character is pressed, this item reflects this change by indicating that the file has been

changed "~..lo)" t''.

d) Insert/Overwrite mode. The default of the Text Editor is insert mode. When the user

presses Ins key, the mode is flipped.

Time indicator. It displays the current system time in Arabic.

4.2 APE DIALOG BOXES

The APE has five dialog boxes: File, Find, Replace, Go To line, and Print. All these

dialog boxes have to be dismissed before performing any action outside them. Moreover,

all these dialog boxes are movable to any place within the Main Window. The default

27

language for all these dialog boxes is Arabic except the File dialog box where the default

language is English because the file names should be in English to preserve the

compatibility between MS-DOS and MS-Windows.

4.2.1 File Dialog Box

This dialog box is activated when the user wants to perform one of these

functions : open, save, or save as. The general format of the File dialog box is shown in

Figure 4.6. This figure shows the File dialog box in the case of opening a file. The same

dialog box, with different title, is activated when the user wants to save a new file or

rename (save as) an old file. Therefore, the title of the dialog box can be:

• Open File (.j.l.. ~),

• Save File(.j.l.. ~) , or

• Save As (i-'-1 ~) .

: ..J.4.JI ('-'I

, ..
a . ap
a.a..ap
matrix . a.p
p03.ap
p1"1 . ap

:~.h,
c : \utilitie\ar ab_ ed2

o c : \
outilitie

: e..,:, t.>< .::,i.l4Ji Wu : <>"'1_;; 'ill

I J~Li r . ap) 111 1 gc: [MS-D0S_6] 111

Figure 4.6 File Dialog Box (With Open File Title)

The File dialog box uses the commonly used format for opening and saving files.

There are five display boxes and two command buttons.

1. File list box (...:..,\..il.J.1 wu). At the design phase, the APE sets the file pattern to be the list

of all files that has the extension of ap (Arabic Pascal) within the current directory. The

user can choose the needed file by clicking the mouse or using the arrow keys. Double

28

clicking a file name is equivalent to selecting a file and pressing ENTER or clicking OK

(..;;1.,..) button.

2. List files of type (t_..,; ~ ..::.,Wll wt;)_ This box controls the file pattern. It has a direct effect

on the File list box. The default file pattern is *. ap. The user has the choice to change it to

the pattern *. * (list all files within the current directory).

3. Directory box (.J.)\!1). This box highlights the current directory during the opening of the

File dialog box. The user can alter the current directory by clicking the needed directory or

using the arrow keys. Changing the current directory automatically changes the File list

box content.

4. Drive list box (<.J"'1~\r1). It displays the available drives in the computer. Changing the

current drive causes a change in both directory box and file list box.

5. File name box. This box is editable by the user. The user can write the file name to be

opened or saved. The APE offers the user the option of explicitly typing a drive, path, file

name, and file pattern. When a file name is typed, it is selected in the File list box. If a

pattern is typed, the directory and drive list boxes are updated. Also, the File list box

displays the file names which satisfy the pattern.

6. OK (..;;1.,..) button. It is the default command button (i.e., pressing ENTER is equivalent

to clicking this button). Clicking this button causes the selected or typed file to be opened

or saved.

7. Cancel (~w1) button. Cancel the action of opening or saving a file. It returns the APE to

the status before calling the File dialog box.

4.2.2 Find Dialog Box

This dialog box is activated when the user wants to find a particular word or set of

words within the text window. The format of this dialog box is shown in Figure 4.5 (a).

29

There are two display boxes and two command buttons.

1. Search string box. In this box, the user can type the desired text string. The cursor is

placed in the right side of the box for the Arabic text. If the user wants to type an English

text, the 'US' button has to be clicked or Alt+ left-Shift has to be pressed. If the user

selects a specified string from the text window, it will appear automatically in the search

string box.

2. Direction box. This box specifies the search direction with respect to the current cursor

position, either up or down. The default direction is down. The search will continue in the

same direction until the end of the file is reached (in case of down direction) or the

beginning of it is reached (in case ofup direction).

3. Search (~1) button. It is the default command button (i.e., pressmg ENTER is

equivalent to clicking this button). Clicking this button causes the APE to start searching

for the typed string. If the search-string is found in the text window, it will be highlighted.

Clicking this button again causes the APE to search for the second occurrence of that

string, and so on. If the search-string is not found in the direction specified, a message is

displayed to the user.

4. Cancel (~w!) button. Cancel the search process. The search dialog box will not terminate

until this button is clicked or the left-upper icon is clicked.

4.2.3 Replace Dialog Box

This dialog box is activated when the user wants to find and replace a particular

word or set of words within the text window. The format of this dialog box is shown in

Figure 4.7.

30

,___ ______ ___;JI =~ ~I

: ~~I (,)O,)JI

Figure 4. 7 Find and Replace Dialog Box

There are three display boxes and three command buttons.

1. Search string box. The function of this box is similar to the function of the search string

box in the Find dialog box.

2 Replace string box. The user may type the text that is going to replace the string in the

search string box. If this box is empty that means the user wants to delete the text in the

search string box. As in the search string box, the default language is Arabic.

3. Direction box. The function of this box is similar to the function of the direction box in

the Find dialog box.

4. Search (~1) button. The function of this box is similar to the function of the search

button in the Find dialog box.

5. Replace (J ..i+---1) button. This button is inactive (does not respond) until the first

occurrence of the search-string is found. When the user clicks this button, the current

highlighted text is replaced with the string in the replace string box.

6. Cancel (.Ll.!J) button. The function of this box is similar to the function of the cancel

button in the Find dialog box.

4.2.4 GoTo Line Dialog Box

This dialog box is activated when the user wants to go to a specific line in the text

window. The format of this dialog box is shown in Figure 4.8.

31

.t- .1, ..
~~)

Figure 4.8 GoTo Dialog Box

There are one text box and two command buttons.

1. Line number box. If the user writes a number and presses ENTER (or clicks OK

button), the cursor will jump to the beginning of that line number. If the number is invalid

(negative number, no number is entered, or a non numeric character), nothing will be

performed. If the number is larger than the last line in the text window, the cursor will

jump to the last line in the document. Jumping to the first line in the text window can also

be accomplished by pressing Ctrl + Home keys.

2. OK (._;...;1_,...) button. It is the default command button. Clicking this button causes the

cursor to jump to the specified line.

3. Cancel (~u.!!) button. It returns the APE to the status before calling the GoTo dialog

box.

4.2.5 Print Dialog Box

It is activated when the user wants to print the current source code, compilation

output, or the execution results. The format of this dialog box is shown in Figure 4. 9.

~~I ~L..4&-1..,J.. 0

~l;.;.11 ~L,J.. 0

Figure 4.9 Print Dialog Box

32

There are three check boxes and two command buttons.

1. Program check box. The default of this box is checked. When this box is checked, the

APE will print the current user program (text window content). The APE prints at the

beginning of each page the file name. Each page will have at most 50 lines followed by the

page number.

2. Compilation-output check box. The default of this box is not checked. When this box is

checked, the APE will print the current compilation window content (explained in the

following section). The APE prints at the beginning of each page the following phrase •....;.;

<........u1 r-"1> d,K."; (the result of compiling <file name>). Each page will have at most 50 lines

followed by the page number. If the compilation window is invisible, the printer prints

nothing.

3. Result check box. The default of this box is not checked. When this box is checked, the

APE will print the current execution window content (explained in the following section).

The APE prints at the beginning of the first page the following phrase ~l.:::.l1 (the results).

If the execution window is invisible, the printer prints nothing.

4. OK (._;...1y) button. It is the default command button. Clicking this button causes the

attached printer, if any, to start printing the checked boxes.

5. Cancel (~w1) button. It returns the APE to the status before calling the Print dialog box.

4.3 COMPILATION AND EXECUTION PROCESS

When a programmer compiles a program, the APE window splits into two

windows, the program window and the compilation window (display window). The

33

compilation window contains the error messages, if any, and some other helpful

information such as time of compilation, number oflines compiled. During the compilation

process, a yellow traffic light icon turns on to indicate that the compilation process is in

progress. If there is no error, the green light will be on. In case of errors, the red light will

be on. There is a direct connection between each error message and its corresponding line

in the source code that produces the error. Figure 4.10 depicts the APE windows after an

unsuccessful compilation. The highlighted lines are the statement in the source code that

causes the error and the corresponding error message. Note that the text color of the

compilation window is red indicating that some errors has been encountered. Note also

that the traffic light of the execution icon is turned red. The APE also supports interactive

modification of the source code. In other words, the programmer can switch from the

compilation window to the· source code window easily without loosing any of these

windows. Switching from a window to another can be accomplished by pressing the tab

key. Figure 4 .11 shows the APE windows after a successful compilation. Note that both

the text color of the compilation window and the execution traffic icon are in green.

When a program is error-free, it becomes ready for execution. the APE creates a

new window for execution when the user executes a program. The default language in the

execution window is Arabic. If a run-time error occurs, an error message will be displayed

and the execution will be aborted. As long as the source code is not altered, the

programmer can execute the program as many times as necessary without the need for

recompilation. Figure 4. 12 shows the execution window after the end of an execution

process. The program shown partially in this figure creates a linked list and then displays

its elements as first-in last-out. Pressing F7 (End of Compilation) dismisses the

compilation and execution windows and returns the program window to its original size.

34

The execution window and the Print dialog box are designed by the APE to be the

top-most windows in the system. Therefore, both windows will be on top of all other

windows even if the user switches to another software. The title of the execution window

is the name of the executable file. When the execution terminates, the window will be

locked (the window content cannot be altered) and its title will indicate the termination of

the execution.

If a user program has neither a read from the standard input nor a write to the

standard output, the execution window will not show up. Also ifthere is read from the

standard input and the output is to be sent to a file, the execution window has to be

dismissed before the output file can be opened. When the execution window is dismissed,

the buffered output is transferred to the output file.

'c > :.. .. ,-,
't.)U - : :,.,._, .A

!(..,......_..,);:,,\~\
~~ = : ~;-

J...,,. I (' <> lJ . A..,..........,) L...l ll.

'(..,..........)~.:...,..
!(y-.....i.c-)o•I~\

C: \UTILITIE>ARAB ED2\ST ACK .AP :L....l I F' I
1 t t 1 .>-! l ..)--Ll 1 1 ,._,;_)I I c-J.) L:,_J I

'('(: ! , : !1 : .!,...\.,._.J I

!'I •c--L>+-3 1 ~i
1 • ll-s:':1 I

Figure 4.10 A snapshot of the compilation window (unsuccessful compilation)

35

?' ~L, ~Li. Ll...;\ ~
, .Jl L:...._ u ,......._. ~ W.>->

• ~.)" = o _>.l. Li
J__. = ~J

t ,_;

C:\JJTILITIEIARAB ED2\STA.CK.AF' : ~\ f'"''
,,,, ()-1_)-L. '~ ~~'I \ :~_;b.....:i\

'JA:14. :~, :,~_,'n

!\ i::---L..>+-11 ...,i......, ~=
i:. \...h.;:..).t 1 ..) .:le-

Figure 4.11 A snapshot of the compilation window (successful compilation)

~,_..JI ?\:..;...:...L, ,L...JL, ,Ll...;\)

!.i!L:...._u,......._.. ~t...;..H

1: ~ .I
El!i!IIDII f: ,.....

2: I"' .I
3: ~ .I Li 4--,, 4: I"' .I f

5: ~ .I ~

6: I"' .I
. ..,........._

0: ,... .I

1 2 3 4 5
b~'i., ~
\ , : ,,- :

!.;\ r---,· L~' fa.w ·~ .::i .:a: .
... 'LL...:.."':!1 ..!,.:.,C.

Figure 4.12 The APE including the execution window

36

4.4 APE ALGORITHMS

The APE has been developed using Visual Basic which is an event-driven

programming language. Figure 4.13 illustrates the general software architecture of the

APE. A dialog box in the figure is a special window that prompts the user to supply

information needed by the software to continue with the application. A handler is a piece

of code that performs some actions in response to some events. As shown in the figure,

there are mainly ten handlers that control the APE functions. The following subsections

describe the algorithms and actions of these handlers. The last subsection (4.4.11)

sketches the algorithm for controlling the.execution window

Status

Windows

Icons

'
Ind.ir~ct
Conbiol

Execution
Window

Options Handler

Message Handler

Compilation
Window

Multiple-Document Interface
MDl)Window

Cut
Copy
Paste
Select All
Time/Date

Print Handler

Size

c::::J Function c=:> Object • All handlers interact with the Text Handler

DBx - Dialog Box

Figure 4.13 Software Architecture of the APE

4.4.1 MDI handler

Program
Compilation Output
Execution Output

PrintDBx

File DBx

New
Open
Save
Save As
Close

The MDI handler is the handler that is responsible for all actions to be taken in

response to the main window events. The MDI handler also handles the events for all the

37

objects included in the MDI window such as toolbar icons, statusbar items, and the menu

items that are available when there is no file opened (as in Figure 4.3). Table 4.1 describes

the actions related to the MDI window.

Table 4.1 Actions related to the MDI Window

Ob.iect Event Action
MDI window load show the MDI window, call Initialize

handler, get the most-recently-used-files,
and open a new text window.

MDI window unload close/save all opened files (text windows)
and quit the Help Window, if any.

New-icon and menu-new click call File new (see File handler)
all icons in the toolbar and move over display a help message
all items in status bar
open-icon and menu-open click call File open (see File handler)
save-icon click call Save file (see File handler)
cut-icon click call Cut procedure (see Editing handler)
coov-icon click call Coov procedure (see Editing handler)
paste-icon click call Paste procedure (see Editing handler)
print-icon click show the Print dialog box
compile-icon click call Compile procedure (see Compilation

handler)
run-icon (red or yellow lights) click display a correction message
run-icon (green) click call Execute procedure (see Compilation

handler)
menu-exit click perform Window-Close function (system

command)
status-position double-click show the Go To dialog box
status-size double-click move the cursor to the end of the text

window
menu-option-toolbar click flip the visibility of the toolbar
menu-option-statusbar click flip the visibility of the statusbar
menu-recent-files click call opening-file (see File handler)
menu-help click open the main software help window

(contains information about the APE and
the Arabic Pascal)

--- Fl key display the APE help window
toolbar resize call Options handler to adjust the icons

according to the new dimensions
statusbar resize call Options handler to adjust the items

according to the new dimensions

38

4.4.2 Initialize Handler

Most of the initializations to dialog boxes take place during the design phase. As it

1s known in Visual Basic [Ama94b], any window or dialog box can be initialized to

specific size, place, and attributes during a so-called 'design mode'. Therefore, the APE

initial windows are designed by choosing the appropriate properties. However, the

initialize handler performs the necessary initializations for non-dialog box related issues.

These issues are:

Defining the global constants

Declaring the MS-Windows library functions and procedures that are used

by the APE

Converting the keyboard to the Arabic mode

Setting the following:

the working directory to the directory containing the APE

insertlovenvrite mode to insertion

cursor position to line one column one (right side)

Software title to 'c/_rll Jl5:...,Lt' (Arabic Pascal)

f ant size to 12

4.4.3 File Handler

The File handler deals with all activities related to files including the File dialog

box. The procedures that handle the actual file opening, saving, and checking are as

follows:

1. Open-file procedure

show the File dialog box

get the file name from the File dialog box

39

unload File dialog box

if the file exists call opening-file procedure (see next)

update the most-recently-used-Jiles to include this file

2. Opening-file procedure

open the file for reading and writing and load it in a text window

if the file size is over 32k, display an error message to the user

make all icons visible to the user

set the cursor in the upper-right corner

set the line and column numbers to 1

calculate the file length (in terms of lines) and display it in the status bar

3. New-file procedure

show a text window titled as "untitled: index"

make all icons visible to the user

set the line and column number to 1

4. Save-file procedure

if the file has no name (untitled) show the File dialog box and get a file

name from the user

if file name already exists, display a warnning message to the user

write the text window content in the file

update the most-recently-used-files to include this file name

The actions related to the File dialog box are described in Table 4.2

Table 4.2 Actions related to the File Dialog Box

Ob.iect Event Action
file-type box click select either *. * or *. ap

update the file name box and file list accordingly
directories box change propagate directory changes to current directory path

and file list
drives box change propagate drive change to current directory path and

40

file list
file list box click echo the selected name in the file name box
file list box double-click echo the selected name in the file name box and do as

OK click
file name box change if empty then disable the OK button
--- Fl key display the file help window
OK button click if incorrect name then send a message

else return the file name
Cancel button click hide the File dialog box
File dialog box load set the keyboard language to English
File dialog box unload set the keyboard language back to Arabic

4.4.4 Text Handler

The main function of the Text handler is to control the· events that happen in the

text window. The Text Handler has control over the Editing Handler and the Search

Handler which are specialized handlers that deal with text editing and search activities

within the text window, respectively. Table 4.3 describes the actions taken when an event

occurs in the text window.

Table 4.3 Actions related to the Text window

Ob.iect Event Action
text window resize adjust the text window to the new size
text window unload close the active text window (save the file, if needed).

If all text windows are closed, make all icons related to
text window invisible, and refresh the statusbar (the APE
window will looks like Figure 4.3)

menu-close click same as event 'unload' above
menu-save click same as save-icon
menu-save-as click show the File dialog box
menu-print click same as print-icon
menu-undo click undo the last editing action
menu-cut click same as cut-icon
menu-copy click same as copy-icon
menu-paste click same as paste-icon
menu-delete click delete the last keyed character or the highlighted text
menu-select-all click call Editing handler
menu-date click call Editing handler
"menu-find click call Search handler
menu-replace click call Search handler
menu-Goto-line click call Search handler
menu-Goto-end click let cursor iump to the end of the text window

41

menu-compile click same as compile-icon
menu-run click same as run-icon (2:reen and red)
menu- click hide the run-icon, hide the compilation window, restore
compilation-end the original font size for text window, and perform text-

window-resize
menu-reduce-font click call Editing handler
menu-enlarge-font click call Editing handler
menu-cascade click call Options handler
menu-tile click call Options hander
menu-arrange click call Options handler
menu-list-of- click bring to front (to be the active text window) the chosen
opened-files file
--- Fl key display the APE help window
text window change modify the file status (in statusbar) to 'Modified'

modify the file size (number of lines) if needed.
text window ~ot calculate the current line number and the current column

OCUS number and display that in the statusbar. Calculate the file
size and display that in the statusbar

text window · key
down

(used for control keys) if Ins key is pressed modify the
statusbar

CC?mdcilation fot if the text color is green (no errors), then there is no
wm ow OCUS correshondence between the text window and the

compi ation window J

else 1fthe line starts with a number then highlight it and
its corresponding line in the text window

compilation key up ifnore all keys except ENTER and TAB,
window i ENTER do as got focus

if TAB switch from/to the text window

4.4.5 Editing Handler

This handler does the actual editing functions. There are two types of editing

functions: functions related to selected text or insertion in current position (namely cut,

copy, paste, select all, and time/date) and functions related to the entire text window

(namely font size).

1. Cut: copy selected text to Clipboard and delete selected text from the text window

2. Copy: copy selected text to Clipboard

3. Paste: place text from Clipboard into the current position in text window

4. Select all: highlight all the text in the text window

5. Time/date: insert the current date and time in the current cursor position

5. Reduce font: reduce the font size by 1

42

6. Enlarge font: increase the font size by 1

4.4.6 Search Handler

The search handler takes care of searching activities. There are three dialog boxes

related to this handler: Find, Replace, and GoTo line. Tables 4.4, 4.5, and 4.6 describe the

actions related to these dialog boxes, respectively. The main algorithm of the search

handler is as follows:

case find:

if there is a highlighted text in the text window, copy it in the

search-string

else copy the previous search-string, if any, in the current

search-string

show the find dialog box

call find-string (performed if the user clicks search, see next)

case replace:

if there is a highlighted text in the text window, copy it in the

search-string

else copy the previous search-string, if any, in the current

search-string

show the replace dialog box

call find-string (per/ armed if the user clicks either search or

replace, see next)

case GoTo line:

show the Go To line dialog box (the action is taken within the

dialog box, see table 4.6)

43

The algorithm for find-string is as follows:

Ob_ject

if the direction of search is down (from the cursor position and downward)

copy the text from the current cursor position to the end of the text

window into a temporary string

find the first occurrence of the search-string

else copy the text from the current cursor position to the beginning of

the text window into a temporary string

find the last occurrence of the search-string

if the search-string is not found display a message to the user

else highlight the found text in the text window

move the cursor to the end of that occurrence

Table 4.4 Actions related to the Find Dialog Box

Event Action
Find dialog load make find button disabled and the search direction down
box
direction click flip the direction of search
--- Fl key display find help window
find button click read the search-string, then call find-string
cancel button click save the text in the search-string box and unload the find

dialog box
search-string change if the search string is empty, disable the find button,

else enable it

Table 4.5 Actions related to the Replace Dialog Box

Ob.iect Event Action
Replace dialog load make find and replace buttons disabled, and the search
box direction down
direction click same as in find dialog box

--- Fl key display replace help window
find button click read the search-string, then call find-string, and enable the

replace button
replace button click cut the original text, read the replace-string, if any, paste

the replace-string, then call find-string
search-string change same as in find dialog box

44

Table 4.6 Actions related to the GoTo line Dialog Box

Object Event Action
OK button click read the line-number

if valid number(> 0) move the cursor to the beginning of the
specified line
unload the Go To dialog box

Cancel button click unload the GoTo dialog box
--- Fl key display goto help window

4.4. 7 Print Handler

The print handler is the piece of code that is responsible for printing the source

code, the compilation output, and the· execution results. There is only one dialog box

related to this handler. Table 4.7 describes the actions related to that dialog box. The main

algorithm of the print handler is as follows:

case print the source code (user program):

copy the text window content in a temporary file for formatting

the page-header gets the file name (to be printed on top of

all pages)

call do-printing (see.below)

case print the compilation output:

if there is no compilation window, display an error message and

then exit

copy the compilation window content in a temporary file for

formatting

the page-header gets the fallowing string:

<...;.LJ.1 r-t> 4-r. _; k.,,:i ('Compilation of' <file name>)

call do-printing (see below)

case printing the execution result:

if there is no execution window, display an error message

45

and then exit

copy the execution window content in a temporary file for

formatting

the page-header gets the string et:::J1 ('The Results')

call do-printing (see below)

The algorithm for do-printing is as follows:

while there is a line

copy the line in a temporary buffer

if top of the page, print the page-header

copy the line to the printer buffer

if bottom of the page, print the page number centered and

increment the page number

if last line, print empry lines until the page end then print the page

number

send print command to the printer

Table 4. 7 Actions related to the Print Dialog Box

Ob_iect Event Action
Print program-check-box click flip the program-check-box (enabled/disabled)
Print compilation-check-box click flip the compilation-check-box

(enabled/disabled)
Print result-check-box click flip the result-check-box (enabled/disabled)
OK button click start printing the checked boxes
--- Fl key display print help window
Cancel click unload the Print dialog box (do not print)

4.4.8 Options Handler

This handler is responsible of keeping track of the statusbar, the opened windows,

and the icons, if any. Table 4.8 describes the action taken for each request received by the

option handler.

46

Table 4.8 Actions taken by the Option handler

Request Action
Cascade windows make a system call to cascade all available text windows
Tile windows make a system call to tile all available text windows
Arrange minimized windows make a system call to arrange all icons
resize (window max. to if the toolbar is visible, shift all the toolbar icons left to fit
normal) the MDI window in the normal window. Do the same for all items in the

statusbar, if it is visible. If there is a text window, resize
it.

resize (from normal to max.) if the toolbar is visible, shift all the toolbar icons right to
the MDI window start from the right corner in the maximized window. Do

the same for all items in the statusbar, if it is visible. If
there is text window, resize it.

4.4.9 Message Handler

Whenever a message needs. to be sent to the user, this handler is called. This

handler is responsible for displaying the message in Arabic (including the command

buttons) with right alignment. Messages can be classified based on their content into three

types: error messages, informative messages, and dialog messages. The first two types

require only an OK button. For dialog messages, the message handler displays two (yes or

no) buttons or three (yes, no, and cancel) buttons depending on the message content.

Moreover, the message handler may include either an exclamation icon or a question icon

within the message. The message handler takes the user response and passes it to the

caller to take the appropriate actions. Appendix A lists all APE messages.

4.4.10 Compilation Handler

The compilation handler is the mediator between the APE and the Arabic Pascal

Compiler (APC). This handler has two main functions: compilation process and execution

process.

47

1. Compilation process

disable the run-icon, if it was enabled

turn on the yellow signal indicating the compilation progress

split the main window into two windows: text window (reduce its font size)

and compilation window

set the compilation window as a read-only window

if the ft le (text window) was not saved, save it

call the APC to compile the current file

if there is no error, set the color of the compilation window text to green

and turn on the green traffic light.

else set the color of the compilation window text to red and turn on the red

traffic light

display the APC output

ifno errors (arrange the program/or execution)

call the Turbo Assembler to assemble the program

call the Turbo Linker to link the program

delete the assembly and object files

else highlight the first error in compilation window and its

corresponding line in the text window

2. Execution process

find the executable file name that corresponsds to the active text window

execute the program (the execution window handler is responsible for

creating and managing the execution window)

48

4.4.11 Execution window handler

As stated earlier the execution window has to be controlled only by the user

program. Therefore, this handler has to make the cursor movement based on the user

program. For example, if the user program has some input, the cursor should be shown,

otherwise no cursor is shown. If a user types mistakenly some input and then erases it, it

should be removed from the input buffer.. There are many functions that are handled by

this handler, the main ones are:

1. Show cursor

2. Write text

3. Read text

create the caret (cursor)

if the cursor reaches the left side of the window, move it to the next line at

the right side of the window

else decrement the cursor position by I (move to the left for Arabic)

if the user text is longer than the window zise, break the line into sub lines

(to control the Arabic display)

count the line characters to move the cursor accordingly

display the text

wait for the user input

keep track of the user input:

if backspace erase the last character from the input buffer and

adjust the cursor

if ENTER

if TAB

accept the input buffer and move the cursor to the

next line (right side)

move the cursor 8 spaces

49

if Control keys ignore

else insert in the input buffer

4. Paint window (required when the execution window is resized or scrolled [Cro94]])

find the area in the execution window that has been altered

(need to be re-painted)

refresh the window

redisplay the text

5. Initialize window

create the window (titled w,ith file name)

shaw the cursor if there is input

open a text-file to capture the user program input and output

(used when printing the result)

6. Terminate execution

close the text-file

change the window title to indicate the termination of execution

destroy the caret (cursor)

4.5 HELP WINDOWS

In general, the creation of the on-line help is separate from the MS-Windows

application and it cart be invoked as a stand-alone application. After the creation of on-line

help, it can be attached to the software. The APE provides an on-line help file that

explains the necessary information needed for dealing with the system. When the user

clicks the help menu, the main help window is displayed. This window (Figure 4.13) gives

an introduction of the system and leads to two other windows: the APE interface help

50

window (Figure 4.14 shows part of this window) and the Arabic Pascal help window

(Figure 4.15 shows part of this window). When the user presses Fl key, an explanation

about the top most window will be displayed. If, say, the main window is shown (and

there is no dialog boxes), the APE interface help window will be displayed. If the user

opens the search dialog box and presses Fl key, a help window will show up to explain

the search dialog box, and so on.

Figure 4.14 The main help window

51

~~ ,~I J'.p. <.j.:.ll_, ,lla.:51 1.:U,. ~.I...-,~ J J1 o.UL:!1 _,1 C..l.:Ji ~1.r-11 ~1.-:SJ ~_,ll 4~ ~
.1.a..i,,,j.::: eo! ;_,,:a., Ip'",_;_, ~I .r-1 I

Figure 4.15 Partial display of the APE interface help window

:.;.J., \-Lo .:,\S'" .:,-1 ::...Ul • .:U. ~ ,, ~ J.-11 .y .:,,s:..i_...:; ~.l.l .~\ll JIS:-.1., ::.ill -:u,.,:; y'" y!..,.a.ll JIS:-.1., :..J .:,I

-~\ll JIS:....\,

-: ..}l yJ..;.. \+I'.!-> :- .)*,, ~'\.>ll .::.,\..')'wl ,,..,..u.r .:i'.!-o 1.l.l,_.,l....,,ll ..}l ~I .Y' ,....,; :...,..,.a.11 ::...!JI .:,1 ('.#1 .Y'

:('\...Si::..~ ..}1 ~ y'", .~\ll ~ 1+1,~\.., y!..,.a.ll JIS:....\, :..J ,:J ~I .::.,W5'.J\.i 4.,'\; ,j-t "-'

o j_p.,s! I .::, i...lSJ I • '

AND :> NIL f:._.>\j

ARRAY ...;~.:u~ NOT _rJ

BEGIN 1.J.,I ,f-',I OF .:r-
CASE -ii OR ,1 ':> f

CONST i.:....,i\! PACKED ..i. .,..~ .:u..,..,..
DIV r" u PROCEDURE ~-~
DO ~i·~· PROGRAM (!;"LI,..

DOWNTO J1_J,;; ·JLJ,;; RECORD J,,.-,

ELSE ,11, . '>11.., REPEAT .,,s-
END "<'*' '"'-'*' SET as-~ • ..,,~

Figure 4.16 Partial display of the Arabic Pascal help window

52

CHAPTERS

DESIGN AND IMPLEMENTATION OF THE ARABIC PASCAL COMPILER

A compiler is a computer program that accepts as input the text of a program

expressed in a given programming language (source code) and produces an equivalent

program in another language (assembly co~e or object code) [Mak.91]. Figure 5.1 shows

the main parts of the Arabic Pascal Compiler (APC) with their most common interfaces.

Source
code

Legend:

Function
Input/ output

Figure 5.1

Symbol
T ble

----),

----+
Data Flow
Function Call

Assembly
· · ~ Code

Organization of the Arabic Pascal Compiler

As shown in Figure 5.1, there are four essential functions: the scanner, the parser, the

code generator, and the error handler. The basic function of the scanner is to read the

source text file as a string of characters and to recognize from it a stream of words,

53

numbers, and symbols. Each word, number, or symbol is called a token [CJ88]. Details of

scanner functions are discussed in Section 5 .1. The fundamental task of the parser is to

take the stream of tokens as input, build symbol tables, analyze the source program based

on the syntax, check the correctness of different types, and finally call the code generator.

Section 5.2 is devoted to the description of the parser. The final segment in the APC is the

code generator. It generates an equivalent assembly code for the source program.

Explanation of the code generator is presented in Section 5.3. During the process of

compilation, if an error occurs the error handler is invoked. More explanation of the error

handler is in Section 5.4. The last section, Section 5.5, gives examples of two Arabic

Pascal programs along with their equivalent English Pascal programs.

The APC is developed in C and compiled using Turbo C. The compiler generates

8086 assembly code. The generated code is assembled and linked using Turbo Assembler

and Turbo Linker [BTA93]. Therefore, the targeted machine is IBM PC or compatibles.

We chose this machine because it is the most widely used machine at the personal level.

The compiler requires an Arabic interface to write and edit the Arabic Pascal programs.

Before starting the explanation of various parts and algorithms of the APC, we

should point out that almost all examples and reserved words mentioned in this chapter are

from the Standard English Pascal [Coo83, Tib81, WH86]. Appendixes B-E are devoted to

explain the structure and the terms in the Arabic Pascal language.

5.1 THE SCANNER

Most of the compiler runtime is spent on lexical analysis in the scanner [PP92,

p.48]. The scanner reads line by line from the input file, reducing each line to manageable

tokens (words, numbers, strings, and special symbols). It is therefore incumbent upon a

54

compiler designer to exert some effort in making the scanner efficient. Since regular

grammar is sufficient to fully define all different types of tokens in the Arabic Pascal, a

finite-state automaton is adequate to implement the scanner. The scanner performs four

major tasks:

1. Removing extraneous blanks, carriage returns, and new-line characters.

2. Removing comments.

3. Identifying tokens.

4. Reporting errors it discovers by calling the error handler.

There are two common approaches for the compilation process. The first approach

performs the compilation in multi-phases. Each phase is completed for a given source

program before the next phase starts .. This approach is called multi-pass compilation. An

example of this approach is the two-pass compilation which has two scan phases. In the

first scan, the compiler resolves all forward references. The second scan does the rest of

the compilation. The second approach interleaves or carries out in parallel the phases of

compilation in one step. It is called one-pass compilation. This approach solves the

problem of forward references by leaving holes in the code where the address needs to

appear. When the target address becomes known, the compiler returns to the output code

and patches the offset or the branch address with the correct value. This method is called

backpatching [Pys88]. The APC uses the latter approach because it better suits block­

structured languages.

Unlike the usual scanning, the Arabic Pascal scanner scans the source code from

right to left instead of from left to right. The scanning should be done in this way because

the Arabic writing and reading are from right to left. Moreover, the Arabic Pascal scanner

does not have the problem of upper and lower cases because these are not applicable in

the Arabic characters.

55

In the Arabic Pascal, the comment is enclosed between two curly brackets. The

comment can appear wherever a blank can in the source program. Therefore, a comment

is not allowed to be within a single identifier or a number. Whenever the scanner

encounters a comment, it simply skips that text and deals with it as if it were a single

space.

5.1.1 APC Tokens

The Arabic Pascal has several types of tokens: reserved words, identifiers, strings,

special symbols, and numbers.

A) Reserved Words

There are 3 5 distinct reserved words in the Arabic Pascal language (see Appendix

B). Every time a word is encountered, the scanner has to check if this word is a reserved

word. For this reason, searching for reserved words should be done efficiently. Therefore,

instead of putting all the reserved words in one string array, the Arabic Pascal scanner

groups them based on their length to speed up the search process. There are eight groups

of reserved words with an average of four to five in each group. Based on the length of

the scanned word, only the reserved words with same length are checked. Moreover, the

reserved words in each group is alphabetically ordered. As mentioned in Chapter 2, some

reserved words can be written in more than one way, such as '1~1' and '1~1' which are

considered as one reserved word equivalent to 'if. Therefore, there are a total of 52

reserved words.

B) Identifiers

Any word that is not a reserved word is considered to be an identifier. An identifier

can be a program name, a procedure name, a function name, a constant, a type, a variable,

or a directive (there is only one directive in the Arabic Pascal "<Y'l" which is a translation

56

of the Standard Pascal "FORWARD"). No blanks may appear within an identifier. The

APC limits the identifier length to 80. Due to the reasons explained in Chapter 2, the APC

accepts the underscore character as part of the identifier.

C) Strings

A string in the Arabic Pascal is enclosed between two double-quote characters and

it is not allowed to use a double-quote character inside a string. The reason for using

double-quote instead of single-quote (as in the Standard Pascal) is that the Arabic

language usually uses double-quote for quotation.

D) Special characters (Symbols)

Special symbols in the Arabic Pascal consist of either one or two characters.

Examples of one-character symbols are+, [, <, and :. Examples of two-character symbols

are =>, =:, and <>. Note that almost all double-character symbols are written in reverse

order with respect to the English Pascal (=: instead of :=) for an obvious reason: the

Arabic language reads from right to left. Note also that the greater-than symbol is< and

the smaller-than symbol is >. See Appendix B, Section B.4 for the list of symbols in the

Arabic Pascal.

E) Numbers

Scanning numbers may be the hardest part to implement in the scanner (see

Appendix C for the syntax of the Arabic Pascal numbers). The Arabic Pascal can accept

either the Arabic numbers (O,l,2,3, ... ,9) or the Indian numbers (", ,,- ,r, ... ,-.).The

character '.. .. / in the Arabic Pascal is equivalent to the 'E' or 'e' character in the English

Pascal. The range of integer in the Arabic Pascal is between -32768 and +32767. The

scanner limits the number of digits to 20 digits including the signs [BTA93]. It also limits

the exponent value in the range of -37 to +37 [BTA93].

57

Fortunately, the Arabic language and the English language read numbers in the

same way: from left to right. That means, both languages consider the left-most digit as

the highest significant digit. For this fact, accumulating the value of a number is the same

in both languages. It should be pointed out that the comma in the Indian numbers stands

for the decimal point. Therefore, under almost all Arabized software, the dot key in the

keyboard is printed on the computer screen as a comma in the case of choosing to write in

the Indian numbers set.

5.1.2 The Scanner Algorithm

The scanner is called by the parser which requests the next token. Whenever the

scanner is invoked, it returns the next token from the source code. The general algorithm

for getting a token is as follows:

skip-blanks;

select (based on the first character)

case alphabet: get-identifier;

case digit: get-number;

case quote: get-string;

case end-of-file: return end-of-file;

else get-symbol;

Hence, there are four different algorithms for extracting tokens:

1. Get-identifier. It follows syntax diagram (2), Appendix C. The identifier starts with

an alphabet character followed by no more than 80 alphabets, digits, or underscores. If

the identifier is among the reserved words, the specific reserved word is returned to

58

the caller (parser), otherwise an identifier token is returned to the parser to insert it in

the symbol table.

2. Get-number. It follows syntax diagram (29), Appendix C. There are three possible

types of numbers: integer, decimal floating-point (e.g., 34.23), and scientific notation

which has the e-notation, '<..I'' in Arabic Pascal, (e.g., 23e4 and 4.Se-5). When the

scanner encounters a dot, it has to check that it is not followed by another dot, if so

then the double dots are another token used for subranges.

3. Get-string. It simply returns the sequence of characters, including spaces, that is

enclosed by double-quote character. The new-line character is not acceptable within

the string.

4. Get-symbol. There are 21 symbols, five of which are double-character symbols:-,+,

* I) (=] [/\ ' . ·= < <= <> > >= ' ' ' ' ' ' ' ' ' ' . ' ., .. , ., . ' ' ' ' ' .

When the scanner is invoked for the first time, it opens the source file and prints some

header information (such as file-name and time of compilation) in the compilation output.

5.2 THE PARSER

· The part of a compiler that knows the source language's syntax is the parser

[Hen90]. The parser controls the translation process since it analyzes the source program

based on the syntax. It calls the scanner to provide it with tokens. It also handles symbol

table functions. Finally it calls the code generator to generate the assembly code.

The APC is designed as a top-down parser (recursive descent) [ASU86, Pys88,

PP92, Eld94]. Top-down parsing constructs the parse tree from the root downwards to

the terminal symbols at the leaves. In other words, the parser starts at the topmost non-

terminal symbol of the grammar down to the terminal ones. The recursive descent parsing

59

method is so called because it is implemented by a set of recursive procedures, one to

correspond to each non-terminal of the grammar [Eld94]. The Arabic Pascal parser

follows RL(l) grammar: Right-to-left scan, Left-most derivation with one look-ahead

token. The RL(l) is exactly as LL(l) for the English language. The "Left-most derivation"

of the grammar assumes that the grammar of the Arabic Pascal is written in the

conventional way (from left-to-right) with Arabic terminal words and English words for

non-terminals. The one look-ahead token approach infers that there is no backtracking. An

advantage of following top-down parsing is the ease of construction, and once

constructed, it is also easy to read and develop. The main drawback, however, is the slow

speed in execution and difficulties in code optimization.

An alternative approach is bottom-up parsing. This parsing technique is harder to

implement but has some advantages [Hol90, p.337]. The main advantages are the ability to

parallelize the process of parsing and the feasibility of automating the parsing. This

approach starts with the terminal symbols and works its way up to the topmost non­

terminal symbol. In other words, the tree is constructed from leaves of the parse tree to its

root.

5.2.1 Syntax Diagrams

In · order for the parser to work correctly, it needs to know the exact description

for the source language syntax. There are several approaches to describe a language.

Among these approaches are context-free grammar and syntax diagrams [ASU86]. The

Arabic Pascal is relatively a simple language that can be fully recognized using syntax

diagrams [JW74]. Syntax diagrams are graphical representations of the syntax rules.

Appendix C gives a full description of the Arabic Pascal syntax via syntax diagrams.

However, not all the details of the language rules can be expressed by the syntax diagrams

60

(or any other approach). For example, syntax diagrams cannot indicate the limits of

integer value, and they cannot express the type checking. The Arabic Pascal parser is

designed in a way that reflects the syntax diagrams. Of course, the syntax diagrams that

are representing the lowest-level syntactic entities, such as identifier and number tokens,

are used to write the scanner.

In Appendix C, syntax diagrams 35-39 give a complete syntax description of the

Arabic Pascal expressions. They also implement the full operator precedence as follows

(See Appendix B, for the Arabic operators):

Operator

not

*, I, div, mod, and

+,-,or

=, <, >, <>, <=, >=, in

5.2.2 Symbol Tables

precedence

1

2

3

4

(highest)

(lowest)

The symbol table is used to maintain all needed information about all identifiers. It

must be able to insert, access, and update information efficiently. Therefore, Binary

Search Tree (BST) is chosen as the data structure for symbol table. In this BST, each

identifier and its associated information form a node. Figure 5.2 shows the data structure

of the identifier node in the symbol table. The identifier classification determines the

identifier role in the program such as: label, constant, type, variable, procedure name, etc.

Based on the identifier classification, certain information is kept in the node. The Serial

number is used to assign a unique number for each identifier. The use of it will be

explained later in Section 5.3. The scope is a means to keep track of the identifier scope.

The size is used to determine the size in bytes of the identifier. This information is utilized

61

by the code generator to generate the required memory space for each identifier. The sizes

of different types are presented in Table 5.1. The size of compound types, such as arrays

and records, are the total size of their elements. Left Ptr and Right Ptr are used to

construct the BS T. In Variable node (Figure 5 .2 (b)(8)), if Relation-Ptr is Null, the

variable has no reference to type section such as the variable t in the following declaration:

t : (hour, minute, second)

On the other hand, the Other Information is omitted if the Relation-Ptr is not Null. In

Formal parameter node (Figure 5.2 (b)(9), the Relation-Ptr cannot be Null because the

type of the formal parameter variable is either a simple type or a type that is defined in the

type section. The Next-Ptr is used in the Variable node to relate all variables of the same

type that are defined in one statement. For example,

j, k, l : integer;

n, m : integer;

The Next-Ptr will link j, k, and l together, and link n and m together, but there is no

relation between the two lists except they are of the same type. The Next-Ptr is essential

because the type definition of variables comes after listing the variables. When the parser

encounters the type definition (which is in the previous example "integer") it fills the rest

of information based on that type. The Next-Ptr in the Formal Parameter node is used to

relate all formal parameters of one procedure or function.

An example of a symbol table structure is shown in Figure 5.3. For the sake of simplicity,

the predefined types' nodes are not shown in the figure. The int-ptr and the char-ptr are

pointers to the integer type node and char type node, respectively.

To reduce the symbol table size, to avoid naming conflict in the symbol table, and

to preserve the principle of scope easily, the APC constructs more than one symbol table.

The main two symbol tables are that contain the pre-defined identifiers and the user's

62

global identifiers, if any. For each local procedure or function, a separate symbol table is

created. Whenever an identifier is referenced in the source code, the search starts from

the local scope to the surrounding scopes until it is found or the main symbol table is

reached.

The mam source of feeding symbol tables is the declaration part of the program,

procedure, or function. The global symbol table is initialized with pre-defined types,

constants, functions, and procedures.

• The predefined types are: integer, real, boolean, chat, and text. Type boolean is an

enumeration type with two constant identifiers true and false.

• The pre-defined constants are: true, false, and nil.

• The pre-defined procedures are: read, readln, write, writeln, new, dispose, reset, and

rewrite.

• The pre-defined functions are: abs, arctan, chr, cos, eof, eoln, exp, In, odd, ord, pred,

round, sin, sqr, sqrt, succ, and trunc.

63

(a) General Node Structure Identifier Name
Classification Classification = (label, constant, type,
Serial Number variable, func _ name, proc _ name,
Scone built-in_ func, built-in _proc,
Size Cbvtes) formal _parameter).

Rest of
Information Serial Number: a unique number for

Left Ptr jRight Ptr
each identifier.

(b) Rest of Information (based on the Classification)
(1) Label (2) Constant (3) User Procedure (4) User function (5) Built-in Proc

[><] value # parameters # parameters # parameters
Relation Ptr Parameter List Parameter List List of Valid

Ptr l>1-r types
Return type

(6) Built-in Fune (7) Type (8) Variable (9) Formal Parameter

parameters Sub-Classification Sub-Classification Sub-Classification
List of Valid Other Other value/reference

types Information Information Other Info.
Return type Relation-Ptr Next-Ptr Next-Ptr

Relation-Ptr Relation-Ptr

Sub-Classification= (char, integer, real, boolean, enumeration, sub-range, record, array
file, pointer, set).

Relation-Ptr is used in constant, type, and variable to relate one class to another. For example,
time = (hour, minute, second). Hour is a constant related to time.

(c) Other Information (based on the Sub-Classification)

(1) char, integer, real, (2) enum. (3) sub-range (4) record (5) array

~ # elements Range type Ptr Field Sym. Indexes-tvoe Ptr
List Ptr Min value Table Ptr DimPnc:ion

Max value -· ··~· tvne Ptr
Min Values
Max Values

(6) file (7) pointer (8) set

File element tvne Ptr element type Set element type
File element Ptr Ptr element Ptr Set element Ptr

Figure 5.2 Symbol Table Node Data Structure

64

Example
CONST

length= 10;
TYPE

h = array [1 .. length] of CHAR;
VAR

a, q h;
j, x: INTEGER;

[name]
[class.]
[nurn.]
[scope]
[size]
[sub-class]
[index-type]
[dim.]

[name]
[class.]
[nurn.]
[scope]
[size]
[value]
[relation]

type
2
1

10
array
int-ptr

1
[elem. type] char-ptr
[min.]
[max.]
[relation-ptr]

[name]
[class.] var
[nurn.] 1--3--
[scope] _1"--_
[size] __ 10_-v,
[sub-class]
[next-ptr]
[relation-ptr]

D

1
10

null

D

1
1
2
10

int-ptr

var
5
1
2

10
array
null

[name]
[class
[n .]
scope]

[size]
[sub-class]
[next-ptr]
[relation-ptr]

Figure 5.3 An Example of a symbol table

65

[name]
[class.]
[num.]
[scope]
[size]
[sub-class]
[next-ptr]
[relation-ptr]

var
6
1
2

integer
null

D D

Table 5.1 Sizes (in bytes) of different data types

Type int. boo 1. real char enum. array pointer file record

Size 2 1 4 1 2 size*type 2 2 ~ of its fields

5.2.3 Identifier's Scope

The scope of an identifier is the portion of the program where that identifier can be

referenced [ASU86]. The Arabic Pascal allows the same identifier in a program to name

different variables as long as the variables belong to different scopes. The scope rules of

the Arabic Pascal determine which declaration of an identifier applies when that identifier

appears in the source code. An identifier can be a constant, type, variable, parameter,

procedure, or a function. An identifier is said to be global if it is a predefined identifier,

type, procedure, function, etc., or if it is declared in the declaration section of the main

program itself [Hol90]. An identifier is called local if it is declared inside a procedure or a

function. In the APC, there are only two levels of global identifiers that are defined during

the entire compilation process. The first level is the predefined types, identifiers,

procedures, and functions. The second level is the global identifiers, if any, that are defined

by the programmer in the main program. On the other hand, there are as many levels

(scopes) of local identifiers as the number of nested functions and procedures. Figure 5.5

depicts the concept of the identifier scope via an example. Each scope level (block) has

been enclosed in a box. The block number is shown in the upper right of the

corresponding box. Within the statement part of each block the number of the blocks

whose local identifiers are accessible at that point are enclosed in brackets. The lookup for

an identifier starts from the local block outward to enclosing block. Note that the numbers

in the brackets are sorted according to the look up procedure.

66

The concept of identifier's scope plays an important role in the parsing process.

Whenever the parser encounters an identifier in the body of a procedure or function

(including the main program), the parser first checks the with-stack (a stack that is

associated with with statements), if not empty, to concatenate the identifier with the with-

stack entries, one at a time, starting from the stack top, then it checks the symbol table

associated with that procedure or function (local scope). If it did not find the identifier, it

checks the next enclosing scope. The search continues outward within enclosing scopes

towards the outermost scope (global scope). The search stops either by finding the

identifier or reaching the outermost scope. In the latter case, an error message is issued to

the programmer.

PROGRAM sco e INPUT OUTPUT 0
VAR j, k, l INTEGER;

PROCEDURE a (al, a2 : char); 2
TYPE a = ARRAY [1. .10) of REAL;
VAR x, y : INTEGER;

aa : a;
FUNCTION b (r REAL) : CHAR; 3

VAR X CHAR;
BEGIN

[3,2,1,0]
END;

BEGIN
[2,1,0]

END•

PROCEDURE C (cl, c2 : INTEGER); 4
VAR q: REAL;
BEGIN

[4,1,0]
END;

BEGIN
[1,0]

END.

Figure 5.5 Scope structure of a Pascal program

67

Symbol Table of Block 3
Symbol Table of Block 2
Symbol Table of Block 1 (user global identifiers)
Symbol Table of Block O (pre-defined identifiers)

Scope Stack

Figure 5.6 A Snapshot of the Scope Stack of the program in Figure 5.5

As stated earlier, each procedure or function (including the main program) is

associated with a symbol table containing all the local identifiers. To implement the

principle of scope, symbol tables are grouped in a stack, called the scope stack. Initially,

the parser pushes the pre-defined identifiers' symbol table (in the bottom of the scope

stack). Appendix B, Sections B.2 and B.3 list the pre-defined types and identifiers, and the

built-in procedures and functions, respectively. The parser, then, pushes the global

identifiers in the scope stack. When the parser enters a new subprogram (procedure or

function), it pushes the subprogram's symbol table in the scope stack. As soon as the

parser processes a subprogram, its corresponding symbol table is deleted to decrease

memory requirements · during the compilation process. Therefore, the search for an

identifier starts from the top of the stack to its bottom until the identifier is found. An

error message is issued for unsuccessful search. Figure 5.6 shows a snapshot of the scope

stack of the program in Figure 5.5 while the parser in function b ().

5.2.4 The parser Algorithm

Most of the APC coding belongs to the parser. The Arabic Pascal parser consists

of two handlers and five sub-parsers. The handlers are the symbol table handler and the

synchronization handler. The sub-parsers are subprogram parser, declaration parser,

statement parser, expression parser, and standard procedures and functions parser. All the

sub-parsers are implemented according to the structure of the Arabic Pascal syntax

diagrams (as in Appendix C).

68

Before explaining the details of the parser, it is important to know the approach of

mapping the syntax diagrams into algorithms. Each syntax diagram in the Arabic Pascal

can be decomposed into the following simple cases:

1. Primitive case:

This case has three forms:

--+~

by-pass consume call

where, the circle represents a terminal symbol (token) and the rectangle represents a non­

terminal symbol. The by-pass arrow in a syntax diagram is the arrow that allows by­

passing (skipping) one or more syntax entities (terminal or non-terminal symbols). This

arrow is used to skip optional structures. The second form makes the parser consume the

token (x) and continues parsing. The last form makes the parser call subprogram y.

2. Branching case:

This case has two forms:

(a) Forward branching. The branch is forward if it does not return to a previous state in

the syntax diagram. The parser implements this using a case (select) statement (if more

than two branches) or an if ... else statement (if only two branches and one of them is

a by-pass, then the parser uses an if statement).

(b) Backward branching. The branch is backward if it returns to a previous state in the

syntax diagram. The parser implements this using either while statement (if there is a

by-pass arrow that permits skipping the entire backward branch) or repeat statement.

3. Merging case:

When two or more arrows m a syntax diagram meet, the parser ends their

corresponding branching statements.

69

Therefore, the first step in implementing the parser is to map all syntax diagrams

into simple structures. This scheme handles only the correct structures, so we need to add

error checking to the parser. Moreover, we need to embed type checking for all

statements and expressions. The final step is to call the code generator to generate the

equivalent assembly code where necessary.

The following subsections briefly explain the main functions of each handler or

sub-parser. For the sake of simplicity and brevity, we will mention only the main syntax

diagram(s) that the sub-parser is following (without writing its (their) corresponding

algorithm(s)). In the first sub-parser (Section 5.2.4.3), we will give the corresponding

algorithm for syntax diagram (3) as an illustrative example.

5.2.4.1 Symbol Table Handler

As stated earlier, symbol tables in the · APC are constructed utilizing the binary

search tree concept. They differ form the plain binary search trees in two ways. First, they

have some extra pointers that relate all variables of the same type, and relate each variable

with its type. Second, in the case of records, the record node is considered as the root for

the fields' nodes. In other words, for each record, there is a symbol table associated with it

within the main symbol table (nested symbol tables). The symbol table handler carries out

three main functions: symbol table initialization, insertion, and search.

(a) Initialization

initialize the scope stack's top with zero.

insert all predefined constants, types, functions, and procedures.

(The scope for all identifiers is set to zero).

(b) Insertion

search the current symbol table to ensure the uniqueness of the identifier within

that scope.

70

create a new node and insert all needed information.

insert the node in its appropriate position in the symbol table.

(c) search

There are two types of searches: searching only the current symbol table (mainly used for

insertion) and searching the entire scope stack starting from top to bottom (mainly used

when referencing an identifier). In the latter case, the with stack is checked before starting

the search to concatenate its content (as a leading string) to the identifier. Since the with

stack can only be associated with the local scope, the with stack is checked only when

searching the current local scope. The with stack is also checked from top to bottom. Let

us take the following example:

with rec, ptr" do {equivalent to: with rec do with ptrA do}

X := .. . ;

The with stack will have two items: rec and ptr" (ptr" in the top). The search goes as

follows

1. search for ptr".x in the local symbol table, if not,

2. search for rec.x in the local symbol table, if not,

3. search for x in the local symbol table, if not,

4. search for x in the next symbol tables.

5.2.4.2 Synchronization Handler

When the parser encounters an error, it tries to recover from the error as soon as

possible. This step is important because the parser has to continue syntax checking in a

meaningful way [Bac79]. The main idea behind error recovery is to skip tokens until

reaching a token that a parser can fully recognize. When the parser reaches this point, it

71

re-synchronizes itself at that point and then continues the process of parsing. This type of

error recovery is called panic-mode recovery [ASU86]. To implement this idea, the parser

has to determine some synchronization points where syntax checking can be reliably

restarted (such as semicolon or begin). Therefore, when the parser finds a synchronization

point, it resumes its normal parsing as if there were no errors. Another source of errors is

type mismatch where the compiler expects an identifier of a specific type and it encounters

an identifier of another type. Type mismatch does not usually require a synchronization.

On the other hand, error correction is, in general, an unsuccessful approach

because it is time consuming with little chance of getting the right solution. Further more,

most syntax errors are usually easy to figure out manually, but the problem is with

semantic errors which are almost impossible to be automatically corrected and at the same

time is hard to be figured out manually.

5.2.4.3 Subprogram Parser

It mainly consists of two parts: main-program parser and procedure/function

parser and both of them call a common parser called the body parser.

(a) Main-program parser

call the scanner initializer.

call the code generator to generate the main-program prolog.

call the symbol table initializer to initialize the symbol table (create the pre­

defined identifier symbol table).

initialize the with-stack to be empty (it is used by the with-statement).

call the program-body parser to parse the entire program. It follows syntax

diagram (1). The program-body parser calls body parser which parses

syntax diagram (3).

call the code generator to generate the main-program epilog.

72

if not all labels in labels _list, if any, are marked label _seen and goto _seen call

error handler.

generate a compilation summary which includes the number of lines compiled

and the number of errors.

(b) Procedure/function parser

parse the header of the subprogram, including the parameter list, if any (there

should be no parameter list if the subprogram has been de.fined before

using forward). After parsing the subprogram name, the parser enters a

new scope. It follows either syntax diagram (8) or (9) based on whether it

is a procedure or a function. For parsing the parameter list it follows

syntax diagram (13). If the directive ''forward" is encountered restore the

previous scope and exit this parser.

call the code generator to generate the appropriate subprogram prolog.

call the body parser to parse the subprogram body (syntax diagram (3)) ..

call the code generator to generate the appropriate subprogram epilog.

if not all labels in labels _list, if any, are marked label _seen and goto _seen call

error handler.

returns to the previous scope (pops the scope stack).

A labels list is used to keep track of the usage oflabels. A goto statement and its

corresponding label have to be in the same subprogram (including the main program).

When a label is encountered, it is inserted in the labels _list, if not in, and marked as

label seen. When a goto statement is encountered, its label is inserted in the labels list, if - -

not in, and marked as goto _seen. At the end of the subprogram, all labels in the labels _list

should be marked as label _seen and goto _seen, or at least label yeen. For example,

label JO;

73

begin

GOTO JO;

end

There is no label in the code for 10 (which is incorrect).

(c) The Body Parser

The algorithm follows syntax diagram (3).

if token = "label" call label parser.

if token = "const" call constant parser.

if token = "type " call type parser.

if token = "var" call variable parser.

while token = ''function" OR ''procedure"

call procedure/junction parser.

call statement parser.

5.2.4.4 Declaration Parser

It mainly consists of four parts: label parser, constant parser, type parser, and

variable parser.

(a) Label parser

The algorithm follows syntax diagram (4). A label must be an unsigned number

between O and 9999 [Tib81].

(b) Constant parser

The algorithm follows syntax diagram (5). A constant can be a number (with or

without a sign), a string, or a constant identifier.

(c) Type parser

The algorithm follows syntax diagram (6).

74

Other than the predefined types (integer, real, char, boolean, and text), there are

seven types: enumeration, subrange, set, file, array, record, and pointer. Each of which can

be composition of two or more types within certain rules. In other words, a type can be

formed using another type. For example

days = (Sat, Sun, Mon, Tue, Wed, Thu, Fri);

days _set = set of days;

So, days _set is a set of another type, enumeration type. The following is a brief

description about parsing.each type.

1. Subrange type. The lower and the upper values can be of any ordered, simple type

(excluding real type). It also accepts the previously defined enumeration data. The lower

and the upper values must be from the same type and the lower value is less than or equal

the upper value. The algorithm follows syntax diagram (28).

2. Enumeration type. It consists of an ordered sequence of integer constant identifiers

which are enclosed between parentheses. The value of the first identifier is zero, the value

of the second one is 1, and so on. The algorithm follows syntax diagram (27).

3. Set type. It is a compound data type that accepts only subrange type or enumeration

type. The number of the elements in a set should be at most 16 elements. Each element is

represented by one bit according to its presence in the list. The algorithm follows syntax

diagram (31).

4. File type. It accepts only integer, real, or character types. The file of characters is

equivalent to text type. The algorithm follows syntax diagram (33).

5. Array type. It involves two other types: indexes' types and elements' type. The array

can be of single or multiple dimensions. The parser verifies the validity of each dimension.

The element type can be of any type. The size of the array (in bytes) is calculated based on

75

the number of dimensions, the length of each dimension, and the size of the element. The

algorithm follows syntax diagram (30).

6. Record type. The fields of the record are kept in a private symbol table that is

accessible only through the record. Therefore, the same name of a field can be used

outside the record without any ambiguity. For example,

rec= record

j, k : integer;

end;

j, k: real { or whatever}

is a valid definition because the j and k (inside the record) belong only to the record (in a

separate symbol table). Therefore, they can be accessed either explicitly by preceding them

by the record name, or inside a with statement. Other than these two cases, any reference

to j or k it is a reference to the outer ones.

The record size is the sum of its fields' sizes. The algorithm follows syntax diagram·(32).

Note that parsing the record fields is similar to parsing the var section.

7. Pointer type. All previous types must be defined before they can be used in the

definition of other types, except the pointer type. The pointer type, however, may point to

a type that is defined later or to a type that is still being defined. For example:

ptr = /\rec;

rec= record

{ 'ptr' is the left side, 'rec' is the right side}

next : /\rec; { = ptr}

end;

When parsing the definition of ptr, the rec identifier is not defined yet. When parsing the

field next, the rec is not yet complete. The APC keeps a list of all undefined types (for

76

pointers only). At the end of type parsing, all types should be defined so the parser will be

able to resolve all type definitions. The algorithm follows syntax diagram (18).

(d) Variable parser

Parsing this section is almost similar to the type section with three exceptions.

1. A declaration may have one or more identifiers separated by commas, followed by the

type specification. All variables that have the same type are linked together.

2. All type specifications should be previously defined including the pointer type.

3. The parser calls the code generator to generate the appropriate memory reservation for

all defined identifiers.

The algorithm follows syntax diagram (7).

5.2.4.5 Statement Parser

A statel)lent may start with a label, if so, the parser parses it and calls the code

generator to generate a label. The statement parser, then, calls the appropriate subprogram

based on the first token in the statement. There are nine possible tokens to start a

statement. The algorithm follows syntax diagrams (10) and (14).

1. Identifier. An identifier may stand for either a variable, function or a procedure name.

(a) Variable and function name. The statement has to be an assignment statement. The

assignment statement should have the following format:

variable (or function name):= expression;

{ the parameters of the function should be omitted}

The statement parser calls the code generator to generate code for assignment. The

expression parsing will be discussed later. The algorithm follows syntax diagram (19).

(b) Procedure name. If the procedure is a standard procedure, then the parser calls

standard- procedures-and-functions parser. In case of user-defined procedures, the parser

checks the actual parameter list, if any, for the correctness of them compared with the

77

formal parameters. It also checks which of these parameters are called by reference and

which are called by value. Then, it calls the code generator to generate the appropriate

code. The algorithm for user-defined procedure call follows syntax diagram (25).

2. 'iJ..i1' {begin). This means a compound statement. So, the parser calls the statement

parser until it reaches the corresponding end. The algorithm follows the last part of syntax

diagram (3).

3. 'J!_ ~.)1' (goto). The parser calls the code generator to generate a jump instruction. The

parser checks for the presence of the target label in the code within the same scope. The

algorithm follows syntax diagram (26).

4. '1.)1' (if). The parser calls the expression parser to evaluate the boolean expression, then

it again calls the statement parser. If '':IJ/ (else) is encountered, another call for statement

parser is issued. The algorithm follows syntax diagram (20).

5. ';;S'' (repeat). The parser calls the statement parser until the token is ',.;-' (until). It,

then, calls the expression parser to evaluate the expression. The algorithm follows syntax

diagram (23).

6. 'Ill.I,' (while). The parser calls the expression parser to evaluate the boolean expression,

then it again calls the statement parser. The algorithm follows syntax diagram (22).

7. '~' (for). The parser parses the header of the/or statement checking the control

identifier, its type, its lower value, and its upper value. It also calls the code generator to

generate the appropriate assembly code. It, then, calls the statement parser to parse the

body of the for statement. The algorithm follows syntax diagram (24).

8. 'L.J~' (case). The parser parses the header of the case statement by calling the

expression parser. For the case values, the parser calls the code generator to generate

78

assembly code as if it were nested if ... else statements (see Section 5.3.1). Since the case

statement in the Standard Pascal does not have a default value, the inner most if does not

have an else. The algorithm follows syntax diagram (21).

9. 'e:;...o' (with). With argument(s) should be of record type. The parser pushes the

argument(s) into the with-stack (see Section 5.2.3). The statement parser, then, parses the

enclosed statement(s). With statement is the only statement that has an effect on the

structure of the identifiers. For example, .instead of writing the full identifier name, such as

rec.ident, only the ident may appear inside the with statement. Section 5.2.4.1 part (c)

discussed how the search is performed in the symbol table for an identifier. The algorithm

follows syntax diagram (40).

5.2.4.6 Expression Parser

The expression parser is the part of the parser that is responsible for parsing

expressions, evaluating them, and ensuring the correctness of their usage. It is invoked to

parse

• the actual parameters of procedures and function,

• the boolean expressions in the control statements, and

• the expressions after the assignment statements.

The expression parser calls the code generator to generate the appropriate code.

All expressions (including variables and constants) preserve their actual values

when evaluated except set variables and set constants. As stated earlier, each element in a

set is represented by one bit according to its position in the list. Therefore, sets need

special handling in evaluating their expressions. For example, let us consider the following

code (in Standard Pascal):

(J) sJ: set of 5 .. JO;

(2) s2: set of J .. JO

79

(3) sl := [5, 7, 9};

(4) s2 := [5, 7, 9};

(5) if (6 in sl) then .. .

(6) if (6 in s2) then .. .

In statement (3) the numbers 5, 7, and 9 mean nothing to set sl except that they represent

the fist, the third, and the fifth bits, respectively. While in statement (4) the same numbers

represent fifth, seventh, and ninth bits, respectively, for s2. The value of sl after executing

statement (3) should be 21 (i.e., in binary 0000000000010101) and the value of s2 after

executing statement (4) is 336 (i.e., in binary 0000000101010000). Similarly, number 6 in

statement (5) and (6) only represents the second bit with respect to sl, and the sixth bit

with respect to s2. Consequently, when the expression parser encounters a statement that

involves a set expression, it performs the following:

1. if the set elements are of subrange type, calculate the element-value by subtracting the

value of the variable or constant from the minimum value in the set declaration. The

minimum value of a enumeration type is always zero. This gives the bit position in the

set.

2. to set or test a particular bit in the set, a run-time function is called to find the power of

2 of the element-value.

3. the assignment statement (such as statement (3) above) is considered as a series of

unions of individual set elements.

Using this approach of implementation makes a restriction on using an immediate set

comparison in the Arabic Pascal. For example,

if [5, x*3} <= sl then.. . {where xis an integer}

80

is not acceptable in the Arabic Pascal because the value of the set [5, x*3} is unknown

unless this set is associated with a specific set definition. To implement the previous code,

the programmer needs to add an assignment statement as follows:

s3 := [5, x*3}; { assuming s3 of the same sl type}

if s3 <= sl then

In this way, the compiler knows exactly the value of the set [5, x*3}.

The expression parser algorithm follows syntax diagrams (35) and (37).

Note that the Arabic Pascal/unction has two forms. If it is in the left hand side of

an assignment statement (usually inside the function body itself), it does not take any

parameter. On the other hand, if it is inside an expression (such as x * sin (x)), then it is

parsed as if it were a procedure call.

5.2.4.7 Standard Procedures-and-Functions parser

It is not difficult to parse the standard functions and procedures that have a fixed

number of arguments. The parser checks the correctness of the number of arguments and

their types, and then calls the code generator to generate the appropriate code. Table 5.2

shows the standard functions, the acceptable types of parameters, and the type of the

result. Note that all standard functions have only one parameter except eof and eoln which

may have zero or one parameter. Table 5.3 shows the standard procedures, number of

parameters, and the acceptable types for each parameter. Note that procedures GET and

PUT are not implemented in the Arabic Pascal because they are functionally equivalent to

simple read and write respectively. The procedure PAGE is also not implemented because

it was used for non-interactive computers to order the printer to jump to a new page

[Got94, p.77]. Many modern versions of Pascal eliminated these functions, such as Turbo

Pascal and VAX Pascal.

81

The problem arises when parsing the procedures that have variable number of

arguments, namely I.I' _iyJI ,iyJI ,..,. _ ..,_51 ,..,.51 (write, writeln, read, and readln). The easiest

way is to parse each of which as if it were a sequence of procedures that having only one

parameter. Therefore, after parsing each parameter, the parser calls the code generator to

generate the appropriate code. The actual parameters of..,. _i;1 J i;1 (read and readln) must

be variable. The actual parameters of I.I'_ ..,.51 1 ..,.£1 (write and writeln) may be expressions

and each of which may be followed by field width and designators.

Table 5.2 Standard functions
Function type.of the parameter type of the result

abs and sqr integer or real same as the parameter type
arctan, cos, exp, ln, sin, and sqrt integer or real real
chr integer char
odd integer boolean
ord char integer
pred and succ integer, real, or boolean same as the parameter type
round and trunc real integer
eof and eoln file (if exist) boolean

T bl 5 3 S d d d a e . tan ar proce ores
Procedure #of parameters types of parameters

dispose and new 1 pointer
reset and 2 1. file 2. string
rewrite
read 1 or more (if the first is not file) 1. file, integer, real, or char (variable)

2 or more (if the first is file) 2 .. n integer, real, or char (variable)
readln 0 or more (if the first is not file) I.file, integer, real, or char (variable)

1 or more (if the first is a file) . 2 .. n integer, real, or char (variable)
write 1 or more (if the first is not file) 1. file, integer, real, char, boolean

2 or more (if the first is a file) (expression), or string
2 .. n integer, real, char, boolean
(expression), or string

writeln 0 or more (if the first is not file) 1. file, integer, real, char, boolean
1 or more (if the first is a file) (expression), or string

2 .. n integer, real, char, boolean
(expression), or string

82

All math functions follow syntax diagram (45).

Functions eof and eoln follow syntax diagram (46).

Procedures new and dispose follow syntax diagram (47).

Procedures reset and rewrite follow syntax diagram (48).

Procedures read and readln follow syntax diagrams (49) and (50).

Procedures write and writeln follow syntax diagrams (51), (52), and (53).

5.2.5 Type Checking

One of the major tasks of the parser is to check the validity of using the identifiers

and the compatibility among related identifiers. This task is called "type checking. The type

checking relies heavily on the symbol tables to perform its task. There are four common

categories of type checking:

1. Variables: A variable can be a simple identifier, an array, a record, a pointer, a set, or a

file. Each of the above has a specific way of usage. For example, a subscript is usually

associated with array variables. The type checker checks the identifier's definition in the

symbol table to ensure correctness of usage. Type checking of an identifier also

depends on the syntax surrounding that identifier. For example, a pointer identifier that

is followed by a pointer symbol has a different semantic from a plain pointer identifier.

2. Expressions: The type checker has to check whether or not the operands of an

operator are of the correct type. For example, both operands of AND operator must

be of type boolean. In expressions, the type checker must specify the overall expression

result type. For instance, an integer plus a real results in a real expression. Moreover,

all arithmetic relations should be between two similar types (except the IN set relation

where the first operand has to be from the same members' type of the second one). The

relations less-than and greater-than are not defined in sets. It is also not acceptable to

check the relation between two strings unless they have the same length[Tib81].

83

3. Assignments: In the Arabic Pascal, one type is assignment compatible with another

type if an expression of the first type can be assigned to a variable of the second type.

Type checker checks whether or not an expression value of one type can be assigned to

a variable of a different type. For example, a real variable can get an integer value but

not vice versa.

4. Statements: The type checker must ensure that all variables and expressions in the

statement are of the correct types. For example, all control statements should have

expressions of boolean type. As another example, in the for statement, both the initial­

value and the final-value have to be from the same type.

5.3 THE CODE GENERATOR

The final step in the compiling process is code generation. Whenever the parser

encounters a complete statement or expression, it calls the code generator to generate an

equivalent assembly code. The APC translates the source code into 8086 assembly

language. The details of the 8086 structure and assembly language can be found in [MP86,

Abe87, Hah87, BB88, BTA93, Mis93].

For the sake of simplicity, all standard procedures and functions are implemented

as a run-time library. The APC calls this library whenever needed. This run-time library

must be linked with the generated assembly code. It should be pointed out that the APC

allocates global variables in the data segment instead of at the bottom of the stack to allow

direct access to them.

The code generator generates at the beginning of each assembly program a set of

directives called aprolog [BTA93]. These directives give the Turbo Assembler the needed

84

information about the code. Similarly, at the end of the assembly code, some restoring

actions are done and a list of global variables is placed, called epilog [BTA93].

The Turbo Assembler seems not to accept the numbers within the Arabic

identifiers nor the Arabic underscore, so the code generator should eliminate these from

the identifiers. This will have no effect on the uniqueness of the identifiers within the same

scope because the identifier serial number will make every identifier unique in the entire

assembly program. The code generator attaches a unique number (the serial number) to

every identifier in the program. The need for the uniqueness of identifiers is necessary

because the 8086 assembly language does not have the scope concept.

Another issue in the code generation is the conditional jump. The conditional jump

instructions in the original 8086 assembly language are restricted to a distance of 127

bytes [BTA93]. On the other hand, the unconditional jump can jump to any place within

the code segment. Therefore, all conditional jumps that may cause out of range jumps

should be converted somehow to equivalent unconditional jumps. For example,

cmp x,y

je exit

; compare

; jump if equal to exit label

. <may be more than 12 7 bytes of code>

exit: <the rest>

This code should be altered to avoid the restriction. The code generator converts it to the

following:

mov temp, 1

cmp x,y

je next]

; move one to temp

85

xor temp, temp ; make temp = 0

next]: cmp temp, 1

je next2

jmp exit ; unconditional jump

next2:

. <may be more than 12 7 bytes of code>

exit: <the rest>

The code generator works in two levels: statement level and expression level. The

following subsections discuss these two levels.

5.3.1 Statement Code Generator

There are eleven different types of statements that the code generator may face:

1. assignment statement. The code generator generates code for evaluating the right

hand side expression (stored in AX or AX:DX for real values), then issues a move

instruction from AX to the left hand side variable.

2. goto statement. It simply issues a jump instruction.

3. compound statement. It does nothing.

4. with statement. It does nothing.

5. procedure/function call. It pushes all the arguments (or their addresses for reference

arguments) on the stack, then it calls the function or the procedure. In the case of

function, the return value is stored in register AX. In the procedure or function itself, it

saves the stack pointer at the beginning and restores it at the end.

86

6. standard procedure/function call. It pushes all the arguments on the stack, then it

calls the equivalent function in the run-time library. In the case of function, the result is

stored in register AX.

7 . while statement. The general format for the while statement is

while <expression> do <statement(s)>

The code generator generates the following code:

loop_ begin:

<code for expression>

mov

jXX

xor

next: cmp

je

jmp

statement label:

jmp

loop _exit:

Reg, 1

next

Reg,Reg

; move one to Reg

; XX is the conditional jump, such as jle

; let Reg equal 0

Reg, 1

statement label

; compare

; jump if equal

loop_ exit ; unconditional jump

<code for statement(s)>

loop_begin

8. repeat statement. The general format for the repeat statement is

repeat <statement(s)> until <expression>

The code generator generates the following code:

loop_ begin:

<code for statement(s)>

<code for expression>

mov Reg, 1

jXX next

; move one to Reg

; XX is the conditional jump, such as jle

87

xor Reg,Reg ; let Reg equal 0

next: cmp Reg, 1 ; compare

je loop_exit ; jump if equal

jmp loop begin ; unconditional jump

loop_exit:

9. if statement. The general format for the if statement is

if <expression> then <statement(s)-1>

or

if <expression> then <statement(s)-1> else <statement(s)-2>

The code generator generates the following code:

<code for expression>

mov Reg, 1 ; move one to Reg

jXX next ; XX is the conditional jump, such as jle

xor Reg,Reg ; let Reg equal 0

next: cmp Reg, 1 ; compare

je then label ; jump if equal

jmp if_exit ; unconditional jump (no else)

jmp else label ; unconditional jump (with else)

then label:

<code for statement(s)-1>

jmp if_exit ; (with else)

else label: <code for statement(s)-2> ; (with else)

if_exit:

10. for statement. The general format for the for statement is

for id : = initial val [toldownto} .final_val do <statement(s)>

88

The code generator generates the following code:

<code for intial_ val>

mov current_ val, initial_ val

for_loop: <code for final_ val>

cmp current_ val, final_ val

jle continue

OR jge continue

jmp loop_ exit

continue: <code for statement(s)>

inc

OR dee

current val

current val

jmp for _loop

loop_exit:

; in case of 'to '

; in case of 'downto '

; add one in case of 'to '

; subtract one in case of 'downto'

11. case statement. The general format for the case statement is

case <expression> of

<constl-1> [, <constl-2>, ... , <constl-n]: <statement(s)-1>;

<const2-J> [, <const2-2>, ... , <const2-m]: <statement(s)-2>;

end;

The code generator generates the following code:

<code for expression>

cmp Ax, <constl-1>

je branch 1

cmp Ax, <constl-2>

je branch 1

89

; the result is stored in register AX

cmp Ax, <constl-n>

je branch 1

}mp next 1

branch 1: <code for statement(s)-1>

}mp case exit

next 1: cmp Ax, <const2-J>

je branch 2

cmp Ax, <const2-2>

je branch 2

cmp AX, <const2-m>

je branch 2

}mp next 2

branch 2: <code for statement(s)-2>

jmp case exit

next 2:

case exit:

5.3.2 Expression Code Generator

Most of the relations and operators in the Arabic Pascal has a direct equivalent

instruction in the assembly code. Table 5.4 shows the simple relations and operators that

have one to one correspondence between the Arabic Pascal and the 8086 assembly

language. Of course, this does not include the preparation of the operands nor the details

of type conversions.

90

Table 5.4 Simple relations and operations in Arabic Pascal and Assembly

Arabic Pascal 8086 Assembly Arabic Pascal 8086 Assembly
= je - (not sets) sub

<> jne * (integer) imul
=> (not sets) jle * (sets intersection) and
<= (not sets) Jge r--i; (div) idiv

> il - mov
< Jg J (and) and

+ (not sets) add } (or) or

+ (sets union) or er) (not) not

- (unary) neg ,:; (in) test

The rest of relations and operations may not have simple equivalence.

1. Real operations. Since handling real numbers are not directly supported by the 8086

assembler, the APC calls a run-time library to accomplish the real operations [Hah87].

Note that the division (/) always works with real operands (the integer operands are

automatically converted to real in the APC).

2. 'J~' (remainder). When making a idiv instruction in the 8086 assembly, the quotient is

placed in the register AX and the remainder is placed in DX [Hah87]. So, the code

generator performs a idiv instruction but gets the DX result. Note that some Pascal

references [BTP89, JW74, Tib81] describe the mod operator with the same behavior as

the remainder operator.

3. Set difference(-). In sets, the difference between two sets (sl - s2) is equivalent to (sl

and (not s2)). Therefore, the second operand should be negated and, then, anded with the

first one.

4. Set inclusion (=>, in Arabic Pascal). In sets, (sl c s2) is equivalent to (sl - s2 = 0).

Therefore, the inclusion is implemented using the difference and set equality.

5. Set containment (=<, in Arabic Pascal). In sets, (sl :::) s2) is equivalent to (s2 - sl =

0). Therefore, the containment is also implemented using the difference and set equality.

91

5.4 THE ERROR HANDLER

Because programmers are prone to making syntax errors, it is necessary for the

compiler to handle these errors accurately and efficiently. When the APC encounters an

error, it simply does the following:

1. Gives the programmer the nearest possible location of the error by pointing to it. The

error handler prints the line number that has the error and the current token. Usually

the error happens at the current token or in a previous token in the same line. For

example, (in Standard Pascal):

if (I< J) then I:= J,· else J := I;

The APC cannot discover that the semicolon before else is an error until it parses the

else token.

2. Prints out a descriptive error message.

Appendix D, Section D.1 lists the possible error messages the programmer may

get from the compiler during program development.

The run-time errors are generated by the run-time library that takes the control

when abnormal situation takes place during the execution. Appendix D, Section D.2 lists

the possible run-time errors.

5.5 EXAMPLES OF ARABIC PASCAL PROGRAMS

The following (next pages) are two simple Arabic Pascal programs with their

output. For convenience, their corresponding English Pascal programs are shown in the

same lines. Remember that the Arabic language reads from right to left. More Arabic

Pascal programs can be found in Appendix E.

92

Example 1

The Towers of Hanoi, Using
recursive procedure calls

PROGRAM towerofhanoi(INPUT, OUTPUT);

VAR

n: INTEGER; Number of disks

PROCEDURE transfer(n, origin, dest, other
INTEGER);

Transfer n disks from the original
to the destination

PROCEDURE diskmove(origin, dest:
INTEGER);

{ Move a single disk from the original
to the destination}

BEGIN
WRITELN ('Move ', origin: 1, ' to

dest:1);
END; { diskmove}

{transfer} BEGIN

dest);

origin)

IF (n > 0) THEN
BEGIN

END

transfer(n-1, origin, other,

diskmove(origin, dest);
transfer(n-1, other, dest,

END; { transfer

BEGIN main
WRITE('Enter the number of disks: ');
READLN(n);
WRITELN;
transfer(n, 1, 3, 2)

END.

Sample Output

Enter the number of disks: 4
Move 1 to 2
Move 1 to 3
Move 2 to 3
Move 1 to 2
Move 3 to 1
Move 3 to 2
Move 1 to 2
Move 1 to 3
Move 2 to 3
Move 2 to 1
Move 3 to 1
Move 2 to 3
Move 1 to 2
Move 1 to 3
Move 2 to 3

93

~ r' ~ t..; d ... nJ ·..;~ 1.,, [1 J-11 12-' uJ-i }

{ :.....;...,1...,.s.:,

!([.?--' ' J.;. .i..4) <; ~ u. _[J-i 12-' UJ-i

~

.l...,i..,_,...ll , :t..., 4--LJI , :t...,I .i...+JI •t) J...w ~
!(~

:t...,1 .i...+JI .:,.... ..:, Li...k...JI .:,.... t .l.lc. J...w }

{ :.....; 4--Lll ~!

:t..., 4--LJI , :t...,I .i...+JI) li..h....ll .;l..,i~ ~
- !(~:

~! '--,ii .i...+Ji .:,.... o .l.>.I J u...b. J...w }

!("

f '--,i 4--LJI
L.-11

.:,.... u...b. d y. ") .),..., y..:,.s I
!(1:'--,i4--LJI ," ~! " , 1 : :t..., I .i...+J I

{ u...b. - .;L,i ~ }

{
! '--:l l+-i

J...i...; } I -'-!I

(· < t) . 1 :ii

{

I -'-!I

! (:t..., 4--LJI

(:t...,I .i...+JI
'--:l l+-i

J...w } ! :.....; l+-i

{ ir" t...'J I 12-' ,U...,...,wl }
..:.t..t:.h....11 .l.lc. J,i..il")y..:,.sl

i -'-!I

! (t).),..., _I .r-91
! .),..., y..:,.s I

(1 '1" ' ' •t) J...w

~\::;JI ,J° ~

t : ..:, Li...k...JI .l.lc. J.;. ., I
1 ~! ' .:,.... u...b. d.?
1" ~! ' .:,.... u...b. d.?
1" ~! 1 .:,.... u...b. d.?
~ ~! ' .:,.... u...b. d.?

' ~! 1" .:,.... u...b. d.?
1 ~! 1" .:,.... u...b. d.?
1 ~! ' .:,.... u...b. d.?
1" ~! ' .:,.... u...b. d.?
1" ~! 1 .:,.... u...b. d.?

' ~! 1 .:,.... u...b. d.?

' ~! 1" .:,.... u...b. d.?
1" ~! 1 .:,.... u...b. d.?
~ ~! ' .:,.... u...b. d.?
1" ~! .:,.... u...b. d.?
1" ~! .:,.... u...b. d.?

Example 2

{ Sorting N elements using a bubble sort
PROGRAM sorter(INPUT, OUTPUT);
TYPE

vector= array [l .. 50] of INTEGER;
VAR

a : vector;
i, size : INTEGER;

PROCEDURE sort (VAR list:vector;
n: INTEGER) ;

{ Sort the first N elements of 'lsit'
VAR

j, temp: INTEGER;
noexchange : BOOLEAN;

BEGIN
REPEAT

noexchange := TRUE;
FOR j := 1 TO n-1 DO

IF list[j] > list[j+l] THEN
BEGIN

end

temp:= list[j];
list[j] := list[j+l];
list[j+l] := temp;
no exchange FALSE;

UNTIL noexchange;
END; { sort

BEGIN main program
WRITE('How many values are to be sorted?

I);

END.

READLN(size);
WRITELN('Enter data : ');
FOR i := 1 to size DO

READ(a[i]);
sort(a, size);
WRITELN;
WRITELN('The sorted Data
FOR i := 1 to size DO

WRITE(a[i] :5);

Sample output

') ;

How many values are to be sorted? 5
Enter data:

4 1 9 7 3

The sorted Data
1 3 4 7 9

94

~_). r1 ~ '--! ..J"" u......JI w-4 0 J.lc. y...,;.::,p }
{ :;_e, Li..UI

!(i:;: ..,,.._. , J.;. .,_.) y.;, ..>·"::11 ~ U ..>-i

1 ~ w-- [o ... ,] u.,...;....... = :i........:, u t ~
~

! :i........:, Li : c3
!~ :J_,J. ,J

! :........:,u: ?Li.;i ~) y...,;.::,p ~
!(~:0

{ "?Li.;i" w-- 0 J.,i y...,;.::,p}
~

!~ ..::U_;..o,~
!~,r!: ~

I .wl .;_p.
!yl.,...=:~

.J..= I 1-0 ...-J! 1 =:~ w--_ .__,1 J...;

0 µ [1+~] r u) < [~] r Li) 1 ~!
I J...;I

{ ~..,_!I ~U..)-1-,11 } iJ...;I
.l..eP ~I rl.i}il J.ic. ~")y.:,.sl

!(" !~p
! (J_,l.) _).... - i .;-ii

!(" :Jl.ic.)11 J.i,.Ji")_)...._..,,..::,.SI

.J..=I J_,J. ..,..J) 1 =: J <j-o A....,il J...;
!([J] '3) I _;ii

! (J_,J. • '3) y...,;.::,p
! _).... - ..,,..::,.SI

y.ic.t....:. :.....,.:,..>-4 rl.i.;)11")_)...._..,,..::,.SI

.J..=I J_,l....-J! 1 =:Jw-4 .__,IJ...;
! (o: [J] '3) y.::;31 ~

o r ~p .l..eP ~I rU.;\11 J.ic. ~
: JI .ic.)I I J.;. J \

1" V 1 , t

V

CHAPTER6

CONCLUSION AND FUTURE WORK

The objective of this project is to build an Arabic programming language

environment. The · first step towards achieving such objective is to Arabize the

environment that enables programmers to write programs in Arabic easily and efficiently.

The environment is analogous to the programming environments that are available such as

Turbo Pascal and Borland C. Therefore, the environment enables programmers to edit,

compile, and execute programs. The dissertation describes, in detail, the APE design and

implementation

The second step towards achieving the objective is to Arabize the Standard Pascal

by designing an Arabic Pascal Compiler. The need for such an Arabized programming

language is great in many Arab countries, especially in the education field. Currently

available compilers are developed for languages whose lexical units are defined using the

English alphabet. For students whose native language is not English, this approach

imposes a burden. Therefore, it will be helpful to develop compilers with lexical units in

other languages. This dissertation describes the specifications, design, and implementation

of a Pascal programming language and its compiler with lexical units defined in the Arabic

language. The . Arabic Pascal language is an Arabized version of the Standard English

Pascal. I have chosen the Standard Pascal as the target language because of its popularity.

95

The analysis, design, and implementation of the scanner, the parser, the code generator,

and the error handler were fully carried out in this dissertation.

Section 6.1 specifies the hardware and software requirements to run this software.

Section 6.2 states the limitations of this work. Finally, Section 6.3 discusses possible

future work.

6.1 SYSTEM REQUIREMENTS

The system requirements are as follows.

• An IBM PC (or a compatible computer).

• An Arabic version of the MS-Windows (the APE has been tested on MS-Windows

version 3 .1 and version 3 .11).

• At least 4MB. of RAM, to be able to run the Arabic Version of MS-Windows and,

then, the APE.

• Executable files of the Turbo Assembler and the Turbo Linker. The APC compiles the

source programs to assembly language. The assembly code, then, has to be assembled

using the Turbo Assembler and has to be linked via the Turbo Linker. The APC has

been tested using Turbo Assembler versions 3.0 and 4.0, and Turbo Linker versions

3.0, 5.1, and 6.0. However, Any version after 3.0 of both of them should work. The

APC produces an assembly code with the small memory model. The Turbo Linker

requires cows.obj (the standard MS-Windows initialization file), cws.lib (the small

model runtime library for MS-Windows), mathws.lib (the MS-Windows math library

for small model), and import.lib (the library that provides access to the built-in

Windows functions). All these files should be distributed with the software.

• About 1MB of hard drive. The size of the executable files of APE, APC, and their

complementary files is about 900K without any compression.

96

6.2 SYSTEM LIMITATIONS

Any system has some limitations. The main limitations of this software are as

follows.

1. The APE does not guarantee a full Arabic interface. There are many reasons for

interacting with English. Among these are the file names and system critical errors. The

file name is recommended to be in English for compatibility reasons, as explained in

Chapter 4. The system critical errors are the errors generated by the MS-Windows when

an usual event happens, such as memory insufficient or accessing a protected memory

area. The Arabic MS-Windows still displays these fatal errors in English. Thus, the APE

users may receive some English messages from the system while using the APE.

2. To the best of our knowledge, the APE and APC are free of errors. However, it is not

guaranteed that the software is error-free. The exhaustive testing requires several months

or even years for such software.

3. The maximum file size is 32K. This is not a large size file, but it is enough for the

majority of programs that may be written in this programming language.

4. Even though, the result size can be of any size, the APE cannot send to the printer a

result of a size more than 32K, because the APE holds the results up to 32K, then discard

the rest.

6.3 FUTURE WORK

There are many open avenues to enhance the current project. Among these

avenues are the following.

97

• Extending the Arabic Pascal by providing more built-in procedures and functions

rather than the standard ones, and by utilizing some good programming styles, such as

adding an else statement to the case statement.

• Providing more environment tools such as a runtime debugger within the APE.

• Enhancing the APE editing facilities by introducing syntax directed editing and

program auto formatting (indenting).

• Supplying this software with a full documented user's manual in Arabic.

• Expanding the on-line help to provide a full explanation about the APE and the Arabic

Pascal language.

• Speeding up the execution time of user programs by generating optimal object codes

utilizing the code optimization techniques.

• Overcoming the 32K limitation by increasing the maximum file size (using Visual C++,

instead of Visual BASIC) or by allowing more than one file to form a single program

(multiple-file program).

• Modifying this software to be available under Windows 95 (currently, there is no

Arabic interface in Windows 95).

• Finally, the Arabization of programming languages should be extended to all new

concepts of programming languages such as object programming languages and visual

programming. The limitation of man-power and the time, force us to choose a simple

example, such as Standard Pascal. Such project is the seed for more sophisticated

Arabic programming languages.

98

REFERENCES

[AA88a] Al-Salman, A. and Al-Fantookh, A., "Towards a First Arabization of the UNIX
System," B. Sc. Thesis, Computer Science Dept., King Saud University, Saudi Arabia,
1988.

[AA88b] AlFedaghi, S. and Amin, A., "Automatic Spelling Correction in Arabic," Technical
Report, Electrical and Computer Engineering Department, Kuwait University, 1988.

[AA91] Amin, A. and Al-Fedaghi~ S., "Machine Recognition of Printed Arabic Text Utilizing
Natural Language Morphology," International Journal of Man-Machine Studies, Vol.
35, Dec. 1991, pp. 769-789.

[AA93] As-Sfran, S. and Aref, M. M., "~_rll J..-11 J~..ul j.t..:JI,", Proceedings of the Arabic

Language and Advance Information Technologies: :i...,. .. J..i.:l.t ;,_,,;t.. ..,J.,J.I ..;.,I_ -.-r0 4..,,.JI 4..A.lfl,

Casablanca, Morocco, Dec. 8·9 1993, pp. 45-56. In Arabic.

[AA94] Al-Daimi, K.J. and Abdel-Amir, M.A., "The Syntactic Analysis of Arabic by
Machine," Computers and Humanities, Vol. 28, No. 1, 1994, pp. 29-37.

[Abd90] AbdulKader, A. A., "~~1 ~~1 ~~ yil)JI L..,..,._.JI ,:J •;YJ ..,,.,....~1," Proceedings of

Using Computers in the Islamic Sciences: ¥ _,..!JI r _;1,JI c) ~ .r-"t,J..1 rf,b:c;.,,J •J..u, Jeddah,

Saudi Arabia, Nov. 11-13 1990, pp. 77-104. In Arabic.

[Abe87] Abel, Peter, IBM PC Assembly Language and Programming, Prentice-Hall, 1987.

[Abu92] Abu-Salem, HO., "A Microcomputer-Based Arabic Bibliographic Information
Retrieval System with Relational Thesaurus," Ph. D. Dissertation, Computer Science,
lliinois Institute of Technology, USA, 1992.

[AFC94] Arabi, M., Fischthal, S.M., Cheng, V.C., and Bart, E., "Algorithms for Arabic Name
Transliteration," IBM Journal of Research and Development, Vol. 38, No. 2, March
1994, pp. 183-193.

[AG90] Abo-ElHamayl, M. A. and Gado, S. H., ",.r,)/..r-'-J:, \"tii; ~.,-;," Proceedings of the 12th

National Computer Conference and Exhibition, King Saud University, Riyadh, Saudi
Arabia, Oct. 21-24, 1990, pp. 498-513. In Arabic.

99

[AG95] Alimi, A. M. and Ghorbel, 0. A., "Error Analysis in an On-Line Recognition System of
Arabic Handwritten Characters, " Proceedings of the 14th National Computer
Conference, Riyadh, Saudi Arabia, 1-4 Apr., 1995, pp. 407-417.

[AH88] Al-Hawaj, A. Y. and Hamed, M., "Design of an Expert System for Teaching
Programming Fundamentals," Proceedings of the 10th National Computer
Conference, King Abdulaziz University, Jeddah, 28 Feb.-2 March 1988, pp. 835-846.

[AHD94] Abuhaiba, I. S., Holt, M. J., and Datta, S., "Straight Line Approximation and lD
Representation of Off-Line Handwritten Text," Image and Vision Computing, Vol. 12,
No. 10, Dec. 1994, pp. 649-659.

[Ahm94] Ahmed, A., ";;~1 ~r.JI ;_;__]1 ~..).;,:. ,:J ...,..,.,.....~1," Proceedings of the 2nd Computer

Arabization Symposium, King Saud University, Saudi Arabia, 27-30 March 1994, pp.
221-254. In Arabic.

[AK.88] Ahmed, J. I. and Khayat, M. G., "Design and Implementation of a Database System for
Display, Storage, and Retrieval of the Holy Qur'an," Proceedings of the 10th National
Computer Conference, King Abdulaziz University, Jeddah, 28 Feb.-2 March 1988, pp.
774-776.

[Ala90] Alamri, A., ";~1.y l.,,.-")L,,)'1 1},JI o.)U::..,.\ Jt.?.," Proceedings of Using Computers in the

Islamic Sciences: ¥__,...;JI r..,_k.lt i.) ._,.,r"f.)..1 rt~t ;.J..v, Jeddah, Saudi Arabia, Nov. 11-13

1990, pp. 43-52. In Arabic.

[Ald94] Aldarab, I. A., "~ _,-!JI 1 _,J.,J1 ,:J J')'I ...,.........~1 ..:,~," Proceedings of the 2nd Computer

Arabization Symposium, King Saud University, Saudi Arabia, 27-30 March 1994, pp.
255-277. In Arabic.

[Ale94] Alemam, 0., ""-"1_,,JI w ,l.b ::;;µ1 ..:,W5JI Js-....:, pl," Proceedings of the 2nd Computer

Arabization Symposium, King Saud University, Saudi Arabia, 27-30 March 1994, pp.
39-46. In Arabic.

[Ali87] Ali, N., "Morphological Storage and Retrieval of Holy Qura'n," Proceedings of the
First KS. U. Symposium on Computer Arabization, King Saud University, Saudi
Arabia, April 6-9 1987, p. 78.

[Ali88] Ali, N., "Computer Arabization: A Futuristic View, " Technical Report, Alalamiah Hi­
Tech, Kuwait, 1988.

[Ali89] Ali, N., "Formalization and Computation of Arabic Syntax," Proceedings of the 11th
National Computer Conference, Dahran, Saudi Arabia, 4-7 March 1989. pp. 309-320.

[Ali90] Ali, N., "J~IJ ..:,~I-..:,\.. ..,w.1 ~," Proceedings of Using Computers in the Islamic

Sciences: ¥ .,.....:Jt ry-k.ft i.)...,., rf.)..t rt~t ;.J..v, Jeddah, Saudi Arabia, Nov. 11-13 1990, pp.

117-144. In Arabic.

100

[Alk:90] AlKharashi, I., "An efficient Contextual Analysis Algorithm for Arabic Text
Handling," Proceedings of the 12th National Computer Conference and Exhibition,
King Saud University, Riyadh, Saudi Arabia, Oct. 21-24, 1990, pp. 465-474.

[Alk:91] AlKharashi, I., "Micro-AIRS: A Microcomputer Based Arabic Information Retrieval
System , Comparing Words, Stems, Roots, as Index Terms," Ph.D. Dissertation,
Computer Science Dept., Illinois Institute of Technology, Chicago, USA, 1991.

[Alk:92] Al-Khrisat, M., "Structuring the Arabic Lexicon and Thesaurus with Lexical Semantic
Relations to Support Information Retrieval, Ph.D. Dissertation, Computer Science
Dept., Illinois Institute of Technology, Chicago, USA, 1992.

[Alkh] Al-Khawarizmi User Manual, National Computer group. No Year.

[Alm90] Almofti, B. A., "~')......'ii ~_,,-:JI L.i.,:. ,:J L~ ...::.,~ r1~1," Proceedings of Using

Computers in the Islamic Sciences: 4:9 _rJJ r ~1 <) ._,.., ..,....,,t..J.1 r1~1 ".J..u, Jeddah, Saudi

Arabia, Nov. 11-13 1990, pp. 105-116. In Arabic.

[Almua] Almuarib "y~I", Version 2, King Abdulaziz City for Sciences and Technology. No

date. In Arabic.

[Als92] Al-Safran, S.A., "An Arabic Sentence Generator," MS. Thesis, Computer Science,
King Fahad University of Petroleum and Minerals, Saudi Arabia, 1992.

[Als96] Al-Salman, A., "An Arabic Programming Environment," Proceedings of the 1996
ACM Symposium on Applied Computing, Philadelphia, PA, Feb. 18-20, 1996, pp.
480-486.

[Aly89] Al-Yousefi, H., "Recognition of Handwritten Arabic Characters," PhD. Dissertation,
Computer Science, Colorado State University, USA, 1989.

[AM87] Ali, N. and Morcos, I., "Data Compression Technique for Arabic Text," Proceedings
of the First K.S. U Symposium on Computer Arabization, King Saud University, Saudi
Arabia, April 6-9 1987, pp. 67-77.

[AM95] AlSalman, H. A. and Mandorah, M. M., "y y\J..1 .~L....... (>L..'jl ~ r-W.; .,..i1 '-""')\.,,:.;;..,..1,"

Proceedings of the 14th National Computer Conference, Riyadh, Saudi Arabia, 1-4
Apr., 1995, pp. 70-84. In Arabic.

[AM94] Abo-Assamh, H. A. and Manther, A., "u' _).1 t..fo::i JJ.s .:r.,;w1 ~ ..;..$..:... i.1-.r- '-"" ~ Jf' ,"

Proceedings of the 2nd Computer Arabization Symposium, King Saud University,
Saudi Arabia, 27-30 March 1994, pp. 119-126. In Arabic.

[AMA94a] Al-Bawab, Marwan, Mrayati, Muhammad, Alam, Y. M., and Tayyan, M. H., "A
Computerized Morpho-Syntactic System of Arabic," The Arabian Journal for Science
and Engineering, Vol. 19, No. 3, July 1994, pp. 461-480.

101

[Ama94b] Amarah, Jamal,Microsoft Visual Basic, Vol. 1 & 2, AlMiman, 1994. In Arabic.

[AMG94] Abuhaiba, LS., Mahmoud, S.A., and Green, R.J., "Recognition of Handwritten Cursive
Arabic Characters," IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 16, No. 6, June 1994, pp. 664-672.

[Ami88] Amin, A. M., "OCR of Arabic Texts," Proceedings of the 4th International
Conference on Pattern Recognition, London, Springer, 1988.

[ASM82] ASMO, "ASMO Standard 449," Arab Organization for Standardization and
Metrology, Amman, Jordan, 1982.

[ASU86] Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D., Compilers Principles,
Techniques, And Tools, Addison-Wesley, 1986.

[AU92] Al-Yousefi, H. and Udpa, S.S., "Recognition of Arabic Characters," IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 8, Aug.
1992, pp. 853-857.

[AYE90] Al-Sadoun, H., Yaseen M., El-Jallad, A., and El-Jallad M., "ARbic Basic (ARBn: A
New Arabic MS-DOS Based. Programming Language," Proceedings of the 12th
National Computer Conference and Exhibition, King Saud University, Riyadh, Saudi
Arabia, Oct. 21"'."24, 1990, pp. 449-464.

[Bac79] Backhouse, Roland C., Syntax of Programming Languages, Prentice-Hall, 1979.

[Bak86] Bakhit, B. B., "Arabic Data Compression, a Case Study,"," Proceedings of the 9th
National Computer Conference and Exhibition, Riyadh, Saudi Arabia, 1986, pp. 10-4-
1 to 10-4-12.

[Bak87] Bakry, S. H., "Towards a Standard Arabic Glossary of Computer Terms,"
Proceedings of the First KS. U. Symposium on Computer Arabization, King Saud
University, Saudi Arabia, April 6-9 1987, pp. 28-36.

[Bas95] BASIC f'-"" User Manual, Al-Alamiah Est. 1995.

[BB88] Brumm, Penn and Brumm, Don, 80386 Assembly Language, TAB Professional and
Reference Books, 1988.

[Bec87] Becker, J.D., "Arabic Word Processing," Communications of the ACM, Vol. 30, No.
7, July 1987, pp. 600-610.

[Ber78] Berry, R. E., "Experience with the Pascal P-Compiler, ", Software-Practice and
Experience, Vol. 8, No. 5, 1978, pp. 617-627.

102

[BKN86] Booth, L., Khalid, M., Niaz, M., and Al-Waidan, H., "Arabization of an Automated
Library," , " Proceedings of the 9th National Computer Conference and Exhibition,
Riyadh, Saudi Arabia, 1986, pp. 10-3-1 to 10-3-40.

[BTA93] Borland Turbo Assembler User's Guide, Borland International, 1993.

[BTP89] Borland Turbo Pascal User's Guide and Reference Guide, Borland International,
1989.

[Cas85] Casey, D., "An Original Approach to Arabic," Middle East Computing, No. 21, Apr.
1985, p. 31.

[Cha87] Chaher, Y., "Production System of Morphological and Syntactical Analyzers
Application to the Arabic Language," Proceedings of the First KS.U Symposium on
Computer Arabization, King Saud University, Saudi Arabia, April 6-9 1987, pp. 45-
54.

[CJ88] Capon, P. C. and Jinks, P. J., Compiler Engineering UsingPascal, Macmillan, 1988.

[Coo83] Cooper, Doug, Standard Pascal User Reference Manual, Norton, 1983.

[Cro94] Crouse, K., The Windows Programming Puzzle Book, John Wiley & Sons, 1994.

[DAM92] Dehash, K. A, AlBesher, A A, Mathkour, H. I., "eL:...,:; J':/1 ...,._tJ..1 JL,:.~)' .b,,k,:.:)1

..:.,L:.,)I ~ ..:.,IJ~ J," Proceedings of the 13th National Computer Conference, Riyadh,

Kingdom of Saudi Arabia, 28 Nov . .: 2 Dec., 1992, pp. 1-29. In Arabic.

[Dav86] Davidson, C., "Arabizing the Micro," Middle East Computing, No. 33, May 1986, p.
54.

[Del85] Delwachi, A, "Computer Processing of the Arabic Language: Problem Areas in the
Treatment of Arabic in Hardware and Software Systems, " Proceedings of Computer
Processing of the Arabic Language, Vol. 2, Kuwait, April 14-16 1985, pp. 1-26.

[DM86] Dehlawi, F. M. and Madorah, M.M., "r.S..f""i ~.r. ~: .i,.,.J," Proceedings of the 9th

National Computer Conference and Exhibition, Riyadh, Saudi Arabia, 1986, Vol. 2,
Section 2, pp. 20-60. In Arabic.

[DP80] Daniels, M. C. and Pemberton, S., "Implementing a Pascal Compiler on an 8085A
System," Microcomputer Applications, Vol. 4, No. 3, 1980, pp. 144-150.

[Dun86] Duncan, Ray, Advanced MS-DOS, Microsoft Press, 1986.

[EB90] El-Imam, Y.A. and Banat, K., "Text-to-Speech Conversion on a Personal Computer,"
IEEE Micro, Vol. 10, Aug. 1990, pp. 62-74.

103

[EEN89] El-Dessouki, A., El-Dessouki, 0., Nazif, A., Ahmed, M., "An ATN Approach for
Understanding Arabic Sentences," The 11th National Computer Conference and
Exhibition, Dahran, Saudi Arabia, 4-7 March 1989, pp. 762-773.

[EG88] El-Sheikh, T. and Guindi, R., "Computer Recognition of Arabic Scripts," Pattern
Recognition, Vol. 21, No. 4, 1988, pp. 293-302.

[EH89] El-Sadany, T. .A. and Hashish, M.A., "An Arabic Morphological System, " IBM
Systems Journal, Vol. 28, No. 4, 1989, pp. 600-612.

[Ela86] El-Affendi, M. A., "'-:e_;J4 :L..;_plJ o;~ ul ~ ," Proceedings of the 9th National

Computer Conference and Exhibition, Vol. 2, Section 1, Riyadh, Saudi Arabia, 1986,
pp. 14-28. In Arabic.

[Ela87] El-Affendi, M. A., "Efficient Algorithms for Basic System Arabization," Proceedings
of the First KS. U. Symposium on Computer Arabization, King Saud University, Saudi
Arabia, April 6-9 1987, pp. 37-44.

[Ela90] El-Affendi, M.A., "A Natural Arabic Interface to MS-DOS," Proceedings of the 12th
National Computer Conference and Exhibition, King Saud University, Riyadh, Saudi
Arabia, Oct. 21-24, 1990, pp. 475-497.

[Eld87] El-Dessouki, 0., "Dictionary-Based Arabic Text Compression Technique,"
Proceedings of the First KS. U. Symposium on Computer Arabization, King Saud
University, Saudi Arabia, April 6-9 1987, pp. 79-87.

[Eld94] Elder, John, Compiler Construction: A Recursive Descent Model, Prentice-Hall, 1994.

[ELS93] El-Hannach, M., Labed, L., Salhi, R., and Ghazali, S., "~.....; __,,dJ (/r~-.j\.....J e-1.;.1.

,-._;Ji wlli ,:; .5' ..,s:_.i.1 ~~1," Proceedings of the Arabic Language and Advance

Information Technologies:;;....i.i.:J.14:1~yW.1 ..::.,'-:;.i:}0 2..:!.r-'l .w.JJ, Casablanca, Morocco, Dec. 8-

9 1993, pp. 71-90. In Arabic.

[ES89] El-Wakil, M. and Shoukry, A., "On-Line Recognition of Handwritten Isolated Arabic
Characters," Pattern Recognition, Vol. 22, No. 2, 1989, pp. 97-105.

[Far89] Farghaly, A., "A natural Language Understanding System for Arabic," Proceedings
of the First Kuwait Computer Conference, Kuwait, March 1989, pp. 595-622.

[Far90] Faraj, M. S. "¥ _r=J1 .::.>~r }I ~1.:.i,:; J':ll ._,.,.,.,..lJ-1 i1~1", Proceedings of Using Computers

in the Islamic Sciences: ¥ _rJJ r .},JI c) ._,., rt.)..! r1~1 ;.J.)j, Jeddah, Saudi Arabia, Nov. 11-

13 1990, pp. 53-76. In Arabic.

[FE95] Fayek, M. and Elhaweet, W., "Computer as an aid for Education," Proceedings of the
14Th National Computer Conference, Riyadh, Kingdom of Saudi Arabia, 1-4 Apr.
1995, pp. 85-100.

104

[Fed92] Feddag, A., "Arabic Morpho-Syntax and Semantic Parsing," Proceedings of the 13th
National Computer Conference, Riyadh, Saudi Arabia, Nov. 11-14, 1992, Vol. 2, pp.
717-749.

[FF90] Foxley, E. and Feddag, A., " A Syntactic and Morphological Analyzer of Arabic
Words," Proceedings of the 2nd Cambridge Conference on Bilingual Computing in
Arabic and English, Cambridge University, UK, Sept. 5-7 1990.

[FF93] Feddag, A. and Foxley, E., "A Lexical Analyzer for Arabic," International Journal of
Man-Machine Studies, Vol. 38, Feb. 1993, pp. 313-330.

[GFA95] Gembi, K. M., Farrash, A. A., and AlHarbi, A. S., ".j..,., _,....IJ..1 ~ly cr-J.;.; ,y- ~1~ 1J~

~__,;\!.11 ~)1," Proceedings of the l 4Th National Computer Conference, Riyadh,

Kingdom of Saudi Arabia, 1-4 Apr. 1995, pp. 2-18. In Arabic.

[Gne94] Gnemi, M. A., '\,--J--=JIJ ._,., _,......1J..1," Proceedings of the 2nd Computer Arabization

Symposium, King Saud University, Saudi Arabia, 27-30 March, pp. 127-152. In
Arabic.

[Gor90] Goraine, H., "Machine Recognition of Arabic Text," Ph.D. Dissertation, Computer
Science, University of Reading, UK, 1990.

[Gri71] Gries, David, Compiler Construction for Digital Computers, John Wiley, 1971.

[GUA92] Goraine, H., Usher, M., and Al-Emami, S., "Off-Line Arabic Character Recognition,"
Computer, Vol. 27, No. 7, July 1992, pp. 71-74.

[Hah87] Hahn, Harley, The Complete Guide to IBM PC AT Assembly Language, Scott,
Foresman and Company, 1987.

[Ham94a] Hamado, A. "~J ~i.k>-~I ~ ..l..a> ~_.r<ll :w.J J'll J.,b-=JI ~1.,..," Proceedings of the 2nd

Computer Arabization Symposium, King Saud University, Saudi Arabia, 27-30 March
1994, pp. 25-38. In Arabic.

[Ham94b] Hammouri, A., "An Arabic Lexical Database to Support Natural Language Processing,
Ph.D. Dissertation, Computer Science Dept., Illinois Institute of Technology, USA,
1994.

[Han85] Hansen, P. B., Brinch Hansen On Pascal Compilers, Prentice-Hall, 1985.

[HE86] Hegazi, N. H. and Elsharkawi, A. A., ''Natural Arabic Language Processing,"
Proceedings of the 9th National Computer Conference and Exhibition, Riyadh, Saudi
Arabia, 1986, pp. 10-5-1 to 10-5-17.

105

[Hed75] Hedrick, G. E., Editor, Proceedings of the 1975 International Conference on ALGOL
68, Section 1- Survey of ALGOL 68 Compilers, Oklahoma State University, Stillwater,
June 10-12, 19975.

[Hen90] Hendrix, J.E., A Small C Compiler, Second Edition, M&T Books, 1990.

[Hil90] Hilal, Y., '\-~_,..;JI '=?~I <..:..:!J.:ll ;_...t:,:. ,J...,.. yl:l-1," Proceedings of Using Computers in the

Islamic Sciences: ~_,,...:J1 1..,._k}1J...,_,.r-"~1,1~1 ;J.)j, Jeddah, Saudi Arabia, Nov. 11-13

1990, pp. 235-253. In Arabic.

[Hol90] Holub, Allen I., Compiler Design in C, Prentice Hall, 1990.

[Hol91] Holzner, Steven, Advanced Assembly Language, Brady, 1991.

[Ibr91] Ibrahim-Shaker, M.M., "A Fast and Expert Machine Translation System Involving
Arabic Language," Ph.D. Dissertation, Cranfield Institute of Technology, UK, 1991.

[Hun85] Hunter, R., Compilers: Their Design .and Construction Using Pascal, John Wiley,
1985.

[IDF89] Ibrahim, A., Douglas, J., and Fahhmy, A., "Arabic in Machine Translation,"
Proceedings of the First Cambridge Conference on Bilingual Computing in Arabic
and English, Cambridge University, UK, 1989.

[Jam91] Jambi, K.M., "Design and Implementation of a System for Recognizing Arabic
Handwritten Words with Learning Ability," Ph.D. Dissertation, Computer Science,
Illinois Institute of Technology, USA, 1991.

[JW74] Jensen, K. and Wirth, N., PASCAL User Manual and Report, Second Edition,
Springer-Verlag, 1974.

[Kal85] Kaldirm, 0., "Architecture of Arabic Computer," Proceedings of Computer
Processing of the Arabic Language, Vol. 1, Kuwait, April 14-16 1985, pp. 1-7.

[KC91] Khan, E.H. and Chaudhry, F.I., "Contextual Analysis Approach for Arabization of a
microcomputer," IEEE Transactions on Consumer Electronics, Vol. 37, No. 1, Feb.
1991, pp. 86-95.

[KH93] Khayat, M. G. and Hanadi, M. A, '\,i_;JI :wJ1 ~ a,,)~1 r-W1 ,J Jw\11 wljJ\r ;.., ~1 ;J':)l..ul J.,:I,"

Proceedings of the Arabic Language and Advance Information Technologies: ;.;JJJ

~..t.i:1.JJ .. ,,;L....,J.,Jl ..:;;f,,.:i.:/I_J ~~1, Casablanca, Morocco, Dec. 8-9 1993, pp. 57-70. In Arabic.

[Kha86] Khayat, M.G., "Printing Arabic Text Using Dot Matrix Printers," Software-Practice
and Experience, Vol. 16, No. 2, Feb. 1986, pp. 165-172.

106

[MA85] Mandurah, M. M. and Al-Musa, A. 0., ''The use of graphics to generate high quality
Arabic characters," Proceedings of the 8th National Computer Conference, Al-Kobar,
Saudi Arabia, Oct. 1-7 1985, pp. 1031-1041.

[MA94] Mandorah, M. M. and AlSalman, H. A., "rll=.i .1-# t.Jr-" :~'.)l.....~1 •r..L!I,l,,:.,:; ..,.,.,...1J-1

.:.r.:,.L-11,c--il .:i1_;J1 ~," Proceedings of the 2nd Computer Arabization Symposium, King

Saud University, Saudi Arabia, 27-30 March 1994, pp. 197-210. In Arabic.

[Mac90] Mackay, Pierre (Editor), Computers and the Arabic Language, Hemisphere Publishing
Co., 1990.

[Mah85] Mahjoub, A., "A New Definition of True Arabization," Middle East Computing, No.
27, Nov. 1985, pp. 61-65.

[Mah94] Mahmoud, S., "Arabic Character Recognition Using Fourier Descriptors and Character
Contour Encoding," Pattern Recognition, Vol. 27, No. 6, 1994, pp. 815-824.

[Mak:91] Mak, Ronald, Writing Compilers & Interpreters, John Wiley, 1991.

[Man85] Mandorah, M .. M., "Architecture of an Arabic Computer," Proceedings of Computer
Processing of the Arabic Lt;mguage, VoL 2, Kuwait, April 14-16 1985, pp. 8-26.

[Man90] Mandorah, M. M., "~'.)l.....~l oy-Lll :i....,l,,:.,:; ..:.,L:,..,\J-1," Proceedings of Using Computers in

the Islamic Sciences: ~_r!JJ ;#' c) ...,..,.,...,u., ;l..t;,:.::,.,,I ;J.JJ, Jeddah, Saudi Arabia, Nov. 11-13

1990, pp. 191-208. In Arabic.

[Man95] Mandorah, M. M., "..:.,L.. _µ1 ~,:; , .. ,-u..dl i::;-1.1-; ~1 e::"U. U,,:.:J1 ..:.,L,lk::..; u""""'i,"

Proceedings of the l 4Th National Computer Conference, Riyadh, Kingdom of Saudi
Arabia, 1-4 Apr. 1995, pp. 476-489. In Arabic.

[Mic88] MicroSoft, MS DOS User's Guide Arabic Supplement, MicroSoft, 1988.

[Mic92] MicroSoft, MS-DOS Arabic Support User's Guide, MicroSoft, 1992.

[Mic93] MicroSoft, Microsoft Word- ~_,,,.11 ;;JJLt ;~' Y-.J, MicroSoft, 1993. In Arabic.

[Min87] Project of introducing of computing to public school system, Ministry of Education,
Internal memo, Technical committee, Jan. 87.

[Mis93] Mischel, Jim, Macro Magic with Turbo Assembler, John Wiley, 1993.

(MM87] Mahjoub, A. H. and Mandurah, M. M., "Current Issues and Future Directions in
Computer Arabization," Proceedings of the First KS. U. Symposium on Computer
Arabization, King Saud University, Saudi Arabia, April 6-9 1987, pp. 1-27.

107

[MM94] Mahmood, S. A. and Mandorah, M. M., "a..i_,...i-~ ~ ~# iJ ~t...,,k; J ..,_.;IS" ~_r.J1 ~

·._~n," Proceedings of the 2nd Computer Arabization Symposium, King Saud

University, Saudi Arabia, 27-30 March 1994, pp. 47-94. In Arabic.

[MM95] Mankai, Chafia and Mili, Ali, "Machine Translation from Arabic to English and
French," Information Sciences, Vol. 3, No. 2, March 1995, pp. 91-109.

[Mor90] Morfeq, A.H., "BAYAN: A Text Database Management System for Arabic
Engineering Documents," Ph.D. Dissertation, Computer Science, University of
Colorado, USA, 1990.

[Mou87] Mouajed, M. B., "APG INGRES: An Arabic Interface for INGRES Base,"
Proceedings of the First KS. U. Symposium on Computer Arabization, King Saud
University, Saudi Arabia, April 6-9 1987, pp. 127-134.

[MP86] Murray, William H. and Pappas, Chris H, 80386/80286 Assembly Language
Programming, Osborne McGraw-Hill, 1986.

[MSF88] Mosich, D., Shammas, N., and Flamig, B., Advanced Turbo C Programmer's Guide,
John Wiley, 1988.

[MT95] Mostafa, S. M. and Takrony,. Y. S., "Computer Assisted English to Arabic
Translation," Proceedings of the 14th National Computer Conference, Riyadh, Saudi
Arabia, 1-4 Apr., 1995, pp. 429-442.

[NA94] Noah, A. S. and Ahmed, A., "JJ::i .;,1.F"'1 :a..i_.,.J1; J)-1 ~; _;di , "Proceedings of the

2nd Computer Arabization Symposium, King Saud University, Saudi Arabia, 27-30
March 1994, pp. 1-24. In Arabic.

[Najla] Najla User Manual, Saudi Computer Industries. No year.

[NEE88] Nazif, A., El-Dessouki, 0. I., El-Dessouki, A., and Ahmed, M., "An Expert System for
Understanding Arabic Sentences," Proceedings of the 10th National Computer
Conference, King Abdulaziz University, Jeddah, 28 Feb.-2 March 1988, pp. 745-760.

[NH94] Narayanan, A. and Hashem, L., "Finite-State Abstractions on Arabic morphology,",
Artificial Intelligence Review, Vol. 7, No. 6, 1994, pp. 373-399.

[NM91] Narayanan, A. and Mehdi, S., "A Computer Model for Transliterated Arabic," Applied
Computer Translation, Vol. 1, No. 3, 1991, pp. 5-28.

[PD82] Pemberton, S. and Daniels, M. C., Pascal Implementation: The P4 Compiler, John
Wiley, 1982.

[Pem80] Pemberton, S., "Comments on an Error-Recovery Scheme by Hartmann," Software­
Practice and Experience, Vol. 10, No. 3, pp. 231-240.

[PP92] Pittman, Thomas and Peters, James, The Art of Compiler Design, Prentice-Hall, 1992.

108

[Pys88] Pyster, Arthur B., Compiler Design and Construction, Van Nostrand Reinhold, 1988

[QHA93] Qafari, A. S., Hamruni, B. M., Al-Kharashi I. A., and Evens, M. W., "~ •)_,hi .;.,I.F""

IF-~1 ~1 rJ U..W. J-:J1...,......~4 ~~~,"Proceedings of the Arabic Language and

Advance Information Technologies: ~1 ~L. ~1 ..::,L.,,.:i:fl_} L,,;_rll 4--AlJJ, Casablanca,

Morocco, Dec. 8-9 1993, pp. 259-278. In Arabic.

[RS93] Rafea, A.A. and Shaalan, K.F., "Lexical Analysis of Inflected Arabic Words Using
Exhaustive Search of an Augmented Transition Network," Software-Practice and
Experience, Vol. 23, No. 6, June 1993, pp. 567-588.

[Sam72] Sammet, J. E., "Programming Languages: History and Future," Communications of the
ACM, Vol. 15, No. 7, 1972, pp. 601-610.

[Sau86] Saudi Soft., Al Mussaed Al Arabi, Jeddah, Saudi Arabia, 1986.

[SC92] Suleiman, Khalid A. and Citrin, Wayne, "An International Visual Language,"
Proceedings. of IEEE Workshop on Visual Languages, Seattle, Sept. 1992.

[SC95] Suleiman, Khalid A. and Citrin, Wayne, "A Visual Approach to Programming
Language Internationalization: An Arabic Case Study," to appear in Language
Problems and Language Planning, Vol. 19, No. 2, 1995, pp. 113-132.

[Sch89] Schildt, Herbert, Advanced Turbo C, Second Edition, McGraw Hill, 1989.

[Smi90] Smith, B., "Around the World in Text Displays," Byte, Vol. 15, No. 5, May 1990, pp.
262-268.

[TA90] Tayli, M. and Al-Salamah, A.I., "Building Bilingual microcomputer Systems,"
Communications of the ACM, Vol. 33, No. 5, May 1990, pp. 495-504.

[Tab93] Tabaza, K., ''Windows on Arabia," Byte, Vol. 18, No. 7, July 1993, p. 48.

[Tay87] Tayli, M., "Integrated Arabic System," Proceedings of the First KS. U. Symposium on
Computer Arabization, King Saud University, Saudi Arabia, April 6-9 1987, pp. 135-
143.

[Tek90] Tekfi, C., "Design of a Computer Information System for the Algerian National
Archives," Ph.D. Dissertation, Information Science, The City University, London, UK,
1990.

[Tib8 l] Tiberghien, Jacques, The Pascal Handbook, Sybex Computer Books, 1981.

[TNS86] Tayli, M., Nafisah, M., and Shahin, S., "Intelligent Arabic Workstation," Proceedings
of the 9th National Computer Conference and Exhibition, Riyadh, Saudi Arabia,
1986, pp. 10-2-1 to 10-2-8.

109

[UN84] United Nations Development Program Regional Bureau for Arab States, "Compu.ter,
Informatics, and Development in Some Arabic-Speaking Countries," Mission Report,
N.Y., July 1984.

[WH86] Welsh, J. and Hay, A., AModellmplementation of Standard Pascal, Prentice-Hall,
1986.

[Wir71] Wirth, N., "The Design of a Pascal Compiler," Software-Practice and Experience,
Vol. 1, No. 4, 1971, pp. 309-333.

[WQ72] Welsh, J. and Quinn, C., "A Pascal Compiler for the ICL1900 Series Computers,"
Software-Practice and Experience, Vol. 2, No. 1, 1972, pp. 73-77.

[You88] Young, Michael,MS-DOSAdvancedProgramming, Sybex, 1988.

[ZRN87] Zyoute, M;, Rajouani, A., Najim, M.,·Ouadou, M., and Chiadmi, "Speech Synthesis of
the Arabic Language," Proceedings of the First KS. U. Symposium on Computer
Arabization, King Saud University, Saudi Arabia, April 6-9 1987, pp. 88-89.

110

APPENDIX A

APE MESSAGES

This Appendix consists of the messages that are generated by the APE. There are

three types of messages: informative messages, error messages, and dialog messages

(require a response from the user). Each message will be shown here exactly as the APE

displays it, along with the English translation and the main cause for generating this

message.

A.1 INFORMATIVE MESSAGES

2.

111

"Successful Compilation. Please wait for
preparing the program for execution "
This message is displayed when the user
compiles a program that is free of errors and
the assembling and linking is in progress.
This message will disappear automatically
when the program is ready for execution.

"This word does not exist" (OK)
This message is displayed when the search
for a word reaches the end or the beginning
of the file without finding that word.

A.2 ERROR MESSAGES

1.

C:\UTILITIE\ARAB_ED2\xxX.ap :...aW ~ &4 ~I ~ rJ

2.

3.
______ 1111111111111111111111111111-

• . .

4.

5.
...1111111111111 11~

112

"Unable to open the file <file-name>"
(OK)
This message is displayed when the user
tries to open a file that is not found in
specified path.

"Unable to open the file because it is a big
file. Please try another editor" (OK)
This message is displayed when the user
tries to open a file that is more than 32K.
The text window in Visual BASIC can hold
only up to 32K.

"The name is not acceptable" (OK)
This message is displayed when the user
enters some special characters (such as +, I,
or ;) as part of the file name .

"There is an error in the file name or in
opening the file" (OK)
This message is displayed when the system
cannot open the file due to corruption in
the file name or overflow in the memory.

"Correct the errors in the program then
recompile it " (OK)
This message is displayed when the user
tries to execute a program (by clicking the
red traffic light) that has some compilation
errors.

6.

7.

8.

9.

10.

~ .•!IL Ll.11 . ,e ~"' .1 .J"".t .. r.>4~f"

11 3

"There is an error in the file name " (OK)
This message is displayed when the user
tries to compile a program that has not
been saved (its name is still 'Untitled' or the
compiler could not find the file name.)

"Unable to do the compilation" (OK)
This message is displayed when the
compiler (APC) was not found in the
expected path. (for example, if the user
somehow deleted the compiler or altered
its place in the directory).

"Unable to do the execution " (OK)
This message is displayed when the tasm or
tlink is not found in the expected place or
the executable file was not found in the
current directory.

"There is a logical error that prevents the
creation of the executable file " (OK)
This message is displayed when the
compiler (APC) produces an assembly
code that is not recognized by the
Assembler (tasm) or the Linker (tlink). In
this case, please notify the author.

"There is no compilation for this program "
(OK)
This message is displayed when the user
tries to print the compilation window while
there is no compilation window.

11.

12.
-~~~ 11-

A.3 DIALOG MESSAGES

1.

2. ________ _... """""'"""""'"""""'"""""'"""""'"""""'"""""'!!!!!I

[CWTILITIE\ARAB ED2\TEMP.APJ Jlol .,'J ~
- -~ii

~.:,l~~l.i.Ji~

114

"There is no execution window" (OK)
This message is displayed when the user
tries to print the execution results while
there is no execution window.

"Unable to print the results because the
output size is very large" (OK)
This message is displayed when the user
tries to print a larger than 32KB file.

"The file <file-name> already exists. Do
you want to overwrite it?" (YES, NO)
This message is displayed when the user
tries to save a file by naming it with a name
that already exists.

"The file <file-name> has been changed.
Do you want to save it?" (YES, NO,
CANCEL)
This message is displayed when the user
tries to leave the APE or close a file without
saving it.

APPENDIX B

LIST OF WORDS AND SYMBOLS IN THE ARABIC PASCAL

The following are the lists of reserved words, predefined types and identifiers,

built-in functions and procedures, and symbols in English Pascal and their

correspondences in Arabic Pascal.

B.1 RESERVED WORDS

AND .) NIL . u t_J

ARRAY ...;~,;.;~ NOT ~
BEGIN l-4\ J-41 OF iY

CASE ,JI.,.. ,all,.. OR },}

CONST ..:...i~ PACKED 4 .)'./ ,:tk .)'./

DIV
r-" u PROCEDURE ~'~

DO ~1,~1 PROGRAM li ~ J.

DOWNTO JI_JJj ,Jl_JJj RECORD ~
ELSE ~1.) ,~G REPEAT J.J'

END ~ '-fj '~ '-fj SET 4.PF'~F
FILE Ji. THEN uu ,0µ

FOR ~ TO JI ,Jl

FUNCTION ,JI.:, ,all~ TYPE ti
GOTO JI_ '-:-"1'~1 ,Jl_ '-:-"1'~1 UNTIL

~

IF \~\ d~l VAR _;:)w

IN ~Hij WHILE llU.

115

I LABEL
MOD

IUly
.}4 <<}4

1~TH
FORWARD*

* "FORWARD" is not a reserved word; it is the only directive in Pascal Language.

B.2 PREDEFINED IDENTIFIERS AND TYPES

INPUT j.,=-J... INTEGER
~

OUTPUT r::_/ BOOLEAN ~'~
CHAR J_,,,... REAL

~'~

FALSE Lb,:. 'U=:- TEXT ~

TRUE yip

B.3 BUILT-IN FUNCTIONS AND PROCEDURES

(1) Functions

ABS J1k.- ORD '-:-i.}

ARCTAN u.;; PRED. J!L..

CHR tl? ,,j_,,,.- ROUND ~_;;
cos l:::-.- SIN I.:,..

EOF i_ 4i SQR (:;.r

EOLN 4i cf_
SQRT 'l'_)k

EXP cf1 'cfi succ
C::

\j

LN } TRUNC ~

.. ODD <.S:)) ,,.p)

(2) Procedures

DISPOSE ~ RESET Oj:-1} 40j:.I}

NEW ~..b,. REWRITE '-l \:S" ''-l \:S"

READ \}\ J;1 WRITE ~\

READLN cf \}\ 'cf i}I WRITELN:5""1 - - cf_.

116

Note: Procedures GET, PUT, and PAGE are not implemented in the Arabic Pascal.

B.4 SYMBOLS

The following are the symbols that have been changed in the Arabic Pascal. The

symbols that are not mentioned here are the same in both English Pascal and Arabic

Pascal. The character "E" is the E-notation in real numbers.

English Arabic English Arabic English Arabic
' " > <

' '
()) (<= =>

\ E ,J' >= =<
'
{ } } f] [
- - < > []

117

APPENDIX C

SYNTAX DIAGRAMS FOR THE ARABIC PASCAL

The following are the syntax diagrams which precisely define the syntax of the

Arabic Pascal. The usual conventions of syntax diagrams are assumed. The circles stand for

terminal symbols while the rectangles stand for non-terminal symbols. The last two pages

of this Appendix give the syntax diagrams of the built-in functions and procedures.

.t__l} '?i I'"""~' jk=i. ~i ~ (2)

.9Jfa~\..y'~.)(4)

: .;.;ti? _,:,r..l.

."_" a.pd\ :U:O _,..!JJ ;m.,i,)14 .. ~I J? Jo j,JI J? ~ lo y' '?~i J? (1)

.J? 80 Jp. ~ J~ I'"""~' (3)

118

e' (3)

+---0-4 ~-I .:A;l,,-4.,. ... ~'i e,-o·.... ..-14 -J.,....· --~Cv-4 ---
l_---•0--

1 ~-t_.r1_1<_12_) ~~ J (2)
-----------------·

119

:i.::J~~

.~'J 4.i4 ~.,,.:; f I'""'' ~f ~ ·~1t ,y I'""''" (1)

.~ .l;.-IJ _,.b.... J ~' i:,~ uf ~J •• i:,~ uf ~! ,· ;,o)' ~ ~.P- ~f ~ ";.oJ i...; ?" (2)

t>'11 (12)

120

ti :Jl.:.o

~I ll.3:' (19)

;,,,...,1.!J_'o;t.,..- (35)

· "~- ti ,Y ~ iJ _p,J i)I .l.J.~ l.:A 4-,.,4,)1 o)l.,,.11 :$ p

121

~ • 0 4)•)~35

."~" LJ 0'° ~ iJfa iJi -4'1 ~ ~4.)1 oJ\;itll :l.i?y:w

~ J.11: (24)

---0-· --,~r--!~)1-· ---r -o-
~ ..

.;,..;l!ll < 11) -I· -------10• I

.:,l..w" j (27)

J\k.; j (28)

~-•8----

.:,\..w" j (27)

J\k.; _J_j (28)

122

t I tfr: 1 -1~ ~~
'4------------{CZ>

;,.;.,/J;~

.J .r' Ji'~ '~ ti ,.:.,0 i.> fa i.>i ~ "ti ('"""I" (1)

:Jl:!1 ~1 J;, JI.S:...4 Ml J La;.....o J~ 1"""'1 JA "_p" (2)

~I (34)

:th-,; - u - Ls. 36 - ·-A..::,:P .J_o). ()

.(44) J (43) J (42) iJ J pl ,Lp\;,, .pl.,a;-, 1j ~ ~1 ;J)? ~

.l:>- (38)

4-~ -~~J -$.....--4-@--,.l"""'-\i -4.......-1 -§....---, -_}ls--r-}-9)-, ---11 ,}:Is- (39) r--
123

--©-----,-i- r) } ~.,,... -14 ---,r.----CDl+-4 -­
~

t°-~ (40)

~I (41)

-~-- ~~-;:;~(43)14------1 ~ _,...;;I Cr'~ 14-----~

--~-~-~----1 ~~ _ ;:;";U (43) ~~ _ ;:;";U (43)

~ ~ _J..o~ (44)

r,4-------1 ~ ~ t j Cr' e 11---------
___,___ ·--~ ~ ;..";U (43)

lY _,...;;I Cr' ~ 14--r---.-----i

124

Built-in Procedures and Functions in the Arabic Pascal

~~I J~~ AA! J o~ F, y.1 ~~IJ JIJ..UI

4..,-)I J~4 ;w J U .,-11 JIJ.U4 ~~I ~I J ~I }=JI .All.ill ~I ~pl ~ ~l.i.)' o jl:,JI JilJ5 ul ~
.(Section 5.2.4.6)

_\fi

I)"_ \fi

:)i..-_ \fi" r1.l.:>i::...,,1 :o~ J ·~·t.i ,y ·u~ ui .>..i'J J.U1 !'""'1 .-;J;~

...;.l. r::::'.\ i::::io--@-4 --

125

r •G ,T
~ T 11 ~ J"""'<so) ~..;1.u.,....-' ~-?;>--

*a...,;.,1., • LP (3 5) - .)_).

~ y:S"l_j.ow (53)

:~~

• ·~• t_j i:r ~ fa ~i -4".l ~4_)1 o J\.:iJI ~ *
• n F" Jf n~n t_j i:r ~ fa ~f "4"J ~4_}1 0 J\.:iJI ~ **

. • ..jP" t_j i:r ~ fa ~f -4".l ~4_)1 o ;\.:,JI ~ ***

126

APPENDIX D

ERROR MESSAGES

The following is a list of the error messages along with their English translation.

There are two types of errors related to the Arabic Pascal language. The first type of

errors is the compiler generated error messages which are caused by syntax errors in the

user program. The second type of errors is the run-time error messages which occur

during the execution.

D.1 COMPILER ERROR MESSAGES

Cannot open the source file

Unexpected end of file

Invalid number

Invalid fraction

Invalid exponent

·.· Too many digits in the number

Outside the real range

Outside the integer range

Missing left parenthesis

Missing right parenthesis

Invalid expression

Invalid assignment statement

Missing identifier

Missing assignment symbol :=

127

~l.;_,.JI JL ~ .r µ1 ~ t
~\.; _,.JI JL ,:J W _,:.- _pi;, ~lf.j

J .r-4-' _pi;, t')I

J .r-4-' _pi;, <$..,...s:i1 ~):-1

J .r-4-' _pi;, (,,S"" \r I ~):-1

\J.,,. • .JfS' t')I ,:J ..:.,l.;\J-1 .:,~

~I t')l '-! cr-11 J\k.:ll CJ\;,,. t')I

~I t')l "-! c:..,.-11 J\k.:ll CJ\;,,. t°)I

.:,~ '<' r,\11 J'~\

.:, ~ '<' .;r.\11 J' ~\

.Jr.<-' _pi;, ~y)i ~I

.Jr.<-' _pi;,'=:' ~I~

.:,~_pd.I

o.:i~'=:1 ~1~":).;.

Undefined identifier

Invalid statement

Unexpected symbol

Missing PROGRAM word

Missing BEGIN word

Missing semicolon ;

Missing DO word

Missing UNTIL word

Missing THEN word

Invalid FOR control variable

Missing OF word

Invalid constant

Missing constant

Missing colon :

Missing END word

Missing TO or DOWNTO word

The identifier has been defined before

Missing equal sign =

Invalid type

Not a type identifier

Invalid subrange type

Not a constant identifier

Missing range symbol

Mismatch in types

Invalid identifier usage

Incompatible assignment

Min. value greater than max. value

Missing]

Missing [

Invalid index type

128

4! .r."-' y):, ..W,. i

~}I I.Lt. ,j ~p y):, _pi::.,.}....;?

o.:. fo '~t; _/ a...lS'

o.:. fo 'i..l.i\' a...lS'

o.:. fo 111 :U. pl a.l..,.,WI

• .:. fo ·~11 a..is-

.:.fo':' J)-1

J .r."-' y):, t_.fli

\..oi\.... ai _;.11 t_i./)'1 0-" ~I ~

J .r."-' y):,; _;.11 J\k.:JI

l_p,::.,. ~J t=i~ r) u~ ui ~

.;\;.:, fo I .. ' u\.::k.Lll

U.lp y):, t_1./:JI

~tsk~i\..i.,,.,.:..\

t_.fli ,j ~Ip l-.,.1 uu }JI

~~\ ..lJ-1 0-" ~i ~.:,~\ ..lJ-1

.:.fo '[' J)-1

Missing period

Too many subscripts

Invalid field in the record

Nesting too deep

Already specified in FORWARD

Wrong number of actual parameters

Invalid VAR parameter

Not a record variable

Missing variable

Code segment overflow

Stack overflow

The label is invalid or missing: expecting an

integer between O and 9999

The label is not defined

No label corresponding to GOTO

The label has been used before ·

The set has more than 16 elements

File must be of integer, real, or char type

The left double-quote is missing

The pointer is not defined

The variable is not of file type

The file name is missing

The file has not been opened for reading

The file has not been opened for writing

The variable is not of pointer type

The pointer symbol'"" is missing

Relations'>' and'<' are not accepted in sets

The expression is not valid in sets

One of the variables is not of set type

Too many syntax errors

129

•, I I , 1-\
;;,~·'-'r

J ~ p.i:- J:,-11 ,j ?\

o _#" ;,1.:. \.cll J..:l,-1 ;;,J.;

'..;,,-'11 ~ 1.$.#' Ji u.J,.i ,j ~\... ~~ t ..uJ

~ p.i:- ~I } 411.ul ,j < • .A..~I ..:.,')\..W.1 ;;,.;.;

~1,; .r-!J p,:.,, u~ .;;i ~'1 J,W.1

;;,~~\

o }'I.ill ,j ~\; _,.J4 v"'~I i---JI ~I ..ul

!\l::...ll ~1 J.AJ

'\'\'\'\ J. ~

l,,6,:-b .._; ~ p.i:- uly,JI

' Jl_ ..,.....~ 1' u.J:. Ji \k... ulp- .J.,,,. .J: '1

~L.. .;;1y,J1 1~ r1..i.,.:.;;...1 t ..uJ

~ \ '\ ,:r JS'f ~ 1.$.#- ~_,JI

....;? } ~} ~ti ,:r u~ uf ~'lilll

~ ~ r J ~ t ~ 1 4.Jo-»

-~1.;.u ._ill\ ~ ~ r
~~ ._ill\ ~ ~ r

r' y t_j ,:r ._,..J ~I

~ r?. t_j ,:r ._,..J ..:.,lp.::11 ...L>-i

\.J.,,,. • .#" ~\k>. ~\

D.2 RUN-TIME ERROR MESSAGES

Run-time error messages cause the user program to display an error message and

terminate. Run-time errors do not include all errors that may occur during execution.

There are two types of errors that are not reported by the Arabic Pascal. The first is the

errors that need a considerable overhead in the compiler generated code to report them ,

while they are not fatal errors (from the system point of view). Examples of this type are

an integer operation that may cause an out of range result and out of range index values.

Both Turbo Pascal and Turbo C do not perform such checking in their default mode

[BTP89, MSF88]. In this case, it is the responsibility of the programmer to ensure the

correctness of usage. The second . type is the fatal errors that are related to the MS­

Window functions. When such an error happens, the MS-Windows takes over any of its

application to report a system error. Examples of this type are out of memory to load the

execution code and accessing a protected area in the MS-Windows. The MS-Windows

(including the Arabic versions) display these errors in English: The following is a list of

possible run-time error messages that may occur during the execution.

The entered number is not an integer

The entered number is out of the integer range

The entered number is not a real

The entered number is out of the real range

Error in real number operation (out of range)

Cannot open the file for reading

Cannot open the file for writing

Out of memory

Divide by zero

Negative number in the square root

Out of the set limits

Abnormal Program Termination

Stack Overflow

130

~ \.)~ u--:,l ..;~1; ...:...1 ($.ill ~ }I

~I .)..W\ J\k; (.Jt,:. ..;~\} ...:...1 ($.ill ~)I

~ \.)~ u--:,l ..;~1; ...:...1 ($.ill ~)I

p.1 .)..W\ J\k; (_)\,:. ..;~1; ,.;J ($.ill ~)I

(J\k.JI (.Jt,:.) 4JJ:LI .)\~\JI ,). ~

o~l_;ll .._ill.I c? <Y µ1 ~ (

~t:S::lJ .._ill.I c? <Y µ1 ~ (

• ..r1.u1 i:r ~ ~ r
#J;..._;

y\.... </"'!..;JI J.LJ,.\ J ~)I

.; .,...Al J\k; (.)l,:. .r"\.;,J\ -l>-i

~~~~\~\;pl\ 

J;\11 ..\.J-1 jJ~ .u .!l\::..Ji 



APPENDIX E 

TEST PROGRAMS 

In Chapter 5, Section 5.5, I gave two examples of Arabic Pascal programs along with their 

corresponding English Pascal programs. In this Appendix, I will give some test programs 

translated directly from a well-known book "Pascal User Manual and Report" [JW74]. 

These programs are used to test the APC. At the beginning of each example, I will give 

the example number and page number in that reference. At the end of each program, I will 

also give some sample input and the output. The sample input is usually same as the one 

provided in that book. In some programs, the code for reading the input is added if the 

original program assumes the input has been already read. Note that some real numbers 

are printed by the APC as fixed point real numbers while they are printed in the reference 

using the E-notation. The reason is that the APC selects the format that produces the 

shortest output (similar to the %g specifier in C language). 

The last example, E.23, complements the other programs in utilizing some 

concepts that are not examined in that book. For example, the book does not have a 

complete program that explains the case statement. 

1. Program 0.1 (Page 3) 

It Computes the annual inflation rates of 7, 8, 10 per cent for 10 years. 

This program mainly tests constant definition, integer and real variables, simple 

statements, and repeat statement. 

131 



~ ' ' . 

2. Program 3.1 (Page 17) 

'I"..::, ! ' •• -: 'I'..::. 

1.1 
1 . 21 

1.331 
1 .4641 

1.61051 
1.77156 
1.94872 
2 .14359 
2.35795 
2.59374 

1. 08 
1.1664 

1.25971 
1.36049 
1.46933 
1.58687 
1. 71382 
1 .85093 
1 .99901 
2.15893 

{ 'I" u } ~ r. 
{ ~I y L....,.} 

!(c.?-A) ~I ~Ur. 
! \. - 0 ..::i....; ~ 

!~=t~ 
'I"..::. ''I'..::. '\..::, 

! ' • • - : \..::, 

! ' 

! • - : t 
+ t - : t 

! \ ' , V • \ ..::, \..::, 
!\' ,A • y..::, - : 'I'..::, 
!\ ,, •• 'I"..::. -: 'I"..::. 

''I'..::. ' ' ..::, 

1. 07 
1 .1449 

1.22504 
1.3108 

1 .40255 
1 .50073 
1 .60578 
1.71819 
1.83846 
1.96715 

Example of constant definition. It converts the Celsius degree to Fahrenheit. 

This program mainly tests constant definitions: integer, real, and string, subrange 

variables, for statement, if statement, and round and odd functions. 

J...c. I 

u " ,'1" : (~1 + Y.)""1•4.J.i)Y-:U-Ll 
!iJ"_y..::..s, 0 u 

132 

{ \V ~ \ . 'I" ~Ur.} 
{..::i....;1~1 u..;~ ~ J~} 

! (c.?-A) J....,.,..,...:, ~ Ur. 
! '1"'1' - ~I ..:'.i....;~ 

! \ , A-y.J""I 

! • - cs-3.i l 
i n - ~ I 

! • ---------- . - J.., u 

! (J... U)iJ"_ y..::..s1 
4.J .l ~ 

I .l...../1 

iJ". ,'1' : 4.J .i )y..::..s' 
(4.J.i)(j.i..;--i ,:i, 



! ~ ~ 
~I !IJ"_ 

! ( J.., Li)iJ"_~I 

~ ~ 
,ti 

----------..; 34 .,. 1 ..; 32 .,. 0 
..; 37 .,. 3 ..; 36 .,. 2 
..; .. 1 .,. s ..; 39 .,. .. 
..; 45 .,. 7 ..; 43 .,. 6 
..; .. 8 .,. 9 ..; "6 .,. 8 
..; 52 .,.11 ..; SD .,..10 
..; 55 .,..13 ..; 54 ;~! ~ ... 59 .,..15 ..; 57 
..; 63 .,..17 ..; 61 .,.16 
..; 66 .,.19 ..; 64 .,.1 8 
..; 70 .,.21 ..; 68 .,.20 
..; 73 .,..23 ..; 72 .,..22 ... 77 .,.25 ... 75 ... 2 .. ... 81 .,..27 ..; 79 .,..26 
..; 84 .,..29 ..; 82 .,..2a ... 88 .,.31 ..; 86 .,.30 
..; 91 .,.33 ..; 90 .,.32 
..; 95 .,..35 ..; 93 .,..34 ... 99 .,..37 ..; 97 .,..36 
.... .,02 .,..a9 ,j-, OH .,..38 

----------
~ 

3. Program 4.4 (Page 24) 

Compute h(n) = 1 + 112 + 1/3 + ... + Jin. Examples 4.1 to 4.3 are trivial 

programs that test compound, while, and repeat statements, respectively. These 

statements are tested in other examples also. 

This program mainly tests for statement with downto. 

{ "\'£ ~ . t ~ Li.J-!} 

{ w/' + · · · · + 'Ir + 'Ir + ' - ( w) .i ...,, L......:.. } 

!( ~ .?--4 ' J.i. ...... ) y L......:.. ~ Li.)-/ 

!~: w't ~ 
!~:c 

q,,:,:_;)~1 !\, -: 0 .i...;I 
! • - : C 

J...c.l ~! _ JJ_j.....j 0 - : t r,,-Ll 

4. Program 4.5 (Page 24) 

Computing cosine using the expansion: 

cos(x) = 1 -x2/(2*1) + x4/(4*3*2*1) - .. ... 

133 

!t/ ' + C - : C 

!(c)IJ"_~, 



This program mainly tests for statement, while statement, abs and sqr functions, and 

reading from a file of real numbers. The original program reads from the standard input. 

{n ~ ,o . t ~U.> ... i} 
~\.i.;...:.,.,.,~ · ~ · ~yL.....:..} 

{ ... - ('·~·r•t)/t••i.!" + ('·~);~··i.!" - , - (i.!") ~ 

I k.A-o , J,i..l..o)iJ"_ ~ ~ Ur. 
! '£-1.!", - _:;~I LI-!~ 

~ 

!~ u ·t~ 'i.!"_t-/.>-4 'I.!" 
!~ : 0 ,..cl ,J 
!~ 0--4 u....L. : ~ 

1 ("cosine.inp", ~) ... 1 >-9 
1(_:;,~)i>-9 \ 

J....>cl 0~) , -:J r:i-i-J 
1(1.!"·~)l>-91 l.l....!\ 

! , - : ..::, 

! • -: ..cl 
1, -: t~ 

! ( U") t-! ..)-A - : U" - t-! ..)-A 

J....,c I (t ~) J--lh... • _:;~\ < (u) J--lh... L......J Lb 
! ~ + ..cl - : ..cl i .l....!' 

1 ( ( , -..!! ) •..!!) I i.!"_t-/.>-4 • ..::.- - : ..:i 

!u + t~ =: t~ 
! t... 4--,; 

(A ~ ~u ..cl, A '" =t~ ,A: ,A:i.!")i.!"_...,...::..SI 

5. Program 4.6 (Page 25) 

0 ... 98824781 
0 ... 9449569 

0 ... 87758261 
0 ... 54030228 

-1 

Compute 1 - 112 + 1/3 - . .. + 1/9999 - 1/10000 in four different ways. 

I) left to right, in succession 

2) left to right, all positive and negative terms, then subtract 

3) right to left in succession 

4) right to left, all positive and negative terms, then subtract 

134 

I .l....!' 



This program mainly tests for statement. 
{'l'o h..i..:. i . f ~ Li.>-!} 

:J .):, ~--ul.., .,; , .... - , ; n~~ + - ' / 1 + '/" -, Y~} 
t--, L..::.i..::,.J ~ .J 1.......+J I cs-1) ~ I i.)--. \ 

wl+Jl......JI ~:i..s., • .b. ~ w4..,...._JI ~ .Jl......+JI cs-1) ~' i.)--. 'I' 

{~I i.)--

{~I 

·C .fa.JI ~ 
.~\ cs-1) .J l......+JI i.)-- ~-' \ ~.J ~. i 

{ . ~I cs-1) .J l......+JI i.)-- ~-' 'I' ~.J ~- f 

! k.?-A) ~ ~ Li.>-! 

~ 

, /'_~ 'l.i'f i' , rf i' , , i' 'l.i'" i' , r" i' , , i' 

!..,....i+h : l.i'_.J L.......,i '/'_.J L.......,i 'l.i'-~ 
!~ :t 

I ..l..;I 

!•,• =: ,i' !•,• -: l.i'"i' !•,• =: i'"r !•,· -: 'r 
! ••• - : l.i'f i' ! ••• = : i'f i' 

J,...c.1 o .. , cs-1) \ ==t ~ 
i ..l..;I 

.4..,...._J1 .i_, ..i..:,..J\ } !( ,_ t* 'I') I 
i.)-- • .__,_J L......J I .i_, ..i..:,..J\ } ! (t* 'I') I 

{ .J l......+J I i.)-- .4..,...._J1 .i_,..i..:,..JI } ! (t*" - ' ... ') I 

'-: /'_~ 

' - : I)'_ ~ 

' - : i'_ .J L.......,i 

' - : l.i'_ .J L.......,i { .J l......+J I i.)-- . .__,_J L......J I .i_, ..i..:,..J\ } ! (t. 'I' - ' ... '1') I 

6. Program 4. 7 (Page 28) 

!I)'_~ - ('_~ + 'i' -: 'i' 

11.i'_~ + l.i'" i' - : l.i'" r I i'_~+ r" i' =: r" i' 

!l.i'_.J L.......,i - i'_ .J L......,i + ii' - : ii' 

!l.i'_ .J L.......,i + l.i'f i' - : l.i'f i' ! /'_ .J L......,i + i'f i' -: i'f i' 
! ~ 4---i 

'0 
'0 

l.i'" r- r" i' , , " 

i)'i i'- i'i i' ' ''I' 

I. 693111882935 
B.6931975914 

'0 
'0 

'i')l.i'_ y...:,.$1 

i i')l.i'_y...:,.$1 

. ~ 4---i 

Write Roman numerals. Note that the printed Roman numbers are read from right 

to left in the output. Examples 4.8 and 4.9 will be skipped because examples 11.8 and 6.2, 

respectively, are expansions for these two examples. 

This program mainly tests repeat, while, and if statements. 

135 



: ( II 

7. Program 6.1 (Page 37) 

{~A ~ V . £ ~ U..H} 

{ ~L..~1 rU}il ~t..::..s} 

i(c~)_,....iL..J.J ~u..H 

!~: ~·~ ~ 
I .l..../1 

! ' - : ~ 

" ) U.:..S I ~--
" ) U.:..S I ~- -

!(" ··~)y.::,.sl !~ =: ~ 

J_.c. I \ , , , -< ~ L.....l lb 

! :......, 4--i , , .. - ~ -: ~ 1("m")y.::,.s1 i .l..../1 
L.! U o , , =< ~ I j I 

! :......, 4--i o,, - ~ -: ~ !("d")y.::,.s1 I .l..../1 
J_.c. I \ , , -< ~ L.....l lb 

1:......, 4--i , , , - ~ - : ~ 1("c")y.::,.s1 i .l..../, 
L.! ~ o , -< ~ I j I 

! :......, 4--i o, - ~ ~ 1("l")y.::,.s1 i .l..../1 
J_.c. I \ , -< ~ L.....l lb 

0 - ~ 

! ("x")y.::,_s I I .l..../ I 
L.! ~ o-< ~ I j\ 

~ ! ("v")y.::,_s I I .l..../ I 
J_.c. I \ =< ~ L.....l lb 

\ - ~ ~ ! ("i")y.::,_s I { .l..../ I 
!~. ~ = : ~ !~_y.::,.s, 

.)~ 

0,,, < ~ ~ 

iiiu 
iux 

iiXM>C 
1.1.1.1.><1 

iiiuxxc 
iu1cc 
iixd 

1.1.1.1.>C>CITI 
iiiUXXXXl'IITI 

iuxxxx111111111111l 

. :....... 4--i 

Find the largest and smallest number in a given list. 

This program mainly tests while and if statements, array of integers, and reading from a 

file of integers. 

136 



{rv ~ , . i ~ u.J-i} 
{ i' W_;YI 0--4 ~ LJ ~ ~.) ..>-'-"°i .J _r+Si ..i 4-,1 } 

! ~ : _r+SY I ' 
!~ 0--4 [0 

..>-'-"°Y I 

. . ' ] 
! l. - 0 

u ' r..f ,J 
u~ J 

{J~I ~ ..l fe .,.... .>-i:- } 0--4 ....LL.. : i' 
I ..i...;I 

~.J J~I ~ ,l , lA..i..ic. 0_,.s..... 01 Jo~ 'i'U_;YI ... ,__r!} 

{ ....LL.. 0--4 ~ .. I __r! 

! ( [J]J , I') i __r!I 
! ("minmax.inp", I') ... 1 __r! 

J..=I l, u-li ' - : J ~ 

!r..; 
' . . u 

' . . u 

!r..j 

J 

_r+SYI 

..>-'-"°YI 

_r+SYI 
..>-'-"°y I 

{ _r+SY, .J ..>-'-"°Y, ..i 4-:i i ~ i .l..+:, 0y , } 

! ['] J - : ..>-'-"°y I 
J..=i 0 > J L.....Jl.l::. 

![HJ]J -: u ![J]J - : r..f i ..i...;I 
·U u . 

· U u . _r+SYI < r..f 
· U u . ..>-'-"°YI > u 

·U u . _r+SY I < u 
· U u. ..>-'-"°y I > r..f 

u < r..f I :i i 
I :ii I ..i...;I 
I :ii 
'i i .J ~ 4---i 
I :ii I ..i...;I 
I :ii 

! ~ 4---i 
! l + J J 

! ~ 4---i 
0 ~ 0 - J I :i i 

[ 0] J - : _r+SY I 0 ~ _r+SY I < [ 0] J I :ii 
![0]J - = ..>-'-"°y1 0~ ..>-'-"°YI > [0]J 1 :ii Yi .J 

!l.i'_~I 

! ( ..>-'-"°y I " ' _r+SY I 

74 - 2 0 3 - 6 9 35 12 -3 - 5 88 7 94 68 
4 5 43 52 

94- ~ll 

137 

!L>"_~, 

_r+SY I " ) L>" -~ I 



8. Program 6.2 (Page 38) 

The program plots a real-valued function f(x)= exp{-x) * sin(2*pi*x). This 

program extends program 4.9 (page 30) to print x-axis. The i-axis is printed vertically. 

Due to the limitation of the output screen ( not all the output will show in the output 

window, the result of the Arabic program is printed here directly from an output file that 

has been opened for this purpose. Note that the left hand side of the x-axis is the positive 

side (reverse of the English view). 

This program mainly tests for statement, sin and exp functions, and array of characters. 

{rA t.....i..o Y . i ~Ur.} 
(1.i"•.h• 'I') 4, • (1.i"-)1.i"I = (1.i") .) UI .wl i'"'"'.J} 

..H_,l,..:, ·.,. ~ ur.1 , :.i.. • Cr·'.; ~ i'"'"'..H u,S-J.,) ~, ~, ~'J, i'"'"'.J c""' 
{ r , t.....i..o 9 . 4 ~ u .,;-+J 

{[Hl.!"'1.i"] i _;.:.....ilJ _;l,,.... " • "/' } ! , , , i'l'o = .) U-! I.!, 

{['+~·~] i.,;::,...Lll ~ u.,~, ta...{ 1r, = c 

{ _;.h......LJ J _,.6 ~ I } I '\V - J _,.6 

{ ~I .;.,........._JI ~.,_.. } !Y't = t' 

{.h •'I'} li,'l'AnA Y.h 
! ,. y = .i..,,,. 

!~ : u •t !~ : ~ 'I.!" ~ 
1 u~ i)-< [ J_,.6 . . , ] U.,_.i.- I 

! U"-' : t' 

1 ("sin.out", t') ~ L:..S I .l..../1 
! • =: I)" 

i" "=· [t]I ~I J_,.6 ~J ,-:t ~ 
~' .i..,,,. ~J ,=:t ~ 

I":" - : [ t'] I I .l..,il 

! ( I.!"• y .h) 4, • (I.!"-) I.!" I - : ~ 
1 t' + (oo• d ,..,., ... ,u ... i:j - : u 

1"•" =: [u]I 
1(1 't')U"_y..::i..s, 

! " " =: [ u] I 
I.)+ U" =: U" 

138 



* 
* 

* 
* 
* 

* 
* 

* : 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* : 
* . * 

* 
* 
* 
* 

* . * 

9. Program 6.3 (Page 40) 

Matrix multiplication 

This program mainly tests nested for statements and two-dimensional array. 

lJ··': .cl 

!~ 0--" 
!~ 0--" 
I~ W,-0 

{ ..11 ..1c.\tl ... 1 _;-LI f'~ 

{£, ~ r . '\ ~U_;-;} 
{ ..::.U~I y_fa} 

n· = 0 ir = J 1 £ =r 
! 0· ·' : t I f'• ·' : J 

!~ i)' 

[ J·.,, f'·.,] u~ i 
[ 0·., 'J·.,] u~ Y 

[0·.', t>·. '] u~ ~ 
} ! ~ 0--" u....L. : J,.. 

i ..1.../1 

{ "matrix.inp" u....L. w,-o , ..11 ..1c. \t I i .J-! 1 } 

( "matrix.inp" , J...) ... 1 .J-! 
J,...c.l t>~l )=:J ~ 

J,...c.1 J ~I )=:.cl ~ i ..1.../1 
! (i.J"• J...) i _J-JI i ..1.../1 

139 



[t .~Jy 

! U" - y..::...s I 
! ..... 4--3 

! U" - y..::...s I 

J.-.cl J cs-1) \ - :~ 
J.-.c I 0 -s-1 1 \ -: t ~ 

! (U"• J-.) I _;-JI I .l...!I 

! ..... 4--3 
! U" - y..::...s I 

! ..... 4--3 

{ y • I 
! U" - y..::...s I 

yyal } 

~ J.-.cl t' ~J \-:J 
J.-.c I 0 ~I \ -: t ~ I .l...!I 

! , - : U" I .lo.! I 
J.-.ci J ~J \- :~ ~ 

![t•~]Y. [~•JJI + U" -: U" 

! U" - : [t' Jk 
( U") y..::...s I 

! ..... 4--3 
U" - y..::...s I 

! ..... 4--3 
U" - y..::...s I 

. ..... 4--3 
~~mm!!!!llmmitmm~nm~3~!!l!ii~!!!l'II~ 

2 

10. Program 7.1 (Page 44) 

2 , 
- 3 

.. 
0 
2 

" 2 , 
,o 
- 4 ... 
- 2 

_, 
- 2 

2 

, 
6 , 

- 9 

Operations (addition and multiplication) on complex numbers. 

This program mainly tests usage of records. 

140 

{ U ~ \ . V ~ w_;} 
{ ~_ra-.l I JI .ic. 'JI ~ u 4-l-.c. } 

! k .?--4) y.S ..>-" - J ,lC. 

,i - J-.~ 
~ - y.S..>-" 

~ u,c 
! ..... 4--3 

t_,....; 

,y.S..>-" : l.!"'U" ~ 

u. U" 

u.l.!" 

·~: 0 
1 r C·U" i .l...!1 



J,..c. I '-: ~ ~ 
- ~ " ,r:u.~ ,r =c·~, - ~ ")~_y.:..s, 

!(r:u.~ , r=c·~ 
{~+~ y~} 

,r: c·~ + c · ~ ' - t~' ")~_y.:..s, 
! (r: u.~ + u.~ 

{~·~ y~} 
,r:u.~•u.~ - C·~·c·~, - y~I J..,L:.. ")~_y.:..s1 

!(f: c·~·u.~ + u .~·c·~ 
!~_y.:..s, 

!J-.u:. - u . ~ - : w.~ !J-.u:. + c·~ -: c·~ 

I • • • 

3 6- ; 
10 

... 8 -- 9 -

3 6 - ; 3 6 - ~ 

6 12- ~--.J I 
36 27- .,,..,...._Jf .j..L.. 

3 6 - ; --1 10- ~ 

2 16- ~ .,........_.J I 
2,. 63- .,,..,...._JI .,J..L.. 

I .l.../1 

11. Program 8.1 (Page 51) 

Example of set operations. 

This program mainly tests enumeration and set types, operations on sets, and procedure 

calls. 

! ( ..i..,,. { 

{o, ~ ,, . A ~U_y .... i} 
{uu:.~I ~ JG..} 

! (c~)u u:. ~ ~ u..>-: 
,..::....,..... • ~ ·~ ·~ t.........i) ·~ L!,~ •~ 1 ) = i'Yi t..,._; 

! i'Yi 0-" ~~ - t~i 

J,..c. \ 

!t~I : UJ..c. ,J,..c. ·t~~I ~ 
!i'yl: i'H 

!(t~I : ~) ~ 
!i'yl i'H 

. . . \ 
u-:!--'-' 

!(" " )y.:..sl 
- :i'H ~ 

("~ " )y.:..sl 

141 



{~ 4.1 .. 11} 

{ ·. q Ll-·I\} ~ J-' ~ J--;-' 

!(] - : UJ..c. !(] -: J...c. 
{u ~ ~I ~ J \h..Lll ~I ~I J ... , ... i..../:i 4J ~ _,-!->"--11 J LL l./} 

1 [ ~1.~, ~·~·~ ~ -) ·~ ~)l!,.~I] - : t.H-"YI 
!~ - : ~.H 

! [ ~1] + UJ..c. + [ ~.H] - : UJ..c. 
! ( Ul..c.)~ 

! UJ..c. - t .H-" y I - : J...c. 
,(J...c.)~ 

, ( " ~" )y..::..sl 0 )-J t .,.......Y 1 -> UJ..c. 1 :i! 
, ( " I ~ " ) y..::..s I 0 )-J J_..c. -< t .,.......Y 1 1 :i ! 

! ( " ~ " ) y..::..s I 0 )-J ( UJ..c. -< J_..c. ) ~ I :i) 

{ "[~]" • ..;:,,~1 -'.c.~I J...;...i::,'1 ~_A.JI ~I} 

! ( " ! ~'} " ) y..::..s I 0 )-J J_..c. => Ul..c. I :i) 

l.i' _ y..::..s I 

12. Program 8.2 (Page 54) 

I .L;I 

Generating prime numbers between 3 and around 1000. using a sieve containing 

odd integers in this range. The program has some implementation dependent constants 

(the maximum size of sets). To accommodate the prime numbers in one output screen, the 

prime numbers are computed up to 1000 instead of 10,000. The original program left the 

output undeveloped [JW74, p. 53], however, this program provides an output. 

This program mainly tests set and record types, compound structures (array of sets), with 

statement, nested control statements, and succ function . 

~I~ L. ' ... 
{oi ~ 

J 'I" 0-:!--! ........JI _,....!I ~JY I 

{ J \h..Lll I 11. ~ ........JI _,....!I 

~ . A ~ Ll..)--i} 

.il.J&.YI ~l~I} 

~.l_rLII .ll.J&.YI 

! k~) ~JYI ~ Ll..)-! 

{u~~I ~ "--; C..,............ .i.J&. ~I} ni - ~ u....;~ 
{)-~} 1,0 - J 

{ ~ ~ u ~ ~ u , ... } ,n - Jo 
I J .. • L>-4 -'.c.~ - e::--4 t_,...; 

142 



I ~ i.J-" [Jo ..• ] 
I~ 

u_,..._.. 
: y .~ 

_,..J J I ' j .,;-i 
~: _,...lt..::. 

I ~4--l 
!~ : U" ,..:. ,.tl..S. '[ 

I~ : ~_;U 
I ..I...!' 

1[] =: ~_;U 
J.-1 Jo ~J . -:..:. ~ 

I ..I...!' 
, \ , A, V, 'l , o , t , r, Y , , , , ] =: [..:,] j.,;-! 

I [' o,' t, ,,- , 'Y,'',', 
1 [] =: [..:.]_,..JJI 

I ~4-,l 
! [. ] - [. ] j_;-! =: [. ] j_;-! 

I• =: ~.~t..::, 1, =: y._,..Jt..::. 
I tJ:u. =: ~'1 

J.- I _,...l t..::, (!--" 

{_,...l }i I .:i .:i.....l 1 .:i.;- } _;_;.S. 
J.- I ( [ ~] j_;-! ~ y) ~ L..o ... Hb 

I [ y] + [ ~]_,..JJI - : [ ~]_,..JJI 1, +y• y =: U" 
ly =: [ 

Jo => .tl..S. L..o.J Lb 
I ..1..../1 

l[i:::] - [.tl..S.]j.,;-i -: [.tl..S.]j.,;-i 
IU" + [ =• [ !Y*~ + .tl..S. =: .tl..S. 

J.- I J < (! L..o.J Lb I' + .tl..S. - : .tl..S. I ..I...!' 
~ - [ =: [ 

~4--l 
I ~4-,l 

~ _; U = [ ~] j_;-! I jJ 
1y1,,,. -: ~'1 I ..I...!' 

J.- I (Jo > ~) J ~'1 
1, + ~ =: ~ 

I~ 4-,l 
L..o.J Lb 
I ..I...!' 

q ~.) u - [ ~] j.,;-!) =: ~'1 

{ (!--" 

i' =: ..:. 
J.-1 Jo ~J ,=:(! ~ 

J.-1 J ~J ,=:U" ~ 
0 U [i:::]_,...lJI ~ U" I j\ 

qv: H U"•y + ~·i:::•Y)y..::.sl I ..1....!I 
I H , , ~ ~..:, =: ..:, 

1U"_y..::.s1 0 U ( ,- ..:.) I j\ 

143 



31 29 23 19 17 13 11 7 5 3 ¥.,t~ 

73 71 67 61 59 53 47 43 41 37 " 
127 113 109 107 103 101 97 89 83 79 
179 173 167 163 157 151 149 139 137 131 
233 229 227 223 211 199 197 193 191 181 
283 281 277 271 269 263 257 251 241 239 
353 349 347 337 331 317 313 311 307 293 
419 409 401 397 389 383 379 373 367 359 ~ 
467 463 461 457 449 443 439 433 431 421 
547 541 523 521 509 503 499 491 487 479 
607 601 599 593 587 577 571 569 563 557 
661 659 653 647 643 641 631 619 617 613 
739 733 727 719 709 701 691 683 677 673 
811 809 797 787 773 769 761 757 751 743 1 
877 863 859 857 853 839 829 827 823 821 
947 941 937 929 919 911 907 887 883 881 

1019 1013 1009 997 991 983 977 971 967 953 

13. Program 9.1 (Page 60) 

Frequency count of digits m an input file. The original program counts the 

frequency of letters, not digits. The Arabic Pascal has a limit of 16 elements in the set. 

Therefore, counting the frequency of alphabets is not applicable in the Arabic Pascal using 

sets. 

This program mainly tests array and set types, and eof and eoln functions. 

{'\ • ~ '' . \ c;:-o U..>-;} 
.Jlfa yL....,.. J..,.'JI c;:--U~I ~ r-U}il 0-..o "-C~ ~ r-U..>'J\ .J\fa yL....,..} 

~i ,j'l ~y....JI J LS...., Li ~ ~ ..>-P I ~ w-S-J.J ,u.Jp..JI 0-..o "-C ~ ~u.Jp..JI 

{''\ _Jk>"-C _J "7·<ll..i.ic 

!u_,.,. r-J .J 
[ " . "" ! ~ 0-..o ' '" ,"]U..,............ : .Jifa 

ft II W'""" ~~ : ,.u.), I " \ " .. 

i~ : r 

! ("fcount.inp" , r) ... 1 J-! 
•["di" " '" " V " " '\ " "o" " ' " " '1"' " "'1'" "' " " " ] · Ll t 
• 1 ' I"\ ' ' ' ' ' ' ' ' ' • - • r _) 

!• -: [r-J..>]..>ifa J..oc.1 " \" ~J " , "- :r-J.J ~ 

J..oc. I 
I (1": r,J..>)~1 

[ r-J..>] .JI fa 0 U 

J...oe 1 ( r) r_ 4-..i ~ Lo...J u.. 
I .L:' 

( r) U"' _ 4-..i ~ Lo...J u.. 
1 ( r-J..>• r) I..>-!' I .L:1 
r LJ..>I ~ r-J..> 1 :i1 

I~ 4-..i 
(?-)U"'_ l_>-!1 !U"'_~I 

144 

I~ 4-..i 
i(.)>'_ ~1 

i(.)>'_ ~1 

• ( " LJ )U I · < ' · II " ) .......::,.SI . : r ..> .J .r-- 0"'_ . 

.L, I 



!("---------------")~_y..:,..s1 
J....ci "\" u-ll ". "- : ~.) ~ 

qo:[~.J].Jifa," _,. " ,o : ~.) ," .Jlfa")~_y..:,..sl 

14. Program 9.2 (Page 61) 

5 4 3 2 1 9 9 7 6 5 ~ 

5 4 3 2 1 1 2 3 ~ 5 6 7 9 
5 4 3 

o .,. o ..,I _..f..;; 
4 .,. 1 _,I~ 
.. .,. 2 ..,, _..f..;; 
5 .,. 3 ..,, _..f..;; 
5 ,,_ 4 ..,I _..f..;; 
5 .,. 5 ..,, _..f..;; 
2 .,. 6 _,I _..f..;; 
2 .,. 7 ..,I _..f..;; 
2 _,. 9 ..,, ~ 
2 .,. 9 ... , ~ ~ 

Inserting leading blanks at the beginning of each line while copying it from one file 

to another. The original program reads from the standard input and writes to the standard 

output, while this program reads from a file and writes to another file (more general, to 

test the file operations). Note that the execution window will not show up in running this 

program because there is no input nor output to the standard input/output. After the 

program source code, both input and output files are shown. 

This program mainly tests reading from one file and writing to another file. 

{1, h....i.... 'I'.\ ~Lir.} 

{ _fa..., J_S J...;..j w lL I _J-! J U.. ..i I t-"" _pi u....l... u-l J u....l... w y ~ J_..i...j } 

lt_l.J-!_ ~..il ~LiJ-1 

! 'I'• - 0 W-.11..!, 
!up: C ~ 

! .,...._. : " r ' ' r 

! ( "insert.inp",, r) ... 1 .;-J 

! ( "insert.out" , " r) t-i w.S 

J....c I ( \ r) C 4---i ~ L......J lb 
i ..l.../1 

! (. • ' " r)y..:,..s1 

J_..c I ( \ r)~_ 4---i ~ L......J lb 
(c "'r)y..:,..s1 ! (c ''r)l.;--31 1..l.../1 

145 



1Yfto,vA\ • 

• \Av,ot fY1 

1YftoJ 
o t fY 1 

~ l...;......H W Jl.Ll..-i W 
~~v,,-..1,-..iµ1 

,.._,_ t Jj .:,... J "7 J "7 .:,... 
insertinp u..L..JI .:. L;,:..,.... uµ...;1 

15. Program 11.2 (Page 70) 

! ~ 4---i 
! (Y i') 0" - y.:,..s I 

!(\ !')0"_{_>-JI 

~ 4---i 

1 y ff 0 

o t rn 
u_ t;......H w J\..LL-i w 

~~v,,-..1,-..iµ1 
,.._,_ t Jj .:,... J :i..;. J :i..;. .:,... 

i nserti np u..L..J 1 .:. L; ,:..,.... uµ...; 1 

Find the minimum, the maximum, and the difference between the minimum and the 

maximum for a list of numbers. This program is an extension to program 11 .1. 

This program mainly tests array type and call-by-reference. 

{v, ~ " . ,, ~u..H} 
~'} I J ~'} I 0-:!-! J_>-i.J I ..i 4-,i I J i' LJ .J'} I t)..o t......; LJ ~ ~'JI J ~'} I ..i 4-,i I } 

{ iA ~ \ . \ \ ~ U..)--1-1.J ..H_,.i...:. y. ~ U~I I ~ 

! kft-o) ~'} I J_~'} I ~ U..H 
!'I'• - 0 U-./~ 

0--- [0 ·. '] U.,.._i...... - t......; U t.,_; 
1t......;U: ...,.,,I ~ 

' \ ~'} I ' \ ~'} I ' J 't 
! ~ 0--- u....L, : ~ 

1 (~:~,~ .H-'--'--4 ! t......; U: J ~) ~i J~i t._..Lc. 

{ ~'J J -..........J 0Y t 1 .i 4...1 ~ ~J'1 1 " ~ · t.......l.S} 
1 0 .. ,: t ~ 

!~:u,<..J 
!~ ~ ![']J - : ~ { .Lil ! 'I' -: t 

J-..c. I CYt L...J Ua 
...; ![t]J - : <..J I.L.!1 

·U u. ...; < <..j I j\ 

! <.j ~ · U u . ~ < <..j I jJ { .Li I 

h . ..i ~ ·U u . ~ > ...; I jJ 

'i ! J ~ 4---i 
iU ~ · U u. ~ < ...; I jJ { .Li I 

146 



I ......:...$1 (.)"_ . 

!t..j C 

[ w] J .!I 

i [ w] J C 

·Li u. C > t..j I :ii 

· Li u. 

i -Li I 

!~~ 
! 'I' + t t 

!~~ 
· Li u . 0 - t I :ii 

· U u . .!I < [ w] J I :ii 

C > [ w] J I .'.i ! )' ! J 

{ _;-.+,S I J ->--"' i } !~~ 

I -Li I 

1 ( "maxmin.inp", i') ... 1 _y.J 
J..=1 '1'· ~! ' -: t ~ 

!i.J" ...,..:..SI 
! ( ) _;-.+S\r I , ) _;.--w> \r I , { ) .>--"' i -:; _;-.+,S { 

! ( ) .>--"' \r I - \ _;-.+,S\r I , \ _;-.+,S\r I , \ .>--"' \r I ) i.l" _...,...:..SI 

, ~ ~ ! ( t: [t]'-:')...,...:..SI ! ( [t]'-:' , i') { _y..il i -Lil J...c:.I 'I', ..,.Ji \ - : t ~ 

!(.)" ...,..:..SI 
! ('I' _;-.+S\r I .'I' _;.--w> \r I , '-:' ) .>--"' { -:; _;-.+,S { 

! ('I' _;.--w> \r I - 'I' _;-.+,S \r I , 'I' _;-.+,S \r I , 'I' .>--"' \r I ) i.J" _ ...,...:..S I 

!(.)"_...,..:..SI !(('1'_;-.+S\rl-1_;-.+S\rl)i.:;....u.... ,('1'_;.--w>\rl-1_;.--w>\rl)i.:;....u....)i.J"_...,...:..SI 

J..=I 0 ~i , - :t ~ 
! [t]'-:' + [t] i [t] i i -Li' 

!(t:[t]i)...,...:..SI 

·~~ 
!(.)" ...,..:..SI 

, ( 1 _;-.+,S \r I , 1 ->--"' \r I , i ) ->--"' I -:; _;-.+,S I 
! ( ) .>--"' \r I - ) _;-.+S\r I , ) _;-.+S\r I , ) .>--"' \r I ) i.J" _ ...,...:..S I 

. ~~ 
I . I 

45 - 6 9 9 9 23 54 e 7 4 - a 
s .. "I 3 79 

es 79 

3 -"1 e 3 34 4 .. -8 a ... .. 8 3 ... a 45 
7 6 6 6 

_.,. 
-2 

53 ... 5 -8 
34 2 

48 -7 "17 "12 43 7 -4 "15 88 9 "IS 7 40 44 
"12 7 7 9 75 77 
95 89 - 7 

16. Program 11.3 (Page 72) 

Procedure parameters. 

This program mainly tests the difference between call-by-value and call-by-reference 

parameter passing conventions. 

{ V 'I' ~ ,I" . )) G:--4 Li .J--d 
{u I J 1.- I\ J,.AI .JC i'I ~I ~ J ~} 

147 



!~:._,.,I 

I \ + I)" -: I)" 

!\+i)" - :1)" 

! (i.!" '1J")IJ"_y..::..s1 

~ . ..... : 

~. - : y 

! (y 'i ) t 
i(y ,l)IJ"_y..::..s1 

! "--:! 4-o 

r..,,,.,, ....... , .. 11Jl!l!l··!·S!itl!iii.., ... 1 
17. Program 11.4 (Page 75) 

Construct a program to convert the infix expression into postfix form. The 

program uses the recursive approach instead of the stack implementation. 

This program mainly tests nested procedures, recursive procedures. 

{vo t:.....i... £ • \ \ ~Li.>-!} 

J ~ . ....:b. 'i ..::., 4J....c. ~ J ~ y _;-l I o .) 4a-J I J..:i..,.,...:, } 
" +I)" I,)"• ~J J~ •I)" + I,)" II 

: ~ L::,.J LS ~ .J ( V r t:.....i... y w.S..J I ~ t......S) ..::.,)Li. .i.......J I 

148 

( .i- c) • (y+ I) 
.i- c•y+ i 

.i- c • (y + I ) 
( .i-c) •y+ I 

I• I• i • i 

. 1 +._,.• ( i • 1 •c+ .i) •c+._,. 

{ 
! (c~· ~.Lo) ....:b.'i_ 4L.c. ~ Li.>-! 

!u_p: c: ~ 
!~ ? 

(c:, ?) I _;.JI 

( ""<>c:) 

! .i.;,,. 4L.c. 
.J_;.S. I ~ I 

~ 
! "--:! 4-o 



18. Program 11.5 (Page 77) 

l•.J~ ~ 
1u?: t ~ 

1J_..le ~ 
u U ")" - C I :i1 I .l.../1 

{ = )c} 1 • .J~ 1.i.;,,. l.l.../1 

....... 4--i 
! (c)...,...::,..SI YI J 

{J...le} ! ....... \+-i 
1 J... le I .l.../1 

" * " - C L....JL.b 
! J... le ! .i.;,,. I .l.../1 

....... 4--i 
{.u.} ! ....... \+-i 

! .u. I .l.../ I 
J,...c.l ( "-" - c) JI ("+" - c) L....JL.b 

1 (t)...,...::,..S' 1 .u. 1 .i.;.. ic - : t 1 .l.../, 

. . 

....... 4--i 
{•.J~} 1 ....... 4--i 

1 ("post.inp", i') ... , ~ i .l.../, 

! (" ")...,...::,..SI J_;,S. 

I• .J ~ 
!U"_...,...::,..s, 
!U"_...,...::,..s, 

" . " =c ~ 

Binary tree traversal. The original program uses unusual procedure names; it uses 

postorder to mean inorder and endorder for postorder. 

This program mainly tests pointer and record types, call-by-reference, recursive calls, and 

function calls (enter procedure has been converted to a function to test function calls) . 

149 



150 

I~/\ = ~_;..... t_,..l 
J.;,....,=~ 

!<...i .r"' : (.)" 

!~_;..... .)t.........,i ·~ 
! t_, 4--i 

!~_;.....: .J4 ~ 
!<. • .i .r"' C 

! u,>,-l : <' 

( • .) t..w....J ! Y""..,... : U" - . 
w Li t.J Li <> J, I :i1 i .l...;I 

!(U"·"J)~I l .l...;I 
'( L........,."•)t..w....J . .) - (.)" - . 
' ( . I\ .) t..w....J . ~- U" - . 

! (.) t.........,i."J,) ~., 

! (U"·"J)~I 

! ( ~-"J) ~., 

! t_, 4--i 

! t_, 4--i 

! t_, 4--,i 

4Lc. 
i .l...;I 

! t_, 4--i 

! ( ~..,... : J,) t_,~ 4Lc. 
w Li t.J Li <> J, I :i1 i .l...;I 

i .l...;I 

! (.) t.........,i. "J,) t_, ~ 

! ( ~- "J,) t_, ~ 

! (U"·"J)~' 
! t_, 4--,i 

! t_, 4--,i 

I~_;..... : J.i. ..ii UI ..i 
!~_;.....: J, ~ 

!(c)~I !(c,i')i_;.JI i.l...;I 
W Li ("." <> c) I :i1 

1(J)..l...:..i.;,,. l.l...;I 

ic =: U"·"J 
1J.i,..il =:.)t.........,i."J 

! J.i,..ii =: ~-"J 
t_, 4--,i 

!t_.J Li=: J YI_, 



19. Program 11.6 (Page 79) 

{ • . I\ W .. I\ } 
~J-" 1::--" ~ 

! ("tree.inp", r) ... 1 ..;J 

!IJ"_...,..:...SI !~JI - : .J4 !(" " )...,..:...SI 

!IJ"_...,..:...s, !IJ"_...,..:...s, 
!IJ"_ ...,..:...SI !(.J4)~ !(" " )...,..:...SI 

!IJ"_...,..:...SI !(.J4)~J !(" " )...,..:...SI 

!IJ"_...,..:...SI !(.J4)~~ !(" ")...,..:...SI 

...... ,;. • • .,._;.J .... > •• -tt- .t.:. . . ..:...,..l I@ 

,,.;.,: _j .J • ~tt?:~..:...,.. l 
,,. A•.;.,. » i tc..:.c..,...:; 
i > .J,,. .;;,.,. ...,....::.tttu 

I .l....!i 

Find zero of a function by bisection. The original program caused an infinite loop 

m the second input (for evaluating the cos function). I have tested this program using 

Turbo Pascal and the same thing happens. It seems that the problem comes from the 

limitation of the real numbers. Therefore, I have added a counter to stop the looping after 

100,000 iterations. The APC does not accept a function as a parameter. So, the function 

parameter in the original program has been transformed to a boolean parameter that 

activates the required function. 

This program mainly tests function calls with parameters. 

{v, ~ 'i . \ \ 1::--" w.J-!} 
{ ~ ~ , ~ J • e -, 11 r, .i..;.._:,_.... L; u, J ~ J 4--., 1 } 

!k.J-"--4 ,~.l...o)~~- ~ 1::--"U.J-! 
! \ i - lJ"\ - 0 ~1 W-1 ~ 
!~ : i.!" ' IJ"~ 

!~:(~ : "''I ! ~ :o~)~ U IJ 

{ J...1 .,..._JI ~ I J U I J ~ I J fe J J.+..y'i <.,r/ _r-J I J LS...., L; } 

151 



. > 
1~: C 1~ : t 'iJ" 
( I ) ~ C 0 U • fa I :i1 

!•>(I)~ -: c y1_, 
! ' =: J.le 

! '+ J .le - : J .le 

! 'I' • • I ( y+ I ) - : i)' 

(iJ") ~ t 0 U • fa I :i1 
! (iJ") ~ -:t YI_, 

iJ" - : 0 U C - ( • >t ) I :i ! 
!U"-:y YI_, 

q, ..... , . < J..lc.) _,I (0_,..l.......;I > (y- i)~) ~ 
! i)' - : _;-i..:. 

{ _;-i..:. } ! ...... 4-.J 

{ ~y..JI } I .Li' 

! ( ( U" , iJ" , y I _,..,) _;-i..:. , U" , iJ" ) iJ" _ y..::..s I ! ( U" , U") I .r3 I 
! ( ( U" , U" , \..6.) _;-i..:. , U" , U" ) U" _ y..::..s I ! ( U" , U" ) i _r! I 

....... 4-.J 
~(""';~ · -~f!!l!!!ll!l'milmm~m:i!:m:n::imill!!!!!l-!!rQjmJ ., 

20. Program 11. 7 (Page 80) 

'"15 - ~7-10543- 1 

1 -57 079625 '"1 
2 
2 

., ., 

Testing the side effect that may be caused by using functions. 

This program mainly tests function calls. 

{ A, ~ V . \\ 

{JI_, .wl ?I .i.:,.,;,,..,.y ~ 4-JI P'l I 

! (c_p--o)~ ~_pl ~ Li_)-! 

!~: j,1 ~ 

!~ : (~ :U")u UI J 

{ j ~ ~ ~ ~ l..::, } !I)> - j - : j i J....il 

i (iJ") ~-u-• -::. 

1(j,i)iJ"_ y..::..s1 1(j)u ! ' -: 

!( j,l )iJ"_y..::..s1 !(j)u • ('•)u ! ' = : 

!( j, l)iJ"_y..::..s1 \('·)u • ( j ) u ! ' . -: 

152 



21. Program 11.8 (Page 81) 

0 
0 

-10 

Compute the value of x to the power of y. This program is an extension to 

program 4.8 in page 29. 

This program mainly tests function calls. 

{Al t:....i.... A . \\ ~Ur.} 
{ n t:....i.... £ • A ~ U _.>-+-.Ll ..>-o _,.b..::, y. ~ U ..;--;-J I I ~ . u---. .i .l.ot.....l 1../i I .i 4--:l I } 

1C::::.?-A)Ll"Y' ~u..>--! 
!~: .h... ,.I:,~ 

1~ :(~:I)' 1~:L!")•~ Ul.i 

! ~ : t ~ 
! ' - : t I .i...;I 

J...c I , <I)' ~ Lb 

J...c I (l)')(.j .i..>-3 ~ ~ Lb I .i...;I 

!'I' ~u I)'-: I)' 1.i...;I 

! ( U") t--1 .)-A = : U" 
! ~ 4-...i 

t·Ll" - :t ! \ - 1)' - :I)' 

153 

! ~ 4-...i 
It =: • ~ 

{-~} !~4-...i 

!'l", \t\O'\ -: .1:, 1.i...;I 

l((V,1',•)•~, V ,'1',,)LJ"_.,...:..SI 
! (.,. ,.b). ~ = : .h... 

1(.h... ,.,. ,.b)U"_y..::...s, 

!((" ,.h...)-~' .,. ,.h...)U"_y..::...s, 
((£ ,.b)·~ d ,.b)Ll"_y..::...s, 



22. Program 11.9 (Page 82) 

Recursive formulation of gcd. 

This program mainly tests recursive function calls and procedure calls. 

{A'I' h...i.... ~ . ,, ~w..>-1} 
{ 0 .i _, L....::........1 ~ J J o JI I' I .U...:.... l...; ~') I ~~I ~ UJ I .i 4,.... 1 } 

' ( . . u 

23. Complementary Example 

! k;.?---) ~'11_~~1-~ UJI ~ L.;..>-1 

I' 
..,.J L; I' 

-· 

!~ : 0 'I)' 'I)" ~ 

1~:(~:0, I') ~UJI UI .i 

I ..l....!' 
~UJI 0U · - 0 I :i1 

'0) ~UJI ~L.Lll \11 -' 

{ ~L.Lll } !~~ 

! ( ~ : Y• i) Yfe 4J....c. 
((y,i) ~L.Lll ,y,i)U"_y..:,..$1 1-l....!I 

! ( 'l'V' 'A)yfe 
!('I')£ 'I'' n '\')Yfe 

!(or,1\)yfe 

(A1A, ~A)yfe 

!~~ 

I ..l....!I 

- ~~ 

This example is not in Jensen and Wirth book. It contains some concepts that are 

not mentioned in that book, namely: 

1. Case statement. 

2. Built-in procedures: new and dispose (dynamic allocation and deallocation) . 

3. Mutual recursion. Two procedures, each one calls the other, communicating through a 

variable parameter. 

4. Call-by-reference utilizing a non simple type (array type) . 

154 



5. Goto statement. 

6. Built-in functions: arctan, ord, chr, ln, pred, and sqrt. 

The full translation of this example is available at the end of this example. 

~ ~ ~ ~, ~l.....i.JI ~l.>+lJ ~ ~U>+--11 11\} 
U" I _p,--11 

.~l.....i.JI ~l>+--11 ._,J lA..,..S~ .l.J--:! ~ ~I 

J.=..":l. f ~I-~ ~I . " :U G. . ' 
LHl.....i.JI ..,J lA..,..S~ .l.J--:! ~ ~I J1..,..u1 .: 

~ J .l.°';! .l.;,,. ) ~, J ] 4C , 0 

{ 

~ "I "I 0 I -.,_jc 

!~.:,...., ["'··']U~ = 4...o..JLl t..,.._i 
~ 

I~: J..,_l::. 't '.)4,:u-1 
~ .., o)., i 4 : ~ I .J-4 

~4...o..JLl: J 

~ ~ l:i,.., - u ~ 4.Lc. 
u~ ._,J u..j LS .,.J LA..S ~.JC- ~ ~:,.-11 rl ~ ~ t.....J u " ~1 } 

{ ~ l:u....J I 

t..,.._i 
' ~ I\ ~o .L, .., 
' ~.) = _,;- WI 

J..;,...... = ~.) 

I~: U 
~o.),Ll: ~ 

~ ~ 4-J 
~ 

q;.;1,u: .l.;,,. )or-1_;-i..ll 4.Lc. 
I .L..J I 

q": ~.) J.=,...ll")y.:i_sl 
q.:,./\.l.;,,.) l.r-91 

~ 4....-; 4-J 

{ ~ L:i...._ U~} i .L..JI 
~(~) ~.l.;,,. 

~t:.) u =: ~./\ ~ 
i(~)or-1_;-i..ll 
I~ =: ~)-<, 

J...=I (• <> Ll·/\~) L-11.1. 

155 



...... 
V, 
0\ 

-
f 
l 
c.. 

f 
.r 

[ 
\. 
c.. 
I,., 

or -
..:_ o( 

.• _§ '[ - -c.. = 
L, o( C:o -

{ .i: l. 
,t' ·[ '(> (;, 

(l l ~ 
r· ~" ~ - 1 ~ or 

- ..J 
or (.'t 

t .. \,.oil+ 

•~ i, V -- or - [b.-
C.. or II : [b. <i 

10 :: ~ 0 0 --:-l II '·l ·[ 
o[ L, 1 - . - 00 • 

• (;, 1.,0 l f f-::1· -t f --~ -.rf 

or -= 

or [ . ~- t 
- [ 1· • ;:_.or ' 

~- - H .. :; -
c; oo 00 1 c.. L , II 1., 

_; t ;; J<f 
<i = f f 1· , (l I ..... ..._.. ..._....._.. ~ ·l-·l -··C -· f-', • lb. • r - -

or - •( -

f. .rf f ltf 

-
l 
.t' 

.. t ~ 
Ii' - C: 
L or I,., 

·o --;;- - r 
;:_ { ~: \. '2'" ~ 
" b- > 't" r:: r:-
l · ! t- .! 0 

.. 1: 'r: 11 i: .f 
t: 't . - t .t' - ,{ { 

.. f .t E ·r, '·r, 
.t' - F i;; i;; -

f t -

or 

\ .. or 

1· -
or 

0
1'. 1-;: 

.f 1- .r ~\ 
> 11 o 1> b 

1- \;.\ ix 
11 °r 't b - ·~ 

00 t' \ .. ·r 
1· . 

-· 
.r 



~ y; i J ;, : (.j ~ 

h . .i_;.:.. C 
t~ : ()> 

i ~\ 
~ ( ( L)) tJ;. .,_.i II = II ' " : t : L) ' II tJ;. .,_.i II ) O" - y..:i..s I ~ ' ' 0 

=· L) 

!((LJ")~.;-:.. ,11 II d:LJ" II ~.;-:..ll)LJ"_y..:i..s1 ~,, =: ()> 

t((LJ")_,.J , 11 
II ,t:LJ"' _,.J 11 )0"_y..:i..s1 ~ ' • =· ()> 

!((c)~~.;-:i 'ti ti d:c ,"~.;-:i")O"_y..:i..s1 ~ "Bu =· 

C 
!((c)LHL...i , 11 = 11 d:c , 11 LH6 11 )0"_y..:i..s1 

i((•"')"_.)h. , 11 =II,£: , 11 ;.• h 11 ) ·~1 ..,-- ()> ~~.) • O"_. t A, =· ()> 

t 4-.:! 4-J 

t(~: J~ ~14........_jLJ :O" ~ )o~-:u~ 4--Lc. 
~~: t '~ ~ 

{ ~)'\ ~ C:J--~ ..JI t"" ~ , 4-..i+JJ ~ J..S c.s--1c ~i} i ~\ 
~. =: ~ 

J-=I J~ ~\ ,=:t ~ 
i ~\ 

t J~ + [t]J =: [t]J 
t [t]J + ~ =: ~ 

t 4-.:! 4-J t, + J~ =: J~ 

~·~ =: [ J ~ ]J 
' ~ l . : . "'-:! ~ 

{ ~.;-JI ~ U.;,+11 } i ~I 
~yl.J- =: ~l_ya 

J-= \ ~ I .Y' L..J U. 
i ~I 

t( 11 ~YI J:,..Ji 11 )~1 .) ~ . 
t(.J~I )1_;-ll 

u...o _;~I Uh 

h~.I \..:i....., - :u ..,._i....., : ' 
!JJ~_I> b..w.....l =" 

!JIJJ: od,r' 
i ~\ :i 

!( II : 4......_j LU I J _,.b J:,.. J i II ) y..:i..s \ 
! ( J_,.b) \ .;-l \ 

! ( II : f' Ll.)'i I J:,..Ji ti )y..:i..sl 
J-=I J_,1. ~\ \=:t ~ 

1 ~\ 
t( [t]J ) i _;-ll 

~ 4-.:! 4-J 
~ ( II : .) ) ) .; ~, I I .l.a.......J 4......_j LU I • ) ~ \ .... • t)'I_. 

~ ( J_,1. ,J) 0 ~-:U_,.j..-
~ I J.,1. ~I ,=:t ~ 

t ( 0: [t]J)y..:i..sl 

157 



:(.)"_~I 

! ~ \+-i 
=~~ ~1_"-:l" j\ 

~ ....,_i.......JI .,.JI J.•I 
..,.. w.,....._i1 ~ l J;..1o l 
..,.. ~ l.,..Jl ,J.i,,.> I 
..,.. ~ l..,._ll ._J.;..i, I 

l ~ I u-c.,-.1 
l ~1..:,.-t;I 
1~1,:,;..ct: ...,...1 
•• ~1..:,.-c,,:,..1 

! (" u .. l\ ~ ~ 

{UL:..} ~\+-i 

{ ~ U:. } 
:(.)"_~I 

~ \+-i 

:(.)"_~I ~~ 

~1 .Li.J ") ~I (.)"_ . 
. ~ \+-i 

3: .... ~"j l .J.a,. .1, 1 • •• 

•. 98279~ • 1 .5 Uii,i -
e - 66 .,.i,..,.. 

2.312S9 - 18 ,-1 
66 - e~..,,.:; 

A - 0 ~l-
9 - • ., ~...,.:; .... ~ 

4 : .... ~"j l J;...a\ 
8 . 982794 • 1 .s U.,i 

B - 66 ~ _,,... 
2 .3A2S9 - 10 ,-J 

66 - e~..,,.; 
A • B ~l-

9 • IJ1 ~.;:;.I~ 

6: .... ~'1 1 ..J.i,.,1,'1 
5 : ;,;, ....... H .. ;i..11 ,J.,. .,;.. .a 1 

5 Ja 3 2 1 : ,-Li]X I J;...>1 
:~I ~ i-.!l_.i._11 

~o 10 v e 1 6 

{This program complements the previous examples.} 

program complement(input, output); 

label 
type 
var 

99 ; 
lis t = array[l .. 20 ] of integer; 

choice , count, len integer ; 
cont boolean; 
l list ; 

procedure Stack array ; 
{ creats and then displays a last-in first-ou t linked list 

it tests the procedures NEW and DISPOSE 
type 

var 

link = ,....num; 
num = record 

e nd ; 

pl, p 2 

n integer ; 
next link ; 

link; 

procedu re reading (new link) ; 
begin 

write (' Enter a number :') 
read (new,... . n) ; 

158 



end; 
begin { stack array 

new(pl); 
pl".next := nil; 
reading(pl); 
p2 :== pl; 
while (pl".n <> 0) do 
begin 

end; 

new(pl); 
reading(pl); 
pl".next :== p2; 
p2 := pl; 

p2 := pl".next; 
{ write the list in reverse order} 
writeln; 
writeln; 
while (p2 <> nil) do 
begin 

pl := p2; 
write(pl".n: 5); 
p2 := pl".next; 
dispose(pl); 

end; 
end; 

procedure mutualRec; 
{ testing mutual recursion 
const maxlevel = 3; 
var level : integer; 

procedure B(var 
procedure A(var 
begin 

k integer); forward; 
k integer); 

end; 

write ('Enter 
B ( k) ; 
wri teln (' 

procedure B; 
begin 

procedure A' ) ; 

exit from procedure A'); 

writeln(' Enter procedure B'); 
k := k + 1; 
if k <== maxlevel then A(k); 
write('exit from procedure B'); 

end; 
begin { mutualRec 

level :== O; 
A(level); 

end; { mutualRec 

159 



procedure functions; 
{ test some of the built-in functions } 
var n real; 

c char; 
i integer; 

begin 
n := 1. 5; writeln('arctan' n:4:2, '=' 

arctan(n)); 
i 
i 
C 

i 
end; 

•-

-. 
.-
.-

66; 
10; 
'BI; 

81; 

wri teln ( 'chr ', i : 4, ' = ' chr ( i) ) ; 
wri teln ( 'ln ', i : 4, ' = ', ln ( i) ) ; 
writeln(' ord ', c: 4, '= ', ord(c)); 
writeln(' pred ', c: 4, '= ', pred(c)); 
writeln(' sqrt', i: 4, '= ', sqrt(i)); 

procedure varArray(var x: list; var no: integer); 
{ add to each element in the array the list length, 

then put the total of all elemtns at the end of the list 
( index no+ 1) 

and return the array} 
var sum, k: integer; 
begin 

end; 

begin 

sum := O; 
fork:= 1 to no do 
begin 

end; 

x[k] := x[k] + no; 
sum:= sum+ x[k]; 

no:= no+ 1; 
x [no] . sum; 

main program} 

cont := true; 
while cont do 
begin 

writeln; 
write('Enter the choice : '); 
read(choice); 
case choice of 

1 : stack_array; 
2 : mutualRec; 
3,4,5 : functions; 
6 : begin 

write('Enter the list lenght : '); 
read (len); 
write('Enter the numbers : '); 
for count:= 1 to len do 

160 



begin read(l[count]); 
end; 
writeln('The list after the change :'); 
varArray(l, len); 
for count:=1 to len do 

write(l[count] :5); 
writeln; 

end; 
0 : GOTO 99; 

end; {case} 
end; { While } 

99 writeln; 
writeln('End of program'); 

end. 

161 



VITA 

AbdulMalik S. Al-Salman 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: AN ARABIC PROGRAMMING ENVIRONJ\IBNT 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Riyadh, Saudi Arabia, On October 16, 1966. 

Education: Graduated from El-Shafa High School, Riyadh, Saudi Arabia, in June 
1983; received Bachelor of Science degree in Computer Science from King 
Saud University, Riyadh, Saudi Arabia in June 1988; received Master of 
Science degree in Computer Science from University of Georgia, Athens, 
Georgia in July 1992. 
Completed the requirements for the Doctor of Philosophy with a major in 
Computer Science at Oklahoma State University in July 1996. 

Experience: employed as systems analyst by the Royal Saudi Marine Forces in 
Summer 1986 and 1987; employed by King Saud University, Department of 
Computer Science as teaching assistant in 1988-1989. 

Professional Memberships: Association for Computing Machinery (ACM). 


