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Chapter 1

Introduction

Chapter Overview

The purpose of this chapter is to familiarize the reader with the need and importance of

having a precise and accurate measurement system in an industrial environment. The

current methodology (also referred to as the traditional method) for measurement system

analysis (MSA) is described briefly. Some problems with the current methodology are

discussed. The objectives of this research, which address these issues, are given.

A number of symbols and abbreviations have been used throughout this document.

A brief explanation of all these can be found in Appendix(A).

1.1 Measurement Data

The success of any organization depends on its ability to produce consistently on target.

For the discrete part manufacturing industry, the target may be defined in terms of phys-

ical dimensions of the part produced such as length, radius, curvature or surface finish.

For chemical and process industries, it may be defined in terms of physical properties

such as moisture content, viscosity or chemical composition. In either case, the target is

the voice of customer translated into technical requirements and, to ensure success, the

capability to produce consistently on target should be evaluated.
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To evaluate this, a typical approach used in the industry is to draw a random sample

of the product, and based on the measurements made on that sample, draw inferences

about the process such as its capability (e.g., Cp, Cpk) and its state of statistical control

(using control charts). These inferences help a company make critical decisions, such

as—whether or not the process needs adjustment; if yes then how, when and where are

the adjustments to be made; and if not, then how can the process capability be further

improved. Sometimes the measurement data are used to learn more about the process.

For example, designed experiments may use measurement data to study which factors

affect the characteristic of interest and what combination of these factors will allow us to

produce on target with minimum variation. A team of reliability engineers, on the other

hand, may use data to predict the probability that a given product-type will perform its

intended function satisfactorily for a certain period of time.

The above discussion reveals that critical decisions that affect customer satisfaction,

which in turn affects the financial future of a company, are made based on measurement

data. If the data cannot be trusted, the information drawn from it would be meaningless

and the decisions based on that information will be useless at best. Such data may

result in a false understanding of the system, unnecessary tampering with the process,

or ignoring serious problems that need to be fixed. For this approach to work, the

data must be trustworthy and precision and accuracy of the measurement system should

be satisfactory and hence quantifiable. In order to make the measurement data more

dependable, it is important to understand the effect of the measurement system in greater

detail.

2



1.2 Measurement System

A measurement system can be viewed as a production system, where the output is mea-

surement data instead of parts. Measurement value differs from the true value of the

property being measured by an amount known as measurement bias or measurement

error. This bias or error, however, is not constant. The variation in measurement error is

known as measurement variation, which depends on the measuring device or equipment

being used, the operators or appraisers using the equipment, procedures used, and envi-

ronmental and other conditions that may affect the measurement process. The process of

understanding, estimating, analyzing and controlling the measurement effect is known as

measurement system analysis (MSA), or gauge repeatability and reproducibility (gauge

R&R) study.

Consider a random sample of ten parts drawn from a production process. The vari-

ation in the true value of the dimension of interest of these parts is known as part-to-part

variation or part variation or process variation (PV). To quantify this variation, these

parts go through a measurement process which adds its own variation known as mea-

surement variation (MV) as mentioned above. The observed variation, which acts as

an input to decision making, is essentially a combination of PV and MV. Figure (1.1)

illustrates how the inherent process variation can be amplified by the measurement sys-

tem. Measurement variation stems from the fact that neither the equipment used for

measurement, nor the appraisers using the equipment are perfect with respect to pre-

cision and accuracy. Ideally, we would like MV to be zero so that process variation

can be estimated without error. But various factors, such as bias and inconsistency of

operators, bias and inconsistency of measuring devices, environmental conditions, and

3



Production System
 Measurement System
 Observed Variation


Figure 1.1: Amplification of true process variation

inconsistent sample preparation and measurement processes can introduce measurement

error. As noted by (Barrentine; 1991), measurement error manifests itself in the form of

false conclusions about products with respect to specifications. For example, a product

close to, but within the specification limit, may be classified as defective if the measure-

ment error is large. Similarly, a product out of spec but close to the spec limit may be

classified as non-defective due to measurement error. This increases both producer’s as

well as consumer’s risk. If the data being collected are used for control charting pur-

poses, measurement variation can mask the true process variation and make it difficult

to identify special causes. In a designed experiment, measurement variation can damp

the significance of effects being estimated. Hence it is essential to estimate measurement

error, identify its source and control it within acceptable limits.

1.3 Measurement System Analysis

Measurement System Analysis (MSA) deals with identifying, estimating, analyzing and

controlling various components of measurement error. The Automotive Industry Action

Group (AIAG), a group led by Ford, General Motors and Chrysler has published a refer-

ence manual (AIAG; 1996) for MSA that has become a standard for MSA implementation

across the manufacturing industry. Based on such a study, if the performance of a mea-

4



surement system is found to be unsatisfactory, a company may allocate critical resources

to identify and fix the problem. For example, if the analysis indicates that the high

measurement variation is primarily due to equipment as opposed to appraiser, then the

company may choose to invest in equipment calibration or purchase of new equipment

as opposed to training the appraisers. Hence, it is not only essential that the over-

all measurement error be estimated accurately, but also that it be allocated accurately

among its components—equipment and appraiser. These estimates are based on statisti-

cal properties of multiple measurements obtained from a measurement system operating

under stable conditions (AIAG; 1996). The two primary techniques used to estimate the

components of measurement variation are discussed in the following subsections.

1.3.1 MSA Techniques

Analysis of Variance (ANOVA)

The study is performed in the form of a designed experiment based on a two-way random

effects model. Appraiser and part are treated as random effects. Expected mean squares

and observed mean squares are used to obtain point estimates on desired components.

The primary advantages of using ANOVA are that confidence intervals can be calculated

on these components of variance and the interaction component can be estimated.

Range-Based Estimation

This technique uses average range, adjusted with an appropriate factor (d∗2), to obtain

an unbiased estimate of standard deviation. Despite the advantages of ANOVA, this

method is still widely used in industry primarily due to its simplicity. Data are collected

in a spreadsheet format and a series of simple calculations is required to get the desired

5



estimates. This technique is very effective if the part-by-appraiser interaction component

is believed to be small.

1.3.2 Components of Variation

Figure(1.2) shows how the current model breaks down the observed variation. In order to

understand the problems with this model, enumerated in the next section, it is important

to understand what these components represent and how they are calculated.

Part Variation(PV)

Part variation is essentially part-to-part variation and represents the inherent variability

in the production system. It manifests itself in the form of variation in the true value

of the dimension of interest for different parts. Since the true dimension of a part is

unknown and unknowable, the average of repeated measurements on a part, averaged

over all appraisers, is treated as an estimate of the true value of the part. The range

of these estimates is divided by the appropriate d∗2 to obtain an unbiased estimate of

the standard deviation. This standard deviation is used as an estimator of PV. The

deviation of the part dimension from the process mean is known as part effect. Part

effect is assumed to follow a normal distribution.

Equipment Variation(EV)

Equipment variation exists due the inability of the equipment to repeat measurements

with perfect precision. It is the variation in multiple measurements taken by one appraiser

on the same part and is also known as repeatability. In a designed experiment sense, it is

essentially the replication error. To estimate EV, the range of repeated measurements on

6



Observed Variation


Measurement

Variation


Process Variation

(part-to-part variation)


Equipment Variation

(within-equipment variation)


Appraiser Variation

(appraiser-to-appraiser variation)


Figure 1.2: Components of observed variation

a part, averaged over all parts and all appraisers, is divided by an appropriate d∗2 value to

get an unbiased estimate of the standard deviation. EV or replication error is assumed

to be normally distributed.

Appraiser Variation(AV)

Appraiser variation is the variation caused by using more than one appraiser (Dolezal

et al.; 1998) in the measurement process and is also known as reproducibility or appraiser-

to-appraiser variation. The first step in measuring AV is taking the range of appraiser

averages and using an appropriate d∗2 value to get an unbiased estimate of the standard

deviation. Some authors (see Vardeman and VanValkenburg (1999)) use this standard

deviation itself to estimate AV, which is not correct. AIAG (1996) gives a correction by

adjusting this estimate for a fraction of equipment variation. AV adds an appraiser bias

to the true value of the part. This bias varies by appraiser and is assumed to follow a

normal distribution.

7



1.4 Problems with the Current Model

Some form of MSA has existed, at least for the discrete part manufacturing industry, for

decades. There is still some ambiguity in the terminology and some disagreement among

authors on what the terminology represents. There is also some disparity in definitions

of terms and their mathematical expressions along with the possibility that some com-

ponents of measurement variation have not yet been accounted for. The applicability of

these techniques to continuous process industries presents a whole new challenge.

As mentioned above, AIAG (1996) adjusts the “raw” estimate of AV for a fraction

of equipment variation. The adjusted quantity, also known as reproducibility, still does

not represent true appraiser-to-appraiser variation. Nevertheless, the two terms are used

interchangeably. It is easy to demonstrate a disparity in the definition and the formula

for reproducibility (Vardeman and VanValkenburg; 1999).

Under the current model, replication error is entirely attributed to the equipment.

As will be shown shortly, the replication error may have another component to it besides

equipment variation. This makes the definition of repeatability a little ambiguous. Does

it now represent equipment variation or replication error, as they are not the same any

more? Hence, there may be some disagreement in the definitions of the terms repeata-

bility and reproducibility. As Burdick et al. (2003) noted, such labels do not add value

to answering the questions of interest. Hence, we will refrain from using these terms

throughout this document. The following four subsections summarize the problems in

the current state of MSA that this research will focus on.

8



1.4.1 Within-Appraiser Variation

Within-appraiser variation is the variation due to the inability of an appraiser to repeat

measurements with perfect precision. A closer look at EV above reveals an underlying

assumption that if identically performed measurements on a part are not exactly the

same, then the variation must be due to the imprecision of the equipment. The fact

that appraiser imprecision, if it exists, would also manifest itself in the same way, is

completely ignored. It is equivalent to assuming perfect precision within each appraiser.

In practice, however, it is possible that variation in measurements on the same part

(using the same equipment and appraiser) may be partly due to appraiser imprecision or

within-appraiser variation. It is easy to see that ignoring within-appraiser variation may

produce inflated estimates of EV. Hence, it is possible that a company decides to invest

in re-calibrating or buying new equipment based on high EV estimates, when the real

problem is appraiser imprecision and training appraisers may be a more effective strategy.

The traditional model (AIAG; 1996) does not account for appraiser imprecision or within-

appraiser variation.

1.4.2 Equipment-to-Equipment Variation

Typically only one equipment is used in an MSA study. EV is essentially the within-

equipment variation as indicated in Figure(1.2) above. This restricts the validity of

the inferences drawn to that particular equipment or measuring device. In practice, a

measurement system may consist of multiple equipment and a significant portion of the

observed variation may be due to the fact these equipment are not consistent with each

other. In other words, there may be a bias associated with the equipment. A company
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may be interested in knowing variation among equipments and the current approach

does not allow for that. Using multiple equipments in the study will allow us to estimate

among-equipment or equipment-to-equipment variation and may produce more realistic

estimates of the true process variation. It should be noted that each equipment being used

may have a different within-equipment variation. The model should explicitly account

for that.

1.4.3 Adjusting the Estimate for Part Variation

The method for estimating PV was described in the previous section. It is easy to show

that this technique estimates is not just PV, but a sum of PV, a fraction of EV and

a fraction of part-by-appraiser interaction. The current technique clearly overestimates

PV. The magnitude of EV and the interaction component and the number of replications

and appraisers used in the study determines how significant this overestimation would

be.

1.4.4 Applicability to Chemical and Process Industries

MSA in its current form uses statistical properties of multiple measurements on the same

part to estimate the various components of measurement variation. In chemical and pro-

cess industries most tests are destructive in nature. For example, measuring the moisture

content of a sample of a chemical compound will require it to go through a test that will

end up destroying the sample. This makes is impossible to take multiple measurements on

the same sample. Hence, the traditional approach of estimating components of variance

cannot be used. There is a very high demand in this industry for a statistically sound

approach that will identify and accurately estimate various components of measurement
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variation.

1.5 Measurement System Acceptability Criteria

Once measurement variation and its variance components have been estimated, the goal

is to reduce measurement variation to acceptable levels, if it is not already. Hence, it is

important to determine how much measurement variation should be considered accept-

able and what criteria should be used to make that decision. A wide range of metrics can

be found in the literature to evaluate the measurement system capability. For example,

precision-to-tolerance ratio, percent total variation, percent process variation, intraclass

correlation coefficient, discrimination ratio, number of distinct data categories (or clas-

sification ratio) and probable error. All these metrics come with certain recommended

values that suggest the acceptability of the measurement system. The question that

remains to be answered is whether these metrics, if used in the recommended manner,

produce consistent outcomes with respect to the acceptability of the measurement sys-

tem under study. In other words, is it possible that some of these metrics conclude that

a measurement system is acceptable while others conclude otherwise. If so, then under

what conditions does this discrepancy occur and which metrics, if any, are relatively

robust to variations in these conditions.
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1.6 Objectives

General Objective

Identify any components of variation ignored in the traditional MSA, improve upon the

existing estimates and expand the applicability of MSA to industries other than discrete

part manufacturing.

Specific Objectives

1. Account for within-appraiser variation.

• Develop a mathematical model consistent with the concept of within-appraiser

variation.

• Derive lower bound on within-appraiser variation.

• Use the lower bound to adjust the EV estimate appropriately.

• Show that the estimates of other components of variance do not change as a

result of this development.

• Use simulation to demonstrate the effectiveness of the bounds.

2. Enhance the current MSA approach so that inferences drawn will be applicable to

all equipment in the measurement system.

• Develop guidelines for selecting and using multiple equipment and collecting

data.

• Derive estimates for equipment-to-equipment variation.

• Appropriately adjust estimates of other components of variance that may have

changed as a result of this development.
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• Verify the estimates using simulation.

3. Derive mathematically correct expression for PV and demonstrate its superior ac-

curacy over the traditional estimate.

4. Evaluate various measurement system acceptability criteria

• Conduct a simulated experiment by varying the sigma-capability of a process

and draw conclusions about relative merits and robustness of the metrics.

5. Develop a methodology similar to MSA for application in chemical and process

industries.

• Develop guidelines for determining sample sizes, sample selection and data

collection.

• Identify any sources of variation in addition to the conventional sources for

the discrete part case.

• Develop a mathematical base for estimating the contribution of each of these

sources.

• Use simulation to verify the estimates.
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Chapter 2

Literature Review

2.1 Nomenclature and Notation

Measurement system analysis (MSA), also known as gauge capability analysis or gauge

repeatability and reproducibility analysis is an effort to understand, identify, quantify

and control the sources of measurement variation (Burdick et al.; 2003; Potter; 1990;

Montgomery and Runger; 1994a; Dolezal et al.; 1998). There is a consensus among au-

thors that variation in identically performed measurements on the same part is primarily

due to measurement error. One of the primary objectives of MSA, though, is the isola-

tion of the sources of variability in the measurement system (Burdick et al.; 2003). It

is in this stage that a severe lack of standardization in nomenclature and notation is

obvious (John; 1994). Authors disagree on everything from trivial things like spellings of

terms (gauge or gage), kind of alphabet used to represent the underlying model (greek

or roman, capital or small) to more serious issues like the meaning of repeatability and

reproducibility and what they represent.

In order to understand these differences, it is important to introduce some notation

and define the basic underlying model. The notation used here will be consistent with

AIAG (1996) as it is the most widely used reference in the industry for MSA implemen-

tation. MSA is typically conducted in the form of a two-factor experiment based on
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random effects model (Vardeman and VanValkenburg; 1999; Dolezal et al.; 1998). This

means that a certain number of parts are randomly selected and are measured multiple

times by randomly selected appraisers (or operators). The underlying model is given by

yijm = µ + αi + βj + (αβ)ij + εijm (2.1)

where i = 1, ..., n j = 1, ..., k m = 1, ..., r

The subscripts i, j, and m represent part, appraiser and measurement (or replica-

tion), respectively. The term yijm represents the mth measurement by the jth appraiser

on the ith part and µ is an unknown constant. The terms αi, the part effect; βj, the

appraiser effect; αβij, the part-by-appraiser interaction; and εijm, the replication error

are independently and normally distributed with mean zero and variance σ2
p, σ

2
a, σ

2
pa and

σ2, respectively.

There is a general agreement among authors that the variance of identically per-

formed measurements on the same part, or the replication error variance (σ2) is the

repeatability of the measurement system. Reproducibility, however, has been defined

in multiple ways. AIAG (1996) defines reproducibility as variation among appraisers

or simply appraiser variation (AV) and use σ2
a as an estimate of AV or reproducibility.

Mitchell et al. (1997) also use σ2
a to estimate reproducibility. Wheeler (1992) criticizes re-

producibility as it tells only that the appraiser-to-appraiser differences are significant but

gives no information about which appraiser(s) is the problem. He states that reproducibil-

ity is useless when applied to a measurement process used in-house. Montgomery and

Runger (1994a) prefer to use σ2
a +σ2

pa to estimate reproducibility, but they do not specif-

ically call it appraiser-to-appraiser variation. They reason that since part and appraiser

are the only two factors in the study and the interaction effect is essentially a measure-
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ment error, it should be included in the reproducibility. Vardeman and VanValkenburg

(1999) also use σ2
a+σ2

pa to estimate reproducibility and specifically call it variation among

operators. Their reasoning is a little more mathematical. They suggest that for any one

part (i = 1), the model (2.1) reduces to y1jm = µ+α1+βj +αβ1j +ε1jm. If γj = βj +αβ1j,

then the variance of γj, σ2
a +σ2

pa, clearly represents variation among appraisers. Unfortu-

nately, the same reasoning can be used to include σ2
pa in part or process variation (PV).

For instance, the model in Eq(2.1) reduces to yi1m = µ + αi + β1 + αβi1 + εi1m for any

one appraiser (j = 1). Now, if γi = αi + αβi1, then the variance of γi, σ2
p + σ2

pa, clearly

represents part-to-part variation. Vardeman and VanValkenburg (1999) recognize this

anomaly and use it to dispute σ2
p as an estimate of PV. They argue that the interaction

variance should be a part of both PV and AV.

All this discrepancy and confusion seems to originate from the obvious compulsion to

label all the variance components. The term σ2
pa represents the variance of the interaction

effect and should be recognized as such. Any attempt to arbitrarily include it with AV or

PV will be misleading. The terms σ2
p and σ2

a are the only true estimates of part-to-part

(PV) and appraiser-to-appraiser (AV) variation, respectively. It is acceptable, however,

to label σ2
a +σ2

pa as reproducibility as long as it is recognized that reproducibility and AV

will not be the same in that case. As Burdick et al. (2003) have pointed out, such labels

do not add value to our understanding of the system and hence we will purposefully

refrain from using them.
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2.2 Planning the Study

Literature addressing issues related to measurement error can be traced back to the

1940s (Grubbs; 1948). Early research was primarily focused on avoiding the potential

loss due to measurement error. Eagle (1954) suggests tightening of specifications for

testing purposes to minimize the risk of committing β-error (accepting a non-conforming

part). This, however, increases the risk of committing α-error (rejecting conforming

parts). Besides, this is a reactive approach and does not help much in estimating and

reducing measurement error.

Most techniques used today are proactive and concentrate on estimating and re-

ducing the measurement error. Eagle (1954) states that determining measurement error

requires repeated measures using one device and multiple operators or multiple devices

and one operator. The most widely used form of MSA today employs one device and

multiple operators. There is no reason why multiple devices and multiple operators can-

not be used. Montgomery and Runger (1994b) give a mathematical model for such a

case. Whenever an additional factor is added to the experiment, a decision must be made

as to whether the sample will be selected randomly or not. If all factors are random,

the underlying model is called a random-effects model; if all factors are fixed, it is called

a fixed-effects model; and if some factors are random and others are fixed, it is called

a mixed model. This becomes especially relevant when using the ANOVA technique

described later in this section. It is important to note that if a factor is treated as ran-

dom, the inferences about its effect are applicable to the entire population from which

the sample was drawn. On the other hand, if a factor is treated as fixed, the inferences

about its effect are restricted to the specific levels employed in the experiment. Hence,
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the decision to treat a factor as fixed or random must be made judiciously, depending

on the desired outcome. Hahn and Nelson (1970), for example, suggest using a mixed

model with a single appraiser, randomly selected parts, and fixed measuring devices.

Dolezal et al. (1998) show the analysis of a mixed model case with fixed operators. It is

interesting to see that whereas the confidence intervals (CI) of random effects are based

on the Chi-square distribution, the CI of fixed effects in a mixed model situation are

based on a non-central Chi-square distribution with a specific non-centrality parameter.

Montgomery and Runger (1994a) recommend that even if the number of operators is

very small and can be a fixed factor, it should be treated as a random draw from the

potential population of operators.

Montgomery and Runger (1994a) recommend using a larger number of parts with

fewer measurements on each. They list multiple advantages of doing this—(i) a gauge

may be more stable near the center of the operating range than towards the extremes

and using many parts increases the chances of detecting any such non-linearity; (ii) if the

measurement variance depends on the mean measurement, this trend can be detected;

and (iii) it is difficult to get complete replication of measurement and hence, too many

measurements on a part increase the chance of introducing other factors of variability.

Wheeler (1991) recommends only two replications for the same reason. Montgomery and

Runger (1994a) also caution against placing too much emphasis on keeping conditions

“identical” during replications. Since such care is usually not taken during routine mea-

surements, this may cause the underestimation of measurement error. They recommend

that if linearity is an issue, then parts must be chosen over the entire operating range

of the instrument, even beyond the specification. In such a case using a random sample

may not be the best choice.

18



Depending on the situation, there may be many factors that affect the measure-

ment process. Montgomery and Runger (1994a) recommend using 25% or less of total

resources in the initial study for identifying important factors through fractional factorial

or screening designs.

2.3 Analyzing the Data

The two most commonly used techniques to estimate measurement variance components,

as mentioned above, are the range-based method and ANOVA. These are discussed in

greater detail in the following sections.

2.3.1 Range-Based Estimation

Patnaik (1949) notes that the distribution of the range in normal samples is independent

of the population mean, but depends on the sample size and population standard devia-

tion. He gives the mathematical basis for the factor d2, which is based on sample size and

is used to estimate the standard deviation from the sample range. AIAG (1996) suggest

that the value of d2 should also depend on the number of samples used. They introduce a

new factor d∗2 that varies with both number of samples and the sample size, and converges

to d2 as number of samples become large (fifteen or more). Wheeler (1992) considers d∗2

to be an unnecessary complication as the uncertainty in the range will usually be greater

than the difference between d2 and d∗2. It has, however, become a common practice in

MSA to use d∗2 and we will continue with the practice. Vardeman and VanValkenburg

(1999) provide a statistical basis for the range-based approach

Most authors in the recent literature discourage the use of range-based approach
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(Montgomery and Runger; 1994b; Burdick et al.; 2003; Vardeman and VanValkenburg;

1999; John; 1994). The main criticism of this approach is that it does not allow for the

estimation of the interaction variance component, does not allow for the construction of

confidence intervals on the variance components and gives a downwardly biased estimate

of reproducibility. Patnaik (1949) himself notes that range furnishes a less efficient esti-

mate of standard deviation. John (1994) use an example from Wheeler (1992) to show

that the estimates obtained using this approach vary significantly from the ANOVA-based

estimates. John (1994) indicates that using ranges is inappropriate for the semiconductor

industry. With the modern-day computing power, most practitioners are moving away

from this approach toward the ANOVA-based approach. However, there are still a lot of

companies that use this approach and hence it cannot be ignored.

There is a general consensus among authors in the way the repeatability (or replica-

tion error) standard deviation is calculated. The range of multiple measurements taken

by an appraiser on a given part is calculated. This range is averaged over all parts

and appraisers, divided by the appropriate d∗2 to obtain an unbiased estimate of standard

deviation that represents repeatability. For calculating reproducibility, multiple measure-

ments taken by an appraiser are averaged over all parts. The range of these appraiser

averages is divided by d∗2 to estimate reproducibility standard deviation. It is easy to

show that this estimate represents σ2
a + 1

n
σ2

pa + 1
nr

σ2. Vardeman and VanValkenburg

(1999) note that some authors like Montgomery (1996) and Kolarik (1995) use this to

estimate AV. This will obviously result in overestimate of AV. Vardeman and VanValken-

burg (1999) criticize AIAG for adjusting this estimate for the fraction of σ2 but not for

the fraction of interaction variance, σ2
pa. AIAG (1996), however, clearly indicate that the

range-based approach should be used only if the additive model is deemed appropriate,
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i.e., the interaction effect can be neglected. Montgomery and Runger (1994a) introduce

an alternative way of calculating reproducibility. The average of replicate measurements

by an appraiser on each part is calculated. The range of these averages is obtained for

each part. The average of these ranges is used to estimate reproducibility. The variance

calculated in this manner represents σ2
a+σ2

pa+ 1
r
σ2. Vardeman and VanValkenburg (1999)

also use this estimate but emphasize that it must be adjusted for a fraction of σ2.

2.3.2 Analysis of Variance (ANOVA)

Analysis of variance is a technique used to partition the total sum of squares into a portion

due to regression and a portion due to error (Walpole and Myers; 1985). The sum of

squares due to regression is further partitioned into various factors and interactions. The

error mean square is pure replication error, or repeatability. Other variance components

(VC) are not directly readable from the ANOVA table. Their values need to be calculated

using expected mean square (EMS) values. Most statistical software can provide EMS

values for all factors and interactions based on the assumptions of the underlying model.

For guidelines on deriving EMS the reader is referred to Kuehl (2000) or Montgomery

(2001). Even though normality of effects is a basic assumption of ANOVA, Montgomery

and Runger (1994b) state that normality is not essential to use EMS for obtaining VC

estimates. However, they note, if the assumption is met, it is easy to construct confidence

intervals on the VCs.

Most authors agree that the estimates based on ANOVA are more accurate and

allow for the construction of confidence intervals and estimation of interaction effects as

stated above. One of the disadvantages of using ANOVA, however, is that the estimates

of VCs may turn out to be negative (Montgomery and Runger; 1994b). Kuehl (2000)
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suggests various remedies for this problem. One remedy is to assume the VC to be zero;

but that may produce biased estimates of other VCs as noted by Montgomery and Runger

(1994b). They suggest using a modified ANOVA, which is nothing but redoing ANOVA

with the insignificant term (usually the interaction term) removed. This allocates the

degrees of freedom for that term to error. Another solution is to use other methods of

estimating VCs (Kuehl; 2000; Montgomery and Runger; 1994b).

2.3.3 Other Techniques

Wheeler (1992) very strongly recommends using graphical techniques in place of the

traditional analysis. He plots an X̄-chart of the operator averages of three operators

and suggests that an out of control condition indicates a significant operator difference.

With control limits based on just three points, however, it may inappropriate to place

too much confidence in the outcome.

Montgomery and Runger (1994b) suggest methods such as maximum likelihood es-

timates (MLE) or MINQUE estimates. MLEs maximize the likelihood function of the

sample such that each VC is required to be non-negative. MINQUE produces estimates

that are best quadratic unbiased and are guaranteed to be non-negative. Both these

procedures are iterative in nature. These estimates, as illustrated by Montgomery and

Runger (1994b), give a covariance matrix of all VCs. The variance of each VC, obtained

from the diagonal elements of this matrix, along with the assumption of normality al-

lows the construction of confidence intervals using z-values. These intervals are easy to

construct and are usually narrower than those obtained from ANOVA. A non-iterative

version of MINQUE also exists, but it is not guaranteed to produce non-negative esti-

mates (Montgomery and Runger; 1994b). Both MLE and MINQUE require specialized
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software and give estimates close to those obtained by using modified ANOVA. Hence

ANOVA has become the technique of choice.

2.4 Some Problems With MSA

Recall that the objective of this research is to address the issue of within-appraiser

variation and among-equipment variation, provide correct estimate for PV and adapt

MSA to address the needs of chemical and process industries. This section will address

any previous work in these areas.

2.4.1 Within-Appraiser Variation

No previous research has explicitly acknowledged the existence of within-appraiser vari-

ation or addressed the issue otherwise. Some relevant work will be discussed here.

Burdick et al. (2003) note that the variance of measurements may not remain con-

stant in all cases. One reason given, if this variance varies over time, is “operator fatigue”.

Fatigue results in the appraiser’s inability to keep the bias constant over time. This vari-

ation in appraiser-bias is essentially within-appraiser variation. The time-dependence in

the case of operator fatigue makes it easy to spot such variation by plotting residuals

against time. If, however, the variation is due to inadequate training or other human

factors, there may not be a covariate such as time.

Montgomery and Runger (1994a) mention that an out of control condition on the

R chart plotting ranges of measurements would indicate that the appraiser is having

difficulty using the equipment. If indeed this is the case, it is possible to get an R chart

that is in a state of statistical control but has very wide control limits. This would
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happen if the appraiser inconsistency, or the within-appraiser variation, is randomly

scattered over all measurements. Wide control limits on an R chart would lead to high

estimates of equipment variation since the variance of measurements, or replication error,

is typically attributed to equipment.

To summarize the above discussion, some authors have shown that within-appraiser

variation can be detected either through residual plots if a covariate is present or through

control charts if appraiser inconsistencies are rare and sporadic. If, however, the appraiser

is regularly inconsistent in the use of measuring devices, these tools may not detect within-

appraiser variation. In such a case, a plot of measurement ranges sorted by appraiser

may be helpful. For example, if the average range of an appraiser shows a significant

shift, high variation can be assumed within that appraiser. The absence of shift, however,

should not be confused with the absence of appraiser inconsistency as it will only indicate

that appraiser inconsistency does not vary significantly from appraiser to appraiser.

2.4.2 Using Multiple Equipment

As noted earlier, if routine implementation of the measurement system involves multi-

ple equipment, there may be a significant equipment-to-equipment variance component

involved. Montgomery and Runger (1994b) proposes a model that adds equipment as

another factor to the experiment. However, there has been no effort to estimate vari-

ance components under this scenario. Despite is potential usefulness, this model is rarely

implemented in practice.
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2.4.3 Correcting the Estimate of PV

The estimate of PV provided by AIAG has not been challenged by any researcher. Yet,

there is a small but definite error in the formula, as will be shown in the next chapter.

2.4.4 MSA for Chemical and Process Industries

Within MSA, the research effort devoted to chemical and process industries where test-

ing is destructive, is an order of magnitude less than that devoted to the discrete part

manufacturing case.

Some authors that have addressed the issue, focus on minimizing the within-sample

variation and treating measurements on different subsamples as different measurements

on the same sample (Spiers; 1989; Ackermann; 1993).

Spiers (1989) uses an example, measuring tensile strength of tin, to illustrate this.

They cut thirty samples from a single sheet of tin and randomly assigned ten samples to

each of three appraisers. Each sample was then cut into three subsamples. The tensile

strength measurement on each of these subsamples was treated as multiple measurement

on the sample. The differences were considered negligible among subsamples due to

adjacency.

Ackermann (1993) recognizes that choosing samples for such a study is the most

critical step and that care should be taken to minimize lot-to-lot, within lot and within

sample variation. She further states that high material variation can mask out the

appraiser-to-appraiser variation. Even though this is true, if all material variation is

minimized the results of such a study will be valid only for that narrow range of val-

ues. Any non-linearity in the measurement system will never be discovered under such
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circumstances. For example, if the objective is to measure the moisture content of a

chemical compound and all material is chosen so that the moisture content is very close

to 0.5%, then we will never know how the measurement system behaves if the moisture

content in the sample rises to, say, 1%. This is the reason why authors like Montgomery

and Runger (1994a) have emphasized the fact that parts should be chosen over the entire

range of values that the measurement system can measure. This allows for the assess-

ment of linearity in the measurement system. To minimize the masking out of AV, as

alluded to by Ackermann (1993), the first sample assigned to each appraiser should be

near identical, so should the second sample and so on.

Ackermann (1993) notes that merely minimizing material variation is not enough;

the differences, must be accounted for. Yet, in this paper, measurements by an appraiser

on multiple subsamples are treated as multiple measurements on the same sample and

any differences among these subsamples are ignored. The work presented in this paper

is based on the work of Spiers (1989), who also ignores these differences. The work of

Spiers (1989) and Ackermann (1993) is relevant to this discussion in that they address

the issue of destructive testing. However, the applications presented are not from the

CPI, where sampling issues can be much more complex. It may be reasonable to ignore

differences among subsamples in some of these cases, for example, the tensile strength

measurement of a tin sheet.

ASQ Chemical and Process Industries Division (2001) throws some light on sampling

issues in the CPI. They recommend repetitive sampling of incoming material to establish

homogeneity, but acknowledge that when a specimen is destroyed, there is an additional

variability from specimen to specimen, however small it has been made. Besides, for

a sample to be truly representative of the population, it must be random. For gases
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and liquids, sampling ports may limit any consideration for randomness. For example,

accessibility restricts true randomness for materials in storage silos, railcars, etc. (ASQ

Chemical and Process Industries Division; 2001). Besides, randomness can be especially

difficult to achieve if sampling is done on a time-frequency basis. The ASQ Chemical and

Process Industries Division (2001) states that the element of time and its ramifications

on sampling is one of the major differences between the CPI and the discrete part manu-

facturing industry. They further state that in CPI, production processes often drift over

time and data are autocorrelated; data are based on individual measurements and many

production processes are not in a state of control; specifications are often not statistically

based on production processes and measurement system knowledge.

Wheeler (1991) recommends using a range-chart by plotting measurement ranges.

An out of control condition on such a chart can indicate that either the measurement

system is out of control or that the samples measured were not homogenous. Such a chart

will be useful only if a reasonable assurance of sample homogeneity can be achieved. ASQ

Chemical and Process Industries Division (2001) suggest plotting two types of control

charts — a production process control (PPC) chart and a measurement system control

(MSC) chart. The former is a regular control chart created by measuring material actu-

ally being produced. The latter, however, is created using control material (CM) local to

the particular site. The objective of the former is to determine whether the production

process is in control, while that of the latter is to ensure that the measurement system is

accurate and precise enough for the PPC chart to be trusted. However, if the sampling

frequency is not high enough, the MSC chart may fail to serve its intended purpose. For

example, if the average run length (ARL) of the PPC chart for a shift of, say, x units is

less than the ARL of the MSC chart, and if a shift of x units occurs in the measurement
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system, then the PPC chart will detect it before the MSC chart and unnecessary tamper-

ing with the process may occur (ASQ Chemical and Process Industries Division; 2001).

To ensure that changes in the measurement system are detected by the MSC chart before

the PPC chart, the ASQ Chemical and Process Industries Division (2001) recommends

that the ARLMSC = 1
2
ARLPPC .

Mitchell et al. (1997) have come up with a very interesting approach to address

the issue of using MSA for destructive testing. Bergeret et al. (2001) use these results

in three different applications. The applications have been chosen such that testing is

not destructive. Then this technique is used pretending that the testing is destructive.

The results are compared with regular MSA study to assess the effectiveness of the

technique. In this technique, the experiment is performed in two stages. In stage one

only one operator is used, who divides each sample into subsamples and measures them.

The equipment variation is assumed to be confounded with subsample variation. In the

second stage multiple operators measure each sample only once. The equipment variation,

in this stage, is assumed to be confounded with sample variation. A simple manipulation

of expected mean squares from the two stages, yields the equipment variation.

2.5 Evaluating Measurement System Acceptability

Criteria

This section identifies various metrics used to assess measurement system acceptabil-

ity and the criteria associated with them. Some such metrics being discussed here are

summarized in Table (2.1)
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Table 2.1: Capability Metrics
Metric Notation Formula
Percent of process
variation

%PV σm

σp

Percent of total
variation

%TV σm

σt

Precision-to-tolerance
ratio

PTR 5.15σm

USL-LSL
Intraclass correlation
coefficient

r σ2
p

σ2
t

Discrimination Ratio DR
√

1+r
1−r

Number of Data
Categories

ndc 1.41σp

σm

Effective resolution ER 0.67σm

2.5.1 Number of Data Categories and Discrimination Ratio

A popular measure that shows whether the measurement system is capable of mak-

ing distinction between parts at the desired level of resolution is known as “number of

data/distinct categories” (ndc). AIAG (1996) defines ndc as 1.41( σp

σm
) or

√
2(

σ2
p

σ2
m

). This

expression is widely used by authors (Vardeman and VanValkenburg; 1999; Burdick et al.;

2002; Dolezal et al.; 1998), and is inspired by Wheeler’s “classification ratio”(Wheeler

and Lyday; 1984). Wheeler later improved this metric and called it discrimination ratio

(DR) (AIAG; 2003). AIAG has changed its recommended value for ndc from three in

1990 to five in 1996.

Nunes and Cherekdjian (1995) state that DR allows us to quantify the sensitivity of

the measurement system by comparing process variation to measurement error. However,

before we understand DR it is essential to understand intraclass correlation coefficient

(r), which is a measure of similarity of observations within groups relative to that among

groups (Kuehl; 2000). In the context of MSA, r can be defined as 1 − σ2
measurement

σ2
observed

or
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1− σ2
m

σ2
o

and DR has been defined by Wheeler (1992) as

DR =

√
1 + r

1− r
(2.2)

=

√
2σ2

o

σ2
m

− 1

Wheeler (1991) recommends that DR should be five or more for the measurement system

to be useful. Dolezal et al. (1998) state that the measurement process is adequate if the

DR is greater than or equal to three. Burdick et al. (2003) define DR as 1+r
1−r

(without

the square-root) which is incorrect.

Wheeler (1991) states that DR defines the number of product categories that the

measurement will support. AIAG (1996) define ndc as the number of distinct levels of

product dimensions (or categories) that can be reliably obtained from the data. Both

these quantities are not only similar in concept but turn out to be very similar in value.

2.5.2 Precision-to-Tolerance Ratio (PTR)

Another measure of interest is precision-to-tolerance ratio (PTR) given by

PTR =
5.15σm

USL− LSL
(2.3)

PTR is considered to be the fraction of the tolerance consumed by the measurement

system (Montgomery and Runger; 1994a; AIAG; 1996; Burdick et al.; 2003; Mitchell

et al.; 1997). Wheeler (1992), however, states that whenever two quantities are compared

by a ratio there is an implicit assumption that the numerator can be added to some other

quantity to yield the denominator . He presents a convincing argument that measurement

error and tolerance are not additive since standard deviations are not additive, and

hence the former does not ”consume” the latter and it is misleading to use such ratios.
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Moreover, this ratio provides no information about the capability of a measurement

system to detect product variation. For example, Spiers (1989) considers the micrometer

under investigation to be capable because it consumes only 18% of the tolerance. The

truth is, it tells us nothing about the capability of the instrument to distinguish among

product categories. Wheeler (1992) states that a measurement system with high PTR

(undesirable) can be capable of detecting product variation if PV is large and vice versa if

PV is low. Some authors like Montgomery and Runger (1994a) and Burdick et al. (2003)

strongly advocate the use of this ratio and state that PTR of 10% or less indicates an

adequate measurement system. Montgomery and Runger (1994a), however, acknowledge

that PTR can be minimized to any desired value by artificially inflating the specifications.

Morchower (1999) indicates a PTR of 5% or less is preferable.

Sometimes a multiplier of 6 instead of 5.15 may be used in Eq(2.3) (Burdick et al.;

2003). Mitchell et al. (1997) also uses the reciprocal of this ratio as measurement capa-

bility index (Cp).

2.5.3 Other measures

AIAG (1996) also use “percent of Total Variation (%TV = 100MV/TV )”, where MV

and TV represent measurement variation and total variation respectively, as a measure of

measurement system capability. Wheeler (1992) states that even though this measure is

meaningful in terms of indicating the usefulness of the measurement system, it still suffers

from the other problem stated above–total variation and measurement variation are also

not additive and hence should not be compared using a ratio. For example, a %MV of

30% does not indicate, contrary to popular belief that measurement variation is 30% of

total variation. Taking the ratio of variances instead of standard deviations may eliminate
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Wheeler’s concern with this ratio and may meaningfully represent the portion of observed

variation that is due to measurement. Another performance measure, which is similar to

%PV and is often used, is “percent of Process Variation (%PV = 100MV/PV )”, where

PV represents process or part variation. Montgomery and Runger (1994a) consider these

two to be more useful than PTR.

Wheeler (1991) gives another measure called “effective resolution” which is the max-

imum of two quantities—probable error and measurement unit, where probable error is

defined as 0.67σmeasurement.
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Chapter 3

Theoretical Background

Chapter Overview

The model presented by AIAG, which is the basis for most MSA studies, will be referred to

as the “current model” or the “traditional model”. A mathematical basis for the estimates

of equipment variation (EV), appraiser variation (AV) and part variation (PV) using both

the range-based method and ANOVA will be developed. In an attempt to resolve the

issue of within-appraiser variation, a new model will be proposed. A mathematical basis

will be developed for within-appraiser variation and any effect of the changes made to the

traditional model on estimates of EV and AV, will be investigated. To allow for multiple

measuring equipment in the study, an enhanced version of the traditional model will be

presented, and new estimates with respect to additional equipment will be derived. A

corrected formula, based on the traditional model, for PV and discrimination ratio will

be derived. Procedures for the verification of all enhancements and alterations to the

traditional model will be outlined.

3.1 Current Model

The linear model underlying the traditional MSA techniques is given in Eq(2.1) as yijm =

µ + αi + βj + (αβ)ij + εijm. The meaning of these symbols is described in Section 2.1.
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Consider a study conducted with one measuring device, k randomly selected ap-

praisers and n randomly selected parts. Each appraiser measures each part r times. The

estimates of various variance components will be derived for this scenario.

3.1.1 Range Based Estimates of Variance Components

Using average range to estimate standard deviation has been an old tradition in the field

of quality. A brief explanation of the statistical theory behind this is provided here.

Vardeman and VanValkenburg (1999) is the primary source of this explanation. Suppose

that x1, . . . , xn are IID normal (µ, σ2) variables, then their range is given by

R = max xi −min xi

= σ

(
max

(
xi − µ

σ

)
−min

(
xi − µ

σ

))

This implies that R has the distribution of a σ multiple of the range of n standard normal

variables. Now, consider n standard normal variables, z1, . . . , zn. Let their range be given

by W = max zi −min zi and the expected value of W be given by E[W ] = d2(n). If the

average of multiple such ranges is given by R̄, then R̄
d2(n)

= σ̂. Then, clearly, the expected

value of R is given by E[R] = σd2(n) and E
[

R
d2(n)

]
= σ. For details on the distribution of

range of standard normal variables, W , and the calculation of d2(n) values, see Patnaik

(1949). Tabulated values of d2(n) for reasonable values of n can be found in most quality

control books. AIAG recommends using d∗2(n) instead, which takes into account the

number of ranges that the average is based on. These values can be found in AIAG

(1996) for subgroup sizes of up to fifteen and number of ranges up to fifteen and in AIAG

(2003) for subgroup sizes and number of ranges up to 20. For more details and other

values of d∗2(n), the reader is referred to Duncan (1974) and Elam (2001).

34



It would be advantageous, at this point, to introduce some notation. As noted

earlier, yijm represents the mth measurement by the jth appraiser on the ith part. The

average of r measurements taken by the jth appraiser on the ith part is given by ȳij. =

1
r

∑
m yijm = µ + αi + βj + αβij + ε̄ij.. The bar on the statistic indicates that it is an

average and the subscript over which the average is taken is replaced by a dot. Similarly,

the range of r measurements taken by jth appraiser on the ith part is given by Rijm =

maxm yijm − minm yijm = yijm′′ − yijm′ where m′′ and m′ represent the largest and the

smallest measurement for a given i, j. The subscript on R with an underscore is the one

over which the range has been taken. The average of these ranges over all parts for the jth

appraiser will be given by R̄.jm = 1
n

∑n
i=1(maxm yijm−minm yijm) = 1

n

∑n
i=1(yijm′′−yijm′).

Equipment Variation

Using the linear model given in Eq(2.1), the range of multiple measurements by the jth

appraiser on the ith part can be represented as Rijm = yijm′′ − yijm′ = εijm′′ − εijm′ where

m′′ and m′ represent the largest and the smallest measurement for a given i, j. Since

εijm represents replication error, and is normally distributed with mean 0 and variance

σ2, we get
(

E

[
Rijm

d2(r)

])2

= σ2 (3.1)

Using R̄..m as an estimate of E[Rijm],
R̄..m

d2(r)
= σ̂ can be used as an estimate for equipment

variation where

R̄..m =
1

nk

k∑
j=1

n∑
i=1

(yijm′′ − yijm′) (3.2)
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Appraiser Variation

The average of all measurements on all parts made by the jth appraiser can be expressed

as

1

nr

n∑
i=1

r∑
m=1

yijm = ȳ.j. = µ + ᾱ. + βj + ᾱβ.j + ε̄.j. (3.3)

The range of these averages for all appraisers can be expressed as R.j. = (βj′′−βj′)+

(ᾱβ.j′′ − ᾱβ.j′) + (ε̄.j′′. − ε̄.j′.) where j′′ and j′ represent appraisers with the largest and

the smallest measurement averages respectively. Since βj, αβij, and εijm are normally

distributed with mean 0 and variance σ2
a, σ

2
pa, and σ2 respectively, we obtain

(
E

[
R.j.

d∗2(k)

])2

= σ2
a +

σ2
pa

n
+

σ2

nr
(3.4)

Since, only one such range is obtainable for a given experiment, E[R.j.] = R.j. and

R.j.

d∗2(k)
=

√
σ̂2

a +
σ̂2

pa

n
+

σ̂2

nr
(3.5)

The quantity of interest here, is σ̂2
a, the appraiser variation or appraiser-to-appraiser

variation. As mentioned earlier, some authors like Montgomery (1996) and Kolarik (1995)

use the entire expression in Eq(3.4) to estimate AV. A slightly better estimate is given

by AIAG by correcting for σ2

nr
, using EV as an estimate of σ. They recommend using the

range-based approach only if the interaction can be ignored and hence do not adjust this

estimate for
σ2

pa

n
. The estimate for AV is thus given by

AV = σ̂a =

√(
R.j.

d∗2(k)

)2

− EV 2

nr
(3.6)

As mentioned previously, Montgomery and Runger (1994a) demonstrated a differ-

ent way of calculating appraiser variation which was later improved by Vardeman and

VanValkenburg (1999). We will call this new estimate of AV, σ̂aNew. In this approach the
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average of multiple measurements made by the jth appraiser on the ith part is calculated

as

ȳij. =
1

r

∑
m

yijm = µ + αi + βj + αβij + ε̄ij. ∀i, j (3.7)

The range of these averages calculated for the ith part over all appraisers is given by

Rij. = ȳij′′.− ȳij′. = (βj′′ − βj′) + (αβij′′ −αβij′) + (ε̄ij′′.− ε̄ij′.). Again, since βj, αβij, and

εijm are normally distributed with mean 0 and variance σ2
a, σ2

pa, and σ2 respectively, we

obtain
(

E

[
Rij.

d∗2(k)

])2

= σ2
a + σ2

pa +
1

r
σ2 (3.8)

There will be n such ranges, one for each part. The average of these ranges, R̄a =

1
n

∑
i Rij. = 1

n

∑
i(ȳij′′. − ȳij′.) is used as an estimate of E[Rij.]. Ignoring the interaction

variance component as before, an estimate of appraiser variation is thus given by

AV = σ̂aNew =

√(
R̄a

d∗2(k)

)2

− EV 2

r
(3.9)

Part Variation

AIAG argues that the average of all measurements on the ith part over all appraisers is

the best obtainable estimate of the true value of the part. Hence variation among these

grand averages of each part truly represents PV. If the grand average of the ith part is

given as

ȳi.. =
1

kr

r∑
m=1

k∑
j=1

yijm (3.10)

Then PV, expressed as standard deviation (σp) is estimated as
Ri..

d∗2(n)
, where Ri..

represents the range of these part grand averages taken over all parts. We will show,

later in this chapter, that this method overestimates PV. An appropriate correction will

be provided.
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3.1.2 ANOVA-Based Estimates of Variance Components

Recall that the experiment being considered here is based on k randomly chosen apprais-

ers performing r measurements on each of n randomly selected parts. This is a two-factor

random effects model. The variation in identically performed measurements on the same

part is the replication error (σ2), also called repeatability or equipment variation under

the AIAG model. Table 3.1 summarizes the analysis of variance for such an experi-

ment. The “df” column contains the degrees of freedom for each source listed under

the “Source” column. The “MS” column contains the observed values of mean-squares

for a particular experiment and the “EMS” column shows the expected values for those

mean-squares.

Table 3.1: Analysis of variance table
Source df MS EMS
Part (n− 1) MSp σ2 + rσ2

pa + krσ2
p

Appr. (k − 1) MSa σ2 + rσ2
pa + nrσ2

a

Appr. x Part (n− 1)(k − 1) MSpa σ2 + rσ2
pa

Error (equip.) nk(r − 1) MSe σ2

The components of variance can be easily estimated from this table as follows:

Equipment Variation = σ̂2 = MSe

Interaction Variation = σ̂2
pa =

MSpa −MSe

r

Appraiser Variation = σ̂2
a =

MSa −MSpa

nr

Part Variation = σ̂2
p =

MSp −MSpa

kr
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3.2 Accounting for Within-Appraiser Variation

Consider the linear model underlying the traditional MSA given in Eq(2.1). The term

βj represents appraiser bias. This model does not allow for any variation in this bias

associated with an appraiser. For example, consider an appraiser measuring the length

of a part, in millimeters, having a bias (βj) of −2mm. The current model assumes that

every time this appraiser measures a part, he/she will measure it exactly 2mm less than

the true value. The concept of within-appraiser variation is more realistic in that it

assumes βj to be only an average bias with a certain variation from reading to reading.

The relationship between variation among appraisers and variation within apprais-

ers is depicted in Figure 3.1 for three appraisers. The appraiser-to-appraiser variation,

σ2
a, governs the variation in mean appraiser biases, the βjs. Hence, the jth appraiser

performs with a mean bias of βj. The bias associated with a particular measurement

on a given part has a variance of σ2
aj

, which is the within-appraiser variation for the

jth appraiser. Under the traditional model, σ2
aj

= 0 for all appraisers. The difficulty

in visually detecting (through control charts or residual plots) or estimating appraiser

inconsistency is primarily because it is confounded with equipment variation. Replica-

tion error, thus, has two components to it—equipment variation and within-appraiser

variation. In other words, εijm = γijm +νijm, where εijm represents replication error from

Eq(2.1) and γijm, νijm represent measurement error due to within-appraiser variation (for

appraiser j) and equipment variation, respectively. It is easy to see why equating repli-

cation error to equipment variation will overestimate the latter. The model in Eq(2.1)
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Figure 3.1: Within-appraiser variation

can thus be modified as follows:

yijm = µ + αi + βj + (αβ)ij + γijm + νijm (3.11)

where i = 1, . . . , n j = 1, . . . , k m = 1, . . . , r

and symbols have their usual meaning. The terms γijm and νijm are independently and

normally distributed with mean zero and variance σ2
aj

(variance within appraiser j) and

σ2
e (within-equipment variation), respectively. Note that whereas σ2

aj
varies by appraiser,

σ2
e is constant. This is because this model allows for only one equipment. This will

change as we enhance the model to include multiple equipment in a subsequent section.

Let Rijm = yijm′′−yijm′ = εijm′′−εijm′ represent the range of all measurements on the

ith part taken by the jth appraiser, where m′′ and m′ represent the largest and the smallest

measurement for a given i, j. Then, from Eq(3.11), Rijm = (γijm′′−γijm′)+(νijm′′−νijm′).

Since γijm, and νijm are normally distributed with mean 0 and variance σ2
aj

and σ2
e
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respectively, we obtain,
(

E

[
Rijm

d2(r)

])2

= σ2
j = σ2

aj
+ σ2

e (3.12)

where σ2
j is the replication error for the jth appraiser. The average of the ranges, Rijm,

taken over all parts for appraiser j, given by R̄.jm = 1
n

∑n
i=1(yijm′′ − yijm′) can be used

as an estimate of Rijm.

Since equipment and within-appraiser variation are confounded with each other, it

is difficult, if not impossible, to get a point estimate on them. It is, however, possible to

estimate the bounds on these quantities, as shown in the next subsection.

3.2.1 Estimating Bounds

From Eq(3.12), it is easy to see that the replication error for appraiser j, σ2
j = σ2

aj
+σ2

e . A

similar expression can be derived for each of k appraisers and can be collectively expressed

as Ak where the subscript indicates the number of equations in the set.

Ak =




σ2
a1

+ σ2
e = σ2

1

σ2
a2

+ σ2
e = σ2

2

...

σ2
ak

+ σ2
e = σ2

k




Assume that the equations are ordered such that σ2
1 > σ2

2 > . . . > σ2
k. Let κ =

(
k
2

)
. If Ei

is the ith equation in Ak, then performing the operations Ei−Ei+x where i = 1, ..., (k−1)

and x = 1, ..., (k − i), gives us the following κ equations

Aκ =




σ2
a1
− σ2

a2
= σ2

1 − σ2
2

σ2
a1
− σ2

a3
= σ2

1 − σ2
3

...

σ2
ak−1

− σ2
ak

= σ2
k−1 − σ2

k



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Using the logic that if a− b = c and a, b, c are nonnegative, then a + b ≥ c, we get

Aκ+ =




σ2
a1

+ σ2
a2
≥ σ2

1 − σ2
2

σ2
a1

+ σ2
a3
≥ σ2

1 − σ2
3

...

σ2
ak−1

+ σ2
ak
≥ σ2

k−1 − σ2
k




Adding all inequalities in Aκ+, we get a generalized form for k appraisers as

(k − 1)
k∑

j=1

σ2
aj
≥

k∑
j=1

(k − 2j + 1)σ2
j

⇒ 1

k

k∑
j=1

σ2
aj
≥ 1

k(k − 1)

k∑
j=1

(k − 2j + 1)σ2
j (3.13)

A detailed description regarding how the generalized form was calculated can be found

in Appendix(C). The left side of the inequality is the average within appraiser variation

expressed as variance and the right side is an estimate of the lower bound on it (LBa).

The replication error for the jth appraiser is σ2
j , and can be found using Eq(3.12).

By adding all equations in Ak and dividing by k, the number of appraisers, we get

1

k

k∑
j=1

σ2
aj

+ σ2
e =

1

k

k∑
j=1

σ2
j (3.14)

The summation term on the left represents average within-appraiser variation for which

a lower bound, LBa, is given by Eq(3.13). Hence the above equation can rewritten as

LBa + σ2
e ≤

1

k

k∑
j=1

σ2
j

⇒ σ2
e ≤

1

k

k∑
j=1

σ2
j − LBa (3.15)

The term to the right of the inequality represents an estimate of the upper bound on

within-equipment variation (UBe).
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3.2.2 Estimating Trivial Bounds

As has been shown earlier, σ2
j = σ2

aj
+ σ2

e ∀j. Clearly, σ2
e ≤ σ2

j ∀j, where the equality

holds when σ2
aj

= 0. Hence σ2
e ≤ minj(σ

2
j ). In other words, UBeTriv = minj(σ

2
j ) places an

upper bound on equipment variation. From Eq(3.14)and having an upper bound on σ2
e

(UBeTriv) we have 1
k

∑k
j=1 σ2

aj
≥ 1

k

∑k
j=1 σ2

j −UBeTriv where the left side of the inequality

represents the average within-appraiser variation and the right side gives an estimated

lower bound on it (LBaTriv)

Recall that all of the estimates (LBa, UBe, LBaTriv, UBeTriv) have be derived using

expected values. When calculating an actual value for these estimates, estimates of these

expected values will be used. This causes the estimated bounds to be ineffective at times.

This will be discussed in more detail later.

3.3 Correcting the Estimate for PV

Consider the model given in Eq(2.1). The average of all measurements by all appraisers

on the ith part can be represented as

1

kr

k∑
j=1

r∑
m=1

yijm = ȳi.. = µ + αi + β̄. + (ᾱβ)i. + ε̄i..

The the range of ȳi.. over all parts is given by Ri.. = (αi′′−αi′)+(αβi′′.−αβi′.)+(εi′′..−εi′..).

As shown earlier,
Ri..

d2(n)
is traditionally used to estimate part variation, even though it

estimates not σ2
p, but rather

(
Ri..

d2(n)

)2

= σ̂2
p +

σ̂2
pa

k
+

σ̂2
e

kr
(3.16)

Hence the correct estimate of PV is not
Ri..

d2(n)
, but rather σ̂2

p =
(

Ri..

d2(n)

)2

− σ̂2
pa

k
− σ̂2

e

kr
. As

mentioned previously, the range-based approach is appropriate when the additive model
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is believed to adequately represent reality and hence, the interaction term can be ignored,

so that σ2
pa = 0. The current estimate of process variation should still be adjusted for

σ̂2
e

kr
, the last term in Eq(3.16) and be given as

σ̂2
p =

(
Ri..

d2(n)

)2

− σ̂2
e

kr

=⇒ σ̂2
p =

(
Ri..

d2(n)

)2

− 1

kr

(
R̄..m

d2(r)

)2

=⇒ σ̂2
p = max

(
0,

(
Ri..

d2(n)

)2

− 1

kr

(
R̄..m

d2(r)

)2
)

(3.17)

where, R̄..m = 1
nk

∑n
i=1

∑k
j=1(maxm yijm − minm yijm) is the average of measurement

ranges over all parts and all appraisers. Under the traditional model,
R̄..m

d2(r)
is typically

used as EV to estimate σe, the equipment variation. The last equation follows because a

negative estimate of variance is usually replaced by zero and counted as a null estimate.

Under the traditional model (ignoring within-appraiser variation), the equation above

can be rewritten as PV 2
new = PV 2

old − EV 2

kr
.

3.4 On Using Multiple Equipment

As mentioned above, in a situation where multiple equipment or measuring devices of

the same type are routinely used for measurement, a significant equipment-to-equipment

variance component may exist. This is ignored under the current model and may result

in overestimating the true process variation. Once the decision to use multiple equipment

has been made, a decision as to whether equipment should be treated as a random or a

fixed factor should be made. This decision depends on the situation and on the objectives

of the study.

For example, if only a small and specific number of equipment are used during
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routine measurements, then all equipment may be used in the study and equipment

may be treated as a fixed factor. The design would then be analyzed as a mixed model

assuming that parts and appraisers would still be random. Any interaction involving part

or appraiser would also be treated as random. The objective with respect to equipment,

however, should be to study the main effects of those specific equipment. Any attempt

to generalize the conclusions to the entire population of equipment (if larger than the

sample) will lead to erroneous conclusions. Besides, as mentioned earlier, Montgomery

and Runger (1994a) recommend that even in such a case, the factor should be treated as

a random sample from the potential population.

For now, equipment will be considered to be a random factor. The objective of the

study with respect to equipment would be to estimate the variance components due to

equipment. The linear model that retains all the provisions of the AIAG model, accounts

for within-appraiser variation and allows for multiple equipment to be used is given below:

yijlm = µ + αi + βj + ωl + αβij + αωil + βωjl + αβωijl + γijlm + νijlm (3.18)

where i = 1, . . . , n j = 1, . . . , k l = 1, . . . , q m = 1, . . . , r

and symbols have their usual meaning. The term ωl is the equipment effect and is

normally distributed with mean zero and variance σ2
e . The terms αβij, αωil, and βωjl

represent two-way interactions between part and appraiser, part and equipment, and

appraiser and equipment, respectively. They are normally distributed with mean zero and

variance σ2
pa, σ

2
pe, and σ2

ae, respectively. The three-way interaction among part, appraiser

and equipment is denoted by αβωijl, and is normally distributed with mean zero and

variance σ2
pae. The replication error is, as before, split into within-appraiser variation and

within-equipment variation. Since the latter can be different for different equipment, the
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variance of νijlm is now denoted by σ2
el

and represents the variation within the equipment l.

Similar to previous models, there are n parts and k appraisers. Each appraiser measures

each part using each of q equipment r times. The analysis of variance for this scenario

is given in Table 3.2. The estimates of variance components can be obtained from Table

3.3.

Table 3.2: ANOVA for multiple equipment scenario
Source DF MS EMS
P n− 1 MSp σ2 + rσ2

pae + qrσ2
pa + krσ2

pe + kqrσ2
p

A k − 1 MSa σ2 + rσ2
pae + qrσ2

pa + nrσ2
ae + nqrσ2

a

E q − 1 MSe σ2 + rσ2
pae + krσ2

pe + nrσ2
ae + nkrσ2

e

PxA (n− 1)(k − 1) MSpa σ2 + rσ2
pae + qrσ2

pa

PxE (n− 1)(q − 1) MSpe σ2 + rσ2
pae + krσ2

pe

AxE (k − 1)(q − 1) MSae σ2 + rσ2
pae + nrσ2

ae

PxAxE (n− 1)(k − 1)(q − 1) MSpae σ2 + rσ2
pae

Error nkq(r − 1) MSE σ2

Table 3.3: Estimates of variance components

σ̂2
ae = MSae−MSpae

nr
σ̂2

e = MSe−MSpe−MSae+MSpae

nkr

σ̂2
pe = MSpe−MSpae

kr
σ̂2

a = MSa−MSpa−MSae+MSpae

nqr

σ̂2
pa = MSpa−MSpae

qr
σ̂2

p = MSp−MSpa−MSpe+MSpae

kqr

σ̂2
pae = MSpae−MSE

r

3.5 MSA for Destructive Testing

An interesting approach to resolve the problem of destructive testing has been developed

by Mitchell et al. (1997) by conducting the experiment in two stages. In this section, the

mathematical background for their approach is developed. This approach was initially

developed for the semiconductor industry and the same example will be used. Also, the
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underlying assumptions will be examined and the adaptation of this approach for the

chemical and process industries will be discussed.

In the first stage 10 parts (or wafers)(n = 10) are selected and 5 locations (l = 5)

are marked on each wafer such that “location 1” on each wafer refers to the exact same

location. The same statement can be made about other locations. Only one operator is

used in this stage. Mitchell et al. (1997) consider this to be a nested design with locations

nested within parts. This choice of design is disputed later on in the section. The linear

model assuming a nested design, however, can be described as

yit = µ + αi + τt(i) (3.19)

where i = 1, . . . , n t = 1, . . . , l

The term yit is the value of the tth location of the ith part and µ is the overall part mean.

It is important to note the difference between this model and the previous models. The

term yit represents the true value and not the measurement value, unlike all previous

models. The terms αi, the part effect, and τt(i), the effect of locations nested within

parts, are independently and normally distributed with mean zero and variance σ2
p and

σ2
l(p) respectively. The EMS for this scenario are shown in Table(3.4). The part-to-part

Table 3.4: Expected Means Squares for Stage 1
Source DF MS EMS
Part n− 1 MSp σ2

l(p) + lσ2
p

Location (Part) n(l − 1) MSl(p) σ2
l(p)

variation can thus be calculated as shown in Eq(3.20).

σ2
p =

MSp −MSl(p)

l
(3.20)

Since the variation in the measured values of multiple locations within a wafer may be
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due to location variance and/or due to variation in the measuring device, these two effects

(location and equipment) are confounded (σ2
l(p) = σ2

l + σ2
e).

In Stage 2, 3 appraisers are given 10 different parts (30 parts total), and each ap-

praiser measures the exact same location on the parts. Measuring the exact same location

ensures that no within-wafer or location-to-location variation is included in multiple mea-

surements made by an appraiser. Since each appraiser receives a different set of 10 parts,

this is a two factor nested model with parts being nested in appraiser. The appropriate

linear model for this scenario is

yij = µ + βj + αi(j) (3.21)

where i = 1, . . . , n j = 1, . . . , k

The term yij is the measurement by the jth appraiser on the ith part and µ is the overall

part mean. The terms βj, the appraiser effect, and αi(j), the effect of parts nested

within appraisers, are normally and independently distributed with a mean zero and

variance σ2
a, and σ2

p(a) respectively. The EMS for this stage are given in Table(3.5) The

Table 3.5: Expected Means Squares for Stage 2
Source DF MS EMS
Appraiser k − 1 MSa σ2

p(a) + nσ2
a

Part(Appraiser) k(n− 1) MSp(a) σ2
p(a)

differences in the measurements made by an appraiser on multiple parts can be explained

by either variation in part dimensions or inconsistency of the measuring device. Hence

equipment variation (σ2
e) is now confounded with part-to-part variation (σ2

p). In other

words, MSp(a) = σ2
p + σ2

e . Substituting σ2
p from Eq(3.20), the equipment variation (σ2

e)

can be estimated.

Hence, even though measurement variation, in destructive testing, is confounded
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with sample-to-sample variation, this approach developed by Mitchell et al. (1997) pro-

vides a very clever way of estimating it. This approach needs to be examined, however,

for the underlying assumptions and how those assumptions hold in various scenarios.

Also, it is necessary to show how this method can be adapted for chemical and process

industries and if this adaptation violates some of the underlying assumptions.

3.5.1 An In-Depth Look at the Process

From the description of Stage 2 of the experiment it appears that the difference in the

measurement of the same location on two parts by the same appraiser is attributed to

only equipment variation and part-to-part variation. The implicit assumption here is

that the “location effect” is constant for a given location regardless of the part. In

other words, if µ + αi + τt(i) be the true value of the tth location on the ith part and

µ + αi′ + τt(i′) be the true mean of the tth location on the i′th part, then this assumption

implies thatτt(i) = τt(i′). This is clearly in conflict with the model for Stage 1.

To see this more clearly, consider taking the range of 10 measurements made by an

appraiser in Stage 2. This range can be expressed as Rij = (yi′′j − yi′j) = (αi′′(j) − αi′(j))

such that i′′ and i′ refer to the parts with maximum and minimum measured value,

respectively. The corresponding variance can be expressed as

E

(
Rij

d∗2(n)

)2

= σ2
p(a) = MSp(a) = σ2

p + σ2
e (3.22)

Now consider taking, based on Stage 1, the range of measurements of the tth location

on 10 parts by an appraiser. This range can be expressed as Rit = (yi′′t − yi′t) =

(αi′′ − αi′) + (τt(i′′) − τt(i′)) and the corresponding variance as

E

(
Rit

d∗2(n)

)2

= σ2
p + σ2

l(p) = σ2
p + σ2

e + σ2
l (3.23)
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The variance estimates in Eq(3.22) and Eq(3.23) should have been the same as

they are trying to estimate the same quantity—both were estimated using the range of

measurements on the same location by the same appraiser over 10 parts.

One way these estimates can be the same is if τt(i′′) = τt(i′) = τt in Stage1, or the

“location effect” for a given location (t in this case) is constant regardless of part (i′′ and

i′ in this case). This modifies the Eq(3.19) such that yit = µ + αi + τt, making location

a crossed effect instead of a nested effect. This model is equivalent to selecting l random

location effects and crossing them with all parts. A problem with the model as defined

above is that the difference between true value of a location and the corresponding

part mean is forced to be constant (= τt). In practice, it is difficult to imagine an

application where this would be true, especially in the chemical and process industry

domain. Fortunately, using a crossed design allows for an interaction between part and

location. Hence the true model can be described as

yit = µ + αi + τt + ατit (3.24)

This model is closer to the experimental scenario described by Mitchell et al. (1997) as it

takes into account the natural variability that will exist despite using the same locations

on each part. The corresponding EMS are given in Table(3.6).

Table 3.6: Modified Expected Means Squares for Stage 1
Source DF MS EMS
Part (P) n− 1 MSp σ2

pl + lσ2
p

Location (L) n(l − 1) MSl σ2
pl + nσ2

l

P x L (n− 1)(l − 1) MSpl σ2
pl

The EMS in Table(3.4), based on the nested model, are related to the EMS shown

here as shown in Eq(3.25).

MSl(p) =
SSl + SSpl

n(l − 1) + (n− 1)(l − 1)
(3.25)
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where SS indicates Sum of Squares and subscripts have their usual meaning. The part-to-

part variation can be expressed as σ2
p =

MSp−MSpl

l
and the location-to-location variation

as σ2
l =

MSl−MSpl

n
. Equipment variation, under this model, will be confounded with the

part-by-location interaction.

It is important to assess the impact of these changes to the model for Stage 1 on

the model for Stage 2. Since location effects are considered to be crossed, it may seem

like each measurement for Stage 2 should be expressed as yij = µ + βj + αi(j) + τt. But

since only one (and the same) location is being measured on each part (t = 1) in all cases

τt = τ1 is a constant. Hence µ, the unknown constant will automatically account for it.

Since n parts for each appraiser were chosen separately at random, it is correct to treat

part as a random factor nested within appraisers. No changes are required to the model

in Stage 2.

Independent of the discussion above, consider the fact that Mitchell et al. (1997)

state that in Stage 1, equipment variation is confounded with location-to-location varia-

tion. The argument that can be made in favor of this statement is that measured values

of various locations on the same part are different not only because true location di-

mensions are different (location effect) but also due the inconsistency of the measuring

device. However, it can just as easily be argued that equipment variation is confounded

with part-to-part variation—measured values on a particular location across different

parts are different not only due to differing part effects (and location effects) but also

due to inconsistent measuring device. In fact, this is the exact argument made in Stage

2 to claim the confounding of equipment variation with part-to-part variation. Only,

location effect is ignored in Stage 2 as explained above. The modification to the Stage

1 model suggested resolves this ambiguity by realizing that EV is essentially confounded
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with part-by-location interaction and not with either part effect or location effect. This is

also consistent with the assumption of Stage 2 that EV is confounded with PV because,

by using only one location, the interaction manifests itself as PV.

The ideas presented here will be tested using simulation. Data would be simulated in

a manner consistent with Eq(3.24) for Stage 1 and Eq(3.21) for Stage 2. The VCs will be

estimated using both the approach given by Mitchell et al. (1997) and the modification

proposed above. Statistical tests will be performed to test the hypotheses that the

modified approach is significantly different from the old approach and that the VCs

estimated using both approaches are, on average, equal to the quantities being estimated.

A designed experiment will be simulated to evaluate the robustness of these hypotheses

across various combinations of PV, LV, EV and PL interaction.

3.6 Comparing Measurement System Acceptability

Criteria

Among all metrics that assess measurement system acceptability, precision-to-tolerance

ratio (PTR) is the only one that takes into account the specification range, or tolerance

of the product. While this makes PTR a unique metric, it introduces the potential

for inconsistency in conclusion when compared with other metrics. The tolerance of a

process and its variation have a definite link through the sigma capability of the process.

For example, in a Six-Sigma capable process, if the process standard deviation is given

by σp, the specs are µ ± 6σp, where µ is the process mean. Hence the tolerance is 12σp

and process span is 6σp (µ ± 3σp). The convention of 1.5σ shift in the process mean is

inconsequential to this discussion. If the sigma capability of a process is given by s, then
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the tolerance of the process can be calculated as 2sσp.

The sigma capability of the process is used as a common platform for comparison

of these techniques. An arbitrary process standard deviation, say σp, will be selected.

The sigma capability of the process will then be used to calculate tolerance values. The

measurement standard deviation will then be systematically varied from extremely low

values to values larger than σp. For each scenario all metrics will be calculated, thus

revealing any systematic patterns or inconsistencies. The implementation of this part

will be in Microsoft Excel.
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Chapter 4

The Simulation Process

Chapter Overview

The validity of the ideas presented in the previous chapter is tested through Monte Carlo

simulations of the measurement process using MATLAB as the programming language.

This chapter walks the reader through the simulation process by illustrating the output

of these programs at each step. This acts not only as a justification of the approach used

but allows the reader to gain appreciation for the analysis conducted and conclusions

drawn in the next chapter.

4.1 Introduction

There are four distinct areas into which this research can be divided— MSA with within-

appraiser variation, MSA using multiple devices, MSA for destructive testing, and com-

parison of measurement system acceptability criteria. The software developed essentially

consists of three different programs addressing each of the first three areas combined

into a single application. This section provides a brief overview of each of these and the

subsequent sections discuss each program in more detail.

The first program allows the user to include within-appraiser variation. It estimates

variance components using the traditional approach and the one recognizing the existence
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of within-appraiser variation. The latter estimates lower bounds for within-appraiser vari-

ation and upper bounds for equipment variation using two different approaches discussed

in Chapter 3. Range-based estimates of variance components are typically considered to

be inferior to ANOVA-based estimates. This program calculates both, allowing for a

comparison between the two. In addition, this program calculates discrimination ratio

and number of distinct data categories and compares them. It also calculates Appraiser

Variation using a different approach suggested by Montgomery and Runger (1994a).

The second program works under the assumption that the measurement process is

destructive. It tests and extends the approach suggested by Mitchell et al. (1997).

The third program extends the traditional model to include multiple measuring

devices. It uses a three-way random effects model (instead of a traditional two-way

model), hence adding a component of variation.

The general approach used to generate data in these programs is very similar and

is shown in the form of a flow chart in Fig(4.1). It starts with taking an arbitrary part

mean (input from the user) and generates true part dimensions by adding part-to-part

variation to it. Next, each component of variation—appraiser, replication, equipment

etc., is added to the data in a stepwise manner. When the data are ready in a form that

would be available if true part dimensions were not known, various estimation approaches

are used to estimate the variance components of interest. Eventually these estimates will

be compared to the true value being estimated.
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Take maximum number of 
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effectiveness of both. 

 NO 

END

Figure 4.1: Flow chart of the simulation process

4.2 MSA and Within-Appraiser Variation

This experiment was simulated using 10 parts, 3 appraisers and 2 replications. The

appropriate linear model for this scenario is given by Eq(3.11) as yijm = µ + αi + βj +

(αβ)ij + γijm + νijm. The presence of the interaction component is not critical to the

ideas being demonstrated here and will be ignored for this example. Based on a part

mean of 50 (µ) and standard deviation of 2 the following ten parts were generated such

that each part is 50 + 2 ∗N(0, 12)

Each number in this vector represents µ + αi. These ten parts will be the basis for

all future calculations in this example. To correspond with the number of appraisers and

replications, this matrix is rearranged as follows.
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trueParts=
48.7528
51.9829
48.6799
41.6799
44.8551
51.2155
43.7170
48.2641
45.2931
44.1272

truePartMatrix =
48.7528 48.7528 48.7528 48.7528 48.7528 48.7528
51.9829 51.9829 51.9829 51.9829 51.9829 51.9829
48.6799 48.6799 48.6799 48.6799 48.6799 48.6799
41.6799 41.6799 41.6799 41.6799 41.6799 41.6799
44.8551 44.8551 44.8551 44.8551 44.8551 44.8551
51.2155 51.2155 51.2155 51.2155 51.2155 51.2155
43.7170 43.7170 43.7170 43.7170 43.7170 43.7170
48.2641 48.2641 48.2641 48.2641 48.2641 48.2641
45.2931 45.2931 45.2931 45.2931 45.2931 45.2931
44.1272 44.1272 44.1272 44.1272 44.1272 44.1272

In the table above, the first two columns would eventually correspond to two repli-

cations by the first appraiser on ten parts and next two columns will correspond to two

replications by the second appraiser on all ten parts and so on.

A bias for each of the three appraisers is calculated as normal random variables with

mean zero and a standard deviation provided as an input by the user. These biases (βj),

for this example are

aBias=
-2.0423 -0.8033 0.3473

The following matrix is an elementary transformation of aBias to correspond with

the format of “truePartMatrix” shown above.

The flexibility in these transformations is obtained by using an elementary transfor-
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aBiases=
-2.0423 -2.0423 -0.8033 -0.8033 0.3473 0.3473
-2.0423 -2.0423 -0.8033 -0.8033 0.3473 0.3473
-2.0423 -2.0423 -0.8033 -0.8033 0.3473 0.3473
-2.0423 -2.0423 -0.8033 -0.8033 0.3473 0.3473
-2.0423 -2.0423 -0.8033 -0.8033 0.3473 0.3473
-2.0423 -2.0423 -0.8033 -0.8033 0.3473 0.3473
-2.0423 -2.0423 -0.8033 -0.8033 0.3473 0.3473
-2.0423 -2.0423 -0.8033 -0.8033 0.3473 0.3473
-2.0423 -2.0423 -0.8033 -0.8033 0.3473 0.3473
-2.0423 -2.0423 -0.8033 -0.8033 0.3473 0.3473

mation matrix, denoted by E1 in the program. E1 is obtained by taking the “Kronecker

product” Ik

⊗
j′r where Ik is a k x k identity matrix, k is the number of appraisers, j′r

is a 1 x r vector of ones and r is the number of replications. The Kronecker product is

an operator, denoted by
⊗

, that takes two matrix arguments of arbitrary sizes. If A be

an mxn matrix, and B be an rxs matri, then A
⊗

B is an mrxns matrix, formed from

A by multiplying each element of A by the entire matrix B and putting it in the place

of the element of A. For formal definition, properties and use of kronecker products the

reader is referred to Christensen (2002) or Graybill (1983).

For the purposes of this example, within-appraiser variation has been included (the

user has the option to ignore it). As shown earlier, replication error is the sum of within-

equipment variation and average within-appraiser variation. The user inputs a value of

replication error, expressed as standard deviation, to be used in the simulation. This

replication error, after converting to variance, is split between equipment and within-

appraiser variation based on a fraction f such that σ2
e = (1 − f)σ2. The default for

f is 0.5, which means the replication error is divided equally into its two components.

This default value has been retained for this example. The fraction attributed to within-

appraiser variation is used as an average and the standard deviation for each appraiser is

calculated as a uniform random variable with variance V . To simulate within-appraiser
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variation, a variation is added to each measurement made by an appraiser based on their

corresponding standard deviation. The matrix “wiav” shows these values in a format that

corresponds with the “truePartMatrix”. These values represent γijm. If the user chooses

to use the traditional model, which does not account for within-appraiser variation, these

values will all be zeros.

wiav =
-0.4544 1.0205 3.8563 0.9547 0.0415 3.2377
4.1638 -0.0516 -2.7213 0.3244 3.8858 3.7676
-0.9602 -2.2705 0.4105 5.6130 -3.3534 2.9544
-5.9380 8.3592 -0.4223 -0.8355 -3.3497 6.0825
0.0381 -1.0080 -3.5332 6.7195 -0.9340 1.5187
0.2793 -5.5154 3.5950 4.5814 -0.0950 -3.1246
1.2386 6.9263 -0.0469 -5.9072 1.2948 -0.6933
1.9558 1.2738 1.6285 -5.1038 4.9135 -11.3703
5.0011 -4.3787 -2.1758 -1.7418 2.8863 2.1974
-2.1436 2.4274 -1.9909 -0.5643 -8.1278 0.5430

Similarly replication errors (νijm) calculated based on the standard deviation input

from user are shown by matrix “ev”.

ev=
-1.1822 2.5851 2.1678 -2.2490 -0.8936 -1.3398
-1.3094 0.8818 -1.9624 3.4714 2.1642 2.6819
-2.1613 2.5619 -1.3770 3.8749 4.7453 0.7762
-0.0955 -0.9955 2.6790 3.2701 0.4586 0.7861
0.7587 -2.2374 -1.8185 -2.5119 -0.5332 -3.4147
-0.6607 1.6153 -0.8257 -0.4271 1.4033 0.4557
-0.9998 0.0824 -1.0123 -0.3979 -0.9752 1.3713
-0.0720 -1.5124 3.2395 0.6150 3.7250 -1.2736
-0.3495 -0.1783 0.1618 -1.1447 2.2137 -2.0052
-1.9145 -4.0177 -2.1621 -1.9553 -2.4551 -0.3712

The final measurements calculated as the sum of truePartMatrix, aBiases, repEr-

rors and wiav are shown as matrix “measurements”. These measurements represent

µ + αi + βj + γijm + νijm. These measurements can now be used for estimating vari-

ous components of variance using both range-based and ANOVA-based approaches. In
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measurements=
45.0740 50.3162 53.9737 46.6552 48.2480 50.9980
52.7950 50.7709 46.4959 54.9753 58.3802 58.7796
43.5161 46.9290 46.9102 57.3646 50.4192 52.7579
33.6042 47.0014 43.1333 43.3113 39.1361 48.8959
43.6096 39.5674 38.7001 48.2595 43.7352 43.3064
48.7917 45.2731 53.1814 54.5665 52.8711 48.8939
41.9136 48.6835 41.8545 36.6086 44.3840 44.7423
48.1056 45.9832 52.3287 42.9719 57.2498 35.9675
47.9024 38.6939 42.4758 41.6033 50.7405 45.8326
38.0268 40.4946 39.1708 40.8042 33.8916 44.6462

addition to estimation, range-based estimates will be compared with ANOVA-based esti-

mates; wherever improved estimates have been derived, these will be compared with the

traditional estimates; and all estimates will be tested for effectiveness. This analysis can

be found in Chapter 5.

4.3 MSA Using Multiple Devices

This experiment was simulated using 5 parts, 2 measurement devices, 2 appraisers and

2 replications. The appropriate model for this scenario is given by Eq(3.18) as yijlm =

µ + αi + βj + ωl + αβij + αωil + βωjl + αβωijl + γijlm + νijlm.

Based on a part mean of 100 (µ) and standard deviation of 2, as supplied through

user input, 5 parts were generated such that each part is 100 + 2 ∗ N(0, 12) and are

shown as vector “trueParts”. To correspond with the number of appraisers, equipment

trueParts =
98.7722
100.7510
102.9358
100.5557
100.6055

and replications, the above vector is modified as shown by “truePartMatrix”. The part,
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truePartMatrix=
98.7722 98.7722 98.7722 98.7722 98.7722 98.7722 98.7722 98.7722
100.7510 100.7510 100.7510 100.7510 100.7510 100.7510 100.7510 100.7510
102.9358 102.9358 102.9358 102.9358 102.9358 102.9358 102.9358 102.9358
100.5557 100.5557 100.5557 100.5557 100.5557 100.5557 100.5557 100.5557
100.6055 100.6055 100.6055 100.6055 100.6055 100.6055 100.6055 100.6055

appraiser and equipment associated with any cell in this matrix can be found from the

corresponding cell in each of the matrices, “parts”, “appr” and “eq”. Columns 1 & 2

represent two replications by appraiser 1 using equipment 1; columns 3 & 4 represent

replications by appraiser 2 using equipment 1; columns 5 & 6 correspond to replications

by appraiser 1 using equipment 2; and the last two columns represent replications by

appraiser 2 using equipment 2. A bias for each of the 2 appraisers is calculated as

parts = appr =
1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2
2 2 2 2 2 2 2 2 1 1 2 2 1 1 2 2
3 3 3 3 3 3 3 3 1 1 2 2 1 1 2 2
4 4 4 4 4 4 4 4 1 1 2 2 1 1 2 2
5 5 5 5 5 5 5 5 1 1 2 2 1 1 2 2

eq =
1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2

normal random variables with mean zero and a standard deviation provided as an input

by the user. These biases (βj), for this example are given by “aBias”.

An elementary transformation of this matrix is used so that it corresponds with the

format of “truePartMatrix”. The transformation matrix is obtained as E1 = [A A] where

A=Ik

⊗
j′r where Ik is a k x k identity matrix, k is the number of appraisers, j′r is a 1
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x r vector of ones and r is the number of replications. For this example, E1 is shown

below.

aBias= E1 =
-1.1236 -1.0313 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

The transformation of aBias obtained using E1 is shown below as aBiases.

aBiases =
-1.1236 -1.1236 -1.0313 -1.0313 -1.1236 -1.1236 -1.0313 -1.0313
-1.1236 -1.1236 -1.0313 -1.0313 -1.1236 -1.1236 -1.0313 -1.0313
-1.1236 -1.1236 -1.0313 -1.0313 -1.1236 -1.1236 -1.0313 -1.0313
-1.1236 -1.1236 -1.0313 -1.0313 -1.1236 -1.1236 -1.0313 -1.0313
-1.1236 -1.1236 -1.0313 -1.0313 -1.1236 -1.1236 -1.0313 -1.0313

A bias for each equipment is calculated using the equipment-to-equipment variation

given as an input by the user. For this example, these biases (ωl) are given by the vector

eqBias as shown below.

Consider another transformation matrix E2 obtained as the Kronecker product

Iq

⊗
j′kr where symbols have their usual meaning and q is the number of measuring

devices used in the experiment.

eqBias= E2 =
4.6504 -0.5033 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

Using E2, eqBias is transformed so as to match the format of “truePartMatrix”.

The next step is to simulate 2-way and 3-way interactions. To understand how

interaction is simulated, recall that the part effect αi was simulated such that the effect

changed whenever i changed; but for a given value of i the effect remained the same

regardless of the values of j, m, and l. In other words, as seen in “truePartMatrix”, the
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eqBiases =
4.6504 4.6504 4.6504 4.6504 -0.5033 -0.5033 -0.5033 -0.5033
4.6504 4.6504 4.6504 4.6504 -0.5033 -0.5033 -0.5033 -0.5033
4.6504 4.6504 4.6504 4.6504 -0.5033 -0.5033 -0.5033 -0.5033
4.6504 4.6504 4.6504 4.6504 -0.5033 -0.5033 -0.5033 -0.5033
4.6504 4.6504 4.6504 4.6504 -0.5033 -0.5033 -0.5033 -0.5033

effect changes as part changes, but for a given part it remains constant regardless of the

equipment, appraiser or replication associated with it.

Hence the part-by-appraiser interaction effect (αβij) should be simulated such that

it changes with a change in part (subscript i), or appraiser (subscript j) but should be

unaffected by the change in equipment (subscript l) or replication (subscript m). Hence

an n x k matrix of normal random variables was created using the part-by-appraiser inter-

action standard deviation provided as an input to the simulation. It is then reorganized

using the transformation matrix E1 to create the interaction matrix paInt.

paInt =
-0.0620 -0.0620 0.5149 0.5149 -0.0620 -0.0620 0.5149 0.5149
-0.6349 -0.6349 -1.2682 -1.2682 -0.6349 -0.6349 -1.2682 -1.2682
1.0488 1.0488 0.5651 0.5651 1.0488 1.0488 0.5651 0.5651
-1.2179 -1.2179 0.1425 0.1425 -1.2179 -1.2179 0.1425 0.1425
0.4174 0.4174 -0.6530 -0.6530 0.4174 0.4174 -0.6530 -0.6530

Similarly, the part-by-equipment interaction effect (αωil) and appraiser-by-equipment

interaction effect (βωjl) matrices were generated for this example as shown in peInt and

aeInt. The matrix peInt was transformed using the elementary transformation matrix

E2, whereas aeInt was transformed using a new transformation matrix E3 as shown be-

low. Similarly the 3-way interaction (αβωijl) is simulated and transformed using E3 to

create paeInt.

The final measurements are calculated as the sum of truePartMatrix, aBiases, eqBi-

ases, paInt, peInt, aeInt, paeInt, and repErrors and are shown below as the matrix
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peInt =
2.1053 2.1053 2.1053 2.1053 -0.8943 -0.8943 -0.8943 -0.8943
-0.5349 -0.5349 -0.5349 -0.5349 0.4797 0.4797 0.4797 0.4797
-0.4735 -0.4735 -0.4735 -0.4735 -0.0505 -0.0505 -0.0505 -0.0505
-1.2496 -1.2496 -1.2496 -1.2496 -1.0313 -1.0313 -1.0313 -1.0313
-1.5530 -1.5530 -1.5530 -1.5530 -0.5728 -0.5728 -0.5728 -0.5728

aeInt =
0.7654 0.7654 0.4799 0.4799 0.0134 0.0134 -0.4845 -0.4845
0.7654 0.7654 0.4799 0.4799 0.0134 0.0134 -0.4845 -0.4845
0.7654 0.7654 0.4799 0.4799 0.0134 0.0134 -0.4845 -0.4845
0.7654 0.7654 0.4799 0.4799 0.0134 0.0134 -0.4845 -0.4845
0.7654 0.7654 0.4799 0.4799 0.0134 0.0134 -0.4845 -0.4845

E3 =
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

“measurements”.

paeInt =
-0.8813 -0.8813 -0.6358 -0.6358 -1.6277 -1.6277 0.0162 0.0162
-0.6440 -0.6440 0.6634 0.6634 0.4890 0.4890 -0.2430 -0.2430
-1.5190 -1.5190 1.6799 1.6799 -0.4235 -0.4235 1.9121 1.9121
0.0399 0.0399 1.2018 1.2018 1.7426 1.7426 -1.0231 -1.0231
0.6737 0.6737 0.0116 0.0116 0.7866 0.7866 -1.4837 -1.4837

repErrors =
-1.3700 -0.8832 -0.6980 2.5090 0.5900 2.1694 -1.3531 -3.7538
-1.3695 -1.3865 -1.5963 -1.7533 -2.3388 -0.4037 1.4838 -2.7851
-2.7193 -0.5678 2.4035 1.3479 0.2512 1.0028 -1.8466 1.0009
1.3186 -0.5846 -1.6701 0.0965 -2.3603 -0.7547 -0.7026 0.8232
-0.1622 -2.5199 0.9650 1.4954 2.3829 -2.8814 -2.6791 0.9175

Referring to the underlying model described earlier, this represents µ+αi +βj +ωl +

αβij + αωil + βωjl + αβωijl + νijlm. The within-appraiser effect γijlm is ignored from this

example. These measurements can now be used for estimating the various components

of variance as discussed in the next chapter.
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measurements =
102.8564 103.3431 104.1577 107.3647 95.1647 96.7440 95.0368 92.6361
101.8599 101.8429 102.1141 101.9570 97.1326 99.0677 99.1843 94.9154
103.5648 105.7163 111.2098 110.1541 102.1481 102.8998 101.4968 104.3442
103.7389 101.8357 103.0794 104.8460 96.0752 97.6808 95.9222 97.4480
104.2736 101.9158 103.4752 104.0055 102.0062 96.7419 93.1979 96.7945

4.4 MSA for Destructive Testing

The program simulating MSAD uses the term “unit” instead of “part” to keep the appli-

cation more general for use in other industries such as chemicals, food and other process

industries. The concept of distinct parts is not applicable to these industries, whereas, a

unit is a more general entity. Depending on the context, a unit could be a barrel full of

chemical/oil or a truck load of chemical/oil or a grab sample from an ongoing production

process.

The results being demonstrated here are from a single run of this experiment, sim-

ulated with 10 units, 5 locations per unit and 1 appraiser in Stage 1, and 3 appraisers,

10 units per appraiser and 1 location per unit in Stage 2.

The matrix of units in Stage 1 is shown below such that rows represent parts and

columns represent locations. Each row represents µ + αi.

unitsS1=
101.1062 101.1062 101.1062 101.1062 101.1062
103.9223 103.9223 103.9223 103.9223 103.9223
100.8282 100.8282 100.8282 100.8282 100.8282
94.8955 94.8955 94.8955 94.8955 94.8955
104.0019 104.0019 104.0019 104.0019 104.0019
98.5263 98.5263 98.5263 98.5263 98.5263
100.1815 100.1815 100.1815 100.1815 100.1815
98.6017 98.6017 98.6017 98.6017 98.6017
97.3815 97.3815 97.3815 97.3815 97.3815
101.7871 101.7871 101.7871 101.7871 101.7871

Next, a bias for each location is generated, representing τt, and is shown below as

the matrix “locations”.

The unit-by-location interaction was simulated in a way similar to interactions have
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locations=
3.4521 -1.0078 0.3488 -2.4465 0.061
3.4521 -1.0078 0.3488 -2.4465 0.061
3.4521 -1.0078 0.3488 -2.4465 0.061
3.4521 -1.0078 0.3488 -2.4465 0.061
3.4521 -1.0078 0.3488 -2.4465 0.061
3.4521 -1.0078 0.3488 -2.4465 0.061
3.4521 -1.0078 0.3488 -2.4465 0.061
3.4521 -1.0078 0.3488 -2.4465 0.061
3.4521 -1.0078 0.3488 -2.4465 0.061
3.4521 -1.0078 0.3488 -2.4465 0.061

been simulated thus far. The values for the interaction effect, represented by ατit, are

shown below as “luInt”.

luInt=
-0.3042 -1.6417 2.1093 1.2994 4.5557
1.3936 -0.6333 -1.7938 1.6452 -3.6292
-0.5294 0.0174 -1.0024 3.1723 -0.1666
-0.8656 0.3828 -0.9800 -0.4100 -4.6867
2.8739 0.4443 -3.2569 -1.4796 1.3193
-1.7767 -3.0632 0.5471 0.6830 -0.7703
0.9569 0.8673 -0.0083 1.9801 -1.8034
3.1287 -2.6568 -2.4960 0.3854 0.2352
-1.0183 1.0056 3.6519 -0.0756 -2.8437
-0.9384 0.0052 1.5422 -4.7941 4.0260

Equipment variation for stage 1 calculated based on user input is shown below as

EVS1.

EVS1=
-3.2135 -2.9833 1.5153 0.2675 -0.8581
-4.1411 -1.7613 5.6944 5.8495 0.6183
1.3406 1.4180 -0.5290 -2.7673 7.7009
-0.3689 1.4319 -2.3633 -2.8723 -0.1880
-0.7772 2.7384 2.9627 1.4757 3.1118
-6.7977 -0.1874 5.3360 0.2882 -1.7879
-0.4256 2.0502 -0.5807 -0.9225 -0.2151
-2.3654 3.3084 1.1593 0.8366 -0.8703
-2.0738 -4.6449 4.9490 1.9353 0.9668
0.6320 -7.2807 2.7138 2.9022 1.8614

The measurement data for stage 1 are calculated as dataS1 = unitsS1 + locations +

luInt + EVS1 and is shown below. The matrix dataS1 represents yit = µ+αi + τt +ατit.

Now, for stage 2, 30 different units are used—10 per appraiser. These values, for the

same unit mean and unit-to-unit variance as Stage 1 are shown as unitS2.
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dataS1=
101.0407 95.4735 105.0795 100.2267 104.8649
104.6269 100.5199 108.1716 108.9705 100.9723
105.0915 101.2559 99.6456 98.7868 108.4235
97.1132 95.7025 91.901 89.1668 90.0818
109.5508 106.1768 104.0565 101.5515 108.494
93.4041 94.2679 104.7581 97.0511 96.0292
104.165 102.0912 99.9413 98.7927 98.2241
102.8172 98.2455 97.6137 97.3772 98.0276
97.7415 92.7344 106.3311 96.7947 95.5657
104.9328 93.5037 106.3918 97.4487 107.7354

unitsS2=
95.4994 98.2792 102.3741
99.9099 97.2776 102.0766
101.6439 100.8262 103.0069
99.1996 103.179 95.8448
97.2365 100.3442 98.4453
99.0923 99.9631 99.82
96.7974 99.7633 95.5492
93.2081 100.4245 102.9516
96.3031 101.8382 99.6154
104.9658 101.0014 104.6096

The biases of each appraiser are shown below as apprBiases and the equipment

variation for this stage as EVS2.

apprBiases= EVS2=
4.3103 -1.5316 -3.1774 -7.5696 -4.0317 5.8562
4.3103 -1.5316 -3.1774 2.4576 -2.301 -3.0336
4.3103 -1.5316 -3.1774 2.4576 -2.301 -3.0336
4.3103 -1.5316 -3.1774 0.8135 1.0809 3.0664
4.3103 -1.5316 -3.1774 1.6084 6.299 0.3225
4.3103 -1.5316 -3.1774 -1.2671 -1.3991 6.2993
4.3103 -1.5316 -3.1774 -1.8971 -2.3282 2.002
4.3103 -1.5316 -3.1774 0.3366 5.6315 0.4305
4.3103 -1.5316 -3.1774 -3.7478 -3.3536 -1.9964
4.3103 -1.5316 -3.1774 -3.9796 0.4488 4.1241

The measurement data for stage 2 are calculated as dataS2 = unitsS2 + apprBiases

+ EVS2 and is shown below. The matrix dataS2 represents yij = µ + βj + αi(j).

The measurement data in dataS1 and dataS2 can now be used to estimate the EV

and AV. This will be discussed in the next chapter.
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dataS2=
92.24 92.7159 105.053

104.5486 93.8848 94.9325
108.4117 96.9937 96.7959
104.3233 102.7283 95.7338
103.1551 105.1117 95.5904
102.1355 97.0324 102.9419
99.2106 95.9035 94.3739
97.8549 104.5245 100.2046
96.8656 96.953 94.4416
105.2964 99.9187 105.5563
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Chapter 5

Analyzing the Results

Chapter Overview

The previous chapter focused on explaining the approach used to generate data that

would be used for analysis under various scenarios. This chapter takes that data, conducts

the analysis, and discusses the results in detail. These results are for a single simulation

run giving us one estimate for each variable of interest. Hence, comparisons will not be

made to the true values. Such comparisons will be presented using appropriate statistical

tests based on the result of multiple such simulation runs.

5.1 MSA and Within-Appraiser Variation

We obtained the following as the final measurements in Section 4.2. Once these mea-

measurements=
45.0740 50.3162 53.9737 46.6552 48.2480 50.9980
52.7950 50.7709 46.4959 54.9753 58.3802 58.7796
43.5161 46.9290 46.9102 57.3646 50.4192 52.7579
33.6042 47.0014 43.1333 43.3113 39.1361 48.8959
43.6096 39.5674 38.7001 48.2595 43.7352 43.3064
48.7917 45.2731 53.1814 54.5665 52.8711 48.8939
41.9136 48.6835 41.8545 36.6086 44.3840 44.7423
48.1056 45.9832 52.3287 42.9719 57.2498 35.9675
47.9024 38.6939 42.4758 41.6033 50.7405 45.8326
38.0268 40.4946 39.1708 40.8042 33.8916 44.6462

surements are obtained, the next step is to estimate the various components of variation
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in this data set using both range-based and ANOVA-based approaches.

5.1.1 Range-Based Estimation

First we calculate the range of the two measurements made by an appraiser on the same

part (Rijm = yijm′′−yijm′). Since this example contains ten parts and three appraisers, a

total of thirty ranges will be calculated. The transpose of this matrix of ranges is shown

below.

ranges=
5.2422 2.0242 3.4129 13.3973 4.0423 3.5186 6.7699 2.1224 9.2085 2.4678
7.3185 8.4794 10.4544 0.1779 9.5594 1.3851 5.2459 9.3568 0.8725 1.6334
2.7500 0.3995 2.3387 9.7597 0.4287 3.9772 0.3583 21.2823 4.9078 10.7546

The average of all these ranges (R̄..m = 1
nk

∑k
j=1

∑n
i=1(yijm′′ − yijm′) as given previ-

ously in Eq(3.2)) is 5.4549. Dividing by the appropriate d∗2 value gives us an estimate of

replication error (σ̂) expressed as standard deviation (sigmaE=4.8359).

Then the average of all measurements taken by an appraiser across all parts is

calculated (ȳ.j. = 1
nr

∑n
i=1

∑r
m=1 yijm) as shown in Eq(3.3). The averages for the three

appraisers in this example are given below. The range of these averages (rangeAppr

apprAvg=
44.8526
46.2672
47.6938

= 2.8412), when divided by the appropriate d∗2 value gives an unadjusted estimate of

appraiser variation (rawSigmaA = 1.4875) as given in Eq(3.4). After adjustment an

estimate of the true appraiser variation (σ̂a) is calculated as sigmaA = 1.0215.

Next, the replication error for each appraiser is calculated separately (σ2
j ) and is
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given by the following vector. Substituting these values into Eq(3.13) gives an estimate

apprRepE =
4.9101
4.6968
4.5005

of the lower bound on average within-appraiser variation (LBa = 1.2847). Using this

value of LBa, an estimate of upper bound on equipment variation is calculated (UBe

= 20.8565) (refer to Eq(3.15)). Recall that the portion of replication error assigned to

within-appraiser variation based on the fraction f is the true average within-appraiser

variation. Hence, using Eq(3.14), the true value of equipment variation is calculated

(eqVar = 6.7779) for comparison with the upper bound. Trivial bounds on equipment

variation and average within-appraiser variation are calculated as UBeTriv = 20.2547 and

LBaTriv = 1.8866, respectively.

Next the average of two measurements made by an appraiser on a given part

(ȳij. = 1
r

∑
m yijm) are calculated. Since this example contains ten parts and three ap-

praisers, a total of thirty averages will be calculated. The transpose of this matrix of

averages is shown below. To calculate appraiser variation using the approach suggested

apprPartAvg =
47.6951 51.7829 45.2226 40.3028 41.5885 47.0324 45.2985 47.0444 43.2981 39.2607
50.3144 50.7356 52.1374 43.2223 43.4798 53.8739 39.2316 47.6503 42.0396 39.9875
49.6230 58.5799 51.5885 44.0160 43.5208 50.8825 44.5632 46.6087 48.2866 39.2689

by Montgomery and Runger (1994a) the range of these averages is calculated for each

part, thus giving us ten ranges as shown below. The average of these ranges is used to

calculate a “raw” estimate of appraiser variation (rawNewSigmaA = 2.5551) as shown

in Eq(3.8). The adjusted estimate of AV is given by Eq(3.9). When this estimate turns
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apprPartRange =
2.6194 7.8443 6.9148 3.7132 1.9323 6.8415 6.0669 1.0417 6.2470 0.7268

out to be negative, it is considered to be zero as was the case in this example.

To calculate the part-to-part variation, the average of all measurements taken by all

appraisers is calculated for each part (ȳi.. = 1
kr

∑r
m=1

∑k
j=1 yijm as given by Eq(3.10). This

is given by the vector partEstimate. Each number in this vector is the best obtainable

partEstimate =
49.2108 53.6995 49.6495 42.5137 42.8630 50.5963 43.0311 47.1011 44.5414 39.5057

estimate of the true dimension of the corresponding part. The traditional estimate of

PV was calculated as sigmaP = 4.4634. After the correction recommended by Eq(3.16),

the new estimate of PV was 4.003.

Measurement variation (σm) is calculated as sigmaM =
√

sigmaA2 + sigmaE2 =

4.9426 in this example. This relationship does not ignore within-appraiser variation.

Recall that sigmaE represents replication error, not just equipment variation and as

such, includes within-appraiser variation. If the user of the program chooses to ignore

the latter, sigmaE will then be numerically equal to equipment variation.

Total variation is calculated as sigmaT =
√

sigmaM2 + sigmaP2 = 6.6596 and the

intraclass correlation coefficient is calculated as r = sigmaP2/sigmaT2 = 0.4492. Dis-

crimination ratio, calculated as
√

1+r
1−r

is found to be 1.6220.

This completes one simulation run. If multiple such runs are performed, the variables

described below track aggregate information.

The variable “errors” tracks the number of times the lower bound estimate (LBa)

of within-appraiser variation was violated. This estimated bound is said to be violated
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if the true within-appraiser variation is less than LBa. The variables a2a, repE and p2p

calculate the mean of vectors sigmaA, sigmaE, and sigmaP, respectively. They repre-

sent appraiser-to-appraiser, replication error and part-to-part variation averaged over all

simulation runs. The variable mv =
√

a2a2 + repE2 calculates the average measurement

variation and tv =
√

mv2 + p2p2 calculates the average total variation. Measurement

variation as a percent of total variation expressed as standard deviation is calculated as

percTVsd = mv/tv and the same value expressed as variance is calculated as percTVvar

= percTVsd2.

5.1.2 ANOVA-Based Estimation

Consider the following matrices—part and appr. Each has n = 10 rows and kxr = 3x2 =

6 columns where n, k, and r represent, as usual, number of parts, number of appraisers

and number of replications. For the measurement value in any cell of the “measurement”

part =
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5
6 6 6 6 6 6
7 7 7 7 7 7
8 8 8 8 8 8
9 9 9 9 9 9
10 10 10 10 10 10

matrix shown earlier, the corresponding cell in the “part” and “appr” matrices reveals

which part and appraiser the measurement is associated with.

Stacking the columns of each of the three matrices—measurements, part, and appr,

into a single column and then merging the columns together prepares the data for ANOVA

as shown in the table below.
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appr =
1 1 2 2 3 3
1 1 2 2 3 3
1 1 2 2 3 3
1 1 2 2 3 3
1 1 2 2 3 3
1 1 2 2 3 3
1 1 2 2 3 3
1 1 2 2 3 3
1 1 2 2 3 3
1 1 2 2 3 3

appr =
45.0740 1.0000 1.0000
52.7950 2.0000 1.0000
43.5161 3.0000 1.0000
33.6042 4.0000 1.0000
...

...
...

44.7423 7.0000 3.0000
35.9675 8.0000 3.0000
45.8326 9.0000 3.0000
44.6462 10.0000 3.0000

Running a 2-way ANOVA on this dataset generated the following output. Using

’Source’ ’Sum Sq.’ ’d.f.’ ’Singular?’ ’Mean Sq.’ ’F’ ’Prob¿F’
’Part’ [1.0778e+003] [ 9] [ 0] [119.7506] [4.6161] [6.9651e-004]
’Appr’ [ 80.7241] [ 2] [ 0] [ 40.3620] [1.5559] [ 0.2276]
’Part*Appr’ [ 214.8190] [ 18] [ 0] [ 11.9344] [0.4600] [ 0.9565]
’Error’ [ 778.2499] [ 30] [ 0] [ 25.9417] [] []
’Total’ [2.1515e+003] [ 59] [ 0] [] [] []

equations given in Section(3.1.2), various components of variance are estimated. The

variables used to represent the ANOVA-based variance components are exactly the same

as before except for a prefix ‘a’ indicating that the estimate is ANOVA-based. For

example, appraiser variation, earlier sigmaA, would now be aSigmaA. The estimates

obtained are—aSigmaE = 5.0933; aSigmaPA = 0; aSigmaA = 1.1922; aSigmaP = 4.2390;

aLBa = 5.4101.

A statistical comparison of these estimates with the range-based estimates and tests
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of effectiveness of the estimates based on multiple simulation runs is shown in the next

section.

5.1.3 Analyzing the Results

Traditionally, range-based estimates are considered inferior to ANOVA-based estimates.

In this section tests will be performed for the hypothesis that the two approaches are

essentially the same. Also, tests will be performed to evaluate whether these estimates are

statistically equal to the true value being estimated and the effectiveness of the estimates

of bounds, LBa and UBe, will be examined.

Comparing ANOVA Estimates with Range-Based Estimates

To compare the estimates obtained using ANOVA with range-based estimates a sample

of size 20 was obtained using 20 consecutive simulation runs using the default set of

parameters—n = 10, k = 3, r = 3, σp = 5, σa = 2, σ = 2, f = 0.5. Remember σ2
e =

fσ2. For each statistic to be compared, a paired t-test was performed based on a 95%

confidence using Minitab. The results are displayed in Table(5.1). The hypotheses,

that the ANOVA based estimates of various parameters are equal to their range-based

estimates, could not be rejected in any case. Clearly there is no significant difference

between these estimates.

Effectiveness of Variance Component Estimates

It has already been established that there is no significant difference between ANOVA-

based and range-based estimates of variance components (VCs). Hence, the tests in this

section will be conducted using only the range-based estimates. To test whether the VC
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Table 5.1: Results of hypothesis tests comparing ANOVA-based and range-based esti-
mates

Statistic P-Value 95%CI for the difference Width of CI
Equipment
Variation (σe)

0.454 (-0.01193, 0.02566) 0.03759

Appr. Variation
(σa)

0.214 (-0.0658, 0.0157) 0.0815

Process Variation
(σp)

0.982 (-0.243, 0.249) 0.492

Estimated Lower
Bound on average
within-appraiser
variation (LBa)

0.297 (-0.0570, 0.1768) 0.2338

Estimated Upper
Bound on equip-
ment variation
(UBe)

0.48 (-0.0622, 0.1276) 0.1898

estimates are statistically equal to the parameters being estimated, a sample of size 20

was obtained using 20 consecutive simulation runs for each estimate. The following set

of parameters was used — n = 10, k = 3, r = 3, σp = 5, σa = 3, σ = 2, f = 0.5 where

symbols have their usual meaning. The results of the tests are shown in Table(5.2).

The hypotheses could not be rejected in any case and high p-values indicate that it is

reasonable to assume that the hypotheses were confirmed.

Table 5.2: Results of hypothesis tests testing effectiveness of VC estimates
Statistic True

Value
Mean SD 95% CI P-value CI

Width
σ 2.0000 2.0336 0.2941 (1.8959, 2.1712) 0.6156 0.2753
σa 3.0000 2.7394 1.1027 (2.2233, 3.2555) 0.3038 1.0322
σp 5.0000 4.9400 1.6381 (4.1734, 5.7066) 0.8716 1.5332

Note that the CI width for appraiser variation (σa) is significantly larger than that

for replication error (σ). This should be expected as the former is based on one range

calculated over k (3 in this example) values, whereas the latter is based on the average of

76



nxk (30 in this example) ranges, each range being calculated over r (3 in this example)

values. Hence the sample size for replication error is significantly larger than that for

appraiser variation giving much narrower CI for the former. This can also be observed in

Fig(5.1). These histograms were generated based on 1000 simulation runs with appriaser

variation σa = 2 and replication error σ = 2. These runs were performed with no

within-appraiser variation, so the true equipment variation σe = σ = 2.
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Figure 5.1: Trivial bounds on EV and WIAV

The purpose of the hypothesis tests presented so far is to provide a verification of the

method used and its implementation in MATLAB for estimation of variance components

according to the traditional approach. Providing a validation of these techniques and

proof of robustness of these estimates is not the focus of this research. A detailed designed

experiment conducted by systematically varying the simulation parameters would be

required in order to address such an objective.

Comparison of Two Approaches for Estimating AV

The traditional approach of estimating AV (σ̂a) uses the range of appraiser averages

for all parts as shown in Eq(3.6). A different approach for this estimation suggested
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by Montgomery and Runger (1994a) (σ̂aNew) takes the range of appraiser averages for

each part and calculates the average of these ranges (refer to Eq(3.9)). In this section

a comparison is made between these two estimates and each estimate is also compared

with the true value of AV (σaTrue) for each simulation run.

It is critical to understand the difference between the σaTrue and the value of AV pro-

vided by the user as an input to the simulation. If 20 simulation runs are performed with

the same set of input parameters including AV, then for each run an appraiser bias will

be randomly selected from a normal distribution with mean zero and standard deviation

provided by the user. The standard deviation of these biases is the true appraiser-to-

appraiser variation for that particular run. Since the appraiser biases will be chosen at

random for each run, the true value of AV, σaTrue, will be different each time even though

the value of AV provided as an input to the simulation is constant. Clearly it makes more

sense to compare the estimated values with σaTrue than with the AV value input to the

simulation, to test their effectiveness.

Fig(5.2) shows the plot of 20 simulation runs with AV=3 provided as an input to

the simulation. In the figure, old and new estimates refer to σ̂a and σ̂aNew, respectively.

From the plot, it appears that the old estimate is closer to the true value in the majority

of cases.

In order to test whether the two estimates are significantly different from each other

and which one(s), if any, is a good estimator of the true AV, a series of three hypoth-

esis tests were conducted. These comparisons would inflate the overall experimentwise

type-I error. Hence, whereas an α-value of 0.05 would typically be used for such tests,

Bonferroni’s correction suggests using an α-value of approximately 0.05
3

= 0.0167. For

the test results shown below in Table(5.3) an α-value of 0.01 was used. These results are
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Figure 5.2: Comparison of AV estimates with AV

from paired t-tests on 50 simulation runs with default set of parameters (AV=3). These

tests found that there is a significant difference between the two methods of estimation.

Also a significant difference was found between the new estimate and the true value of

AV, which indicates that it is not a good estimator of AV. There wasn’t a significant

difference between the old estimate and the true value of AV indicating that it is a good

estimator of AV.

Table 5.3: Pairwise comparisons of AV estimates and true AV
H0 Test Result P-value CI0.01

Mean(σ̂a − σ̂aNew) = 0 paired-t Reject 0.0000 (-0.3020, -0.1450)
Mean(σ̂aNew − σaTrue) = 0 paired-t Reject 0.0004 (0.0603, 0.3456)
Mean(σ̂a − σaTrue) = 0 paired-t Fail to reject 0.6672 (-0.1477, 0.1067)

Fig(5.3) shows the distribution of the old and new estimates of AV over 1000 simu-

lation runs with the AV=3 as an input to the simulation.
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Figure 5.3: Distribution of the two AV estimates over 1000 runs

Effectiveness of Estimated Lower Bound on Within-Appraiser Variation

Two approaches were used to estimate lower bound on within-appraiser variation (LBa

and LBaTriv). In preliminary experimentation, it was found that σ2
a and σ2 had an

insignificant influence on the effectiveness of these bounds. The effectiveness was tested

by counting number of violations per 50 simulation runs, where a violation is defined as

the run in which the lower bound is greater than the average within-appraiser variation. It

was found, however, that the effectiveness is sensitive to the ratio of equipment variation

and average within-appraiser variation. Remember these two quantities are confounded

with each other to form replication error. In the simulation program, f is the factor that

controls how replication error gets divided into its aforementioned subcomponents.

In the preliminary analysis, a factor that was not considered was the variance of

within-appraiser variation values for each appraiser. In the simulation program k values

for within-appraiser variation are selected randomly from a uniform distribution with

f ∗ σ2 as the mean, where σ2 is the replication error. The variance of this distribution

could be a factor affecting the effectiveness of LBa.

Based on the above discussion, a 42 factorial design was used to further investigate
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the effectiveness of LBa. The two factors were the fraction f and the variance of the

uniform distribution from which the actual within-appraiser variation values are selected,

say V . The factor levels are shown in Table(5.4). The extreme values for f , 0.0 and 1.0,

were deliberately avoided under the premise that it is impossible to completely eliminate

the effect of either within-appraiser variation or EV from an experiment.

Table 5.4: Factor levels for testing the effectiveness of within-appraiser variation
Factor Symbol Levels
f 0.2, 0.4, 0.6, 0.8

V 12

12
, 1.52

12
, 22

12
, 2.52

12

The response variable for this experiment (Y ) was number of “violations” observed

in 50 simulation runs for each of the estimated bounds—LBa, LBaTriv, UBe, and UBeTriv.

The values of Y for each of 16 treatment combinations are shown in Table(D.1) in

Appendix(D). The analysis of each response variable revealed that the interaction be-

tween f and V is not significant. Further analysis showed (see Appendix (E)) that the

variance, V , is marginally significant in two cases (LBa, UBeTriv) and not at all sig-

nificant in the remaining two. However, f was highly significant in affecting all four

response variables. A box plot of each response variable with respect to variation in

f (see Fig(5.4)) shows that the response decreases with an increase in f . This indi-

cates that as the proportion of within-appraiser variation increases in the replication

error, the estimates of bounds become more effective. Fig(5.5) and Fig(5.6) show the

results of the two types of bound estimates over 20 simulation runs for the parameter

set—n = 10, k = 3, r = 3, σp = 6, σa = 3, σ = 2, f = 0.8, V = 1.

From Fig(5.5) it is evident that in the traditional estimate of EV significantly over-

estimates equipment variation. The upper bound (UBe), in such cases, can provide a
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Figure 5.4: Number of null estimates per 50 reps. of bounds Vs. f

more realistic picture about the true equipment variation. This figure also shows a highly

effective lower bound on average WIAV. The trivial bounds, as shown in Fig(5.6), also

appear to be very effective. Just as with UBe, UBeTriv provides a more realistic picture

of the equipment variation. In this particular sample, UBeTriv seems to be closer to the

true value as compared to UBe. Both bound estimates appear quite effective because a

large portion of the replication error is within-appraiser variation (f = 0.8). We already

know that the effectiveness of these bound estimates is highly sensitive to this propor-

tion. To assess how the two methods of estimating these bounds perform relative to each

other and relative to the true values under varying conditions, the same experimental

design was used as before (16 runs with both V and f at 4 levels). Only one replication

was performed for each run and true values of EV and average within-appraiser variation

were recorded along with estimates of bounds on them using both methods.

These data are shown in Table(D.2) in Appendix(D). A graphical depiction of this
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Figure 5.5: Estimated bounds on EV and WIAV

information is shown in Fig(5.7). LBaTriv is clearly closer to the true value of avergage

within-appraiser variation than LBa. For upper bound on equipment variation however,

UBeTriv exhibits more violations that UBe.

Effectiveness of the New PV Estimate

The traditional estimate of PV was corrected in Chapter 3. To test whether the new

estimate is significantly different from the traditional estimate and which one is a better

estimate of the true PV, a designed experiment was conducted.

An 8-run full factorial was used by taking each of the three factors—PV (σp), AV

(σa), and replication error (σ). Within appraiser variation was ignored for this exper-

iment, thus making EV equal to the replication error (σe + σ). For each run, 20 in-

dependent simulations were performed. Based on the two estimates of PV for these 20

replications, three hypothesis tests were conducted. First, a paired t-test between the two

estimates; second, a t-test comparing the traditional estimate with the true value of PV;

and third, a t-test comparing the new estimate with the true value of PV. The design
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Figure 5.6: Trivial bounds on EV and WIAV

matrix, along with the results of the hypothesis tests (conclusion of the test, p-value,

confidence interval, and the width of the confidence interval) are shown in Appendix(F).

The two methods of estimation were found to be significantly different. This should

be expected because, as shown in Eq(3.17), a fixed quantity is subtracted from the old

estimate of PV to get the new estimate. Hence, the latter will always be smaller than the

former for finite values of EV under the traditional model, or replication error under the

model with within-appraiser variation. The significant difference actually reflects the fact

that one is consistently smaller than the other, rather than significantly smaller. When

the two estimates were individually compared with the true value of PV that was given

as an input to the simulation, both estimated turned out to be very good estimators.

The width of the confidence interval in both cases was not significantly different either.

The new estimate of PV gives a theoretically improved estimate that is statistically

significantly different from the old estimate. However, from a practical standpoint, the

difference is too small to have significant consequences in terms of decision making in the

industry.
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Figure 5.7: Relative performance of estimated bounds under varying conditions

5.2 MSA Using Multiple Devices

We obtained the following matrix, in Section(4.3), representing measurements in a multiple-

equipment scenario.

measurements =
102.8564 103.3431 104.1577 107.3647 95.1647 96.7440 95.0368 92.6361
101.8599 101.8429 102.1141 101.9570 97.1326 99.0677 99.1843 94.9154
103.5648 105.7163 111.2098 110.1541 102.1481 102.8998 101.4968 104.3442
103.7389 101.8357 103.0794 104.8460 96.0752 97.6808 95.9222 97.4480
104.2736 101.9158 103.4752 104.0055 102.0062 96.7419 93.1979 96.7945

Stacking the columns of this matrix along with those of , “eq” “appr” and “parts”

and merging the columns prepares the data for analysis as shown in the matrix “data”.

A separate column for replications has not been shown as replicates get stacked in this

matrix. For example, row 6 is a replicate of the treatment combination in row 1; row 7

is a replicate of the treatment combination in row 2; and so on.

A 3-way ANOVA is run on these data and the results are summarized in the matrix

labeled “t”. This table is comparable to Table (3.2). The mean squares for various
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data =
102.8564 1.0000 1.0000 1.0000
101.8599 1.0000 1.0000 2.0000
103.5648 1.0000 1.0000 3.0000
103.7389 1.0000 1.0000 4.0000
...

...
...

...
94.9154 2.0000 2.0000 2.0000
104.3442 2.0000 2.0000 3.0000
97.4480 2.0000 2.0000 4.0000
96.7945 2.0000 2.0000 5.0000

factors in the table below can be summarized as—MSp = 44.4712; MSa = 1.1327; MSe

= 401.1556; MSpa = 6.8902; MSpe = 8.0667; MSae = 32.5820; MSpae = 2.2717; MSE =

2.8332. Using the equations from Table (3.3), the variance components were calculated

as—sigmaP = 1.9933; sigmaA = 0; sigmaE = 6.7340; sigmaPA = 1.0745; sigmaPE =

1.2036; sigmaAE = 1.7410; sigmaPAE = 0; sigmaRep = 1.6832.

t =
’Source’ ’Sum Sq.’ ’d.f.’ ’Singular?’ ’Mean Sq.’ ’F’ ’Prob¿F’
’Part’ [ 177.8848] [4] [ 0] [ 44.4712] [ 15.6967] [ 5.8128e-006]
’Appr’ [ 1.1327] [1] [ 0] [ 1.1327] [ 0.3998] [ 0.5344]
’Equip’ [ 401.1556] [1] [ 0] [ 401.1556] [ 141.5933] [ 1.5776e-010]
’Part*Appr’ [ 27.5610] [4] [ 0] [ 6.8902] [ 2.4320] [ 0.0812]
’Part*Equip’ [ 32.2670] [ 4] [ 0] [ 8.0667] [ 2.8473] [ 0.0510]
’Appr*Equip’ [ 32.5820] [ 1] [ 0] [ 32.5820] [ 11.5002] [ 0.0029]
’Part*Appr*Equip’ [ 9.0868] [ 4] [ 0] [ 2.2717] [ 0.8018] [ 0.5383]
’Error’ [ 56.6631] [ 20] [ 0] [ 2.8332] [ ] [ ]
’Total’ [ 738.3327] [ 39] [ 0] [ ] [ ] [ ]

5.2.1 Analyzing the Results

The estimates of variance components for MSA using multiple devices were derived us-

ing standard ANOVA techniques. The primary goal of this aspect of the research was to

demonstrate that using multiple devices in an experiment allows one to estimate compo-

nents of measurement variance that may have been ignored in the techniques currently

used. The effectiveness of these estimates is not a cause of concern due to the use of
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established ANOVA techniques. However, an experiment is performed to test this ef-

fectiveness. A 16 run full factorial design was used by systematically varying PV (σp),

AV (σa), EV (σe), and replication error (σ). For each treatment combination, 20 repli-

cations were performed. During each replication, the entire experiment (including the

random numbers) are generated from scratch. As such, each replication gives indepen-

dent estimates of variance components for the same set of true values of the variance

components.

The design matrix and results of the hypothesis tests are summarized in Appendix(G).

All tests are conducted to compare 20 independent estimates of the variance components

to the true value of that variance component for that run. The alpha-value used for each

test is 0.05. Many of the hypotheses that are rejected, would not have been rejected

under an alpha-value of 0.01.

5.3 Comparing Measurement System Acceptability

Criteria

A process variance of 20 was selected arbitrarily (σ2
p = 20). The sigma-capability of the

process was varied from 3 to 6 in steps of 1. For a given sigma capability level (s), toler-

ance was calculated as 2sσp, and measurement variance (σ2
m) was varied from 0.5 to 25 in

steps of 0.5. These values were selected such that the lowest level corresponds to almost

negligible measurement variation and the highest level takes it to values greater than

the process variation itself, which is very rare and highly undesirable. For each value of

σm, all capability metrics are calculated, namely, DR, ndc, r, %TV(sd), %TV(var), ER,

PTR. This process is then repeated for the next value of sigma capability. The term
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%TV (sd) is measurement variation as a percent of total variation calculated using stan-

dard deviations, and %TV(var) represents the same quantity calculated using variances.

Table(5.3) shows selected results from this experiment.

Table 5.5: Relative performance of capability metrics
Sigma
Capability

DR ndc r %TV(sd) %TV(var) ER PTR

3 2.9 3.1 0.82 43% 18% 1.42 40.71%
3 5 5.1 0.93 27% 7% 0.85 24.28%
3 12.1 12.2 0.98 12% 1% 0.35 10.00%
4 2.8 3 0.8 45% 20% 1.5 32.19%
4 5 5.1 0.93 27% 7% 0.85 18.21%
4 9.1 9.2 0.98 15% 2% 0.47 10.00%
5 2.9 3.1 0.82 43% 18% 1.43 24.43%
5 5 5.1 0.93 27% 7% 0.85 14.57%
5 7.3 7.4 0.96 19% 4% 0.58 10.00%
6 3 3.1 0.82 43% 18% 1.42 20.36%
6 5 5.1 0.93 27% 7% 0.85 12.14%
6 6 6.1 0.95 23% 5% 0.7 10.00%

Recall that AIAG had increased the recommended value for ndc from 3 to 5 over

time and the generally accepted threshold for PTR is 10%. Hence, for each level of sigma

capability, three records have been displayed. The first two correspond to an ndc of 3

and 5 respectively and the third corresponds to a PTR of 10%.

For metrics like DR, ndc, and r higher values are desirable, whereas for %TV and

PTR lower values are desirable. As the sigma capability of the process increases, PTR

reduces for a given DR. This should be expected because as the sigma capability of

a process increases, either the process variance decreases or tolerance increases. It is

interesting to note that when DR and ndc are close to 3, PTR is extremely high regardless

of the sigma quality. For DR close to 5, it is relatively low but still at unacceptable levels

regardless of sigma capability. This means that the same measurement system may be
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Figure 5.8: (a) Observed Vs. Recommended DR for PTR=10% and (b) Observed Vs.
Recommended PTR for DR=5 for various process capabilities

ruled acceptable if DR or ndc is used, and unacceptable if PTR is used as a criterion.

On the other hand, when PTR is forced to 10%, the values of DR increase dramatically.

For example, for a 3-sigma process, achieving PTR of 10% is equivalent to achieving a

DR of more than 12. It is almost impossible to achieve such high values of DR. Both the

scenarios discussed above are illustrated in Fig(5.8). Note that the acceptable range for

%TV is typically given as 10%–30%. If this is based on the ratio of standard deviations,

then a process with DR close to 3 will consistently fail to meet this criterion. However, if

it is based on the ratio of variances, a DR close to 3 results in a perfectly acceptable %TV.

For DR 5 or higher, both methods of calculating %TV result in consistent conclusions.

Also note that %TV is relatively insensitive to the sigma capability of the process. This

should be expected because of the way this metric is calculated.

To test whether DR and ndc are statistically significantly different from each other,

a paired t-test was conducted on the sample displayed in Table(5.3) using MINITAB. A
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p− value of 0.000 was observed indicating that the difference is highly significant. This

should be expected as ndc is systematically higher than DR even though the difference

is of little consequence from a practical standpoint.

5.4 MSA for Destructive Testing

As explained in Chapter 4, MSA for destructive testing is performed in two stages. In

Stage 1, one appraiser makes single measurements on 5 fixed locations on each of 10

different parts. In Stage 2, 3 appraisers measure 1 fixed location on 10 different parts.

Each appraiser uses a different set of 10 parts. The measurement data simulated for

stage 1 were presented in Chapter 4 and are repeated here for convenience. The rows

of this matrix represent units and columns represent locations on that unit. Hence, this

data represents single measurements of 5 locations on 10 units.

dataS1=
101.0407 95.4735 105.0795 100.2267 104.8649
104.6269 100.5199 108.1716 108.9705 100.9723
105.0915 101.2559 99.6456 98.7868 108.4235
97.1132 95.7025 91.901 89.1668 90.0818
109.5508 106.1768 104.0565 101.5515 108.494
93.4041 94.2679 104.7581 97.0511 96.0292
104.165 102.0912 99.9413 98.7927 98.2241
102.8172 98.2455 97.6137 97.3772 98.0276
97.7415 92.7344 106.3311 96.7947 95.5657
104.9328 93.5037 106.3918 97.4487 107.7354

A two way ANOVA was performed on this data set with location (columns) and

unit (rows) as the two factors. The results of this ANOVA are shown below. The source

of variation termed “Error” by MATLAB is essentially the interaction between locations

and units.

Based on crossed design, Mean Square Unit (MSu) = 75.233 (same as MSp in the

analysis in Chapter 3), Mean Square Location (MSl) = 39.551, and the interaction mean
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’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob¿F’
’Columns’ [158.2041] [4] [39.5510] [2.8140] [0.0395]

’Rows’ [677.0967] [9] [75.2330] [5.3528] [1.1972e-004]
’Error’ [505.9795] [36] [14.0550] [] []
’Total’ [1.3413e+003] [49] [] [] []

square is 14.055. However, if the nested design suggested by Mitchell et al. (1997) is

used, MSu remains the same, but the nested variance MSul = 158.2042+505.9795
4+36

= 16.6046,

obtained by using the relationship in Eq(3.25). The traditional estimate of unit-to-unit

variance based on the nested design is obtained as sigmaU = 3.4243 and the corresponding

estimate using crossed design as proposed here is sigmaUNew = 3.4979.

The measurement data for Stage 2 shown below were obtained in Chapter 4. Columns

represent appraisers, and rows represent units. Recall that a total of 30 units were used

in this experiment, each appraiser having a different set of 10 units.

dataS2=
92.2400 92.7159 105.0530
104.5486 93.8848 94.9325
108.4117 96.9937 96.7959
104.3233 102.7283 95.7338
103.1551 105.1117 95.5904
102.1355 97.0324 102.9419
99.2106 95.9035 94.3739
97.8549 104.5245 100.2046
96.8656 96.9530 94.4416
105.2964 99.9187 105.5563

Stage 2 is a nested design. But due to the limitations of MATLAB a crossed 2-way

ANOVA is conducted on dataS2 and appropriate Mean Square (MS) values are calculated

using Eq(3.25). Thus, Mean Square Appraiser (MSa) = 26.7847 and the nested factor

variance MSua = 20.629 are obtained.

’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob¿F’
’Columns’ [53.5695] [2] [26.7847] [1.2628] [0.3068]

’Rows’ [175.1903] [9] [19.4656] [0.9177] [0.5320]
’Error’ [381.7925] [18] [21.2107] [] []
’Total’ [610.5522] [29] [] [] []

EV estimates were then calculated using the approach suggested by Mitchell et al.
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(1997) (sigmaE = 2.9838) and the improved approach suggested here (sigmaEnew =

2.8971). The estimate of AV (sigmaA) was the same for both the approaches and was

found to be 0.7846.

5.4.1 Analyzing the Results

The objectives of this analysis are—to test if the VC estimation approach given by

Mitchell et al. (1997) produces reliable estimates; to test if the improved approach sug-

gested in this research is significantly different; and to test whether the improved approach

produces reliable estimates. To test these hypotheses a designed experiment is conducted

by systematically varying potentially influential factors and conducting the analysis in

the form of appropriate statistical tests.

The factors that could potentially affect the estimate of EV (σ̂e) and AV (σ̂a) are

the true values of EV (σe), AV (σa), UV (σu), LV(σl), and the interaction between unit

and location (σul). A Central Composite Design (CCD) was chosen for this analysis.

The specific form was chosen from MINITAB with standard axials and 10 center points

creating a total of 52 treatment combinations (TCs). The details of the factors and

levels used are shown in the Appendix(I) in the form of a design matrix. For each TC, 50

replications were performed and statistics were collected. Each replication was conducted

as an independent analysis such that all random numbers were generated from scratch

for each replication. To conduct this experiment a design matrix of input parameters

was created in Microsoft Excel. This spreadsheet was read by a program (in MATLAB)

which in turn invoked another program performing the MSAD analysis for each TC in

the design. It performed 50 replications, conducted the appropriate hypothesis tests and

published the results of these tests to a text file. The design matrix along with the test
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results can be found in Appendix(I).

The unit mean (µ) was 100 for this experiment. The high and low (1 and -1) for σe,

σa, σu, and σl were 3 and 7 respectively and the centerpoint was 5. Coded axial value of

α = n
1/4
f = 2.3784 was used for these factors, which is equivalent to 0.24317 and 9.75683

in terms of true factor settings. In the previous expression, nf is the number of TCs in

the factorial portion of the experiment. For σul, the high and low values were 2 and 4

respectively, yielding axial values of 0.62159 and 5.37841.

H0 : The two methods of estimating σe are statistically equivalent

The first hypothesis to be tested is regarding the difference between the two approaches

for estimating EV—the one provided by Mitchell et al. (1997) (σ̂e) and the one suggested

as a part of this research (σ̂eNew). A paired t-test was conducted on σ̂e and σ̂eNew using

50 replications for each of the 52 TCs in the experiment. A 99% CI was used to make

the test even more stringent. The hypothesis that the two methods are equivalent was

rejected 51 out of the 52 times. The TC for which this hypothesis was not rejected was

when σa was set to its −α and all other factors were at center points. Clearly there is

a significant difference between the two approaches. The new EV estimate (σ̂eNew) was

consistently and significantly lower than the old estimate, σ̂e.

H0 : σ̂e is a good estimator of σe

The hypothesis tested above merely suggests that the two methods are different, but

does not indicate if either produces a good estimate of σe. Hence a t-test was conducted

with α = 0.05 for each TC comparing the average of σ̂e (¯̂σe)with σe. As a result 19 of

the 52 tests were rejected concluding with 95% confidence that this approach was not
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very effective in estimating σe in these 19 cases. A logistic regression of the result of the

hypothesis test (0 or 1) on the factors of the experiment could provide some insight into

the factors affecting the effectiveness of the estimate. However, a binary response cannot

provide information about the degree of this effect. In other words, any information

about the degree of deviation from the true value will be lost.

Hence the difference between ¯̂σe for each TC and the corresponding true value, σe,

was calculated as ∆e = σe − ¯̂σe and an ANOVA / regression was performed with this as

the response variable. All two-way interactions were included in the model but square

terms were left out. The results are displayed in Appendix(J). The regression was highly

significant with R2 = 97.2% and Adj.R2 = 96%. Interaction terms were not significant.

Among the main effects, σu, σl, and σe were the only significant terms. The coefficients

for these factors indicate the kind of effect they have on the error. Remember, ∆e

represents error and not absolute error. Hence factors with negative coefficients should

not be construed as factors that reduce error because error could be negative. The mean

of ∆e over all TCs was -0.2773 and the standard deviation was 2.5281. The mean of

absolute deviations, |∆e|, was 1.7736, which is of much more interest because negative

deviations from the true value are just as undesirable as positive deviations. The average

width of CI on ¯̂σe was found to be 1.1956.

However, it was found that during many replications the equipment variance, σ̂2
e ,

turns out to be negative and hence the estimate of σ̂e becomes a complex number which

is unacceptable. Under such circumstances σ̂e is considered to be zero. For example,

out of the 50 replications for the the first TC in the experiment, 4 estimates were zero

and for the second TC 12 were zero or null. On average, 4.8654 (9.7%) estimates out

of 50 for each TC were null. These null estimates clearly bias ¯̂σe for each TC. Hence,
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a separate analysis was performed after removing all instances where the σ̂e = 0. This

trimmed-mean of estimates, ¯̂σeTrim, is shown in Table(I.4).

A hypothesis test was performed again for each TC with this new mean. In this

case 30 out of 52 tests were rejected. It appears as if the null estimates were lowering

the mean estimate bringing it closer to the true value. As before, ANOVA / regression

was performed with ∆eTrim = σe − ¯̂σeTrim as the response variable. The results were

very similar to those obtained earlier— σu, σl, and σe were the only significant terms;

the coefficients have the same sign as before; and the R2 and Adj. R2 values were very

similar to the previous analysis. These results are not shown. The average of ∆eTrim

was found to be -0.78777 and the standard deviation was 2.1144. Again, since absolute

deviations are of more interest the mean of |∆eTrim| was calculated as 1.5810. The width

of CI on ¯̂σeTrim was found to be 0.9897.

The mean absolute deviation was less for the trimmed mean and the width of the

CI also decreased significantly. However, since the mean of the raw deviations has moved

farther away from zero, the hypothesis is rejected in a significantly larger number of

cases when the trimmed mean was used. In practice, since the cases in which a variance

estimate turns out to be negative are typically discarded, the analysis with trimmed

mean is more relevant.

H0 : σ̂eNew is a good estimator of σe

The analysis presented in this section is very similar to the one in the previous section.

Only, in this section it is being performed on the improved estimate of σe suggested as a

part of this research, σ̂eNew.

A t-test was conducted with α = 0.05 for each TC comparing the average of σ̂eNew
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(¯̂σeNew) with σe. As a result, 17 of the 52 tests were rejected concluding with 95%

confidence that this approach was not very effective in estimating σe in these 17 cases.

The difference between ¯̂σeNew for each TC and the corresponding true value, σe, was

calculated as ∆eNew = σe − ¯̂σeNew and a ANOVA / regression was performed with this

as the response variable. The results are displayed in Appendix(J). The regression was

highly significant with R2 = 96.9% and Adj. R2 = 95.7%. The only significant effects

were σu and σe. The mean of ∆eNew over all TCs was 0.2919 and the standard deviation

was 2.5315. The mean of absolute deviations, |∆eNew|, was 1.8530 and the average

width of CI on ¯̂σeNew was found to be 1.2128. None of these performance measures are

drastically different from the tests done on σ̂e.

The next step is to trim the mean by eliminating all null estimates. This trimmed-

mean of estimates, ¯̂σeTrimNew, is shown in Table(I.4). A hypothesis test was performed

again for each TC with this new mean. In this case only 13 out of 52 tests were rejected.

This is significantly less than the number rejected with ¯̂σeTrim, the trimmed mean based

on the old estimation approach.

As before, ANOVA / regression was performed with ∆eTrimNew = σe − ¯̂σeTrimNew

as the response variable. The results were very similar to those obtained with ∆eNew

except that the interaction effect was significant in ANOVA. Multiple regression results

revealed that σu ∗ σe interaction was significant. The average of ∆eTrimNew was found to

be -0.3646 and the standard deviation was 2.0574. The mean of |∆eTrim| was calculated

as 1.351. The width of CI on ¯̂σeTrim was found to be 0.9828.

As opposed to the traditional approach of estimation, using trimmed mean reduced

the number of tests being rejected in this scenario. The results discussed in this section

are summarized in Table(5.6).
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Table 5.6: Summarized results of MSAD hypothesis tests
Statistic H0 Type of

test
#
rejected

Mean SD

∆ = σ̂e − σ̂eNew ∆ = 0 paired-t 1 0.5692 0.4044
∆e = σe − ¯̂σe ∆e = 0 t test 19 -0.2773 2.5281
∆eTrim = σe − ¯̂σeTrim ∆eTrim = 0 t test 30 -0.7877 2.1144
∆eNew = σe − ¯̂σeNew ∆eNew = 0 t test 17 0.2919 2.5315
∆eTrimNew

= σe − ¯̂σeTrimNew

∆eTrimNew

= 0
t test 13 -0.3646 2.0574

Number of Null Estimates

As mentioned above, sometimes the variance estimates turn out to be negative leaving

very little choice but to discard the estimate. The details on number of null estimates

encountered for different types of estimates can be found in Table(5.7).

Table 5.7: Null estimates for σe and σa

Number of null estimates per TC
Statistic Average Maximum Minimum
σ̂e 4.87 (9.75%) 21 0
σ̂eNew 6.81 (13.62%) 23 0
σ̂a 9.12 (18.24%) 27 0

An ANOVA / multiple regression was performed on the number of null estimates

encountered during the 50 replications for each TC. The analysis of null estimates ob-

tained for σ̂e revealed that main effects as well as interactions were significant in affecting

this number. The results of the analysis can be found in Appendix(J). The interaction

between σl and σe (LV*EV) was found significant. Hence the main effect of σa and σl was

ignored. However, the main effect of σu was found to be significant. The box plots for

these significant effects are shown in Fig (5.9). The number of null estimates increases

sharply for high values UV or σu and moderately low values of the product LV*EV or

σl ∗ σe, which happens when both are set to 3 in absolute terms or -1 in coded values.

For these values, σ̂e is not a very reliable estimate.
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Figure 5.9: Number of null estimates for σ̂e Vs UV and LV*EV

A similar analysis of null estimates for σ̂eNew was conducted. The results of ANOVA

can be found in Appendix(J). It shows that interactions are not significant. Multiple

regression revealed that σu and σe are the only significant factors. From Fig(5.10) it can

be seen that the count of null estimates increases sharply for high values of σu and low

values of σe. For these values, clearly, σ̂eNew is not a very reliable estimate.
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Figure 5.10: Number of null estimates for σ̂eNew Vs UV and EV

A third estimate not discussed thus far is σ̂a, the appraiser variation. The reason this

estimate was excluded from all previous analysis is that the expression for this estimate

remained unchanged across the two approaches to estimate σe. But just as σ̂e and σ̂eNew,

sometimes the estimates of σ̂a also turn out to be complex numbers. Hence an ANOVA

was performed to analyze factors that affect the probability of getting a null estimate.
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The results of ANOVA, which can be found in Appendix(J), indicate that interactions

are not significant. The factors that are found to be significant are σu, σe, and σa.

Fig(5.11) shows how this count varies with respect to these three factors. Clearly, this

count increases moderately for high values of σu and σe, but increases sharply for low

values of σa.
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Figure 5.11: Number of null estimates for σ̂a Vs UV, EV, and AV

5.4.2 Adaptation for Chemical and Process Industries

The discussion so far has been strictly with respect to destructive testing. To achieve the

objectives of this research, it is essential to adapt this solution to chemical and process

industries and recognize the limitations, if any, of this approach with respect to this

adaptation.

In chemical and process industries, the product to be measured can be in a solid or

a liquid form. Solid products can be either in a powdered or granular form, making them
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easy to be homogenized, or in the form of solid chunks (e.g., rubber), making them very

difficult to be homogenized.

First, consider product in the form of liquid or powdered/granular solid. The two

stage approach employed in this section, refers to units and locations within those units.

In Stage 1, 10 units are chosen randomly and 5 locations are chosen within each unit.

One appraiser measures all locations on all units. The locations are identical in each

unit to minimize the difference in the location effect of the same location on two different

units. In Stage 2, 3 appraisers measure 1 locations on 10 different units (a total of 30

units). In the context of chemical and process industries, the meaning of a unit can

vary from a truck load to a spoonfull depending on the context and the volume being

produced/handled. While it is not possible to address each specific industry separately,

a generic approach can be developed such that it can be used in various industries with

marginal modifications. The main steps in sample preparation are described below:

¦ Unit Selection. Define a unit as a barrel full of the product to be tested. A

total of 40 such barrels will be required—10 for Stage 1 and 30 for Stage 2. Choose

these barrels of the product randomly. If the product is not available in barrels,

fill ten barrels from the existing product, randomizing from barrel to barrel (not

within barrel) to the extent possible.

¦ Homogenization. Once such units are separated, each should be homogenized

to the extent possible. Homogenization should be attempted only after the units

(barrels) have been separated. This is essential in order to maintain detectable

unit-to-unit variation. Homogenizing a liquid product may be easier than doing

the same with a powdered or granular substance.
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¦ Settling Period. After the previous step, the homogeneity of the unit will start

to change as a function of time. For example, if the characteristic of interest is

viscosity and the product is a liquid, then stirring the barrel will result in homog-

enization, but as soon as the stirring is stopped, the heavier particles will begin to

settle and cause the viscosity to have a gradient within the barrel. This gradient

will not be a problem by itself, as long as the time rate of change of viscosity is

small enough to be negligible with respect to the duration of the experiment (MSA

study). To attain this, the units should be left undisturbed for a certain period of

time. This time period should be chosen such that the rate of change of the char-

acteristic of interest is negligible with respect to the duration of the experiment.

In other words, it is necessary to ensure that location-to-location variation does

not change during the experiment. The time duration for which the units need to

be left undisturbed may vary from minutes to hours and the determination of this

time may pose the need for some additional experimentation. This problem may

be more serious in the case of liquid products.

¦ Location Definition. Locations should refer to actual physical locations in the

barrel. For Stage 1, use 3 locations per unit instead of five, thus selecting one

sample from the top, one from the center, and one from the bottom of the barrel.

These locations need to be precisely defined. A convenient way is to define them

in terms of coordinates with reference to the barrel geometry. For Stage 2, select

one sample form the top of the barrel.

¦ Sample Selection. The first sample should be selected from the center of the

top layer in the barrel. To obtain the second sample, the barrel should be emptied
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until the the height of the product in the barrel is exactly half of the height of the

product before the first sample was taken. The second sample should be obtained

from the center of the surface of the product in the barrel. For the third sample a

similar process should be used. Care should be taken to allow sufficient material to

remain in the barrel for proper sample collection. Extreme care must be taken while

emptying the barrel to collect the second and the third sample in order to ensure

that no turbulence is introduced in the contents of the barrel. This is important to

maintain sample integrity.

¦ Sample Size. The size of the sample will be dictated by the product-type, char-

acteristic to be tested, and equipment to be used in testing. This sample size must

remain unchanged throughout the experiment. Care should be taken to ensure

that the size of the unit (barrel) is significantly larger (at least ten times) than the

sample size.

Some problems with the sample preparation approach described above, pertain to

accessibility and handling of the product, randomization, and maintaining sample in-

tegrity while emptying parts of the barrel to collect the second and the third sample for

Stage 1. The issue of accessibility arises if the product is not stored in barrels or similar

containers, but instead is stored in much larger containers such as rail-cars or is a liquid

that flows through pipelines. As suggested above, in such cases, barrels should be filled

for the purposes of the experiment. This raises the issue of randomization. Since such

large storages offer limited access points, true randomization is not possible. This may

cause the range of the true value of the characteristic to be measured to be very small

across the material collected for the experiment. Lack of unit-to-unit randomization will
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not necessarily make the measurement error estimates unreliable. It will, however, limit

the validity of the results to the narrow range of the true value of the characteristic to be

measured. For example, if the true viscosity of the material collected for an experiment

ranges from 82cP to 84cP, whereas the expected range for the material being produced

is 78cP to 84cP. Based on the results of the experiment, there will be no way to estimate

how the measurement system will behave when encountered with a material of viscosity

78cP.

A significant challenge in adaptation of this process for chemical and process indus-

tries is posed by industries where the product is a solid that is difficult to homogenize

such as rubber. In such cases slabs of rubber can be taken and used as units. Chunks

of specific dimensions of rubber can be cut off from each slab from specific locations to

act as samples. A problem with this approach of sample preparation is that locations

on different units may not be as correlated as the two-stage approach assumes. In other

words, location 1 on unit 1 may not have the same location effect as location 1 on unit

2.
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Chapter 6

Research Contributions and Summary

Chapter Overview

This chapter summarizes the key results and contributions of this research and draws

conclusions while reflecting on the objectives initially set.

6.1 Research Contributions

During the course of this research, it was realized that in the literature related to Mea-

surement System Analysis, there is a significant variation with respect to notation and

terminology. Some of these differences exist for a good reason—to distinguish among

subtle differences in the approach or the technique used. Inconsistent representation

however, has made it difficult to comprehend and compare these approaches. One of the

contributions of this dissertation is summarizing all schools of thought using consistent

notation and terminology.

There are two approaches for estimating variance components of measurement error—

range-based approach and ANOVA-based approach. Most authors recommend ANOVA-

based approach for superior accuracy. It has been established in this dissertation that

there is no statistically significant difference between the estimates obtained using either

approach. However, the range-based estimates may be sensitive assumptions such as

104



normality while ANOVA is robust to departures from normality. Increasing computing

power, wide use of computers in the industry, and support for MSA and/or ANOVA in

various statistics software have made using ANOVA both quicker and easier. It has also

been shown that EV is a more reliable estimate than AV.

This dissertation makes a strong case for the existence of within-appraiser variation

and its confounding with equipment variation. Lower bounds on average within-appraiser

variation and upper bounds on equipment variation have been estimated using two dif-

ferent approaches. Since these bounds are estimated based on expected values, they are

not fully effective. The effectiveness varies as the relative proportion of within-appraiser

variation and equipment variation in replication error changes. The bounds become more

effective as the former becomes the dominating component of replication error. Ignoring

within-appraiser variation can mean overestimating equipment variation, which in turn

may result in tampering with a potentially satisfactory measurement system. The ef-

fectiveness of these bounds has not been very satisfactory. This opens new avenues for

research in this area.

Traditionally, MSA studies have been done using a single measuring device or equip-

ment. In practice, however, it is possible that a given sample of parts is measured by

two appraisers on similar but different devices to save time. In such a case, observed

variation includes a component of measurement variation that the traditional analysis

will fail to catch—equipment-to-equipment variation. The appropriate linear model for

this scenario has been developed and guidelines have been given on whether equipment

should be treated as a random or a fixed factor in such an experiment. The estimates have

been tested for effectiveness. This approach has been developed using the ANOVA-based

approach.
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The estimate of part-to-part variation given by AIAG was not accurate. This es-

timate has been corrected giving the theoretical background for such correction, and it

has been verified using simulation. The difference between the corrected estimate and

the traditional estimate, though statistically significant, is negligible from a practical

standpoint. This difference can increase for higher values of replication error, and lower

number replications and appraisers.

A number of criteria to assess measurement system acceptability have been suggested

in the literature. In this research, all these criteria have been simultaneously evaluated

under varying conditions of process capability and proportion of measurement variation in

the total or observed variation. The key findings are being summarized here. Using PTR

may produce results that are inconsistent with using DR or ndc. It should be realized

that even though both DR and PTR are criteria for measurement system acceptability,

they are measuring different quantities. Concerns over additivity of MV and PV in case

of criteria such as %TV and %MV have been addressed by using these ratios as ratios

of variances, and not standard deviations as is the general practice. Also, a DR of 5 as

recommended by AIAG corresponds to %TV = 7% when used as a ratio of variances and

27% when used as a ratio of standard deviations. The generally recommended threshold

for %TV is 10% which is closer to ratio based on variances. Great caution should be

exercised in using these criteria for evaluating a measurement system in practice. It

is easy to rule a good measurement system unacceptable due to nothing more than an

oversight.

Various approaches to dealing with a destructive measurement system have been

outlined in the literature. While most of these arrive at a solution by ignoring within-

sample variation, the approach developed by Mitchell et al. (1997) uses a two-stage
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technique to arrive a solution. However, the way the data are collected in the second

stage is inconsistent with the linear model used for that stage. Moreover, the model in

Stage 1 is inconsistent with the model in Stage 2 with respect to certain key assumptions.

The models have been modified so that it is consistent not only with the model in Stage

1, but also with the way the data are collected. New estimates have been developed based

on these changes and their superiority with respect to the ones used by Mitchell et al.

(1997) has been demonstrated. Guidelines have been developed for using this technique,

originally developed with the semiconductor industry in mind, for MSA in chemical and

process industries.

6.2 Future Research

MSA research has matured significantly over the last few years, owing its growth primarily

to the pioneering efforts of AIAG in this field. However, there remain some opportuni-

ties for improvement to be discovered and some application areas to be explored. This

dissertation has addressed some such topics. In this section we will briefly touch upon

how some of these areas can be extended newer areas be explored.

Within-appraiser variation is an inevitable reality that has been ignored in all re-

search so far. It is nothing but the allowance for an operator or an appraiser to be

inconsistent in his/her operation—a concept that is in fact very intuitive and accept-

able. The lower bounds on the average within-appraiser variation are not very effective.

It would be ideal if it could be “unconfounded” from equipment variation, and accept-

able if more effective bounds could be developed so as to be used without running the

risk of overestimating it due to a bound-violation. An effective lower bound on within-
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appraiser variation will automatically give us an effective upper bound on EV as they

are inextricably linked with each other.

Measurement system acceptability criteria evaluation in this dissertation has re-

vealed many interesting conflicts and redundancies. The point being made here is less

with respect to fundamental research in this area, and more about utilizing more re-

sources to educate the “quality-practitioners” with the pit-falls and risks of using these

without realizing their dependence on each other as well as on factors not directly related

to the measurement system, such as tolerance.

The adaptability of MSA for the chemical and process industries is an area where

there is significant potential for more research. These opportunities stem from the fact

that each industry and its product in this industry has some unique properties and

constraints that may need either minor customization of the approach used here, or a

complete overhaul of this process.

Some newer application areas for MSA need to be explored—education or similar

service industries for example. The author is not aware of any research, or lack thereof,

on MSA in these segments, but the idea of exploring the repeatability and reproducibility

of students and instructors does sound interesting!
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Appendix A

Abbreviations

This appendix contains the expanded form of most abbreviations used in the text. The

abbreviations are alphabetically sorted and are accompanied by their symbolic represen-

tation wherever appropriate.

ANOVA Analysis of Variance

AV (σa) Appraiser Variation or Appraiser-to-Appraiser Variation

σ̂a: Traditional estimate of AV

σ̂aNew: Modified AV estimate provided by Montgomery and Runger

(1994a)

CCD Central Composite Design

CI Confidence Interval

cntE Number of null estimates of EV per 50 replications using the tradi-

tional approach of estimation for MSAD

cntENew Number of null estimates of EV per 50 replications using the new

approach (proposed as part of this research) of estimation for MSAD

109



cntA Number of null estimates of AV per 50 replications for

MSAD

DeltaE (∆e) Difference between true EV and the mean traditional es-

timate of EV (averaged over 50 replications in the text)

for MSAD

DeltaETrim

(∆eNew)

Difference between true EV and trimmed-mean of the tra-

ditional estimate of EV (averaged over 50 replications in

the text) for MSAD

DeltaENew

(∆eNew)

Difference between true EV and the mean of new estimate

of EV (averaged over 50 replications in the text) for MSAD

DeltaETrimNew

(∆eTrimNew)

Difference between true EV and trimmed-mean of new

estimate of EV (averaged over 50 replications in the text)

of MSAD

DR Discrimination Ratio

EMS Expected Mean Squares

ER Effective Resolution

EV (σe) Equipment Variation (typically within-equipment)

σ̂e: Traditional estimate of EV

σ̂eNew: Improved estimate of EV proposed in this research

for MSAD

LBa Lower Bound on average WIAV
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LV (σl) Location-to-location variation (in MSAD)

MSAD Destructive Measurement System Analysis

MV (σm) Measurement Variation

ndc Number of Data/Distinct Categories

PE Probable Error

PTR Precision-to-Tolerance Ratio

PV (σp) Part Variation or Process Variation or Part-to-Part Variation

TC Treatment Combination

TV (σt) Total Variation (observed variation)

UBe Upper Bound on EV

UV (σu) Unit Variation or unit-to-unit variation (in MSAD)

VC Variance Component

WIAV (σaj
) Within-Appraiser Variation

111



Appendix B

GUI Sample Screens

The software for simulating and testing the concepts presented in this dissertation was

developed in MATLAB. A Graphical User Interface was developed to allow the user

to manipulate the simulation parameters and view results and graphs in a convenient

manner. A master interface allows the user to choose the kind of application to run—

regular MSA, MSA with multiple devices, and MSA for destructive testing. This choice

opens up another interface for the specific application. A screen-shot of each of these

interfaces with a sample run is shown below.
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Figure B.1: Top-level interface allowing the user to choose application
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Figure B.2: MSA with within-appraiser variation
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Appendix C

Bounds Derivation

An explanation of how the generalized form for LBa and UBe were calculated is provided

here. Consider the following set of equations from Section 3.2.1,

Aκ+ =




σ2
a1

+ σ2
a2
≥ σ2

1 − σ2
2

σ2
a1

+ σ2
a3
≥ σ2

1 − σ2
3

...

σ2
ak−1

+ σ2
ak
≥ σ2

k−1 − σ2
k




Then, for k=3,

Aκ+ =




σ2
a1

+ σ2
a2
≥ σ2

1 − σ2
2

σ2
a1

+ σ2
a3
≥ σ2

1 − σ2
3

σ2
a2

+ σ2
a3
≥ σ2

2 − σ2
3




The sum of these inequalities is 2(σ2
a1

+ σ2
a2

+ σ2
a3

) ≥ 2(σ2
1 − σ2

3). This inequality can be

rewritten as

2
k∑

j=1

σ2
aj
≥ 2σ2

1 + 0σ2
2 − 2σ2

3 (C.1)
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For k=4,

Aκ+ =




σ2
a1

+ σ2
a2
≥ σ2

1 − σ2
2

σ2
a1

+ σ2
a3
≥ σ2

1 − σ2
3

σ2
a1

+ σ2
a4
≥ σ2

1 − σ2
4

σ2
a2

+ σ2
a3
≥ σ2

2 − σ2
3

σ2
a2

+ σ2
a4
≥ σ2

2 − σ2
4

σ2
a3

+ σ2
a4
≥ σ2

3 − σ2
4




The sum of these inequalities is 3(σ2
a1

+ σ2
a2

+ σ2
a3

+ σ2
a4

) ≥ 3σ2
1 + σ2

2 − σ2
3 − 3σ2

4. This

inequality can be rewritten as

3
k∑

j=1

σ2
aj
≥ 3σ2

1 + σ2
2 − σ2

3 − 3σ2
4 (C.2)

Similarly, it can be shown that for k=5, the sum of the inequalities in Aκ+ is

4
k∑

j=1

σ2
aj
≥ 4σ2

1 + 2σ2
2 + 0σ2

3 − 2σ2
4 − 4σ2

5 (C.3)

The left side of each of the inequalities above, is (k − 1)
∑k

j=1 σ2
aj

and on the right

side of each inequality above, the coefficient on σ2
j is k − 2j + 1. Hence the generic form

for k appraisers can be given by

(k − 1)
k∑

j=1

σ2
aj
≥

k∑
j=1

(k − 2j + 1)σ2
j

Multiplying both sides of the equation by 1
k(k−1)

yields the following equation, which is

the same as Eq(3.13)

1

k

k∑
j=1

σ2
aj
≥ 1

k(k − 1)

k∑
j=1

(k − 2j + 1)σ2
j

116



Now, consider the following set of equations from Section 3.2.1,

Ak =




σ2
a1

+ σ2
e = σ2

1

σ2
a2

+ σ2
e = σ2

2

...

σ2
ak

+ σ2
e = σ2

k




The sum of these equations divided by k is clearly

1

k

k∑
j=1

σ2
aj

+ σ2
e =

1

k

k∑
j=1

σ2
j (C.4)

which is the same as Eq(3.14)
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Appendix D

Bounds Data

A 24 full factorial design was used to analyze the effectiveness of lower bound on within

appraiser variation and upper bound on equipment variation. The two factors used

were variance of the distribution of within-appraiser standard deviations (V ) and the

proportion of within-appraiser variation in replication error (f).

Table(D.1) shows the 16 treatment combinations and number of null estimates (for

each bound estimate) over 50 replications of each of these combinations. The terms cntA

Table D.1: Count of null estimates per 50 replications
V f cntA cntE cntATriv cntETriv
1 0.2 18 22 35 34
1 0.4 4 7 11 13
1 0.6 0 0 1 3
1 0.8 0 0 0 0

1.5 0.2 19 26 31 33
1.5 0.4 8 6 18 19
1.5 0.6 1 1 4 7
1.5 0.8 1 0 1 1
2 0.2 24 24 39 37
2 0.4 7 7 16 17
2 0.6 0 1 6 8
2 0.8 0 0 4 1

2.5 0.2 25 24 31 34
2.5 0.4 15 15 25 26
2.5 0.6 5 4 13 13
2.5 0.8 2 0 5 1

and cntE represent count of null estimates in the bound estimates of within appraiser

variation and equipment variation respectively. Similarly, cntATriv and cntETriv rep-

resent the same quantities for the respective trivial bounds. After the data displayed

in Table(D.1) were collected, a single replication for each treatment combination was
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repeated to collect data on the actual values (as opposed to the null estimates) of WIAV,

EV and their bounds estimated using both approaches. These data are displayed in

Table(D.2).

Table D.2: True values and bound estimates
V f True WIAV LBa LBaTriv True EV UBe UBeTriv

1 0.2 0.5889 0.4926 0.9021 4.303 4.0855 3.6759
1 0.4 2.6259 0.3232 0.4716 2.1136 4.7362 4.5878
1 0.6 2.1403 1.5472 2.027 1.5511 3.2754 2.7956
1 0.8 3.9494 1.1844 1.6179 0.897 3.1409 2.7074

1.5 0.2 1.5611 1.145 1.6832 3.0395 2.5559 2.0177
1.5 0.4 1.5537 0.7331 1.1111 2.0036 3.2142 2.8362
1.5 0.6 2.656 1.8172 2.9907 1.6363 2.4345 1.261
1.5 0.8 3.8747 0.6504 1.2149 0.6832 2.3977 1.8332
2 0.2 1.1575 0.3399 0.5973 3.0958 2.8198 2.5624
2 0.4 2.5565 0.5424 0.544 2.6501 4.5339 4.5324
2 0.6 2.7014 0.6739 0.9285 1.3906 2.7424 2.4878
2 0.8 3.5898 2.8658 3.3017 0.8678 1.9927 1.5569

2.5 0.2 1.2749 0.7826 1.2234 2.8988 2.5435 2.1027
2.5 0.4 0.3994 0.0581 0.0657 2.1127 2.7438 2.7363
2.5 0.6 1.1627 1.0778 1.363 1.2804 1.4053 1.1202
2.5 0.8 3.3873 1.4507 2.2358 0.8597 2.6644 1.8793
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Appendix E

Analysis of LBa and UBe

Two factors—variance of the distribution of within-appraiser variation values (V ), and

proportion of within-appraiser variation in replication error (f) were identified as poten-

tially significant in affecting the effectiveness of LBa, UBe, LBaTriv and UBeTriv. The

results of the analysis to test this effect is shown below as an output form MINITAB.

LBa versus V, f

Term Effect Coef SE Coef T P
Constant 8.06 0.9718 8.30 0.000
V 5.77 2.89 1.3038 2.21 0.047
f -20.77 -10.39 1.3038 -7.97 0.000
V*f -3.65 -1.82 1.7492 -1.04 0.318

UBe versus V, f

Term Effect Coef SE Coef T P
Constant 8.56 1.112 7.70 0.000
V 3.07 1.54 1.491 1.03 0.323
f -23.78 -11.89 1.491 -7.97 0.000
V*f -1.13 -0.56 2.001 -0.28 0.783

LBaTriv versus V, f

Term Effect Coef SE Coef T P
Constant 15.00 1.239 12.11 0.000
V 6.90 3.45 1.662 2.08 0.060
f -31.80 -15.90 1.662 -9.56 0.000
V*f 2.88 1.44 2.230 0.65 0.531

UBeTriv versus V, f

Term Effect Coef SE Coef T P
Constant 15.44 0.8997 17.16 0.000
V 5.62 2.81 1.2070 2.33 0.038
f -33.67 -16.84 1.2070 -13.95 0.000
V*f -0.41 -0.20 1.6194 -0.13 0.903
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Appendix F

Effectiveness of new PV estimate

A 23 full factorial experiment was conducted to test the effectiveness of the new PV

estimate, by systematically varying σp, σa, and σ as shown in the table below.

Table F.1: Design Matrix
σp σa σ
6 1 1
6 1 3
6 3 1
6 3 3
10 1 1
10 1 3
10 3 1
10 3 3

Table(F.2) shows the results of the paired t-test performed to compare the two

estimates. The variable hi in all tables below indicates the conclusion of the test (1

implies reject and 0 implies fail to reject). Extremely low p− values show that all tests

were rejected, indicating that the two estimates are highly significantly different.

Table F.2: H0: No difference between the two estimates of σp

h1 p1 CI1 CIWidth
1 0.0000 0.0090, 0.0121 0.0031
1 0.0000 0.0796, 0.0981 0.0185
1 0.0000 0.0086, 0.0128 0.0042
1 0.0000 0.0855, 0.1088 0.0233
1 0.0000 0.0061, 0.0081 0.0020
1 0.0000 0.0436, 0.0813 0.0377
1 0.0000 0.0061, 0.0077 0.0016
1 0.0000 0.0481, 0.0703 0.0222

Table(F.3) shows the result of two hypothesis tests. On the left are the results of

the t-test comparing the old PV estimate with the true value of PV for each run, and on
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the right are the results of the t-test comparing the new PV estimate with the true value

of PV for each run. All hi were zero indicating that the hypothesis could not be rejected

in any of the cases (both estimates performed satisfactorily in each run). The width of

the confidence intervals in both the tests do not appear to be very different, thus ruling

out that the new estimate provides a significant improvement over the old one from a

practical standpoint.

Table F.3: Results of tests for effectiveness of σ̂pOld (left) and σ̂pNew (right)
h2 p2 CI2 CIWidth h3 p3 CI3 CIWidth
0 0.9469 5.2406, 6.8100 1.5694 0 0.9691 5.2288, 6.8006 1.5718
0 0.6264 5.1532, 6.5230 1.3698 0 0.4569 5.0580, 6.4404 1.3824
0 0.5485 5.4753, 6.9574 1.4821 0 0.5691 5.4628, 6.9485 1.4857
0 0.4306 5.1923, 6.3588 1.1665 0 0.2697 5.0864, 6.2704 1.1840
0 0.7936 8.9475, 11.3582 2.4107 0 0.8030 8.9398, 11.3517 2.4119
0 0.4593 8.1536, 10.8672 2.7136 0 0.4101 8.0762, 10.8197 2.7435
0 0.5369 9.3060, 11.2903 1.9843 0 0.5465 9.2985, 11.2839 1.9854
0 0.5056 8.3856, 10.8239 2.4383 0 0.4482 8.3174, 10.7737 2.4563
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Appendix G

Results of MSA with multiple devices

The estimates of variance components when multiple measuring devices are used in the

MSA study are tested for effectiveness using a designed experiment. A 16 run full factorial

design was used by systematically varying PV (σp), AV (σa), EV (σe), and replication

error (σ). The design matrix is shown below.

Table G.1: Design Matrix
σp σa σe σ
6 1 1 1
6 1 1 3
6 1 3 1
6 1 3 3
6 3 1 1
6 3 1 3
6 3 3 1
6 3 3 3
10 1 1 1
10 1 1 3
10 1 3 1
10 1 3 3
10 3 1 1
10 3 1 3
10 3 3 1
10 3 3 3

The results of this experiment are summarized in the tables below. Each table

summarizes results of two hypothesis tests over 16 runs of the experiment. The variable

hi indicates the conclusion of the hypothesis test (1 implies reject, 0 implies fail to reject),

pi indicates the p− value and CI indicates the confidence interval. Clearly, none of the

hypotheses about PV (σp) could be rejected, but 5 out of the 16 tests were rejected when

testing the effectiveness of AV (σa).
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Table G.2: Results of tests for effectiveness of σ̂p (left) and σ̂a (right)
h1 p1 CI1 h2 p2 CI2

0 0.14721 3.0952, 4.1461 1 0.013962 0.2900, 0.90912
0 0.99827 3.2653, 4.7362 0 0.16707 0.23804, 1.1417
0 0.50244 3.3041, 4.3532 0 0.96348 0.5912, 1.4274
0 0.20093 3.2551, 4.1674 1 0.000289 0.1147, 0.6830
0 0.75331 3.5818, 4.5686 0 0.077233 1.2200, 3.1010
0 0.48329 3.7336, 4.5429 0 0.088675 1.4554, 3.1186
0 0.058091 3.0732, 4.0172 0 0.18395 1.6377, 3.2802
0 0.65269 3.3957, 4.3876 0 0.050078 1.3351, 3.0003
0 0.05074 6.0465, 7.9892 0 0.31467 0.5059, 1.1676
0 0.06628 6.6841, 8.0471 1 0.013638 0.1619, 0.8911
0 0.66823 6.8019, 8.7855 0 0.75223 0.6603, 1.4624
0 0.20566 7.6966, 9.3195 0 0.47212 0.7481, 1.5237
0 0.15616 6.4547, 8.2668 0 0.79473 1.7465, 3.9729
0 0.45413 6.5562, 8.6715 1 0.020221 0.8812, 2.7979
0 0.53419 6.7290, 8.6806 1 0.00209 1.0584, 2.4961
0 0.37224 6.7354, 8.4959 1 0.015462 1.5174, 2.8231

The table below shows test results for EV and PxA interaction. While four of the

16 hypotheses testing for EV were rejected, only 1 could be rejected in the case of PxA

interaction. The estimate of PxE interaction was rejected 2 times out of 16 and the one

Table G.3: Results of tests for effectiveness of σ̂e (left) and σ̂pa (right)
h3 p3 CI3 h4 p4 CI4

0 0.0863 0.8731, 2.7453 0 0.6432 0.7683, 1.1466
0 0.2912 0.4944, 2.5955 0 0.9213 0.7810, 1.2410
0 0.1900 2.3165, 6.2153 1 0.0182 0.5906, 0.9570
0 0.3141 2.1344, 5.5561 0 0.6032 0.7111, 1.1724
0 0.1168 0.7195, 3.3305 0 0.4084 0.8672, 1.3128
0 0.0592 0.9563, 3.0800 0 0.0678 0.5967, 1.0156
0 0.1815 2.2655, 6.6194 0 0.4180 0.7559, 1.1057
1 0.0072 4.1934, 9.6522 0 0.2288 0.6696, 1.0841
1 0.0093 1.3196, 2.9921 0 0.7414 0.7881, 1.1535
0 0.7778 0.2732, 1.5520 0 0.9689 0.7376, 1.2725
1 0.0186 3.4549, 7.4230 0 0.0947 0.5263, 1.0411
0 0.0634 2.8993, 6.3688 0 0.3110 0.7048, 1.0991
0 0.4206 0.5219, 2.0980 0 0.6109 0.8155, 1.1113
0 0.3816 0.4948, 2.2612 0 0.3487 0.7388, 1.0969
1 0.0117 3.6515, 7.5715 0 0.0543 0.5363, 1.0047
1 0.0184 3.5369, 8.1654 0 0.5621 0.7429, 1.1440

for AxE interaction was rejected 3 times.
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Table G.4: Results of tests for effectiveness of σ̂pe (left) and σ̂ae (right)
h5 p5 CI5 h6 p6 CI6

0 0.4428 0.89889, 1.2222 0 0.2959 0.5262, 1.1523
0 0.0516 0.99875, 1.3214 0 0.28443 0.4629, 1.1667
0 0.9909 0.83958, 1.1587 0 0.18508 0.3798, 1.1284
1 0.0381 0.53974, 0.9855 0 0.60755 0.7269, 1.4547
0 0.4904 0.85828, 1.2852 0 0.1559 0.4334, 1.0977
0 0.8675 0.81386, 1.1583 0 0.4299 0.4708, 1.2348
0 0.7955 0.76749, 1.1806 1 0.0038 0.2964, 0.8425
0 0.2916 0.6226, 1.1197 0 0.2396 0.5475, 1.1203
0 0.8342 0.7387, 1.2132 1 0.0120 0.2895, 0.9004
0 0.2234 0.6278, 1.0927 0 0.9973 0.7024, 1.2966
0 0.3526 0.6407, 1.1345 1 0.0448 0.3607, 0.9917
0 0.6489 0.6762, 1.2066 0 0.3973 0.4427, 1.2311
0 0.1562 0.6260, 1.0646 0 0.7068 0.3998, 1.4150
0 0.4155 0.6740, 1.1405 0 0.2711 0.4291, 1.1698
1 0.0004 0.4080, 0.7954 0 0.2217 0.5941, 1.1003
0 0.1689 0.6338, 1.0689 0 0.0560 0.3743, 1.0087
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Appendix H

Verification of MSAD techniques

This appendix serves as a verification of the implementation of estimation method used

for estimating VCs in MSA for destructive testing (MSAD). The approach used here is

to use published Stage 1 and Stage 2 measurement data, and use the MATLAB program

to generate the estimtes. These estimates are then compared to the published estimates

for verification. The data used here is provided by Mitchell et al. (1997).

Table(H.1) shows the data for Stage 1 utilizing 10 units (or parts), 5 locations on

each part and 1 appraiser.

Table H.1: Measurement data for Stage 1
l1 l2 l3 l4 l5

P1 11.6000 11.3000 10.3000 11.7000 10.3000
P2 11.3000 11.0000 10.2000 11.1000 11.4000
P3 10.1000 10.2000 10.8000 8.6000 10.8000
P4 10.9000 10.8000 10.3000 11.7000 10.6000
P5 9.7000 11.0000 10.3000 10.8000 9.3000
P6 9.8000 10.3000 9.2000 9.1000 10.2000
P7 10.7000 11.2000 9.9000 9.7000 9.7000
P8 10.8000 10.6000 9.2000 10.6000 10.5000
P9 9.9000 9.4000 11.3000 10.8000 11.3000
P10 9.7000 11.2000 9.8000 11.0000 9.6000

Table(H.2) shows the data for Stage 2 utilizing 3 appraisers, 10 parts per appraiser

and 1 location per part.

This data was fed into the program used for analysis of the MSAD part of this re-

search and estimates were calculated. These estimates and the ones provided by Mitchell
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Table H.2: Measurement data for Stage 2
a1 a2 a3

P1 10.3000 9.3000 11.1000
P2 10.9000 11.4000 10.4000
P3 11.0000 10.1000 11.5000
P4 11.7000 9.1000 11.1000
P5 9.8000 10.0000 11.6000
P6 10.5000 9.9000 9.7000
P7 10.5000 11.1000 10.9000
P8 10.8000 10.9000 9.8000
P9 10.8000 10.3000 11.4000
P10 10.3000 9.9000 10.4000

et al. (1997) are shown in Table(H.3).

Table H.3: Comparison of calculated with published estimates
Statistic Calculated Value Published Value

MSp 0.9023 0.90
MSa 0.9610 0.96
MSpl 0.4817 0.48
MSpo 0.4279 0.43

σ2
p 0.0841 0.084

σ2
e 0.3438 0.346

σ2
a 0.0533 0.053
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Appendix I

MSAD Output

A 4 factor 52 run CCD was performed to test various hypotheses regarding the destructive

MSA techniques. The design matrix is shown in Table(I.1). The subsequent tables

illustrate the summary statistics of this experiment outlining the results of hypothesis

tests conducted for each TC. In these tables hi indicates whether the hypothesis was

rejected or not (1 implies reject and 0 implies fail to reject). Similarly pi and CIi represent

the p-value associated with the hypothesis test and the appropriate confidence interval,

respectively.

Table(I.2) shows the results of the hypothesis testing whether the two approaches of

calculating EV are significantly different from each other. Table(I.3) shows test results

comparing the two EV estimates to the true value for each run. Some estimates of EV2

turned out to be negative due to the method of estimation. In such cases the estimate

of EV was considered to be zero. Table(I.4) tests the same hypothesis as Table(I.3) but

with trimmed mean instead of the overall mean. Trimmed mean of the estimate is the

mean after removing zeros from the analysis.
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Table I.1: 5 factor CCD design matrix
TC EV AV LV UV PxL
1 3 3 3 3 2
2 7 3 3 3 2
3 3 7 3 3 2
4 7 7 3 3 2
5 3 3 7 3 2
6 7 3 7 3 2
7 3 7 7 3 2
8 7 7 7 3 2
9 3 3 3 7 2
10 7 3 3 7 2
11 3 7 3 7 2
12 7 7 3 7 2
13 3 3 7 7 2
14 7 3 7 7 2
15 3 7 7 7 2
16 7 7 7 7 2
17 3 3 3 3 4
18 7 3 3 3 4
19 3 7 3 3 4
20 7 7 3 3 4
21 3 3 7 3 4
22 7 3 7 3 4
23 3 7 7 3 4
24 7 7 7 3 4
25 3 3 3 7 4
26 7 3 3 7 4
27 3 7 3 7 4
28 7 7 3 7 4
29 3 3 7 7 4
30 7 3 7 7 4
31 3 7 7 7 4
32 7 7 7 7 4
33 0.24317 5 5 5 3
34 9.75683 5 5 5 3
35 5 0.24317 5 5 3
36 5 9.75683 5 5 3
37 5 5 0.24317 5 3
38 5 5 9.75683 5 3
39 5 5 5 0.24317 3
40 5 5 5 9.75683 3
41 5 5 5 5 0.62159
42 5 5 5 5 5.37841
43 5 5 5 5 3
44 5 5 5 5 3
45 5 5 5 5 3
46 5 5 5 5 3
47 5 5 5 5 3
48 5 5 5 5 3
49 5 5 5 5 3
50 5 5 5 5 3
51 5 5 5 5 3
52 5 5 5 5 3
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Table I.2: H0: The two approaches produce equal estimates (α = 0.01)
avgDiff h0 p0 CI0

0.2844 1 0.0000 0.1630, 0.4057
0.2243 1 0.0000 0.0989, 0.3496
1.5694 1 0.0000 1.2152, 1.9236
1.0382 1 0.0000 0.6428, 1.4336
0.1168 1 0.0000 0.0648, 0.1688
0.1126 1 0.0000 0.0626, 0.1627
0.6647 1 0.0000 0.4663, 0.8632
0.6045 1 0.0000 0.4157, 0.7933
0.2729 1 0.0000 0.1546, 0.3911
0.1562 1 0.0000 0.0674, 0.2450
1.5432 1 0.0000 1.2110, 1.8754
1.0752 1 0.0000 0.6534, 1.4971
0.0909 1 0.0000 0.0381, 0.1437
0.1226 1 0.0000 0.0639, 0.1814
0.9813 1 0.0000 0.7163, 1.2462
0.8713 1 0.0000 0.5369, 1.2058
0.2494 1 0.0000 0.1291, 0.3697
0.3139 1 0.0000 0.1335, 0.4943
1.3442 1 0.0000 0.8662, 1.8222
0.8516 1 0.0000 0.5427, 1.1604
0.1314 1 0.0000 0.0701, 0.1927
0.1420 1 0.0013 0.0301, 0.2538
0.7164 1 0.0000 0.5249, 0.9079
0.7478 1 0.0000 0.4457, 1.0499
0.2647 1 0.0000 0.1411, 0.3883
0.1706 1 0.0029 0.0247, 0.3165
1.4191 1 0.0000 1.0731, 1.7652
0.9709 1 0.0000 0.5706, 1.3712
0.2199 1 0.0000 0.1060, 0.3339
0.1130 1 0.0000 0.0634, 0.1626
0.7491 1 0.0000 0.5700, 0.9283
0.8242 1 0.0000 0.4552, 1.1933
0.4660 1 0.0000 0.3239, 0.6082
0.2969 1 0.0000 0.1440, 0.4498
0.0211 0 0.1072 -0.0133, 0.0554
1.5334 1 0.0000 1.0392, 2.0277
0.7585 1 0.0000 0.5021, 1.0149
0.2936 1 0.0000 0.1721, 0.4151
0.5991 1 0.0000 0.3505, 0.8477
0.5994 1 0.0000 0.3965, 0.8024
0.6034 1 0.0000 0.4001, 0.8068
0.4769 1 0.0000 0.3192, 0.6345
0.5133 1 0.0000 0.3203, 0.7063
0.4968 1 0.0000 0.3319, 0.6618
0.4800 1 0.0000 0.2664, 0.6936
0.4789 1 0.0000 0.2919, 0.6659
0.5185 1 0.0000 0.3380, 0.6989
0.5537 1 0.0000 0.3777, 0.7297
0.4132 1 0.0000 0.2558, 0.5706
0.5827 1 0.0000 0.3719, 0.7934
0.4825 1 0.0000 0.2860, 0.6790
0.4727 1 0.0000 0.3160, 0.6294
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Table I.3: H0: Both estimates of EV are good estimators of true EV (α = 0.05)
¯̂σe h1 p1 CI1

¯̂σeNew h2 p2 CI2

3.1999 0 0.2950 2.8204, 3.5794 2.9155 0 0.6704 2.5189, 3.3121
3.5299 0 0.1701 2.7651, 4.2946 3.3056 0 0.4255 2.5415, 4.0697
4.0775 1 0.0000 3.6601, 4.4950 2.5082 1 0.0321 2.0601, 2.9563
4.6501 1 0.0000 3.9634, 5.3368 3.6119 0 0.0942 2.8914, 4.3324
7.1912 0 0.2886 6.8331, 7.5493 7.0744 0 0.6771 6.7174, 7.4314
7.3384 0 0.3150 6.6686, 8.0082 7.2258 0 0.5083 6.5449, 7.9066
7.3964 0 0.0524 6.9957, 7.7971 6.7317 0 0.2269 6.2910, 7.1723
6.8343 0 0.6785 6.0358, 7.6328 6.2299 0 0.0577 5.4336, 7.0261
2.8193 0 0.3655 2.4219, 3.2168 2.5465 1 0.0248 2.1529, 2.9400
2.4321 0 0.1045 1.7422, 3.1220 2.2759 1 0.0351 1.6044, 2.9474
4.1275 1 0.0000 3.8090, 4.4460 2.5843 1 0.0169 2.2464, 2.9222
4.6019 1 0.0002 3.8033, 5.4006 3.5267 0 0.1556 2.7928, 4.2606
7.0657 0 0.7433 6.6647, 7.4667 6.9748 0 0.8988 6.5792, 7.3705
6.3383 0 0.1370 5.4589, 7.2177 6.2157 0 0.0777 5.3411, 7.0903
7.6486 1 0.0016 7.2576, 8.0397 6.6674 0 0.1626 6.1959, 7.1389
6.9557 0 0.9105 6.1678, 7.7435 6.0843 1 0.0362 5.2301, 6.9385
3.0171 0 0.9380 2.5782, 3.4559 2.7677 0 0.2903 2.3310, 3.2044
3.0124 0 0.9717 2.3135, 3.7113 2.6985 0 0.4070 1.9742, 3.4229
3.9842 1 0.0000 3.6063, 4.3621 2.6400 0 0.1020 2.2059, 3.0741
5.0158 1 0.0000 4.1819, 5.8497 4.1643 1 0.0058 3.3541, 4.9744
7.0331 0 0.8862 6.5705, 7.4957 6.9017 0 0.6715 6.4387, 7.3647
6.1053 0 0.0681 5.1415, 7.0691 5.9634 1 0.0369 4.9921, 6.9346
7.8437 1 0.0000 7.4686, 8.2189 7.1273 0 0.5252 6.7275, 7.5272
6.6031 0 0.3892 5.6849, 7.5213 5.8553 1 0.0132 4.9606, 6.7500
2.4281 1 0.0102 1.9983, 2.8580 2.1635 1 0.0003 1.7339, 2.5930
3.3544 0 0.3997 2.5161, 4.1926 3.1838 0 0.6585 2.3534, 4.0142
4.2696 1 0.0000 3.8882, 4.6510 2.8505 0 0.4541 2.4523, 3.2486
3.3540 0 0.3699 2.5680, 4.1400 2.3831 0 0.0918 1.6622, 3.1040
6.4375 1 0.0184 5.9738, 6.9011 6.2176 1 0.0034 5.7075, 6.7276
6.3775 0 0.1669 5.4859, 7.2691 6.2645 0 0.1016 5.3785, 7.1505
7.6060 1 0.0044 7.1983, 8.0138 6.8569 0 0.4977 6.4361, 7.2777
7.0411 0 0.9174 6.2480, 7.8342 6.2169 0 0.0700 5.3674, 7.0664
5.5712 1 0.0000 5.3348, 5.8076 5.1052 0 0.3792 4.8670, 5.3434
4.8497 0 0.7759 3.7941, 5.9053 4.5527 0 0.3972 3.5005, 5.6050
4.2135 1 0.0096 3.6269, 4.8000 4.1924 1 0.0086 3.5991, 4.7857
6.0655 1 0.0019 5.4144, 6.7167 4.5321 0 0.1133 3.9489, 5.1153
3.0206 1 0.0000 2.4947, 3.5465 2.2621 1 0.0000 1.7679, 2.7563
9.8918 0 0.5883 9.3940, 10.3900 9.5982 0 0.5472 9.0723, 10.1240
5.1504 0 0.5994 4.5788, 5.7220 4.5513 0 0.1373 3.9544, 5.1482
5.4014 0 0.2115 4.7643, 6.0384 4.8019 0 0.5404 4.1565, 5.4474
5.3429 0 0.2211 4.7869, 5.8989 4.7395 0 0.3505 4.1842, 5.2948
5.2142 0 0.5058 4.5720, 5.8565 4.7374 0 0.4243 4.0823, 5.3924
4.8094 0 0.5608 4.1553, 5.4634 4.2961 1 0.0348 3.6444, 4.9477
5.1429 0 0.5307 4.6881, 5.5977 4.6461 0 0.1432 4.1680, 5.1241
5.5479 1 0.0318 5.0496, 6.0462 5.0679 0 0.7989 4.5351, 5.6008
4.7490 0 0.4570 4.0765, 5.4216 4.2702 1 0.0364 3.5886, 4.9517
5.1934 0 0.5219 4.5909, 5.7959 4.6749 0 0.3198 4.0249, 5.3249
5.0097 0 0.9746 4.4025, 5.6168 4.4560 0 0.0834 3.8375, 5.0745
4.6407 0 0.2945 3.9592, 5.3221 4.2275 1 0.0244 3.5590, 4.8960
4.9649 0 0.8942 4.4378, 5.4921 4.3823 1 0.0265 3.8399, 4.9247
4.1932 1 0.0264 3.4852, 4.9011 3.7107 1 0.0006 3.0099, 4.4115
5.7580 1 0.0051 5.2387, 6.2773 5.2852 0 0.3053 4.7320, 5.8385
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Table I.4: H0: Trimmed mean of both estimates are good estimators of true EV (α =
0.05)

¯̂σeTrim h3 p3 CI3
¯̂σeTrimNew h4 p4 CI4

3.4781 1 0.0018 3.1884, 3.7679 3.1690 0 0.3198 2.8306, 3.5075
4.6446 1 0.0000 3.9652, 5.3240 4.5911 1 0.0000 3.9101, 5.2721
4.0775 1 0.0000 3.6601, 4.4950 3.2156 0 0.1574 2.9130, 3.5182
5.2842 1 0.0000 4.7383, 5.8302 4.7525 1 0.0000 4.1885, 5.3166
7.1912 0 0.2886 6.8331, 7.5493 7.0744 0 0.6771 6.7174, 7.4314
7.4882 0 0.1148 6.8771, 8.0992 7.5268 0 0.0629 6.9706, 8.0831
7.3964 0 0.0524 6.9957, 7.7971 6.7317 0 0.2269 6.2910, 7.1723
7.2706 0 0.4188 6.6031, 7.9381 6.7716 0 0.4831 6.1211, 7.4221
3.2783 1 0.0401 3.0132, 3.5434 2.9610 0 0.7975 2.6563, 3.2657
4.1932 1 0.0005 3.5724, 4.8140 4.2146 1 0.0002 3.6501, 4.7792
4.1275 1 0.0000 3.8090, 4.4460 2.8714 0 0.3185 2.6145, 3.1283
5.7524 1 0.0000 5.1863, 6.3186 4.6404 1 0.0000 4.0234, 5.2574
7.0657 0 0.7433 6.6647, 7.4667 6.9748 0 0.8988 6.5792, 7.3705
7.3701 0 0.1943 6.8039, 7.9364 7.2275 0 0.4336 6.6467, 7.8084
7.6486 1 0.0016 7.2576, 8.0397 6.9452 0 0.6906 6.6698, 7.2205
7.3997 0 0.2188 6.7544, 8.0449 6.7604 0 0.4922 6.0631, 7.4576
3.5082 1 0.0020 3.1978, 3.8187 3.2949 0 0.0685 2.9766, 3.6131
3.9637 1 0.0059 3.2951, 4.6323 4.2165 1 0.0011 3.5265, 4.9064
4.1502 1 0.0000 3.8402, 4.4602 3.0698 0 0.6980 2.7094, 3.4301
6.1169 1 0.0000 5.5143, 6.7194 5.4793 1 0.0000 4.8767, 6.0819
7.0331 0 0.8862 6.5705, 7.4957 6.9017 0 0.6715 6.4387, 7.3647
7.0992 0 0.7951 6.3333, 7.8651 7.0992 0 0.7889 6.3555, 7.8430
7.8437 1 0.0000 7.4686, 8.2189 7.1273 0 0.5252 6.7275, 7.5272
7.3368 0 0.3661 6.5936, 8.0799 6.6538 0 0.3480 5.9179, 7.3896
3.1130 0 0.4236 2.8302, 3.3958 2.9236 0 0.6121 2.6207, 3.2265
5.2412 1 0.0000 4.5625, 5.9199 5.3063 1 0.0000 4.6843, 5.9283
4.2696 1 0.0000 3.8882, 4.6510 3.2392 0 0.1105 2.9431, 3.5352
4.9323 1 0.0000 4.2950, 5.5697 4.4131 1 0.0002 3.7485, 5.0778
6.4375 1 0.0184 5.9738, 6.9011 6.2176 1 0.0034 5.7075, 6.7276
7.4157 0 0.1582 6.8318, 7.9996 7.2843 0 0.3401 6.6897, 7.8789
7.6060 1 0.0044 7.1983, 8.0138 6.8569 0 0.4977 6.4361, 7.2777
7.6534 1 0.0257 7.0829, 8.2239 7.0647 0 0.8323 6.4525, 7.6768
5.5712 1 0.0000 5.3348, 5.8076 5.1052 0 0.3792 4.8670, 5.3434
6.7356 1 0.0002 5.8899, 7.5814 6.6952 1 0.0002 5.8712, 7.5193
4.6816 0 0.1839 4.2064, 5.1569 4.6582 0 0.1648 4.1707, 5.1458
6.5930 1 0.0000 6.1565, 7.0295 5.0357 0 0.8694 4.6007, 5.4707
3.5960 1 0.0000 3.1583, 4.0336 3.1418 1 0.0000 2.7429, 3.5407
9.8918 0 0.5883 9.3940, 10.3900 9.5982 0 0.5472 9.0723, 10.1240
5.4791 1 0.0421 5.0178, 5.9405 4.8418 0 0.5511 4.3116, 5.3720
5.7461 1 0.0074 5.2105, 6.2818 5.3355 0 0.1881 4.8298, 5.8412
5.6840 1 0.0022 5.2588, 6.1091 5.0420 0 0.8564 4.5771, 5.5070
5.5471 0 0.0526 4.9936, 6.1006 5.2637 0 0.3191 4.7363, 5.7912
5.4652 0 0.0513 4.9973, 5.9331 5.1144 0 0.6027 4.6741, 5.5547
5.2479 0 0.2317 4.8364, 5.6593 4.8397 0 0.4353 4.4298, 5.2496
5.7791 1 0.0002 5.3852, 6.1730 5.3914 0 0.0617 4.9801, 5.8027
5.2767 0 0.3188 4.7236, 5.8298 4.9653 0 0.8990 4.4168, 5.5138
5.5249 1 0.0406 5.0235, 6.0263 5.4360 1 0.0425 5.0154, 5.8565
5.4453 0 0.0648 4.9716, 5.9190 4.9511 0 0.8446 4.4513, 5.4509
5.2735 0 0.3114 4.7350, 5.8120 4.9157 0 0.7507 4.3834, 5.4479
5.1718 0 0.4548 4.7132, 5.6304 4.6620 0 0.1534 4.1933, 5.1307
4.9919 0 0.9772 4.4231, 5.5607 4.8825 0 0.6264 4.3976, 5.3674
5.8755 1 0.0005 5.4032, 6.3478 5.5055 1 0.0388 5.0272, 5.9838
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Appendix J

MSAD Analysis

Based on the data collected from using a designed experiment several ANOVA analyses

were performed to study the effect of UV, LV, EV and all their interactions. The response

variables used were ∆e (DeltaE), ∆eTrim (DeltaETrim), ∆eNew (DeltaENew), ∆eTrimNew

(DeltaETrimNew). Explanations for these variables can be found in the text as well as

in Appendix(A). Some other variables studies were count of null estimates of equipment

variation using the old approach (cntE), count of null estimates of equipment variation

using new approach (cntENew), and count of null estimates of appraiser variation (cntA).

Recall that the expression for appraiser variation remains unchanged between the old and

the new approach.

Analysis of Variance for DeltaE

Source DF Seq SS Adj SS Adj MS F P
Regression 15 316.740 316.740 21.11608 2.38 0.000

Linear 5 313.582 313.582 62.7164 244.67 0.000
Interaction 10 3.158 3.158 0.3158 1.23 0.305

Residual Error 36 9.228 9.228 0.2563
Lack-of-Fit 27 7.415 7.415 0.2746 1.36 0.325
Pure Error 9 1.813 1.813 0.2015

Total 51 325.968

Analysis of Variance for DeltaETrim

Source DF Seq SS Adj SS Adj MS F P
Regression 15 220.542 220.542 14.7028 70.90 0.000

Linear 5 216.919 216.919 43.3837 209.21 0.000
Interaction 10 3.624 3.624 0.3624 1.75 0.107

Residual Error 36 7.465 7.465 0.2074
Lack-of-Fit 27 6.801 6.801 0.2519 3.41 0.029
Pure Error 9 0.664 0.664 0.0738

Total 51 228.007
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Analysis of Variance for DeltaENew

Source DF Seq SS Adj SS Adj MS F P
Regression 15 316.804 316.804 21.1203 75.87 0.000

Linear 5 313.581 313.581 62.7163 225.29 0.000
Interaction 10 3.223 3.223 0.3223 1.16 0.350

Residual Error 36 10.022 10.022 0.2784
Lack-of-Fit 27 8.223 8.223 0.3046 1.52 0.260
Pure Error 9 1.798 1.798 0.1998

Total 51 326.826

Analysis of Variance for DeltaETrimNew

Source DF Seq SS Adj SS Adj MS F P
Regression 15 207.983 207.983 13.8655 63.20 0.000

Linear 5 203.326 203.326 40.6652 185.36 0.000
Interaction 10 4.657 4.657 0.4657 2.12 0.048

Residual Error 36 7.898 7.898 0.2194
Lack-of-Fit 27 7.166 7.166 0.2654 3.26 0.034
Pure Error 9 0.732 0.732 0.0814

Total 51 215.881

Analysis of Variance for cntE

Source DF Seq SS Adj SS Adj MS F P
Regression 6 994.50 994.50 165.750 26.68 0.000

Linear 4 898.88 898.88 224.719 36.17 0.000
Interaction 2 95.62 95.62 47.812 7.70 0.001

Residual Error 45 279.56 279.56 6.212
Lack-of-Fit 18 164.89 164.89 9.161 2.16 0.034
Pure Error 27 114.67 114.67 4.247

Total 51 1274.06

Analysis of Variance for cntENew

Source DF Seq SS Adj SS Adj MS F P
Regression 15 1462.75 1462.75 97.517 10.79 0.000

Linear 5 1365.75 1365.75 273.150 30.23 0.000
Interaction 10 97.00 97.00 9.700 1.07 0.407

Residual Error 36 325.33 325.33 9.037
Lack-of-Fit 27 232.93 232.93 8.627 0.84 0.659
Pure Error 9 92.40 92.40 10.267

Total 51 1788.08
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Analysis of Variance for cntA

Source DF Seq SS Adj SS Adj MS F P
Regression 15 1565.89 1565.89 104.393 11.62 0.000

Linear 5 1490.58 1490.58 298.116 33.18 0.000
Interaction 10 75.31 75.31 7.531 0.84 0.596

Residual Error 36 323.42 323.42 8.984
Lack-of-Fit 27 296.52 296.52 10.982 3.67 0.023
Pure Error 9 26.90 26.90 2.989

Total 51 1889.31
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