
ORIGINAL RESEARCH

Automated detection of bird roosts using NEXRAD radar
data and Convolutional neural networks
Carmen Chilson1 , Katherine Avery1, Amy McGovern1,2, Eli Bridge3,4, Daniel Sheldon5,6 &
Jeffrey Kelly3,4,7

1School of Computer Science, University of Oklahoma, Norman, Oklahoma
2School of Meteorology, University of Oklahoma, Norman, Oklahoma
3Oklahoma Biological Survey, University of Oklahoma, Norman,Oklahoma
4Department of Biology, University of Oklahoma, Norman, Oklahoma
5College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
6Department of Computer Science, Mount Holyoke College, South Hadley
7Corix Plains Institute, University of Oklahoma, Norman, Oklahoma

Keywords

Aeroecology, bird roosts, deep learning,

machine learning

Correspondence

Amy McGovern, School of Computer

Science, 110 W Boyd St, Norman, OK 73019,

USA. Tel: +1 405 325 5427;

E-mail: amcgovern@ou.edu

Editor: Ned Horning

Associate Editor: Xuehua Liu

Received: 28 February 2018; Revised: 13

June 2018; Accepted: 6 July 2018

doi: 10.1002/rse2.92

Abstract

Although NEXRAD radars have proven to be an effective tool for detecting air-

borne animals, detecting biological phenomena in radar images often involves a

manual, time- consuming data-extraction process. This paper focuses on apply-

ing machine learning to automatically find radar data that snapshots large

aggregations of birds (specifically Purple Martins and Tree Swallows) as they

depart en masse from roosting sites. These aggregations are evident in radar

images as rings of elevated reflectivity that appear early in the morning as birds

depart from roost sites. Our goal was to develop an algorithm that could deter-

mine whether an individual radar image contained at least one Purple Martin

or Tree Swallow roost. We use a dataset of known roost locations to train three

machine learning algorithms that employed (1) a traditional Artificial Neural

Network (ANN), (2) a sophisticated preexisting Convolutional Neural Network

(CNN) called Inception-v3, and (3) a shallow CNN built from scratch. The

resulting programs were all effective at finding bird roosts, with both the shal-

low CNN and the Inception-v3 network making correct determinations about

90 per cent of the time with an AUC above .9. To the best of our knowledge,

this study is the first to apply neural networks in the analysis of bird roosts in

radar imagery, and these analytical tools offer new avenues of research into the

ecology and behavior of flying animals, with practical applications to wind farm

placement, air traffic administration and wildlife conservation. The NEXRAD

radar network offers a tremendous archive of continental-scale data and has the

potential to capture entire vertebrate populations. We apply existing machine

learning models to a new dataset which constitutes a valuable approach to

extracting information from this archive.

Introduction

Monitoring animal populations is a key aspect of biologi-

cal conservation (Shipley et al. 2017), but effective moni-

toring is often logically and analytically challenging,

especially at over large spatial scales. The NEXRAD radar

network offers an unparalleled means of detecting the

activities of airborne animals that spans almost all of the

continental United States. Unfortunately, identification of

biological activity evident in radar data generally requires

‘significant computational skills and time investment’

(Chilson et al. 2012a), which has resulted in a limited

amount of biological research invested in radar-based

remote sensing (Bauer et al. 2017).

Considerable effort has gone into automatically detect-

ing birds using radar. Radars adapted specifically for bird

detection can identify single small- and medium-sized

birds flying across a fixed position radar beam (Zaugg
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et al. 2008). Similarly, Airport Surveillance Radar (ASR-9)

also can automatically detect birds and small groups of

birds within a range of about 10 km. (Troxel et al. 2001).

NEXRAD radars, cannot detect or track individual birds,

but they can detect clusters of ‘biological targets’ up to

240 km away (DeVault et al. 2013, p. 142). Moreover,

NEXRAD data are freely available and easily accessed via

Amazon Web Services, with archived data extending as

far back as 1991. These radar products have been used to

study bird roosts in the past, but these efforts required

considerable time dedicated to generating biologically

meaningful data without an automation tool (Gauthreaux

and Belser 1998; Diehl and Larkin 2005; Stepanian et al.

2016).

Here, we attempt to better enable radar-based bird-

monitoring efforts though computer automation. Specifi-

cally we demonstrate the feasibility of using machine

learning to detect large roosting aggregations of Purple

Martins and Tree Swallows. These aggregations are identi-

fiable in radar data owing to distinct circular reflectivity

patterns known as ‘roost rings’ (Kelly and Pletschet

2018). Although these patterns are easy for the human

eye to detect, amassing a large dataset of roost locations

necessitates the time consuming task of sifting through

millions of radar images to find those that contain roosts.

Automating this process would enable researchers to

focus more of their time on the biological interpretation

rather than data collection, so investing time at this fun-

damental stage is key.

In this paper, we evaluate how well machine learning

methods such as Artificial Neural Networks and Convolu-

tional Neural Networks can learn to identify bird roosts

in NEXRAD radar images. We used 2D images rendered

from selected radar data products as inputs to Neural

Networks that we tasked with determining if the image

contains a roost. We compared several different network

architectures and explain which architectures worked best

for this problem. We also performed roost detection of

data from before and after the NEXRAD upgrade to dual

polarization (see Materials and Methods), which allowed

us to compare the utility of different radar data products.

Although the machine learning tools we used are fre-

quently employed to characterize photographic images,

we know of no other efforts to apply them to identify

bird roost in radar imagery.

Materials and Methods

NEXRAD radar

The NEXRAD radar network comprises 151 Doppler

weather surveillance radars. These radars complete a series

of rotational scans every 5–10 min. They scan the

atmosphere at different tilts or elevations, however for

this paper we only focus on the lowest elevation scan (i.e.

0.5°). Radar data used for this research came from the

level 2 NEXRAD radar archive, which is publicly accessi-

ble via Amazon Web Services.1 This dataset extends back

to the mid-1990s and contains data from single-polariza-

tion Doppler radars (which we refer to as legacy radar in

this paper) and dual-polarization Doppler radar. Data

from legacy radars include three products: (1) Reflectivity,

which is a measure of the reflected energy from objects

within a given air volume; (2) Doppler Radial Velocity,

which indicates the relative movement of objects toward

or away from the radar; and (3) Spectrum Width, which

is variability of the mean radial velocity.

During 2012 and 2013, all NEXRAD radars were

upgraded to dual-polarimetry, which means that they

now transmit and receive radio pulses that are polarized

in the vertical and horizontal orientations. This capability

allows for better assessment of the shapes of objects

detected by radar, and dual-pol radars offer three new

data products in addition to the legacy products: (1) Dif-

ferential Reflectivity (ZDR), which indicates the difference

in reflectivity between the horizontal and vertical pulses;

(2) Differential Phase (φDP), which is a measure of the

difference between horizontal and vertical pulse phase

shifts; and (3) Correlation Coefficient (qHV), which

assesses the similarity between the behaviors of the

horizontally and vertically polarized pulses within a pulse

volume.

Spectrum Width and Differential Phase (φDP) are gen-

erally not considered to be useful for detecting bird

roosts, so we did not use them as model inputs. Hence

used reflectivity, radial velocity, differential reflectivity

and correlation coefficient as model inputs. Reflectivity,

or echo intensity, provides an overall view of airborne

objects and has been shown to be useful for detecting

bird roosts as well as calculating the density of birds

(Diehl and Larkin 2005). Radial velocity is often useful

for identifying birds as it can reveal when airborne objects

move in opposition to air currents (Gauthreaux and Bel-

ser 1998). Differential Reflectivity (ZDR) often reveals

distinctive asymmetries in the reflectivity of biological tar-

gets (Stepanian and Horton 2015). Finally, correlation

coefficient (qHV) is typically lower for biological echoes as

opposed meteorological echoes (Van Den Broeke 2013),

and it has also been used to determine the orientation of

flying birds (Stepanian and Horton 2015).

Roost data

Swallow roosting occurs in the late summer months, and

roosts are most apparent in radar data early in the morn-

ing, from 20 min before to 40 min after sunrise, when the
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birds typically leave the roosting site. Kelly and Pletschet

have manually identified and mapped hundreds of bird

roosts through exhaustive searches of years of radar data

from 64 different NEXRAD Radars (Kelly and Petschet

2018). Their search protocol involves searching examining

radar imagery from one hour before local sunrise until

30 min after local sunrise from June 1 to September 30

(Kelly and Pletschet 2018), an effort that requires exami-

nation of 70,000–140,000 radar images per year.

The information used to train our machine-learning

system came in part from a subset of the roost data

derived by Kelly and Pletschet (2018), which underwent a

post processing step to manually identify which particular

radar scans had roosts visible. We also used data gener-

ated by an interactive web-page2 that was used to collect

labels for previous research projects (Laughlin et al. 2013,

2016). This data is part on an ongoing database that con-

tains labeled radar data with information about the pres-

ence and locations of bird roosts. (Laughlin et al. 2014).

The final set of manually labeled roost data came from 10

different radars: KAMX, KBRO, KDOX, KGRK, KJAX,

KHGX, KLCH, KLIX, KMLB and KMOB and was a mix

of legacy and dual-polarimetry data. A distribution of

labels by dataset as well as legacy and dual-pol data can

be seen in Figure 1. Both of the datasets contained pri-

marily positive labels, with few instances where it was

clear that a roost was not found. To increase the number

of negative labels, we selected radar scans from 2 to 1 h

before sunrise and from 1 to 2 h after sunrise, leaving a

2 h window in between. The noise in our radar images

(dust, weather, sun-streaks, etc.) appeared to be similar

directly before, during and after the roost is visible, which

should ensure that our machine learning algorithms are

detecting roosts as opposed to other patterns in the data

to make classifications.

Once the desired radar scans were identified, each was

acquired from the AWS database and converted from

radial coordinates to two-dimensional raster images. We

use the Py-Art library to create the images of the radar

products (Helmus and Collis 2016). We used only the

lowest radar tilt from each scan (0.5° of elevation), which

is where most bird activity is evident. The reflectivity,

velocity, qHV and ZDR radar products were all saved as

individual images. These images serve as the input to our

machine learning models.

Table 1 shows how many training labels we have as

inputs to our model.

Machine learning methods

We employed three general machine learning approaches

to work toward optimizing roost detection in terms of

accuracy and computation time. The first approach used

a relatively simple traditional, feed-forward artificial neu-

ral network (ANN) as depicted in Figure 2. The second

approach used a sophisticated convolutional neural net-

work–specifically the ‘Inception’ network created by Sze-

gedy et al. (2016)–as a starting point and modified the

last two layers to tailor it for roost identification. The

third approach developed a shallow convolutional net-

work from scratch, with only two convolutional layers as

depicted in Figures 3 and 4.

We processed each of the four types of radar imagery

(reflectivity, radial velocity, differential reflectivity and

correlation coefficient) separately using each machine

learning approach as shown in Figure 5. When only

legacy data were available, only two types of imagery (re-

flectivity and radial velocity) were used. In the final step,

the results from each of the four networks was combined

within a dense neural network to generate an aggregate

classification for each image (either containing a roost or

not). One advantage of training the networks on the

radar fields separately instead of together is that is reduces

the number of input variables a single network is required

to train on. Our design was inspired by an approach that

was used successfully to train separate convolution layers

in parallel, each on a different image rotation (Dieleman

et al. 2015). The results were then fed into dense layers of

the network (Dieleman et al. 2015).

To improve the speed and accuracy of our ANN and

Shallow CNN we employed batch normalization (Ioffe

and Szegedy 2015). For the transfer learning comparison

we chose a network that also used batch normalization,

the Inception-v3 network (Szegedy et al. 2016). Batch

normalization employs an additional step within each

node to normalize their outputs over a batch of images,

which stabilizes the node outputs and hastens conver-

gence toward useful sets of weights. Batch normalization

was first introduced in 2015 and it improved the accuracy

of ImageNet classification while simultaneously speeding

up learning 14 times (Ioffe and Szegedy 2015). All the

networks were trained using binary cross-entropy as the

loss function, and we used average accuracy as the metric

to see how well training progressed.

Our traditional ANN employed multiple layers of artifi-

cial neurons or nodes. In a machine-learning context, a

node combines a vector of inputs (which might be pixel

values) with a corresponding vector of weights to generate

a summation, or output, that gets transformed by an acti-

vation function and passed to the next layer in the net-

work. ANNs consist of highly connected layers, and the

weighted connections among the nodes change as the net-

work is trained to recognize the input data (Mitchell

1997). For image classification problems, ANNs have an

input layer that takes in pixel values for an image, a num-

ber of hidden layers that change the weights, and an
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output layer with a number of nodes equal to the number

of classes (Driss et al. 2017). The ANN we used had an

input layer, three hidden layers, and an output layer, and

it worked on gray-scale images. The input layer accepted

the 240 9 240 images and connected them to subsequent

layers. The three hidden layers consisted of 128, 64 and 8

nodes. Each of these layers used batch normalization and

a rectified-linear-unit activation function. The output

layer, which had only two nodes, and used the softmax

activation function to generate probabilities for the two

possible classifications.

As a second approach, we used Convolutional Neural

Networks (CNNs). Convolutional networks use kernels

(i.e. arrays or matrices of weighting values) that are

applied across an image to identify features that con-

tribute to image classification. In 2012, Deep CNNs

achieved record breaking results for classifying the thou-

sands of annotated images that comprise the ImageNet

dataset (Krizhevsky et al. 2012). Subsequent work has

expanded on CNNs using varying architectures such as

VGG16, GoogLeNet, Inception-v3 and ResNet to improve

CNN results for classifying images (Simonyan and Zisser-

man 2014; Ioffe and Szegedy 2015; Szegedy et al. 2015,

2016; He et al. 2016). For this paper we chose to use the

Inception-v3 network. Although CNNs produce robust

results, they require large amounts of training data to be

Figure 1. Visual distribution of roost labels

form the Oklahoma Biological Survey and

UMass Amherst citizen science labels as well as

legacy radar and dual-pol radar data. This

figure shows where each roost was found. The

color is darker if the roost was spotted in the

exact same place multiple times. This image

also shows the location and 300 km visibility

radius of the radars.

Table 1. The distribution of labels. This table lists how many dual-pol

radar labels exist within the data.

Roost No Roost

Legacy 11,112 19,939

Dual-Pol 1,346 10,806
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effective since the network has to modulate millions of

parameters (Oquab et al. 2014).

Because we lacked sufficient data to fully train a deep

CNN from scratch, we employed a transfer-learning

approach, wherein foundational knowledge learned on one

dataset is applied to a new dataset (Oquab et al. 2014). As

an initial foundation for our CNN we used Inception-v3

(Szegedy et al. 2016), a network trained on ImageNet

(Deng et al. 2009), to make 1000 image classifications. The

initial nodes in the Inception-v3 network have learned to

identify general features (e.g. edges, shadows and curves)

that can be applied generically to other image data (Shin

et al. 2016). We initialize our model with the weights

learned during the feature extraction part of training the

Inception-v3 network in ImageNet. We then replace the

classification part of the model (the last two layers) in order

to perform 2-way classification instead of 1000-way classifi-

cation. The last two layers consist of a fully connected layer

and a softmax output layer. The weights of all except the

very last two layers of the Inception-v3 network are frozen

during training, and only the last two layers were fine tuned

using the novel radar dataset (Shin et al. 2016). This trans-

fer-learning approach allows us to train deeper CNNs with

smaller training datasets as there are fewer weights and

parameters that the network is required to optimize. A full

description of the Inception-v3 network can be found in

Szegedy et al. (2016). The CNNs we employed used full

color images for each radar product that were derived from

Figure 2. The design of the ANN network used to detect bird roosts. We used a traditional feed- forward classification Neural Network. As input

the network takes the flattened 240 9 240 image and the network outputs a classification probability for each label (No Roost, Roost). The ANN

is made up of many connected neurons. The inputs to each neuron are multiplied with weights and then summed with the bias node. This value

is then passed through an activation function to produce the neuron output.

Figure 3. Overview over the shallow CNN architecture employed for bird roost detection. Pixel kernels from the original input layers are

processed through a series of convolution steps that apply various filters to the data with alternating pooling steps that down-sample the pixels to

reduce the processing burden and adds mild translational invariance. Each convolution step applies a shared set of weights across a moving

window with dimensions of 5 9 5 pixels, to extract features from the images. The convolution layers are followed by a fully connected layer

which flattens the pixels. The data are multiplied with weights, summed and softmax activation is applied to produce the final outputs.
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a standard NEXRAD color scheme implemented in Py-

ART (Helmus and Collis 2016). Color images were used

because the Inception-v3 CNN was originally trained on

color image inputs.

Our third approach trained a shallow CNN from

scratch. The shallow CNN had only two convolution lay-

ers and one fully connected layer in the network. As with

the Inception-v3 CNN, the shallow CNN used RGB chan-

nel values from each radar product as input. The first

convolution layer employed 32 filters, a kernel size of 5,

batch normalization and rectified linear units (as an acti-

vation function). The second convolution layer has the

same setup except with 64 filters. After each convolution

layer, we down-sampled the data using max pooling with

a pool size of 2 and a stride size of 2.

Metrics

We used four different metrics for evaluating our

machine learning results. We evaluated the total accuracy

(ACC), the true positive rate (TPR), the true negative rate

(TNR) and the area under the receiver operating charac-

teristics (ROC) curve (AUC). ACC, TPR and TNR can all

be calculated using the number of true positives (TP),

true negatives (TN), false positive (FP) and false negatives

(FN).

ACC ¼ (TP + TN)/(TP + FN + FP + TN) (1)

TPR ¼ TP=(TP + FN) (2)

TNR ¼ TN=(FP + TN) (3)

A ROC curve can be used for visualizing a classifier’s

performance and the AUC can be used to compare differ-

ent ROC curves (Fawcett 2006). AUC values range from

0 to 1 where 1 shows a perfect classifier and a score of

0.5 represents random guessing (Fawcett 2006). An AUC

value of .9 or above is considered to be a good result. For

more details on how to calculate the AUC see Fawcett

(2006).

Model training and validation

Establishing a machine-learning classifier typically

involves training, validation and testing sets to determine

whether the trained models have arrived at a robust solu-

tion (Cohen 1995). Because our classification models

combined inputs from multiple radar products, our

training, validation, and testing was implemented as a

two-step process. First the models assigned a classification

probability to each radar product separately. Then these

classification probabilities served as the inputs to a sec-

ond classification layer. Ideally these two machine-learn-

ing steps would be trained with two different validation

sets. However, we did not have a sufficient number of

labels to take this approach. Therefore we split the data

into three different groups that we will refer to as A, B

and C. Group A contained 60% of the data and the

remaining 40% were split equally between groups B and

Figure 4. Machine Learning input. This is an

example of a radar image that contains a

roost. The location of the bird roost is

annotated within the image. This is from the

KMOB radar from July 4th 2015, 11:19 UTC.

Image created using the Py-ART library (Helmus

and Collis 2016).
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C. When training the models to detect bird roosts from

image data for a single radar product we use A as our

training set, B as our validation set, and C as our testing

set. For the second stage of learning, we input the proba-

bilities of the different radar products into a hidden layer

for the aggregate classifier. At this stage of the problem

we use B as our training set, A as the validation set, and

C as the test set. We swap A and B in order to get a sec-

ond validation set as well as give the network data to

train on that will be as similar to the test set as possible.

C is consistently used as the test set throughout. In each

of these cases the entire dataset is used either in train,

test, or validation.

To assess confidence in our final classifications we used

a K-fold cross-validation, wherein the data were parti-

tioned into k subsets (folds), with training performed on

k�2 folds, validation performed on 1 fold and testing

performed on the remaining fold (Kohavi 1995). In our

case, we put 3 folds into set A, 1 fold into set B and 1

fold into set C. The training is repeated k times, where

each fold is used as the testing and validation fold exactly

once. K-fold allows us to evaluate every labeled datum.

We used 5-fold cross-validation to train and evaluate our

models. We chose a small number for k because convolu-

tional neural networks are computationally expensive to

train.

For each of our metrics we calculated the confidence

interval using the bootstrapping percentile method. The

percentile method calculates the chosen metric (e.g. loss

or accuracy) on randomly selected samples of the data

iteratively (Efron and Tibshirani 1986). Then for a 95%

confidence interval we take the upper and lower 2.5%

points of distribution (Efron and Tibshirani 1986). This

is a range that 95% of the bootstrapped samples fall

within. The upper and lower bound of the distribution

become the confidence interval for the performance met-

ric (Efron and Tibshirani 1986).

Each testing fold was evaluated using its corresponding

network. The results from each of the testing folds were

then combined. To compute the confidence intervals for

Figure 5. Design of the machine learning classification system for dual polarization data and legacy data.
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ACC and AUC, we randomly selected one thousand sam-

ples with re-sampling from the combined testing results.

For TPR we select one thousand samples from the roost

data and for TNR we select one thousand samples from

the no roost data. We repeat this process for one thou-

sand iterations on each of our metrics in order to com-

pute the confidence intervals.

Results

Of the three different machine learning networks we

trained, the shallow CNN and Inception-v3 aggregate

classifiers produced the best results with an accuracy of

90%. The Inception-v3 aggregate classifier has the highest

true positive rate, and the shallow CNN and Inception-v3

Dual-Pol aggregate classifier has the highest true negative

rate. These results are averages from five runs of each of

the networks. The full results for each network are

included in Table 2 and shown visually in Figure 6.

We predicted that both the Inception-v3 network and

the shallow CNN would outperform the traditional ANN

since CNNs are designed to exploit spatial context and

have been shown to be a superior method for image

classification. We also assumed that the Inception-v3

network would outperform the shallow CNN since it

had more layers and was pre-trained on ImageNet. The

ANN accuracy for three of the four radar products was

higher than Inception-v3 network even though we

expected the Inception-v3 to outperform the ANN. It is

worth noting that although the ANN accuracies are high,

they are biased toward a classification of ‘no roost’. The

Inception-v3 network has slightly lower accuracies than

the ANN, however unlike the ANN the Inception-v3

network results are not as biased toward a single class of

data.

The Inception-v3 network performed worse on individ-

ual radar product than expected. We believe that transfer

learning would have achieved a higher accuracy and AUC

if the Inception-v3 network was initially trained on a

large set of radar data. Typical photographic images are

differ from radar images and may require different convo-

lutional filters that may not necessary translate to radar

data. Photographic images contain shadow, light, objects

in the foreground and background, lines, edges, etc. It

may also have helped if we trained the lower layers of the

Inception-v3 network instead of relying on ImageNet to

find useful features for radar data. Another reason the

Inception-v3 network may not have performed as well as

expected is that we did not have enough radar data, espe-

cially dual-polarimetric radar data, to effectively train this

network. The Inception-v3 network learns to utilize a

wide range of image properties in the features, and it may

take more training data to fully utilize this information.

The shallow CNN produced the highest accuracy and

true negative rate for the reflectivity and correlation coef-

ficient radar products. This network’s True Positive Rate

Table 2. Machine learning results for the ANN, Inception-v3 Net and Shallow CNN.

ACC TPR TNR AUC

ANN

Reflectivity 0.814–0.860 0.651–0.709 0.877–0.917 0.853–0.901

Velocity 0.522–0.585 0.963–0.983 0.361–0.420 0.850–0.898

Differential Reflectivity 0.872–0.909 0.421–0.484 0.931–0.959 0.794–0.881

Correlation Coefficient 0.780–0.830 0.573–0.634 0.804–0.850 0.761–0.851

Legacy Final 0.778–0.828 0.769–0.820 0.782–0.832 0.866–0.910

Dual-Pol Final 0.739–0.794 0.396–0.458 0.783–0.833 0.542–0.684

Inception

Reflectivity 0.757–0.808 0.803–0.848 0.728–0.779 0.839–0.884

Velocity 0.770–0.819 0.789–0.837 0.757–0.807 0.851–0.894

Differential reflectivity 0.746–0.796 0.819–0.865 0.732–0.787 0.847–0.905

Correlation coefficient 0.712–0.766 0.774–0.824 0.705–0.760 0.805–0.874

Legacy aggregate 0.848–0.889 0.857–0.896 0.841–0.885 0.929–0.956

Dual-Pol Aggregate 0.906–0.938 0.923–0.952 0.904–0.937 0.971–0.990

Shallow CNN

Reflectivity 0.873–0.912 0.785–0.832 0.920–0.950 0.937–0.964

Velocity 0.636–0.692 0.000–0.002 0.999–1.00 0.684–0.754

Differential reflectivity 0.882–0.919 0.727–0.781 0.903–0.936 0.912–0.953

Correlation coefficient 0.901–0.935 0.697–0.751 0.927–0.955 0.910–0.956

Legacy aggregate 0.875–0.913 0.797–0.844 0.915–0.947 0.930–0.961

Dual-Pol aggregate 0.905–0.938 0.813–0.857 0.916–0.948 0.931–0.970

TPR, true positive rate; TNR, true negative rate.
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was lower than the True Negative Rate for every radar

field, which means it was biased toward assuming the

radar images don’t contain roosts. The CNN and

Inception-v3 legacy accuracies, AUCs and True Positive

Rates were not statistically significantly different from

each other, however the Inception-v3 had a higher True

Figure 6. Learning Curves for the aggregate classifiers given probabilities as inputs.
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Positive Rate. For the Inception-v3 and shallow CNN

Dual-Pol aggregate classifier the Inception-v3 has a higher

AUC and TPR, however the other two metrics are not

statistically different for these two networks.

The ROC curves for all of the networks can be found

in Figure 7. Of the single radar product networks, the

Shallow CNN had the largest Area Under Curve (AUC)

with the exception of Velocity. The ANN had the lowest

AUCs for all of the radar products except for Velocity,

which match the results of the Inception-v3 network.

Although the Inception-v3 network overall performed

better than the ANN and worse than the Shallow CNN, it

was able to outperform the shallow CNN on the velocity

AUC. The ANN’s aggregate legacy results show no

improvement over the single radar products results, and

the ANN’s aggregate Dual-Pol results are worse than the

single radar product results. Both of these results are sur-

prising. The Inception-v3 and Shallow CNN aggregate

Figure 7. ROC curves for each of machine learning models trained on Reflectivity, Velocity, Correlation Coefficient, Differential Reflectivity and

the aggregate results of the combined radar products.
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networks were both able to outperform the single radar

product networks. The Inception-v3 and Shallow CNN

perform equally well on legacy data and the Inception-v3

network has the highest AUC of the three networks on

the Dual-Pol data.

Discussion

Our classification method vastly reduces the number of

images that need to be manually searched through in

order to find the bird roosts, especially since most

radar images do not contain visible bird roosts. Elimi-

nating the final 10% of false positives from the dataset

by hand will be much less time consuming that sifting

through all 70,000 radar images a year searching for

bird roosts. We were able to reduce the amount of

time it takes to process radar image data and we

believe these results can be improved in the future with

a temporal analysis of the data and more dual polariza-

tion labels. Research projects that study pre-migratory

roosts using radars (Kelly and Pletschet 2018; Bridge

et al. 2016; Gauthreaux and Belser 2003; Chilson et al.

2012b) could benefit from these results.

Future work

In the future, we hope to fully automate the bird roost

detection process by preprocessing the radar images. Just

as radar data is quality-controlled for weather (Laksh-

manan et al. 2014), we could filter out weather from our

radar data to eliminate some of the noise from our radar

data. In addition, biological reflectivity generally falls

within a range of �10 dBZs to 10 dBZs (Koistinen 2000),

and by filtering out values outside this range we can elim-

inate some of the noise. We cannot use a reflectivity filter

to fully determine where birds are since light drizzle and

insects are often detected in this range as well (Koistinen

2000). Biological scatter will likely have a high differential

reflectivity and a low correlation coefficient (Van Den

Broeke 2013), and we could use these properties to fur-

ther filter and clean the data.

We are also not currently taking advantage of the tem-

poral component of the data during learning. The

expanding roost rings over sequential radar snapshots are

an important roost characteristic used in manual detec-

tion of bird roosts. There are several machine learning

methods such as Recurrent Neural Networks (RNN) or

Long Short Term Memory networks (LSTM) that use

temporal data. LSTM networks (Donahue et al. 2015)

have been used on sequences of images, for example to

re-identifying a person over disjoint cameras (Wu et al.

2016) or to detect the type of activity (run, jump, etc.) a

person is performing in a video (Yeung et al. 2018). An

LSTM network is one way to potentially increase accuracy

using temporal data, although it’s worth mentioning that

they can require more labeled data since they need to

learn a larger amount of parameters. They can also take

longer to train, although this should not be an issue for a

small network like the shallow CNN.

Our results could be improved with additional Dual

Polarization Labels. As stated above, CNNs require lots of

data to train properly (Oquab et al. 2014). Our dual

polarization radar results were better than our legacy

radar results even though we had fewer dual polarization

machine learning inputs. Hand classifying roost data is a

time consuming process, however, it would be useful for

better automated roost detection. One of the advantages

of polarimeter radar for weather is that it helps quality

control the biology more accurately from the weather

data (Zrnic and Ryzhkov 1998). It stands to reason that

the same method that is used to remove biology from the

radar data can be used to find it as well.

The biggest next step for this project is locating the bird

roosts within the radar images instead of only detecting

them, which is a very challenging problem. Image segmen-

tation or Regional-CNNs are both potential approaches to

this research. There is a trade-off between recognizing and

locating objects within an image (Maggiori et al. 2017), so

having a network that can detect roosts first will prove use-

ful for the next stage of this research.

Conclusion

We have tested and compared three different machine

learning architectures for detecting bird roosts in radar

images. Out best model is able to achieve a 0.971–0.990
AUC and 0.906–0.938 ACC for the dual polarization

radar data and a 0.875–0.913 AUC and 0.930–0.961 ACC

for legacy radar data. This is the first successful attempt

to detect bird roosts in radar images that we are aware of.

We hope to improve these results in the future by doing

some quality control on the radar data, using the tempo-

ral data in machine learning, and training on additional

labels. The next big step in this project is to build a

machine learning model to locate the roosts within the

images.
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Notes
1aws.amazon.com/public-datasets/nexrad
2radar.cs.umass.edu/roost-label/
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