AN ARABIC PROGRAMMING ENVIRONMENT

By
ABDULMALIK S. AL-SALMAN

Bachelor of Science
King Saud University
Riyadh, Saudi Arabia

1988

Master of Science
University of Georgia
Athens, Georgia
1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
July, 1996

AN ARABIC PROGRAMMING ENVIRONMENT

Thesis Approved:

e Thé"'ss Advisor §

W G

BE el A

H. s

Hormas C Collins

Dean of the Graduate College

1

ACKNOWLEDGMENTS

Praises be to ALLAH, the Lord of the ﬁﬁi;erse, without his bounty I would not
have come to Oklahoma or finished this work.

I wish to express my deep gratitudé and sincere appreciation to my major
professor, Dr. K. M. George, for his écientiﬁc guidance, moral support and continuos
encouragement and vunderstanding. My thanks are extended to the members of my
advisory committee, Dr. G. E. Hedrick, Dr.K. Gasem, and Dr. H. Lu, for their valuable
suggestions and encouragement during the course of this project.

I would also like to give a special appreciation to my parents and my wife for their
support and encouragement all the time. I am also thankful to all my friends in Stillwater
who made my staying herc very enjoyable.

I also forward my thanks to my home country, Saudi Arabia, the land of goodness.

iii

TABLE OF CONTENTS

Chapter Page
LLINT RODUCTION ..ttt ittt ittt v ot oeensoenosnessonanesnens 1
1.1 OBJECTIVES AND MOTIVATION 2
1.2 DESIGN GUIDELINES 3
2. CHARACTERISTICS OF THE ARABICIANGUAGE 6
3. RELATED WORKt ttttinnnneennnean e e e eee e 11
3.1 STANDARDIZATION s, 13
3.2 INPUT AND OUTPUT FACILITIES 15
3.3 ARABIC PROGRAMMING LANGUAGES. 17
3.4 PASCAL COMPILERS st 19
4. THE APE DESIGN AND IMPLEMENTATION ...ttt ir et ennas 21
41 MAINWINDOW . . 22
42 APEDIALOG BOXES 27
4.3 COMPILATION AND EXECUTIONPROCESS 33
4.4 APE ALGORITHMS i s, 37
4.5 HELP WINDOWS . . 50
5. DESIGN AND IMPLEMENTATION OF THE ARABIC
PASCAL COMPILERttt ittt ittt i oneeonnerannennns 53
5.1 THE SCANNER, 54
S2THE PARSER 59
5.3 THE CODE GENERATOR 84
5.4 THE ERROR HANDLER L 92
5.5 EXAMPLES OF ARABIC PASCAL PROGRAMS 92
6. CONCLUSIONANDFUTUREWORK ...ttt tteennnnnenass 95
6.1 SYSTEM REQUIREMENTS 96
6.2 SYSTEM LIMITATIONS e s, 97
63 FUTURE WORK e s, 97
REFE RENCES .t i i ittt teeneeeesesoesaseasoeesoneessnnans 99

v

Appendix Page

A.

APEMESSAGES. i it i i it e i i i 111
A 1INFORMATIVE MESSAGES 111
A2 ERRORMESSAGES e 112
A3DIALOGMESSAGES 114

LIST OF WORDS AND SYMBOLS IN THE

ARABICPASCAL........ciiieeiennn. ettt 115
B.1 RESERVEDWORDS e 115
B.2 REDEFINED IDENTIFIERS AND TYPES 116
B.3 BUILT-IN FUNCTIONS AND PROCEDURES 116
B4 SYMBOLS 117
SYNTAX DIAGRAMS FOR THE ARABICPASCAL 118
ERRORMESSAGESciiiiinen., [127
D.1 COMPILER ERRORMESSAGES 127
D2 RUN-TIME ERRORMESSAGES 130

TESTPROGRAMS ...ttt iiitiietteeneeoeennenonnonas 131

LIST OF TABLES

Table Page
4.1 Actions related to the MDI DialogBox. e 38
4.2 Actions related tothe File DialogBox 40
4.3 Actionsrelatedtothe Textwindow 41
4.4 Actions related o the Find DialogBox 44
4.5 Actions related to the Replace Dialog Box 44
4.6 Actions related to the GoTo line DialogBox. 45
47 Actions related to the Print DialogBox e 46
4.8 Actions taken by the Optionhandler 47
5.1 Sizes (in bytes) of deferent datatypes., 66
52 Standard functions 82
5.3 Standard procedures P 82
5.4 Simple relations and operations in Arabic Pascal and Assembly 91

vi

LIST OF FIGURES

Figure , Page
4.1 Main User-Windows Interactions 22
42 A snapshot ofthe MainWindow 23
4.3 The main window after closing all ﬁles23
44 Drop-downSubmenus 24
4.5 Examples of a Dialog Box and a message window. 25
4.6 File Dialog Box (WithOpenFile Title) 28
4.7 Find and Replace Dialog BOX oo 31
48 GoToDialogBox 32
49 Print DialogBox., 32
4.10 A snapshot of the compilation windows (unsuccessful compilation) 35
4.11 A snapshot of the compilation windows (successful compilation). 36
4.12 The APE including the execution window. 36
4.13 Software Architecture ofthe APE. 37
414 Themainhelpwindow 51
4.15 Partial display of the APE interface help window e 52
4.16 Partial display of the Arabic Pascal help window 52
5.1 Organization of the Arabic Pascal Compiler. 53
5.2 Symbol Table Node Data Structure 64
53 AnExampleofasymboltable. 65
5.5 Scope structure of a Pascal program. 67
5.6 A Snapshot of the Scope Stack of the program in Figure 5.5 68

vil

NOMENCLATURE

APC Arabic Pascal Compiler

APE Arabic Programming Environment

viil

CHAPTER 1
INTRODUCTION

Throughout the world, computers play an important role in people’s life. The
concept of literacy starts to shift from not knowing how to read and write to not knowing
how to operate and utilize computers. For instance, in Saudi Arabia many houses have
computers either to be used for scientific purposes or just for entertainment. Cdmputer
classes have been introduced in all high schools. Education planners in Saudi Arabia are
nowadays thinking seriously of introducing computer classes not only in middle schools,
but also in elementary schools [Min87, DAM92, Gne%94, FE9S5, GFA95, Man95]. The
main difficulty facing such planing is the lack of good skills in English language prior to
college. Thus, to enhance computer teaching in Arab countries is to Arabize computers in
all levels: hardware interfaces such as operating systems, software interfaces such as
applications, and programming languages.

Every Arab national feels and appreciates the extreme importance of computer
Arabization. Computer Arabization can be defined as the conversion of well-tested and
well-proven computer software to enable Arabic-speaking users to utilize it effectively and
efficiently. This work is a small contribution to this end.

This dissertation is comprised of six chapters, including this introduction. The rest
of this chapter states the main objectives and motivations. It also defines the design

guidelines for developing the Arabic Programming Language Environment. Chapter 2 is

devoted to explain the main characteristics of the Arabic language. Understanding these
characteristics is essential for designing an Arabic software. Chapter 3 discusses related
work. Chapter 4 describes the design and implementation of the Arabic Programming
Environment (APE). Chapter 5 explains the design and implementation of the Arabic
Pascal Compiler (APC). The APE and APC complement each other. Chapter 6 concludes
the work and states the avenues for future work.

The dissertation also has five appendixes. Appendix A lists and explains the APE
messages. Appendix B lists the words and symbols that are used in the Arabic Pascal
language. Appendix C shows the syntax diagrams for the Arabic Pascal language.
Appendix D lists and explains the compilation error messages and the run-time error

messages. Finally, Appendix E lists a set of test programs used as a validation suit.
1.1 OBJECTIVES AND MOTIVATION

The main objective towards the Arabization of computing is to be able to write
programs in Arabic. Arabic programming languages and their environments should be
available as other international programming languages to enhance the advancements in
the Arab world. Programming language environmenf is an integrated set of tools for
program development such as editor, compiler, linker, and debugger. So, it is substantially
different from any Arabic word processors available in the market. Arabic language, in
general, has many unique features that makes it different from all European languages.
Consequently, developing an Arabic environment is different from developing an
environment for other languages. Because of the importance of understanding the Arabic
characteristics, we have dedicated a chapter, Chapter two, for describing those

characteristics.

~

Arabic Pascal design and implementation was motivated by the need of a simple,
structured, and powerful Arabic programming language to be used as a general purpose
programming language, especially in teaching programming concepts. From an
educational point of view, it is obvious that learning new concepts is more effective if the
native language is used. Few years ago, such a project was not applicable because there
were no mature Arabic environment systems that can handle efficiently the Arabic
characters. Moreover, there was no need for such project because most computer users
and programmers were educated adults who knew the English language and could easily

program in English. However, this situation has changed.

1.2 DESIGN GUIDELINES

Several key factors influence the design of the environment. The Arabic
environment should have the ability to read and display Arabic characters. Moreover,
everything in the editor (writing direction, menus, tool-bar, status-bar, etc.) should be
presented from right to left to accommodate the Arab users. These two features pose the
major obstacle to developing such an environment. Also, to address a wide group of users
and programmers, this work has to be built on top of a popular machine that can support
Arabic character set. This led to using IBM PC and compatibles which are popular and
widely available machines with numerous clones. They also support a reasonable Arabic
interface under both MS-DOS and MS-Windows.

Since MS-Windows has a better user interface than MS-DOS, MS-Windows is
chosen as the base platform for the work. MS-Windows version 3.0 and later can support
Arabic characters with some applications for Arab users. What remains to be done is to

develop some tools that are able to handle right alignments. The Arabic programming

environment can be viewed as an editor complemented with compiling and running
facilities. The editor should accept Arabic text with basic tools for editing, such as opening
a file, saving it, cutting, copying, and pasting. Chapter 4 explains in detail the APE
interface and its capabilities.

To address wide group of programmers, The selected programming language has
to be well-known in its original design. Therefore, the shift from English programming
language environment to Arabic programming language environment has to be minimal at
least in this stage of Arabization. May be later, when many programmers get a long with
Arabic programming languages, more independent Arabic programming languages can be
designed. We have chosen Pascal language as a model to follow for many reasons. Among
these are:

e Pascal is the most widespread programming language in the education field in Saudi
Arabia and to some extent in other countries as well.
e Pascal is a fairly small language with relatively*sirriple syntax that can easily be
understood.
e Pascal is a structured language.
Instead of defining a new programming language that may have no link to any existing
language; we chose to follow the standard Pascal [Coo83, Tib81]. By doing this, the
ability to switch from English Pascal to Arabic Pascal becomes easy for teachers who
know English Pascal and want to teach their students the Arabic Pascal. Similarly,
switching from Arabic Pascal to English Pascal becomes easy for students who want to
pursue the field of programming language or want to study some othér English
programming languages like C or FORTRAN. The Arabic Pascal, however, is not oriented
to any specific purpose or group; it is a general purpose programming language that can

be utilized by beginners as well as experts.

Translating the English Pascal to Arabic Pascal can be done in an easy, but
inefficient way, that is translating the Arabic syntax (source code) to English and then
feeding it to the regular English Pascal compiler. Unfortunately, this approach does not
solve the problem of English difficulties due to the following reasons:

o Users will receive all compiler messages in English. These are difficult to be understood
by a person who is not proficient in English.

¢ Debugging the source program is almost impossible.

e There is no way to improve or modify the programming language to suit the Arabic
native speakers.

oIt is importanf to build a complete and coherent project that contains only Arabic

interface.

Accordingly, the Arabic Pascal language and compiler should be a stand alone software,

not a front end to any Latin high level programming language.

CHAPTER 2
CHARACTERISTICS OF THE ARABIC LANGUAGE

To effectively build a good Arabic software, one should fully understand the main
characteristics of the Arabic language. The Arabic language has many unique features that
are different from many other languages. The following is a list of the main characteristics

of the Arabic language [AA89, AA93, Bén87, Cas85, EEN89, Ham89, Ham94a, KH93].

1. Arabic, like other Semitic scripts, is written and read from right to left.

2. While text is written from right to left, nﬁmbers can be written and read from right to
left or from left to right. Most Arabs read numbers and write them from left to right.

3. It has 28 basic characters.

4. In addition to the basic 28 characters, Arabic has special letters such as

sadcYcT
and HAMZA letters such as
N s 5 LT s

5. Even though the basic alphabet consists of 28 letters, it is extended to some 90
elements by additional shapes, marks, and vowels [TA90].

6. Some Arabic characters can be fused to form new shapes. For example, ‘¥’ is

composed of ‘J” and 7. ‘7 is also composed of ‘" and ‘' [TA90].

7. Arabic is a cursive script --like English handwriting-- links the letters of a single word.

8. Arabic script is extremely complex due to the context sensitivity of its written
characters. Letters have up to four different forms: isolated, at the beginning, in the
middle, and at the end of a word.

9. Most of the characters have three shapes depending on their position within the word.

10. All characters are consonants except the letters Alif, Waw, and Ya [Sim90]. Actually,
these three characters are consonants with attached vowel sounds.

11.Most characters (17 out of 28) have a dot, two dots, or three dots associated with the
character and can be above, below, or insi‘de the character.

12. Arabic also may use stretch character forms to add emphasis or aesthetics to the
written word.

13.No upper or lower cases exist in Arabic.

14. Arabic has vowels. Vowels are special shapes with Arabic words. It is good to have
them in writing to avoid possible ambiguity, but they are not necessary in most cases.
The vowels can be inferred from the context. Nowadays, most writers ignore them
[Bec87].

15. Similar to accent marks in European languages, Arabic has diacritical signs. These
signs are used to mark short vowels and emphasize or loosen a letter’s sound [TA90].

16. A special feature of. the Arabic alphabet is the large number of diacritics, points, and
slashes, which are used to differentiate consonants or to represent vowels.

17.Some groups of characters have the same shape with slight change in the number of
dots or the position of these dots [Jam91]. The dots and their positions are important
in distinguishing between different characters [Gor90].

18. The Arabic characters are written cursively with frequent vertical overlap in

handwritten form. For example, the first three characters of ‘4.2’ can be written by

19.

20.

21.

22.

23.

hand above each other. Even in the printed characters, vertical overlapping is clear in
the first two characters in the last example.
The pronunciation of the character, and hence the meaning of the word containing that

s

character, differs according to the diacritic imposed over it. For example, ‘<%’
(sentences) is completely deferent from x>’ (camel) even though they have the same

set of characters.

Arabic, like Latin, is a synthetic language rather than a predominantly analytical
language, such as English [FF93]. That means that the syntactical relationship of
nouns, for instance, is indicated by case endings and that verbs are inflected by means
of prefixes, infixes and suffixes to indicate the various persons, numbers, genders,
derived forms, moods and tenses. On the other hand, a language such as English a
separate noun or pronoun is required to indicate the person, number, etc.

A major characteristic feature of the Arabic language is that‘ most of its words are built
up from roots, whereas English words are generated from stems [AA94]. Surface affix
removal processesv produce word stems while deep affix removal processes produce
word root [Alk91].

The key to searching the Arabic lexicon is the root of the word, whereas the stem is
the key in English. A lexicon is a list of words in which each wérd is associated with
its syntactic properties [AA94]. The most important property is the syntactic category
such as whether the word is a verb or a noun.

The Arabic language is an inflectional language whereas English is an analytic
language [AA94]. The derivation in Arabic is based on morphological patterns and the

verb in Arabic plays a greater inflectional role than in English.

24 Particles and affixed pronouns can be combined to Arabic words. This characteristic is

not available in English.

25.The structure of Arabic language is different from that of Indo-European languages,
including English. For instance, the phrase “PACKED ARRAY” should be reversed in

Arabic to “ibj . 155’ This is because in the Arabic language the adjective follows

the nominal phrase, contrary to the English.

26.The Arabic language accepts the principle of abbreviation. Both types of abbreviation,
forming a word from the first letters of a sequence of words and selecting a prefix or a
postfix from a word was popular in many Arabic works of literature. For examples,

Arabs used to write “wl-” to stand for “.i.;«ls &1 L7, “»7 as a an abbreviation for

113

6«:&‘)” and L‘L;;\’> as a postﬁx for “_}:J,;—”_

27 Finally, Arabic is highly flexible in word order, whereas English imposes a large

number of constraints on word order.

Not all of the above characteristics affect the Arabic Pascal language and its
environment. The features that deal with the formation of words, the structure of
sentences, or the different shapes of characters are not directly related to this work.
However, the following issues are affected by the characteristics of the Arabic language.

e The Arabic Pascal environment writes text from right to left. For numbers, we have
adopted the MS-Windows approach. This approach lets the cursor move to the left
while the newly entered digit appears to the right of the previous digits. In other words,
the user starts by typing the most significant digit. This approach may cause some
editing problems (deleting, copying, selecting, etc.) because the cursor position does
not match with the insertion position. However, this approach simulates the way of
writing by the majority of Arabs.

e For the sake of simplicity and flexibility, the Arabic Pascal does not accept the

diacritical signs. Most Arabs easily can read a text without the need for diacritical signs.

e Even though the standard Pascal does not allow the underscore character as part of
identifiers as well as keywords, the Arabic Pascal does. The reason is that the Arabic is
a script language (links the letter of a single word). Unlike English, it is hard to read the
concatenation of two words without a space or an underscore. For example, the

translation of “GOTO” can be either “ 13" or “J} —»3”. The former translation is hard

to read. The underscore character is inserted between concatenated words to increase
the readability.
e The Arabic Pascal applies the principle of abbreviation whenever applicable. For

example, the translation of “EOF” is “; \¢” which stands for “cil. u.”. Another

example is “u=" as a translation for “COS”.

(3% (12824

e The letter “” is sometimes used instead of “7” or “/”. To give some kind of flexibility to

the Arabic Pascal, the letter “” can be used instead of “ or *” for keywords only, not

1%

user identifiers. The same criterion is applied for “2” and “s” at the end of keyword, and

.
¢’ and “<” also at the end of keyword . Therefore, “i3{” and “i5”, “is ,02” and “as yu2”,

“u~" and “ ", etc. are the same keywords.

" In fact, the letters are not interchangeable from the orthagraphic point of view, but some Arabs use

them as interchangeable letters. The Arabic Pascal tolerates this common mistake.

10

CHAPTER 3
RELATED WORK

Software developed for English and other European languages may not be
convenient for Arab users because of the nature of the language and its writing system.
For example, Arabic editing environments are different from European ones. These
differences exist not only in character shapes and direction of writing, but also in language
structure as mentioned in Chapter 2.

The development in computer Arabization may also serve many other languages
that are derived from the Arabic language or at least use a similar character set, such as,
Farsi, Urdu, Malay. Therefore, almost all applications that are developed for the Arabic
language can be adapted easily to these languages.

Arabized computers become essential in the Arab world with the widespread use
of computers in education, business, and other aspects of life. However, the use of
computers in many Arab countries was, and may still be, in its infancy compared with the
West. A mission report published by the United Nations Development Program Regional
Bureau for Arab Statesin 1984 stated that all areas of computer applications are missing
except to some degree in management business applications [UN84]. This mission
described that there is a very little utilization of computers in health, education, biology,
agriculture, physics, geology, mining, construction, project management, and engineering

design.

11

Mahjoub and Mandorah [MMB87] explained the main reasons for the slow
development of computer sciences in the Arab world as:
1. weak educational programs in the universities,
2. absence of national programs to introduce technology to the public,
3. lack of good Arabic software,
4. lack of Arabic text books and references,
5. high cost of Arabic computer systems, and
6. weak research activities in computer science with lack of communication and
coordination among the Arab researchers.

Arabization is the process of making computers accessible to the Arab users by
utilizing only the Arabic language. Since the Arabic language has several unique
characteristics, which differ from the English or Latin languages, the Arabization of
computers is significantly different from English or Latin modes. There are many aspects
or avenues where the Arabization of computers took place. Among these aspects are
standardization [MM87, Smi%90, Bak87], information systems [Mou87, BKN86, AG90,
Mor90, Tek90, Ali90,Alk91, Abu92, Alk92, Ham94b], pattern recognition [Ami88, ES89,
Gor90, AU92, Aly89, Jam91, AHD94, Mah94, AMG94, EG88, GUA92, NA9%4, AFC9%4,
AG9S], artificial intelligence and expert systems [NEE88, EEN89, AH88, 1br91, Als92,
AA93, KH93, ELS93, QHAS93, MM94], Arabic morphological analysis [Cha87, EH89,
RS93, FF90, Fed92, FF93, AMAO4a, AAO1, AA%4, Ali87, Ali88, Ali89, Ali90, NH94],
input and output facilities [Cas85, Kha86, Del86, TNS86, Bec87, Smi90, Alk90, KC91],
word processing (including spelling and grammar checking) [AA88b, Mic93, ELS93,
Ham94a], operating systems [Kal85, MMB87, Tay87, AA88a, Sau86, Ela90, Tab90,
Mic92, Tab93], transliteration and translation [IDF89, AFC94, NM91, MMO95, MT95],

Islamic sciences [AM95, Ali87, AK88, MA94, Abd90, Ahm94, Hil90, Ala90, Alm90,

12

Man90, MA94, Far90, Ald94], programming languages [MM87, Alkh, Najla, Bas95,
AYE90, DM86, Ela86, CS92, CS95], and other fields in computer science [Del85,
ZRN87, Ale%4, EB§O, AM94, Gne94, MAS8S, HEB6, Bak86, Ela87 Far89, AMS87,
Mac90, Eld87, FE9S]. The following three sections briefly discuss the status and the
advancements in the most relevant issues to my work, namely: standardization, input and
output facilities, and programming languages. The fourth section reviews the history of
Pascal compilers. Before discussing these issues, we should point out that the accessibility
of information and literature in the Arabization subject is difficult due to the lack of
information exchange among the Arab countries and the lack of electronic (automated)
information availability. For example, if a conference proceeding or a paper is published in
one of the Arab countries, it is difficult to know about it or to access it unless it is
distributed to other countries (which is not the case for many reasons, such as political

situations).
3.1 STANDARDIZATION

There are at least three aspects in the Arabized computers that need
standardization: character coding, keyboard layout, and Arabic computer terms.
Unfortunately, there is not enough progress in the process of standardization in both
character coding and computer terms. The absence of an agreed upon set of standards for
character coding has a very negative impact on the process of Arabization. The keyboard
has, to some extent, a standard layout inherited from the Arabic typewriters. The
differences in the keyboard layout exist on the auxiliary marks and the special characters.

The absence of a responsible organization in the Arab world to take care of
standardization led to many Arabic character coding systems. The first attempt to

standardize the Arabic characters coding was done by Saudi Arabian Standards

13

Organization (SASO) in 1980 by calling for an international symposium [MMS87].
However, the weak interaction between the researchers and manufacturers resulted in the
hasty adoption of standards. The various features of the Arabic language coupled with the
absence of an agreed set of standards for character coding and keyboard layout have led to
several approaches in Arabization, some examples of these approaches can be found in
[ASM82, Mah85, Man85, Dav86, Sau86, Mic88, Almua].

As yet, there is no standard code (ASCII) for Arabic characters. For example,
NCR has almost six different character maps for its Arabic terminals and printers; and
IBM has at least 12, seven of them at least for the IBM PC [c¢f. Smi90]. Arabized MS
Windows has different character set from the Arabized MS DOS. In other words, an
Arabic text that is written using ‘EDIT’ under MS DOS cannot be viewed with
‘NOTEPAD’ under MS Windows. Thislled to inconsistency in every software that needs
to support both Arabic DOS and Arabic Windows.

Since the shape of the characteris deterﬁlined by the character itself and adjacent
characters, there are two approaches for character coding:
1. Each character has a single code regardless of its shape.
2. Each character shape has its own code. In this case a single character may have up to
four different codes. The total number of codes is over ninety.
Most computer systems use the first approach to avoid the large number of codings. The
appropriate shape can be determined by a software depending on the contextual analysis.

On the other hand, the standardization of computer terms in Arabic language is not
better than the standardization of character coding. An attempt to put some rules and
boundaries for the Arabization of terms was conducted by Bakry [Bak87]. The failure in
Arabized computer terms start even in the translation of the word “computer” itself. There

are at least three translations: “c>", “,.1>", and “ 5 ,..s”. The last translation is actually

14

writing the word “computer” as is in Arabic (transliteration). The same criterion is applied

for many other terms.
3.2 INPUT AND OUTPUT FACILITIES

An Arabic text must confront three main classes of problems when displayed on
screen or printed by a printer [Del86, Bec87, Smi90]. The first class is caused by the
Arabic cursive nature. The computer must be able to handle a sequence of isolated typed
characters and display or print them in a smooth flow Arabic text. This process is called
contextual formatting. Automatic text concatenation requires an algorithm that accepts
Arabic characters and then alters or selects the proper shapes of the entered characters
according to their positions within a word; then displays the text on screen in a
syntactically correct manner [KC91]. Since there are over 90 shapes, the correct shape
within the a word needs a complex analysis [KC91]. Not only do we face this huge
number of shapes, but also some shapes require double width, for example ¢’ inits

isolated or ending forms.
To illustrate the dependency of the character shape on the position of the character
within the word, let us take the character ‘»” (Ha). It has four different shapes:
1. Isolated. For example ‘s .;’.
2. At the beginning. For example ‘j»’.

3. In the middle. For Example © 4~”.
4. At the end. For example ‘« o”.

Moreover, Arabic characters in a word are either connectable or not connectable
to its successor according to the characteristics of the character. The process of
connecting or disconnecting a chafacter requires a complex analysis [KC91]. The Arabic

version of MS-Windows provides all the required analyses to display the Arabic text.

15

The second class of problems comes when numerals are embedded in the text.
Arabic or Indian numerals can be written starting from right to left or left to right. Also
they can be read stafting from right or starting from left [Del86]. Currently, there is no
standard for implementing numerals in Arabic computer systems. In some systems, when
entering numerals, the cursor stays in one place and the numerals stream off to the left,
since numerals run left to right [Smi90].

The third class of problems in displaying text arises when a mixture of Arabic and a
European language has to be used. The computer must be able to intermix right-to-left
and left-to-right characters and place each character in its proper relative position in the
text line. This process is called directional layout. To illustrate the problem of directional
layout, let us take an example of an early attempt to mix English with Arabic text in the
NCR system [Cas85]. In that system, the English text needs to be reversed. Therefore, the
name “AbdulMalik Al-Salman” needs to be keyed into an Arabic document as “namlaS-1A
kilaMludbA”. Of course, newer systems introduced easier methods for the mixed
documents. Examples of bilingual editors on the IBM PC aré the Arabic Word Perfect and
the Arabic MS Word [Mic93].

Printing the Arabic script needs more effort than displaying the text on the
computer screen ‘because it involves some hardware problems such as printer head
movement. Printing Arabic scripts also needs a complex analysis, similar to the screen
display. Furthermore, printing an Arabic text depends on the type of the printer; the dot
matrix printer needs more management than laser printer [kha86]. At the beginning of the
last decade, Arabic printers were limited and they also lacked standardization. This fact led
to the limitation of using computers in the Arab world. In conclusion, Arabic printers
should have the ability to print from right to left, to print also from left to right for

bilingual texts, and to perform contextual analysis.

16

3.3 ARABIC PROGRAMMING LANGUAGES

Experimentation with Arabic programming language environments has been
limited and the work on Arabized programming language has been relatively sparse. Theré
are two definitions for Arabization of programming languages [MM87]:

1. Programming language Arabization is to be able to perform input/output in Arabic. This
approach is very easy to achieve when the computer screen and printer can deal with
Arabic characters. However, it does not enhance the process of computer Arabization.

2. Programming language Arabization is to write programs in Arabic language which ,of
course, include the I/O. This approach is followed in this dissertation.

Most of the early programming languages reported in the literature are either a
translation of the BASIC programming language or similar in nature to BASIC language.
Al-Khawarizmi is a BASIC-iike programming langﬁage that runs under the CP/M
operating system [Alkh]. It has control statements, but not iteration statements. BASIC

= (SAKHR) is a translation of the BASIC programming language [Bas95]. It runs
under .- (SAKHR) computers. A third Arabic programming language is Najla [Najla]. It

is one of the best translations of BASIC with some enhancements. This programming
language is running under AlFarabi computers. One of the problems of thé previous
Arabic programming languages is they are built for non-popular machines. The fourth
Arabic programming language is ARabic Baslc (ARBI) [AYE90]. It is an Arabic
programming language that runs under MS DOS. It is compatible with GWBASIC. In
ARBI, the Latin characters may appear only in the I/O statements.

Dehlawi and Mandorah listed several programming languages that are similar in

nature to Latin BASIC or assembly language [DM86]. The first language is called “ 2"

17

(GAREB). The name is the abbreviation of the “wi-l-llz,s 12, (Arabic Computer

Programming Language). It is a subset of the BASIC language; and it was built in

- AlMousel University, Iraq [DM86]. The second language is called “ei)+ (Al-

Kawarizmi). It is different from the one mentioned before. This language was designed to
be used by children under 15 years old. It is also a subset of the BASIC language. The
third one is an Arabic assembly language. It was designed for a hypothetical machine just
to simplify the concept of assembly language to Arab students.

Another programming language that is also related to Arabic was developed by
Suleiman and Citrin [SC92, SC95]. The objective of that project is to build a visual
programming language that can support any language includiﬁg Arabic. That project
supports the thesis that visual languages are well suited for programmers whose native
language is not English. A visual programming language presents most of the syntactic
and semantic information in a “BLOX-like” notation (regularized version of flowcharts)
[SC95]. The idea of visual programming saves some effort in writing the source code, but
it has some drawbacks. It is neither suitable for large programs nor for sophisticated ones
that require dealing with records and pointers. Moreover, writing the source code usually
takes only a short time compared with the process of debugging the program to make it
running. In that project, there was no mention of how the debugging takes place. Finally,
it is hard for a person to switch from the visual programming environment to the textual
environment when he or she needs to learn more in computer science. We, however,
follow the textual environment approach believing that it is more appropriate for the
general purpose programming languages.

Finally, a theoretical specification for an Arabic programming language was
introduced by El-Affendi [Ela86]. Its structure was translated from Modula, Pascal, and

some other languages. It supports five basic types: real, integer, character, boolean, and

18

pointer. Moreover, it has four data structures: array, record, file, and set. There are three
control statements: if ... then, repeat ... until, and case statement. Some issues are not
defined in that specification. Among these are input/output handling, reserved words, for
statement, while statement, mathematical operators, and built-in functions and procedures.

However, it would be a good attempt if it were implemented.
3.4 PASCAL COMPILERS

It is unknown when exactly the first compiler was constructed as the first
programming language is undetermined [Sam72]. In general, ‘t.he concept of high level
programming languages started in the early 1950’s. Among the oldest programming
languages (with their compilers) are FORTRAN, COBOL, and ALGOL 60. Throughout
the 1950°s and 1960’s, compilers‘ were considered very difficult programs to construct.
For instance, the first complete FORTRAN compiler took about 18 staff-years to
construct [ASU86].

The first known Pascal compiler was developed in 1968 [Wir71]. That compiler
was written in FORTRAN. The second compiler was written in Pascal itself in late 1969.
After being written, the compiler was then translated by hand into CDC 6000 assembly
language and into ICL1900 assembly language [WQ72].The first portable version of
Pascal compiler, developed in 1975, is the Pascal- P-compiler [Ber78, PD82]. Rather than
producing code for any pafticular machine, it produces an intermediate code, known as P-
code, for a hypothetical stack machine. The P-compiler itself was written in Pascal and
compiles a subset of the Standard Pascal. A practical implementation of the P4 Pascal

compiler was designed for the Intel 8085A microcomputer [DP80].

19

The principles and techniques for building compilers have been discussed deeply
and widely in many sources [ASU86, Bac79, CJ88, DP80, Eld94, Gri71, Hed75, Mak91,
PD82, PP92, Pys88, Wir71, WQ72, Hol90, Hen90]. On the other hand, there are many
commercially available compilers for Pascal (usually extended version of Pascal) as well as
other programming languages. An example of a Pascal language and compiler is Turbo

Pascal [BTP89].

20

CHAPTER 4

THE APE DESIGN AND IMPLEMENTATION

The APE [Als96] is designed to be an environment analogous to the programming
environments in the PCs. To the best of my knowledge, the APE is the first Arabic
programming language environrﬁent under MS-Windows. Editing, compilation, and
execution environments are all under} MS-Windows. Editing and compilation windows
have been implemented using Visual Basic [Ama94b]. The execution window has been
implemented using C language and low-level MS-Windows system calls. The execution
window has to be controlled only by the user program, not by the user. In other words,
the user should be prevented from altering the window’s output. Moreover, once the input
is entered, it cannot be changed.

The APE is a multiple-document environment that runs under the Arabic version
of MS-Windows. Therefore, the programmer can open more than one file at the same
time, but only one file is active at a time. The APE has only one Toolbar and one
Statusbar, and all commands are routed to the active file. The highlighted window is the
window that has the focus (active window). Figure 4.1 illustrates the main user-windows
interactions.

This chapter has five sections. Section 4.1 explains the design of the main window.

Section 4.2 shows the various dialog boxes in the APE. Section 4.3 discusses the

21

compilation and execution process. Section 4.4 explains the main APE algorithms. The

last section shows some of the APE help windows.

Help
| (Main)

Execute 2]
Execution
Top Window e Window
or Dialog Box } pismiss) Dismiss

Compilation
Windo

Legend . ' Dismiss

Independent Window m I'Iclp for
APE Sub-Window D Arabic Pascal
Event ——

Figure 4.1 Main User-Windows Interactions

4.1 MAIN WINDOW

When the user runs the APE, the main window (Figure 4.2) will show up on the
screen. The window is maximized with a single, empty file window. The following

subsections explain the various areas in that window.

4.1.1 The software/file title

This area has the software title “ . J<” (Arabic Pascal), followed by the file
name. When a user runs the software, the file name will be “\:0 2 o,4” (Untitled :1). Since

the text window is in its maximized mode, the software title and the file name come in the
same area. If the text window is not in its maximized mode, the file name will appear only

on top of the text window, which is separate from the software title. As provided by the

TR
&
—

MS-Windows, the “US” icon converts the writing mode to English when clicked. The

22

icon converts the writing mode to Arabic. The default mode in the APE is Arabic. If all

files are closed, the main window (called MDI Window) will look like Figure 4.3.

Main menu Tool bar

software/file Title

1=

T
EE R =]

s e
1 we N moe

Text Editor (Window) Status bar

Figure 4.2 A snapshot of the Main Window

Figure 4.3 The main window after closing all files (MDI Window)

4.1.2 Main Menu

Figure 4.4 (a-f) shows the drop-down submenus in the main window that has at

least one file. The following is a translation of these menus (top to bottom). The help

menu does not have submenu.

(a) File (New, Open, Close, Save, Save As, Print, Exit, List of the most recently

used files).

(b) Edit (Undo, Cut, Copy, Paste, Select All, Date and Time).
(¢) Find (Find Only, Find and Replace, GOTO line, GOTO end).
(d) Compilation (Compile, Run, End of Compilation). Section 4.3 gives more

explanation about the compilation process.

(e) Options (Toolbar, Statusbar, Font reduction, Font enlargement). The toolbar and
statusbar items are used to make the toolbar and the statusbar, respectively,
visible or not visible.

(f) Window (Cascade, Tile, Arrange-icons, List of opened files).

(g) Help. (see Section 4.5).
Hcm-o =) J

F12 - 3

F2 Inl; Ctri+X ol

F3 gl Cirl+C G

crlp delde Ctrl+V !
culia Tar Del i Cirl+R Jaial
CAUTILITIEVARAB_ED2\a.ap ng Al -
CATC\COMPILE\te st.ap ot -"Sl Ctil+G ow o] wdl
CATC\SORT.AP o oll g F sl S _
CATC\sort.ap Ctri+E QLQ:JI b

(a) (b) (c)

5l 50
mﬂ b
Slapleall da gl Violse s 1

LJl juias CATCA\COMPILER\TEST.AP Y
Ladl s Yiolse anY vV
(e) ®

Figure 4.4 Drop-down Submenus

If the main window has no opened files (as shown in Figure 4.3), the main menu
consists of only three submenus: file, options, and help. The file submenu has only new,
open, exit, and the list of the most recently used files. The options submenu has toolbar

and statusbar.

24

Due to the absence of character set coding standardization, the APE requires the
file names to be in English. If the file name is written in Arabic, it may appear as a junk of
symbols under the MS-DOS. Also, due to the inconsistency in the Arabic keyboard layout
and the absence of the translation of the function keys, the APE uses English short-cut
keys, such as F3 and Ctrl+P.

It should be pointed out that all dialog boxes are provided in Arabic including the
command buttons. Moreover, all messages are displayed in Arabic. Figure 4.5 (a) shows
the Find Dialog Box, and Figure 4.5 (b) shows an example of a message window given to
the user when trying to leave a document without saving. The details of the dialog boxes
are explained in Section 4.2. The list of possible messages the user can get from the APE
is explained in Appendix A.

ks 8 (Vi Ggs] ol gd aid
Gl il L 3, 5 b

(a) A Find Dialog Box (b) Saving file message

Figure 4.5 Examples of a Dialog Box and a message window

4.1.3 Tool bar

It has nine icons. The first three (from the right) are for file operations: open a new
file, open an old file, and save the current file. The next three are for editing operations:
cut, copy, and paste a selected text. The seventh icon is for printing. The user can print the
source program, the compilation output, and the results of running the program. The print
command can only print a displayed window. In other words, if a window (source code,
compilation output, or result) has been dismissed by the user, the print command cannot

print the information that was in that window. The eighth icon is used for compiling

25

command. The last icon (not visible in Figure 4.2) is used for executing a successfully
compiled program. The left side of this bar is used for displaying a brief explanation of the

tool bar icons and status bar items when the mouse passes over them.

4.1.4 Text Editor

When a new file is displayed on the screen, the cursor will be placed in the
rightmost side of the first line. The default mode of writing is Arabic. Since this editor is
designed for programming purposes, the APE allows only one font style “Simplified
Arabic Fixed.” This font has been chosen because all characters have the same width in it,
which is recommended in writing programs. While writing, the cursor will move to the
left. When the text cursor reaches the left edge of the enclosing window, the cursor stays
at the left edge, and scrolls the previous text to the right to accommodate the newly typed
characters. Similarly, reaching the blottom line in the window causes an automatic upward
scrolling to accommodate the new text. The horizontal scroll bar is used to move the
contents of the text window horizontally through the editing area. Note that the indicator
of the horizontal scroll bar is placed in the right-most of the bar. Similarly, the vertical
scroll bar (in the left side of the editing area) is used to move the contents of the text
window vertically through the editing area. The vertical scroll bar is placed to the left hand
side to suit the Arabic language nature. Pressing ENTER causes the cursbr to jump to the
beginning of the next line (rightmost side). It should be pointed out that some keyboard
keys work in reverse manner in the Arabic mode. These keys are
a) Backspace key deletes the previous character (the character in the right of the cursor),
b) Home key returns the cursor to the rightmost character of the current line,
¢) End key sends the cursor to the last character in the Arabic text (the lower left
character), and

d) Tab key will cause the cursor to jump eight spaces to the left.

26

The functions of the other keys remain the same as the English mode.

To edit (cut, copy, etc.) a part of the file, that part has to be selected (highlighted).
The selection in the Arabic text should be compatible with the Arabic direction of writing.
For example, if the user starts the selection in the middle of a line and drags-down, the
left-hand side of the first line should be selected (not the right-hand side as the case in

English text).

4.1.5 Status bar
It consists of five items. They are fr(;m right to left as follows:

a) Current line number and column number. It indicates the current cursor position. -
Double clicking on this item causes the GOTO line Dialog Box to appear.

b) Number of lines. It shows the last line number. Double clicking on this item causes the
cursor to jump to the end of the file.

¢) Modification indicator. This item indicates if the file has been altered or not. If the file
is new or not modified since its load time, this item is blank. Whenever a printable
character is pressed, this item reflects this change by indicating that the file has been

changed “duw ¢7.

d) Insert/Overwrite mode. The default of the Text Editor is insert mode. When the user
presses Ins key, the mode is flipped.

Time indicator. It displays the current system time in Arabic.

4.2 APE DIALOG BOXES

The APE has five dialog boxes: File, Find, Replace, GoTo line, and Print. All these
dialog boxes have to be dismissed before performing any action outside them. Moreover,

all these dialog boxes are movable to any place within the Main Window. The default

27

language for all these dialog boxes is Arabic except the File dialog box where the default
language is English because the file names should be in English to preserve the

compatibility between MS-DOS and MS-Windows.

4.2.1 File Dialog Box
This dialog box is activated when the user wants to perform one of these

functions: open, save, or save as. The general format of the File dialog box is shown in
Figure 4.6. This figure shows the File dialog box in the case of opening a file. The same
dialog box, with different title, is activated when the user wants to save a new file or
rename (save as) an old file. Therefore, the title of the dialog box can be:

e Open File (bl x3),

e Save File(ul ki), or

o Save As (b ki),

- iyl Hi :hﬂ\
| " apl | c:\utilitie\arab_ed2
a_ap * = c:A\
aa.ap (= utilitie
matrix.ap #= arab_ed2
p03.ap
pll.ap

&0 (e lidell desls 1oalys Y

| JSwls (~.ap) [#] [=le: iMs-DOS_6] [#]

Figure 4.6 File Dialog Box (With Open File Title)
The File dialog box uses the commonly used format for opening and saving files.

There are five display boxes and two command buttons.

1. File list box (=l aui). At the design phase, the APE sets the file pattern to be the list

of all files that has the extension of ap (Arabic Pascal) within the current directory. The

user can choose the needed file by clicking the mouse or using the arrow keys. Double

28

clicking a file name is equivalent to selecting a file and pressing ENTER or clicking OK

(55) button.
2. List files of type (¢ 5 ¢» <\lli 155). This box controls the file pattern. It has a direct effect

on the File list box. The default file pattern is *.ap. The user has the choice to change it to
the pattern *.* (list all files within the current directory).

3. Directory box (¥-41). This box highlights the current directory during the opening of the

File dialog box. The user can alter the current directory by clicking the needed directory or
using the arrow keys. Changing the current directory automatically changes the File list
box content.

4. Drive list box (_-',5Y). It displays the available drives in the computer. Changing the

current drive causes a change in both directory box and file list box.

5. File name box. This box is editable by the user. The user can write the file name to be
opened or saved. The APE offers the user the option of explicitly typing a drive, path, file
name, and file pattern. When a file name is typed, it is selected in the File list box. If a
pattern is typed, the directory and drive list boxes are updated. Also, the File list box
displays the file names which satisfy the pattern.

6. OK (s's) button. It is the default command button (i.e., pressing ENTER is equivalent
to clicking this button). Clicking this button causes the selected or typed file to be opened

or saved.

7. Cancel (+w) buiton. Cancel the action of opening or saving a file. It returns the APE to

the status before calling the File dialog box.

4.2.2 Find Dialog Box

This dialog box is activated when the user wants to find a particular word or set of

words within tﬁe text window. The format of this dialog box is shown in Figure 4.5 (a).

29

There are two display boxes and two command buttons.

1. Search string box. In this box, the user can type the desired text string. The cursor is
placed in the right side of the box for the Arabic text. If the user wants to type an English
text, the ‘US’ button has to be clicked or Alt + left-Shift has to be pressed. If the user
selects a specified string from the text window, it will appear automatically in the search
string box.

2. Direction box. This box specifies the search direction with respect to the current cursor
position, - either up or down. The default direction is down. The search will continue in the
same direction until the end of the file is reached (in case of down direction) or the
beginning of it is reached (in case of up direction).

3. Search (e—=)) button. It is the default command button (i.e., pressing ENTER is

equivalent to clicking this button). Clicking this button causes the APE to start searching
for the typed string. If the search-string is found in the text window, it will be highlighted.
Clicking this button again causes the APE to search for the second occurrence of that
string, and so on. If the search-string is not found in the direction specified, a message is
displayed to the user.

4. Cancel (sw)) button. Cancel the search process. The search dialog box will not terminate
until this button is clicked or the left-upper icon is clicked.
4.2.3 Replace Dialog Box

This dialog box is activated when the user wants to find and replace a particular

word or set of words within the text window. The format of this dialog box is shown in

Figure 4.7.

30

spe O Mg-yl-l

Figure 4.7 Find and Replace Dialog Box

There are three display boxes and three command buttons.

1. Search string box. The function of this box is similar to the function of the search string
box in the Find dialog box.

2. Replace string box. The user may type the text that is going to replace the string in the
search string box. If this box is empty that means the user wants to delete the text in the
search string box. As in the search string box, the default language is Arabic.

3. Direction box. The function of this box is similar to the function of the direction box in
the Find dialog box.

4. Search (c—+) button. The function of this box is similar to the function of the search

button in the Find dialog box.

5. Replace (J+z=-1) button. This button is inactive (does not respond) until the first

occurrence of the search-string is found. When the user clicks this button, the current
highlighted text is replaced with the string in the replace string box.

6. Cancel (sw+) button. The function of this box is similar to the function of the cancel

button in the Find dialog box.

4.2.4 GoTo Line Dialog Box

This dialog box is activated when the user wants to go to a specific line in the text

window. The format of this dialog box is shown in Figure 4.8.

31

Figure 4.8 GoTo Dialog Box

There are one text box and two command buttons.

1. Line number box. If the user writes a number and presses ENTER (or clicks OK
button), the cursor will jump to the beginning of that line number. If the number is invalid
(negative number, no number is entered, or a non numeric character), nothing will be
performed. If the number is larger than the last line in the text window, the cursor will
jump to the last line in the document. Jumping to the first line in the text window can also
be accomplished by pressing Ctrl + Home keys.

2. OK (s,-) button. It is the default command button. Clicking this button causes the

cursor to jump to the specified line.

3. Cancel (s-) button. It returns the APE to the status before calling the GoTo dialog

box.

4.2.5 Print Dialog Box
It is activated when the user wants to print the current source code, compilation

output, or the execution results. The format of this dialog box is shown in Figure 4.9.

bl ol [X
daa il @il del [

Fll el (|

Figure 4.9 Print Dialog Box

32

There are three check boxes and two command buttons.

1. Program check box. The default of this box is checked. When this box is checked, the
APE will print the current user program (text window content). The APE prints at the
beginning of each page the file name. Each page will héve at most 50 lines followed by the
page number.

2. Compilation-output check box. The default of this box is not checked. When this box is
checked, the APE will print the current compilation window content (explained in the

following section). The APE prints at the beginning of each page the following phrase i~
<Gl o> 225 (the result of compiling <file name>). Each page will have at most 50 lines

followed by the page number. If the compilation window is invisible, the printer prints
nothing.

3. Result check box. The default of this box is not checked. When this box is checked, the
APE will print the current execution windowvcontent (explained in the following section).

The APE prints at the beginning of the first page the following phrase =) (the results).

If the execution window is invisible, the printer prints nothing.

4. OK (ss15) button. It is the default command button. Clicking this button causes the

attached printer, if any, to start printing the checked boxes.

5. Cancel (s\w)) button. It returns the APE to the status before calling the Print dialog box.

4.3 COMPILATION AND EXECUTION PROCESS

When a programmer compiles a program, the APE window splits into two

windows, the program window and the compilation window (display window). The

33

compilation window contains the error messages, if any, and some other helpful
information such as time of compilation, number of lines compiled. During the compilation
process, a yellow traffic light icon turns on to indicate that the compilation process is in
progress. If there is no error, the green light will be on. In case of errors, the red light will
be on. There is a direct connection between each error message and its corresponding line
in the source code that produces the error. Figure 4.10 depicts the APE windows after an
unsuccessful compilation. The highlighted lines are the statement in the source code that
causes the error and the corresponding errof message. Note that the text color of the
compilation window is red indicating that some errors has been encountered. Note also
that the traffic light of the execution icon is turned red. The APE also supports interactive
modification of the source code. In other words, the programmer can switch from the
compilation window to the source code window easily without loosing any of thése
windows. Switching from é window to another can be accomplished by pressing the tab
key. Figure 4.11 shows the APE windows after a successful compilation. Note that both
the text color of the compilation window and the execution traffic icon are in green.

When a program is error-free, it becomes ready for execution. the APE creates a
new window for execution when the user execufes a program. The default language in the
execution window is Arabic. If a run-time error occurs, an error message will be displayed
and the execution will be aborted. As long as the source code is not altered, the
programmer can execute the program as many times as necessary without the need for
recompilation. Figuré 4.12 shows the execution window after the end of an execution
process. The program shown partially in this figure creates a linked list and then displays
its elements as first-in last-out. Pressing F7 (End of Compilation) dismisses the

compilation and execution windows and returns the program window to its original size.

34

The execution window and the Print dialog box are designed by the APE to be the
top-most windows in the system. Therefore, both windows will be on top of all other
windows even if the user switches to another software. The title of the execution window
is the name of the executable file. When the execution terminates, the window will be
locked (the window content cannot be altered) and its title will indicate the termination of
the execution.

If a user program has neither a read from the standard input nor a write to the
standard output, the execution window will not show up. Also if there is read from the
standard input and the output is to be sent to a file, the execution window has to be
dismissed before the output file can be opened. When the execution window is dismissed,

the buffered output is transferred to the output file.

[CAUTILITIEVARAB. CDZ\a1ACk AF’] = wotd JSuly

%‘ﬁ; .().._.f.)n‘\)_._n
7 Jua ie. W

% Jas [+ == G " waie) L._sLL.
i § ay
7 F(made) 3y as

;ﬁ% ![J..._k.).‘l)_._!\

)u-.-.-l‘-—.).ul,.o

Py Le s
L e

s i b

CAUTILITIEVURAE _EDNSTACK AP LT
1110) a8 1Y AW et LN
L ETRAE & RSP TP £

7 W)
A U A grzi///i_vﬂulfﬂw /’ fi’j.!(aw ‘J‘.-‘J‘ff ;/’/f .

75y 7 b

Figure 4.10 A snapshot of the compilation window (unsuccessful compilation)

35

ad asnat, Ads 1.:._.\ y
O L A8 e L 5

P
fadyr = 55kl &

S = b
fpeea D
te plals :..::

fAy g s

COTILITEWRAE_EDZ
111V gy Lla

1 p—e L3 33 sl 5 oae

e Lasyy

Figure 4.11 A snapshot of the compilation window (successful compilation)

= [C:AUTILITIE\ARAB_ED2YSTACK.AP] - ovstl JUSuly

53¢ Lo 3-"-"'- <l 4-?-1144 Loy 2 -IJ-o
| v

(BLawd) L8gime 4 aslS ,J s ‘Lg..._,:. O3 ,...,_._n p;.._....L, Lailh o s)
F-ﬁl_u.l_‘._l’.m..n c_nll_l)_p

= £

5§ (485U CAUTILITIEVARAB_ED2ASTACK.EXE el i

| 1: ,HJ Ja s S = ady
2: pa, ol
| 3: e, Jaol
B pd, ol
{ 5: r"J Ja ol
| 6: ,asJ Ja sl
| 0: &, Jaol

Figure 4.12 The APE including the execution window

36

4.4 APE ALGORITHMS

The APE has been developed using Visugl Basic which is an event-driven
programming language. Figure 4.13 illustrates the general software architecture of the
APE. A dialog box in the figure is a special window that prompts the user to supply
information needed by the software to continue with the application. A handler is a piece
of code that performs some actions in response to some events. As shown in the figure,
there are mainly ten handlers that control the APE functions. The following subsections
describe the algorithms and actions of these handlers. The last subsection (4.4.11)

sketches the algorithm for controlling the execution window

Multiple-Document Interface
MDI) Window

Status
VDI Handl Program
- andler Compilation Output
Windows Options Handler Print Handler Execution Qutput
Icons E e
Message Handler e AP E s Initialize Handler
T i @
l Compilation Handler l File Handler
/ Text Handler*
New
[Execute J I Compile I I Search Handler ’ l Editing Handler l — gPen
— Save
' i Text [Save As
Indirect DB Window, Close
Control X X M o Cut v
! Compilation Find Copy
\ Window | - Replace
Replace GoTo End Paste Font File DBx
DBx X Select All Si
GoTo Line . 1ze
K L Time/Date
Execution GoTo
Window
Legend . s
:] Function O Object * All handlers interact with the Text Handler

DBx = Dialog Box

Figure 4.13 Software Architecture of the APE

4.4.1 MDI handler
The MDI handler is the handler that is responsible for all actions to be taken in

response to the main window events. The MDI handler also handles the events for all the

37

objects included in the MDI window such as toolbar icons, statusbar items, and the menu

items that are available when there is no file opened (as in Figure 4.3). Table 4.1 describes

the actions related to the MDI window.

Table 4.1 Actions related to the MDI Window

Event

Object Action

MDI window load show the MDI window, call Initialize
handler, get the most-recently-used-files,
and open a new text window.

MDI window unload close/save all opened files (text windows)

_ and quit the Help Window, if any.

New-icon and menu-new click call File new (see File handler)

all icons in the toolbar and | move over | display a help message

all items in status bar

open-icon and menu-open | click call File open (see File handler)

save-icon click call Save file (see File handler)

cut-icon click call Cut procedure (see Editing handler)

copy-icon click call Copy procedure (see Editing handler)

paste-icon click call Paste procedure (see Editing handler)

print-icon click show the Print dialog box

compile-icon click call Compile procedure (see Compilation
handler)

run-icon (red or yellow lights) | click display a correction message

run-icon (green) click call Execute procedure (see Compilation
handler)

menu-exit click perform Window-Close function (system

command)

status-position

double-click

show the GoTo dialog box

status-size

double-click

move the cursor to the end of the text
window

menu-option-toolbar click flip the visibility of the toolbar

menu-option-statusbar click flip the visibility of the statusbar

menu-recent-files click call opening-file (see File handler)

menu-help click open the main software help window
(contains information about the APE and
the Arabic Pascal)

- F1 key display the APE help window

toolbar resize call Options handler to adjust the icons
according to the new dimensions

statusbar resize call Options handler to adjust the items

according to the new dimensions

38

4.4.2 Initialize Handler
Most of the initializations to dialog boxes take place during the design phase. As it
is known in Visual Basic [Ama94b], any window or dialog box can be initialized to
specific size, place, and attributes during a so-called ‘design mode’. Therefore, the APE
initial windows are designed by choosing the appropriate properties. However, the
initialize handler performs the necessary initializations for non-dialog box related issues.
These issues are:
Defining the global constants
Declaring the MS-Windows library functions and procedures that are used
by the APE
Converting the keyboard to the Arabic mode
Setting the following: |
the working directory to the directory containing the APE
insert/overwrite mode fto insertion
cursor position to line one column one (right side)

Software title to ‘.~ J.” (Arabic Pascal)

font size to 12

4.4.3 File Handler
The File handler deals with all activities related to files including the File dialog
box. The procedures that handle the actual file opening, saving, and checking are as
| follows:

1. Open-file procedure
show the File dialog box

get the file name from the File dialog box

39

unload File dialog box
if the file exists call opening-file procedure (see next)
update the most-recently-used-files to include this file
2. Opening-file procedure
open the file for reading and writing and load it in a text window
if the file size is over 32k, display an error message to the user
make all icons visible to the user
set the cursor in the upper-right corner
set the line and column numbers to 1
calculate the file length (in terms of lines) and display it in the status bar
3. New-file procedure
show a text window ftitled as “untitled : index”
make all icons visible to the user
set the line and column number to 1
4. Save-file procedure
if the file has no name (untitled) show the File dialog box and get a file
name from the user
if file name already exists, display a warnning message to the user
write the text window content in the file
update the most-recently-used-files to include this file name

The actions related to the File dialog box are described in Table 4.2

Table 4.2 Actions related to the File Dialog Box

Object Event Action
file-type box click select either *.* or *.ap
update the file name box and file list accordingly
directories box | change propagate directory changes to current directory path
and file list
drives box change propagate drive change to current directory path and

40

file list

file list box

click

echo the selected name in the file name box

file list box

double-click

echo the selected name in the file name box and do as
OK click

file name box | change if empty then disable the OK button

- F1 key display the file help window

OK button click if incorrect name then send a message
else return the file name

Cancel button | click hide the File dialog box

File dialog box | load set the keyboard language to English

File dialog box | unload set the keyboard language back to Arabic

4.4.4 Text Handler

The main function of the Text handler is to control the events that happen in the

- text window. The Text Handler has control over the Editing Handler and the Search

Handler which are specialized handlers that deal with text editing and search activities

within the text window, respectively. Table 4.3 describes the actions taken when an event

occurs in the text window.

Table 4.3 Actions related to the Text window

Object Event Action

text window resize | adjust the text window to the new size

text window unload | close the active text window (save the file, if needed).
If all text windows are closed, make all icons related to
text window invisible, and refresh the statusbar (the APE
window will looks like Figure 4.3)

menu-close click same as event ‘unload’ above

menu-save click same as save-icon

menu-save-as click show the File dialog box

menu-print click same as print-icon

menu-undo click undo the last editing action

menu-cut click same as cut-icon

menu-copy click same as copy-icon

menu-paste click same as paste-icon

menu-delete click delete the last keyed character or the highlighted text

menu-select-all click call Editing handler

menu-date click call Editing handler

‘menu-find click call Search handler

menu-replace click call Search handler

menu-Goto-line click call Search handler

menu-Goto-end click let cursor jump to the end of the text window

41

menu-compile click same as compile-icon

menu-run click same as run-icon (green and red)

menu- click hide the run-icon, hide the compilation window, restore

compilation-end the original font size for text window, and perform text-
window-resize

menu-reduce-font | click call Editing handler

menu-enlarge-font | click call Editing handler

menu-cascade click call Options handler

menu-tile click call Options hander

menu-arrange click call Options handler

menu-list-of- click [bring to front (to be the active text window) the chosen

opened-files file

-—- F1 key | display the APE help window

text window change | modify the file status (in statusbar) to “Modified’
modify the file size (number of lines), if needed.

text window ot calculate the current line number and the current column

ocus | number and display that in the statusbar. Calculate the file
' size and display that in the statusbar
text window - key (used for control keys) if Ins key is pressed modify the
down | statusbar

compilation ot if the text color is green (no errors), then there is no

window ocus | correspondence between the text window and the
compilation window ”
else if the line starts with a number then highlight it and
its corresponding line in the text window

compilation key up i%nore all keys except ENTER and TAB,

window if ENTER do as got focus

if TAB switch from/to the text window

4.4.5 Editing Handler

This handler does the actual editing functions. There are two types of editing

functions: functions related to selected text or insertion in current position (namely cut,

copy, paste, select all, and time/date) and functions related to the entire text window

(namely font size).

1. Cut: copy selected text to Clipboard and delete selected text from the text window

2. Copy: copy selected text to Clipboard

3. Paste: place text from Clipboard into the current position in text window

4. Select all: highlight all the text in the text window

5. Time/date: insert the current date and time in the current cursor position

5. Reduce font: reduce the font size by 1

42

6. Enlarge font: increase the font size by 1

4.4.6 Search Handler
The search handler takes care of searching activities. There are three dialog boxes
related to this handler: Find, Replace, and GoTo line. Tables 4.4; 4.5, and 4.6 describe the
actions related to these dialog boxes, respectively. The main algorithm of the search
handler is as follows:
case find:
if there is a highlighted text in the text window, copy it in the
search-string
else copy the previous search-string, if any, in the current
search—strihg |
show the find dialog box
call find-string (performed if the user clicks search, see next)
case ‘replace:
if there is a highlighted text in the text window, copy it in the
search-string
else copy the previous search-string, if any, in the current
search-string
show the replace dialog box
call find-string (performed if the user clicks either search or
replace, see next)
case GoTo line:
show the GoTo line dialog box (the action is taken within the

dialog box, see table 4.6)

43

The algorithm for find-string is as follows:

if the direction of search is down (from the cursor position and downward)
copy the text from the current cursor position to the end of the text
window into q temporary string
find the first occurrence of the search-string
else copy the text from the current cursor position to the beginning of
the text window into a temporary string
find the last occurrence of the search-string
if the search-string is not found display a message to the user
else highlight the found text in the text window

move the cursor to the end of that occurrence

Table 4.4 Actions related to the Find Dialog Box

Object Event Action
Find dialog | load | make find button disabled and the search direction down
box ‘
direction click flip the direction of search

- F1 key | display find help window

find button click read the search-string, then call find-string

cancel button | click save the text in the search-string box and unload the find
dialog box

search-string | change ‘| if the search string is empty, disable the find button,

else enable it

Table 4.5 Actions related to the Replace Dialog Box

Object Event Action

Replace dialog | load make find and replace buttons disabled, and the search

box direction down

direction click same as in find dialog box

--- F1 key | display replace help window

find button click read the search-string, then call find-string, and enable the
replace button

replace button | click cut the original text, read the replace-string, if any, paste
the replace-string, then call find-string

search-string change | same as in find dialog box

44

Table 4.6 Actions related to the GoTo line Dialog Box

Object Event Action

OK button click read the line-number

if valid number (> 0) move the cursor to the beginning of the
specified line

unload the GoTo dialog box

Cancel button | click unload the GoTo dialog box

- F1 key | display goto help window

4.4.7 Print Handler
The print handler is the piece of code that is responsible for printing the source
code, the compilation output, and the execution results. There is only one dialog box
related to this handler. Table 4.7 describes the actions related to that dialog box. The main
algorithm of the print handler is as follows:
case print the source code (user program):
copy the text window conlent in a temporary file for formatting
the page-header gets the file name (to be printed on top of
all pages)
call do-printing (see below)
case print the compilation output:
if there is no compilation window, display an error message and
then exit
copy the compilation window content in a temporary file for
formatting
the page-header gets the following string:
<cilll o> 22 s (‘Compilation of” <file name>)
call do-printing (see below)
case printing the execution result:

if there is no execution window, display an error message

45

and then exit
copy the execution window content in a temporary file for
Jformatting

the page-header gets the string =) (‘The Results’)

call do-printing (see below)
The algorithm for do-printing is as follows:
while there is a line

copy the line in a temporary buffer

if top of the page, print the page-header

copy the line to the printer buffer

if bottom of the page, print the page number centered and
increment the page number

if last line, print empty lines until the page end then print the page
number

send print command to the printer

Table 4.7 Actions related to the Print Dialog Box

Object Event Action
Print program-check-box click | flip the program-check-box (enabled/disabled)
Print compilation-check-box | click flip the compilation-check-box

(enabled/disabled)
Print result-check-box click | flip the result-check-box (enabled/disabled)
OK button click | start printing the checked boxes
-—- F1 key | display print help window
Cancel click | unload the Print dialog box (do not print)

4.4.8 Options Handler
This handler is responsible of keeping track of the statusbar, the opened windows,
and the icons, if any. Table 4.8 describes the action taken for each request received by the

option handler.

46

Table 4.8 Actions taken by the Option handler

Request Action
Cascade windows make a system call to cascade all available text windows
Tile windows make a system call to tile all available text windows
Arrange minimized windows | make a system call to arrange all icons
resize (window max. to if the toolbar is visible, shift all the toolbar icons left to fit
normal) the MDI window in the normal window. Do the same for all items in the

statusbar, if it is visible. If there is a text window, resize
it.

resize (from normal to max.) | if the toolbar is visible, shift all the toolbar icons right to
the MDI window start from the right corner in the maximized window. Do
the same for all items in the statusbar, if it is visible. If
there is text window, resize it.

4.4.9 Message Handler

Whenever a message needs. to be sent to the user, this handler is called. This
handler is responsible for displaying the message in Arabic (including the command
buttons) with right alignment. Messages can be classiﬁed based on their content into three
types: error messages, informative messages, and dialog messages. The first two types
require only an OK button. For dialog messages, the message hahdler displays two (yes or
no) buttons or three (yes, no, and cancel) Buttons depending on the message content.
Moreover, the message handler may include either an exclamation icon or a question icon
within the message. The message handler takes thevuser response and passes it to the

caller to take the appropriate actions. Appendix A lists all APE messages.

4.4.10 Compilation Handler
The compilation handler is the mediator between the APE and the Arabic Pascal
Compiler (APC). This handler has two main functions: compilation process and execution

process.

47

1. Compilation process

disable the run-icon, if it was enabled

turn on the yellow signal indicating the compilation progress

split the main window into two windows: text window (reduce its font size)
and compilation window

set the compilation window as a read-only window

if the file (text window) was not saved, save it

call the APC to compile the current file

if there is no error, set the color of the compilation window fext to green
and turn on the greeh traffic light.

else set the color of the compilation window text to red and turn on the red
traffic light

display the APC output

if no errors (arrange the program for execution)
call the Turbo Assembler to assemble the program
call the Turbo Linker to link the program
delete the assembly and object files

else highlight the first error in compilation window and its

corresponding line in the text window
2. Execution process
find the executable file name that corresponsds to the active text window
execute the program (the execution window handler is responsible for

creating and managing the execution window)

48

4.4.11 Execution window handler
As stated earlier the execution window has to be controlled only by the user
program. Therefore, this handler has to make the cursor movement based on the user
program. For example, if the user program has some input, the cursor should be shown,
otherwise no cursor is shown. If a user types mistakenly some input and then erases it, it
should be removed from the input buffer. There are many functions that are handled by
this handler, the main ones are:
1. Show cursor
create the caret (cursor)
if the cursor reaches the left side of the window, move it to the next line at
the right side of the window
else decrement the cursor position by 1 (move to the left for Arabic)
2. Write text
if the user text is longer than the window zise, break the line into sublines
(to control the Arabic display)
count the line ‘characters to move the cursor accordingly
display the text
3. Read text
wait for the user input
keep track of the user input:
if backspace erase the last character from the input buffer and
adjust the cursor
if ENTER accept the input buffer and move the cursor to the
next line (right side)

if TAB move the cursor 8 spaces

49

if Control keys ignore
else insert in the input buffer
4. Paint window (required when the execution window is resized or scrolled [Cro94]])
find the area in the execution window that has been altered
(need to be re-painted)
refresh the window
redisplay the text
5. Initialize window
create the window (titled with file name)
show the cursor if there is input
open a text-file to capture the QSer program input and output
(used when printing the result)
6. Terminate execution
close the text-file
change the window title to indicate the termination of execution

destroy the caret (cursor)
4.5 HELP WINDOWS

In general, the creation of the on-line help is separate from the MS-Windows
application and it can be invoked as a stand-alone application. After the creation of on-line
help, it can be attached to the software. The APE provides an on-line help file that
explains the necessary information needed for dealing with the system. When the user
clicks the help menu, the main help window is displayed. This window (Figure 4.13) gives

an introduction of the system and leads totwo other windows: the APE interface help

50

window (Figure 4.14 shows part of this window) and the Arabic Pascal help window
(Figure 4.15 shows part of this window). When the user presses F1 key, an explanation
about the top most window will be displayed. If] say, the main window is shown (and
there is no dialog boxes), the APE interface help window will be displayed. If the user
opens the search dialog box and presses F1 key, a help window will show up to explain

the search dialog box, and so on.

(Bt aal LSt

% Oppelad Gyend Jo g gt fUADI 15 3 3 el afladdl e sl oy Sy g5 58y
% Jakiss y el il LS 5 18N o (5 Dyl 0 Rp 2 G40
. AWSE N DR SOt FE N
% -

'/ L3 3

i 508 5okl ad e 38 ey cOpadl aia o ST Gl tee e §pasB

” ino sl gl ol g
% st JSl i)

Figure 4.14 The main help window

51

AleS pusadl J3x @by pladl 10e hasd s pusel CJ‘*. @h AL ¢ Azlzh ol 91 AT Kdaw 1 AL Lails
SLlS oS ey g2y gl i

S 8 e g S Lol Jole o3 e (o6 Lwlol L2t

=
e o
S

v

Figure 4.15 Partial display of the APE interface help window

{f =] AT e = e B SAARS LT o8 18U 3] nesl e T T8l Tl O ppladl e
|6 S TR (] BT gy Al T Rty eyl SISl T (3 el SRS N L s
g
35 g Sl ST Ly
AND - NIL ey
ARRAY W g b pimn NOT .
¢ BEGIN [NON] OF o
Ei/f; CASE abta it OR st iaf
. CONST Y PACKED b pi e by pm
P DIV ' PROCEDURE | ales 2loz
E Do Jas) o sl PROGRAM i
7
/ | DO WNTO Jdasisd] dagi RECORD e
Er; ELSE Ny N, REPEAT I
[é‘% END g adghgs SET s gas AEgas

Figure 4.16 Partial display of the Arabic Pascal help window

52

CHAPTER 5

DESIGN AND IMPLEMENTATION OF THE ARABIC PASCAL COMPILER

A compiler is a computer program that accepts as input the text of a program
expressed in a given programming language (source code) and produces an equivalent
program in another language (assembly code or object code) [Mak91]. Figure 5.1 shows

the main parts of the Arabic Pascal Compiler (APC) with their most common interfaces.

Symbol
Table |
Code Assembly
Source} - - 3 - - .- Generator /%] Code
code |
Error Handleg/ - ----- " AError Messagesl

Legend:
- Function *°7°> Data Flow
] Input/output — Function Call

Figure 5.1 Organization of the Arabic Pascal Compiler

As shown in Figure 5.1, there are four essential functions: the scanner, the parser, the
code generator, and the error handler. The basic function of the scanner is to read the

source text file as a string of characters and to recognize from it a stream of words,

53

numbers, and symbols. Each word, number, or symbol is called a foken [CJ88]. Details of
scanner functions are discussed in Section 5.1. The fundamental task of the parser is to
take the stream of tokens as input, build symbol tables, analyze the source program based
on the syntax, check the correctness of different types, and finally call the code generator.
Section 5.2 is devoted to the description of the parser. The final segment in the APC is the
code generator. It generates an equivalent assembly code for the source program.
Explanation of the code generator is presented in Section 5.3. During the process of
compilation, if an error occurs the error handler is invoked. More explanation of the error
handler is in Section 5.4. The last section, Section 5.5, gives examples of two Arabic
Pascal programs along with their equivalent English Pascal programs.

The APC is developed in C and compiled using Turbo C. The compiler generates
8086 assembly code. The generated code is assembled and linked using Turbo Assembler
and Turbo Linker [BTA93]. Therefore, the targeted machine is IBM PC or compatibles.
We chose this machine because it is the most widely used machine at the personal level.
The compiler requires an Arabic interface to write and edit the Arabic Pascal programs.

Before starting the explanation of various parts and algorithms of the APC, we
should point out that almost all examples and reserved words mentioned in this chapter are
from the Standard English Pascal [Coo083, Tib81, WHS86]. Appendixes B-E are devoted to

explain the structure and the terms in the Arabic Pascal language.

5.1 THE SCANNER
Most of the compiler runtime is spent on lexical analysis in the scanner [PP92,

p.48]. The scanner reads line by line from the input file, reducing each line to manageable

tokens (words, numbers, strings, and special symbols). It is therefore incumbent upon a

54

compiler designer to exert some effort in making the scanner efficient. Since regular
grammar is sufficient to fully define all different types of tokens in the Arabic Pascal, a
finite-state automaton is adequate to implement the scanner. The scanner performs four
major tasks:

1. Removing extraneous blanks, carriage returns, and new-line characters.

2. Removing comments.

3. Identifying tokens.

4. Reporting errors it discovers by calling the error handler.

There are two common approaches for the compilation process. The first approach
performs the compilation in multi-phases. Each phase is completed for a given source
program before the next phase starts. This approach is called multi-pass compilation. An
example of this approach is the two-pass compilation which has two scan phases. In the
first scan, the compiler resolves all forward references. The second scan does the rest of
the compilation. The second approach interleaves or carries out in parallel the phases of
compilation in one step. It is called one-pass compilation. This approach solves the
problem of forward references by leaving holes in the code where the address needs to
appear. When the target address becomes known, the compiler returns to the output code
and patches the offset or the branch address with the correct value. This method is called
backpatching [Pys88]. The APC uses the latter approach because it better suits block-
structured languages.

Unlike the usual scanning, the Arabic Pascal scanner scans the source code from
right to left instead of from left to right. The scanning should be done in this way because
the Arabic writing and reading are from right to left. Moreover, the Arabic Pascal scanner
does not have the problem of upper and lower cases because these are not applicable in

the Arabic characters.

55

In the Arabic Pascal, the comment is enclosed between two curly brackets. The
comment can appear wherever a blank can in the source program. Therefore, a comment
is not allowed to be within a single identifier or a number. Whenever the scanner
encounters a comment, it simply skips that text and deals with it as if it were a single

space.

5.1.1 APC Tokens

The Arabic Pascal has several types of tokens: reserved words, identifiers, strings,
special symbols, and numbers.
A) Reserved Words

There are 35 distinct reserved words in the Arabic Pascal language (see Appendix
B). Every time a word is encountered, the scanner has to check if this word is a reserved
word. For this reason, searching for reserved words should be done efficiently. Therefore,
instead of putting all the reserved words in one string array, the Arabic Pascal scanner
groups them based on their length to speed up the search process. There are eight groups
of reserved words with an average of four to five in each group. Based on the length of
the scanned word, only the reserved words with same length are checked. Moreover, the
reserved words in each group is alphabetically ordered. As mentioned in Chapter 2, some

reserved words can be written in more than one way, such as ‘%)’ and ‘i3 which are

considered as one reserved word equivalent to ‘if’. Therefore, there are a total of 52
reserved words.
B) Identifiers

Any word that is not a reserved word is considered to be an identifier. An identifier
can be a program name, a procedure name, a function name, a constant, a type, a variable,

or a directive (there is only one directive in the Arabic Pascal “;~Y” which is a translation

56

of the Standard Pascal “FORWARD”). No blanks may appear within an identifier. The
APC limits the identifier length to 80. Due to the reasons explained in Chapter 2, the APC
accepts the underscore character as part of the identifier.

C) Strings

A string in the Arabic Pascal is enclosed between two double-quote characters and
it 1s not allowed to use a double-quote character inside a string. The reason for using
double-quote instead of single-quote (as in the Standard Pascal) is that the Arabic
language usually uses double-quote for quotation.

D) Special characters (Symbols)

Special symbols in the Arabic Pascal consist of either one or two characters.
Examples of one-character symbols are +, [, <, and :. Examples of two-character symbols
are =>, =: and <>. Note that almost all double-character symbols are written in reverse
order with respect to the English Pascal (=: instead of :=) for an obvious reason: the
Arabic language reads from right to left. Note also that the greater-than symbol is < and
the smaller-than symbol is > See Appendix B, Section B.4 for the list of symbols in the
Arabic Pascal.

E) Numbers

Scanning numbers may be the hardest part to implement in the scanner (see

Appendix C for the syntax of the Arabic Pascal numbers). The Arabic Pascal can accept

either the Arabic numbers (0,1,2,3,...,9) or the Indian numbers (+¢y cv v ¢ ...c). The
character ‘.’ in the Arabic Pascal is equivalent to the ‘E’ or ‘e’ character in the English

Pascal. The range of integer in the Arabic Pascal is between -32768 and +32767. The
scanner limits the number of digits to 20 digits including the signs [BTA93]. It also limits

the exponent value in the range of -37 to +37 [BTA93].

57

Fortunately, the Arabic language and the English language read numbers in the
same way: from left to right. That means, both languages consider the left-most digit as
the highest significant digit. For this fact, accumulating the value of a number is the same
in both languages. It should be pointed out that the comma in the Indian numbers stands
for the decimal point. Therefore, under almost all Arabized software, the dot key in the
keyboard is printed on the computer screen as a comma in the case of choosing to write in

the Indian numbers set.

5.1.2 The Scanner Algorithm
The scanner is called by the parser which requests the next token. Whenever the
scanner is invoked, it returns the next token from the source code. The general algorithm
for getting a token is as follows:
skip-blanks;
select (based on the first character)
case alphabet: get-identifier;
case digit: get-number;
case quote: get-string;
case end-of-file: return end-of-file;

else get-symbol;

Hence, there are four different algorithms for extracting tokens:
1. Get-identifier. It follows syntax diagram (2), Appendix C. The identifier starts with
an alphabet character followed by no more than 80 alphabets, digits, or underscores. If

the identifier is among the reserved words, the specific reserved word is returned to

58

the caller (parser), otherwise an identifier token is returned to the parser to insert it in
the symbol table.

2. Get-number. It follows syntax diagram (29), Appendix C. There are three possible
types of numbers: integer, decimal floating-point (e.g., 34.23), and scientific notation

which has the e-notation, ‘.’ in Arabic Pascal, (e.g., 23e4 and 4.5¢-5). When the

scanner encounters a dot, it has to check that it is not followed by another dot, if so
then the double dots are another token used for subranges.

3. Get-string. It simply returns the sequence of charactérs, including spaces, that is
enclosed by double-quote character. The new-line character is not acceptable within
the string. |

4. Get-symbol. ‘There are 21 symbols, five of which are double—cﬁaracter symbols: -, +,

*) /7)7 (> =]7 [7 A) Cy by ey i <) <=) <>) >a >=,

When the scanner is invoked for the first time, it opens the source file and prints some

header information (such as file-name and time of compilation) in the compilation output.

5.2 THE PARSER

"The part of a compiler that knows the source language’s syntax is the parser
[Hen90]. The parser controls the translation process since it analyzes the source program
based on the syntax. It calls the scanner to provide it with tokens. It also handles symbol
table functions. Finally it calls the code generator to generate the assembly code.

The APC is designed as atop-down parser (recursive descent) [ASUS86, Pys88,
PP92, Eld94]. Top-down parsing constructs the parse tree from the root downwards to
the terminal symbols at the leaves. In other words, the parser starts at the topmost non-

terminal symbol of the grammar down to the terminal ones. The recursive descent parsing

59

method is so called because it is implemented by a set of recursive procedures, one to
correspond to each non-terminal of the grammar [Eld94]. The Arabic Pascal parser
follows RL(1) grammar: Right-to-left scan, Left-most derivation with one look-ahead
token. The RL(1) is exactly as LL(1) for the English language. The “Left-most derivation”
of the grammar assumes that the grammar of the Arabic Pascal is written in the
conventional way (from left-to-right) with Arabic terminal words and English words for
non-terminals. The one look-ahead token approach infers that there is no backtracking. An
advantage of following top-down parsing is the ease of construction, and once
constructed, itis also easy to read and develop. The main drawback, however, is the slow
speed in execution and difficulties in code optimization.

An alternative approach is bottom-up parsing. This parsing technique is harder to
implement but has some advantages [Hol90, p.337]. The main advantages are the ability to
parallelize the process of parsing and the feasibility of automating the parsing. This
approach starts with the terminal symbols and works its way up to the topmost non-
terminal symbol. In other words, the tree is constructed from leaves of the parse tree to its

root.

5.2.1 Syntax Diagrams

In order for the parser to work correctly, it needs to know the exact description
for the source language syntax. There are several approaches to describe a language.
Among these approaches are context-free grammar and syntax diagrams [ASU86]. The
Arabic Pascal is relatively a simple language that can be fully recognized using syntax
diagrams [JW74]. Syntax diagrams are graphical representations of the syntax rules.
Appendix C gives a full description of the Arabic Pascal syntax via syntax diagrams.

However, not all the details of the language rules can be expressed by the syntax diagrams

60

(or any other approach). For example, syntax diagrams cannot indicate the limits of
integer value, and they cannot express the type checking. The Arabic Pascal parser is
designed in a way that reflects the syntax diagrams. Of course, the syntax diagrams that
are representing the lowest-level syntactic entities, such as identifier and number tokens,
are used to write the scanner.

In Appendix C, syntax diagrams 35-39 give a complete syntax description of the
Arabic Pascal expressions. They also implement the full operator precedence as follows

(See Appendix B, for the Arabic operators):

Operator precedence
not. 1 (highest)
* [, div, mod, and 2

+,.-, or 3

EAN

= < > < <= >= jn (lowest)

5.2.2 Symbol Tables

The symbol table is used to maintain all needed information about all identifiers. It
must be able to insert, access, and update information efficiently. Therefore, Binary
Search Tree (BST) is chosen as the data structure for symbol table. In this BST, each
identifier and its associated informatioﬁ form a node. Figure 5.2 shows the data structure
of the identifier node in the symbol table. The identifier classification determines the
identifier role in the program such as: label, constant, type, variable, procedure name, etc.
Based on the identifier classification, certain information is kept in the node. The Serial
number is used to assign a unique number for each identifier. The use of it will be
explained later in Section 5.3. The scope is a means to keep track of the identifier scope.

The size is used to determine the size in bytes of the identifier. This information is utilized

61

by the code generator to generate the required memory space for each identifier. The sizes
of different types are presented in Table 5.1. The size of compound types, such as arrays
and records, are the total size of their elements. Left Ptr and Right Ptr are used to
construct the BST. In Variable node (Figure 5.2 (b)(8)), if Relation-Ptr is Null, the
variable has no reference to type section such as the variable # in the following declaration:
t : (hour, minute, second)
On the other hand, the Other Information is omitted if the Relation-Pir is not Null. In
Formal parameter node (Figure 5.2 (b)(9), the Relation-Ptr cannot be Null because the
type of the formal parameter variable is either a simple type or a type that is defined in the
type section. The Next-Ptr is used in the Variable node to relate all variables of the same
type that are defined in one statement. For example,
J, k1 :integer,
n,m :integer,

The Next-Ptr will link j, k, and [together, and link nand m together, but there is no
relation between the two lists except they are of the same type. The Next-Ptr is essential
because the type definition of variables comes after listing the variables. When the parser
encounters the type definition (which is in the previous example “integer”) it fills the rest
of information based on that fype., The Next-Ptr in the Formal Parameter node is used to
relate all formal parameters of one procedure or function.
An example of a symbol table structure is shown in Figure 5.3. For the sake of simplicity,
the predefined types’ nodes are not shown in the figure. The int-ptr and the char-pir are
pointers to the integer type node and char type node, respectively.

To reduce the symbol table size, to avoid naming conflict in the symbol table, and
to preserve the principle of scope easily, the APC constructs more than one symbol table.

The main two symbol tables are that contain the pre-defined identifiers and the user’s

62

global identifiers, if any. For each local procedure or function, a separate symbol table is
created. Whenever an identifier is referenced in the source code, the search starts from
the local scope to the surrounding scopes until it is found or the main symbol table is
reached.

The main source of feeding symbol tables is the declaration part of the program,
procedure, or function. The global symbol table is initialized with pre-defined types,
constants, functions, and procedures.

e The predefined types are: integer, real, boolean, char, and text. Type boolean is an
enumeration type with two constant identifiers frue and faise.

e The pre-defined constants are: true, false, and nil.

e The pre-defined procedures are: read, readin, write, writeln, new, dispose, reset, and
rewrite.

e The pre-defined functions are: abs, arctan, chr, cos, eof, eoln, exp, In, odd, ord, pred,

round, sin, sqr, sqrt, succ, and frunc.

63

(a) General Node Structure | Identifier Name
Classification Classification = (label, constant, type,
Serial Number variable, func_name, proc_name,
Scope built-in_func, built-in_proc,
Size (bytes) formal parameter).
Rest of
Information Serial Number: a unique number for
each identifier.

Left Ptr |Right Ptr

(b) Rest of Information (based on the Classification)

(1) Label (2) Constant (3) User Procedure (4) User function (5) Built-in Proc
value # parameters # parameters # parameters
Relation Ptr Parameter List Parameter List List of Valid
' Ptr Ptr types
Return type
(6) Built-in Func (7) Type (8) Variable (9) Formal Parameter
parameters Sub-Classification Sub-Classification Sub-Classification
List of Valid Other Other value/reference
types Information Information Other Info.
Return type | Relation-Ptr Next-Ptr Next-Ptr

Relation-Ptr

Relation-Ptr

Sub-Classification = (char, integer, real, boolean, enumeration, sub-range, record, array

file, pointer, set).

Relation-Ptr is used in constant, type, and variable to relate one class to another. For example,

time = (hour, minute, second). Hour is a constant related to time.

(c) Other Information (based on the Sub-Classification)

(1) char, integer, real, (2) enum.

(3) sub-range (4) record

(5) array

Indexes-tvpe Ptr

Dimension

and boolean
elements Range type Ptr| |Field Sym.
List Ptr Min value Table Ptr
Max value
(6) file (7) pointer (8) set
File element type Ptr element type Set element type
File element Ptr Ptr element Ptr Set element Ptr

Element tvpe Pir

Min Values

Max Values

Figure 5.2 Symbol Table Node Data Structure

64

[name]
[class.]
[num.]

[scope]
[size]

[sub-class]
[next-ptr]

Example

O

CONST
length = 10;
TYPE
h = array [1l.. length]
VAR
a, q : h;
Jj, x : INTEGER;
[name] ‘length’
[class.] const
[num.] 1
[scope] 1
[size] 2
[value] 10
[relation] int-ptr
/ |
[name] ‘W
[class.] type
[num.] 2
[scope] 1
[size] 10
[sub-class] | array
[index-type] | int-ptr
[dim.] 1
[elem. type] |char-ptr
[min.] 1
[max.] 10
[relation-ptr]{ null
1
e x
var var
3 5
1 1
10 2
array// integer
// /
[relation-ptr] / int-ptr
I i I ~.
O O
Figure 3.3

An Example of a symbol table

65

CHAR;

array

null

[sub-class]
[next-ptr]
[relation-ptr]

[name]
[class.]
[num.]
[scope]
[size]
[sub-class]
[next-ptr]
[relation-ptr]

integer
null
int-ptr

N

O

Table 5.1 Sizes (in bytes) of different data types

Type | int. | bool. | real | char | enum. array | pointer | file record

Size 2 1 4 1 2 size*type 2 2 | Zofits fields

5.2.3 Identifier’s Scope

The scope of an identifier is the portion of the program where that identifier can be
referenced [ASU86]. The Arabic Pascal allows the same identifier in a program to name
different variables as long as the variables belong to different scopes. The scope rules of
the Arabic Pascal determine which declaration of an identifier applies when that identifier
appears in the source code. An identifier can be a constant, type, variable, parameter,
procedure, or a function. An identifier is said to be global if it is a predefined identifier,
type, procedure, function, etc., of if it is declared in the declaration section of the main
program itself [Hol90]. An identifier is called Jocal if it is declared inside a procedure or a
function. In the APC, there are only two levels of global identifiers that are defined during
the entire compilation process. The first level is the predefined types, identifiers,
procedures, and functions. The second level is the global identifiers, if any, that are defined
by the programmer in the main program. On the other hand, there are as many levels
(scopes) of local identiﬁers as the number of nested functions and procedures. Figure 5.5
depicts the concept of the identifier scope via an example. Each scope level (block) has
been enclosed in a box. The block number is shown in the upper right of the
corresponding box. Within the statement part of each block the number of the blocks
whose local identifiers are accessible at that point are enclosed in brackets. The lookup for
an identifier starts from the local block outward to enclosing block. Note that the numbers

in the brackets are sorted according to the look up procedure.

66

The concept of identifier’s scope plays an important role in the parsing process.
Whenever the parser encounters an identifier in the body of a procedure or function
(including the main program), the parser first checks the with-stack (a stack that is
associated with with statements), if not empty, to concatenate the identifier with the with-
stack entries, one at a time, starting from the stack top, then it checks the symbol table
associated with that procedure or function (local scope). If it did not find the identifier, it
checks the next enclosing scope. The search continues outward within enclosing scopes
towards the outermost scope (global séope). The search stops either by finding the
identifier or reaching the outermost scope. In the latter case, an error message is issued to

the programmer.

PROGRAM scope (INPUT, OUTPUT) ; 0
VAR j, kX, 1 : INTEGER; 1
PROCEDURE al| (al, a2 : char); 2

TYPE a = ARRAY {1..10] of REAL;
VAR X, y : INTEGER;
aa : a;
FUNCTION bj|(r : REAL) : CHAR; 3
VAR x : CHAR;
BEGIN
[3,2,1,0]
END;
BEGIN
[2,1,0]
END;
PROCEDURE ¢ (cl, c2 : INTEGER): 4
VAR g: REAL;
BEGIN
[4,1,0]
END;
BEGIN
. [1,0]
END.

Figure 5.5 Scope structure of a Pascal program

67

3 +—> Symbol Table of Block 3

2 T— Symbol Table of Block 2

1 +—— Symbol Table of Block 1 (user global identifiers)
0 +—— Symbol Table of Block 0 (pre-defined identifiers)
Scope Stack

Figure 5.6 A Snapshot of the Scope Stack of the program in Figure 5.5

As stated earlier, each procedure or function (including the main program) is
associated with a symbol table containing all the local identifiers. To implement the
principle of scope, symbol tables are grouped in a stack, called the scope stack. Initially,
the parser pushes the pre-defined identifiers’ symbol table (inthe bottom of the scope
stack). Appendix B, Sections B.2 and B.3 list the pre-defined types and identifiers, and the
built-in procedures and functions, respectively. The parser, then, pushes the global
identifiers in the scope stack. When the parser enters a new subprogram (procedure or
function), it pushes the subprogram’s symbol table in the scope stack. As soon as the
parser processes a subprogram, its corresponding symbol table is deleted to decrease
memory requirements during the compilation process. Therefore, the search for an
identifier starts from the top of the stack to its bottom until the identifier is found. An
error message is issued for unsuccessful search. Figure 5.6 shows a snapshot of the scope

stack of the program in Figure 5.5 while the parser in function b ().

5.2.4 The parser Algorithm

Most of the APC coding belongs to the parser. The Arabic Pascal parser consists
of two handlers and five sub-parsers. The handlers are the symbol table handler and the
synchronization handler. The sub-parsers are subprogram parser, declaration parser,
statement parser, expression parser, and standard procedures and functions parser. All the
sub-parsers are implemented according to the structure of the Arabic Pascal syntax

diagrams (as in Appendix C).

68

Before explaining the details of the parser, it is important to know the approach of
mapping the syntax diagrams into algorithms. Each syntax diagram in the Arabic Pascal
can be decomposed into the following simple cases:

1. Primitive case:

This case has three forms:

— —®— O

by-pass consume ' call
where, the circle represents a terminal symbol (token) and the rectangle represents a non-
terminal symbol. The by-pass arrow in a syntax diagram is the arrow that allows by-
passing (skipping) one or more syntax entities (terminal or non-terminal symbols). This
arrow is used to skip optional structures. The second form makes the parser consume the
token (x) and continues parsing. The last form makes the parser call subprogram y.

2. Branching case:

This case has two forms:

(a) Forward branching. The branch is forward if it does not return to a previous state in
the syntax diagram. The parser implements this using a case (select) statement (if more
than two branches) or an if ... else statement (if only two branches and one of them is
a by-pass, then the parser uses an if statement).

(b)Backward branching. The branch is backward ifit returns to a previous state in the
syntax diagram. The parser implements this using either while statement (if there is a
by-pass arrow that permits skipping the entire backward branch) or repeat statement.

3. Merging case:

When two or more arrows in a syntax diagram meet, the parser ends their

corresponding branching statements.

69

Therefore, the first step in implementing the parser is to map all syntax diagrams
into simple structures. This scheme handles only the correct structures, so we need to add
error checking to the parser. Moreover, we need to embed type checking for all
statements and expressions. The final step is to call the code generator to generate the
equivalent assembly code where necessary.

The following subsections briefly explain thé main functions of each handler or
sub-parser. For the sake of simplicity and brevity, we will mention only the main syntax
diagram(s) that the sub-parser is following (without writing its (their) corresponding
algorithm(s)). In the first sub-parser (Section 5.2.4.3), we will give the corresponding
algorithm for syntax diagram (3) as an illustrative example.
5.2.4.1 Symbol Table Handler

As stated earlier, symbol tables in the APC are constructed utilizing the binary
search tree concept. They differ form the plain binary search trees in two ways. First, they
have some extra pointers that relate all variables of the same type, and relate each variable
with its type. Second, in the case of records, the record node is considered as the root for
the fields’ nodes. In other words, for each record, there is a symbol table associated with it
within the main symbol table (nested symbol tables). The symbol table handler carries out
three main functions: symbol table initialization, insertion, and search.

(a) Initialization
initialize the scope stack’s top with zero.
insert all predefined constants, types, functions, and procedures.
(The scope for all identifiers is set to zero).
(b) Insertion
search the current symbol table to ensure the uniqueness of the identifier within

that scope.

70

create a new node and insert all needed information.

insert the node in its appropriate position in the symbol table.
(c) search
There are two types of searches: searching only the current symbol table (mainly used for
insertion) and searching the entire scope stack starting from top to bottom (mainly used
when referencing an identifier). In the latter case, the with stack is checked before starting
the search to concatenate its content (as a leading string) to the identifier. Since the with
stack can only be associated with the local scope, the with stack is checked only when
searching the current local scope. The with stack is also checked from top to bottom. Let

us take the following example:

with rec, ptr* do {equivalent to: with rec do with ptr"do }

X:=...;

The with stack will have two items: rec and p#” (ptr" in the top). The search goes as
follows

1. search for prr”.x in the local symbol table, if not,

2. search for rec.x in the local symbol table, if not,

3. search for x in the local symbol table, if not,

4. search for x in the next symbol tables.
5.2.4.2 Synchronization Handler

When the parser encounters an error, it tries to recover from the error as soon as
possible. This step is important because the parser has to continue syntax checking in a
meaningful way [Bac79]. The main idea behind error recovery is to skip tokens until

reaching a token that a parser can fully recognize. When the parser reaches this point, it

71

re-synchronizes itself at that point and then continues the process of parsing. This type of
error recovery is called panic-mode recovery [ASU86]. To implement this idea, the parser
has to determine some synchronization points where syntax checking can be reliably
restarted (such as semicolon or begin). Therefore, when the parser finds a synchronization
point, it resumes its normal parsing as if there were no errors. Another source of errors is
type mismatch where the compiler expects an identifier of a specific type and it encounters
an identifier of another type. Type mismatch does not usually require a synchronization.
On the other hand, error correction is, in general, an unsuccessful approach
because it is time consuming with little chance of getting the right solution. Further more,
most syntax errors are usually easy to figure out manually, but the problem is with
semantic errors which are almost impossible to be automatically corrected and at the same
time is hard to be figured out manually.
5.2.4.3 Subprogram Parser
It mainly consists of two parts: main-program parser and procedure/function
parser and both of them call a common parser called the body parser.
(a) Main-program parser
call the scanner initializer.
call the code generator to generate the main-program prolog.
call the symbol table initializer to initialize the symbol table (create the pre-
defined identifier symbol table).
initialize the with-stack to be empty (it is used by the with-statement).
call the program-body parser to parse the entire program. It follows syntax
diagram (1). The program-body parser calls body parser which parses
syntax diagram (3).

call the code generator to generate the main-program epilog.

72

if not all labels in labels list, if any, are marked label seen and goto _seen call
error_handler.
generate a compilation summary which includes the number of lines compiled
and the number of errors.
(b) Procedure/function parser
parse the header of the subprogram, including the parameter list, if any (there
should be no parameter list if the subprogram has been defined before
using forward). After parsing the subprogramv name, the parser enters a
new scope. It follows either syntax diagram (8) or (9) based on whether it
is a procedure or a function. For parsing the parameter list it follows
syntax diagram (13). If the directive “forward” is encountered restore the
previous scope and exit this parser.
call the code generator to generate the appropfiate subprogram prolog.
call the body parser to parse the subprogram body (syntax diagram (3))..
call the code generator to generate the appropriate subprogram epilog.
if not all labels in labels _list, if any, are marked label seen and goto seen call
error_handler.
returns fo the previous scope (pops the scope stack).
A labels list is used to keep track of the usage of labels. A goto statement and its
corresponding label have to be in the same subprogram (including the main program).
When a label is encountered, it is inserted in the labels list, if not in, and marked as
label seen. When a goto statement is encountered, its label is inserted in the labels list, if
not in, and marked as gofo_seen. At the end of the subprogram, all labels in the labels list
should be marked as label seen and goto seen, or at least label seen. For example,

label 10;

73

begin
GOTO 10;
end.
There is no label in the code for 10 (which is incorrect).

(c) The Body Parser

The algorithm follows syntax diagram (3).

if token = “label” call label parser.
if token = “const” call constant parser.
if token = “type” call type parser.
if token = “var” call variable parser.

while token = “function” OR “procedure”
call procedure/function parser.

call statement parsér.

5.2.4.4 Declaration Parser

It mainly consists of four parts: label parser, constant parser, type parser, and
variable parser.
(a) Label parser

The algorithm follows syntax diagram (4). A label must be an unsigned number
between 0 and 9999 [Tib81].
(b) Constant parser

The algorithm follows syntax diagram (5). A constant can be a number (with or
without a sign), a string, or a constant identifier.
(c) Type parser

The algorithm follows syntax diagram (6).

74

Other than the predefined types (integer, real, char, boolean, and text), there are
seven types: enumeration, subrange, set, file, array, record, and pointer. Each of which can
be composition of two or more types within certain rules. In other words, a type can be
formed using another type. For example

days = (Sat, Sun, Mon, Tue, Wed, Thu,‘Frz) ;

days set = set of days;
So, days set is a set of another type, enumeration type. The following is a brief
description about parsing each type.
1. Subrange type. The lower and the upper values can be of any ordered, simple type
(excluding real type). It also accepts the previdusly defined enumeration data. The lower
and the upper values must be from the same type and the lower value is less than or equal
the upper value. The algorithm follow§ syntax diagram (28).
2. Enumeration type. It consists of an ordered sequence of integer constant identifiers
which are enclosed betWeen parentheses. The value of the first identifier is zero, the value
of the second one is 1, and so on. The algorithm follows syntax diagram (27).
3. Set type. It is a compound data type that accepts only subrange type or enumeration
type. The number of the elements in a set should be at most 16 elements. Each element is
represented by one bit according to its presence in the list. The algorithm follows syntax
diagram (31).
4. File type. It accepts only integer, real, or character types. The file of characters is
equivalent to zext type. The algorithm follows syntax diagram (33).
5. Array type. It involves two other types: indexes’ types and elements’ type. The array
can be of single or multiple dimensions. The parser verifies the validity of each dimension.

The element type can be of any type. The size of the array (in bytes) is calculated based on

75

the number of dimensions, the length of each dimension, and the size of the element. The
algorithm follows syntax diagram (30).
6. Record type. The fields of the record are kept in a private symbol table that is
accessible only through the record. Therefore, the same name of a field can be used
outside the record without any ambiguity. For example,

rec = record

J, k : integer;

end;

J, k: real { or whatever }
is a valid definition because the j and k (inside the record) belong only to the record (in a
separate symbol table). Therefore, they can be accessed either explicitly by preceding them
by the record name, or inside a with statefnent. Other than these two cases, any reference
to j or k it is a reference to the outer ones.
The record size is the sum of its fields’ sizes. The algorithm follows syntax diagram (32).
Note that parsing the record fields is similar to parsing the var section.
7. Pointer type. All previous types must be defined before they can be used in the
definition of other types, except the pointer type. The pointer type, however, may point to
a type that is defined later or to a type that is still being defined. For example:

ptr = "rec; { ‘ptr’ is the left side, ‘rec’ is the right side}

rec = record

next : “rec; { = ptr}
end;

When parsing the definition of p#r, the rec identifier is not defined yet. When parsing the

field next, the rec is not yet complete. The APC keeps a list of all undefined types (for

76

pointers only). At the end of type parsing, all types should be defined so the parser will be
able to resolve all type definitions. The algorithm follows syntax diagram (18).
(d) Variable parser

Parsing this section is almost similar to the type section with three exceptions.
1. A declaration may have one or more identifiers separated by commas, followed by the

type specification. All variables that have the same type are linked together.
2. All type specifications should be previously defined including the pointer type.
3. The parser calls the code generator to generate the appropriate memory reservation for
all defined identifiers.

The algorithm follows syntax diagram (7).
5.2.4.5 Statement Parser

A statement may start with a label, if so, the parser parses it and calls the code
generator to generate a label. The statement parser, thén, calls the appropriate subprogram
based on the first token in the statement. There are nine possible tokens to starta
statement. The algorithm follows syntax diagrams (10) and (14).
1. Identifier. An identifier may stand for either a variable, function or a procedure name.
(a) Variable and function name. The statement has to be an assignment statement. The
assignment statement should have the following format:

variable (or function name) := expression;
{ the paramefers of the function should be omitted}

The statement parser calls the code generator to generate code for assignment. The
expression parsing will be discussed later. The algorithm follows syntax diagram (19).
(b) Procedure name. If the procedure is a standard procedure, then the parser calls
standard- procedures-and-functions parser. In case of user-defined procedures, the parser

checks the actual parameter list, if any, for the correctness of them compared with the

77

formal parameters. It also checks which of these parameters are called by reference and
which are called by value. Then, it calls the code generator to generate the appropriate
code. The algorithm for user-defined procedure call follows syntax diagram (25).

2. ‘lay’ (begin). This means a compound statement. So, the parser calls the statement

parser until it reaches the corresponding end. The algorithm follows the last part of syntax
diagram (3).

3. ‘di_»37 (goto). The parser calls the code generator to generate a jump instruction. The

parser checks for the presence of the target label in the code within the same scope. The
algorithm follows syntax diagram (26).

4. “up (if). The parser calls the expression parser to evaluate the boolean expression, then
it again calls the statement parser. If ‘y),” (else) is encountered, another call for statement

parser is issued. The algorithm follows syntax diagram (20).

5. ¢,,5° (repeat). The parser calls the statement parser until the token is ‘ =~ (until). It,

then, calls the expression parser to evaluate the expression. The algorithm follows syntax
diagram (23).
6. ‘U’ (while). The parser calls the expression parser to evaluate the boolean expression,

then it again calls the statement parser. The algorithm follows syntax diagram (22).

7. ‘=& (for). The parser parses the header of the for statement checking the control

identifier, its type, its lower value, and its upper value. It also calls the code generator to
generate the appropriate assembly code. It, then, calls the statement parser to parse the
body of the for statement. The algorithm follows syntax diagram (24).

8. ‘i’ (case). The parser parses the header of the case statement by calling the

expression parser. For the case values, the parser calls the code generator to generate

78

assembly code as if it were nested if... else statements (see Section 5.3.1). Since the case
statement in the Standard Pascal does not have a default value, the inner most if does not
have an else. The algorithm follows syntax diagram (21).

9. ‘e’ (with). With argument(s) should be of record type. The parser pushes the

argument(s) into the with-stack (see Section 5.2.3). The statement parser, then, parses the
enclosed statement(s). With statement is the only statement that has an effect on the
structure of the identifiers. For example, instead of writing the full identifier name, such as
rec.ident, only the ident may appear inside the with statement. Section 5.2.4.1 part (¢)
discussed how the search is performed in the symbol table for an identifier. The algorithm
follows syntax diagram (40).
5.2.4.6 Expression Parser
The expression parser is the part of the parser that is fesponsible for parsing
expressions, evaluating them, and ensuring the correctness of their usage. It is invoked to
parse
e the actual parameters of procedures and function,
¢ the boolean expressions in the control statements, and
o the expressions after the assignment statements.
The expression parser calls the code generator to generate the appropﬁate code.
All expressions (including variables and constants) preserve their actual values
when evaluated except set variables and set constants. As stated earlier, each element in a
set is represented by one bit according to its position in the list. Therefore, sets need
special handling in evaluating their expressions. For example, let us consider the following
code (in Standard Pascal):
(1) sl :setof 5. 10;

(2) s2: setof 1..10

79

(3) sl:=[57 9]
(4) s2:=[5 7 9];
(5) if (6 insl) then ...

(6) if (6in s2) then ..

In statement (3) the numbers 5, 7,} and 9 mean nothing to set sI except that they represent
the fist, the third, and the fifth bits, respectively. While in statement (4) the same numbers
represent fifth, seventh, and ninth bits, respectively, for s2. The value of s1 after executing
statement (3) should be 21 (i.e., in binary 0000000000010101) and the value of 52 after
executing statement (4) is 336 (i.e., in binaryi 0000000101010000). Similarly, number 6 in
statement (5) and (6) only represents the second bit with respect to s, and the sixth bit
with respect to s2. Consequently, when the expression parser encounters a statement that
involves a set expression, it performs the following:

1. if the set elements are of subrange type, calculate the element-value by subtracting the
value of the variable or constant from the minimum value in the set declaration. The
minimum value of a enumeration type is always zero. This gives the bit position in the
set.

2. to set or test a particular bit in the set, a run-time function is called to find the power of
2 of the element-value.

3. the assignment statement (such as statement (3) above) is considered as a series of
unions of individual set elements.

Using this approach of implementation makes a restriction on using an immediate set
comparison in the Arabic Pascal. For example,

if [5,x*3] <=sl then. .. {where x is an integer}

80

is not acceptable in the Arabic Pascal because the value of the set /5, x*3/ is unknown
unless this set is associated with a specific set definition. To implement the previous code,
the programmer needs to add an assignment statement as follows:

s3:=[5, x*3]; { assuming s3 of the same s1 type}

if s3<=sl then ...
In this way, the compiler knows exactly the value of the set /5, x*3/.
The expression parser algorithm follows syntax diagrams (35) and (37).

Note that the Arabic Pascal function has two forms. If it is in the left hand side of
an assignment statement (usually inside the function body itself), it does not take any
parameter. On the other hand, if it is inside an expression (such as x * sin (x)), then it is
parsed as if it were a procedure call.
5.2.4.7 Standard Procedures-and-Functions parser

It is not difficult to parse the standard functions and procedures that have a fixed
number of arguments. The parser checks the correctness of the number of arguments and
their types, and then calls the code generator to generate fhe appropriate code. Table 5.2
shows the standard functions, the acceptable types of parameters, and the type of the
result. Note that all standard functions have only one parameter except eof and eoln which
may have zero or one parameter. Table 5.3 shows the standard procedures, number of
parameters, and the acceptable types for each parameter. Note that procedures GET and
PUT are not implemented in the Arabic Pascal because they are functionally equivalent to
simple read and write respectively. The procedure PAGE is also not implemented because
it was used for non-interactive computers to order the printer to jump to a new page
[Got94, p.77]. Many modern versions of Pascal eliminated these functions, such as Turbo

Pascal and VAX Pascal.

81

The problem arises when parsing the procedures that have variable number of

arguments, namely - {3130 1. 5" (write, writeln, read, and readin). The easiest

way is to parse each of which as if it were a sequence of procedures that having only one

parameter. Therefore, after parsing each parameter, the parser calls the code generator to

generate the appropriate code. The actual parameters of - 13 , 3 (read and readln) must

be variable. The actual parameters of . .1 , .= (write and writeln) may be expressions

and each of which may be followed by field width and designators.

Table 5.2 Standard functions

Function type of the parameter type of the result
abs and sqr integer or real same as the parameter type
arctan, cos, exp, In, sin, and sqrt | integer or real real
chr integer char
odd integer boolean
ord char integer
pred and succ integer, real, or boolean | same as the parameter type
round and trunc real integer
eof and eoln file (if exist) boolean

Table 5.3 Standard procedures

Procedure # of parameters types of parameters
dispose and new | 1 pointer
reset and 2 1. file 2. string
rewrite
read 1 or more (if the first is not file) | 1. file, integer, real, or char (variable)
2 or more (if the first is file) 2 .. n integer, real, or char (variable)
readln 0 or more (if the first is not file) | 1. file, integer, real, or char (variable)
1 or more (if the first is a file) 2 .. n integer, real, or char (variable)
write 1 or more (if the first is not file) | 1. file, integer, real, char, boolean
2 or more (if the first is a file) (expression), or string
2 .. n integer, real, char, boolean
(expression), or string
writeln 0 or more (if the first is not file) | 1. file, integer, real, char, boolean

1 or more (if the first is a file)

(expression), or string
2 .. ninteger, real, char, boolean
(expression), or string

82

All math functions follow syntax diagram (45).

Functions eof and eoln follow syntax diagram (46).

Procedures new and dispose follow syntax diagram (47).
Procedures reset and rewrite follow syntax diagram (48).
Procedures read and readin follow syntax diagrams (49) and (50).

Procedures write and writeln follow syntax diagrams (51), (52), and (53).

5.2.5 Type Checking

One of th¢ major tasks of the parser is to check the validity of using the identifiers
and the compatibility among related identifiers. This task is called fype checking. The type
checking relies heavily on the symbol tables to perform its task. There are four common
categories of type checking:

1. Variables: A variable can be a simple identifier, an array, a record, a pointer, a set, or a
file. Each of the above has a specific way of usage. For example, a subscript is usually
associated with array variables. The typé checker checks the identifier’s definition in the
symbol table to ensure correctness of usage. Type checking of an identifier also
depends on the syntax surrounding that identifier. For example, a pointer identifier that
is followed by a pointer symbol has a different semantic from a plain pointer identifier.

2. Expressions: The type checker has to check whether or | not the operands of an
operator are of the correct type. For example, both operands of AND operator must
be of type boolean. In expressions, the type checker must specify the overall expression
result type. For instance, an integer plus a real results in a real expression. Moreover,
all arithmetic relations should be between two similar types (except the IN set relation
where the first operand has to be from the same members’ type of the second one). The
relations less-than and greater-than are not defined in sets. It is also not acceptable to

check the relation between two strings unless they have the same length[Tib81].

83

3. Assignments: In the Arabic Pascal, one type is assignment compatible with another
type if an expression of the first type can be assigned to a variable of the second type.
Type checker checks whether or not an expression value of one type can be assigned to
a variable of a different type. For example, a real variable can get an integer value but
not vice versa.

4. Statements: The type checker must ensure that all variables and expressions in the
statement are of the correct types. For example, all control statements should have
expressions of boolean type. As another example, in the for statement, both the initial-

value and the final-value have to be from the same type.
5.3 THE CODE GENERATOR

The final step in the compiling process is code generation. Whenever the parser
encounters a complete statement or expression, it calls the code generator to generate an
equivalent assembly code. The APC translates the source code into 8086 assembly
language. The details of the 8086 structure and assembly language can be found in [MP86,
Abe87, Hah87, BB88, BTA93, Mis93].

For the sake of simplicity, all standard procedures and functions are implemented
as a run-time library. The APC calls this library whenever needed. This fun-time library
must be linked with the generated assembly code. It should be pointed out that the APC
allocates global variables in the data segment instead of at the bottom of the stack to allow
direct access to them.

The code generator generates at the beginning of each assembly program a set of

directives called a prolog [BTA93]. These directives give the Turbo Assembler the needed

84

information about the code. Similarly, at the end of the assembly code, some restoring
actions are done and a list of global variables is placed, called epilog [BTA93].

The Turbo Assembler seems not to accept the numbers within the Arabic
identifiers nor the Arabic underscore, so the code generator should eliminate these from
the identifiers. This will have no effect on the uniqueness of the identifiers within the same
scope because the identifier serial number will make every identifier unique in the entire
assembly program. The code generator attaches a unique number (the serial number) to
every identifier in the program. The need for the uniqueness of identifiers is necessary
because the 8086 assembly language does not have the scope concept.

Another issue in the code generation is the conditional jump. The conditional jump
instructions in the original 8086 assembly language are restricted to a distance of 127
bytes [BTA93]. On the other hand, the unconditional jump can jump to any place within
the code segment. Therefore, all éonditional jumps that may cause out of range jumps
should be converted somehow to equivalent unconditional jumps. For example,

cmp X,y ; compare

Jje exit ; jump if equal to exit label
. <may be more than 127 bytes of code>

exit: <the rest>

This code should be altered to avoid the restriction. The code generator converts it to the

following:
mov temp, 1 ; move one to temp
cmp X,y
Je next!

85

xor temp, temp ; make temp = 0
nextl: cmp temp, 1

je next2

jmp exit ; unconditional jump
next2: .

. <may be more than 127 bytes of code>

exit: <the rest>
The code generator works in two levels: statement level and expression level. The

following subsections discuss these two levels.

5.3.1 Statement Code Generator

There are eleven different types of statements that the code generator may face:
1. assignment statement. The code genefator generates.. code for evaluating the right
hand side expression (stored in'AX or AX:DX for real Values), then issues a move
instruction from AX to the left hand side variable.
2. goto statement. It simpiy issues a jump instruction.
3. compound statement. It does nothing.
4. with staterﬁent. It does nothing.
5. procedure/function call. It pushes all the arguments (or their addresses for reference
arguments) on the stack, then it calls the function or the procedure. In the case of
function, the return value is stored in register AX. In the procedure or function itself; it

saves the stack pointer at the beginning and restores it at the end.

86

6. standard procedure/function call. It pushes all the arguments on the stack, then it
calls the equivalent function in the run-time library. In the case of function, the result is
stored in register AX.
7 . while statement. The general format for the while statement is

while <expression> do <statement(s)>

The code generator generates the following code:

loop begin:

<code for expression>

mov Reg, 1 ; move one to Reg

JjXX next ; XX is the conditional jump, such as jle

xor Reg, Reg ; let Reg equal 0
next: cmp Reg, 1 ; compare

Jje statement label ; jump if equal

jmp loop exit ; unconditional jump
statement _label: <code for statement(s)>

jmp loop begin -
loop_exit:

8. repeat statement. The general format for the repeat statement is
repeat <statement(s)> until <expression>
The code generator generates the following code:
loop begin:
<code for statement(s)>
<code for expression>
mov Reg, 1 ; move one to Reg

JjXX next ; XX is the conditional jump, such as jle

87

xor Reg, Reg ; let Reg equal 0

next: cmp Reg, 1 ; compare

je loop_exit ; jump if equal

jmp loop begin ; unconditional jump
loop_exit:

9. if statement. The general format for the if statement is

if <expression> then <statement(s)-1>

or

if <expression> then <statement(s)-1> else <statement(s)-2>

The code generator generates the following code:

<code for expression>
mov Reg, 1 | ; move one to Reg
JjXX next ; XX is the conditional jump, such as jle
xor Reg, Reg [let Reg equal 0
next: ’cmp Reg, 1 ; compare
Jje then label ; jump if equal
jmp if exit ; unconditional jump (no else)
OR jmp else label ; unconditional jump (with else)
then label:
<code for statement(s)-1>
jmp if exit ; (with else)
else label: - <code for statement(s)-2> ; (with else)
if exit:

10. for statement. The general format for the for statement is

for id:=initial val [to/downto] final val do <statement(s)>

88

The code generator generates the following code:
<code for intidl_ val>
mov current val, initial val
Jor loop: <code for final val>

cmp current_val, final val

Jjle continue ; in case of ‘1o’

OR jge continue ; in case of ‘downto’

jmp loop_exit

continue: . <code for statement(s)>
inc current val ; add one in case of ‘to’
OR dec current val ; subtract one in case of ‘downto’

jmp for_loop
loop _exit:
11. case statement. The general format for the case statement is

case <expression> of

<constl-1> [, <constl-2>, ..., <constl-n] : <statement(s)-1>;
<const2-1> [, <const2-2>, ..., <const2-m[: <statement(s)-2>;
end;

The code generator generates the following code:

<code for expression> ; the result is stored in register AX
cmp AX, <constl-1>

Jje branch 1

cmp AX <constl-2>

Jje branch 1

89

cmp AX, <constl-n>
Jje branch 1
jmp next |
branch 1: <code for statement(s)-1>
Jjmp case_exit
next I: cmp AX, <const2-1>
je branch 2
cmp AX, <const2-2>
Jje branch 2
cmp AX, <const2-m>
Jje | branch 2
jmp' ‘next#Z |
branch_2: <code for statement(s)-2>
Jjmp case exit’
next 2:

case_exit:

5.3.2 Expression Code Generator

Most of the relations and operators inthe Arabic Pascal has a direct equivalent
instruction in the assembly code. Table 5.4 shows the simple relations and operators that
have one to one correspondence between the Arabic Pascal and the 8086 assembly
language. Of course, this does not include the preparation of the operands nor the details

of type conversions.

90

Table 5.4 Simple relations and operations in Arabic Pascal and Assembly

Arabic Pascal 8086 Assembly Arabic Pascal 8086 Assembly
= je - (not sets) sub
<> jne * (integer) imul
=> (not sets) jle * (sets intersection) and
<= (not sets) jge 5 (div) idiv
> il ‘ = mov
< jg _ s (and) and

+ (not sets) add - 4 (or) or

+ (sets union) or o~ (not) not
- (unary) neg g (in) test

The rest of relations and operations may not have simple equivalence.

1. Real operations. Since handling real numbers are not directly supported by the 8086
assembler, the APC calls a run-time library to accomplish the real operations [Hah87].
Note that the division (/) always works with real operands (the integer operands are
automatically converted to real in the APC).

2. ‘4’ (remainder). When making a idiv instruction in the 8086 assembly, the quotient is

placed in the register AX and the remainder is placed in DX [Hah87]. So, the code
generator performs a idiv instruction but gets the DX result. Note that some Pascal
references [BTP89, JW74, Tib81] describe the mod operator with the same behavior as
the remainder operator.

3. Set difference (-). In sets, the difference between two sets (sl - s2) is equivalent to (s1
and (not s2)). Therefore, the second operand should be negated and, then, anded with the
first one;

4. Set inclusion (=>, in Arabic Pascal). In sets, (s1 < s2) is equivalent to (sl - s2 =).
Therefore, the inclusion is implemented using the difference and set equality.

5. Set containment (=<, in Arabic Pascal). In sets, (s1 O s2) is equivalent to (s2 - s1 =

@). Therefore, the containment is also implemented using the difference and set equality.

91

5.4 THE ERROR HANDLER

Because programmers are prone to making syntax errors, it is necessary for the
compiler to handle these errors accurately and efficiently. When the APC encounters an
error, it simply does the following:

1. Gives the programmer the nearest possible location of the error by pointing to it. The
error handler prints the line number that has the error and the current token. Usually
the error happens at the current token or in a previous token in the same line. For
example, (in Standard Pascal):

if 1<) then I:=J ese J=I
The APC cannot discover that fhe semicolon before else is an error until it parses the
else token.

2. Prints out a descriptive error message.

Appendix D, Section D.1 lists the possible error messages the programmer may
get from the compiler during program development.

The run-time errors are generated by the run-time library that takes the control
when abnormal situation takes place during the execution. Appendix D, Section D.2 lists

the possible run-time errors.

5.5 EXAMPLES OF ARABIC PASCAL PROGRAMS

The following (next pages) are two simple Arabic Pascal programs with their
output. For convenience, their corresponding English Pascal programs are shown in the
same lines. Remember that the Arabic language reads from right to left. More Arabic

Pascal programs can be found in Appendix E.

92

Example 1

{ The Towers of Hanoi, Using
recursive procedure calls }
PROGRAM towerofhanoi (INPUT, OUTPUT);
VAR
n : INTEGER; { Number of disks }
PROCEDURE transfer(n, origin, dest, other
INTEGER}) ;

{ Transfer n disks from the original
to the destination }

PROCEDURE diskmove{origin, dest
INTEGER) ;
{ Move a single disk from the original
to the destination }

BEGIN
WRITELN{'Move ', origin:1, ' to
', dest:1);
END; { diskmove }
BEGIN { transfer }
IF {n > 0) THEN
BEGIN
transfer(n-1, origin, other,
dest);
diskmove(origin, dest);
transfer(n-1, other, dest,
origin)
END
END; { transfer }
BEGIN { main }
WRITE({'Enter the number of disks: '};
READLN (n) ; ‘
WRITELN;
transfer{n, 1, 3, 2)
END.
Sample Output
Enter the number of disks: 4
Move 1 to 2
Move 1 to 3
Move 2 to 3
Move 1 to 2
Move 3 to 1
Move 3 to 2
Move 1 to 2
Move 1 to 3
Move 2 to 3
Move 2 to 1
Move 3 to 1
Move 2 to 3
Move 1 to 2
Move 1 to 3
Move 2 to 3

93

pdee b adnaly A, (g a E‘H‘ c.al_|)_o}

o, A

Hois cdu)gsib g oL

SR
{ Slddlall s } frdaa 1 og
B B P R | Y [& SPR VS
(gt
bl e o lidall gap 22 Jis)
el)
el cagha) Al Ay an Al
foae
@A Al g sasty Aila Jis)
{L.Le—us
Al

4o A e
Jis } iaat
ol (v <g) 1a)
iagt
["SETIPNL | B) W | ¢\—&)d_i_'|
A et
cAg) an) Addadt iy e
- [R WAV RY
[IE SR UL | Ees WP § 4\‘&)‘)_3.5
(ot
Ll
{ ois } ragus
WYY e LSyl Pag
(7 s c\ig;jfuaae Jz:i")ggsl}
!(t)Jkﬁ_‘)jl
(RS WINELLY]
(\' AR tE)dﬁq
v I
il o &
t o ol@adadl sax Jdaal
o Y e dilda da
Yoo) e dida @a
Yo Y e dala @la
Yo Y e Lils @Ta
Vo F G dida da
o T O dila dla
A U’J ‘&JA—IJA" rﬂ):s
Yo Y Ga ddla @la
YOl Y o dida 9
Voo Y g Al @la
Vo F Ga dila dla
Yool Y G dids @la
A U’J \OJZ_L\;A):.
Yo) e dada @a
Yoo Y G Adda @la

Example 2

{ Sorting N elements using a bubble sort }

PROGRAM sorter (INPUT, OUTPUT);
TYPE
vector = array [1..50] of INTEGER;
VAR
a : vector;
i, size INTEGER;
PROCEDURE sort (VAR list:vector;

n:INTEGER);

{ Sort the first N elements of 'lsit!' }

VAR

INTEGER;
BOOLEAN;

Jj, temp
noexchange :

BEGIN

END;

BEGIN {

')

REPEAT
noexchange := TRUE;
FOR j := 1 TO n-1 DO
IF list([j] > list[j+1] THEN
BEGIN
temp := list([j];
list{j] := list[j+1];
list[j+1] := temp;
noexchange := FALSE;
end
UNTIL noexchange;
{ sort }

main program }
WRITE('How many values are to be sorted?

READLN (size);
WRITELN('Enter data : ');

FOR i := 1 to size DO
READ(a([i])
sort(a, slze),
WRITELN;
WRITELN('The sorted Data : 'y
FOR i := 1 to size DO
WRITE(a[i]:5);
END.
Sample output
How many values are to be sorted? 5
Enter data
4 1 9 7 3
The sorted Data

1 3 4 7 9

94

Lk ol adouly e licdl ga o 33 qo,n)

ic Las
Hogoie (dada) b el ma i,y
)
fpama o [00. V] Tdgdas = daild
i
tdaild 3
fc_):..a :dJ.L ‘
R PELE BFIFAT Y R I0N BWL TR IS Y
é(&m:o
{ pUELIT e o sl qums }
A
¢ pgasa i e ol
R
Vool
BB
tol pa =1 il
duel =g S Y =il ge A
ol 1] UL < [a] w1y
| bas)
Ui, =: Qj}a
\+d]:&4]f =:)
Ot [\+d LG
"\
4L
$ ot s
{ won b oty

b

;_,,_4{4_._\" i)—“,Srq_‘u-_ ?(5");._.51 B

E(Qsk) S 1L

ST e JasiT) Sl qast

D L) NCPIE WY
' ([d]u)‘ﬂ‘

$(drk ¢ B)eunsn

¢ shu @Sl

Lo bad 5, 2 UEYIT) Sl Gng)

Jwe Jsb U_JI YVo=rd e gl oo

H(os[d]3) o
A L

=l ge e

o f Leaan,m oagn Lol LELy
alinsall o % a\Ja‘;\HJJZAﬁ

Y v 1 ¢

Lo Las A0 a o, LS Y
! v 4 ¥ \

CHAPTER 6
CONCLUSION AND FUTURE WORK

The objective of this project is to build an Arabic programming language
environment. The first step towards achieving such objective is to Arabize the
environment that enables programmers to write programs in Arabic easily and efficiently.
The environment is analogous to the programming environments that are available such as
Turbo Pascal and Borland C. Therefore, the environment enables programmers to edit,
compile, and execute programs. The dissertation describes, in detail, the APE design and
implementation | |

The second step towards achieving the objective is to Arabize the Standard Pascal
by designing an Arabic Pascal Compiler. The need for such an Arabized programming
language is great in many Arab countries, especially in the education field. Currently
available compilers are developed for languages whose lexical units are 'defmed_.using the
English alphabet. For students whose native language is not Ehglish, this approach
imposes a burden. Therefore, it will be helpful to develop compilers with lexical units in
other languages. This dissertation describes the specifications, design, and implementation
of aPascal programming language and its compiler with lexical units defined in the Arabic
language. The Arabic Pascal language is an Arabized version of the Standard English

Pascal. I have chosen the Standard Pascal as the target language because of its popularity.

95

The analysis, design, and implementation of the scanner, the parser, the code generator,

and the error handler were fully carried out in this dissertation.

Section 6.1 specifies the hardware and software requirements to run this software.

Section 6.2 states the limitations of this work. Finally, Section 6.3 discusses possible

future work.

6.1 SYSTEM REQUIREMENTS

The system requirements are as follows.
An IBM PC (or a compatible computer).
An Arabic version of the MS-Windows (the APE has been tested on MS-Windows
version 3.1 and version 3.11).
At least 4AMB of RAM, to be able to run the Arabic Version of MS-Windows and,
then, the APE. |
Executable files of the Turbo Assembler and the Turbo Linker. The APC compiles the
source programs to assembly language. The assembly code, then, has to be assembled
using the Turbo Assembler and has to bé linked via the Turbo Linker. The APC has
been tested using Turbo Assembler versions 3.0 and 4.0, and Turbo Linker versions
3.0, 5.1, ‘and 6.0. However,‘Any version after 3.0 of both of them should work. The
APC produces an assembly code with the small memory model. The Turbo Linker
requires cOws.obj (the standard MS-Windows initialization file), cws.lib (the small
model runtime library for MS-Wiﬁdows), mathws.lib (the MS-Windows math library
for small model), and import.lib (the library that provides access to the built-in
Windows functions). All these files should be distributed with the software.
About IMB of hard drive. The size of the executable files of APE, APC, and their

complementary files is about 900K without any compression.

96

6.2 SYSTEM LIMITATIONS

Any system has some limitations. The main limitations of this software are as
follows.
1. The APE does not guarantee a full Arabic interface. There are many reasons for
interacting with English. Among these are the file names and system critical errors. The
file name is recommended to be in English for compatibility reasons, as explained in
Chapter 4. The system critical errors are the errors generated by the MS-Windows when
an usual event happens, such as memory insufficient or accessing a protected memory
area. The Arabic MS-Windows still displays these fatal errors in English. Thus, the APE
users may receive some English messages frbm the system while using the APE.
2. To the best of our knowledge, fhe APE and APC are free of errors. However, it is not
guaranteed that the software is error-free. The exhauétive testing requires several months
or even years for such software. |
3. The maximum file size is 32K. This is not a large size file, but it is enough for the
majority of programs that may be written in this programming language.
4. Even though, the result size can be of any size, the APE cannot send to the printer a
result of a size more than 32K, because the APE holds the results up to 32K, then discard

the rest.

6.3 FUTURE WORK

There are many open avenues to enhance the current project. Among these

avenues are the following.

97

Extending the Arabic Pascal by providing more built-in procedures and functions
rather than the standard ones, and by utilizing some good programming styles, such as
adding an else statement to the case statement.

Providing more environment tools such as a runtime debugger within the APE.
Enhancing the APE editing facilities by introducing syntax directed editing and
program auto formatting (indenting).

Supplying this software with a full documented user’s manual in Arabic.

Expanding the on-line help to provide a full explanation about the APE and the Arabic
Pascal language.

Speeding up the execution time of user programs by generating optimal object codes
utilizing the code optimization techniques.

Overcoming the 32K limitation by increasing the maximum file size (using Visual C++,
instead of Visual BASIC) or by allowing more than one file to form a single program |
(multiple-file program).

Modifying this software to be available under Windows 95 (currently, there is no
Arabic interface in Windows 95).

Finally, the Arabization of programming languages should be extended to all new
concepts of programming languages such as object programming languages and visual
programming. The limitation of man-power and the time, force us to choose a simple
example, such as Standard Pascal. Such project is the seed for more sophisticated

Arabic programming languages.

98

[AA88a]

[AA88b]

[AA91]

[AA93]

[AA94]

[Abd90]

[Abe87]

[Abu92]

[AFC94]

[AG90]

REFERENCES

Al-Salman, A. and Al-Fantookh, A., “Towards a First Arabization of the UNIX
System,” B. Sc. Thesis, Computer Science Dept., King Saud University, Saudi Arabia,
1988.

AlFedaghi, S. and Amin, A., “Automatic Spelling Correction in Arabic, " Technical
Report, Electrical and Computer Engineering Department, Kuwait University, 1988.

Amin, A. and Al-Fedaghi, S., “Machine Recognition of Printed Arabic Text Utilizing
Natural Language Morphology,” International Journal of Man-Machine Studies, Vol.
35, Dec. 1991, pp. 769-789.

As-Sfran, S. and Aref, ‘M. M., “ia,dl feadd WYa J2edl”, Proceedings of the Arabic
Language and Advance Information Technologies: isiidl il slell oliidhy Loy o)l L2l
Casablanca, Morocco, Dec. 8-9 1993, pp. 45-56. In Arabic.

Al-Daimi, K.J. and Abdel-Amir,, M.A., “The Syntactic Analysis of Arabic by
Machine,” Computers and Humanities, Vol. 28, No. 1, 1994, pp. 29-37.

AbdulKader, A. A., “Cu 2 o el il i gl 30,53 5 U, Proceedings of
Using Computers in the Islamic Sciences: e~ pld 3 oyl plizizal 544, Jeddah,
Saudi Arabia, Nov. 11-13 1990, pp. 77-104. In Arabic.

Abel, Peter, IBM PC Assembly Language and Programming, Prentice-Hall, 1987.

Abu-Salem, H.O., “A Microcomputer-Based Arabic Bibliographic Information
Retrieval System with Relational Thesaurus,” Ph. D. Dissertation, Computer Science,
Illinois Institute of Technology, USA, 1992.

Arabi, M., Fischthal, S.M,, Cheng, V.C., and Bart, E., “Algorithms for Arabic Name
Transliteration,” IBM Journal of Research and Development, Vol. 38, No. 2, March
1994, pp. 183-193.

Abo-ElHamayl, M. A. and Gado, S. H., “_a/ e s> ¢Uss w5, Proceedings of the 12th

National Computer Conference and Exhibition, King Saud University, Riyadh, Saudi
Arabia, Oct. 21-24, 1990, pp. 498-513. In Arabic.

99

[AG95]

[AHS8]

[AHD9%4]

[Ahm94]

[AK88]

[Ala90]

[A1d94]

[Ale94]

[ALiS7]

[Ali88]
[Ali89]

[A1i90]

Alimi, A. M. and Ghorbel, O. A., “Error Analysis in an On-Line Recognition System of
Arabic Handwritten Characters,” Proceedings of the 14th National Computer
Conference, Riyadh, Saudi Arabia, 1-4 Apr., 1995, pp. 407-417.

M-Hawaj, A Y. and Hamed, M., “Design of an Expert System for Teaching
Programming Fundamentals,” Proceedings of the 10th National Computer
Conference, King Abdulaziz University, Jeddah, 28 Feb.-2 March 1988, pp. 835-846.

Abuhaiba, 1. S., Holt, M. J., and Datta, S., “Straight Line Approximation and 1D
Representation of Off-Line Handwritten Text,” Image and Vision Computing, Vol. 12,
No. 10, Dec. 1994, pp. 649-659.

Abmed, A, gl diiaas 3oy, Proceedings of the 2nd Computer

Arabization Symposium, King Saud University, Saudi Arabia, 27-30 March 1994, pp.
221-254. In Arabic.

Ahmed, J. I. and Khayat, M. G., “Design and Implementation of a Database System for
Display, Storage, and Retrieval of the Holy Qur’an,” Proceedings of the 10th National
Computer Conference, King Abdulaziz University, Jeddah, 28 Feb.-2 March 1988, pp.
774-7176.

Alamri, A., “ eSS oo MY o yladl 55t J\#,” Proceedings of Using Computers in the
Islamic Sciences: is, 2 pylell 3. punld] pluszi 5,4, Jeddah, Saudi Arabia, Nov. 11-13
1990, pp. 43-52. In Arabic.

Aldarab, 1. A, “ie,2)i opladl 3 (W ol Wi, Proceedings of the 2nd Computer
Arabization Symposium, King Saud University, Saudi Arabia, 27-30 March 1994, pp.
255-277. In Arabic.

Alemam, O., “i i 15l ol % yll SIS e O 2\ ” Proceedings of the 2nd Computer

Arabization Symposium, King Saud University, Saudi Arabia, 27-30 March 1994, pp.
39-46. In Arabic.

Ali, N., “Morphological Storage and Retrieval of Holy Qura’n,” Proceedings of the
First K.S.U. Symposium on Computer Arabization, King Saud University, Saudi
Arabia, April 6-9 1987, p. 78.

Ali, N., “Computer Arabization: A Futuristic View, ” Technical Report, Alalamiah Hi-
Tech, Kuwait, 1988.

Ali, N., “Formalization and Computation of Arabic Syntax, ” Proceedings of the 11th
National Computer Conference, Dahran, Saudi Arabia, 4-7 March 1989. pp. 309-320.

Ali, N., “J b, ovSeli-ob i s, Proceedings of Using Computers in the Islamic
Sciences: ie, Ml pylell (3 gl plisiant § 44, Jeddah, Saudi Arabia, Nov. 11-13 1990, pp.
117-144. In Arabic.

100

[ALk90]

[ALk91]

[ALk92]

[Alkh]

[AIm90]

[Almua]

[Als92]

[Als96]

[Aly89]

[AM87]

[AMOY5]

[AM94]

AlKharashi, I, “An efficient Contextual Analysis Algorithm for Arabic Text
Handling,” Proceedings of the 12th National Computer Conference and Exhibition,
King Saud University, Riyadh, Saudi Arabia, Oct. 21-24, 1990, pp. 465-474.

AlKharashi, 1., “Micro-AIRS: A Microcomputer Based Arabic Information Retrieval
System , Comparing Words, Stems, Roots, as Index Terms,” Ph.D. Dissertation,
Computer Science Dept., Illinois Institute of Technology, Chicago, USA, 1991.

Al-Khrisat, M., “Structuring the Arabic Lexicon and Thesaurus with Lexical Semantic
Relations to Support Information Retrieval, Ph.D. Dissertation, Computer Science
Dept., Illinois Institute of Technology, Chicago, USA, 1992.

Al-Khawarizmi User Manual, National Computer group. No Year.

Almofti, B. A, “LolYiin, 2Jliais O ledi ol r‘-uv—'—»\‘,” Proceedings of Using
Computers in the Islamic Sciences: ie,Jpslall 3 osuld! pliziznt 5405 Jeddah, Saudi
Arabia, Nov. 11-13 1990, pp. 105-116. In Arabic.

Almuarib “_7«\”, Version 2, King Abdulaziz City for Sciences and Technology. No
date. In Arabic.

Al-Safran, S.A., “An Arabic Sentence Generator,” M.S. Thesis, Computer Science,
King Fahad University of Petroleum and Minerals, Saudi Arabia, 1992.

Al-Salman, A., “An Arabic Programmmg Environment,” Proceedings of the 1996
ACM Symposium on Applied Computing, Philadelphia, PA, Feb. 18-20, 1996, pp.
480-486.

Al-Yousefi, H., “Recognition of Handwritten Arabic Characters,” Ph. D. Dissertation,
Computer Science, Colorado State University, USA, 1989.

Ali, N. and Morcos, 1., “Data Compression Technique for Arabic Text,” Proceedings
of the First K.S.U. Symposium on Computer Arabization, King Saud University, Saudi
Arabia, April 6-9 1987, pp. 67-77.

AlSalman, H. A. and Mandorah, M. M., “o sl Susbos oV Y1 b (Jidd 36 all bz
Proceedings of the 14th National Computer Conference, Riyadh, Saudi Arabia, 1-4
Apr., 1995, pp. 70-84. In Arabic.

Abo-Assamh, H. A. and Manther, A., “iS M (308 polall pn San 08 o pai 52,7
Proceedings of the 2nd Computer Arabization Symposium, King Saud University,
Saudi Arabia, 27-30 March 1994, pp. 119-126. In Arabic.

[AMA94a] Al-Bawab, Marwan, Mrayati, Muhammad, Alam, Y. M., and Tayyan, M. H,, “A

Computerized Morpho-Syntactic System of Arabic,” The Arabian Journal for Science
and Engineering, Vol. 19, No. 3, July 1994, pp. 461-480.

101

[Ama94b] Amarah, Jamal, Microsoft Visual Basic, Vol. 1 & 2, AlMiman, 1994. In Arabic.

[AMG94] Abuhaiba, 1.S., Mahmoud, S.A., and Green, R.J., “Recognition of Handwritten Cursive

[Ami88]

[ASMS82]

[ASUS6]

[AU92]

[AYE90]

[Bac79]

[Bak86]

[Bak87]

[Bas95]

[BB83]

[Bec87]

[Ber78]

Arabic Characters,” IEFE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 16, No. 6, June 1994, pp. 664-672.

Amin, A. M, “OCR of Arabic Texts,” Proceedings of the 4th International
Conference on Pattern Recognition, London, Springer, 1988.

ASMO, “ASMO Standard 449,” Arab Organization for Standardization and
Metrology, Amman, Jordan, 1982.

Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D., Compilers Principles,
Techniques, And Tools, Addison-Wesley, 1986,

Al-Yousefi, H. and Udpa, S.S.,, “Recognition of Arabic Characters,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 8, Aug.
1992, pp. 853-857.

Al-Sadoun, H., Yaseen M., El-Jallad, A., and El-Jallad M., “ARbic Baslc (ARBI): A
New Arabic MS-DOS Based Programming Language,” Proceedings of the 12th
National Computer Conference and Exhibition, King Saud University, Riyadh, Saudi
Arabia, Oct. 21-24, 1990, pp. 449-464.

Backhouse, Roland C., Syntax of Programming Languages, Prentice-Hall, 1979.
Bakhit, B. B, “Arabic Data Compression, a Case Study,”,”” Proceedings of the 9th
National Computer Conference and Exhibition, Riyadh, Saudi Arabia, 1986, pp. 10-4-
1to 10-4-12.

Bakry, S. H, “Towards a Standard Arabic Glossary of Computer Terms,”
Proceedings of the First K.S.U. Symposium on Computer Arabization, King Saud
University, Saudi Arabia, April 6-9 1987, pp. 28-36.

BASIC .- User Manual, Al-Alamiah Est. 1995.

Brumm, Penn and Brumm, Don, 80386 Assembly Language, TAB Professional and
Reference Books, 1988.

Becker, I.D., “Arabic Word Processing,” Communications of the ACM, Vol. 30, No.
7, July 1987, pp. 600-610.

Berry, R. E., “Experience with the Pascal P-Compiler, ”, Software-Practice and
FExperience, Vol. 8, No. 5, 1978, pp. 617-627.

102

[BKN86]
[BTA93]
[BTP89]
[Cas85]

[Cha87]

[CI88]
[Coo83]
[Cro94]

[DAM92]

[Dav86]

[Del85]

[DM$6]

[DP80]

[Dun86]

[EB90]

Booth, L., Khalid, M., Niaz, M, and Al-Waidan, H., “Arabization of an Automated
Library,” ,” Proceedings of the 9th National Computer Conference and Exhibition,
Riyadh, Saudi Arabia, 1986, pp. 10-3-1 to 10-3-40.

Borland Turbo Assembler User’s Guide, Borland International, 1993,

Borland Turbo Pascal User’s Guide and Reference Guide, Borland International,
1989.

Casey, D., “An Original Approach to Arabic,” Middle East Computing, No. 21, Apr.
1985, p. 31.

Chaher, Y., “Production System of Morphological and Syntactical Analyzers
Application to the Arabic Language,” Proceedings of the First K.S.U. Symposium on

Computer Arabization, King Saud University, Saudi Arabia, April 6-9 1987, pp. 45-
54.

Capon, P. C. and Jinks, P. J .,Compiler Engineering Using Pascal, Macmillan, 1988.
Cooper, Doug, Standard Pascal User Reference Manual, Norton, 1983.
Crouse,. K., The Windows Programming Puzzle Book, John Wiley & Sons, 1994.

Dehash, K. A., AlBeshér, A. A, Mathkour, H. I, “zale & JY i J5Y dadasisl
Sl oddes ol 4e5,” Proceedings- of the 13th National Computer Conference, Riyadh,
Kingdom of Saudi Arabia, 28 Nov. - 2 Dec., 1992, pp. 1-29. In Arabic.

Davidson, C., “Arabizing the Micro,” Middle East Computing, No. 33, May 1986, p.
54.

Delwachi, A., “Computer Processingv of the Arabic Language: Problem Areas in the
Treatment of Arabic in Hardware and Software Systems, ” Proceedings of Computer
Processing of the Arabic Language, Vol. 2, Kuwait, April 14-16 1985, pp. 1-26.

Dehlawi, F. M. and Madorah, M-M., “s =142, : 1.0.J,” Proceedings of the 9th

National Computer Conference and Exhibition, Riyadh, Saudi Arabia, 1986, Vol. 2,
Section 2, pp. 20-60. In Arabic.

Daniels, M. C. and Pemberton, S., “Implementing a Pascal Compiler on an 8085A
System,” Microcomputer Applications, Vol. 4, No. 3, 1980, pp. 144-150.

Duncan, Ray, Advanced MS-DOS, Microsoft Press, 1986.

El-Imam, Y.A. and Banat, K., “Text-to-Speech Conversion on a Personal Computer,”
IEEE Micro, Vol. 10, Aug. 1990, pp. 62-74.

103

[EEN89] El-Dessouki, A., El-Dessouki, O., Nazif, A., Ahmed, M., “ An ATN Approach for

[EG88]

[EH89]

[Ela86]

[Ela87]

[Ela90]

[E1d87]

[Eld94]

[ELS93]

[ES89]

[Far89]

[Far90]

[FE95]

Understanding Arabic Sentences,” The 11th National Computer Conference and
Exhibition, Dahran, Saudi Arabia, 4-7 March 1989, pp. 762-773.

El-Sheikh, T. and Guindi, R., “Computer Recognition of Arabic Scripts,” Pattern
Recognition, Vol. 21, No. 4, 1988, pp. 293-302.

El-Sadany, T..A. and Hashish, M.A., “An Arabic Morphological System,” IBM
Systems Journal, Vol. 28, No. 4, 1989, pp. 600-612.

El-Affendi, M. A, “i b iz, 33 44 7 Proceedings of the 9th National

Computer Conference and Exhibition, Vol. 2, Section 1, Riyadh, Saudi Arabia, 1986,
pp- 14-28. In Arabic.

El-Affendi, M. A., “Efficient Algorithms for Basic System Arabization,” Proceedings
of the First K.S.U. Symposium on Computer Arabization, King Saud University, Saudi
Arabia, April 6-9 1987, pp. 37-44.

El-Affendi, M. A., “A Natural Arabic Interface to MS-DOS,” Proceedings of the 12th
National Computer Conference and Exhibition, King Saud University, Riyadh, Saudi
Arabia, Oct. 21-24, 1990, pp. 475-497.

El-Dessouki, 0., “Dictionary-Based Arabic Text Corhpression Technique,”
Proceedings of the First KS.U. Symposium on Computer Arabization, King Saud
University, Saudi Arabia, April 6-9 1987, pp. 79-87.

Elder, John, Compiler Construction: A Recursive Descent Model, Prentice-Hall, 1994.

El-Hannach, M., Labed, L., Salhi, R., and Ghazali, S., “ Je & a5l gld il
il 9 SNl Proceedings of the Arabic Language and Advance
Information Technologies: i-tidl] Ll Jlell oluidy 2, 0 2240 | Casablanca, Morocco, Dec. 8-
9 1993, pp. 71-90. In Arabic.

El-Wakil, M. and Shoukry, A., “On-Line Recognition of Handwritten Isolated Arabic
Characters,” Pattern Recognition, Vol. 22, No. 2, 1989, pp. 97-105.

Farghaly, A., “A natural Language Understanding System for Arabic,” Proceedings
of the First Kuwait Computer Conference, Kuwait, March 1989, pp. 595-622.

Faraj, M. S. “ie 20l ooy i sl 3 QY1 @ peldl plasienl”, Proceedings of Using Computers
in the Islamic Sciences: ie,2 pylall (3 gl plisizat 5 4, Jeddah, Saudi Arabia, Nov. 11-
13 1990, pp. 53-76. In Arabic.

Fayek, M. and Elhaweet, W., “Computer as an aid for Education, ” Proceedings of the

14Th National Computer Conference, Riyadh, Kingdom of Saudi Arabia, 1-4 Apr.
1995, pp. 85-100.

104

[Fed92]

[FF90]

[FF93]

[GFA9S]

[Gne94]

[Gor90]

[Gri71]

[GUA92]

[Hah87]

[Ham94a]

Feddag, A., “Arabic Morpho-Syntax and Semantic Parsing,” Proceedings of the 13th
National Computer Conference, Riyadh, Saudi Arabia, Nov. 11-14, 1992, Vol. 2, pp.
717-749.

Foxley, E. and Feddag, A., “ A Syntactic and Morphological Analyzer of Arabic
Words,” Proceedings of the 2nd Cambridge Conference on Bilingual Computing in
Arabic and English, Cambridge University, UK, Sept. 5-7 1990.

Feddag, A. and Foxley, E., “A Lexical Analyzer for Arabic, ” International Journal of
Man-Machine Studies, Vol. 38, Feb. 1993, pp. 313-330.

Gembi, K. M., Farrash, A. A., and AlHarbi, A. S., “Q sl 3l ga) 8 Bilies Gl o
iyl ad> N Proceedings of the 14Th National Computer Conference, Riyadh,
Kingdom of Saudi Arabia, 1-4 Apr. 1995, pp. 2-18. In Arabic.

Gnemi, M. A, “—ddiy o3 Proceedings of the 2nd Computer Arabization

Symposium, King Saud University, Saudi Arabia, 27-30 March, pp. 127-152. In
Arabic.

Goraine, H., “Machine Recognition of Arabic Text,” Ph.D. Dissertation, Computer
Science, University of Reading, UK, 1990.

Gries, David, Compiler Construction for Digital Computers, John Wiley, 1971.

Goraine, H., Usher, M., and Al-Emami, S., “ Off-Line Arabic Character Recognition,”
Computer, Vol. 27, No. 7, July 1992, pp. 71-74.

Hahn, Harley, The Complete Guide to IBM PC AT Assembly Language, Scott,
Foresman and Company, 1987.

Hamado, A. “Uoomwsy sllas U1 od b g all 8al) IS ol Jo-1 0.7 Proceedings of the 2nd
Computer Arabization Symposium, King Saud University, Saudi Arabia, 27-30 March
1994, pp. 25-38. In Arabic.

[Ham94b] Hammouri, A., “An Arabic Lexical Database to Support Natural Language Processing,

[Han85]
[HES36]

Ph.D. Dissertation, Computer Science Dept., Illinois Institute of Technology, USA,
1994,

Hansen, P. B., Brinch Hansen On Pascal Compilers, Prentice-Hall, 1985.
Hegazi, N. H. and Elsharkawi, A. A., “Natural Arabic Language Processing,”

Proceedings of the 9th National Computer Conference and Exhibition, Riyadh, Saudi
Arabia, 1986, pp. 10-5-1 to 10-5-17.

105

[Hed75]

[Hen90]
[Hil90]

[Hol90]
[Hol91]

[Ibr91]

[Hun85]

[IDF89]

[Jam91]

[(JW74]

[Kal85]

[KC91]

[KH93]

[Kha86]

Hednick, G. E., Editor, Proceedings of the 1975 International Conference on ALGOL
68, Section 1- Survey of ALGOL 68 Compilers, Oklahoma State University, Stillwater,
June 10-12, 19975.

Hendrix, J. E., A Small C Compiler, Second Edition, M&T Books, 1990.

Hilal, Y., “ca,2dl syl codd s 3 o5\, Proceedings of Using Computers in the
Islamic Sciences: ie, 2Jipslel f opuld]plisent §,4, Jeddah, Saudi Arabia, Nov. 11-13
1990, pp. 235-253. In Arabic. ’

Holub, Allen ., Compiler Design in C, Prentice Hall, 1990.
Holzner, Steven, Advanced Assembly Language, Brady, 1991.

Ibrahim-Shaker, M.M., “A Fast and Expert Machine Translation System Involving
Arabic Language,” Ph. D. Dissertation, Cranfield Institute of Technology, UK, 1991.

Hunter, R., Compilers: Their Design and Construction Using Pascal, John Wiley,
1985.

Ibrahim, A., Douglas, J., and Fahhmy, A., “Arabic in Machine Translation,”
Proceedings of the First Cambridge Conference on Bilingual Computing in Arabic
and English, Cambridge University, UK, 1989.

Jambi, KM., “Design and Implementation of a System for Recognizing Arabic
Handwritten Words with Leaming Ability,” Ph.D. Dissertation, Computer Science,
Illinois Institute of Technology, USA, 1991.

Jensen, K. and Wirth, N., PASCAL User Manual and Report, Second Edition,
Springer-Verlag, 1974. '

Kaldirm, O., “Architecture of Arabic Computer,” Proceedings of Computer
Processing of the Arabic Language, Vol. 1, Kuwait, April 14-16 1985, pp. 1-7.

Khan, EH. and Chaudhry, F.I., “Contextual Analysis Approach for Arabization of a
microcomputer,” IEEE Transactions on Consumer Electronics, Vol. 37, No. 1, Feb.
1991, pp. 86-95.

Khayat, M. G. and Hanadi, M. A., “i)l 2 edd RJ91 Jladh 3 JWs1 01,9 33t Y1 Ja2)”
Proceedings of the Arabic Language and Advance Information Technologies: il
Letall 5L plall ol2id)y 4y #J, Casablanca, Morocco, Dec. 8-9 1993, pp. 57-70. In Arabic.

Khayat, M.G., “Printing Arabic Text Using Dot Matrix Printers,” Sofiware-Practice
and Experience, Vol. 16, No. 2, Feb. 1986, pp. 165-172.

106

[MAS5]

[MA94]

[Mac90]

[Mah85]

[Mah94]

[Mak91]

[Man85]

[Man90]

[Man95]

[Mic88]
[Mic92]
[Mic93]

[Min87]

[Mis93]

[MM37]

Mandurah, M. M. and Al-Musa, A. O., “The use of graphics to generate high quality
Arabic characters, ” Proceedings of the 8th National Computer Conference, Al-Kobar,
Saudi Arabia, Oct. 1-7 1985, pp. 1031-1041.

Mandorah, M. M. and AlSalman, H. A, “pls nshs ¢ 52 (B8 el Lds (3 o puldd
okl p 3 01,3 e, Proceedings of the 2nd Computer Arabization Symposium, King
Saud University, Saudi Arabia, 27-30 March 1994, pp. 197-210. In Arabic.

Mackay, Pierre (Editor), Computers and the Arabic Language, Hemisphere Publishing
Co., 1990.

Mahjoub, A, “A New Definition of True Arabization,” Middle East Computing, No.
27, Nov. 1985, pp. 61-65.

Mahmoud, S., “Arabic Character Recognition Using Fourier Descriptors and Character
Contour Encoding,” Pattern Recognition, Vol. 27, No. 6, 1994, pp. 815-824.

Mak, Ronald, Writing Compilers & Interpreters, John Wiley, 1991.

Mandorah, M..M., “Architecture of an Arabic Computer,” Proceedings of Computer
Processing of the Arabic Language, Vol. 2, Kuwait, April 14-16 1985, pp. 8-26.

Mandorah, M. M., “ady! 5 e s 3 SLdL” Proceedings of Using Computers in
the Islamic Sciences: e 2 pylell 3 o guld] plisiz) 5,4 Jeddah, Saudi Arabia, Nov. 11-13
1990, pp. 191-208. In Arabic. -

Ma.ndorah, M M., “C)\—‘)l#l\)_.\0-9 L_J g.',._g)-l".“ G_.a\}g) r—el—';h ChL.L Ja_:je"v_’j‘ Q\.,lh.‘;«_) w..p\" »
Proceedings of the 14Th National Computer Conference, Riyadh, Kingdom of Saudi
Arabia, 1-4 Apr. 1995, pp. 476-489. In Arabic.

MicroSoft, MS DOS User’s Guide Arabic Supplement, MicroSoft, 1988.

MicroSoft, MS-DOS Arabic Support User’s Guide, MicroSoft, 1992.

MicroSoft, Microsoft Word- iy i sl piszdi L5, MicroSoft, 1993. In Arabic.

Project of introducing of computing to public school system, Ministry of Education,
Internal memo, Technical committee, Jan. 87.

Mischel, Jim, Macro Magic with Turbo Assembler, John Wiley, 1993.
Mahjoub, A. H. and Mandurah, M. M., “Current Issues and Future Directions in

Computer Arabization, ” Proceedings of the First K.S.U. Symposium on Computer
Arabization, King Saud University, Saudi Arabia, April 6-9 1987, pp. 1-27.

107

[MM94]

[MM95]

[Mor90]

[Mou87]

[MP86]

- [MSF88]

[MT95]

INA94]

[Najla]

[NEE88]

[NH94]

INM91]

[PD82]

[Pem80]

[PP92]

Mahmood, S. A. and Mandorah, M. M., “iysml> odas b5 gdas O Wplidasy (SIS 42 ot ey
.53, Proceedings of the 2nd Computer Arabization Symposium, King Saud
University, Saudi Arabia, 27-30 March 1994, pp. 47-94. In Arabic.

Mankai, Chafia and Mili, Ali, “Machine Translation from Arabic to English and
French,” Information Sciences, Vol. 3, No. 2, March 1995, pp. 91-109.

Morfeq, AH., “BAYAN: A Text Database Management System for Arabic
Enginecring Documents,” Ph.D. Dissertation, Computer Science, University of
Colorado, USA, 1990.

Mouajed, M. B., “APG INGRES: An Arabic Interface for INGRES Base,”
Proceedings of the First K.S.U. Symposium on Computer Arabization, King Saud
Umversity, Saudi Arabia, April 6-9 1987, pp. 127-134.

Murray, William H. and Pappas, Chris H, 80386/80286 Assembly Language
Programming, Osborme McGraw-Hill, 1986.

Mosich, D., Shammas, N., and Flamig, B., Advanced Turbo C Programmer’s Guide,
John Wiley, 1988.

Mostafa, S. M. and Takrony, Y. S., “Computer Assisted English to Arabic
Translation,” Proceedings of the 14th National Computer Conference, Riyadh, Saudi
Arabia, 1-4 Apr., 1995, pp. 429-442.

Noah, A. S. and Ahmed, A., “53> Lol el 1iy 2l Ly At G " Proceedings of the

2nd Computer Arabization Symposium, King Saud Umversrcy Saudi Arabia, 27-30
March 1994, pp. 1-24. In Arabic.

Najla User Manual, Saudi Computer Industries. No year.

Nazif, A., El-Dessouki, O. I., El-Dessouki, A., and Ahmed, M., “An Expert System for
Understanding Arabic Sentences,” Proceedings of the 10th National Computer
Conference, King Abdulaziz University, Jeddah, 28 Feb.-2 March 1988, pp. 745-760.

Narayanan, A. and Hashem, L., “Finite-State Abstractions on Arabic morphology,”,
Artificial Intelligence Review, Vol. 7, No. 6, 1994, pp. 373-399.

Narayanan, A. and Mehdi, S., “A Computer Model for Transliterated Arabic,” Applied
Computer Translation, Vol. 1, No. 3, 1991, pp. 5-28.

Pemberton, S. and Daniels, M. C., Pascal Implementation: The P4 Compiler, John
Wiley, 1982.

Pemberton, S., “Comments on an Error-Recovery Scheme by Hartmann,” Soffware-
Practice and Experience, Vol. 10, No. 3, pp. 231-240.

Pittman, Thomas and Peters, James, The Art of Compiler Design, Prentice-Hall, 1992,

108

[Pys88]

[QHA93]

[RS93]

[Sam72]

[Sau86]

[SC92]

[SC95]

[Sch89]

[Smi90]

[TA90]

[Tab93]

[Tay87]

[Tek90]

[Tib81]

[TNS$6]

Pyster, Arthur B., Compiler Design and Construction, Van Nostrand Reinhold, 1988

Qafani, A. S., Hamruni, B. M., Al-Kharashi . A., and Evens, M. W., £ 345 &l jlas
Al et 26y il Y1 bl Ges g, Proceedings of the Arabic Language and
Advance Information Technologies: iwtidl i iloglell ol ity iy i i il Casablanca,
Morocco, Dec. 8-9 1993, pp. 259-278. In Arabic.

Rafea, A.A. and Shaalan, K.F., “Lexical Analysis of Inflected Arabic Words Using
Exhaustive Search of an Augmented Transition Network,” Software-Practice and
Experience, Vol. 23, No. 6, June 1993, pp. 567-588.

Sammet, J. E., “Programming Languages: History and Future,” Communications of the
ACM, Vol. 15, No. 7, 1972, pp. 601-610.

Saudi Soft., A/ Mussaed Al Arabi, Jeddah, Saudi Arabia, 1986.

Suleiman, Khalid A. and Citrin, Wayne, “An International Visual Language, ”
Proceedings. of IEEE Workshop on Visual Languages, Seattle, Sept. 1992.

Suleiman, Khalid A. and Citrin, Wayne, “A Visual Approach to Programming
Language Internationalization: An Arabic Case Study,” to appear in Language
Problems and Language Planning, Vol. 19, No. 2, 1995, pp. 113-132.

Schildt, Herbert, Advanced Turbo C, Second Edition, McGraw Hill, 1989.

Smith, B., “Around the World in Text Displays,” Byte, Vol. 15, No. 5, May 1990, pp.
262-268.

Tayli, M. and Al-Salamah, AL, “Building Bilingual microcomputer Systems,”
Communications of the ACM, Vol. 33, No. 5, May 1990, pp. 495-504.

Tabaza, K., “Windows on Arabia,” Byte, Vol. 18, No. 7, July 1993, p. 48.

Tayli, M., “Integrated Arabic System,” Proceedings of the First K.S.U. Symposium on
Computer Arabization, King Saud University, Saudi Arabia, April 6-9 1987, pp. 135-
143. '

Tekfi, C., “Design of a Computer Information System for the Algerian National
Archives,” Ph.D. Dissertation, Information Science, The City University, London, UK,
1990.

Tiberghien, Jacques, The Pascal Handbook, Sybex Computer Books, 1981.

Tayli, M., Nafisah, M., and Shahin, S., “Intelligent Arabic Workstation,” Proceedings

of the 9th National Computer Conference and Exhibition, Riyadh, Saudi Arabia,
1986, pp. 10-2-1 to 10-2-8.

109

[UN84]

[WHS6]

[Wir71]

(WQ72]

[You88]

[ZRNS7]

United Nations Development Program Regional Bureau for Arab States, “Computer,
Informatics, and Development in Some Arabic-Speaking Countries,” Mission Report,
N.Y., July 1984.

Welsh, J. and Hay, A., A Model Implementation of Standard Pascal, Prentice-Hall,
1986.

Wirth, N., “The Design of a Pascal Compiler,” Software-Practice and Experience,
Vol. 1, No. 4, 1971, pp. 309-333.

Welsh, J. and Quinn, C., “A Pascal Compiler for the ICL1900 Series Computers,”
Software-Practice and Experience, Vol. 2, No. 1, 1972, pp. 73-77.

Young, Michael, MS-DOS Advanced Programming, Sybex, 1988.
Zyoute, M., Rajouani, A., Najim, M., Ouadou, M., and Chiadmi, “Speech Synthesis of

the Arabic Language,” Proceedings of the First K.S.U. Symposium on Computer
Arabization, King Saud University, Saudi Arabia, April 6-9 1987, pp. 88-89.

110

APPENDIX A

APE MESSAGES

This Appendix consists of the messages that are generated by the APE. There are
three types of messages: informative messages, error messages, and dialog messages
(require a response from the user). Each message will be shown here exactly as the APE
displays it, along with the English translation and the main cause for generating this

message.

A.1 INFORMATIVE MESSAGES

“Successful Compilation. Please wait for
preparing the program for execution”

This message is displayed when the user
compiles a program that is free of errors and
the assembling and linking is in progress.
This message will disappear automatically
when the program is ready for execution.

“This word does not exist” (OK)

This message is displayed when the search
for a word reaches the end or the beginning
of the file without finding that word.

111

A.2 ERROR MESSAGES

CAUTILITIE\ARAB_ED2(pocx.ap :uilel 263 o0 oSaill o)

112

“Unable to open the file <file-name>"
(OK)

This message is displayed when the user
tries to open a file that is not found in
specified path.

“Unable to open the file because it is a big
file. Please try another editor” (OK)

This message is displayed when the user
tries to open a file that is more than 32K.
The text window in Visual BASIC can hold
only up to 32K.

“The name is not acceptable” (OK)

This message is displayed when the user
enters some special characters (such as +, |
or ;) as part of the file name.

3

“There is an error in the file name or in
opening the file” (OK)

This message is displayed when the system
cannot open the file due to corruption in
the file name or overflow in the memory.

“Correct the errors in the program then
recompile it” (OK)

This message is displayed when the user
tries to execute a program (by clicking the
red traffic light) that has some compilation
errors.

i

apotd] JSwly

@ 2ol gl sl pb Uos Il

“There is an error in the file name” (OK)
This message is displayed when the user
tries to compile a program that has not
been saved (its name is still ‘Untitled’ or the
compiler could not find the file name.)

“Unable to do the compilation” (OK)
This message is displayed when the
compiler (APC) was not found in the
expected path. (for example, if the user
somehow deleted the compiler or altered
its place in the directory).

“Unable to do the execution” (OK)

This message is displayed when the tasm or
tlink is not found in the expected place or
the executable file was not found in the
current directory.

“There is a logical error that prevents the
creation of the executable file” (OK)

This message is displayed when the
compiler (APC) produces an assembly
code that is not recognized by the
Assembler (tasm) or the Linker (tlink). In
this case, please notify the author.

“There is no compilation for this program”
(OK)

This message is displayed when the user
tries to print the compilation window while
there is no compilation window.

= o

9 043) lias ol 8,55 b clisso 39250 TEST.AP uilel

114

“There is no execution window” (OK)
This message is displayed when the user
tries to print the execution results while
there is no execution window.

“Unable to print the results because the
output size is very large” (OK)

This message is displayed when the user
tries to print a larger than 32KB file.

“The file <file-name> already exists. Do
you want to overwrite it?” (YES, NO)
This message is displayed when the user
tries to save a file by naming it with a name
that already exists.

“The file <file-name> has been changed.
Do you want to save it?” (YES, NO,
CANCEL)

This message is displayed when the user

tries to leave the APE or close a file without
saving it.

APPENDIX B

LIST OF WORDS AND SYMBOLS IN THE ARABIC PASCAL

The following are the lists of reserved words, predefined types and identifiers,

built-in functions and procedures, and symbols in English Pascal and their
correspondenbes in Arabic Pascal.
B.1 RESERVED WORDS
AND 3 | NIL g6
ARRAY B yhan B yinan NOT ™
BEGIN R AN OF o
CASE A W OR Sl
CONST et PACKED N VR
DIV o PROCEDURE | i l.¢ (ilee
DO Josl ¢ Lest PROGRAM o
DOWNTO Aoy dl Jyy RECORD Jo
ELSE iy oVl REPEAT LS
END Gly Al SET P PR
FILE ks THEN 26 (b
FOR r_ﬁs TO B et
FUNCTION | 4is s TYPE ¢ 5
GOTO st () ml UNTIL o
IF R] VAR ki
IN . S WHILE Ut

115

LABEL

Ol g

WITH

MOD

S

FORWARD*

5y

* “FORWARD?” is not a reserved word,; it is the only directive in Pascal Language.

B.2 PREDEFINED IDENTIFIERS AND TYPES

INPUT J INTEGER s
OUTPUT o’ BOOLEAN i ¢ gilass
CHAR) - REAL 6;:;,. ¢ L};t;?
FALSE o (llam TEXT »

TRUE Ay

B.3 BUILT-IN FUNCTIONS AND PROCEDURES

(1) Functions
ABS Gl ORD iy
ARCTAN W 3 PRED Sl
CHR S O ROUND |, L
COS Lo SIN .
EOF ¢ SQR o
EOLN o % SQRT Y e
EXP A u'j SUCC b
LN N TRUNC | ;,
ODD S35 ¢85
(2) Procedures
DISPOSE salZ RESET oe) 3 (Bl j3
NEW NYRES REWRITE WS (s
READ L WRITE 1
READLN o i 1 WRITELN oS

116

Note: Procedures GET, PUT, and PAGE are not implemented in the Arabic Pascal.

B.4 SYMBOLS

The following are the symbols that have been changed in the Arabic Pascal. The
symbols that are not mentioned here are the same in both English Pascal and Arabic

Pascal. The character “E” is the E-notation in real numbers.

English | Arabic English | Arabic English Arabic
< (19 , ‘ > <

()) C <= =>

5 ¢ E o >= =<

{ } } {] [

= = < > []

117

APPENDIX C
SYNTAX DIAGRAMS FOR THE ARABIC PASCAL

The following are the syntax diagrams which precisely define the syntax of the
Arabic Pascal. The usual conventions of syntax diagrams are assumed. The circles stand for
terminal symbols while the rectangles stand for non-terminal symbols. The last two pages

of this Appendix give the syntax diagrams of the built-in functions and procedures.

| Ul ol JSGa1 ()
O3 OO {= @50 Ceiop D

>

:

1b grlo

B3 T et Joes YT 2 (2) ST ke b L2 BLAYY s OB g 5ad B (b gp il B > (1)
9 s el D7 80 sk 3542 V1 (3)

118

ﬁ. 3

Olyall i ()

< 5 (5)

PR

4___‘: ’4 EEER YRR PRI |

(e =1 4—@4— E"‘ @

o IEIE NC

—— O] A O D
—(()—s

Y

¢ oum (6
A (7
el 9 (8)
i dadt o (9) ey
HES (10) 'y LU\ 4
Ol gl iy 7 (4)
Ol g
(O >
| -l (S)
Cul

¢ 531 2 (6)

! et (7)

el iy 4 (8)

—De —O ol s (13)] ot @) —Cad——

sy

(O] =+ B fr L e 25 o

EDt

11 (9)

(e oobalt s (13 l‘— ! (2‘——

SO O " " S’ g g Al g 151 o £ 5 T T 9T B O gt 5T 10T g l” A el

119

— U\)—F_UJ-‘\J_ZL‘\(]-‘]') L_i_(> | S 4 e by Y s sae

iz (10)

<&

<l (11)
< l_.—g,..:—\.:—lhr €5)
e o 5,29
@ @
sk pds

'C"?U‘Uh‘-‘iiﬂf"p—“ gi&éﬁ"qb‘&aﬁi" O
B doy o § e 0 0T Gty M OSLOTY C pd Je st Vg Thy 5T 2

Loy ¢ 5 (15) l‘_ z}.M 12)
aim #5160y |
— = —————
¢ Ko g1 ¢
A a8 e

aww_wms a3

| O
PP iGN e Fo

y(©)
"/

>

S " R Cne” 2y By Al 191 o g 98T 1T ST D Bl st ST T gl 2l

olge 0gb A2 (14)

A

r' N

G =G —
el W (19)
1) ada 20y

Y- 21

1
L
I
1
|
L
| W il (22)
Il ,5_da (23
— A_4= (24)
{
L
|
L
|
L

B S S Y Y S T

Iee da (25)

d o3l i (26)
¢ 1 40

. N S

120

L g 5 (15)

=g ¢ (16)

>

" W 8" g7 gud 3 Bms sl (T 25 " i § 5 p getl” byl

(el = 248 &
e e
g Gk £530) f—7— Sa_e 5 (A7)
J— =2 153D
—] - £532)]
— A £ 533) P—JV

5t 5 A8

5 Ay '

P P) G t— — g)

13)_il> (20)

S D B D

&
<

d-_ad= 21)

G H O e dly G o, i G5 fe—@e—
@, ©,

Uz (22)

CFD— o, 55 35

"l ¢ g oo \gonas 0555 01 4y L Koy 1 Syt el

121

)5 _N= (23)

—{ %2 T 3% & = d0) r@“—
A 4 ’(:)—’
S g 9 e gt 05T OF WY e Bipl J1 Byt 1dB pocle

8_Ux 24)

di_o»3 iz 26)

Sl g ¢ (27)

I (D e Sl_¢ 4 (28)

31034y o3 (29)

OO g
COTO T T O e

-~

A
|
;;

y X

(R YY) Bt el phisket e)7 &y e Ao J) LT J e 5 oS0t sl § 2t 2 pnle

4—————-[%@ (e By 5 30)
- 4—@1— (1) C by -
L &) N

s ¢ 5 27— ket £9 3D
—s Ss_¢ p (28)]‘—_
| o508 ¢ 5 o ! o o

>

122

¢ 1' / }M f;}; P nd ?..w‘ k -
— O o & oD ———
A 4 Ic
O
e @@ D Gl ¢ 5 33)
2 N\
) \CalP)
G’Jlb)’da
2 ol (el e £ 5 o 05501 87 g pl” (1)
Edfydlﬁ=ua.3 Zéw‘ﬂ‘&d&dhwéﬁwd}uwﬁ"&r(z)
2l 34)
O

— L ol rmmele o Ea—
[Dl

N
_ /¢

Loy 5 35)

S

Uaew L2l o3le 36)

— ey, w3 }—J'

ooty 3,Le (36)

e — Ot aw)

iy BY%e (37)

"@a—.‘«e Ll 8 e (36)]

$& &S & & o

.(44) 3 (43) 3 (42) ‘.5))EJ\ Aol ailes b Z.G}c,.él ib)’c.b
AL (38)

) e 39 [
@ Q9 ‘
123

¢ (39)

A

N
O—_z2y, 30235 f—O—

(e GO D]

‘—{—Q‘-I—J oy 3 35— i
)

C Rl
C o e
RGB! > &Yz (40
&= oo @
‘ Gl (41)
‘) [Lo

{ph ot Nt oy ST S bl

16 50l J 1 (42)

“ﬁﬁ' 19,&._3550 (43)'4—_@————{ ls«r}.'\o,,,a;c }1

@

4,_{ e pest WM (43) ¢ s T T { it BHe (43),0—l

s B (43)
< C%} 7 f] iyt Jlo (4 ——
i:&r;_ e @4 :J‘v'\i—»a;r;. s (44 B
ot e @9
=l
it B @3) ()
De—3 | Berd o ok O—
L)
N/ v

124

Built-in Procedures and Functions in the Arabic Pascal

A ISl B 885 bt Sldaalty J1 gl

Loy 1 J1gllt (45)

Q= = 3—O— T N ¢
?é%? PP

22 gl
iy J\i.m W Dbt Jpidy o1 el @ it ot B Gondt Gy paddt e ey 185l 381 g5 OF 8
.(Section 5.2.4.6)

16 A1 J1sdll (46)

S gt ehisat Wl 3" e g g op 0580 OF WY il et 1B el

eg

uﬂ-&) Lo i daal! (47)

—(O+— Freso e ® <=
e

LS g el 3 i Lanll (48)

OO0 uwr«‘

131 14 desll (49)

A3 O = (D

125

;h.a_f}! :idasll (50)

o okt O 2o O G D

S el O;yoﬁoi_..g‘,am 4b gl

g...':f‘ :w‘ (51)

N
Y N’
(O [ST _J30) FL‘L(D‘—l TR v © e ColD o
1 2oy 32 3% jex(De—] T e
(O
NS

}n—a_g._,..‘f‘ 14 doal! (52)

h

P o ®

S ST felas (53)

>

| ey, 535 O SEC
4.____—L W\.:J o)L&(35)

[, e (35) }‘—@‘——l o b <35>J‘—@*1—'L Ty e 35)

Sl Cﬁwoﬁoigy@\l)g%w‘w*
."&SEEU'J(HC"M" C);y;,)ggihy@g)‘a)w|wﬂ
S e 85T OF WY By J1 8 jlalt T FF

126

APPENDIX D

ERROR MESSAGES

The following is a list of the error messages along with their English translation.
There are two types of errors related to the Arabic Pascal language. The first type of
errors is the compiler generated error messages which are caused by syntax errors in the
user program. The second type of errors is the run-time error messages which occur

during the execution.

D.1 COMPILER ERROR MESSAGES

Cannot open the source file
Unexpected end of file
Invalid number

Invalid fraction

Invalid exponent

- Too many digits in the number
Outside the real range
Outside the integer range
Missing left parenthesis
Missing right parenthesis
Invalid expression

Invalid assignment statement
Missing identifier

Missing assignment symbol =

127

gl Gl g e Sl 3

g Gl 3 B g g

Jyde b o3)

pie 28 (§ S

Jie p8 oV e !

Lw 58 3 01 3 UG s

G 3w el Sl s 3
gl 8 4 g peedl Sl gl 3)
i (i

55in 7 A

Uk b By M Gl

Updo b "=t Jamardl

5 sia pacli

85 5ike '=1" pnesudl Le

Undefined identifier
Invalid statement
Unexpected symbol
Missing PROGRAM word
Missing BEGIN word
Missing semicolon
Missing DO word
Missing UNTIL word
Missing THEN word
Invalid FOR control variable
Missing OF word
Invalid constant
Missing constant
Missing colon
Missing END word
Missing TO or DOWNTO word
The identifier has been defined before
Missing equal sign =
Invalid type
Not a type identifier
Invalid subrange type
Not a constant identifier
Missing range symbol
Mismatch in types
Invalid identifier usage
Incompatible assignment
Min. value greater than max. value
Missing]
Missing [
Invalid index type

128

e

Uppie g ol

G e 3 2 b i SN

33 yiie 'y ' 25"

35 paas Tl 25

35 yaa0 't b yalt Aol

55 yadn ' Jast 287

35 yhin | o' A8

55 yaie 'O S

e g 1S oo 3 Sy (U il
82 jah o

Jpede g8 oo

5 yaie)

syaaa s A

85 yide Hylg' Lals

Y TR NPT RN NCY

Wl il Ll (g o5 é A

ssiia =" O 4

dyedn pb g

ol 28kl ¢ 1531 il

J e s 3 Ll Gl

e oy B8 5o 055 o ot

O yaie "' Oldaid

Wbl e pb g 1Y

pezeld (bl plusn

g 3 Q3 ol L 0L

S Ak e (ST 81 ab

RPN g

PRvI I N

gohe p Byaall Jds ¢ 5

Missing period

Too many subscripts

Invalid field in the record

Nesting too deep

Already specified in FORWARD
Wrong number of actual parameters
Invalid VAR parameter

Not a record variable

Missing variable

Code segment overflow

Stack overflow

The label is invalid or missing: expecting an
integer between 0 and 9999

The label is not defined

No label corresponding to GOTO

The label has been used before -

The set has more than 16 elements

File must be of integer, real, or char type
The left double-quote is missing

The pointer is not defined

The variable is not of file type

The file name is missing

The file has not been opened for reading
The file has not been opened for writing
The variable is not of pointer type

The pointer symbol “*” is missing
Relations “>° and ‘<‘ are not accepted in sets
The expression is not valid in sets

One of the variables is not of set type

Too many syntax errors

129

VS PR P,

55 B ginaall Y e

Uy 2t Jomcll 3 JiH

S adstlall Jadd sae

'Y LIS g L Bl bad ¢l
zee pb headl S A (3 LM Sl sae
ol oy e 05 0 1Y Jol

o 5 or o il

> yaia gl

SN G ety el i S)

Szt Sl a1l

T 248 18 i 13 yhka 5l ¢ bl O gl

4999 5 o

Loty OTan 18 Ol gzl

O3l dad Gilas Ol g A Y

sl Ol yiall 1da plasezal ¢ a1l

e\ on ST e 5 24 ie s

O g i S e £ 5 e 0559 Of Y Gl

Wile o2 5 Leos £ panadll L3
S b gl

hle £ 5 o md)

3y go pb Glll il

sl A Al e o

S alll e 05,
A5l P om o il

S5 4hie Nzl A

e padl 3 W pde 58 <O S B
ATV TS FCIN S WIIWE & - R 9PL
A pett § 5 oo od Sl o

laor 5 87 lase Y

D.2 RUN-TIME ERROR MESSAGES

Run-time error messages cause the user program to display an error message and
terminate. Run-time errors do not include all errors that may occur during execution.
There are two types of errors that are not reported by the Arabic Pascal. The first is the
errors that need a considerable overhead in the compiler generated code to report them ,
while they are not fatal errors (from the system point of view). Examples of this type are
an integer operation that may cause an out of range result and out of range index values.
Both Turbo Pascal and Turbo C do not perform such checking in their default mode
[BTP89, MSF88]. In this case, it is the responsibility of the programmer to ensure the
correctness of usage. The second type is the fatal errors that are related to the MS-
Window functions. When such an error happens, the MS-Windows takes over any of its
application to report a system error. Examples of this type are out of memory to load the
execution code and accessing a protected area in the MS-Windows. The MS-Windows
(including the Arabic versions) display these errors in'English. The following is a list of

possible run-time error messages that may occur during the execution.

The entered number is not an integer Ugeao s o G513 o F (1 (31
The entered number is out of the integer range xowalt sasll Sl = w51 5 < U1 (3,
The entered number is not a real Lk s el 513 o sl (30

The entered number is out of the real range skt sual S 7 G515 < F (sl (3)

Error in real number.operation (out of range) (Sl o oty Tkt siasYt (3 o
Cannot open the file for reading e Al Galli s e oSl o3

Cannot open the file for writing Sl Calll s e S o

Out of memory S e et G

Divide by zero S o Ted

Negative number in the square root NSUIIPY I RO

Out of the set limits i gadl Gl g ot oliall 4o

Abnormal Program Termination b b S 3l i g

Stack Overflow Sl Ak 4 5 S

130

APPENDIX E
TEST PROGRAMS

In Chapter 5, Section 5.5, I gave two examples of Arabic Pascal programs along with their
corresponding English Pascal programs. In this Appendix, I will give some test programs
translated directly from a well-known book “Pascal User Manual and Report” [JW74].
These prograrhs are used to test the APC. At the beginning of each example, I will give
the example number and page number in that reference. At the end of each program, I will
also give some sample input and the output. The sample input is usually same as the one
provided in that book. In some programs, the code for reading the input is added if the
original program assumes the input has been already read. Note that some real numbers
are printed by the APC as fixed point real numbers while they are printed in the reference
using the E-notation. The reason is that the APC selects the format that produces the
shortest output (similar to the %g specifier in C language).

The last example, E.23, complements the other programs in utilizing some
concepts that are not examined in that book. For example, the book does not have a

complete program that explains the case statement.

1. Program 0.1 (Page 3)
It Computes the annual inflation rates of 7, 8, 10 per cent for 10 years.
This program mainly tests constant definition, integer and real variables, simple

statements, and repeat statement.

131

{r dsda V.0 el

{ mdandl G laa}
£ Yo = O \:I__lll_il
] 3 & _)__u'u_'l_.e
fq_‘l-+i;:‘.\;l YO VS
€Y,y =: YO Y, =:¥Q Y, =:\a 0 =g i.:.__;i
¢ tg = & o8
§Y, Y Ve = Yo
£ Y, A foYe = YO

£V, r Yo = TS
C(Ye Y S op) wns)
't —

Qo

1.1 1.08 1.07 1[4+
1.21 1.1664 1.1449 27
1.331 1.25971 1.22504 a3
146581 1.36649 1.3108 nl
1.61051 1.46933 1.40255 sgg
1.77156 1.58687 1.50073 6| |
1.94872 1.71382 1.60578 4
2.14359 1.85093 1.71819 8| |
2.35795 1.99901 1.83846 of |
2.59374 2.15893 1.96715 10} |
]

|

7

|

2

=]

2. Program 3.1 (Page 17)

Example of constant definition. It converts the Celsius degree to Fahrenheit.
This program mainly tests constant definitions: integer, real, and string, subrange

variables, for statement, if statement, and round and odd functions.
{\\" iada Y .Y o }
et s50 e e gun}

g i) D e D
XY = aanl oy
Y, A = _1_).4'

g0 = sal

R L S "

§ e e el
-

stel Lol 2 da
Vaal

¢ (o L) g angl
Juet el 1 ol o= dp 0 il

b agl
S(" -y ;T:(ta_'_n.l 'l’;f;).'ﬂ‘l'lé)é)\#—_l)—i;l e U-t" nT:i.)).\)u‘x_'.l.Sl
L AR (a)ga 4 VY

132

§ A e
iud_;';;nﬁl
&(J‘a L.i)u.a___;,:;;_‘d

- an - 1
- a7 w 3
e > 5
- s w T
- 48 -9
- 52 =11
+ 55 »14
- 59 15
- 63 Pk
-+ 66 F19
- 70 w21
- 73 w23
- 77 r2E
- 81 27
< B4 ~29
- 88 31
- 91 w33
- s 14
- 99 e rd
w18z #a9

3. Program 4.4 (Page 24)

Compute hm) = 1 + 12 + 1/3 + ... + 1/n. Examples 4.1 to 4.3 are trivial
programs that test compound, while, and repeat statements, respectively. These
statements are tested in other examples also.

This program mainly tests for statement with downto.

{Y¢ dada ¢ . ¢ maliy}
{o/Y % oo F YT % 4IY +) = ()5 @lua}

QC'L_IA.A: _:;i& I Tlia

fiis 1
f(Verg)ensl 8. = oy 0 ay)
fo =3 z
Jeet VA des g g
/) v ¢ =i g
i(c)un_v.*ﬁﬁ'
e

B TS @ (4o lid] CAUTILITIEVARAB_ED2\P24A.EXE Tl ks o0 0
| 2.92897 10/%]

e

ha

[

i

4. Program 4.5 (Page 24)
Computing cosine using the expansion:

cos(x) = 1 - X/(2*1) + x*/(4*3*2*]) - ...

133

This program mainly tests for statement, while statement, abs and sqr functions, and

reading from a file of real numbers. The original program reads from the standard input.

{ve be o Lt malsm)
pladml Ly "L gl Gl)
O A R A IR T AR D DAL AR B (19 JEW

i(c_)u sd.'s.).n)un__:us e WS P
EVE=p) = el oS

EPTELN
iq_i__{_i_\. HE {.&H—d G A A
frsua %] RO |
iq_i_‘;_i_-; e ala *
asl
¢ ("cosine.inp" ¢ p) st 3
Jeel gl V=g sl
E(Uﬂs ?)i)_il I.}_El
F Y= &
e =2 03
£y = &_,.&é_d
o) & =8 v
Y + d = g §ay

(V) %) [e e =
L A L

g L

(A Y a3 @ ¢ A YA te geas (A VA @ns)

L Vi
s

[=[us] ¢ [TOrasxamea uml ITIEVARAB_ED2\P24.EXE bl 345 s5fd L8|
8.98824781 0.15346222 4]
0.9449569 0.33333334[
0.87758261 0.5

0.54030228
-1 3.1415927} |

Fo~NONn

1

S. Program 4.6 (Page 25)
Compute 7-1/2 + 1/3-... + 1/9999 - 1710000 in four different ways.
1) left to right, in succession
2) left to right, all positive and negative terms, then subtract
3) right to left in succession

4) right to left, all positive and negative terms, then subtract

134

This program mainly tests for statement.

{yo ada 1. el

B Ty e FARERREE S VAL L L L S I A A R A i O e
elend bt (Y Gaadt e)

St ladl W38,y 5 as oo Sl pedl pans [l dl I e) e X
g ol a

el A Dl e ST Y ad) A Y

{ Ot () olad) e ST, Y AR, Jhat

(i) e b

e

¢ p ey suui?(?ii; «Voa au.qY? s?“?) a
i"_l_J_l.\- 3 5 U"_JL“"3 s?_JLu..._! C O

ic__].\..a:'t
b ag

fa e -:1"? fo, 0 = U'"P e, =2 ?T? fa, 0 = \P
§ &y w e u-ﬂi‘)i'.": ?i‘a

Lec | Save A Y =g .?_u_l_‘

Iasl

{osad) Ga LB gadl yaadl } (V- g%Y) /) = a Gy

{ ol e L) sl b e (g2Y) /) = e
{obadl e - s el sjyaadl o6 (g®Y = Veudd) [V = L lay
(ol e Ll ol } (Y = Ve Y)Y = Ly
OIS R S e T

f O PoeY e o= Y s $a et aY a4 =1 LY,

fr o — a pleg Y= Y,

fn ol + o pla = pta ta Hlug b opfa =i pi,

?('IY : Ye U“?_?Y? ¢YY Yo ‘?}u-l h.:l.s‘i
}(\‘ - - U..Z ?_?f? ¢YY 3 Y& r?)uu u_’|5'l

0.693101882935 0.693691699
0.6930975914 0.693097114563 4

6. Program 4.7 (Page 28)

Write Roman numerals. Note that the printed Roman numbers are read from right
to left in the output. Examples 4.8 and 4.9 will be skipped because examples 11.8 and 6.2,
respectively, are expansions for these two examples.

This program mainly tests repeat, while, and if statements.

135

{YA ada V. f malsy)
{ Lol Uy sy

tgoaa) = leyy U

frasea 1opace Py

basl
$Y = e
F7 olaadl) gaandt gl pin L sl WY ") k)
e ") wnsi
B

(7T o) oSt fga =1 (p
deel Veee=< o Ldla
§ Ay e YVooo = o=t ‘-'(“I'I'l")"il i.\.__,l
L‘Ju o“"(u.a (Y]
Ei__!LH Cve = =i *("d")_'i'l i.i__ﬂ
dee) Vee =< Ll
‘i—'l_'L‘_} You — o= o “("C")";‘ i.l__li
g oe=< 4 VI
Ay e Ov = o= ?("l")_'il i ast
Jec | \.-<U_, Lotk
$ Ay Les Yo — =t o i("x")_";l I._\._Jl
Uu °'<un (Y
g Ay Le 6 = =i i("V")_‘Sl E.x..;l
Jeet V=< LJd
§ Ay e V- e = i("i")_';l "-J__il
fpp T Y = o R

- <|.." s

LA LS

i 1

ii 2 fél

1111 wi |

iidu 8 ‘?’il

iux 16| |

Aixxx az ;g
idiix1 6l

diiuvxxec 128 [

ivlice 256 |
iixd 512
1dd1ixxm 1025

iidwuxxxxmm Zous [

Luxxxx 1 mmmm 5096 |}

7. Program 6.1 (Page 37)
Find the largest and smallest number in a given list.

This program mainly tests while and if statements, array of integers, and reading from a

file of integers.

136

{rvy e) L Uy}
{;ﬁ_;%’io_ah_‘:qu ?.J'J).i..aij)_‘;s‘l .Jl_;,g'l}

?(c).n.a tJ:.a_a)_,_,sS[l,)..«aSH :E_al_'l)_.'l

T UL T) e

&C;’I;..a!)_._155'1- .)-..a\‘l (i-it-&gﬁd_)——':l_—u

framia e [o-- V] Usdas 3
{JLadt 3 Sgaga 2} tpuaa e als :

I._‘.__,I

Py Sl Gua (Yo W sy of goniy U a1)
{ Gle o Lo 3

¢ ("minmax.inp"¢ ;). 3

$([d]a «p) T 00 el Yoo)V =r J agild

{ Sy el alag) lel o oV}

€Y =: J el o= SV V] E = kel
Jee | 0> Jd Lddlh
$[V+d]3 = G ([d]G = g Tl

ol G < g 13

ig =)4531 QJLJ)4$y1 < $ 15} i asl
tG = aayl ol SRV > G 1)

Yy Ll

fa o= a8yl ok sy <G ar Fay
!-[; - _).ﬂ.-ﬂY' L.Ju _)MY‘ > <$ 1'-2'!

Ay les

£Y + Jd=:

(R P

o4 o= Jd 1)
[o]d =: =S¥ oL sy < [g]la) 3)
tlo]d =: ma¥) gl aa¥) > [g]d V3 Yy
fg nll)
f @ng)
f(omaY) "= paa¥l T sV M= sV T) e nk)
cA L

7 -2 4] 3 -6 ¢ 35 12 -3 -5 88 7 9% 68 3
L 5 43 52 88

-6= _asil o= I

SRR

R
N

el

137

8. Program 6.2 (Page 38)

The program plots a real-valued function f{x)= exp(-x) * sin(2*pi*x). This
program extends program 4.9 (page 30) to print x-axis. The x-axis is printed vertically.
Due to the limitation of the output screen (not all the output will show in the output
window, the result of the Arabic program is printed here directly from an output file that
has been opened for this purpose. Note that the left hand side of the x-axis is the positive
side (reverse of the English view).

This program mainly tests for statement, sin and exp functions, and array of characters.
{YA dada Y L1 malia)
(67:77) s * (or)ul = (o) s A el)

o) LV puy gl

I
[

{[Vtoew] 3omddd a3t TV} e, aYe L
{[Vtoew] 3 o0dd) 8 Gyoall dewn (YY) = £
{ Jould Joh gadl } ¢ty = g4k

{ it Haaadl gd,a) ¢vE =

{L* Y} ¢4, YA"VA = YL
¢YY = as

ﬁ.c_,la.a HCENT ekfj'f—.ié.: W e
QA e [J,L .. -] i phae o |

et »

s("sinout"¢) s ey

¢ =1 o
T 12 LA P B P S R P o
Juet an) V=ig aydld
¢ o= [?]i fagl
t(o*Yh) W ()l =
tp t (0Pg)emin =0 o
¢"*t = [O]‘
&(‘ ¢ p)y_nsl
¢ o= [l
¢ b o= o
Lyl
3 e

138

* :
#* .
* .
* .
* .
* :
#* .
*
: * ’
. #*
: *
. *
. *
. *
. *
*
#* .
* .
* .
* .
* X
* .
.
*
.« ®
#*
#*
#*
#*
#*
. #*®
9. Program 6.3 (Page 40)

Matrix multiplication
This program mainly tests nested for statements and two-dimensional array.

{¢0 dada ¥ L1 melig)
{ @ Ushaadl Goal

E(G)i.a cdid.a)sﬁL.ﬁ,Jn.A' G mea L e

¢V = 4 ¢t =a oy n
. .

-

i._.\l
{ "matrix.inp" Gla g <ot ey T8 }
("matrix.inp" « Jw)se) 3
JAG\ 2 ‘r“\ =:d H—i—‘
dueet 5 S V=il andld oyt
s = [Aed] T 6 () wnsy ¢ (oo dw) T i o
¢ Ay e

139

Ew_gésl
¢ Ay e
§w_gé$|

due) 5 o V=rd)
due | g A Y=g auil fagt
b =z g e #le)us) Eoeda) 80 T oy
[S
e _ons)

Q[tsﬁ]@ » [ﬁsd]‘ o T o

o =t [eed]e
() =St
$ A L
w:#ési
$ Ay L
g gl
Ll

|
NEZEg =NU NgsN

10. Program 7.1 (Page 44)
Operations (addition and multiplication) on complex numbers.
This program mainly tests usage of records.

{e¢ Lda) LV mali,)
{aS ,ad) 3121 o alile }

f(z) 2Sme de ma s
¢f = Jale L Bt
8 R

cﬁ;ﬂ HE tc
A e
e N
!c..._;.:ua: O)
£y O ¢y = 1 ag)

> o
¢y = D N =2 e

140

3 6= p -1 10= »
2 16= £ yosad
28 63= o_all Jals

3 6= . -5 1=
-2 208= & sl
12 99= o_all Jels

11. Program 8.1 (Page 51)

Example of set operations.
This program mainly tests enumeration and set types, operations on sets, and procedure
calls.

{e) e) LA maU)

{ole paaadl e JLaa}

!(.}.'si [t:..l...q._} euc.g.n."b i;Ll—.!_:i Pk e B (‘_')_J._'I:”) = ?l__z': &J,_i
S I i
"t)_lui : ke LJ.AC- ﬁt)_,_u.nkjlll Pt B
falal 1 p

(g sml 2 o) paad ple

!?L._:I Doae _)__1.._'1_.0

].___11
§(" ")ns
I BT B e
("o ")enSt U a1
(" 5 ")nst o Y
Eun_n,;i:ﬁ!

141

{aad lea) }

{ g) me it}
f[] =2 e i[] =: Jac
(ol paaaldl 8 Glasll aladnut JodyW Ll ooedl JWLL)
![hi‘ﬁ_}usll_a_'_sc‘y_‘l.nitr. PRI S l—’\ﬁl_‘uo__l_ﬁa'n] - &_,_;....SH

$ g ™ 4

i[.\ai]+'«..l1=:.+[?_,__|] "::_Pu;:-a

$llbe - gyl = Jae

(" an)enst gl g el => Adke)3

(")enst 5L e =< &)_;...NI iR

E(7 eaw ")nsSt U (ke =< Jae)] V)

{ ¥ leon]? sl Ll fesaad dadn Ldadi S leh)

$(M! ahenY T)ensSt o ld Jee => Ulhe 1))

un_h_n_'aﬁi

(B U5 | ([ieili) CAUTILITIEVARAB_ED2VP51.EXE bl 345 we) BRLY|
[+

odd integers in this range.

12. Program 8.2 (Page 54)

prime numbers are computed up to 1000 instead of 10,000. The original program

output undeveloped [JW74, p. 53], however, this program provides an output.

statement, nested control statements, and succ function.

R

i.._.‘ﬂ

Generating prime numbers between 3 and around 1000. using a sieve containing
The program has some implementation dependent constants

(the maximum size of sets). To accommodate the prime numbers in one output screen, the

left the

This program mainly tests sef and record types, compound structures (array of sets), with

(0t dsda Y . A pali)}

g4 Al adnely Ve

PRASIIS ™ I CE | R [WP I R I R RV
RIS N L VR T P | NS | I SR [

g A) Y e e

{Ole jaaall 3 472 yans 222 i} £11 = ol
(Y - &} Yo =

{Y awld a0 auld Voo } Y =

L S et sl o

142

h:l_!l:l

g s

‘c_’xa.a o od SA.u :H
¢ Ay e
“?_S.L_u:g.w ‘c..g;.a] [REILS ‘E‘
f@-ﬂl :\ﬁju
§agl
f[] =: 1:._)\4’
O | I o
‘A_J\

c\s/\s\’s‘coei‘fc\'s\‘n] =: [Q]J)J
i[\oc\ie\fc\\"\\‘\u

1 = [2]e
o) - s e 155
;\ =; Q. W

¢ Lad =2 2y

. deel A aa

e A I B
Q) em o = @ Jue (Pﬂ]JﬂgA @) ot Ll
¢ +

IR P I) Y
¢y + o Y Y = o
¢l = Slg I R
{ S e aeat 3 Jeel Ho=> A< Ladla
fagt
([e] - [WS] 54 - [48] 5
to0 t z <oz §Y*d + &S =@ els
See t d(c o Ua
¢y 4+ A€ = dg ooy
i L
3 Les
§ Ay e

o\l 15.)\4’=[é]_j)4’ (Y]
0 =1 g tQ) ga =AY o
¢ 4 Les

duet (p > d) 4 &Y Ll U
¢y +d = 1 aa

(e, = [d]54) =: oY
_ Ll
{e Lyl } B) | e

{ Y o eV de L)
¢y =: QO
duel M) emig padd
J.AG\ Léur‘) CEIWD H_i_.‘
uu [C]sr‘J‘ w2 o (Y]
§(Y: Y+ pFY A+ A Y)anc) f ot
AR R]
fpoensSt 5L (V= o) 1A
Ll

143

(LA CAUTILITIEVARAB_ED2\P54.EXE bl 34 sail)

&
B
419 409 401 397 as9 383 379 373 367 asy ||
467 163 461 u57 1549 uy3 439 433 431 w21 |
547 541 523 521 509 503 199 491 487 u79| |
607 601 599 593 587 577 571 569 563 557 |
661 659 653 647 643 641 631 619 617 613 fgf
739 733 727 719 709 701 691 683 677 673 %
811 809 797 787 773 769 761 757 751 7u3 | |
877 863 859 857 853 839 829 827 823 821| |
ou7 9n1 937 929 919 211 907 887 883 881
1019 1913 1009 997 291 983 977 971 967 953
1021
-

13. Program 9.1 (Page 60)
Frequency count of digits in an input file. The original program counts the
frequency of letters, not digits. The Arabic Pascal has a limit of 16 elements in the set.

Therefore, counting the frequency of alphabets is not applicable in the Arabic Pascal using

sets.
This program mainly tests array and sef types, and eof and eoln functions.

(V0 dsda) LY pa i}
)’us‘;,gmd..w@aum\w;.?uﬂlwhw o pUY 518 Glaa)
eadl OV moadl Sl b oS 2 VA STy b el e Ao pena S)
{1 i geaelloce

\'{C).Ln sdi._a))'l‘;s—'t_“ c—n_'l_)__l
!C_gm‘_}.n["\ s . JfJ_,_l-n.n J'I{S_’n
g -"Q.QM.‘-'-,.A.}.Q: PL’JI
fpas t 2

¢« ("fcount.inp” ¢ p) el Pui
§['i“'4\.LIV-;.1.s.Q-i"f."{'r"‘“f"("\"s'o.] - ?L‘i_}"
gomr [pdL]0) 083 due) TN) Tetmrad, andld

i_}___;'-
dee ! (po = ot Ll
NS) L4 B (PG P I (S B Y
IR = B) BUSCCIE LR IS B PUSTCCRUES A STV RS PRI
£ 1 Les
(a)oe 18 f e sl
$g e
g Qs
§ o sl

E(':PL:RJM JI).S—'I—“')Q;_@L\S\

144

0 a4
1 -

2 i

3 .

L s,.(_.

5 Ll LS f
6 e] f“ﬁl
7 2

8 o

9

NRNRVNVNEES
A22222220%

14. Program 9.2 (Page 61)

Inserting leading blanks at the beginning of each line while copying it from one file
to another. The original program reads from the standard input and writes to the standard
output, while this program reads from a file and writes to another file (more general, to
test the file operations). Note that the execution window will not show up in running this
program because there is no input nor output to the standard input/output. After the

program source code, both input and output files are shown.
This program mainly tests reading from one file and writing to another file.

{11 e Y L maly)
{ Jhu JS Jad o) 50 JW e LT Gle) Gle ol ynas Jis)}
() 4 Jaal el

Y. =y G lS
il..i)_‘stc e Tra
‘.'uﬂ—i H \'? 6\?
iLﬂ
¢ ("insert.inp" ¢\ p) e 3
¢ ("insert.out" Y 5) i, lng
i;ﬁ
5(' ';Y?);,;;\S'f
(C sY?)g_'nsl i(c s'l?)i_)_!l].___:'l

145

IRASTAR'Z7Y I
+lAYIeLTYY
177¢e

1¥TielvAd ..
+AAVIOEiTYY

15. Program 11.2 (Page 70)

Find the minimum, the maximum, and the difference between the minimum and the
maximum for a list of numbers. This program is an extension to program 11.1.

This program mainly tests array type and call-by-reference.

{ve dada Y LN maln)
pha !y SV o G alagl y A LIV e s LS b eVl SV s ey
VS O O B R P Y i J Sl B S PO "L VN IO (U { I RN

$(goda) pauad)y SV ma S o

Y o= o G ly

‘C—-‘ML}‘(U \]Q_IJ_I.Q.A- 1o Ld £

' G B T [T Y
fpaa 1 Y SV o Y paal¥l o) S ¢) el oJ o
i&j.uao.ad.l.a: 2

¢ (c.&a;a:d]sc Jeprlia f e Lj:,j J.*i;hn) Jﬁaﬂi J,P+Si 1_*_Lnb
{)qi;aﬁy d e d ‘jy &i 3 L&J U‘%J qujy‘ o)ﬁi;la" lA_LS}
£000) P E P ety
i@a.ua:u.ia
B tz -2 4 &[\]é-:e oyl
Jeae u>& Lol s
[Vte]s = G s[g]o = g | agl
b = 8 oLl A< g 13 Tay
ta o= oz ul_% c>\.i 'I:'l:l
Yy Ll
sa o= d U da <G fag

¢ Ay e
AL B)
Ay L
oHd o =g 13
[0]G =: & o4 4 < [glag V)
tlo]d =: g 0B ¢ 2 [o]e 1) ¥,

{ »=Si ymal) § Ay e

1._\.__1!

i("maxfnin,inp"s P)ssi).j

sl e s(t:[g]l)enst o([g]l ca) i A fagl Juet Yoo)Y =0 g anid
fp wnl)

E() SV) Ll B raal Ty s
o Sl s () ¥l =) SV o) SV) el) e ank)

fAylen ¢ (E:[g]w)ens) ¢([g]w «a) f A Fagl Juel Yoo)) =i g ayil
o0 unsl

(Y SV Y el c0) hal ki

$(Yoama¥l = Y sV oY kY oY Al) s

oSl 6 (Y SY =Y sV) Gllhae (Y eV - el) Glha) g ans)

dee! o) V= il
tfelw + [e]f =: [e]l T
i(i:[&]i)@;ﬁ\
$ A L
iuﬂ_u_.l;lsi
E() SV) aaV F) aaal ki
$() oRma¥ !l =) SV) kY o) el) e s

Gl
[E== 1S] ([etiioiaidl] CAUTILITIEAARAD_EDZ2\P70.EXE Tobiod 34 el 00]
B —if 9 9 9 3 -5 23 S a8 7 2 -3 =1 |f
= 1 1 a 79
as 79
a -1 "] a an i 1 -8 B 1 8 a L3 L5
7 L] L] .3 — i -
53 B5
3y
B8 -7 17 12 a3 7 -n 15 BB 9 15 7 mo 3
1z T 7 L' s 7
oS as -

16. Program 11.3 (Page 72)

Procedure parameters.
This program mainly tests the difference between call-by-value and call-by-reference
parameter passing conventions.

{VY Zada oY L)) pa)
{obilaadl Jal e o) i) ole J L}

147

i{goda)dal g i

§§-§-§-¢:u._.rcil)d$_l_a

(e e e fmama op)p Al

i.n_,l
€Y + o= e
¥y, =+ B o= e
‘(U’ suo)u»_l...l:.l_‘n‘-

¢ Ay L

i;__.l

17. Program 11.4 (Page 75)

Construct a program to convert the infix expression into postfix form. The

program uses the recursive approach instead of the stack implementation.

This program mainly tests nested procedures, recursive procedures.

{ve et L)) zalin}

JLie . sy alple I a5 Ll Jypan}
"t 0") Jeann T+ "

SIS Ay (VY e o Lag)l L) edE sl
(+g)* (<)

-= Pt

.J-G ‘(\..J+ !
(3g) ot
frisfe]
,i'*'\T,'(i'i.G'l-.J).c‘*x’;
{

‘.'t..i_):hic Pt i)

148

53)1—:‘ L_:.l.ac.
!&..i_);:&)__u'c_'i_.n

¢ aa dalae

tdale Ailae
oW ")t = 0 Tyl
{=)c} ts,le taa Tap
L s
$(z)ws) Y,
e
{dele } tige
¢ dele |
O I R P %
§("*")ns) tdale o aa) oAl

Dl

{2} e

¢ as b oagl
Jel (= mg) 4l (T4 =) Ll
t(g)ensSt faa ¢ 2 e =t g ol
S

{iole } iyl

¢ ("post.inp"« a)set 3§ oyl
¢ aa
TR ECT
£ e
iuu_g:z_s]
iuw_h_a.:l.s'l
" .=c -
Al

TS R ([sii-i] CAUTILITIEVARAB ED2\P75.EXE Selioel ek wast) B
d

" S

74
= semal gg"
szt |

s

b

m— 2z %?/'
. b

w'l oWl oW 5;‘/

o
i

R Y o T

S

SRS

T

18. Program 11.5 (Page 77)

Binary tree traversal. The original program uses unusual procedure names; it uses
postorder to mean inorder and endorder for postorder.
This program mainly tests pointer and record types, call-by-reference, recursive calls, and

function calls (enter procedure has been converted to a function to test function calls).

149

150

{YY dada o L VY mala)
{15y 5 nd yalie @l yecul }

§(c)$-a 64&.}.&)0’0\ yaZvan § G_.AL.})_\

¢ pade” = Shpe g e
d..;u=)a._:\c
11" S C N ™
e)Ly (G
¢ Ay e
B
éd)A:c
tpp : s

(et) adad Aple
ol gL < g 1a oy
§(Ud./\u:);_l;\5| [y
(o NG) Al
o NG) Ll
¢ A L
§ 4y e
(et) Lk ple
oU gLu <> g ;1‘ o
N PRERAT) RS
(e N sy
(o) by "
¢ Ay K
¢ iy Les
(et) La ule
oUW LU <> G ;3\\ f o
)
¢ (0L NG) g2y
¢ (O V) g2y
¢ (- NG) s
¢ Ay e
¢ Ay Le

£ ga sJdaal g,

¢ g U S

¢ () enS) ¢ (zea) b3 i oy
ou (ll.ll <> C) |‘J\
() =aa o
EC =3 Ud.,\>
fdﬁdi =Z)Lu_|*./\3
= VAW

sdaal = e,

fh = Ja af
§ 2 L

el el b Ty
¢ ("tree.inp" ¢ a)se) 3
tpownll e gl = Haa (" ") s
fo wnST i s
b Sl e (o) las (" ")l
fo enSl e (Lda) gy (7 ")wns)

for BS) 8 53n) Agaay 6(" ")was)

ESTEEE (Peiilad] CAUTILITIEVARAB_ED2\P77.EXE Sobsdl 3 wil) BRED|
73|

S R PN TV |

P8 SETTSSe
r;ﬁ)r 331 ZEoges
3 0P PP STl

19. Program 11.6 (Page 79)

Find zero of a function by bisection. The original program caused an infinite loop
in the second input (for evaluating the cos function). I have tested this program using
Turbo Pascal and the same thing happens. It seems that the problem comes from the
limitation of the real numbers. Therefore, I have added a counter to stop the looping after
100,000 iterations. The APC does not accept a function as a parameter. So, the function
parameter in the original program has been transformed to a boolean parameter that
activates the required function.

This program mainly tests function calls with parameters.

{ve a0zl

{o= Ll apdnl alodnaly A0 e alagy))
E‘pi_uﬂ\-a}.l.m_!'l .:..._;L’.

!q_ie_ia.:unsuuﬂ.i_'l.a

§|4_i___iat(4_i__:_i_\!k,ui E{"_i.h_l.n:i)—ia:l)).in Jloa
{Jw) padl Jal o o aul dgay Jady ol Jsu L}

151

fgipds 1 oS fgdhie oz fgiada 1 g o i i
u){i)L.;-IG ‘_'Ju a_)_i.:.‘...ﬂ :l.x_al

o >(i)l_—lﬁ-:c Y'IJ

$Y =: sa

28

Y+ sae =@ s
£, 0 [(otl) =2 o
(o) =i g oL aodk 13
fo) B =g Y
o= b ool g =(3g) 13
fe = o Y'J
E(Verene, s < sse) o (gales) > (o f)gdhs) ooa
’U’" - _)..in.ﬂ
{ Ha)} Ll

L L
C((o) sa) e cpep)or wBSE (g) TS
E([uncu.u Un.h)J...l.a iunﬁud)w_g_.;.:;_‘n'l i(un ;u.g)‘)ji

g e
IE= I R ([iieiblid] CAUTILITIEVARAB ED2VP79.EXE Selisdl diu
!] 1|
| 15— 7 . 10543 1 —1=
f
I 2
i 1570796251 2
I

20. Program 11.7 (Page 80)
Testing the side effect that may be caused by using functions.

This program mainly tests function calls.

{Av Lda VLN el
RS LI LY [T, e P [R PR S E Y

oAl el
frasa b JURE WY

frsaa D (mema i) b

{)t g5 2B} - 5= Y
Ho)gmoe =0 @

$ Ay e

i__!i

$ (e) el g(5)e = 1 41 =
f(el)p et g(5)e® (Ve)a = b v =
f(oef)p gt s(Ve)a ® (o= T v =

Al

152

TS 3 ([8ieibindd] CAUTILITIE\ARAB_ED2\PB0.EXE Zebisl ks o BB BT

21. Program 11.8 (Page 81)
Compute the value of x to the power of y. This program is an extension to
program 4.8 in page 29.

This program mainly tests function calls.

AV e AL)
(YU e ¢ 0 A mal e ll gl o oma Ll Vi L guaaed Y1 sl }

{l-<ua} ‘.'L"_i___i:\. :(C__léuaiua i?_if_ia.:uu)ij—s L A
§ A I £ JURY S P Y
Y = & f !

Jee) o <p Ldls

Juel (g)god g Ladla §ay

8 Y ?uuon-:un i.__‘d
o) =0
¢ A L
T R A A s
$ A Lo
fg =i b 48
{3}4‘} i—Lgt-qd

(Y, V6104 =: L oyl
((YeY,v)s 88 ¢ ¥V oY,) wngl)
e(Y ‘L)i_,_i-: bha
f(e Y cd)p ng)
(Y che)s oF ¢ ¥ chaa) nsl
((¢ ¢hb)s o3 & cl)y uns)

EXE el 3 BB

128 7 2+
9.86959 2 3.14159 |
97 .408B8 2
97 . 4088 L

153

22. Program 11.9 (Page 82)
Recursive formulation of gcd.
This program mainly tests recursive function calls and procedure calls.

{AY et L V))
{3 o bsadl ladl aladnuly oSV @oniadl s lidl alayl)

(o) 0S¥ _donlall s il ma s
‘.'C'__:.:na DO syge ee I lia

fraeat (Faaeat ¢ a) a Lidl :'t_H..‘.
bag)

po=t LAl gld e=5 130

E(U ,’J‘-L—i 2 sQ)Hu_“ - ?...Li_ll YlJ
{ aw it) eig s

fpane ¢ owel) Goa iple
((\—lni) \,....L.E.J'I s-._.;si)w_n.,ilxsi I ag)
Ay Les

1 agl
i(\'\"\a\)‘__,);_.
!(T\.‘.T;T"n'ﬁ)g_)_'_;
?(a";'i‘.)g_)_'_;
(A"\A;‘ia\)gﬁ

(25 (173 ([ditedsid] CAUTILITIEVARAB_ED2\PB2.EXE 2ol 3 wfid B3

23. Complementary Example

This example is not in Jensen and Wirth book. It contains some concepts that are
not mentioned in that book, namely:
1. Case statement.
2. Built-in procedures: new and dispose (dynamic allocation and deallocation).
3. Mutual recursion. Two procedures, each one calls the other, communicating through a
variable parameter.

4. Call-by-reference utilizing a non simple type (array type).

154

5. Goto statement.
6. Built-in functions: arctan, ord, chr, In, pred, and sqrt.
The full translation of this example is available at the end of this example.

L1

oal
u_;\.ul_“ G—A\)_.x_“ Lﬁ \AJS.\ 3 f‘—‘tr—‘-‘" |
Gy .Y ‘;J_t,th:\\.\' ilw)
O R S O S TR TR TR
edin 5 agaa Lale Lo
{
) . 5‘\‘\‘ O e
fc_gmad.a["'..\]u}_ﬁa.a= IR &}_}
i
¢ masa Jdsh ‘g ¢ lansd

Lighas o8 @ilS 51 LaS Luaje a8 sbsall ol 2%ty dasls o sl)
{ & Lot
g s

t(s bW 0 2 Jeet 80 ple

1A
&(": P d.s.\l")g,\;‘_ﬂ
¢(o-Nas) 8

¢ Ay e

155

I ayt
f(pate) 22
¢(padc)sel 80
¢ e~ e yalic
pade=1 iy
tay e
¢ da 0N pade=1: i 5

{ Hall 5WS gyas pwSe S, Aluludl qngi}
CerLM_

.pLﬂ

&CL = usl..n

LAY S b.bthu bt_b.b
ALBLDVQLVL

¢ A L

1

tdolane o leanut dplec
mﬂﬂrmbhrt[orvlwnw r;LJ_D
m,QL..P.bu thrr.r\p bl.T..n'Jlo

¢ 5al mAﬂlu,V.an blrﬂLlpV iy lee
mAm.r...V.b"L bL.PL.bV, ml_..LLoD
b A
N L S VA S TR FORY I PR Y .
mA&Vr.L
("1 deedt ez Al ") oSl
£ Les
to Agdee
fag)
mA_.r.., U D | B LIS EORY ..Vc..rLl...IA;
¢y + & =3 @
¢ (&) | Gl Gstmaslel => d 13
ArL tlw.bhl: C.bﬂbhr_ VrLI.Md
A, s
{ dobing ¢ e anu) dplec } [y
$ e =1 & Sruita
'AG.»I..r:rbv,
¢ 1 Les

E01 50 Lle

156

¢ dads o an
fQya z
fc_‘\ma . U

bay

C((0) Wsd " = " oY £:0 " Wasd") @nslh ey, 0 = g
(o) don ¢ F = "t " pdat) e qns) 11 =
s((d‘)‘g_‘ ‘" — w ‘2:00 ‘u "J")UM“Q.AQS\ f\. =. Ua
f((g)emnon o =7 cdip Cennn') e ansl "B o= g

(o)l ¢f = " ctip 7 BT) gl
() Yoods " = " et 7 aaaptyda) alh o tAY =

S(c.:x_ma:am: J@suu:w%)sﬁ@_uw iy lae
’ Ec_}ma:t ec_n‘).‘_,u_"\..a
{ J23Yl 8 p sanall wn o cadyly jade Sl owal}olagl
¢ =
L . G—A
Juee | dx Y=:¢ o]
[y
tae + [e]s =0 [e]d
Hlefd + e =i e
¢ Ay \lg
Doda

t

¢

{ @uaisdl me it)
Gl ga =1 Um\y
Jec !t idal 4.
olema¥l daain)ansy
(o lans))1 s
(e)_lﬁ.ﬁ\i\ LIPS
fcﬂ_‘.l.n.n__:_&}_iu)
Ed.!\;“vncrtc\"n..\ HA Y
Ed—\j.! ¢ 0 EY
fagl o1
dsb danlm)qns
s(d}.l,)\)_sx
LI Y Jaal) qns
\=:t ‘H_;_J
b agd
t([e]s)]s
£ L
(" yuprnll day Led LENN ") @ns)
t(Jsh ¢3)3 yaatia 14 58as
Jsba I V=i aaidl
(o [g]d) s

e(" F

i el

‘(
dsb I

‘(

e |

Jae |

157

[ES TS (12— CAUTILITIEVARAB

-
R i B 9HZTOE = 1.5 Lk
2: o daaf B = 66 45 >
3: 500 2.00259 = 10 |
N: o, Jba 66 = [
S:opeL Jes L L
B Jaslf 9. BT g le
1]

ﬁ: Wz lcadl et

B 2 a Eﬁ B.9R279K = 1.5 Liye
2: Lyl Jast [8o, oG um.e
eIl I kel Y ipdaadl ol e z.stzz:: N
o el ol el L R S T T Sy T e :""C
[T T | I [) QR S S | R TS : 9 - w1 ‘rh
v hlaadl oI JEal bt el B L
1 el g gl O S B e] 6 (IS L B T |
1 adadl o gl - el e g el S: 0 atlail gy das)
; sl e gl v kel e gl 5 noa 2 4: o %l gkt
laadl e EE e e S o P S| R e)
. e wo 10 o 8 7 &

H)1-!-1-_- »
0 sl et
P IS | ISP E] e
Dol ! il 2 [

{This program complements the previous examples.}

program complement (input, output):;

label 99;
type list = array[l..20] of integer;
var

choice, count, len : integer;
cont : boolean;
1 ¢ list;
procedure Stack array;
{ creats and then displays a last-in first-out linked list
it tests the procedures NEW and DISPOSE }
type
link = “num;
num = record
n : integer;
next : link;
end;
var
pl, p2 : link;

procedure reading(new : link);
begin
write ('Enter a number:');
read (new”.n);

158

end;
begin { stack array }

new (pl) ;

pl®.next := nil;

reading(pl) ;

p2 := pl;

while (pl®.n <> 0) do

begin
new (pl);
reading(pl);
pl”.next := p2;
p2 := pl;

end;

p2 := pl”.next;

{ write the list in reverse order }

writeln;
writeln;
while (p2 <> nil) do
begin
pl := p2;

write(pl®.n : 5);
p2 := pl”.next;
dispose(pl) ;
end;
end;

procedure mutualRec;
{ testing mutual recursion }
const maxlevel = 3;
var level : integer;

procedure B{(var k : integer); forward;
procedure A(var k : integer);

begin

write ('Enter procedure A');

B(k);

writeln (' exit from procedure
end;

procedure B;
begin
writeln (' Enter procedure B');
k 1=k + 1;
if k <= maxlevel then A(k);
write('exit from procedure B'");
end;
begin { mutualRec }
level := 0;
A(level);
end; { mutualRec }

159

procedure functions;
{ test some of the built-in functions }

var n real;
c : char;
i : integer;
begin
n := 1.5; writeln('arctan
arctan(n));
i = 66; writeln('chr ',
i :=10; writeln('ln ',
c := 'B'; writeln(' ord '
writeln (' pred
1 := 81; writeln(' sqrt
end;
procedure varArray(var x : list

1
14

i
i

7 C

1

14
'

14

.
4

n:4:2,

var

no:

4
A

14

14

chr(i));
In(i));

14

ord(c
pred
sqrt (

integer);

{ add to each element in the array the list length,

then put the total of all elemtns at the end of the list

(index no+1)

and return the array}

var sum, k : integer;
begin
sum := 0;
for k :=1 to no do
begin
x[k] := x[k] + no;
sum := sum + x[k];
end; _
no := no + 1;
Xx[no] := sum;
end;
begin { main program }
cont := true;
while cont do
begin
writeln;

write ('Enter the choice

read (choice) ;-

case
1
2
3,4,
6

choice of
stack array;
mutualRec;

5 : functions;
begin

write('Enter the list lenght

read(len);

write('Enter the numbers

for count:= 1 to

160

len do

1)

2

)

(
i

) ;
c))
))

4

begin read(l[count]);
end;
writeln('The list after the change
varArray(l, len);
for count:=1 to len do
write(l{count]:5);
writeln; '
end;
0 : GOTO 99;
end; {case}
{ While }

writeln;
writeln('End of procgram');

161

)

AbdulMalik S. Al-Salman
Candidate for the Degree of

Doctor of Philosophy

Thesis: AN ARABIC PROGRAMMING ENVIRONMENT
Major Field: Computer Science
Biographical:
Personal Data: Born in Riyadh, Saudi Arabia, On October 16, 1966.

Education: Graduated from El-Shafa High School, Riyadh, Saudi Arabia, in June
1983; received Bachelor of Science degree in Computer Science from King
Saud University, Riyadh, Saudi Arabia in June 1988; received Master of
Science degree in Computer Science from University of Georgia, Athens,
Georgia in July 1992.
Completed the requirements for the Doctor of Philosophy with a major in
Computer Science at Oklahoma State University in July 1996.

Experience: employed as systems analyst by the Royal Saudi Marine Forces in
Summer 1986 and 1987; employed by King Saud University, Department of

Computer Science as teaching assistant in 1988-1989.

Professional Memberships: Association for Computing Machinery (ACM).

