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Particular emphasis has been placed on nonlinear and nonstationary time series 

forecasting in systems and processes that are of interest to IE researchers. Two new 

advanced prediction methods are developed using nonlinear decomposition techniques 

and a battery of advanced statistical methods. The research methodologies include 

empirical mode decomposition (EMD)-based prediction, structural relationship 
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CHAPTER I 

 

INTRODUCTION 

 

In this first chapter, the motivation for selecting this research topic is presented, followed by the 

objectives and major contributions of this research. The organization of this dissertation is 

provided at the end of this chapter.  

1.1 Research Motivation 

 

Forecasting the evolution of complex systems has been noted as one of the ten “grand challenges” 

of modern science [1]. Time series data from complex systems capture the dynamic behaviors 

and causalities of the underlying processes and provide tractable means to predict and monitor 

system state evolution. However, forecasting methods reported in the literature focus mostly on 

forecasting linear and stationary processes. Effective forecasting of future states of a complex 

time series system remains a challenge, mainly due to diverse combinations of the nonlinear and 

nonstationary dynamic behaviors exhibited by these systems.  

Recently, functional decomposition models [2, 3] for nonlinear and nonstationary time series 

forecasting have been receiving attention in the literature. The advantages of this type of model 

include a complete representation of the dynamics of nonlinear and nonstationary systems based 

on the observed data, local characteristic time scales and the use of an adaptive basis that does not 

require a parametric functional form. These models do not impose any structural assumptions, 

and also simplify modeling efforts. In addition, they can capture drifts and nonlinear modes of  
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any nonlinear and nonstationary process. Functional decomposition often suppresses or disperses 

the effects of nonstationarity (e.g., trend and seasonality) over different functional components in 

the time series. Consequently, the modeling and forecasting accuracy for nonlinear and 

nonstationary time series is improved. This type of forecasting method offers an unprecedented 

opportunity to develop a prediction specifically for nonlinear and nonstationary time series 

systems. 

1.2  Research Objectives  

 

The proposed research addresses modeling and prediction of nonlinear and nonstationary time 

series in certain real-world data applications. Particular emphasis has been placed on nonlinear 

and nonstationary time series forecasting in systems and processes that are of interest to IE 

researchers. The main research objectives are as follows: 

 Develop an effective prediction model to forecast real-world nonlinear and nonstationary 

time series over extended time horizons.  

 Characterize the components of univariate, nonlinear, and nonstationary time series and 

develop technique to improve prediction accuracy for short- and long-term predictions.  

 Develop an approach to identify and quantify the structural relationship of multivariate, 

nonlinear and nonstationary time series. 

 Develop an effective prediction model to forecast multivariate, nonlinear, and 

nonstationary time series using an identified structural relationship.  

1.3 Major Contributions 

 

In this research, two new nonlinear and nonstationary prediction methodologies based on 

nonlinear decomposition techniques are presented. The prediction approach based on the 

empirical mode decomposition (EMD) technique was used to forecast univariate customer 



3 

 

preferences for automobile products over extended time horizons. A key aspect of this approach 

is to use the linear phase property of the Hilbert-Huang transform (HHT) to address the presence 

of edge artifact limits of the EMD method. The other methodology, specifically for multivariate, 

nonlinear and nonstationary time series, is to apply the intrinsic time-scale decomposition (ITD) 

technique to forecast automobile demand using components of selected economic indicators.  

The ITD-based prediction approach has been applied to determining long-run equilibrium 

relationships between automobile demand and ITD components of nonlinear economic indicators. 

The key aspect of this new prediction approach is to use a structural relationship identification 

(SRI) methodology to identify a causal and long-run equilibrium relationship between a nonlinear 

and nonstationary time series and ITD components of related indicators and then use this 

identified relationship for prediction. The key contributions of this research are as follows:  

 A new prediction model for univariate, nonlinear and nonstationary time series based on 

nonlinear decomposition technique (EMD).  

 A new approach to identifying the structural relationships of multivariate, nonlinear, and 

nonstationary time series using a battery of advanced statistical techniques. 

 A new prediction model for multivariate, nonlinear, and nonstationary time series based 

on SRI methodology and a nonlinear decomposition technique (ITD). 

 Development of a technique to address the presence of edge artifact limits of the EMD 

method. 

1.4  Organization of the Dissertation 

 

The organization of the remainder of this dissertation is as follows:  
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Chapter II:  Background and Literature Review presents an overview of nonlinear 

and nonstationary time series. In addition, various methods for nonlinear and nonstationary time 

series forecasting reported in the literature are reviewed. 

Chapter III: Research Methodology presents the research methodologies used in this 

study. The overall research methodology consists of three main parts: EMD-based prediction, SRI 

methodology, and ITD-based prediction.  

Chapter IV: Willingness-To-Pay Prediction based on Empirical Mode 

Decomposition presents implementation details and the results of using EMD-based prediction 

methodology, described in Chapter III, to predict customer willingness-to-pay (WTP) data for an 

attribute of automobiles.  

 Chapter V: Multi-Step Sales Forecasting in Automotive Study based on Structural 

Relationship Identification presents implementation details and results of using SRI 

methodology, described in Chapter III, to forecast automobile sales.  

 Chapter VI: Long-term Automobile Demand Prediction using Intrinsic Time-Scale 

Decomposition presents the implementation details and results of using the ITD-based prediction 

methodology described in Chapter III to forecast automobile demand.  

 Chapter VII: Comparison of Nonlinear and Nonstationary Forecasting Models 

presents a comparison of EMD-based prediction and other nonlinear and nonstationary 

forecasting models in the literature.  

 Chapter VIII: Conclusions and Future Work presents research contributions, general 

conclusions, and suggestions for future work in this area.  

 



5 

 

CHAPTER II 

 

BACKGROUND AND LITERATURE REVEW 

 

This chapter begins with an overview of nonlinear and nonstationary time series, followed by a 

review of various methods for nonlinear and nonstationary time series forecasting reported in the 

literature. 

2.1 Nonlinear and Nonstationary Time Series 

Although real-world systems exhibit mostly nonlinear and nonstationary behaviors, the majority 

of forecasting methods reported in the literature assume the linearity and/or stationarity of the 

underlying dynamics [4], or consider simple forms of nonstationarity such as well-defined trends 

and variations in the first and second moments or simple forms of piecewise stationary regimes 

[5]. This section provides an overview and the relevant background of nonlinear and 

nonstationary time series. 

A nonlinear time series       is a signal emanating from a nonlinear dynamic process. In other 

words, it is a partial solution of a nonlinear stochastic differential (or difference) equation of the 

following form 

                                                                                               (2.1) 

This equation governs the evolution of process states       from an initial condition      , where 

  is the process parameter vector and     is the system noise. The solution of Eq. (2.1) is given by 
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               . Here,        is called the flow, or the state transition function. Many real-

world systems exhibit such nonlinear stochastic dynamics, and the solutions of such systems, 

referred to as nonlinear time series, exhibit non-Gaussian, multi-modality, time irreversibility and 

other properties [6].  

Most real-world nonlinear dynamic systems operate under transient (i.e., nonstationary) 

conditions. From the statistical perspective, the stationarity of time series      requires that the 

joint distribution of every collection                           be invariant to      

         for any k. Even under nonstationary conditions, complex system dynamics may be 

treated as a concatenation of much simpler piecewise transient or near-stationary behaviors. Most 

commonly, nonstationarity is attributed to specific deterministic and stochastic trends in the 

moments. For example, a first-order nonstationary time series may be expressed as         

    , where    is a deterministic function of time and             
   is a stationary 

disturbance process. The stationarity is violated, as            depends on time t. According to 

the explicit form of the drift    , the time series may exhibit growth (an upward trend) and/or 

decay (a downward trend). A repetitive up-and-down trend is called a cycle, and a cyclic trend 

that occurs at fixed and known periods is called seasonality. Additionally, processes embodying a 

stochastic trend such as the first-order random walk                     have time-

varying conditional means and variances with stationary increments. Autoregressive integrated 

moving average (ARIMA) models are often used to represent these patterns. The evolution of 

asset prices and other derivatives of financial markets is often treated as a process with time-

varying and autocorrelated   
  , also known as varying volatility or heteroskedasticity processes. 

Autoregressive conditional heteroskedasticity (ARCH) and generalized ARCH (GARCH) models 

are often employed to capture these behaviors.   

Additional second-order nonstationary processes include periodic time series where there is a 

    such that the expected values and covariate satisfy the following conditions:         for 
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all    and                                       for all      , and cyclo-stationary time 

series where there is a      such that          for all     and                         

    for all       [7]. Cyclo-stationary time series analysis is often seen in the modeling of weather 

parameters, such as temperatures that can be highly nonstationary during a 12-month period in a 

certain region, but variation in each winter for the past years can be regarded as stationary [8]. In 

addition to these examples, forecasting of time series with varying higher-order moments (e.g., 

kurtosis and skewness) has also been investigated [9].  

In the following section, various methods for nonlinear and nonstationary time series forecasting 

reported in the literature are reviewed and categorized based on how they have been applied for 

forecasting real-world time series data (see Figure 2.1). 

 

Figure 2.1: Classification of nonlinear and nonstationary time series forecasting models 

Particular emphasis has been placed on nonlinear and nonstationary time series forecasting in 

systems and processes that are of interest to IE researchers. Broadly speaking, these forecasting 

methods may be classified based on the premises or the approaches to treating nonstationarity 

under nonlinear conditions, in that they assume either (i) a known form of the trend in the first 

Nonlinear Nonstationary 
Time Series Forecasting 

Methods 

Parametric 

Classical 
Autoregressive  

Neural Networks 

Support Vector 
Machine 

Hidden Markov 

Nonparametric 

Neighborhood and 
Local Topology 

Nonparametric 
Bayesian 
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few moments, (ii) piecewise stationarity of the signals, (iii) progressively varying parameters, or 

(iv) decomposability of the signal into stationary segments in a transformed domain, and they are 

either parametric or nonparametric depending on whether the predictor takes a predetermined 

form or is constructed purely according to the data (e.g., the number of latent variables is allowed 

to vary).  

2.2 Parametric Models 

 

A parametric forecasting model specifies an explicit function form with a finite number of 

parameters θ to describe the relationship between the input, consisting of the intrinsic and 

exogenous variables and their autoregressive (lag) terms, and the output, consisting of the future 

values of the intrinsic variable       . The model parameters are estimated from the time series 

realizations.  

2.2.1 Classical Autoregressive Models 

In this group of parametric models, classical autoregressive models, such as autoregressive (AR) 

or autoregressive moving average (ARMA), are the most widely studied because of their 

flexibility in modeling many stationary processes, but they generally fail to accurately predict the 

evolution of nonlinear and nonstationary processes. Methods such as autoregressive integrated 

moving average (ARIMA), which are based on the evolution of the increment             or 

   
 , are used at times to remove/reduce first-order (moment) nonstationarity. However, 

differencing generally amplifies high frequency noise in the time series, and great effort is 

required to determine the order of an ARMA model. In order to incorporate nonlinearity as part 

of an ARMA structure, advanced models such as threshold AR models (TAR) [10, 11], self-

excited threshold AR models (SETAR) [12], and smooth transition AR (STAR) [13] have been 

developed for nonlinear forecasting. However, these methods tend to be limited for nonlinear 
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stationary time series forecasting by the local linearity assumption implicit with an AR-type 

structure.  

Multivariate time-series-based classical regression forecasting models, such as vector AR (VAR), 

have also been studied to consider the effects of exogenous variables. However, the nonstationary 

evolution of such variables, which can deviate permanently from previous states, presents 

additional challenges to the long-term forecasting of the target variables. A vector error correction 

model (VECM) can be useful in capturing such behaviors. Especially when variables are 

cointegrated, VAR is not a suitable model for forecasting analysis because VAR does not 

represent cointegrating relations for a system of variables. A special characteristic and advantage 

of using VECM is that the long-run equilibrium relationships of target variables can be identified 

and determined by the cointegration vector. The speed at which target variables return to 

equilibrium after a change in exogenous variables can also be estimated using VECM. The only 

restriction of this model for nonstationary forecasting is that target variables must be 

cointegrated; in other words, the cointegration vector must exist for a system of variables. For 

example, Sa-ngasoongsong et al. [14] combined VAR and VECM to forecast the long-term 

variation of automobile sales by estimating the cointegration vectors of the intrinsic variables.   

2.2.2 Neural Networks 

Neural networks (NNs) have been used for nonlinear time series forecasting in many applications 

[15-17]. These models do not require prior assumptions on the form of nonlinearity and are 

universal approximators [18], i.e., they can approximate any continuous function to an arbitrary 

precision. A recent review of NN models for time series forecasting has been provided by Zhang 

[19].  

Feed-forward neural network models (FNNs) parameterized with a back-propagation algorithm 

have been employed for nonlinear time series forecasting [20]. They are known to outperform 
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traditional statistical methods such as regression and Box-Jenkins approaches in functional 

approximation, but they assume that the dynamics underlying time series are time-invariant. 

FNNs with recurrent feedback connections have also been attempted for time series forecasting 

[21]. Such dynamic recurrent NN (RNN) models allow forecasting of nonlinear time series 

occurring in various fields [22, 23]. Rao et al. [24] studied recurrent predictor NN (RPNN) 

models for one-step-ahead prediction of the nonlinear signal patterns during ultra-precision 

machining processes and combined particle filtering models for detection of changes in NN 

weights. Menezes et al. [25] built a recurrent network structure of nonlinear AR models with 

exogenous input (NARX) for multi-step forecasting of chaotic time series. 

2.2.3 Support Vector Machine Models 

Another class of parametric models for nonlinear and nonstationary time series forecasting is a 

group of support vector machine (SVM) models. SVM-based forecasting methods use a class of 

generalized regression models, such as support vector regression (SVR) and least-squares SVM 

(LS-SVM) [26], that are parameterized using convex quadratic programming methods [27]. An 

SVM maps the inputs   , which may consist of autoregressive terms of intrinsic and exogenous 

variables, into a higher dimensional feature space       . We need not compute the 

transform       explicitly; instead we only need to estimate the inner product of the mapped 

patterns                        , where     denotes the inner product. The inner product is 

expressed as a linear combination of specified kernel functions, based on which SVMs are 

categorized into linear, Gaussian or radial basis function (RBF), polynomial, and multilayer 

perceptron classifiers. A linear regressor is then constructed by minimizing the structural risk 

minimization (the upper bound of the generalization error), leading to better generalization than 

with conventional techniques [28].  
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Mukherjee et al. [29] investigated the application of SVMs for chaotic time series forecasting. 

They showed that SVMs have higher forecasting accuracy than NN models and employ fewer 

parameters. Lau and Wu [30] reviewed least squares- (LS) and RBF-based predictors and 

designed a local SVM (defined in the reconstructed state space) for chaotic time series 

forecasting. Their investigations suggest that local SVM models can provide higher accuracy for 

long term forecasting compared to local LS- and RBF-based polynomial predictors. Van Gestel et 

al. [31] investigated a Bayesian method to parameterize LS-SVMs for financial time series 

forecasting, especially in scenarios where the noise levels are comparable to the underlying signal 

energy and forecasting of the second moment (volatility) is needed. Cao et al. [32] developed a 

dynamic SVM model that uses an exponentially increasing regularization constant and an 

exponentially decreasing tube size to deal with structural changes in the data.  

2.2.4 Hidden or State-observer Markov Models 

Most of the models reviewed above involve batch processing, where the model is fitted and 

updated intermittently using batches of historical data. However, the curse of dimensionality due 

to the prohibitive computational effort, memory requirements, and large data sizes hampers their 

applicability to many real-world problems, especially for online process monitoring. A variety of 

sequential (also known as online or recursive) forecasting models, such as hidden Markov models 

(HMMs) [33], have been investigated to surmount this limitation. Some HMMs have been 

attempted for nonlinear time series forecasting, such as extended Kalman filters (EKFs) [34] and 

particle filter (PF) models [35, 36].  

2.3 Nonparametric Models 

 

Although parametric models can provide accurate forecasts when the models are correctly 

specified, they tend to become highly suboptimal whenever the underlying dynamics are 

unknown or indeterminable; additionally, the issue of model biases persists as the dynamics of 
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most real-world complex systems are inherently nonlinear and nonstationary. In contrast, 

nonparametric models can provide a complete representation of the dynamics based on the 

observed data, do not impose any structural assumptions, and simplify modeling efforts. 

Consequently, the modeling and forecasting accuracy for nonlinear and nonstationary time series 

is improved. However, compared to parametric models, nonparametric models usually require 

larger datasets from which information on the underlying relationships may be effectively 

gleaned. Three classes of nonparametric models for nonlinear and nonstationary time series 

forecasting are reviewed in this section: state space neighborhood, Bayesian nonparametric, and 

functional decomposition models,  

2.3.1 State Space Neighborhood and Local Topology-based Models 

State space neighborhood approaches predict future values by selectively resampling historical 

observations, with the basic assumption that future behavior varies smoothly, i.e., observations 

similar to the target one are likely to have similar outcomes. Those models are attractive for 

complex system dynamics forecasting because of their simplicity and accuracy [37].  

In Mehrotra et al.’s [38]   nearest neighbor (KNN) resampling approach with multiple predictor 

variables, an influence weight was assigned to each predictor to identify nearest neighbors. 

Hamid et al. [39] investigated a variety of neighbor-based methods for the forecasting of chaotic 

time series, e.g., zeroth-order approximation (one nearest neighbor),  -nearest neighbors 

(multiple neighbors) and weighted distance approximation (distance weighted average of multiple 

neighbors) models. 

For most complex dynamic systems, it is not possible to observe all relevant variables. Often, the 

time evolution of only certain variables is observed, but the relationship to the state variables is 

unknown or indeterminable. The state space reconstructed from time delay embedding holds 

strong similarities (i.e., a diffeomorphic image) to the underlying state space [40] and offers a 
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unique way for nonlinear time series forecasting [41]. Casdagli [42, 43] developed a local linear 

model of the reconstructed state space for chaotic time series forecasting. The predicted value of 

the current observation was derived from the most recent   embedding vectors. Then   nearest 

neighbors were identified within the window width   based on the recurrence property of the 

reconstructed state space. Yang et al. [44] partitioned the reconstructed state space into various 

near-stationary segments based on local recurrence properties. The evolutionary trajectories were 

further decomposed using a principal component approach to identify the principal evolution 

directions and thus predict future states. Similarly, Bukkapatnam et al. [45] developed a local 

Markov model (LMM) based on the recurrence properties. A Markov transition matrix derived 

from the reconstructed state space was applied for system pattern analysis and to partition the 

trajectories into piecewise stationary segments. A local Markov model was employed to predict 

future states in each near-stationary segment based on the obtained transition matrix. McNames 

[46] studied time series forecasting with little or no noise. Neighbors in the reconstructed state 

space were identified by an optimized, and weighted Euclidean metric, and a novel  -step-ahead 

cross-validation error was used to assess model accuracy. Regonda et al. [47] investigated a local 

polynomial regression model using neighbors and future evolutions in the reconstructed state 

space. An ensemble nearest-neighbor model was then implemented via selecting a suite of 

parameter combinations for the local regression model. This ensemble approach was able to 

adequately capture the effects of parameter uncertainty. 

2.3.2 Bayesian Nonparametric Models 

The second class of nonparametric models is a group of Bayesian models. Bayesian modeling is 

basically a process of incorporating prior information to render posterior inference, i.e., 

estimating the conditional distribution        of the hidden model or parameters θ given an 

observed time series      [48]. Different from other Bayesian methods, Bayesian nonparametric 

models assume the hidden structure here grows with the data. In other words, Bayesian 
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nonparametric models seek a single model from infinitely many possibilities (i.e.,   may be 

infinite-dimensional) whose complexity (i.e., the number of parameters to estimate) is adapted 

according to the data. Among Bayesian nonparametric models, Gaussian process (GP) models 

have been the most widely studied for time series forecasting [49]. A GP model provides not just 

a point estimate, but a complete distribution of the forecasting. However, GP models have two 

major limitations, namely, the computational expense to perform the matrix inverse and the 

stationary covariance function assumption. Many attempts to address these issues have been 

investigated in the literature. Of these efforts, nonstationary covariance functions introduced to 

overcome the stationarity assumptions [50, 51] are suited only for simple nonlinear and 

nonstationary forms, such as linear trends, and require additional parameters to fit.  

2.3.3 Functional Decomposition Models 

Among nonparametric models for nonlinear and nonstationary forecasting, functional 

decomposition models have recently been receiving attention in the literature. The advantages of 

this type of models include local characteristic time scales and the use of an adaptive basis that 

does not require a parametric functional form. These models can be used to capture drifts and 

nonlinear modes of any nonlinear and nonstationary processes. Most of the models in this 

category are mixed or hybrid models that utilize a decomposition technique. Among 

nonparametric decomposition techniques, empirical mode decomposition (EMD) [52] can 

decompose nonstationary time series into a finite number of components called intrinsic mode 

functions (IMFs), such that evolutions of each IMF can be explored individually using different 

time scales via classical time series forecasting techniques, such as AR or ARMA models [53, 

54]. Because EMD allows perfect reconstruction of original time series with IMFs and isolation 

of trend and noise components from a nonstationary process [55], it can improve long-term 

forecasting accuracy. Sa-ngasoongsong and Bukkapatnam [56] developed a two-step EMD model 

and applied it to long-term customer willingness-to-pay forecasting. An et al.’s [57] wind farm 
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power forecasting model was based on estimating the largest Lyapunov exponents for each IMF. 

They applied the largest Lyapunov exponent forecasting method [58] to provide higher 

forecasting accuracy than other direct EMD-based forecasting models. SVR models built on each 

IMF were also fused in different ways [59-61] to forecast nonstationary time series. EMD has 

also been applied for weather time series forecasting [62, 63]. Although attractive for nonlinear 

and nonstationary forecasting, EMD poses some mathematical challenges due to the edge effects 

[64]. Several possible fixes such as adaptive decompositions have been attempted in the context 

of financial time series forecasting [65, 66].  

Recently, intrinsic time-scale decomposition (ITD) has been investigated for precise time-

frequency-energy (TFE) analysis of time series [2]. ITD overcomes the limitations of classical 

Fourier, wavelet, and EMD approaches for nonlinear and nonstationary time series modeling and 

decomposes time series into proper rotation components with defined frequency and amplitude 

and a monotonic trend. This decomposition preserves precise temporal information regarding 

critical points and riding waves in time series, with a temporal resolution equal to the time-scale 

of extrema occurrence of the input signal. The ITD model has been used for nonlinear biomedical 

signal characterization [67], and forecasting long-term automobile demand has been attempted 

using the ITD-based vector error correction model (VECM) [68].  
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CHAPTER III 

 

RESEARCH METHODOLOGY 

 

This chapter presents a research methodology for developing an effective prediction model to 

forecast real-world nonlinear and nonstationary time series. In this study, two advanced nonlinear 

decomposition techniques, empirical mode decomposition (EMD) and intrinsic time-scale 

decomposition (ITD), were used to develop new approaches to forecasting nonlinear and 

nonstationary time series. EMD-based prediction methodology was specifically developed for 

univariate time series prediction. This method addresses the challenge (edge artifacts) of using 

EMD for prediction applications. ITD-based prediction methodology takes the advantage of 

structural relationship identification (SRI) methodology to identify endogenous and exogenous 

variables for multivariate time series prediction. The overall research methodology in this chapter 

consists of three main parts: EMD-based prediction methodology, SRI methodology, and ITD-

based prediction methodology. 

3.1 Empirical Mode Decomposition (EMD) based Prediction Methodology 

This section presents a new prediction approach based on the EMD technique. EMD is an 

advanced nonlinear decomposition technique that aims to decompose a nonstationary signal into a 

finite number of components called intrinsic mode functions (IMFs). EMD allows perfect 

reconstruction of the original signal using IMFs. This property of EMD leads to an application of 

determining trend and noise from time series. However the presence of edge artifacts limits 
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the use of EMD for prediction applications. A key aspect to this approach is that it takes 

advantage of the linear phase property of the Hilbert-Huang transform (HHT) to address the edge 

artifact limits, thus extending EMD for long-term prediction applications. 

3.1.1 Empirical Mode Decomposition 

Empirical mode decomposition (EMD), first proposed by Huang [3], represents a nonlinear, 

nonstationary signal x(t) as the superposition of a finite number of components called intrinsic 

mode functions (IMFs) as 
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where sn(t) are the IMFs and rL+1(t) is the residual from the decomposition. The IMFs provide 

local characteristic time scales and an adaptive basis for EMD. Consequently, IMFs can be used 

to capture drifts and nonlinear modes of any nonlinear and nonstationary processes.  Also, the 

adaptive basis of EMD does not require a parametric functional form for time series. The 

characteristic of IMF is that it has only one extreme between zero crossings and has a mean value 

of zero. The following EMD procedure, called the sifting process, is used to extract IMFs from a 

time series x(t): 

(1) Identify all local minima and maxima ( )(*

max itx and )(*

min jtx ) of  x(t), where i = 1, …, n and  

j = 1, …, m 

(2) Use a cubic spline interpolation to define an upper u(t) and lower envelope v(t) from the 

extreme points [69] as  
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The process for defining the lower envelope v(t) is similar to Eqs. (3.2)-(3.5) when 
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(3) Compute the mean envelope m(t)  

2/)]()([)( tvtutm                                                   (3.6) 

(4) Compute the IMFs sp(t) iteratively through a series of reductions 
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Here, hk(t) is treated as the series, and mk(t) is computed as the mean of the upper and lower 

envelopes of hk(t). The process repeats all the steps until the following stoppage criterion (SD) is 

reached 
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(5) Obtain the residue rp(t) 
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                                              (3.9) 

The process continues till the number of the extreme points of rp(t) is not larger than two. The 

Hilbert-Huang transform (HHT) may be used to represent the time-frequency content of the IMFs 

as [70] 
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nn  . The following property of the instantaneous phase provides some key benefits 

for long-term prediction. 



19 

 

Remark 1: The instantaneous phase )(tn extends linearly over time, i.e., ttn   0)( . 

Consequently, if the amplitude envelope is predicted, one can develop an extended prediction of 

the series. Fig. 3.1 shows an example of customer willingness-to-pay (WTP) for the fuel economy 

attribute of an automobile. 

 

Figure 3.1: Customer WTP for a fuel economy attribute 

Fig. 3.2 shows the amplitude envelope and instantaneous phase of IMF1 of WTP (shown in Fig. 

3.1) using the EMD technique. In the case of higher order IMFs (See Fig. 3.3), amplitude 

envelopes tend to change slowly over time. Fig. 3.3 shows the amplitude envelop of IMFs 2-9 for 

WTP for the fuel economy attribute. 

Although, EMD provides a convenient representation of data from nonlinear and nonstationary 

processes, the following issue arising from the mathematical construct of the EMD algorithm 

hinders its application to nonstationary process prediction. The cubic splines used in the EMD 

process are very sensitive to the end points (edge effects) over which they are parameterized. The 

edge effects of EMD can significantly affect the estimation of the mean function, m(t), and the 

IMFs. Several possible fixes [70] have been studied to address current algorithms for the edge 

effects issue. They mostly involve extending the record of maxima and minima. However, most 

of the algorithms reported in the literature, such as statistical extrapolation and mirror image 

extension [52, 71], do not consider the true extension of the signals. Consequently, addressing the 
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edge effects issue remains an area of active research. To address this limitation, a two-step 

approach for EMD-based prediction is presented. 

 

(a) 

 

(b) 

Figure 3.2: (a) Amplitude Envelope and (b) Instantaneous Phase of IMF1 

 

Figure 3.3: Amplitude Envelope of IMFs 2-9 

3.1.2 Two-step Approach for EMD-based Prediction 

 

The prediction approach based on EMD consists of two steps. The first step involves estimating 

the long-term trend component and reducing noise components in the time series signal [72]. In 

the second step, the prediction results from the first step are then used to reduce the edge effects 
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of EMD by decomposing the concatenation of the original time series and the first step 

predictions to obtain new IMFs and the residue. The prediction based on linear extension of the 

instantaneous phase is then applied to each of the new IMFs and the residue. The final prediction 

values are obtained using reconstruction of the signal from the predictions of all new IMFs and 

the residue. 

3.1.2.1 The First Step 

 

 

 

 

    

 

 

Figure 3.4: The First Step Procedure 

The procedure for the first step of an algorithm is shown in Fig 3.4. EMD allows a perfect 

reconstruction of the original series, x(t), using IMFs and the residue as given in Eq. (3.1). This 

property of EMD allows the estimation of both trend and noise (detrending and denoising) in a 

nonstationary process. Wu and Huang [73, 74] proposed a method to assign a statistical 

significance to the information content for IMF components derived from noisy data using the 

relationship between the energy density and the average period of IMFs. They defined a spread 

function using white noise references of identical length with a target dataset. If the energy 

density of IMFs lies outside the upper and lower bounds of the spread functions, those IMFs will 

be treated as containing information. Flandrin et al. [72] used an elegant method to remove 

undesirable components by partially reconstructing the original series, x(t), as shown in the 

following function: 

                                       



D

n

nD tstx
1

)()(ˆ                                                    (3.11) 

where D is the largest IMF index considered to be noise IMF. In this approach, the IMFs 1 to D 

are considered to be noise. Higher index IMFs are considered as containing information. 
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Theoretically, IMFs should have a mean value of zero. However, the average of an IMF may 

have a value that may be a small non-zero quantity. To select D, each of the IMFs is initially 

estimated. Then the series of average IMFs is standardized with µ=0 and σ=1. A rule for choosing 

D is to observe the evolution of the (standardized) empirical mean of )(ˆ txd as a function of a test 

order d, and to identify for which d = D it departs significantly from zero. Fig. 3.5 illustrates the 

procedure to select order d of the IMF (WTP data) from Eq. (3.11). The order d = 7 (IMF 7) is 

selected as the change point. Therefore, the detrended series in Fig. 3.5(c) is obtained from the 

partial reconstruction with IMFs 1 to 7.  

 
(a) 

 
(b) 

 
(c) 

Figure 3.5: Detrending operation by observing the change point. (a) Standardized mean for each 

IMF order. (b) Trend and original series (WTP for the fuel economy attribute). (c) Detrended 

series from detrending operation. 

As shown in Fig. 3.5, the trend component of WTP for the specified attribute consists of IMFs 8 

through 11 and the residue. The original IMFs and residue are individually extended using the 

stepwise autoregressive method. This STEPAR initially fits an autoregressive model and then 
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removes all autoregressive parameters with large p-values. The STEPAR(q) model can be 

represented as                                                       

                                         t
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where lags order i=1 to q* are sequentially selected using a stepwise procedure. In this two-step 

approach, the maximum number of autoregressive parameters (lag order) is set to twelve.  

 

3.1.2.2 The Second Step 

In the second step, the predicted trend component is reconstructed from the predicted IMF 

components using Eq. (3.11). The predicted trend is concatenated with the original data to obtain 

the extended signal. New IMFs and residue are obtained using EMD on the extended signal. The 

number of new IMF components can differ from that of the original signal, depending upon the 

length of the prediction step, and new local minima and maxima in the predicted trend. 

Irrespective of the edge effects issue, the prediction of the trend component in the first step can be 

considered a variant of classical time series techniques where a separate analysis is applied to 

each IMF component.  The result of the first step can significantly outperform classical and 

advanced time series techniques for a nonstationary series whose long-term trend is nonlinear and 

which exhibits multiple frequency content. However, the edge effects problem of EMD limits the 

use of IMFs for prediction as shown in Fig. 3.6(a). All IMFs begin and end with zero value. With 

the second step procedure on WTP data, 13 new IMFs and the residue can be obtained without 

these edge artifacts. Fig. 3.6(b) shows the new trend IMFs from the first step procedure.  
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(a) 

 

(b) 

Figure 3.6: (a) Original trend IMFs and (b) New IMFs from the first step procedure 

A noteworthy issue in using IMFs for prediction is that some IMFs may be more influential than 

others for long-term prediction. These are usually the IMFs with the longest range and not 

necessarily the highest order IMFs (e.g., IMF 9 in Fig. 3.6(a) and IMF13 in Fig. 3.6(b)). To avoid 

the effect of these dominant IMFs, the prediction horizon should be restricted to the period where 

prediction results are equally influenced by each trended IMF. Based on the definition of EMD, 

Wu and Huang [73] defined the average period (
nT ) of each IMF calculated from any given 

spectrum of the Fourier spectrum function for the nth
 IMF. This average period value is almost 

identical to the number of points divided by the number of peaks (local maxima) or zero 

crossings. Since the focus is on long-term prediction, the suggested prediction horizon in this 

study is one fourth of the averaged period of the lowest-order trend IMF as stated in the 

following: 

Remark 2: The effective prediction horizon for pth IMF may be estimated as   
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where 
pTS ,

is the Fourier spectral component of period T for the pth
 IMF.  

For example, IMF 8 is the lowest-order trend IMF with the averaged period of 56.23 (number of 

zero crossings = 13). Therefore the suggested prediction horizon is 14.06 (≈14). As mentioned in 
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Section 3.1, the advantage of the instantaneous phase is that it extends linearly over time which 

facilitates long-term predictability. However, amplitude envelope prediction must also be 

accounted for to receive an accurate prediction of the series. In the second step of the prediction 

algorithm, amplitude envelope prediction is received from computing the amplitude of new IMFs 

and the residue from the first step results. The linear extension of the instantaneous phase is then 

applied to each of the new IMFs and residue. The prediction equation is shown in Eq. (3.14).  
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where Re is the real part, p = 1,
 

ttn   0)(ˆ , and L+1 order represents the residue term of 

EMD.  

3.2 Structural Relationship Identification (SRI) Methodology 

As one of the research objectives is to develop an effective prediction model to forecast 

multivariate, nonlinear, and nonstationary time series, identification of the interrelationships 

among time series variables in the system is absolutely essential. In the econometric time series 

research area, some developments in multivariate time series techniques have been specifically 

designed to quantify the structural relationship of variables in the system. These models are 

vector autoregressive (VAR) and vector error correction models (VECM) [75, 76]. They have 

been broadly recognized as powerful, theory-driven models that can be used to describe the long-

run dynamic behavior of multivariate time series. Especially in the case of nonstationary variables 

with cointegration, the VECM provides the best persistent modeling for addressing the problem 

of long-run market-response identification by estimating the cointegration vectors of the 

endogenous variables. However, there is some difficulty associated with this type of  model. The 

identification of the structural relationship of the variables of these models is often problematic. 

For example, the large number of endogenous and exogenous variables may cause an over-
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parameterization issue leading to wrong estimations of all model coefficients. Model 

misspecification in VAR and VECM may also occur due to introducing irrelevant endogenous 

variables into the models.  

This section presents a structural relationship identification (SRI) methodology to address these 

pertinent issues in VAR and VECM. The methodology presented in this section includes a battery 

of advanced statistical methods to test for a unit root, weak exogeneity, Granger causality, and 

cointegration. The unit root test identifies the stationarity of each variable in the model. A 

sequential reduction method of weak exogeneity addresses an over-parameterization problem and 

also identifies the reasonable structural relationships of endogenous variables. Granger causality 

identifies causal relationships for the variable selection process. Because of the nonstationary 

characteristic of the variables, a cointegration test is used to identify the existence of long-run 

equilibrium relationships among selected endogenous variables. 

Fig. 3.7 presents an example of automobile sales modeling using the SRI methodology 

framework. In this section, the procedures used to identify the structural relationship of variables 

in the system are described as follows:  

The first step is to apply unit root tests [77-80] to identify the stationarity of each variable in the 

dataset. This step is also used to identify the order of integration for nonstationary variables. VAR 

or VARX (vector autoregressive with exogenous variables) models [75, 81, 82] can be applied if 

all variables in the dataset are stationary.    

Weak exogeneity [83-85] and Granger-causality tests [86-88] are used to determine the 

exogeneity of each variable in the second step. A sequential reduction method for weak 

exogeneity [89] is to apply a sequence of weak exogeneity tests by exogenizing any non-rejecting 

weakly exogenous variables and re-testing the remaining variables until all weakly exogenous 

variables are identified. For nonstationary variables, the cointegration rank test is used to 
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determine whether a long-run relationship among endogenous variables exists. Cointegration 

typically refers to a linear combination of nonstationary endogenous variables in the system [79, 

81, 83, 87, 90, 91]. VECM or VECMX (vector error correction model with exogenous variables) 

models can be applied if cointegration exists among endogenous variables, and VAR or VARX 

models in differences can be applied if there is no cointegration in the system. 

 

 

 

 

 

 

 

 

The final step in the framework is to compare the out-of-sample forecasting performance and 

derive the impulse response function from the selected model to trace the effect of a one-unit 

change in one of the variables on the future values of endogenous variables. A brief overview of 

each test and model used in the present approach is presented in Sections 3.2.1 through 3.2.5. 

Since many of these tests and modeling methods are well established in the literature (as 

summarized in the foregoing), only the necessary overview is included so that a consistent 

notation and symbology are established. 

3.2.1 VAR and VECM 

 

Figure 3.7: Automobile Sales Modeling Framework (SRI Methodology) 
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Vector autoregression (VAR) is a natural extension of the univariate autoregression (AR) models. 

It treats each variable in the system symmetrically. The evolution of each endogenous variable in 

the system can be explained by its own lags and the lags of all other endogenous and exogenous 

variables (in the case of VARX). VAR can also handle feedback from each endogenous variable, 

feedback which can be used to explain the structural relationships of variables in the system. Let 

             
          denote an n-dimensional time series vector. A     order vector 

autoregression, denoted as VAR(p), can be represented as 

 

   

   

 
   

   

  
  

 
  

  

 
 
 
 
    

   
   

   
    

   

   
   

   
   

    
   

    

   
   

   
   

    
   

 
 
 
 
 

 

     

     

 
     

    

 
 
 
 
    

   
   

   
    

   

   
   

   
   

    
   

    

   
   

   
   

    
   

 
 
 
 
 

 

     

     

 
     

   

  

   

   

 
   

                                                                                                                                 

where                                                       

      
   

                                                                      

                                        

A VAR process can also be affected by exogenous variables. In vector autoregression with 

exogenous variables (VARX), the VARX      can be represented in a simple form as 

            

 

   

    
      

 

   

                                                  

where     denotes an       vector of constants and    denotes an       matrix of 

autoregressive coefficients for          . The       vector    is a vector with an Ω        

symmetric positive definite matrix. The              
  is a w-dimensional exogenous time 
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series vector and   
 
 is an     matrix of coefficients. For stationary assumptions of VAR 

models, the stationary condition is satisfied if all roots of          lie outside the unit circle. If 

the stationary condition is not satisfied, a nonstationary model (a differenced model or an error 

correction model) might be more appropriate.  

The vector error correction model (VECM) is a dynamic multi-factor system that adds error 

correction features into the VAR model. A special characteristic of this model is that we can 

identify a long-run equilibrium relationship which can be used to improve longer-term forecasting 

of variables in the system. This long-run equilibrium relationship can be determined from the 

cointegration vector. The vector error correction model with the cointegration rank r (≤ n), 

denoted as VECM(p), can be written as 

               
 

   

   

                                                             

where r is the number of cointegrating vectors;   is the differencing operator, such that     

       ;      , where   and   are     matrices; and   
  is an     matrix. The 

cointegrating vector,  , is sometimes called a long-run parameter, and   is an adjustment 

coefficient. In the case of cointegration with exogenous variables, the VECM with exogenous 

variables, VECMX      , can be written as follows: 

               
 

   

   

        
      

 

   

                                        

Theoretically, VECM should be considered if and only if    is cointegrated, as defined in the 

following definition: 

Definition 1: The components of the vector              
   are said to be cointegrated of 

order d, b, denoted by    ~ CI(d, b) if (I) components of ty  are integrated of order d, I(d) , and 
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(II) there exists a vector               
 
such that the linear combination            

              is integrated of order (d - b), I(d - b), where b > 0.  

To identify the structural relationship of variables in the system, including causality and 

cointegration, the following subsections provide the details of each statistical hypothesis test 

involving SRI methodology.  

3.2.2 Unit Root Tests 

Two unit root tests are used to test the stationarity of the variables in the system,. The procedure 

implemented here is to test the null hypothesis of a unit root against the alternative of stationarity. 

The first test is the augmented Dickey and Fuller (ADF) [78, 92] unit root test. The ADF test 

provides the unit root test for three specific cases: a unit root with zero mean, unit root with drift, 

and unit root with drift and a deterministic linear time trend. For the unit root test with nonlinear 

trend stationarity, the second test, the univariate G-test [80] is applied. According to Park [79], 

insufficient attention has been given to the specification of the deterministic trend in the unit root 

test. The univariate G-test is distinct from conventional unit root tests in that it includes the 

nonlinear polynomial trend in the equations, resulting in a unit root test with nonlinear trend 

stationarity.   

This version of the ADF unit root test is the augmented version of the Dickey-Fuller test. 

Dickey and Fuller [78, 92] showed that the test statistic τ of the Dickey-Fuller test does not follow 

a t-distribution. The two versions of the test used in this paper are shown in Eq. (3.19) and (3.20). 

                                                                    

                                                                  

The null hypothesis is     against the alternative hypothesis of     . Eq. (3.19) is the test 

for a unit root with drift and Eq. (3.20) is a test for a unit root with drift and a deterministic time 
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trend. The appropriate lag length for the ADF test is selected using the general-to-specific 

methodology [93]. The idea is to select the optimal lag (p*) that is significantly different from 

zero for the pth
 autoregressive process shown in Eqs. (3.19) and (3.20).  

For the unit root test with nonlinear trend stationarity, Park and Choi [79] proposed the 

univariate G-test specifying ordinary time polynomials in the deterministic time trend. The 

univariate G-test is a variable addition test, since it is based on the regression of a given time 

series on time polynomials. To test whether a given time series is I(0)
1
 or stationary, the series is 

regressed on a time polynomial with order dictated by the null hypothesis and then some  higher-

order time polynomial terms are added. Suppose a time series    can be decomposed as  

       
      

 

 

     

 

   

                                                            

Let       and consider the following least squares regressions 

       
                                                                                                  

 

   

 

       
                                                                                                 

 

   

 

and define       
  

 

 
       

  
      and       

  
 

 
       

  
    

The test statistic is constructed by normalizing the standard Wald statistic as     

       
       

       
  

    
     

 

                                                        

                                                     
1
The I(d) process requires      difference to be stationary. A stationary process is denoted as an I(0) 

process. 
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where         
       

       
  

     
   is the standard Wald statistic for the null hypothesis of stationarity 

(I(0)) that                     , and      is the long-run variance of   .           

    
 

   
    

       
 

   
 

 

   

 

   

 

   

    
      

 

 

   

                               

It is shown by Park and Choi (1988) that            
   if    is I(0) process, while          

if    is an I(1) process. 

3.2.3 Weak Exogeneity Test 

The weak exogeneity of variables indicates that no useful information is lost when these variables 

are conditioned without specifying their generating process. For example, in the case of the 

automobile sales modeling, the two automobile sales (Yi‘s) are hypothesized as endogenous 

variables and the remaining variables (economic indicators, X i’s) as exogenous variables. The test 

of weak exogeneity will identify the weak exogeneity effect of each variable on the others. 

Testing the weak exogeneity assumption also addresses the over-parameterization problem of 

VAR and VECM modeling, so that the number of equations in the model can be reduced if the 

variables are treated as weakly exogenous. To test which variables should be treated as 

endogenous in the equation and which ones as exogenous, the n-vector of I(1) random variables 

   is initially partitioned into the   -vector     and the   -vector    , where        
     

   and 

       . From the VECM model (see Section 3.1), the parameters can similarly be 

decomposed as      
    

  ,     
    

  , and   
      

     
   and the variance-covariance 

matrix as                       . The conditional model for     given     is  
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and the marginal model for     is  

        
          

 

   

   

                                                       

where         
  

The test of weak exogeneity of      determines whether     . If     ,     is said to be 

weakly exogenous, i.e.,     can be estimated without the need for an error correction model 

because wherever      holds, it causes β to drop out of the marginal model for    . In this 

study, the sequential reduction method of weak exogeneity suggested by Greenslade et al. [89] is 

presented. The idea is to apply a sequence of weak exogeneity tests by exogenizing any non-

rejecting weakly exogenous variables and re-testing the remaining variables until all weakly 

exogenous variables are identified. 

3.2.4 Cointegration Test 

Engle and Granger system [79, 81, 83, 87, 90, 91] showed that if a linear combination of 

nonstationary time series is stationary, the time series are cointegrated. Cointegrated processes 

appear independent in the short term but tend to move together in the long term. For a test of 

cointegration,  Johansen’s reduced rank methodology [91, 94] is employed. The advantage of the 

Johansen test is that it allows a system to have more than one cointegrating relationship. This test 

is generally more applicable than the Engle and Granger test. Considering the VECM in Eq. 

(3.17), if the coefficient matrix   has reduced rank    , then there exists     matrices   and 

  such that       and        is stationary. Johansen has shown that for a given  , the maximum 

likelihood estimator of    can define the combination of      that yields the   largest canonical 

correlations of      with      after correcting for lagged differences and deterministic variables 

when present.  
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Two Johansen test statistics for cointegration are suggested for testing the null hypothesis that 

there are at most r cointegrating vectors (                        ). The trace and 

maximum eigenvalue statistics are as follows:  

                    
 
                                                          

                                                                          

where    is the sample size and     is the     largest canonical correlation. The trace test tests the 

null hypothesis of   cointegrating vectors against the alternative hypothesis of    cointegrating 

vectors. For the maximum eigenvalue test, it tests the null hypothesis of    cointegrating vectors 

against the alternative hypothesis of      cointegrating vectors. Asymptotic critical values of 

these tests are given in [95]. 

3.2.5 Granger-causality Test 

The concept of Granger causality is that there exists a subset of variables that are useful for 

forecasting others. By definition,     is said to Granger-cause    if    can be used to help predict 

some stage in the future of   . In the case of no cointegration among variables in the system, this 

concept can be tested for a selection of endogenous and exogenous variables in the VAR model. 

Considering the example of the bivariate VAR(p) model with coefficients    
   

         

                as follows: 

 
   

   
   

  
  

   
   

   
   

   

   
   

   
   

  
     

     
     

   
   

   
   

   
   

   
   

  
     

     
   

   

   
                     

The variable     is said to cause (Granger)    , but      does not cause (Granger)     if 

   
   

       . This model structure implies that if    
   

  ,     is influenced only by its own past 

values and not by the past of     . For a larger VAR model      ,  Granger causality can be 

used to test whether one variable is influenced only by itself and not by other variables in the 

model system. Let     be an  -dimensional time series vector which is arranged and partitioned in 
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subgroups     and     with dimensions    and   , respectively          : that is,     

    
     

    with the corresponding white noise process        
     

   . Equivalent representation 

of the VAR model in Eq. (5.1) can be written as  

 
            

            
  

   

   
   

  
  

   
   

   
                                                      

Consider testing        , where   is an           matrix of rank   and   is an  -

dimensional vector where        . Assume that         
 
       

     , as in least 

square (LS) and/or maximum likelihood (ML) estimation. The Wald statistic can also be obtained 

from [96] as 

               
                  

 
                                  (3.32) 

If the null hypothesis cannot be rejected, we can exclude that variable from the VAR model or 

treat it as an exogenous variable in the VARX model. As shown in the modeling framework, the 

Granger-causality test can be applied to both stationary and nonstationary systems. However, for 

nonstationary systems with the same order of integration, the cointegration relationship must also 

be identified to avoid the problem of using the VAR for a cointegrating system.  

 

3.3 Intrinsic Time-Scale Decomposition (ITD) based Prediction Methodology 

 

This section presents a new prediction approach based on the intrinsic time-scale decomposition 

(ITD) technique. The ITD method is a recently developed nonparametric decomposition 

technique for signals that are nonlinear and/or nonstationary in nature. ITD decomposes a signal 

into a sum of components called proper rotation components and a monotonic trend. As one of 

the advantages of a nonparametric method, ITD requires very limited assumptions about the data. 

This advantage makes ITD suitable for nonlinear data from unknown underlying processes. ITD 

also provides unbiased decomposing components, compared to a parametric algorithm, because 

of parameter estimation. The key aspect of this new prediction approach is to use the SRI 
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methodology presented in Section 3.2 to identify a causal and long-run equilibrium relationship 

between variables and the ITD components of related indicators and use this identified 

relationship for prediction. This new prediction approach can be applied to any system of 

nonlinear and/or nonstationary variables. 

3.3.1 Intrinsic Time-Scale Decomposition  

Given a nonlinear time series signal, Xt , where ),...,2,1( Tt , a general representation of a 

dynamical system of Xt can be represented using Volterra expansion [97] as  
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(3.33)                    

where t  is the deterministic component, t  ~  IID, and   ,....,,, ijklijkiji   is a set of 

coefficients. Eq. (3.33) is nonlinear if it has nonzero coefficients  ,....,, ijklijkij   on the higher-

order terms. The Volterra expansion in  Eq. (3.33) can be transformed into an autoregressive 

representation [98] as 

tttt XXfX   ,...),( 21                                                  (3.34) 

where ,...),( 21  tt XXf is some nonlinear function of the past values of X. The difficulty in 

estimating Eq. (3.34) is that the functional form f ( ) is unknown when working with real-world 

data. A number of procedures developed to determine the form of nonlinearity have been reported 

in the literature. However, no set of tests can actually discern the correct form of nonlinearity. 

Rather, the tests can only suggest the form of the nonlinearity.  

Intrinsic time-scale decomposition (ITD) is a recently developed nonparametric algorithm aiming 

to enhance the analysis of nonlinear and nonstationary signals [99]. The advantage of ITD is that 
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it does not require the parametric functional form of the original series. The ITD method 

represents a nonlinear, nonstationary signal as a summation of components called proper rotation 

components and a monotonic trend. ITD decomposes the signal into a sequence of proper 

rotations of successively decreasing instantaneous frequency at each subsequent level of the 

decomposition as  


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where H  is defined as a proper-rotation-extracting operator and  L  is defined as a baseline-

extracting operator. HLk
 Xt is the (k+1)

st
 level proper rotation and LaXt  is the monotonic trend. 

The following ITD procedure is used to extract proper rotation components from a time series Xt : 

(1) Identify the location of all local extrema of  Xt  denoted as τk  where k {1,2,…} 

(2) Assume that Xt  is available for t [0, τk+2] and define a baseline signal  Lt   using a piece-

wise linear baseline-extracting operator, L , between successive extrema as follows: 
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where Xk and Lk denote X(τk) and L(τk) respectively, and  
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(3) The first proper rotation can be extracted from Xt  using a proper-rotation-extracting 

operator,  H , as 

ttttt LXHXLHX  )1(                                               (3.38) 
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(4) The steps (1) to (3) will perform iteratively, using the baseline signals as input, until the 

monotonic baseline signal is obtained. The following properties provide some key concepts of 

ITD: 

Remark 1: The decomposition is nonlinear in the sense that the decomposition of two signals 

need not produce components equal to the sum of the components obtained from decomposing 

each signal individually, i.e. ttt WXS   
t

k
t

k
t

k WHLXHLSHL   

Remark 2: The edge effect of the ITD process is confined to the interval ],0[ 2  at the beginning 

and ],[ 2kk   at the ending of each proper rotation and monotonic trend.  

3.3.2 ITD-based Prediction Methodology 

As mentioned in Section 3.3, the ITD-based prediction methodology takes advantage of the SRI 

methodology to identify the relationships of variables in the system. The ITD-based prediction 

methodology consists of the following three steps. The first step is an ITD step. In this step, an 

indicator is decomposed into a finite number of proper rotation components and the monotonic 

trend. The second step is the variable selection step. This step is used to select endogenous and 

exogenous variables for VECM. In the second step, the nonstationary condition and integration 

order for each component is identified using a unit root test. Since the endogenous variable is 

nonstationary, stationary ITD components are treated as exogenous variables. Other exogenous 

variables are identified using a weakly exogenous test. The long-run equilibrium relationships 

between endogenous variables are identified using a cointegration test. The third step is the 

prediction step. The VECM model of selected endogenous and exogenous variables in the second 

step is parameterized. Out-of-sample forecasting is achieved. A comparison of out-of-sample 

forecasting with other classical and advanced time series techniques is done in this step. The 

overall framework of the ITD-based prediction methodology for a system of automobile demand 

and economic indicators is shown in Figure 3.8.  
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Figure 3.8: ITD-based Prediction Methodology Framework 
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CHAPTER IV 

 

WILLINGNESS-TO-PAY PREDICTION BASED ON EMPIRICAL MODE 

DECOMPOSITION 

 

Abstract: Long-term prediction of customer preferences is becoming essential for effective 

product portfolio design in broad industrial sectors such as automotive, aerospace, and consumer 

electronics, where typical concept-to-release times are long (24-60 months). However, nonlinear 

and nonstationary evolutions of customer preferences hinder their accurate prediction. The two-

step prediction approach based on EMD described in Chapter 3 is proposed to forecast customer 

preferences over extended time-horizons. The advantage of EMD is that this method can be used 

to decompose a nonstationary time series into a finite number of components called intrinsic 

mode functions (IMFs). This property helps in isolating trend and noise components (detrending 

and denoising) in a nonstationary process. However, the presence of edge artifact limits the use of 

EMD for predictions. A key aspect of this two-step approach is that it takes advantage of the 

linear phase property of the Hilbert-Huang transform (HHT) to address the edge artifact limits, 

thus extending EMD for long-term prediction applications. The empirical results suggest that the 

accuracy of EMD-based prediction is significantly improved in terms of RMSE (36%) and R
2
 

(30%) compared to classical and advanced time series techniques. 
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4.1 Introduction 

 

During the last decade, U.S. auto manufacturers have lost significant market share to foreign 

competitors. Train [100] investigated the reasons behind this loss of market share using a model 

of the influence of vehicle attributes on customer preference and found that tracking customer 

preferences is essential to the effective design of product portfolios. Customer preferences are 

often expressed in terms of willingness-to-pay (WTP) metrics [101], which refers to the 

maximum monetary amount a consumer is willing to pay for a good or service. Marketing 

researchers have used choice models to capture WTP and predict market share under certain 

varying market conditions [102, 103]. However, many of the existing choice models of customer 

preferences [104, 105] assume time invariant behavior of the customer. They seldom consider the 

evolving nature of customer choice over time. For complex product systems (e.g., automobiles) 

where the concept-to-release time takes approximately 24-60 months, customer preferences 

evolving over time may have a large impact on market performance. Here, WTP can be estimated 

for each of the attributes of the product. Examples of the major attributes of an automobile 

product are brand, fuel economy, durability, safety, workmanship, and initial reliability. Input 

from prospective customers elicited from on-line portals, social networks, and blogs, as well as 

product clinics is being considered for the estimation of WTP [106].  

The WTP data in this study comprise a set of daily estimates of three fuel economy WTP 

attributes during a period of 24 months (731 data points). This dataset contains real WTP data 

capturing the trends of a typical automotive product from industry sources. However, the data 

have been masked for proprietary reasons. Fig. 4.1 shows the WTP for one attribute, fuel 

economy, and its autocorrelation. As shown in the figure, the series exhibits strong levels of 

nonstationarity. Since WTP evolves over time, one would expect that the design or estimate using 

past customer preferences (WTP) may perform sub-optimally in terms of market shares in the 

future. A solution to this issue might be to forecast the future values of WTP. However, the 
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typically long (24-60 month) concept-to-release time, coupled with the nonstationary 

characteristic of WTP pose significant challenges to long-term prediction. Very few efforts [107, 

108] have addressed forecasting for long-term horizons. For stationary processes, unbiased long-

term forecasting would be reduced to invariant first- and second moment estimation. In the case 

of nonstationary processes, long-term forecasts would be dominated by trend curves [109]. 

Currently, no simple approach or general theory exists for long-term forecasting under 

nonstationarity.   

 

(a) 

 

(b) 

Figure 4.1: (a) Typical trend of WTP of a fuel economy attribute (b) Autocorrelation of WTP 

attribute 

This study presents a new prediction approach based on the empirical mode decomposition (EMD) 

technique. EMD aims to decompose a nonstationary signal into a finite number of components 

called intrinsic mode functions (IMFs). EMD allows perfect reconstruction of the original signal 

using IMFs. This property leads to the application of determining a trend from an original series. 

Since WTP exhibits nonstationary characteristic, the EMD technique can be extended for long-

term forecasting of WTP. This investigation indicates that EMD prediction can improve the 

forecasting of WTP over a 12-15-week horizon by about 30% (R
2
) compared to other methods 

tested. The organization of this chapter is as follows: Section 4.2 presents the implementation 

details and results of using the EMD-based prediction methodology described in Chapter 3. The 

conclusion and suggested future work are presented in the last section of this chapter. 
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4.2 Implementation Details and Results 

4.2.1 The First Step 

The two-step algorithm approach was applied to the WTP for the fuel economy attribute. The first 

step of the two-step algorithm approach provides the long-term trend prediction of WTP which 

can be used to solve the edge effects problem of EMD. Exponential smoothing, the winter 

additive method, STEPAR, and ARIMA were selected to present the effectiveness of the EMD-

based prediction model and to compare the prediction accuracy in terms of RMSE and R
2
. 

Prediction comparison (the first step of two-step algorithm approach) for the WTP attribute is 

summarized in Table 4.1. Comparing the five prediction models in Table 4.1, the first step of the 

EMD-based prediction is the best model to train (1-step ahead) the original WTP attribute in 

terms of RMSE (267.25) and R
2 

(0.868), followed by STEPAR, ARIMA, winter additive, and 

exponential smoothing. From Table 4.1, applying STEPAR and ARIMA models directly to the 

original WTP data yields similar prediction accuracy (R
2 
≈ 75%). Using STEPAR with trend 

IMFs and residue in the first step of the two-step algorithm approach yields a significant 

improvement in terms of RMSE (≈25%) and R
2
 (≈12%), compared to STEPAR (the second best 

model). 

Table 4.1: Prediction Comparison (the first step of two-step approach) 

 

 

 

Model RMSE R
2 

Exponential Smoothing 458.18 0.554 

Winter Additive Method 382.11 0.709 

Stepwise Autoregressive 356.22 0.746 

ARIMA 356.63 0.745 

1-step of EMD-based prediction 267.25 0.868 
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4.2.2 The Second Step 

The prediction results in the first step are then used to solve the edge effects problem of EMD. 

The results in the second step were obtained by applying Eq. (3.12) with all new IMFs and the 

residue. The second step of the two-step algorithm approach provides a long-term trend 

prediction as well as a short-term prediction of WTP. Prediction comparison (the second step of 

the two-step algorithm approach) for the original WTP attribute is summarized in Table 4.2. 

Comparing six prediction models, the second step of the EMD-based prediction is the best model 

to train (1-step ahead) the original WTP attribute in terms of RMSE (191.81) and R
2 
(0.932). As 

seen in Table 4.2, applying the second step of EMD-based prediction improves the prediction 

accuracy in terms of RMSE (46%) and R
2 
(≈20%). The improvement in prediction accuracy 

results from both short-term IMF components (detrended components) and instantaneous phase 

predictions. Table 4.3 shows RMSE and R
2
 with 1-5 (short-term), 6-10 (mid-term), and 11-15 

(long-term) steps with validation data. The RMSE and R
2
 values in Table 4.3 were achieved from 

applying different models with training data for three WTP attributes, and then validating these 

models with validation data. The results show that EMD-based prediction (the second step) is the 

best model for all short-, mid- and long-term predictions in terms of RMSE and R
2
. For long-term 

prediction, the two-step algorithm approach yields a significant improvement in terms of RMSE 

(36%) and R
2
 (30%), compared to the average RMSE and R

2
 of the other four models in Table 

4.3. 

Table 4.2: Prediction Comparison (the second step of the two-step algorithm approach) 

 

Model RMSE R
2 

Exponential Smoothing 458.18 0.554 

Winter Additive Method 382.11 0.709 

Stepwise Autoregressive 356.22 0.746 

ARIMA 356.63 0.745 

1-step of EMD-based prediction 267.25 0.868 

2-step of EMD-based prediction 191.81 0.932 
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Table 4.3: Comparison of prediction accuracy with the validation data set 

 

 
 

4.3 Conclusions and Suggested Future Work 

Long-term prediction of customer preferences is becoming essential for effective product 

portfolio design in broad industrial sectors where typical concept-to-release times are long (24-60 

months). However, the nonlinear and nonstationary evolution of customer preferences hinders 

their accurate prediction. Empirical mode decomposition (EMD), as a nonlinear and 

nonstationary signal processing method, offers the advantage of capturing nonstationarity in the 

signal by determining trend and noise components. However, the edge effects problem limits the 

use of EMD for prediction applications. In this study, a new two-step prediction approach based 

 Short-term Mid-term Long-term 

Model RMSE R
2 

RMSE R
2
 RMSE R

2
 

Exponential Smoothing 370.450 0.636 445.074 0.519 750.362 0.132 

Winter Additive Method 400.253 0.575 486.639 0.425 818.762 0.053 

Stepwise Autoregressive 307.275 0.749 370.654 0.666 488.422 0.435 

ARIMA 377.757 0.621 476.234 0.449 824.921 0.046 

EMD-based prediction 210.135 0.883 323.381 0.746 456.872 0.471 
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on EMD was presented to facilitate long-term prediction of the highly nonstationary evolution of 

customer preferences. The first step procedure was used for predicting the long-term trend 

component of the customer preference series (expressed in terms of WTPs). In this step, EMD 

decomposed the original series into multiple IMFs (about 11 in most cases investigated) and a 

residue. The long-term trend was found to be embedded in IMFs 8 through 11, and the residue. 

The empirical results have shown that the first step of the two-step approach yields a notable 

improvement in terms of RMSE (25%) and R
2
 (12%), compared to STEPAR. The first step of the 

two-step algorithm prediction result does not just provide better prediction accuracy, but it can 

also be used to reduce the edge effects problem of EMD.  

In the second step of the two-step algorithm, EMD was used to decompose an extended series 

obtained from concatenating the original series with prediction result from the first step. In this 

step, EMD provided new IMFs and residue without the edge effects problem. Linear phase 

extension was then applied to all new IMFs and the residue. The empirical results  show that 

applying the second step of EMD improves the accuracy of predicting WTP over extended time 

horizons both in terms of RMSE (46%) and R
2 
(≈20%). The improvement of prediction accuracy 

results from both short-term IMF components (detrended components) and instantaneous phase 

predictions. Overall, the two-step prediction approach based on EMD appears to be suited well 

for the prediction of nonstationary processes. However, in this study, the underlying process and 

related indicators of WTP were assumed to be unknown. In principle, the prediction should not be 

done with historical data (autoregressive components) alone. Exogenous variables that affect the 

signals of interest are absolutely essential. To improve the prediction accuracy, future work  in  

prediction based on EMD should involve incorporating exogenous variables into the model.  
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CHAPTER V 

 

MULTI-STEP AUTOMOTIVE SALES FORECASTING BASED ON 

STRUCTURAL RELATIONSHIP IDENTIFICATION 

 

Abstract: Forecasting sales and demand over a 6-24-month horizon is crucial for planning the 

production processes of automotive and other complex product industries (e.g., electronics and 

heavy equipment) where typical concept-to-release times are 12-60 months. However, nonlinear 

and nonstationary evolution and dependencies with diverse macroeconomic variables hinder 

accurate long-term prediction of the future of automotive sales. In this chapter, a structural 

relationship identification (SRI) methodology, described in Chapter 3, that uses a battery of 

statistical unit root, weak exogeneity, Granger-causality, and cointegration tests, is proposed to 

identify the dynamic couplings among automobile sales and economic indicators. A vector error 

correction model (VECM) of multi-segment automobile sales was estimated based on impulse 

response functions to quantify the long-term impact of these economic indicators on sales. 

Comparisons of prediction accuracy demonstrate that the VECM model outperforms other 

classical and advanced time-series techniques. The empirical results suggest that VECM can 

significantly improve the accuracy of 12-month ahead automotive sales predictions in terms of 

RMSE (42.73%) and MAPE (42.25%), compared to the classical time series techniques. 
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5.1 Introduction 

 

Competition among automobile manufacturers has been growing rapidly since the U.S. economic 

crisis in 2008 [110]. Manufacturers are forced to devise various strategies to help them compete 

in the industry. In order to effectively manage resources and maximizing revenue, it is imperative 

that product portfolios be designed and positioned suitably and that production activities (e.g. 

production and operations planning, inventory and material management, etc.)  also be planned 

correctly. Because of long product development cycles, effective planning for production of 

automobiles requires accurate forecasting of long-term (6-24 months) sales and demand. Long-

term forecasting serves as an input to many business and operating decisions which affect 

profitability. In production planning processes, long-term forecasting is used to determine an 

appropriate level of manpower for production planning and also serves as an input for business 

planning, such as planning for expansion or contraction of existing production units. Errors in 

demand forecasts have often led to enormous costs and loss of revenues. For example, inaccurate 

forecasts of future demand have led to highly suboptimal levels of production workforce [111]. 

The consequent workload imbalances can increase the costs of hiring, firing, and overtime labor 

activities. In many cases where the supply of materials is outsourced, inaccurate demand forecasts 

can also lead to a shortage of supplies for production. Sales forecasting [112-114] is considered  a 

realistic assessment of expected future demand [115]. 

Automobile sales forecasting has received notable attention in the past 30 years [116-123]. For 

example, Berkovec [116] modeled the aggregate automobile market demand as the sum of 

individual consumer demand using household attributes and vehicle ownership levels. Greenspan 

and Cohen [117] predicted aggregate sales of new motor vehicles based on quantifying vehicle 

stock and scrappage rates. Franses extended the deterministic Gompertz model [124, 125] to 

predict Dutch new car sales. Armstrong et al. [121] developed intentions-based forecasting 

methods to predict French and US automobile sales. Kunhui et al. [123] predicted Chinese 
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automobile sales using support vector regression (SVR). Hulsmann et al. [122] applied data 

mining algorithms to model German and US automobile markets. Based on the literature, most 

proposed automobile sales forecasting models are econometric approaches imposing a certain 

structure of economic theory on the data. There is no guarantee that the underlying processes of 

automobile sales will follow these structures. 

Automobile sales are known to be influenced by factors such as advertising, sales promotions, 

retail prices, and technological sophistication [126]. Considering the long concept-to-release time 

(12-60 months) of automobile products, effective production planning requires a forecast of sales 

in a long-term horizon. In a competitive market, as in the case of the automobile market, 

advertising and sales promotions tend to have substantial effects; however, these effects on sales 

are rarely persistent [127-130]. Factors reflecting customer preferences in the automobile market, 

such as aesthetics [131], brand, form, and function, [132], can also influence automobile sales at 

segment or trim levels, but not in determining changes in automobile sales at aggregate levels. 

Recently, a relatively small body of literature has provided a set of economic indicators that relate 

to sales [133, 134]. Mian and Sufi [134] revealed the similarities among the evolution patterns of 

automobile sales, unemployment rates, and new housing building permits (Housing Starts). 

McManus [133] presented a link between gasoline prices and vehicle sales. However very little 

effort has been made to address automobile sales prediction using these economic indicators 

[135-137]. Wang et al. [137] used an adaptive network-based fuzzy inference system to estimate 

new automobile sales in Taiwan with economic indicators. Shahabuddin [136] modeled vehicle 

sales using indicators such as durable personal consumption and durable industrial demand. Brühl 

et al.’s [135] data-driven model for the German automobile market relates various economic 

indicators such as gross domestic product (GDP), the Consumer Price Index (CPI), interest rates, 

the unemployment rate, and gas prices with automobile sales. The results using the empirical 

models suggest that these indicators have a significant effect on automobile sales. However, these 
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models are applicable to forecasting horizons that are much shorter (1-4 months) than those 

needed for effective production planning for automobile sales (6-24 months). 

Apart from its multivariate nature, the nonstationary evolution of many of these variables presents 

additional challenges to automobile sales prediction for a long-term horizon.  For stationary 

processes, unbiased long-term forecasting would be reduced to invariant first and second 

moments. However, in nonstationary processes, the evolution of the systems can deviate 

permanently from previous levels, which makes long-term forecasting almost impossible unless 

the underlying structures or processes of the systems are known. In the area of econometric time 

series research, some developments in multivariate time-series techniques have been specifically 

designed to quantify the structural relationship of variables in the system. These models are the 

vector autoregressive (VAR) and vector error correction models (VECM) [75, 76]. They have 

been broadly recognized as powerful, theory-driven models that can be used to describe the long-

run dynamic behavior of multivariate time series. Especially in the case of nonstationary variables 

with cointegration, the VECM provides the best persistent modeling for addressing the problem 

of long-run market-response identification by estimating the cointegration vectors of the 

endogenous variables. However, with this type of model, the identification of the structural 

relationship of the variables is often problematic. For example, the large number of endogenous 

and exogenous variables may cause an over-parameterization issue leading to wrong estimations 

of all model coefficients. Model misspecification in VAR and VECM may also be due to 

including irrelevant endogenous variables in the models.  

This study presents a structural relationship identification (SRI) methodology to address these 

pertinent issues in VAR and VECM for automobile sales prediction. The hypothesis is that a 

causal relationship and/or cointegration exist in our dynamical system of multi-segment 

automobile sales and economic indicators. In the prediction of the sales of multi-automobile 

segments, the interaction effect among segment-wise sales can be significant due to the common 
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influence of multiple economic indicators. In such cases, the present VAR and VECM structures 

are expected to perform better than other traditional time series models because of their inherent 

advantages [96, 138]. For example, VAR and VECM can be used to capture the linear 

interdependencies of a multivariate time series system and to provide evidence of the dynamic 

behavior and  structural relationships among variables [139]. These models also allow a feedback 

relationship, which can be used to capture more complex interactions among variables [140].  

The methodology used in this study includes a battery of methods to test for a unit root, weak 

exogeneity, Granger causality, and cointegration. The unit root test identifies the stationarity of 

each variable in the model. A sequential reduction method for weak exogeneity addresses an 

over-parameterization problem and also identifies the reasonable structural relationships of 

endogenous variables. Granger causality identifies causal relationships for the variable selection 

process. Because of the nonstationary characteristic of the variables, a cointegration test is used to 

identify the existence of long-run equilibrium relationships among selected endogenous variables. 

The empirical results indicate that long-run equilibrium relationships among variables in dynamic 

systems do exist. Hence, in this study, VECM is derived and implemented for predicting sales in 

two different segments and is compared with other existing methods. The long-term impact of 

each economic indicator on automobile sales are also discussed. The organization of the 

remainder of this chapter is as follows: Section 5.2 provides the description of each variable in 

the multi-segment automobile sales model. The implementation details and empirical results are 

given in Section 5.3. Conclusions and further discussion are presented in Section 5.4. 
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5.2 Data 

 

The main time series considered in this study is the sequence of monthly new automobile sales in 

the U.S., as reported in industry sources, during the period Jan 1975 – Dec 2010. The dataset 

consists of new automobile sales in two different segments (large- and small-vehicle segments) 

and selected economic indicators. The large-vehicle segment is the aggregate number of 

automobile sales in heavy and medium truck segments. The small-vehicle segment is the 

aggregate number of automobile sales in sedan and SUV segments. Although large- and small-

vehicle segments seem to have different structures that control the underlying dynamics in the 

short term, we can observe a similarity in long term trends from both segments as shown in Fig. 

5.1.  

 

Figure 5.1: Sales of Large- and Small-Vehicle Segments 

Considering sales of automobiles in both segments, the hypothesis is that both segments have a 

long-run equilibrium relationship which can lead to better estimation of future sales for long-term 

horizons. The remaining variables in this dataset are selected economic indicators. As discussed 

in the introduction, the selection of economic indicators is intended to improve the prediction of 

automobile sales, leading to an improvement in production planning efficiency for long-term 

horizons. A sufficient number of economic indicators must be selected to reveal a structural 
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relationship between them and automobile sales. The following properties are considered for the 

selection of economic indicators in this study: 

i. Indicators that characterize changes in the price paid by automobile consumers. 

ii. Indicators that influence the demand behavior in large- and small-vehicle segments of the 

automobile industry. 

iii. Indicators that represent the national economy and changes in the economic cycle. 

In addition to the properties described above, all aspects of modeling issues, such as over-

parameterization, multicollinearity, redundancy, and model specification, are considered in 

selecting the variables. From the literature and from preliminary tests as well as guidance from 

industry experts, four monthly economic indicators are selected (See Fig. 5.2): Consumer Price 

Index (CPI), Unemployment Rate, Gas Prices and Housing Starts.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.2: Economic Indicators: (a) Consumer Price Index (CPI), (b) Unemployment Rate, (c) 

Gas Prices and (d) Housing Starts 
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These four indicators are hypothesized to be sufficient for modeling automobile sales for long-

term horizons, considering the selection criteria. Although some of these indicators can be 

influenced by common underlying structures resulting in their being significantly correlated, each 

of these indicators represents different characteristic properties that should be addressed. The 

structural identification methodology presented in this paper is used to identify the structural 

relationship between automobile sales and these economic indicators. 

As shown in Fig. 5.2, most of the selected economic indicators exhibit nonlinear trends or 

patterns. Gas prices tend to grow exponentially over time due to increases in the scarcity of 

resources. Unemployment rates as well as housing starts seem to have a cyclical pattern resulting 

from economic up- and downturns; however, housing starts tend to have a greater level of short-

term fluctuation.  Only the CPI shows a linear trend over time.  Data transformation is required to 

satisfy the linearity assumption underlying VAR and VECM in order to model a system of 

automobile sales and economic indicators. In this paper, a logarithmic transformation is selected 

for all variables. By taking the log transformation, not only can data be converted from nonlinear 

to linear patterns, but the variability of variables can also be stabilized. Table 5.1 summarizes 

automobile sales data and the selected economic indicators for the purpose of prediction. To 

preserve data for out-of-sample forecast evaluation, the model is identified using a truncated 

sample from Jan 1975 to Dec 2009, and the remaining data is used for validation. For reasons of 

confidentiality, these variables are masked in the analysis. The sales variables and economic 

indicators in Table 5.1 are represented by Yi’s and Xi’s respectively. The order of these variables 

in our analysis and results also differs from the order in Table 5.1.  
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Table 5.1: Summary of variables 

Variable Name Source Description 

   

Small-Vehicle 

Segment Sales 
Industry 

Aggregate small-vehicle segment sales of sedan & 

SUV models. 

   
Large-Vehicle 

Segment Sales 
Industry 

Aggregate large-vehicle segment sales of heavy & 

medium-sized trucks. 

   
Consumer Price 

Index 
BLS** 

Monthly data on changes in the prices paid by urban 

consumers for a representative basket of goods and 

services (Base Period: 1983=100). 

   Unemployment rate BLS** National unemployment rate (16 years or over). 

   Gas Prices EIA*** 
Monthly U.S. retail prices of regular gasoline, all 

formulations.  

   Housing Starts 

Census 

Bureau and 

HUD* 

Monthly data on the construction of private 

residential structures, such as single-family homes 

and apartment buildings.  

* Department of Housing and Urban Development, ** Bureau of Labor Statistics, *** U.S. Energy Information 

Administration 

5.3 Implementation Details and Results 

 

In this section, implementation details and empirical results of the structural identification 

methodology (unit root, weak exogeneity, cointegration, and Granger causality) described in 

Chapter 3 are presented. The unit root test results indicate that automobile sales and economic 

indicators are nonstationary variables. Based on the results of the weak exogeneity tests, two 

economic indicators ( 1X  and 3X ) are treated as exogenous variables. The cointegration rank test 

results indicate that automobile sales and two economic indicators ( 2X and 4X ) are cointegrated. 

Finally, the VECM and VECMX models of automobile sales and economic indicators are 

estimated, and an out-of-sample forecasting comparison of the VECMX and classical time series 

techniques shows that VECMX significantly improves the accuracy of long-term prediction of 

automobile sales.  
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5.3.1 Unit Root 

In order to conduct the ADF unit root test, it is important to use the correct number of lags in the 

equation. The optimal lag length of the original variables for the ADF test was individually 

selected based on the results of general-to-specific methodology (t-test). The methodology starts 

with a lag length of p*=6 and then pares down the model by the usual t-test. If the t-statistic on 

lag p* is insignificant at some specified critical value, then the regression is re-estimated using a 

lag length of p*-1. The process is repeated until the last lag is significantly different from zero. In 

this autoregressive case, this procedure yields the true lag length with an asymptotic probability 

of unity, provided the initial choice of lag length includes the true length. Another technique for 

selecting optimal lag length for the ADF test is to use information criteria such as the Akaike 

information criterion (AIC) and the Schwarz Bayesian criterion (SBC), whose formulas are 

specified respectively as 

TnTLAIC /2/)ln(2                                                  (5.1) 

 TTnTLSBC /)ln(/)ln(2                                               (5.2) 

where  ))(2/1()ln()2/()2ln()2/()ln( 22 SSRTTL   , SSR  = sum of squared residuals, 2 = 

variance of the residuals, n = number of parameters estimated, and T = number of usable 

observations. 

To avoid comparing the models over different sample periods, the number of usable observations 

was fixed at 414 observations (overall observations – maximum lag length = 420 – 6 = 414 

observations). The information criteria (AIC and BIC) for each pth
 order autoregressive process is 

reported in Table A1 (Appendix A).  

The Akaike information criterion (AIC) results are mostly consistent with the optimal lag length 

selection using a general-to-specific methodology (t-test) for all variables (in logarithm form), 

except          and        . The AIC for the         model selects a lag length of 6 and the SBC 

selects a lag length of 4. Since the SBC tends to select a more parsimonious model and the t-test 
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also selects lag 4, a lag length of 4 was selected as the optimal lag for the         variable. For 

the         variable, the t-test selects a lag length of 3, the SBC selects a lag length of 1, and the 

AIC selects a lag length of 4. Nevertheless, in this case, the null hypothesis of the ADF test 

cannot be rejected for all lags (1, 3 and 4). The optimal lag length of 3 was selected to report the 

test statistics for the         variable. In the case of differenced variables, the results of the ADF 

test are that the null hypothesis was rejected for lags 0-6 of all variables. The optimal lag length 

of each differenced variable was selected to report the ADF test results as shown in Table 5.2. 

Table 5.2: ADF Unit Root Test of Original and Differenced Variables 

Variables 

 

Optimal Lag 

Length 

Unit Root with Drift 
Unit Root with Drift 

and Deterministic Time Trend 

                    

  

   

                           

  

   

    

Original Variables p*                   

        5 -1.59 0.4889 -1.25 0.8978 

        4 -3.18 0.0221 -2.74 0.2209 

        3 -1.61 0.4761 -1.47 0.8390 

        6 -3.19 0.0215 -2.43 0.3646 

        5 -1.40 0.5836 -2.44 0.4681 

        6 -2.68 0.0792 -2.49 0.3341 

First Differenced 

Variables 

 
                  

         4 -12.64 <0.0001 - - 

         3 -15.24 <0.0001 - - 

         1 -24.53 <0.0001 - - 

         6 -3.82 0.0031 - - 

         4 -5.14 <0.0001 - - 

         5 -4.72 0.0002 - - 

The ADF test for unit root with drift and deterministic time trend on the first differenced variables are not computed. Test critical 

values for the unit root with drift model: 1% (-3.446), 5% (-2.868) and 10% (-2.570). Test critical values for the unit root with drift 

and linear time trend model: 1% (-3.980), 5% (-3.421) and 10% (-3.133). Lag length selection criteria: AIC, BIC and t-test.   

 

Table 5.2 lists the ADF test statistics of the original and differenced variables for the unit root 

with drift and the unit root with drift and deterministic time trend models. The test results show 
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that the null hypothesis of unit root cannot be rejected for all original variables at the 1% 

significance level but is rejected at the 5% significance level for          and         in the unit 

root with drift model. However, the null hypothesis for a unit root cannot be rejected for these 

variables in the unit root with drift and deterministic time trend model. These results indicate that 

not all variables are linear-trend stationary variables. For the first differenced variables, the ADF 

test statistics reject the null hypothesis of a unit root with drift for all differenced variables. 

The   -value of the univariate G-test of each original variable with p=1 and q=2 to 8 is reported 

in Table A2 (Appendix A). The empirical results show that the null hypothesis of stationarity is 

rejected at the 10% significance level for all original variables at all levels of G(p,q), except 

         and          at the G(1,2) level. However, for the first differenced variables (See Table 

A3, Appendix A), the null hypothesis of stationarity cannot be rejected for these variables at the 

G(1,2) level. Based on the empirical results of two unit root tests, all original variables used in the 

model are treated as nonstationary I(1) series in the subsequent analysis. 

5.3.2 Weak Exogeneity 

A sequential reduction method for the weak exogeneity test begins with the vector of the log 

transformation of the six variables (Yi’s & Xi’s) in Table 5.1. For a system with six variables, 

there can exist at most a cointegrating vector with rank five. The null hypothesis of          

for each candidate exogenous variable is tested with the cointegrating rank unrestricted (r = 5). 

The results in Table 5.3 show that the null hypothesis of weak exogeneity cannot be rejected for 

        . In contrast, the null hypothesis of weak exogeneity for the other variables 

                                            is strongly rejected at the less than 1% 

significance level.  

Greenslade et al. [89] suggested retesting the rejecting weakly exogenous variables with the non-

rejecting weakly exogenous variables to avoid sensitivity on the model specification. The results 
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of retesting the weak exogeneity variables are given in Tables 5.4 and 5.5. The test results 

continue to strongly reject the null hypothesis of weak exogeneity of 

                                  at less than a 1% significance level. The null hypothesis of 

weak exogeneity cannot be rejected in the second test in the case of        ; therefore         

and         are treated as exogenous variables in subsequent analysis.  

Table 5.3: Weak Exogeneity Tests (all variables) 

Variable       P-value 

         116.89 <0.0001 

         79.27 <0.0001 

         23.08 0.0003 

         151.41 <0.0001 

         3.67 0.5973 

         87.63 <0.0001 

 

Table 5.4: Weak Exogeneity Tests (Re-test(1)) 

Variable       P-value 

         111.78 <0.0001 

         75.30 <0.0001 

         5.44 0.2450 

         126.94 <0.0001 

         80.89 <0.0001 

Table 5.5: Weak Exogeneity Tests (Re-test(2)) 

Variable       P-value 

         53.01 <0.0001 

         50.98 <0.0001 

         127.85 <0.0001 

         36.25 <0.0001 
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5.3.3 Cointegration Rank Test 

The existence of long-run relationships among                         and         was 

investigated; Table 5.6 reports the test statistics and the corresponding asymptotic critical values 

at the 5% and 10% significance levels. Based on both trace and maximum eigenvalue statistics, 

the null hypothesis of no cointegration is rejected. The null hypothesis of one cointegrating vector 

cannot be rejected at both 5% and 10% significance levels as shown in Table 5.6. The test results 

indicate one potential cointegrating vector among the four variables. Table 5.7 presents the 

estimated long-run parameter (β) and the adjustment coefficient (α) with         as a normalized 

variable. Therefore, the long-run relationship among the four variables is given by 

                                                                               

Table 5.6: Johansen’s Cointegration Rank Tests 

  Trace Test Maximum Eigenvalue Test 

  : Rank = r   : Rank > r Trace Statistic 5% 10% Max Statistic 5% 10% 

0 0 71.776 39.71 36.58 58.203 23.80 21.58 

1 1 13.573 24.08 21.58 8.018 17.89 15.59 

Table 5.7: Long-Run parameter (β) and adjustment coefficient (α) 

 β α 

         1 0.00077 

         2.4147 -0.00270 

         -5.5670 0.00051 

         -1.6327 -0.00152 

Weak exogeneity and cointegration test results show that both segments of automobile sales 

                     ) and two hypothesized economic indicators                     are I(1) 

and cointegrated of order 1. The underlying processes of these variables are random in the short 

term but tend to move together over a long-term horizon. As discussed in the methodology 
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section, the VECM is the most suitable model to explain the structural relationship of this system 

because it imposes cointegrating restrictions on endogenous variables.  

5.3.4 Granger Causality Test 

Although weak exogeneity and cointegration test results provide the information necessary for 

identifying the structural relationships of the system of multi-segment automobile sales and 

economic indicators, the Granger-causality test can still be used to confirm the exogeneity of 

variables. The Granger-causality test is used to test the causal relationships among six variables in 

order to confirm the exogeneity of          and         . All variables in differenced form are 

built into a VAR system. In addition to AIC and SBC, the lag length criterion for the VAR 

specification also includes the corrected AIC (AICC), the Hannan-Quinn criterion (HQC), and the 

final prediction error criterion (FPEC). The results of lag length selection are given in Table A4 

(Appendix A). All criteria select a lag length of four, except the SBC. Therefore, lag 4 is selected 

for the Granger-causality test.  

To test the causal relationship, the chi-squared (Wald) test statistic was calculated for each 

equation in the VAR model. The results of Granger-causality tests (in Table 5.8) show that the 

null hypothesis cannot be rejected in the case of          and         . The weak exogeneity and 

Granger-causality tests are consistent. These two economic indicators must be treated as 

exogenous variables.  

Table 5.8: Granger Causality Tests 

Lag 

Order 

                                                            

   P-value    P-value    P-value    P-value    P-value    P-value 

1 30.40 <0.0001 6.65 0.2482 6.27 0.2809 11.36 0.0447 1.39 0.9256 12.76 0.0257 

2 44.73 <0.0001 24.00 0.0076 11.18 0.3435 55.04 <0.0001 11.74 0.3028 18.87 0.0419 

3 55.38 <0.0001 34.54 0.0029 13.57 0.5581 53.08 <0.0001 14.67 0.4752 28.55 0.0184 

4 60.41 <0.0001 41.66 0.0031 16.01 0.7162 54.95 <0.0001 20.27 0.4409 46.86 0.0006 

   test statistics are presented for the null hypothesis that the column variable is influenced by itself and not by other variables. 

(Coefficients of all other variables, treated as independent variables, are not significantly different from zero) 
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5.3.5 Out-of-Sample Forecasting Performance Comparison 

To evaluate the forecasting performance of the VECM model of automobile sales, the VECM 

model was developed with the sample period from Jan 1975 to Dec 2009. The 12-month period in 

2010 was used to validate and compare the forecasting performance of the VECM model with 

other models. In this analysis, the VAR and VARX were selected to compare with the VECM and 

VECMX. The VAR and VARX admit the possibility of cointegration but do not impose 

cointegrating restrictions, as in the VECM and VECMX models.  

The endogenous and exogenous variables in these models (VAR, VARX, VECM and VECMX) 

are explained by up to two lags        . Overall model criteria based on AIC, SBC, AICC, 

HQC and FEPC are presented in Table A5 (Appendix A). For forecasting accuracy comparison, 

the root mean square error (RMSE) and mean absolute percentage error (MAPE) for each model 

are computed based on the 12-step-ahead sales forecast as presented in Table 5.9.  

Table 5.9: 12-step-ahead Forecasting Comparison (with trend, ADL and ARIMA(X) models) 

MODEL 
12-step-ahead Sales Forecast of          (out-of-sample) 

RMSE MAPE 

Quadratic Trend Model* 0.6138 0.0649 

IMA* 0.2848 0.0278 

ARIMA* 0.2517 0.0235 

ADL* 0.2659 0.0260 

ARIMAX* 0.1866 0.0162 

VAR 0.1719 0.0165 

VARX 0.1737 0.0167 

VECM 0.1416 0.0135 

VECMX 0.1470 0.0139 

*Modeling details are given in Table A6 (Appendix A) 

Table 5.9 also provides the RMSE and MAPE values of five classical time series models 

(quadratic trend, integrated moving average (IMA), autoregressive integrated moving average 

(ARIMA), autoregressive distributed lags (ADL) and autoregressive integrated moving average 
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with exogenous variables (ARIMAX) models). The results show that the VECM model without 

exogenous variables outperforms all selected classical time series techniques and significantly 

improves prediction accuracy in terms of RMSE (42.73%) and MAPE (42.25%) for 12-step 

ahead prediction, compared to all selected classical time series techniques
2
.  

Fig. 5.3 shows the comparison of VAR, VARX, VECM and VECMX models for the forecasting 

of           in 2010. Although, the VECM cannot capture the short-term changes in            in 

2010, it tends to be capable of capturing the long-term market-response in this segment of 

automobile sales. To validate the VECM for longer-term forecasting horizons, the average RMSE 

and MAPE were computed based on 18- to 24-step-ahead automobile sales forecasts of            

as shown in Fig. 5.4
3
. 

 

Figure 5.3: 12-step-ahead Forecasting Comparison (2010) 

 
(a) 

 
(b) 

Figure 5.4: Model Selection Criteria Comparison (a) Average RMSE Comparison (b) Average 

MAPE Comparison 

                                                     
2
 To compute average RMSE and MAPE values of classical time series techniques, we exclude the worst 

model (Quadratic Trend Model) from our analysis.  
3
 Models in Fig. 5.5 were trained and validated based on an 18- to 24-step-ahead prediction. 



64 

 

The results show that VECMX outperforms all selected classical time series techniques
4
 in terms 

of RMSE and MAPE for longer-term forecasting horizons. Interestingly, adding exogenous 

variables ( 1X  and 3X ) does improve the forecasting performance for 18- to 24-step-ahead 

prediction, compared to the VECM without exogenous variables and all classical time series 

techniques.  

 

5.3.6 Impulse Response Function 

Impulse response functions derived from the VECM were used to trace the incremental effect of a 

one-unit shock in the endogenous variables on the future values of sales. In an automobile 

market, a one-unit shock in economic indicators,          and           seems to have a 

permanently negative impact on automobile sales (        ) as shown in Fig. 5.5(a) and 5.5(c). 

The increments of sales converge to some negative value. This convergence may imply that an 

increase in           or            can negatively influence          in the long run. Interestingly, 

an increase in a different segment of automobile sales,         , also seems to have a persistently 

negative impact on         , as shown in Fig. 5.5(b). In this case, the long-run effect has been 

identified, as an increase in    will decrease the sales in   . For    itself, an increase in          

tends to have a positive impact from 1 to 12 months ahead, as shown in Fig. 5.5(d). However, the 

long-term trend of the impulse response seems to have a negative slope. From the impulse 

response functions of all endogenous variables, we can see that all variables seem to have a 

persistent effect on sales.  

                                                     
4
 The quadratic trend model is excluded because of its worst-forecast performance.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.5: Impulse Response Functions from VECM: (a) Response of 1Y from 2X  (b) Response 

of 1Y from 2Y  (c) Response of 1Y  from 4X  and (d) Response of 1Y from 1Y  

 

5.4 Conclusions and Suggested Future Work 

The VECM approach with SRI methodology to modeling automobile sales offers persistent 

modeling with two distinct advantages. First, it provides a clear and quantifiable method to 

estimate the long-run effect of economic indicators on sales. The second advantage is that it uses 

a feedback system approach to forecasting in estimating the market response to the economic 

indicators for which some advanced methods have been reported over the years. This study 

explores automobile sales modeling. Four economic indicators were selected to test the causal 

relationships and long-run equilibrium with sales of automobiles in two different segments. The 

unit root test results indicate the nonstationarity of all variables in the dataset. The test results also 

indicate that sales and selected economic indicators are first differenced stationary variables. 

From the four economic indicators, the conclusion based on the weak exogeneity and Granger-

causality tests is that    and    are weakly exogenous to sales and other economic indicators. The 
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Johansen cointegration tests indicate a potential for a long-run equilibrium relationship among 

sales in two segments,    and   . The long run relationship among these variables can be 

quantified using the VECM approach. The response to the change in the one-unit shock of    and 

   to Y1 implies a persistently negative impact on the sales. The increase in    and    values 

tends to have a negative impact on sales in the long run. The out-of-sample forecasting 

performance comparison of  the VECM against the VAR(X) and classical time series techniques 

models shows that the VECM outperforms the VAR(X) and classical time series models in terms 

of RMSE and MAPE.  

The weak exogeneity and Granger-causality test results indicate that    and    are weakly 

exogenous to sales and other economic indicators. However, the weakly exogenous relation may 

be due to the effect of absolute prices in the economic indicators. Automobile sales modeling 

using the VECM approach provides a meaningful structural relationship between sales and some 

economic indicators; however, one problem in this analysis is the limited number of economic 

indicators tested. The suggestion for future work with this analysis is to test the relationship of 

automobile sales with more economic indicators. Another issue in using VECM modeling is the 

linearity assumption.  Additional parametric and non-parametric modeling approaches can also be 

used to explore nonlinear and nonstationary relationships among automobile sales and related 

variables. 
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CHAPTER VI 

 

LONG-TERM AUTOMOBILE DEMAND PREDICTION USING INTRINSIC 

TIME-SCALE DECOMPOSITION 

 

Abstract: Long-term demand prediction is crucial for industries with long product development 

cycles. For automobile products, where typical concept-to-release times are long (12-60 months), 

the process of demand evolution follows nonlinear, nonstationary dynamics, hindering accurate 

prediction of future automobile demand. This chapter presents the implementation details and 

results of using a new prediction approach based on intrinsic time-scale decomposition (ITD) to 

forecast automobile demand over extended time-horizons. The ITD algorithm decomposes a time 

series signal into a sum of components called proper rotation components and a monotonic trend. 

A key advantage of this approach is that this method can be used to identify long-run equilibrium 

relationships between automobile demand and the ITD components of economic indicators. Once 

the relationship is identified, this approach takes advantage of the cointegration property of the 

VECM model to forecast automobile demand. Hence, the long-term impact of economic indicator 

components on automobile demand can be quantified. The empirical results suggest that this ITD-

based prediction approach can significantly improve prediction accuracy in terms of RMSE 

(23%) and MAPE (26%) for long-term prediction of automobile demand (12-month-ahead 

prediction), compared to classical and advanced time series techniques.  
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6.1 Introduction 

Demand prediction is an essential part of any business activity. For industries with long product 

development cycles, long-term demand prediction serves as an input to many business decisions 

that affect profitability. As in the case of automobile products, where typical concept-to-release 

times are long (12-60 months), reliable long-term demand prediction makes an important 

contribution to successful service, revenue, production and inventory planning. 

Automobile demand prediction has received significant attention in the literature. Many 

theoretical models for automobile demand prediction have been proposed [141-145]. Most of 

them are econometric approaches imposing the structure of a certain economic theory on the data. 

Only recently have a few efforts been made to address the automobile demand prediction problem 

using time series and data-driven approaches [135, 146, 147]. However, none of these efforts 

have addressed automobile demand prediction over a long-term horizon. In the economic area, 

some recent developments in time series techniques have been specifically designed to quantify 

relationships among endogenous and exogenous variables. These techniques include vector 

autoregressive (VAR) and vector error correction models (VECM) [75, 148].  

Especially in the case of nonstationary variables, VECM has been broadly recognized as a 

powerful theory-driven model that can be used to describe the long-run dynamic behavior of 

multivariate time series. However, the choice of endogenous and exogenous variables in VECM 

is problematic for automobile demand prediction.  

Demand is known to be influenced by many exogenous factors, such as advertising, sales 

promotions, retail price, and technological sophistication [149]. In the automobile market, 

advertising and sales promotions tend to have substantial effects; however, the effects on demand 

are rarely persistent [150]. To select variables for automobile demand prediction, some economic 

indicators, such as the Consumer Price Index (CPI) and the unemployment rate, have been 
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suggested as having persistent effects on automobile demand, but the results of empirical models 

show that long-run equilibrium relationships among these economic indicators and automobile 

demand do not exist. Considering the nonlinear behavior of these economic indicators, one would 

expect that a statistical hypothesis test of long-run equilibrium using linear assumption may 

perform poorly due to model misspecification.  

This study presents a new prediction approach based on the intrinsic time-scale decomposition 

(ITD) technique, a recently developed nonparametric decomposition technique for signals that are 

nonlinear and/or nonstationary in nature. ITD decomposes a signal into a sum of components 

called proper rotation components and a monotonic trend. One advantage of the ITD method is 

that it requires very limited assumptions about the data. This advantage makes ITD suitable for 

nonlinear data from unknown underlying processes. ITD also provides unbiased decomposing 

components, unlike parametric algorithms which require parameter estimation. The key aspect of 

this new prediction approach is to develop a methodology to identify a causal and long-run 

equilibrium relationship from variables of interest and ITD components of related indicators and 

to use this identified relationship for prediction. This new prediction approach can be applied to 

any system of nonlinear and/or nonstationary variables. In this study, the property of ITD leads to 

applying it to determine the long-run equilibrium relationships between automobile demand and 

ITD components of nonlinear economic indicators. This investigation indicates that the long-run 

equilibrium of automobile demand and ITD components of unemployment rates does exist, and 

the ITD-based method significantly improves prediction accuracy in terms of RMSE (23%) and 

MAPE (26%) for long-term prediction of automobile demand (12-month ahead prediction), 

compared to classical and advanced time series techniques. The organization of the remainder of 

this chapter is as follows: implementation details and empirical results are given in Section 6.2. 

Conclusions and suggested future work are presented in the last section of this chapter.  
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6.2 Implementation Details and Empirical Results 

In this study, the number of monthly retail sales (motor vehicle and parts dealers) in the U.S. 

during the period of January 1992- December 2010 was used to represent aggregate automobile 

demand. The unemployment rate during the same period of time was selected as an economic 

indicator to help predict demand. In order to predict long-term demand, the ITD components of 

the unemployment rate were hypothesized to have a long-run equilibrium relationship with 

automobile demand. This study investigates and test hypotheses of a long-run relationship 

between automobile demand and the ITD components of the unemployment rate. Table 6.1 

provides the details of demand and unemployment rate. For simplicity, logarithm transformation 

are used with both variables in subsequent analysis. The time series in the original scale of both 

variables are shown in Figure 6.1. 

 
(a) 

 
(b) 

Figure 6.1: (a) Automobile Demand and (b) Unemployment rate 

From the literature [151], many studies have indicated the existence of nonlinear behavior in the 

U.S. unemployment rate. The results of a cointegration test between unemployment rate and 

automobile demand, shown in Table 6.2, reveal the effect of nonlinear behavior in the 

unemployment rate on the long-run equilibrium relationship with automobile demand. 
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Table 6.1: Summary of variables 

Variables Source 
Publishing 

Interval 
Description 

Automobile 

Demand 

BLS* Monthly A monthly retail sales of motor vehicles and part 

accessories 

Unemployment rate BLS* Monthly A national unemployment rate (16 years or over) 

* Bureau of Labor Statistics (Seasonally adjusted data) 

Table 6.2: Cointegration Rank Tests (Automobile Demand and Unemployment Rate) 

  Trace Test Maximum Eigenvalue Test 

H0: Rank = r H1: Rank > r Trace Statistic 5% 10% Max Statistic 5% 10% 

0 0 8.6416 15.34 13.31 7.8798 14.07 12.07 

 

Table 6.2 reports the test statistics and the corresponding asymptotic critical values of both trace 

and maximum Eigenvalue tests at the 5% and 10% significance levels. The empirical results of 

the cointegration tests show that the null hypothesis of no cointegrating vector cannot be rejected 

for both tests at 5% and 10% significance levels. The test results indicate that there is statistically 

no long-run equilibrium relationship between the unemployment rate and automobile demand. 

Considering the cointegrating vector requirement, VECM cannot be directly applied to these 

variables. As discussed in the introduction section, the cointegration tests using a linear 

assumption may perform poorly in the case of nonlinear variables. The next step is to apply the 

ITD-based prediction methodology to investigate and test the long-run equilibrium relationship 

between automobile demand and ITD components of the unemployment rate. The 

implementation details are as follows: 

6.2.1 Intrinsic Time-Scale Decomposition Step 

The first step in the prediction methodology is to decompose the unemployment rate using the 

ITD method. The ITD algorithm decomposes the unemployment rate into four proper rotation 
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components and a monotonic trend, as shown in Figure 6.2. The procedure using an ITD 

algorithm allows a perfect reconstruction of the original unemployment rate. 

  

  

 

Figure 6.2: ITD components of Unemployment Rate 

6.2.2 Variable Selection Step 

In this second step, endogenous and exogenous variables for VECM were selected from 

automobile demand and ITD components of the unemployment rate obtained from the first step. 

Stationarity characteristics of automobile demand and each ITD component of the unemployment 

rate are identified using unit root tests. Exogenous variables were selected based on the results 

from weak exogeneity tests. In order to conduct the augmented Dickey-Fuller unit root test, it is 

important to use the correct number of lags in the equation. The appropriate lag length is selected 



73 

 

based on a general-to-specific methodology. The procedure begins with estimating an 

autoregressive model with a relatively long lag length. The idea is to pare down the model by the 

usual t-tests and/or F-tests. If the t-statistic on the last lag (p*) is insignificant at some specified 

significance level, reestimate the model with a lag length of p*-1, then repeat the process until the 

last lag is significantly different from zero. The ADF test results with optimal lag length selected 

using a general-to-specific methodology are shown in Table 6.3.  

From the ADF unit root test results, only proper rotation 2 (H2) is statistically stationary  the 1% 

significance level. The null hypothesis of a unit root cannot be rejected for automobile demand 

and all other ITD components of the unemployment rate at the 1% significance level. Applying 

first difference to all variables except H2, the ADF test statistics reject the null hypothesis of a 

unit root for all differenced variables at the 5% significance level. Based on the results of the 

ADF tests, all variables, excluding H2, are treated as nonstationary I(1) series. Exogenous 

variables for the VECM are based on the results of weak exogeneity tests on I(1) series as shown 

in Table 6.4.  

Table 6.3: ADF Unit Root Test of Original and First Differenced Variables 

Variables 
Optimal Lag 

Length 
Unit Root with Drift 

Unit Root with Drift and 

Deterministic Time Trend 

Original Variables p* τμ Pr < τμ ττ Pr < ττ 

Automobile Demand (AD) 3 -3.21 0.0213 -1.70 0.75 

Proper rotation 1 (H1) 4 -4.83 0.0001 -4.90 0.0004 

Proper rotation 2 (H2) 4 -2.71 0.0751 -2.69 0.2405 

Proper rotation 3 (H3) 5 -2.51 0.1146 -2.33 0.4130 

Proper rotation 4 (H4) 5 0.14 0.9683 -0.66 0.9739 

Monotonic Trend (R) 5 -2.62 0.0905 -0.68 0.9725 

First Differenced Variables p* τμ Pr < τμ ττ Pr < ττ 

 AD 6 -4.74 0.0002 -5.19 0.0002 

 H2 3 -4.34 0.0006 -4.34 0.0033 

 H3 3 -2.99 0.0377 -3.45 0.0475 

 H4 3 -2.97 0.0395 -4.36 0.0030 

 R 4 -3.20 0.0216 -4.14 0.0065 
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Table 6.4: Weak Exogeneity Tests (Selected Variables) 

Variables Degree of Freedom χ
2
(4) Pr > χ

2
 

AD 4 22.74 0.0001 

H2 4 24.25 <.0001 

H3 4 12.43 0.0144 

H4 4 23.95 <0.0001 

R 4 6.58 0.1595 

 

The weak exogeneity test begins with the vectors of the five variables (AD, H2, H3, H4 and R) in 

Table 6.3. For a system of five variables, there can exist at most four cointegrating vectors. The 

results in Table 6.4 show that the null hypothesis of weak exogeneity cannot be rejected for the 

monotonic trend (R).  

Table 6.5: Weak Exogeneity Tests (Re-estimate) 

Variables Degree of Freedom χ
2
(4) Pr > χ

2
 

AD 3 16.95 0.0007 

H2 3 12.01 0.0074 

H3 3 8.53 0.0363 

H4 3 19.82 0.0002 

 

Greenslade [89] suggest re-estimating the model, using only rejected weakly exogenous variables 

as endogenous variables, to avoid sensitivity in the model specification. Table 6.5 shows the 

results of re-estimating the weak exogeneity tests of four endogenous variables, excluding the 

monotonic trend. The test statistics continue to reject the null hypothesis of weak exogeneity at 

the 5% significance level for all four variables. Based on the results of unit root and weak 

exogeneity tests, automobile demand (AD), and three ITD components of the unemployment rate 

(H2, H3, and H4) were selected as endogenous variables. For exogenous variables, due to a 

possible collinearity issue between automobile demand (AD) and the monotonic trend (R), only 

proper rotation 1 (H1) was selected as an exogenous variable.   
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The existence of a long-run equilibrium relationship among endogenous variables was 

investigated; Table 6.6 reports the test statistics and corresponding asymptotic critical values at 

5% and 10% significance levels for the cointegration rank tests. The test results show that the null 

hypothesis of one cointegrating vector cannot be rejected at both 5% and 10% significance levels.  

Statistically, there is a long-run equilibrium relationship or cointegrating vector among four 

endogenous variables (AD, H2, H3 and H4) as shown in Eq. (6.1). 

432 432 HHHAD HHH                                            (6.1) 

The underlying processes of these variables are random in the short term but tend to move 

together over a long-term horizon. Since all four variables are I(1) series, the cointegrating vector 

in Eq. (6.19) is a stationary process (I(d-b) = I(0) where d = b = 1). Long-run parameter (β) 

estimates of the cointegrating vector are presented in Table 6.7, where the parameter estimate for 

automobile demand is normalized (β=1).  

Table 6.6: Cointegration Rank Tests (Automobile Demand and Selected ITD Components of the 

Unemployment Rate) 

  Trace Test Maximum Eigenvalue Test 

H0: Rank = r H1: Rank > r Trace Statistic 5% 10% Max Statistic 5% 10% 

0 0 52.5057 47.21 43.84 29.5151 27.07 24.73 

1 1 22.9906 29.38 26.70 14.4999 20.97 18.60 

Table 6.7: Long-Run Parameter Beta Estimates of Cointegrating Vector (AD, H2, H3 and H4) 

Variable AD H2 H3 H4 

Beta β ΒH2 ΒH3 ΒH4 

Parameter Estimate 1 0.41389 -0.46206 0.68588 

 

6.2.3 Prediction Step 

The results of steps 1 and 2 show that VECM is applicable to automobile demand and the ITD 

components of the unemployment rate since the cointegrating vector of these variables can be 
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identified. The ITD-based prediction using VECMX with 4 endogenous (AD, H2, H3 and H4) 

and 1 exogenous (H1) variable was estimated. To evaluate the forecasting performance of the 

ITD-based prediction using VECMX, the out-of-sample forecasting of this model is compared 

with those from three rival models. The first model is an autoregressive integrated moving 

average (ARIMA) model, the most general class of univariate time series models which can be 

applied to nonstationary variables. The second model is an autoregressive integrated moving 

average with exogenous variables (ARIMAX) model. The ARIMAX model of automobile 

demand is selected as a baseline model since it allows the use of the unemployment rate as the 

exogenous variable; however, it cannot handle feedback from one variable to the other. The third 

model is the vector autoregressive (VAR) model. The VAR model can handle feedback from one 

variable to the other, but does not impose cointegrating restrictions as in the VECMX. It treats 

automobile demand and the unemployment rate symmetrically. Two model selection criteria were 

selected for out-of-sample comparison: root mean square error (RMSE) and mean absolute 

percentage error (MAPE). The out-of-sample forecasting initially identified each model 

specification over the sample period of January 1992 to May 2007, then each model was used to 

generate forecasts of four-, eight- and twelve-step ahead predictions. The sample was then rolled 

forward for one month, and another set of four- to twelve-step ahead predictions was generated. 

As a result, 24 four-, eight- and twelve-step ahead predictions were obtained. Table 6.8 provides 

RMSE and MAPE values of four-, eight- and twelve-step ahead predictions for automobile 

demand (AD) for each model. Figures 6.4(a) and 6.4(b) show the out-of-sample forecasting 

comparison of the four models using RMSE and MAPE.  

As seen in Table 6.8, the ITD-based prediction model is the best model in terms of RMSE and 

MAPE. It significantly improves the accuracy of all four-, eight-, and twelve-step ahead 

automobile demand predictions. For four-step ahead prediction, the ITD-based prediction model 

reduces RMSE and MAPE by 25% and 30% respectively, compared to the second best model 
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(VAR model). For 8-step ahead prediction, the ITD-based prediction model reduces RMSE and 

MAPE by 24% and 25% respectively, compared to VAR model, and for 12-step ahead prediction, 

ITD reduces RMSE and MAPE by 23% and 26% respectively, compared to the VAR model.  

Table 6.8: Out-of-Sample Forecasting Comparison 

Model 

4-step ahead prediction 8-step ahead prediction 12-step ahead prediction 

RMSE MAPE RMSE MAPE RMSE MAPE 

ARIMA 0.0846 0.0071 0.1562 0.0132 0.2182 0.0190 

ARIMAX 0.0859 0.0072 0.1585 0.0134 0.2206 0.0192 

VAR 0.0772 0.0064 0.1440 0.0121 0.1999 0.0173 

ITD-based Prediction  0.0578 0.0045 0.1100 0.0091 0.1531 0.0128 

 

 

 

(a) 

 

(b) 

Figure 6.3: (a) Out-of-Sample Forecasting Comparison using RMSE and (b) Out-of-Sample 

Forecasting Comparison using MAPE 

 

6.3 Conclusions and Suggested Future Work 

In this study, a new prediction approach based on intrinsic time-scale decomposition (ITD) was 

proposed for a long-term prediction application using nonlinear and/or nonstationary variables. 

ITD is a recently developed nonparametric algorithm aiming to enhance the analysis of nonlinear 

and nonstationary signals. The ITD method represents a nonlinear and/or nonstationary signal as 
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a summation of components called proper rotation and a monotonic trend. The advantage of the 

ITD-based prediction approach is that, from a system of variables with no long-run equilibrium 

relationships or cointegrating vectors, this approach can identify the cointegrating vector of one 

variable and the ITD components of other variables. In this study, the ITD-based prediction 

approach was applied to a long-term prediction of automobile demand with the aid of an 

economic indicator. Considering that the economic indicator is a combination of multiple 

components with different characteristics resulting from factors underlying each component, this 

property of ITD has led to a prediction application using the long-run equilibrium relationship or 

cointegrating vector of automobile demand and the ITD components of an economic indicator. 

The empirical results show that automobile demand has a long-run equilibrium relationship with 

some ITD components of the unemployment rate and that the ITD-based prediction approach can 

significantly improve the accuracy of long-term prediction of automobile demand. 

To further improve prediction accuracy using the ITD algorithm, one may consider the edge 

effect of ITD discussed in Section 3.3 as suggested future work. The edge effect of ITD on the 

most recent data is confined to the interval of the last two extremas because the most recent data 

point of the signal is treated as an extremum, which may not be true when more data become 

available. In a prediction application, the edge effect of ITD has a significant effect on prediction 

accuracy. One possible alternative for solving this issue is to construct the decomposition beyond 

the last available data point. However, this extension of the data is risky because the edge effect 

will depend on the accuracy of the extended data. Currently, no simple approach or general 

theory exists to solve the edge effect issue of ITD.  

With the property that a proper rotation between two consecutive local extrema is monotonic, 

ITD has an advantage in the analysis, which is that the whole data span need not be extended. The 

only information needed are the value and location of the next two extrema. Even with this 
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advantage of ITD, the task of improving prediction accuracy by solving the edge effect issue 

remains challenging. 
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CHAPTER VII 

COMPARISON OF NONLINEAR AND NONSTATIONARY FORECASTING 

MODELS 

 

This chapter presents a summary of the comparison of different forecasting models, including 

ARCH/CARCH, MRTAR (Multi-regime threshold AR), WNN (wavelet neural network), NNM 

(nearest neighborhood model), PF, ITD, LGP (local recurrence-based GP) and DPMG, in terms 

of model capacity, such as nonlinear form (e.g., linear trend), nonstationary form (e.g., changed 

variance), computational (training) complexity, and noise effect. Also, two case studies using 

these forecasting models are presented. 

7.1 Comparison of Nonlinear and Nonstationary Forecasting Models 

Table 7.1 presents a summary of the performance of different nonlinear nonstationary prediction 

models  reported in prior empirical studies. Training complexity (tc) represents the computational 

complexity. It is a function of various factors, including model order, number of inputs, input 

dimension and so on. Here,  n  is the number of inputs,  p and q are the model orders, nc  is the 

number of regimes or clusters, nn  is the number of neurons in NN, and nx  is the state dimension. 

Based on the investigation, the functional decomposition models can accommodate large noise 

variances in the underlying system, and MRTAT and PF models can incorporate exogenous 

variables as the unobserved state. Compared to classical GP models, LGP and DPMG models can 

applied to nonstationary time series and reduce the computational overhead, as the number of 

training points in each segment or cluster is reduced.  
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Table 7.1:  Summary of the performance of different prediction models in prior empirical studies 

[152] 

Prediction 

models 
Nonlinearity Nonstationarity 

Training 

complexity 
Remarks 

ARCH/GARC

H 
   Linear 

Time-varying 

volatility 
          

Linear structures; can model 

varying second moments; 

sensitive to noise  

MRTAR Piecewise linear 

Switch according 

to time and 

indicator 

             
Exogenous variables used to 

indicate switch 

Wavelet-NN 
Between lagged 

variables 

Nonstationarity  

dispersed over 

scales 

         
 Can separate relatively large 

noise 

PF 
Between lagged 

variables 

Adaptive 

parameter update 
         

Posterior approximation; MCMC 

computations are cumbersome 

NNM 

Local 

linearity/nonlinearit

y 

Local stationarity       

Sensitive to neighborhood 

threshold; can accommodate 

large noise level 

ITD 
Decomposed into 

monotonic trend 

Decomposed into 

rotation 

components 

      

Construct piecewise linear 

baseline signal; reduce boundary 

effect in EMD; reduced 

sensitivity to noise 

LGP 
Between lagged 

variables 

Piecewise 

stationary 
      

Recurrence based; sensitive to 

threshold; GP requires relatively 

low noise level 

DPMG 
Between lagged 

variables 

Piecewise 

stationary 
         

Dirichlet process clustering; GP 

accuracy sensitive to noise  

 

7.2 Case Study I: Real-time Throughput Forecasting in an Automotive Assembly Line 

In this case study, a time series representing the number of parts produced (also called the 

throughput) in an 8-hour shift from a station of an automotive assembly line [44] was used. A 

comparison of forecasting accuracies of different models is summarized in Table 7.2.  

Table 7.2: Comparison of forecasting and accuracy of automotive assembly line throughput [152] 

 ARMA LGP LRM LMM EMD DPMG 

Forecasting horizon 2 3 3 5 6 5 

   (first step) 0.10 0.61 0.53 0.60 0.60 0.59  

 

Here, the PF/RPNN model did not converge because of high nonstationarity and data sparsity. All 

methods tested except ARMA provide comparable 1-step forecasting accuracy (   in the range of 

0.5-0.6), as they are designed to capture the nonlinear and nonstationary evolution. The linear 
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structure of ARMA model is evidently inadequate to capture the complex throughput variation. 

Among the nonlinear and nonstationary forecasting methods, EMD provides the highest long 

term (6-step) forecasting accuracy as some of the IMFs exhibit a near-stationary evolution. LGP 

has the best prediction accuracy in terms of the second moment, and over 85% of the realized 

values are within 2-sigma (estimated) limits of the predictions likely due to effective partitioning 

of the state space into local near-stationary segments. 

7.3 Case Study II: End Point Detection in Chemical Mechanical Planarization Processes 

The semiconductor industry relies on chemical mechanical planarization (CMP) processes to 

polish wafer surfaces to meet the strongest surface roughness, flatness, and defect-control 

regularizations. Various sensors can be used during the polishing process for in situ monitoring 

and control of material removal rate (MRR) and surface quality [35, 153]. The sensor signals 

were gathered from the process under various conditions, and the dynamics underlying the 

measured signals were found to be nonlinear and nonstationary. Fourteen different features 

capturing the various complex patterns of the signals were extracted, and 9 principal components 

of these features were used to predict MRR, necessary for timely control of wafer height. An NN 

model was used to predict MRR from the forecasts of the first 9 principal features. An evolution 

of the first principal feature suggests significant nonstationarity and aperiodicity of the dynamics. 

Table 7.3 summarizes the accuracy of forecasting first principal feature and MRR using 

alternative methods. While PF can adaptively adjust to the nonlinear dynamics and provide the 

highest accuracy for forecasting the feature evolution as well as MRR, EMD offers higher 

accuracy for relatively long-term forecasting, as the decomposed IMFs represent the long-term 

trend in the time series. Also, 91% of the realized feature values were within 2-sigma (estimated) 

limits of DPMG forecasts, thus facilitating accurate endpoint detection to mitigate over- and 

under-polishing defects in semiconductor wafers. 
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Table 7.3: Comparison of forecasting horizon and accuracies for the first principal feature and 

MRR [152] 

 ARMA LGP LRM PF RPNN EMD DPMG 

Forecasting 

horizon  
1 3 2 3 1 4 3 

   (first step) 0.07 0.53 0.56 0.80 0.10 0.75 0.61 

MRR 

estimation 

   (first step) 

0.01 0.63 0.67 0.89 0.05 0.84 0.71 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

 

Recent advancements in sensor, computing, and communication technologies and the consequent 

availability of abundant data sources in the form of time series can transform the way real-world 

complex systems are monitored and controlled. Time series forecasting of the evolution of 

complex systems is considered one of the emerging challenges of modern science. Effective 

prediction of future states of a complex system from time series remains a challenge, mainly 

because of diverse combinations of the nonlinear and nonstationary dynamic behaviors exhibited 

by these systems. This study presents a novel approach to nonlinear and nonstationary time series 

forecasting. Research methodologies were developed using nonlinear decomposition techniques 

and a battery of advanced statistical methods. The major conclusions and recommendations for 

future work follow.  

8.1 Conclusions 

In this study, two new nonlinear and nonstationary prediction methodologies based on nonlinear 

decomposition techniques were presented: empirical mode decomposition (EMD)-based 

prediction methodology and intrinsic time-scale decomposition (ITD)-based prediction 

methodology.  EMD-based prediction addresses the challenge (edge artifacts limits) of using 

EMD for prediction applications. This methodology was developed specifically for univariate 

nonlinear and nonstationary time series forecasting. A two-step algorithm has been
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designed to address the edge artifacts limits, resulting in a significant improvement in prediction 

accuracy as shown in the case of a customer willingness-to-pay prediction application. 

ITD-based prediction methodology was developed specifically for multivariate time series 

prediction. It utilizes the structural relationship identification (SRI) methodology to identify 

relationship of variables in the system prior to adapting the ITD technique for prediction. SRI 

methodology addresses the identification problem of VAR and VECM types of models. It 

captures the interdependencies of a multivariate time series system and provides evidence of the 

dynamic behavior and structural relationships among variables. It also allows a feedback 

relationship, which can be used to capture more complex interactions among variables.  

The ITD technique overcomes the limitations of the EMD approach for nonlinear and 

nonstationary time series modeling. It decomposes time series into proper rotation components 

with defined frequency and amplitude and a monotonic trend. One advantage of using ITD over 

EMD for prediction applications is that the edge effect of the ITD process is confined to the 

interval        at the beginning and           at the ending of each proper rotation and 

monotonic trend. The results of using ITD-based prediction methodology for an automobile 

demand prediction application show that the ITD-based prediction approach can significantly 

improve the accuracy of long-term predictions of automobile demand.  

8.2 Future Work 

In the area of nonlinear and nonstationary time series forecasting, future work will be to continue 

improving the functional decomposition model for nonlinear and nonstationary time series. The 

continued improvements and prospective studies will be as follows: 

For the ITD-based prediction methodology, SRI methodology has been proved to identify long-

run equilibrium interrelationships among variables in the system. However, there is some 

disadvantage in implementing this methodology in practice. A well-known problem of VAR and 
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VECM is the over-parameterization issue, which is a prohibitively large number of parameters to 

be estimated. One way to address this problem is to impose theory-based weak exogeneity 

assumptions on variables (as used in ITD-based prediction methodology). The number of 

equations in the model can be reduced if variables are treated as weakly exogenous in the model. 

However, imposing the test alone may not be sufficient in cases of large datasets.  

Recently, in the field of data mining, significant efforts have been made to address the issue of an 

excessive number of correlated factors. Many dimensional and variable selection techniques have 

been proposed to solve the problem. In the case of dimensional reduction techniques, although 

they are useful to retain a significant portion of explained variance with a reduced number of 

factors, interpretations of the results are no longer straightforward because the components from 

dimensional reduction techniques are a combination of all of the selected variables. The results 

are not easily explained and may not be applicable in the context of econometrics. Considering 

the disadvantage of dimensional reduction techniques, variable selection methods have gained 

significantly more attention for analysts in the sense that the results from variable selection 

methods can be used and explained directly. To improve the prediction performance of the ITD-

based prediction, a future study may be to use data mining techniques to solve the over-

parameterization issue in SRI methodology.  

In addition to variable selection techniques, one may consider the edge effect of ITD as discussed 

in Section 3.3 for future research. The edge effect of ITD on the most recent data is confined to 

the interval of the last two extrema because the most recent data point of the signal is treated as 

an extremum, which may not be true when more data become available. In a prediction 

application, the edge effect of ITD has a significant effect on prediction accuracy. One possible 

alternative to solve this issue is to construct the decomposition beyond the last available data 

point. However, this extension of the data is risky because the edge effect will depend on the 
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accuracy of the extended data. Currently, no simple approach or general theory exists to solve the 

edge effect issue of ITD. 

With the property that a proper rotation between two consecutive local extrema is monotonic, 

ITD has an advantage in the analysis, which is that the whole data span need not be extended. The 

only information needed are the value and location of the next two extrema. Even with this 

advantage of ITD, the task of improving prediction accuracy by solving the edge effect issue 

remains challenging. 
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APPENDIX  

 

Table A1: The information criteria for the selection of lag length (ADF test) 

Lag 
         (p* = 5)          (p* = 4)          (p* = 3)          (p* = 6) 

AIC SBC AIC SBC AIC SBC AIC SBC 

1 -1.5265 -1.4975 -2.0035 -1.9746 -2.3756 -2.3466 -9.1985 -9.1696 

2 -1.5616 -1.5229 -2.0471 -2.0084 -2.3750 -2.3363 -9.1990 -9.1603 

3 -1.5662 -1.5178 -2.0555 -2.0070 -2.3757 -2.3272 -9.2041 -9.1557 
4 -1.5723 -1.5141 -2.0797 -2.0215 -2.3818 -2.3236 -9.2060 -9.1477 

5 -1.5728 -1.5047 -2.0783 -2.0102 -2.3749 -2.3068 -9.2032 -9.1351 

6 -1.5713 -1.4934 -2.0848 -2.0069 -2.3682 -2.2903 -9.2073 -9.1293 

 

Lag 
         (p* = 5)          (p* = 6) 

AIC SBC AIC SBC 

1 -3.4436 -3.4146 -4.3233 -4.2943 

2 -3.5318 -3.4932 -4.3789 -4.3402 

3 -3.5381 -3.4896 -4.4411 -4.3927 

4 -3.5390 -3.4807 -4.4479 4.3897 
5 -3.5587 -3.4906 -4.4689 -4.4009 

6 -3.5532 -3.4753 -4.4767 -4.3988 

 

Table A2: Park’s G Test for Stationarity (Original Variables) 

  Test for Stationarity with G(p,q) 

Original Variables  G(1,2) G(1,3) G(1,4) G(1,5) G(1,6) G(1,7) G(1,8) 

         
  -value 0.395 10.813 13.756 13.900 14.064 15.770 15.861 

P-value 0.530* 0.004 0.003 0.008 0.015 0.015 0.026 

         
  -value 9.446 9.962 12.127 12.708 13.910 13.945 14.796 

P-value 0.039 0.030 0.016 0.013 0.007 0.007 0.002 

         
  -value 0.847 7.579 11.298 11.587 11.720 14.648 14.651 

P-value 0.357* 0.022 0.010 0.021 0.039 0.023 0.041 

         
  -value 4.196 9.778 9.778 10.205 10.230 14.778 15.322 

P-value 0.041 0.008 0.021 0.037 0.069 0.022 0.032 

         
  -value 7.549 12.542 13.636 14.189 14.574 15.691 16.018 

P-value 0.006 0.002 0.003 0.007 0.012 0.016 0.025 

         
  -value 3.404 8.941 10.196 10.269 11.710 12.073 12.686 

P-value 0.065 0.011 0.017 0.036 0.039 0.060 0.080 
* The null hypothesis cannot be rejected at 10% significance level. 
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Table A3: Park’s G Test for Stationarity (First Differenced Variables) 

  Test for Stationarity with G(p,q) 

First Differenced 

Variables 

 
G(1,2) G(1,3) G(1,4) G(1,5) G(1,6) G(1,7) G(1,8) 

         
  -value 0.141 1.076 3.909 3.963 6.801 7.389 7.425 

p-value 0.707 0.585 0.271 0.411 0.236 0.286 0.386 

         
  -value 0.202 0.204 0.259 1.108 1.911 1.919 3.513 

p-value 0.653 0.903 0.968 0.893 0.861 0.927 0.834 

         
  -value 0.537 3.302 4.922 4.922 10.128 10.440 10.556 

p-value 0.464 0.192 0.178 0.295 0.072* 0.107 0.159 

         
  -value 0.050 0.136 4.152 4.307 6.568 7.126 13.152 

p-value 0.822 0.934 0.245 0.366 0.255 0.309 0.068 

         
  -value 0.496 0.663 0.975 1.114 1.120 2.551 4.961 

p-value 0.481 0.718 0.807 0.892 0.952 0.863 0.665 

         
  -value 2.959 4.598 4.835 4.838 6.033 12.942 12.974 

p-value 0.085* 0.100 0.184 0.304 0.303 0.044 0.073 
* The null hypothesis is rejected at 10% significance level. 

 

Table A4: Lag Length Selection Criteria 

Lag AICC HQC AIC SBC FPEC 

1 29.2137 29.2359 29.2135 29.2702 4.867E12 

2 29.1034 29.1403 29.1029 29.1976 4.357E12 

3 29.0663 29.1177 29.0653 29.1980 4.196E12 

4 29.0440 29.1098 29.0422 29.2132 4.101E12 
5 29.0470 29.1270 29.0443 29.2537 4.109E12 

6 29.0607 29.1547 29.0568 29.3047 4.161E12 

 

Table A5: Overall Model Criteria 

MODEL 
Overall Model Criteria 

AIC SBC AICC HQC FPEC 

VAR(2) -28.6001 -28.2906 -28.5971 -28.4778 3.79E-13 

VARX(2,2) -29.3493 -28.8076 -29.3399 -29.1351 1.79E-13 

VECM(2) -28.6509 -28.3806 -28.6486 -28.544 3.61E-13 

VECMX(2,2) -29.3829 -28.8799 -29.3748 -29.184 1.73E-13 

 

Table A6: Modeling Details 

Model Model Equation 

Quadratic Trend Model                   
     

IMA                     

ARIMA                                   

ADL                                                        

   

   

   

   

   

   

   

ARIMAX                                                        
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