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PREFACE 

The current state of the art in computer random number 

generation uses a method developed over thirty-five years 

ago. Although much has been done to improve the sequences 

generated by these methods, they still have serious 

problems. As the results become more "random", the 

methodology becomes more complex. Perhaps this explains the 

number of poor generators in use today. The following study 

is an attempt to develop a fundamental change in the 

methodology of random number generation in an effort to both 

simplify and improve current methods. 

I wish to thank Dr. Joseph H. Mize for his guidance as 

my advisor, and Dr. Allen Schuermann and Dr. Manjunath 

Kamath as members of my committee. I would also like to 

thank Dr. Schuermann for his valuable input and assistance. 

I wish to extend special thanks to my wife, Maureen, 

for her support and encouragement, and to my parents for 

providing an environment making success possible. 
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CHAPTER I 

RANDOM NUMBER GENERATION: AN INTRODUCTION 

Random numbers are used in many areas of the scientific 

community. They are used to provide probabilistic data for 

experiments, computer simulation, games, and modeling. They 

are also used in Monte Carlo methods, and for integrating 

higher dimensional functions. However, the numbers used for 

these purposes are not really random. They are actually 

numbers in a sequence that is generated by some type of 

algorithm that have the appearance of being random. For 

this reason, they are called pseudo-random numbers. 

Although they are not truly random, in many cases, they are 

sufficiently adequate for the purposes they serve. Since 

the beginning of random number generation on a computer, 

numerous empirical and theoretical tests have been developed 

by researchers to determine whether or not a particular 

method of generation is suitable. Most of these tests 

evaluate either the independence or the uniformity of the 

numbers in the sequence. 

Ideally, a good random number generator should.have the 

following properties: 

1) Independent values 

2) Uniformly distributed values 

1 



3) Fast (short generation time) 

4) Long period 

5) Use little computer memory. 

Several methods of generation have been developed that 

will satisfy the first two requirements, relative to the 

testing procedures mentioned earlier. The fact that 

computers are continually getting faster eases constraints 

on speed. 

Some of the recent research has been in an effort to 

improve the length of the period of the sequence. The 

period is defined as the number of values produced by the 

method before the numbers repeat in a cyclic manner. With 

the most common methods this length is primarily dependent 

on the word size of the computer, and with the existence of 

the 32 bit computer, the length can be as high as 231 -1 

(just over 2 billion). Unfortunately, simplicity is not 

generally considered as one of the requirements of a good 

random number generator, and as the other properties 

improve, methods tend to become more complex. This is 

especially evident when trying to implement a given 

technique across a broad range of computers and computer 

languages. 
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CHAPTER II 

WHAT IS "RANDOM"? 

A common question to consider when developing these 

generators is what exactly is "random"? It is easy to say 

'pick a number at random between 1 and 10 1 , and then have 

someone do that, but how does a person determine if the 

number was chosen at random? The person selecting the 

number may have chosen hisjher favorite number, the number 

of coins in hisjher pocket, or in any other biased fashion. 

There is no quantifiable way to determine if the person 

chose the number at random or not. 'At random' and 'random 

behavior' are easy to illustrate, in terms of picking 

numbered balls out of a well mixed bowl or picking a card 

from a well shuffled deck. However, it is very difficult to 

quantify the meaning of randomness. The introduction of the 

concepts "well mixed", and "well shuffled" can cloud the 

picture even more. How does one define a well mixed deck of 

cards? Perhaps if one could quantitatively define the 

source of the random items, this definition could be then 

applied to the items themselves. 

Applying these ideas to a sequence of numbers makes it 

a little easier to conceptualize. In a sequence of uniform 

random numbers, one would expect to find all numbers in the 
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sequence represented an equal number of times. The chance 

of any one sub-sequence occurring should be equally likely 

as any other. Lehmer (1951) proposed a definition of a 

random sequence as 

a vague notion embodying the idea of a sequence 

in which each term is unpredictable to the 

uninitiated and whose digits pass a certain 

number of tests, traditional with statisticians 

and depending somewhat on the uses to which the 

sequence is to be put (p. 141). 

The idea of 'passing a certain number of tests• 

epitomizes the difficulty in quantifying randomness. How 

many tests should it pass? Noting that this definition was 

developed in 1951, almost 40 years later there is still no 

one well recognized quantifiable definition for a random 

sequence. 

4 

Perhaps there is some significance in the use of the 

term "unpredictable" in Lehmer's definition. If the 

behavior of some object was truly random, its next move 

would be completely unpredictable. Also, if an object's 

behavior was somewhat random, its next move could be 

predicted given enough information about its prior behavior. 

Given these two ideas, one may be able to determine 

relationships of 'more random' or 'less random' based on how 

predictable the behavior of different objects are. Then 

predictability could be measured on a scale of how much 



information is needed to reasonably predict ensuing 

behavior. 
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CHAPTER III 

HISTORICAL METHODS 

Rolling a fair die results in a random number between 

one and six (inclusive). Tossing a fair coin results in a 

yes or a no, a + or a -, or a one or a two. These methods 

could be used to generate pseudo-random numbers and are 

generally considered as completely random,· although there is 

some belief that they may not be (see Kolata (1986), for a 

discussion of randomness). These methods could be used to 

generate the random numbers needed in the scientific 

community; however, the large amount of numbers needed, and 

the speed at which these methods can produce values make it 

unrealistic. A computer is a natural choice for the 

generation of pseudo-random numbers because of its speed and 

ability to work with large amounts of data. 

The first algorithm for generating pseudo-random 

numbers on a computer was developed by Von Neumann in 1946. 

This method was called the middle square or mid-square 

method because it involved squaring a number and then using 

the middle digits as the next seed (the seed is a number 

used to generate the next number, and generally the next 

number then becomes the seed for the next consecutive 

number). For example, using the mid-square method, the 
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number 4615 would be squared, resulting in 21298225. The 

middle digits, 2982, would be the next number in the 

sequence and would also be used as the seed for the next 

number. The numbers would then be divided by the largest 

number in the sequence (10000) to produce pseudo-random 

numbers between o and 1. This method had problems in that 

often the period was very short, and the sequence had a 

tendency to degenerate to o. The sequences produced by the 

mid-square method also do not fair well in empirical 

testing used to evaluate a generator. 
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Another common type of generator, and perhaps the most 

widely used today, is the multiplicative linear congruential 

generator (MLCG) developed by Lehmer in 1949 (Knuth,1981). 

This method is based on the algorithm of multiplying a seed 

by a large constant, and then taking the remainder from a 

division operation as the next number and next seed of the 

sequence (see Appendix A for a sample computer program). 

For example, with 4 as the seed, 6 as the constant 

multiplier, and 13 as the divisor the function would be: 

seedi+1 = seedi * 6 mod 13. The first five numbers of this 

sequence would be 4, 11, 1, 6, 10. A variation of the MLCG 

is to add a constant c to the product of the seed and 

multiplier. This is called a mixed linear congruential 

generator. This enables the generator to produce a value of 

o, which the multiplicative method itself can not produce. 

A third type of generator, although not in as wide of 



use today, is the Tausworthe, or shift register generator 

which used strings of binary digits or bits, and an 

algorithm similar to the linear congruential method (see 

Knuth, 1981). This method complicates the calculation of 

numbers greatly and is much slower than other methods. 
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CHAPTER IV 

EMPIRICAL TESTING 

The majority of tests performed on pseudo-random number 

generators are empirical tests performed on the sequences 

produced. These tests are primarily based on the chi-square 

test of an expected distribution. Given n independent 

observations and k categories such that each observation can 

fall into one category, the chi-square statistic is 

calculated as follows: 

x2 = ~ [(actual- expected) 2 1 expected]. 

The actual value is the observed total count for a 

particular category. The expected values are determined by 

multiplying the probability that one observation will fall 

into a given category by the total number of observations. 

This value is then compared with an acceptable value from a 

chi-square table based on the a level and the number of 

degrees of freedom, one less than the number of categories, 

k (see Knuth, 1981 for a complete discussion). 

Several generally accepted empirical tests have been 

developed based on this criterion. Some of the most common 

include the frequency test, the serial test on pairs, 

3triples, etc., the runs test, and the gap test. A brief 

description of each of these tests follows. 
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Frequency Test 

Given a sequence of n pseudo-random numbers, and two 

constants u and v such that 0 ~= u < v <= 1; approximately 

n*(v -u) values should fall in the interval [u,v). A chi­

square test can be performed on the sequence by dividing the 

interval [0,1) into k sub intervals or categories and 

counting the number of values that fall into each category. 

The expected number for each category is njk. It is 

generally accepted practice that n should be great enough 

such that n/k > 5. The frequency test is a check of 

uniformity. 

Serial Test 

This test is a generalization of the frequency test to 

higher dimensions. In the case of the serial test on pairs, 

the n values in the sequence are used as n/2 pairs of points 

that are 'plotted' on a two-dimensional grid. The grid 

measures k x k categories and the number of degrees of 

freedom is k 2 - 1. This test can be performed for higher 

dimensions although the number of values required becomes 

quite large beyond three dimensions. The serial test is 

also a check of uniformity. 

Runs Test 

This test is a test of the independence assumption of 

the sequence of values. Runs of length i, i = 1,2,3,4,5, 
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and i >=6 are calculated and compared against the expected 

number of runs for each length. A run i is a sub-sequence 

of i values where the next consecutive number is greater 

than the preceding value. This is generally called a runs 

up test. A runs down test is performed in a similar manner. 

Gap Test 

Given a sequence of n values, the probability that 

consecutive numbers will be within the same sub-interval 

[u,v) is v - u. The probability of these numbers in the 

same sub-interval occurring with a gap of one value between 

them is 

[ 1- (v- u) ] * (v- u). 

A chi-square test can be performed on the actual totals of 

each gap length for n lengths and compared to the expected 

distribution. Special cases of the gap test with (u,v) = 

(0,~) or (~,1) are called runs below the mean and runs above 

the mean respectively. 

These tests are primarily the criteria that individuals 

such as Lehmer are referring to when they mention 'passing a 

certain number of tests'. Ideally, a good pseudo-random 

number generator will pass these tests and a bad one will 

fail them; however, some sequences of numbers can be 

assembled that are not random at all but will pass many of 

these tests. 



CHAPTER V 

CURRENT RESEARCH 

The most common method of pseudo-random number 

generation today is the linear congruential generator (LCG). 

Several attempts have been made to improve the numbers 

produced by this method by using shuffling techniques or by 

using two or more of these generators simultaneously. 

Combined generators have shown that they do increase the 

period beyond that of the component generators, however, 

this is the only mathematically demonstrated improvement 

(L'Ecuyer, 1988). 

Much has been written on the length of the period 

achievable by the linear congruential algorithm. 

Essentially, if a proper multiplier is chosen, the result is 

what is called a full period generator. This generator has 

a period length equal to the modulo m (or m- 1 when c = 0). 

The algorithm used is: 

xi = (a * xi_ 1 + c) mod m. 

Any of these generators will eventually repeat, and the 

longest period that can be achieved will be m, given that 

the following three conditions hold (Law and Kelton, 1982): 

(1) The only positive integer that exactly divides 

both m and c is 1 (also stated, c is relatively 

12 



prime to m) • 

(2) If q is a prime number that divides m, then q 

divides (a- 1). 

(3) If 4 divides m, then 4 divides (a- 1). 

Often the number chosen for m is equivalent to some 

multiple of 2, which would replace a division by simply 

shifting binary digits, a technique which will improve the 

speed of a generator. Unfortunately, many of these 

generators have serious flaws in terms of uniformity or 

independence. 

13 

Even though the linear congruential generator is the 

most widely used method of producing pseudo-random numbers 

today, there are infinitely many different generators 

conceivable considering the possible values for a, c, and m. 

The current state of random number generation was summed up 

in the late 1960s by Knuth who stated " ... look at the 

subroutine library of each computer installation in your 

organization, and replace the random number generators by 

good ones. Try to avoid being too shocked at what you find" 

(Knuth, 1981). Considering how much science has advanced 

since that time, it is a bit surprising to see similar 

references in the recent literature (see Park and Miller, 

1988). From much of the recent research, an accepted 

'minimal standard' generator has evolved (Park and Miller, 

1988, Carta, 1990). The minimal standard uses a 

multiplicative linear congruential method (c = 0) with a 
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multiplier of 75 (16807) and a modulus of 231 - 1. This is a 

full period generator and has become the standard in that it 

is the generator employed in commercial software packages 

such as subroutines RNUN in the IMSL library and DRAND in 

the simulation language SLAM II (Park and Miller, 1988). 

The choice of 231 - 1 for the modulus of the minimal 

standard generator is by no means arbitrary. It happens to 

be the largest integer possible in a 32 bit word size 

computer. By multiplying a seed (the previous number in the 

sequence) by the constant 16807, a number much greater than 

that allowable in a 32 bit word size can be achieved. When 

this occurs, the overflow is simply disregarded and what 

remains is the next number in the sequence. This may seem 

simple enough, but the difficulty arises when trying to 

transport this algorithm to many different computers or to 

different languages. Most contemporary systems will produce 

an integer overflow error which will, in most cases, stop 

execution. This is where the LCG begins to get very 

complicated. If the maximum integer in a system is 246 - 1 

or greater, a simple implementation of the minimal standard 

is adequate. If the maximum integer is not that large, 

other programming variations must be used to provide proper 

implementation of the minimal standard (see Carta, 1990 for 

some examples). This shouldn't be much worse if one can 

already understand the reasoning behind the derivation of 

the full period generator. 



CHAPTER VI 

RESEARCH OBJECTIVES 

Given the current state of pseudo-random number 

generation and the increasing complexity with which it is 

developing, the following three objectives were developed to 

define the purpose of this study: 

(1) Provide an intuitive definition for the concept of 

random behavior as applied to number generation. 

(2) Develop a method for generating random numbers 

(sequence generation) that is less complex primarily in 

terms of implementation and understanding. This method 

should provide repeatable sequences when initiated with 

the same seed. 

(3) Develop a modification to the method in (2) that will 

provide truly random number generation at the expense 

of repeatable sequences with the same seed. 

It is equally important that the methods developed 

prove comparable to, if not better than, the current methods 

available. The empirical tests discussed earlier, and a 

modified approach to the given methods will be used to 

evaluate the new method against the linear congruential 

generators, or the minimal standard. 
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CHAPTER VII 

A FUNDAMENTAL CHANGE 

The need for a simpler approach to pseudo-random number 

generation arises mainly from two points of view: 1) in 

implementing the method across all languages and computers, 

and 2) in providing methodology understandable to the non­

expert encouraging the replacement of a poor generator with 

an improved one. The basis for the first point is that 

different computer languages handle the overflow caused by 

the congruential methods in different ways. Implementing 

this method would require knowledge of how a particular 

language deals with overflow, and then development of an 

algorithm that would provide the desired result. This 

reasoning is also considered in the second point, along with 

the knowledge necessary to create a full period generator 

with the use of the proper multiplier and modulus. 

The proposed method was developed with a table look-up 

approach, but not requiring a large amount of memory. The 

table does not contain pseudo-random numbers between 0 and 1 

(or any other range), but rather the digits o through 9. A 

pointer is used to •move around' the table producing a 

stream of integers to be assembled to provide a number. The 

table is simply a one dimensional table, or string, 

16 



17 

consisting of a random permutation of the digits o through 

9. The movement of the pointer is determined by the 

previous numbers generated. The resolution, or number of 

decimal places of the numbers generated is completely 

determined by the algorithm. This methodology can be used 

to produce numbers with any number of decimal places, within 

the limits of the computer. 

In the following discussion, the term 'number' will 

refer only to a pseudo-random value between o and 1 produced 

by the generator, and the term 'digit' will refer to the 

values in the string or table, or the positions or places to 

the right of the decimal within the number. 

An initial attempt was made using the previous two 

numbers to determine the movement of the pointer. The 

digits of the most recent number determine the distance 

moved by the pointer, and the digits of the second most 

recent number determine the direction moved by the pointer. 

The two seeds are denoted by: 

.d1d2d3d4 

.a1a2a3a4 

The pointer is positioned at the digit represented by a4• 

The direction is determined by whether di is odd or even. 

An odd digit implies movement to the left in the table, and 

an even digit implies movement to the right (a 0 is 

considered even). The component digits, ni, are determined 

by their corresponding di, and ai. 



For example, consider the string '4705631829 1 • 

Initialization of the algorithm requires two seeds. The 

numbers .2701 and .4398 were used for this example. This 

generator will produce numbers with four decimal places. 

The sequence generated is as follows: 

.2701, 

.4398, 

.7289, 

.1613, 

.6472, etc. 

18 

With the two seeds given, the pointer is positioned at 

the 8 in the table or string. The pointer movement for the 

next digit, n 1 , is made from this position. For determining 

the next number, d 1 is 2 (from .2701), and a 1 is 4. The 

pointer is moved to the right because d 1 is even and the 

distance moved is 4 places, so the first digit of the next 

number is 7. If the pointer movement goes beyond the end of 

the table in either direction, the movement 'wraps' around 

to the other end. The second digit of the next number is 

determined by moving a 2 places in the d 2 direction. The 

third and fourth digits are found similarly. When all four 

digits have been determined, the second seed becomes the 

first seed, and the number just generated becomes the second 

seed and the algorithm repeats. 

The sequences produced by this algorithm had very short 

periodic cycle lengths (< 100). These sequences were not 

considered long enough to perform empirical testing. It was 

noted that whenever a 0 occurred as a pointer movement 
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distance a digit would repeat. This appeared to have an 

adverse effect on the sequence produced. 

In an effort to reduce the problem caused by a zero in 

the seed, a third seed value was used. It was hoped that 

this would increase the cycle length and make the digits 

more uniform. The algorithm used is essentially the same, 

except that now the digits of the second seed and the third 

seed are added together to determine the distance moved by 

the pointer. 

The new algorithm is denoted as follows: 

Pointer 

ni = Table(Pointer) ± (ai + bi) mod 10 

The pointer references the position in the table or string. 

This addition to the previous algorithm made a 

tremendous improvement in the results. The cycle length 

produced by this 3 seed 4 decimal place· method was over 41 

million numbers. 

Empirical testing of this generator was successful on 

all tests performed, which was very encouraging. This 

method also showed some very distinct advantages over the 

linear congruential generators. Any given number could be 

repeated in the sequence without the generator cycling, a 

feat not possible with the LCGs. Also, the new method can 

/ 
\ 



yield a value of zero without degenerating, not possible 

with the multiplicative generator. 
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A cycle length of 41 million showed tremendous promise, 

but the maximum cycle length for the minimal standard is 

over 2 billion numbers. Given the nature of the new method 

for generating pseudo-random numbers, the cycle length of 

the algorithm must be determined empirically, i.e. by 

running the generator in a computer program until a cycle 

is detected. One fact that makes this possible is that any 

three numbers (seeds) in a row can uniquely define the 

sequence generated, and a second occurrence of these three 

numbers in a row indicate a periodic cycle. Even 

considering the speed of computers today, running these 

programs to determine cycle length takes a significant 

amount of time. Over twelve hours of computing time was 

required on a 12 Mhz 80286 personal computer to determine 

the 4 decimal place cycle length of 41 million numbers. 

It seemed apparent that with this new methodology, 

generators with more decimal places might have longer cycle 

lengths. The potential existence of a mathematical 

relationship between the number of decimal places and the 

cycle length could make empirical determination of cycle 

lengths unnecessary. The results of empirical testing to 

determine maximum cycle length for each number of decimal 

places are given in Table I. 



TABLE I 

MAXIMUM CYCLE LENGTHS 

Decimal Places 1 

Max Cycle Length 6 

2 

2339 

3 

277,118 

4 

41,098,617 
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From this information, the thought that the cycle length, 

for a six or seven decimal place generator with the proposed 

method, would be greater than 2 billion is legitimate. 



CHAPTER VIII 

TESTING AND COMPARISON 

(AGAINST THE MINIMAL 

STANDARD) 

When proposing any new methodology it is important to 

provide evidence that the new alternative is comparable, if 

not better, than the current state of the art. As mentioned 

earlier, the current minimal standard, as presented by Park 

and Miller (1988), is the multiplicative linear congruential 

generator with multiplier 16807 and modulus 231 - 1. A 

brief description of the set up and testing procedures 

precedes the results of the'comparison. 

Set up - All of the testing was performed on an Epson 

Equity II+ personal computer (80286 processor running at 12 

Mhz - no math chip) using Microsoft's QuickBasic compiler, 

version 4.5. Appendix B contains a complete listing of the 

Basic code for the programs used in testing the pseudo­

random number generators. 

An important aspect of any number generator is that it 

be fast. All speed tests were performed on the various 

generators tested using identical conditions. Using Basic's 

TIMER, the time, in seconds, to generate 1000 values was 

determined. This time included displaying a counter on the 

22 
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screen. Tests were repeated several times for consistency. 

Table II displays the comparison of the speed of the minimal 

standard versus several lengths (decimal places) of the 

proposed method. It should be noted that a smaller time 

represents a faster generator. 

MLCG 

1.85 

TABLE II 

TIME (SEC.) REQUIRED TO PRODUCE 
1000 RANDOM NUMBERS 

4PLACE 5PLACE 6PLACE 

0.89 1.19 1.26 

7PLACE 

1.35 

A one way analysis of variance (a = .05) found these 

differences to be significant, and a test of differences 

between means showed a statistically significant difference 

between the MLCG and 7PLACE generators (a= .05). This not 

only shows comparable performance in speed, but rather 

superior speed provided by the proposed method. 

The amount of computer memory required to use a 

generator may not be as important as other issues, however 

it should be given some consideration. The linear 

congruential generators are very short algorithms and hence 

require very little memory. By comparison of the QuickBasic 

program files used for the speed testing, the file for the 

proposed method was slightly more than twice the size of the 
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program file for the MLCG. A true "table" look up pseudo­

random number generator would require much more memory, but 

because the proposed method really employs a string of ten 

digits, i,ts memory usage is essentially not much more than 

any of the congruential generators. 

The most emphasis of any comparison of pseudo-random 

number generators would most likely fall on the empirical 

testing. For each of the tests described in Chapter IV, a 

series of 20 tests were performed on each generator. The 

results from these tests are presented in Table III for 

comparison. The table lists the number of tests that passed 

out of a possible 20. The parameters used for the various 

tests were: 

Frequency test 

Serial test (pairs) 

Serial test (triples) 

k=lOO, and n=lO,OOO, 

k=50, and n=25,000 pairs (d=2), 

k=14, and n=27,440 triples (d=3), 

Serial test (quadruples) k=lO, and n=lOO,OOO quad. (d=4), 

Runs test 

Gap test 

n=lO,OOO, 

k=16 (runs down). 



TABLE III 

EMPIRICAL TEST RESULTS 

Number of Tests Passed Out of 20 
Proposed Method Minimal Standard 

Frequency 19 19 

Pairs 18 17 

Triples 18 18 

Quadruples 19 20 

Runs 18 19 

Gap 20 20 

For all of the tests, an a level of .05 was used with the 

null hypothesis stating the test sequence is uniformly 

distributed, independent, or both. The chi-square test 

statistic was calculated and compared to the theoretical 

value with k-1 (or kd - 1) degrees of freedom. 

A second hypothesis test was set up based on the fact 

that the number of successes (tests passed) is a binomial 

variable with a probability, p = .95, of success. The 

25 

expected value of the number of passes is 19, but the reject 

region for an a of .05 is x < 18. This implies that any 

number of successes less than 18 would be considered a rare 

occurrence and is suspect. Examining Table III shows that 

only one number of successes, x, is less than 18, which is 

the serial test on pairs for the minimal standard. With 

this information, statistically, one would reject the null 



hypothesis that the sequence of values are independent and 

identically distributed uniform random variables over two 

space. 

As was mentioned at the close of Chapter IV, some 

sequences of numbers that are not random at all can and do 

pass many, if not all of the empirical tests. 
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Unfortunately, even if a seemingly good generator fails a 

particular test, running the same test again with a 

different value of k or perhaps a different seed may provide 

a successful result. This lessens enthusiasm about the 

results in Table III. If anything, the results in Table III 

show that the proposed method is just as good as the minimal 

standard, or any other generator, in terms of empirical 

testing. 



CHAPTER IX 

AN ALTERNATIVE EVALUATION 

In Chapter II, an intuitive definition of randomness 

was approached based on the idea of unpredictability. It 

was noted that, if a sequence of numbers were uniform random 

values, each number would have an equally likely chance of 

occurring, and in the long run, each number would occur 

approximately the same number of times. The term "uniform" 

is important here, because random numbers could come from 

any distribution. All of the pseudo-random number 

generators considered here attempt to produce uniformly 

distributed values on the interval [0,1]. 

The requirement that a pseudo-random number generator 

create a sequence of values where each value is equally 

likely is commonly tested with the frequency test discussed 

in Chapter V. All of the generators considered in this 

study, including the proposed method, show sufficient 

evidence of meeting this requirement at the stated levels of 

the given parameters. This was shown in the results of 

empirical testing found in Chapter VIII. 

Another requirement is that all pairs of numbers should 

have an equally likely chance of occurring, as well as 

triples, quadruples, etc. This attribute of random number 
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generators is tested by the group of serial tests. Again, 

both the minimal standard and the proposed method show 

sufficient evidence that the sequences produced meet these 

requirements. 

28 

A major difference between the minimal standard and the 

proposed method is in what occurs following the generation 

of a given value in a sequence. Due to the nature of the 

linear congruential generators, the sequence is completely 

determined with the knowledge of any one number (seed). 

Hence, when one particular value in the sequence appears for 

a second time, the generator begins to cycle. This fact 

would be revealed by performing a serial test with a large 

value fork (>10000). In this scenario, the minimal 

standard would fail the test. The proposed generator does 

not have this problem because it is based on three seeds 

uniquely defining a sequence. 

The alternative evaluation provides findings that the 

proposed method has a great advantage over the minimal 

standard generator, and assuming the relationship between 

unpredictability and randomness is valid, the proposed 

method of pseudo-random number generation produces sequences 

that are more random than those produced by any other method 

described in the current literature. The proposed method 

certainly fills a portion of the gap between pseudo-random 

and truly random number generators. 



CHAPTER X 

A COMPLETELY RANDOM NUMBER GENERATOR 

The third objective of this study was to provide a 

modification of the proposed method that would render a 

truly random number generator, in that the sequences 

produced would be infinite and would not be repeatable. As 

with the basis of the proposed method, numerous ways exist 

in which modifications can be made. The foundation of the 

completely random number generator is the use of the clock 

inside the computer. In the case of a PC, a clock generates 

a tick roughly 18.2 times per second. Although nearly any 

modification would provide a similar end result, it was 

decided to replace the direction indicator d 1 with the tens 

place of the timer at the initiation of each newly generated 

number. This provided the ability to generate an infinite 

sequence of non-repeatable values with the same flexibility 

in terms of number of significant digits required. It is 

also a very simple modification. 
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CHAPTER XI 

RECOMMENDATIONS AND CONCLUSIONS 

The proposed random number generator presented in this 

study demonstrates a fundamental change in the way pseudo-

random numbers are produced. It is simpler in 

implementation across many languages and machines than the 

minimal standard due, in part, to the way overflow is 

handled. The new methodology has shown to be equal, if not 

superior, in terms of the commonly used empirical tests, and 

is superior in speed to the minimal standard. The proposed 

method has also demonstrated potential for much longer 

periodic cycle lengths which also allows numbers to be 

duplicated exactly without caus~ng the generator to cycle. 

The number 0 is also achievable without causing the 

generator to degenerate. 

The results shown in Chapter IX on alternative 

evaluation of a random number generator display another 

fundamental change, i.e., in the way randomness of a 

sequence is evaluated based on predictability. The 

association of predictability with randomness may provide an 

approach in which a quantifiable measure could be applied to 

random number generators in the future. 
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The difficulties associated with the proposed method 

are concerned with predicting, if not determining, the cycle 

length of a given x-decimal place generator and what types 

of seeds will provide the maximum cycle length. For the 

string that was evaluated with the proposed three seed 

algorithm, maximum cycle lengths for different size (decimal 

places) generators were given in Table I. Not all possible 

seed combinations, however, result in the maximum cycle 

length. For a single place generator three different cycles 

are possible, for two places, fifteen different cycles are 

possible ranging in length from 4 to 2339. Eleven cycles 

are possible in a 3 place generator with a range of 90 to 

277,118. The random permutation of the table or string used 

also has an impact on the make up and length of the cycles 

created. For these reasons, users are warned that any 

particular seed combination and table should be tested for 

cycle length before being used. 

Even on a super computer, the time required to 

determine all possible cycles and what seeds creates them 

empirically would take hundreds of years. From a more 

practical standpoint, several seed combinations that produce 

a cycle greater than 2 billion numbers (5 or more decimal 

places) can be found empirically in a much more realistic 

amount of time. The fact that there are 10! possible orders 

for the table or string implies that there are also that 

many different streams available. Testing each of these 



empirically is also not practical. These evaluations are 

left to the true number theorists. 
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APPENDIX A 

QUICKBASIC CODE FOR GENERATORS 

36 



4 PLACE GENERATOR 

CLS 
DEFINT A-P 
N(O) = 4: N(1) = 7: N(2) = 0: N(3) = 5: N(4) = 6 
N(5) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9 
D(O) = 1: D(1) = -1: D(2) = 1: D(3) = -1: D(4) = 1 
D(5) = -1: D(6) = 1: D(7) = -1: D(8) = 1: D(9) = 1 
T = TIMER 
S1 = 4752 
S2 = 3186 
S3 = 5927 
D1 = 4: D2 = 7: D3 = 5: D4 = 2 
A1 = 3: A2 = 1: A3 = 8: A4 = 6 
B1 = 5: B2 = 9: B3 = 2: B4 = 7 
POINTER = 1 
FOR J = 1 TO 1000 
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10 
D1 = A1: A1 = B1: B1 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10 
D2 = A2: A2 = B2: B2 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10 
D3 = A3: A3 = B3: B3 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10 
D4 = A4: A4 = B4: B4 = N(POINTER) 
CNUM = B1 * 1000 + B2 * 100 + B3 * 10 + B4 
QNUM = CNUM * .0001 
LOCATE 5, 5: PRINT J 
NEXT 
PRINT TIMER - T 
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CLS 
DEFINT A-P 
DEFLNG B-C 

7 PLACE GENERATOR 

N(O) = 4: N(1) = 7: N(2) = 0: N(3) = S: N(4) = 6 
N(S) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9 
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT 
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT 
T = TIMER 
S1 = 47S2712 
S2 = 3186337 
S3 = S927976 
D1 = 4: D2 = 7: D3 = S: D4 = 2: DS = 7: D6 = 1: D7 = 2 
A1 = 3: A2 = 1: A3 = 8: A4 = 6: AS = 3: A6 = 3: A7 = 7 
B1 = S: B2 = 9: B3 = 2: B4 = 7: BS = 9: B6 = 7: B7 = 6 
POINTER = 4 
FOR J = 1 TO 1000 
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10 
D1 = A1: A1 = B1: B1 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10 
D2 = A2: A2 = B2: B2 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10 
D3 = A3: A3 = B3: B3 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10 
D4 = A4: A4 = B4: B4 = N(POINTER) 
POINTER= (POINTER+ 20 + D(DS) * (AS+ BS)) MOD 10 
DS = AS: AS = BS: B5 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10 
D6 = A6: A6 = B6: B6 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10 
D7 = A7: A7 = B7: B7·= N(POINTER) 
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CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+B5*100+B6*10+B7 
QNUM = CNUM * .0000001 
LOCATE 5, 5: PRINT J 
NEXT 
PRINT TIMER - T 



CLS 
DEFINT J 

MINIMAL STANDARD GENERATOR 

A = 1 I 2147483647 
T = TIMER 
SEED = 18235 
M = 2 A 31 - 1 
FOR J = 1 TO 1000 
TEMP = SEED * 16807 
SEED = TEMP - M * INT(TEMP I M) 
NUMBER = SEED * A 
LOCATE 5, 5: PRINT J 
NEXT 
PRINT TIMER - T 
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APPENDIX B 

QUICKBASIC CODE FOR 

EMPIRICAL TESTS 

40 



CLS 
DEFINT A-P 
DEFLNG B-C 
DIM A(100) 

PROPOSED GENERATOR TESTS 

FREQUENCY TEST 

N(O) = 4: N(1) = 7: N(2) = 0: N(3) = S: N(4) = 6 
N(S) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9 
D(O) = 1: D(1) = -1: D(2) = 1: D(3) = -1: D(4) = 1 
D(S) = -1: D(6) = 1: D(7) = -1: D(8) = 1: D(9) = 1 
S1 = 47S2712: S2 = 318633S: S3 = S927978 
D1 = 4: D2 = 7: D3 = S: D4 = 2: DS = 7: D6 = 1: D7 = 2 
A1 = 3: A2 = 1: A3 = 8: A4 = 6: AS = 3: A6 = 3: A7 = S 
B1 = S: B2 = 9: B3 = 2: B4 = 7: BS = 9: B6 = 7: B7 = 8 
POINTER = 7 
FOR M = 1 TO 20 
FOR J = 1 TO 10000 
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10 
D1 = A1: A1 = B1: B1 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10 
D2 = A2: A2 = B2: B2 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10 
D3 = A3: A3 = B3: B3 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10 
D4 = A4: A4 = B4: B4 = N(POINTER) 
POINTER= (POINTER+ 20 + D(DS) * (AS+ BS)) MOD 10 
DS = AS: AS = BS: BS = N(POINTER) 
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10 
D6 = A6: A6 = B6: B6 = N(POINTER) 
POINTER= {POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10 
D7 = A7: A7 = B7: B7 = N(POINTER) 
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CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+BS*100+B6*10+B7 
NUM = INT(CNUM I 100000!) 
A(NUM) = A(NUM) + 1 
LOCATE 2, S: PRINT J 
NEXT 
FOR I = 0 TO 99 
SUM= SUM+ ((A(I) - 100) A 2) I 100 
A(I) = 0 
NEXT 
LOCATE 3 + M, S 
PRINT SUM 
SUM = 0: NEXT 



CLS 
DEFINT A-P 
DEFLNG B-C 
DIM A(50, 50) 

SERIAL TEST - PAIRS 

N(O) = 4: N(1) = 7: N(2) = O: N(3) = 5: N(4) = 6 
N(5) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9 
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT 
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT 
Sl = 4752712: S2 = 3186337: S3 = 5927976 
D1 = 4: D2 = 7: D3 = 5: D4 = 2: D5 = 7: D6 = 1: D7 = 2 
A1 = 3: A2 = 1: A3 = 8: A4 = 6: A5 = 3: A6 = 3: A7 = 7 
B1 = 5: B2 = 9: B3 = 2: B4 = 7: B5 = 9: B6 = 7: B7 = 6 
POINTER = 4 
FOR M = 1 TO 20 
FOR J = 1 TO 25000 
FOR E = 1 TO 2 
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10 
D1 = A1: A1 = B1: B1 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10 
D2 = A2: A2 = B2: B2 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10 
D3 = A3: A3 = B3: B3 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10 
D4 = A4: A4 = B4: B4 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D5) * (A5 + B5)) MOD 10 
D5 = A5: A5 = B5: B5 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10 
D6 = A6: A6 = B6: B6 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10 
D7 = A7: A7 = B7: B7 = N(POINTER) 
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CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+B5*100+B6*10+B7 
QNUM = CNUM I 10000000 
G(E) = INT(QNUM * 50) 
NEXT 
A(G(1), G(2)) = A(G(1), G(2)) + 1 
LOCATE 2, 5: PRINT J 
NEXT 
FOR I = 0 TO 49 
FOR L = 0 TO 49 
SUM= SUM+ ((A(I, L) - 10) A 2) I 10 
A(I, L) = 0 
NEXT: NEXT 
LOCATE 3 + M, 5: PRINT SUM 
SUM = O:NEXT 



CLS 
DEFINT A-P 
DEFLNG B-C, J 
DIM A(14, 14, 14) 
DEFDBL Q 

SERIAL TEST - TRIPLES 

N(O) = 4: N(1) = 7: N(2) = 0: N(3) = S: N(4) = 6 
N(S) = 3: N(6) = 1: N(7) = 8: N(8) = 2~ N(9) = 9 
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT 
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT 
S1 = 47S2712: S2 = 3186327: S3 = S92797S 
D1 = 4: D2 = 7: D3 = S: D4 = 2: DS = 7: D6 = 1: D7 = 2 
A1 = 3: A2 = 1: A3 = 8: A4 = 6: AS = 3: A6 = 2: A7 = 7 
B1 = S: B2 = 9: B3 = 2: B4 = 7: BS = 9: B6 = 7: B7 = S 
POINTER = 3 
FOR M = 1 TO 20 
FOR J = 1 TO 27440 
FOR E = 1 TO 3 
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10 
D1 = A1: A1 = B1: B1 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10 
D2 = A2: A2 = B2: B2 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10 
D3 = A3: A3 = B3: B3 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10 
D4 = A4: A4 = B4: B4 = N(POINTER) 
POINTER= (POINTER+ 20 + D(DS) * (AS+ BS)) MOD 10 
DS = AS: AS = BS: BS = N(POINTER) 
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10 
D6 = A6: A6 = B6: B6 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10 
D7 = A7: A7 = B7: B7 = N(POINTER) 
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CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+BS*100+B6*10+B7 
QNUM = CNUM I 1E+07 
G(E) = INT(QNUM * 14) 
NEXT 
A(G(1), G(2), G(3)) = ~(G(1), G(2), G(3)) + 1 
NEXT 
FOR I = 0 TO 13 
FOR K = 0 TO 13 
FOR L = 0 TO 13 
SUM= SUM+ ((A(I, K, L) - 10) A 2) I 10 
A(I, K, L) = 0 
NEXT: NEXT: NEXT 
LOCATE 3 + M, S: PRINT SUM: SUM = O: NEXT 



CLS 
DEFINT A-P 
DEFLNG B-C, J 

SERIAL TEST - QUADS 

DIM A(10, 10, 10, 10) 
DEFDBL Q 
N(O) = 4: N(1) = 7: N(2) = 0: N(3) = S: N(4) = 6 
N(S) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9 
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT 
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT 
S1 = 47S2712: S2 = 3186337: S3 = S927976 
D1 = 4: D2 = 7: D3 = S: D4 = 2: DS = 7: D6 = 1: D7 = 2 
A1 = 3: A2 = 1: A3 = 8: A4 = 6: AS = 3: A6 = 3: A7 = 7 
B1 = S: B2 = 9: B3 = 2: B4 = 7: BS = 9: B6 = 7: B7 = 6 
POINTER = 4 
FOR M = 1 TO 20 
FOR J = 1 TO 100000 
FOR E = 1 TO 4 
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10 
D1 = A1: A1 = B1: B1 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10 
D2 = A2: A2 = B2: B2 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10 
D3 = A3: A3 = ~3: B3 = N(POINTER) 
POINTER= (POINTER+ 20.+ D(D4) * (A4 + B4)) MOD 10 
D4 = A4: A4 = B4: B4 = N(POINTER) 
POINTER= (POINTER+ 20 + D(DS) * (AS+ BS)) MOD 10 
DS = AS: AS = BS: BS = N(POINTER) 
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10 
D6 = A6: A6 = B6: B6 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10 
D7 = A7: A7 = B7: B7 = N(POINTER) 
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CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+BS*100+B6*10+B7 
QNUM = CNUM I 1E+07 
G(E) = INT(QNUM * 10) 
NEXT 
A(G(1), G(2), G(3), G(4)) = A(G(1), G{2), G(3), G(4)) + 1 
LOCATE 2, S: PRINT J 
NEXT 
FOR H = 0 TO 9:FOR I = 0 TO 9 
FOR K = 0 TO 9:FOR L = 0 TO 9 
SUM= SUM+ ((A(H, I, K, L) - 10) A 2) I 10 
A(H, I, K, L) = 0 
NEXT: NEXT: NEXT: NEXT 
LOCATE 3 + M, S: PRINT SUM: SUM = 0: NEXT 



CLS 
DEFINT C-R 
DEFLNG C 
DEFDBL B, S-T 
DIM A(6, 6) 

RUNS TEST 

N(O) = 4: N(1) = 7: N(2) = 0: N(3) = 5: N(4) = 6 
N(5) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9 
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT 
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT 
FOR I = 1 TO 6 
FOR K = 1 TO 6 
READ A(I, K) 
NEXT: NEXT 
DATA 4529.4, 9044.9, 13568, '18091, 22615, 27892 
DATA 9044.9, 18097, 27139, 36187, 45234, 55789 
DATA 13568, 27139, 40721, 54281, 67852, 83685 
DATA 18091, 36187, 54281, 72414, 90470, 111580 
DATA 22615, 45234, 67852, 90470, 113262, 139476 
DATA 27892, 55789, 83685, 111580, 139476, 172860 
B(1) = 1 I 6: B(2) = 5 I 24: B(3) = 11 I 120 
B(4) = 19 I 720: B(5) = 29 I 5040: B(6) = 1 I 840 
S1 = 4752712 
S2 = 3186337 
S3 = 5927976 
D1 = 4: D2 = 7: D3 = 5: D4 = 2: D5 = 7: D6 = 1: D7 = 2 
A1 = 3: A2 = 1: A3 = 8: A4 = 6: A5 = 3: A6 = 3: A7 = 7 
B1 = 5: B2 = 9: B3 = 2: B4 = 7: B5 = 9: B6 = 7: B7 = 6 
POINTER = 4 
FOR M = 1 TO 20 
SUM= 0 
L = 1 
FOR J = 1 TO 10000 
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10 
D1 = A1: A1 = B1: B1 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10 
D2 = A2: A2 = B2: B2 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10 
D3 = A3: A3 = B3: B3 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10 
D4 = A4: A4 = B4: B4 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D5) * (A5 + B5)) MOD 10 
D5 = A5: A5 = B5: B5 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10 
D6 = A6: A6 = B6: B6 = N(POINTER) 
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POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10 
D7 = A7: A7 = B7: B7 = N(POINTER) 
CNUM=B1*1000000!+B2*100000!+B3*10000!+B4*1000+B5*100+B6*10+B 
7 IF CNUM < S3 THEN 

L = L + 1 
ELSE 

IF L > 6 THEN L = 6 
R(L) = R(L) + 1 
L = 1 

END IF 
S3 = CNUM 
LOCATE 2, 5: PRINT J 
NEXT 
FOR I = 1 TO 6 ' 
FOR K = 1 TO 6 
TEMP= A(I, K)*(R(I) - 10000 * B(I)) * (R(K) - 10000 * B(K)) 
SUM = SUM + TEMP 
NEXT 
NEXT 
FOR I = 1 TO 6: R(I) = O: NEXT 
SUM = SUM I 10000 
LOCATE 3 + M, 5: PRINT SUM 
NEXT 



c~ 

DEFINT A-P 
DEFLNG B-C 
DIM A(1S) 

GAP TEST 

N(O) = 4: N(1) = 7: N(2) = 0: N(3) = S: N(4) = 6 
N(S) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9 
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT 
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT 
S1 = 47S2712: S2 = 3186337: S3 = S927976 
D1 = 4: D2 = 7: D3 = S: D4 = 2: DS = 7: D6 = 1: D7 = 2 
A1 = 3: A2 = 1: A3 = 8: A4 = 6: AS = 3: A6 = 3: A7 = 7 
B1 = S: B2 = 9: B3 = 2: B4 = 7: BS = 9: B6 = 7: B7 = 6 
POINTER = 4 
FOR M = 1 TO 20 
FOR J = 1 TO 10000 
R = 0 
GENERATE: 
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10 
D1 = A1: A1 = B1: B1 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10 
D2 = A2: A2 = B2: B2 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10 
D3 = A3: A3 = B3: B3 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10 
D4 = A4: A4 = B4: B4 = N(POINTER) 
POINTER= (POINTER+ 20 + D(DS) * (AS+ BS)) MOD 10 
DS = AS: AS = BS: BS = N(POINTER) 
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10 
D6 = A6: A6 = B6: B6 = N(POINTER) 
POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10 
D7 = A7: A7 = B7: B7 = N(POINTER) 
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CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+BS*100+B6*10+B7 
IF CNUM < 8000000 THEN R = R + 1: GOTO GENERATE 
IF R > 1S THEN R = 1S 
A(R) = A(R) + 1: LOCATE 2, S: PRINT J 
NEXT 
FOR R = 0 TO 14 

PROB = 10000 * (.2 * .8 A R) 
SUM= SUM+ ((A(R) - PROB) A 2) I PROB 
A(R) = 0 

NEXT 
PROB = 10000 * (.8 A 1S) 
SUM= SUM+ ((A(1S) - PROB) A 2) I PROB: A(1S) = 0 
LOCATE 3 + M, S: PRINT SUM: SUM = O:NEXT 



MINIMAL STANDARD GENERATOR TESTS 

CLS 
DEFINT A-J 
DIM A(100) 
SEED = 982357 
M = 2 A 31 - 1 
FOR K = 1 TO 20 
FOR J = 1 TO 10000 
TEMP = SEED * 16807 

FREQUENCY TEST 

SEED = TEMP - M * INT(TEMP I M) 
NUMBER = SEED I 2.147484E+09 
JNUM = INT(NUMBER * 100) 
A(JNUM) = A(JNUM) + 1 
LOCATE 2, 5: PRINT J 
NEXT 
FOR I = 0 TO 99 
SUM= SUM+ ((A(I) - 100) A 2) I 100 
A(I) = 0 
NEXT 
LOCATE 3 + K, 5 
PRINT SUM 
SUM= 0 
NEXT 
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CLS 
DEFINT A-J 
DIM A(50, 50) 
SEED = 982357 
M = 2 " 31 - 1 
FOR K = 1 TO 20 
FOR J = 1 TO 25000 
FOR E = 1 TO 2 
TEMP = SEED * 16807 

SERIAL TEST - PAIRS 

SEED = TEMP - M * INT(TEMP I M) 
NUMBER = SEED I 2.147484E+09 
JNUM(E) = INT(NUMBER * 50) 
NEXT 
A(JNUM(1), JNUM(2)) = A(JNUM(1), JNUM(2)) + 1 
LOCATE 2, 5: PRINT J 
NEXT 
FOR I = 0 TO 49 
FOR L = 0 TO 49 
SUM= SUM+ ((A(I, L) - 10) "2) I 10 
A(I, L) = 0 
NEXT: NEXT 
LOCATE 3 + K, 5 
PRINT SUM 
SUM= 0 
NEXT 

49 



CLS 
DEFINT A-J 
DEFLNG J 
DIM A(25, 25, 25) 
SEED = 982357 
M = 2 " 31 - 1 
FOR K = 1 TO 20 
FOR J = 1 TO 156250 
FOR E = 1 TO 3 
TEMP = SEED * 16807 

SERIAL TEST - TRIPLES 

SEED = TEMP - M * INT(TEMP I M) 
NUMBER = SEED I 2.147484E+09 
JNUM(E) = INT(NUMBER * 25) 
NEXT 
A(JNUM(1), JNUM(2), JNUM(3)) = A(JNUM(1), JNUM(2), 
JNUM(3))+1 
LOCATE 2, 5: PRINT J 
NEXT 
FOR I = 0 TO 24 
FOR H = 0 TO 24 
FOR L = 0 TO 24 
SUM= SUM+ ((A(I, H, L) - 10) " 2) I 10 
A(I, H, L) = 0 
NEXT: NEXT: NEXT 
LOCATE 3 + K, 5 
PRINT SUM 
SUM= 0 
NEXT 
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CLS 
DEFINT A-L 
DEFLNG J 

SERIAL·TEST- QUADS 

DIM A(10, 10, 10, 10) 
SEED = 982357 
M = 2 " 31 - 1 
FOR K = 1 TO 20 
FOR J = 1 TO 100000 
FOR E = 1 TO 4 
TEMP = SEED * 16807 
SEED = TEMP - M * INT(TEMP I M) 
NUMBER= SEED I 2.147484E+09 
JN(E) = INT(NUMBER * 10) 
NEXT 
A(JN(l), JN(2), JN(3), JN(4)) = A(JN(l), JN(2), JN(3), 
JN(4)) + 1 
LOCATE 2, 5: PRINT J 
NEXT 
FOR G = 0 TO 9 
FOR H = 0 TO 9 
FOR I = 0 TO 9 
FOR L = 0 TO 9 
SUM= SUM+ ((A(G, H, I, L) - 10) " 2) I 10 
A(G, H, I, L) = 0 
NEXT 
NEXT 
NEXT 
NEXT 
LOCATE 3 + K, 5 
PRINT SUM 
SUM= 0 
NEXT 
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CLS 
DEFINT C-R 
DEFLNG C 
DIM A(6, 6) 

RUNS TEST 

FOR I= 1 TO 6: FORK= 1 TO 6: READ A(I, K): NEXT: NEXT 
DATA 4529.4, 9044.9, 13568, 18091, 22615, 27892 
DATA 9044.9, 18097, 27139, 36187, 45234, 55789 
DATA 13568, 27139, 40721, 54281, 67852, 83685 
DATA 18091, 36187, 54281, 72414, 90470, 111580 
DATA 22615, 45234, 67852, 90470, 113262, 139476 
DATA 27892, 55789, 83685, 111580, 139476, 172860 
B(1) = 1 I 6: B(2) = 5 I 24: B(3) = 11 I 120 
B(4) = 19 I 120: B(5) = 29 I 5040: B(6) = 1 I 840 
N = 2 /\ 31 - 1 
SEED = 18235 
S1 = SEED 
FOR M = 1 TO 20 
SUM= 0 
L = 1 
FOR J = 1 TO 10000 
TEMP = SEED * 16807 
SEED = TEMP - N * INT(TEMP I N) 
NUMBER = SEED I N 
IF NUMBER < S1 THEN 

L = L + 1 
ELSE 

IF L > 6 THEN L = 6 
R(L) = R(L) + 1 
L = 1 

END IF 
S1 = NUMBER 
LOCATE 2, 5: PRINT J 
NEXT 
FOR I = 1 TO 6 
FOR K = 1 TO 6 
TEMP2 = A(I, K) * (R(I) - 10000 * B(I)) * (R(K) - 10000 * 
B(K)) 
SUM = SUM + TEMP2 
NEXT:NEXT 
FOR I = 1 TO 6: R(I) = 0: NEXT 
SUM = SUM I 10000 
LOCATE 3 + M, 5: PRINT SUM 
NEXT 
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CLS 
DEFINT A-J 
DIM A(15) 
SEED = 982357 
M = 2 A 31 - 1 
FOR K = 1 TO 20 
FOR J = 1 TO 10000 
R = 0 
GENERATE: 
TEMP = SEED * 16807 

GAP TEST 

SEED = TEMP - M * INT(TEMP I M) 
NUMBER= SEED I 2.147484E+09 
IF NUMBER < .8 THEN R = R + 1: GOTO GENERATE 
IF R > 15 THEN R = 15 
A(R) = A(R) + 1 
LOCATE 2, 5: PRINT J 
NEXT 
FOR R = 0 TO 14 
PROB = 10000 * (.2 * .8 A R) 
SUM= SUM+ ((A(R) - PROB) A 2) I PROB 
A(R) = 0 
NEXT 
PROB = 10000 * (.8 A 15) 
SUM= SUM+ {{A{15) - PROB) A 2) I PROB 
A(15) = 0 
LOCATE 3 + K, 5: PRINT SUM 
SUM= 0 
NEXT 
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