
! FUNDAMENTAL CHANGE

IN RANDOM NUMBER

GENERATION

By

DAVID CHARLES MUSIL
II

Bachelor of Science

Marquette University

Milwaukee, Wisconsin

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 1990

. '

dlu-D~.~::;)
!C)ciO

M98't r
«

Oklahoma State Univ. Library

A FUNDAMENTAL CHANGE

IN RANDOM NUMBER

GENERATION

Thesis Approved:

Dean of the Graduate College

ii
1380799

PREFACE

The current state of the art in computer random number

generation uses a method developed over thirty-five years

ago. Although much has been done to improve the sequences

generated by these methods, they still have serious

problems. As the results become more "random", the

methodology becomes more complex. Perhaps this explains the

number of poor generators in use today. The following study

is an attempt to develop a fundamental change in the

methodology of random number generation in an effort to both

simplify and improve current methods.

I wish to thank Dr. Joseph H. Mize for his guidance as

my advisor, and Dr. Allen Schuermann and Dr. Manjunath

Kamath as members of my committee. I would also like to

thank Dr. Schuermann for his valuable input and assistance.

I wish to extend special thanks to my wife, Maureen,

for her support and encouragement, and to my parents for

providing an environment making success possible.

iii

Chapter

I.

II.

III.

IV.

v.

VI.

VII.

VIII.

IX.

x.

XI.

TABLE OF CONTENTS

Page

RANDOM NUMBER GENERATION: AN INTRODUCTION . 1

WHAT IS "RANDOM" • • 3

HISTORICAL METHODS 6

EMPIRICAL TESTING. 9

Frequency Test. • . • . • • • • • • 10
Serial Test • • • • • . • . • • • . • • 10
Runs Test • . . • • • • • • • • • • 10
Gap Test. • • • • • • • • . • . 11

CURRENT RESEARCH

RESEARCH OBJECTIVES ••

A FUNDAMENTAL CHANGE

TESTING AND COMPARISON (AGAINST THE
MINIMAL STANDARD) •••

AN ALTERNATIVE EVALUATION.

A COMPLETELY RANDOM NUMBER GENERATOR •

RECOMMENDATIONS AND CONCLUSIONS .•

12

15

16

22

27

29

30

A SELECTED BIBLIOGRAPHY. 33

APPENDIXES 35

APPENDIX A - QUICKBASIC CODE FOR GENERATORS. 36

APPENDIX B - QUICKBASIC CODE FOR EMPIRICAL TESTS 40

iv

Table

I.

II.

III.

LIST OF TABLES

Maximum Cycle Lengths. • • •

Speed of Compared Generators •

Empirical Test Results • • •

v

Page

21

23

25

CHAPTER I

RANDOM NUMBER GENERATION: AN INTRODUCTION

Random numbers are used in many areas of the scientific

community. They are used to provide probabilistic data for

experiments, computer simulation, games, and modeling. They

are also used in Monte Carlo methods, and for integrating

higher dimensional functions. However, the numbers used for

these purposes are not really random. They are actually

numbers in a sequence that is generated by some type of

algorithm that have the appearance of being random. For

this reason, they are called pseudo-random numbers.

Although they are not truly random, in many cases, they are

sufficiently adequate for the purposes they serve. Since

the beginning of random number generation on a computer,

numerous empirical and theoretical tests have been developed

by researchers to determine whether or not a particular

method of generation is suitable. Most of these tests

evaluate either the independence or the uniformity of the

numbers in the sequence.

Ideally, a good random number generator should.have the

following properties:

1) Independent values

2) Uniformly distributed values

1

3) Fast (short generation time)

4) Long period

5) Use little computer memory.

Several methods of generation have been developed that

will satisfy the first two requirements, relative to the

testing procedures mentioned earlier. The fact that

computers are continually getting faster eases constraints

on speed.

Some of the recent research has been in an effort to

improve the length of the period of the sequence. The

period is defined as the number of values produced by the

method before the numbers repeat in a cyclic manner. With

the most common methods this length is primarily dependent

on the word size of the computer, and with the existence of

the 32 bit computer, the length can be as high as 231 -1

(just over 2 billion). Unfortunately, simplicity is not

generally considered as one of the requirements of a good

random number generator, and as the other properties

improve, methods tend to become more complex. This is

especially evident when trying to implement a given

technique across a broad range of computers and computer

languages.

2

CHAPTER II

WHAT IS "RANDOM"?

A common question to consider when developing these

generators is what exactly is "random"? It is easy to say

'pick a number at random between 1 and 10 1 , and then have

someone do that, but how does a person determine if the

number was chosen at random? The person selecting the

number may have chosen hisjher favorite number, the number

of coins in hisjher pocket, or in any other biased fashion.

There is no quantifiable way to determine if the person

chose the number at random or not. 'At random' and 'random

behavior' are easy to illustrate, in terms of picking

numbered balls out of a well mixed bowl or picking a card

from a well shuffled deck. However, it is very difficult to

quantify the meaning of randomness. The introduction of the

concepts "well mixed", and "well shuffled" can cloud the

picture even more. How does one define a well mixed deck of

cards? Perhaps if one could quantitatively define the

source of the random items, this definition could be then

applied to the items themselves.

Applying these ideas to a sequence of numbers makes it

a little easier to conceptualize. In a sequence of uniform

random numbers, one would expect to find all numbers in the

3

sequence represented an equal number of times. The chance

of any one sub-sequence occurring should be equally likely

as any other. Lehmer (1951) proposed a definition of a

random sequence as

a vague notion embodying the idea of a sequence

in which each term is unpredictable to the

uninitiated and whose digits pass a certain

number of tests, traditional with statisticians

and depending somewhat on the uses to which the

sequence is to be put (p. 141).

The idea of 'passing a certain number of tests•

epitomizes the difficulty in quantifying randomness. How

many tests should it pass? Noting that this definition was

developed in 1951, almost 40 years later there is still no

one well recognized quantifiable definition for a random

sequence.

4

Perhaps there is some significance in the use of the

term "unpredictable" in Lehmer's definition. If the

behavior of some object was truly random, its next move

would be completely unpredictable. Also, if an object's

behavior was somewhat random, its next move could be

predicted given enough information about its prior behavior.

Given these two ideas, one may be able to determine

relationships of 'more random' or 'less random' based on how

predictable the behavior of different objects are. Then

predictability could be measured on a scale of how much

information is needed to reasonably predict ensuing

behavior.

5

CHAPTER III

HISTORICAL METHODS

Rolling a fair die results in a random number between

one and six (inclusive). Tossing a fair coin results in a

yes or a no, a + or a -, or a one or a two. These methods

could be used to generate pseudo-random numbers and are

generally considered as completely random,· although there is

some belief that they may not be (see Kolata (1986), for a

discussion of randomness). These methods could be used to

generate the random numbers needed in the scientific

community; however, the large amount of numbers needed, and

the speed at which these methods can produce values make it

unrealistic. A computer is a natural choice for the

generation of pseudo-random numbers because of its speed and

ability to work with large amounts of data.

The first algorithm for generating pseudo-random

numbers on a computer was developed by Von Neumann in 1946.

This method was called the middle square or mid-square

method because it involved squaring a number and then using

the middle digits as the next seed (the seed is a number

used to generate the next number, and generally the next

number then becomes the seed for the next consecutive

number). For example, using the mid-square method, the

6

number 4615 would be squared, resulting in 21298225. The

middle digits, 2982, would be the next number in the

sequence and would also be used as the seed for the next

number. The numbers would then be divided by the largest

number in the sequence (10000) to produce pseudo-random

numbers between o and 1. This method had problems in that

often the period was very short, and the sequence had a

tendency to degenerate to o. The sequences produced by the

mid-square method also do not fair well in empirical

testing used to evaluate a generator.

7

Another common type of generator, and perhaps the most

widely used today, is the multiplicative linear congruential

generator (MLCG) developed by Lehmer in 1949 (Knuth,1981).

This method is based on the algorithm of multiplying a seed

by a large constant, and then taking the remainder from a

division operation as the next number and next seed of the

sequence (see Appendix A for a sample computer program).

For example, with 4 as the seed, 6 as the constant

multiplier, and 13 as the divisor the function would be:

seedi+1 = seedi * 6 mod 13. The first five numbers of this

sequence would be 4, 11, 1, 6, 10. A variation of the MLCG

is to add a constant c to the product of the seed and

multiplier. This is called a mixed linear congruential

generator. This enables the generator to produce a value of

o, which the multiplicative method itself can not produce.

A third type of generator, although not in as wide of

use today, is the Tausworthe, or shift register generator

which used strings of binary digits or bits, and an

algorithm similar to the linear congruential method (see

Knuth, 1981). This method complicates the calculation of

numbers greatly and is much slower than other methods.

8

CHAPTER IV

EMPIRICAL TESTING

The majority of tests performed on pseudo-random number

generators are empirical tests performed on the sequences

produced. These tests are primarily based on the chi-square

test of an expected distribution. Given n independent

observations and k categories such that each observation can

fall into one category, the chi-square statistic is

calculated as follows:

x2 = ~ [(actual- expected) 2 1 expected].

The actual value is the observed total count for a

particular category. The expected values are determined by

multiplying the probability that one observation will fall

into a given category by the total number of observations.

This value is then compared with an acceptable value from a

chi-square table based on the a level and the number of

degrees of freedom, one less than the number of categories,

k (see Knuth, 1981 for a complete discussion).

Several generally accepted empirical tests have been

developed based on this criterion. Some of the most common

include the frequency test, the serial test on pairs,

3triples, etc., the runs test, and the gap test. A brief

description of each of these tests follows.

9

10

Frequency Test

Given a sequence of n pseudo-random numbers, and two

constants u and v such that 0 ~= u < v <= 1; approximately

n*(v -u) values should fall in the interval [u,v). A chi­

square test can be performed on the sequence by dividing the

interval [0,1) into k sub intervals or categories and

counting the number of values that fall into each category.

The expected number for each category is njk. It is

generally accepted practice that n should be great enough

such that n/k > 5. The frequency test is a check of

uniformity.

Serial Test

This test is a generalization of the frequency test to

higher dimensions. In the case of the serial test on pairs,

the n values in the sequence are used as n/2 pairs of points

that are 'plotted' on a two-dimensional grid. The grid

measures k x k categories and the number of degrees of

freedom is k 2 - 1. This test can be performed for higher

dimensions although the number of values required becomes

quite large beyond three dimensions. The serial test is

also a check of uniformity.

Runs Test

This test is a test of the independence assumption of

the sequence of values. Runs of length i, i = 1,2,3,4,5,

11

and i >=6 are calculated and compared against the expected

number of runs for each length. A run i is a sub-sequence

of i values where the next consecutive number is greater

than the preceding value. This is generally called a runs

up test. A runs down test is performed in a similar manner.

Gap Test

Given a sequence of n values, the probability that

consecutive numbers will be within the same sub-interval

[u,v) is v - u. The probability of these numbers in the

same sub-interval occurring with a gap of one value between

them is

[1- (v- u)] * (v- u).

A chi-square test can be performed on the actual totals of

each gap length for n lengths and compared to the expected

distribution. Special cases of the gap test with (u,v) =

(0,~) or (~,1) are called runs below the mean and runs above

the mean respectively.

These tests are primarily the criteria that individuals

such as Lehmer are referring to when they mention 'passing a

certain number of tests'. Ideally, a good pseudo-random

number generator will pass these tests and a bad one will

fail them; however, some sequences of numbers can be

assembled that are not random at all but will pass many of

these tests.

CHAPTER V

CURRENT RESEARCH

The most common method of pseudo-random number

generation today is the linear congruential generator (LCG).

Several attempts have been made to improve the numbers

produced by this method by using shuffling techniques or by

using two or more of these generators simultaneously.

Combined generators have shown that they do increase the

period beyond that of the component generators, however,

this is the only mathematically demonstrated improvement

(L'Ecuyer, 1988).

Much has been written on the length of the period

achievable by the linear congruential algorithm.

Essentially, if a proper multiplier is chosen, the result is

what is called a full period generator. This generator has

a period length equal to the modulo m (or m- 1 when c = 0).

The algorithm used is:

xi = (a * xi_ 1 + c) mod m.

Any of these generators will eventually repeat, and the

longest period that can be achieved will be m, given that

the following three conditions hold (Law and Kelton, 1982):

(1) The only positive integer that exactly divides

both m and c is 1 (also stated, c is relatively

12

prime to m) •

(2) If q is a prime number that divides m, then q

divides (a- 1).

(3) If 4 divides m, then 4 divides (a- 1).

Often the number chosen for m is equivalent to some

multiple of 2, which would replace a division by simply

shifting binary digits, a technique which will improve the

speed of a generator. Unfortunately, many of these

generators have serious flaws in terms of uniformity or

independence.

13

Even though the linear congruential generator is the

most widely used method of producing pseudo-random numbers

today, there are infinitely many different generators

conceivable considering the possible values for a, c, and m.

The current state of random number generation was summed up

in the late 1960s by Knuth who stated " ... look at the

subroutine library of each computer installation in your

organization, and replace the random number generators by

good ones. Try to avoid being too shocked at what you find"

(Knuth, 1981). Considering how much science has advanced

since that time, it is a bit surprising to see similar

references in the recent literature (see Park and Miller,

1988). From much of the recent research, an accepted

'minimal standard' generator has evolved (Park and Miller,

1988, Carta, 1990). The minimal standard uses a

multiplicative linear congruential method (c = 0) with a

14

multiplier of 75 (16807) and a modulus of 231 - 1. This is a

full period generator and has become the standard in that it

is the generator employed in commercial software packages

such as subroutines RNUN in the IMSL library and DRAND in

the simulation language SLAM II (Park and Miller, 1988).

The choice of 231 - 1 for the modulus of the minimal

standard generator is by no means arbitrary. It happens to

be the largest integer possible in a 32 bit word size

computer. By multiplying a seed (the previous number in the

sequence) by the constant 16807, a number much greater than

that allowable in a 32 bit word size can be achieved. When

this occurs, the overflow is simply disregarded and what

remains is the next number in the sequence. This may seem

simple enough, but the difficulty arises when trying to

transport this algorithm to many different computers or to

different languages. Most contemporary systems will produce

an integer overflow error which will, in most cases, stop

execution. This is where the LCG begins to get very

complicated. If the maximum integer in a system is 246 - 1

or greater, a simple implementation of the minimal standard

is adequate. If the maximum integer is not that large,

other programming variations must be used to provide proper

implementation of the minimal standard (see Carta, 1990 for

some examples). This shouldn't be much worse if one can

already understand the reasoning behind the derivation of

the full period generator.

CHAPTER VI

RESEARCH OBJECTIVES

Given the current state of pseudo-random number

generation and the increasing complexity with which it is

developing, the following three objectives were developed to

define the purpose of this study:

(1) Provide an intuitive definition for the concept of

random behavior as applied to number generation.

(2) Develop a method for generating random numbers

(sequence generation) that is less complex primarily in

terms of implementation and understanding. This method

should provide repeatable sequences when initiated with

the same seed.

(3) Develop a modification to the method in (2) that will

provide truly random number generation at the expense

of repeatable sequences with the same seed.

It is equally important that the methods developed

prove comparable to, if not better than, the current methods

available. The empirical tests discussed earlier, and a

modified approach to the given methods will be used to

evaluate the new method against the linear congruential

generators, or the minimal standard.

15

CHAPTER VII

A FUNDAMENTAL CHANGE

The need for a simpler approach to pseudo-random number

generation arises mainly from two points of view: 1) in

implementing the method across all languages and computers,

and 2) in providing methodology understandable to the non­

expert encouraging the replacement of a poor generator with

an improved one. The basis for the first point is that

different computer languages handle the overflow caused by

the congruential methods in different ways. Implementing

this method would require knowledge of how a particular

language deals with overflow, and then development of an

algorithm that would provide the desired result. This

reasoning is also considered in the second point, along with

the knowledge necessary to create a full period generator

with the use of the proper multiplier and modulus.

The proposed method was developed with a table look-up

approach, but not requiring a large amount of memory. The

table does not contain pseudo-random numbers between 0 and 1

(or any other range), but rather the digits o through 9. A

pointer is used to •move around' the table producing a

stream of integers to be assembled to provide a number. The

table is simply a one dimensional table, or string,

16

17

consisting of a random permutation of the digits o through

9. The movement of the pointer is determined by the

previous numbers generated. The resolution, or number of

decimal places of the numbers generated is completely

determined by the algorithm. This methodology can be used

to produce numbers with any number of decimal places, within

the limits of the computer.

In the following discussion, the term 'number' will

refer only to a pseudo-random value between o and 1 produced

by the generator, and the term 'digit' will refer to the

values in the string or table, or the positions or places to

the right of the decimal within the number.

An initial attempt was made using the previous two

numbers to determine the movement of the pointer. The

digits of the most recent number determine the distance

moved by the pointer, and the digits of the second most

recent number determine the direction moved by the pointer.

The two seeds are denoted by:

.d1d2d3d4

.a1a2a3a4

The pointer is positioned at the digit represented by a4•

The direction is determined by whether di is odd or even.

An odd digit implies movement to the left in the table, and

an even digit implies movement to the right (a 0 is

considered even). The component digits, ni, are determined

by their corresponding di, and ai.

For example, consider the string '4705631829 1 •

Initialization of the algorithm requires two seeds. The

numbers .2701 and .4398 were used for this example. This

generator will produce numbers with four decimal places.

The sequence generated is as follows:

.2701,

.4398,

.7289,

.1613,

.6472, etc.

18

With the two seeds given, the pointer is positioned at

the 8 in the table or string. The pointer movement for the

next digit, n 1 , is made from this position. For determining

the next number, d 1 is 2 (from .2701), and a 1 is 4. The

pointer is moved to the right because d 1 is even and the

distance moved is 4 places, so the first digit of the next

number is 7. If the pointer movement goes beyond the end of

the table in either direction, the movement 'wraps' around

to the other end. The second digit of the next number is

determined by moving a 2 places in the d 2 direction. The

third and fourth digits are found similarly. When all four

digits have been determined, the second seed becomes the

first seed, and the number just generated becomes the second

seed and the algorithm repeats.

The sequences produced by this algorithm had very short

periodic cycle lengths (< 100). These sequences were not

considered long enough to perform empirical testing. It was

noted that whenever a 0 occurred as a pointer movement

19

distance a digit would repeat. This appeared to have an

adverse effect on the sequence produced.

In an effort to reduce the problem caused by a zero in

the seed, a third seed value was used. It was hoped that

this would increase the cycle length and make the digits

more uniform. The algorithm used is essentially the same,

except that now the digits of the second seed and the third

seed are added together to determine the distance moved by

the pointer.

The new algorithm is denoted as follows:

Pointer

ni = Table(Pointer) ± (ai + bi) mod 10

The pointer references the position in the table or string.

This addition to the previous algorithm made a

tremendous improvement in the results. The cycle length

produced by this 3 seed 4 decimal place· method was over 41

million numbers.

Empirical testing of this generator was successful on

all tests performed, which was very encouraging. This

method also showed some very distinct advantages over the

linear congruential generators. Any given number could be

repeated in the sequence without the generator cycling, a

feat not possible with the LCGs. Also, the new method can

/
\

yield a value of zero without degenerating, not possible

with the multiplicative generator.

20

A cycle length of 41 million showed tremendous promise,

but the maximum cycle length for the minimal standard is

over 2 billion numbers. Given the nature of the new method

for generating pseudo-random numbers, the cycle length of

the algorithm must be determined empirically, i.e. by

running the generator in a computer program until a cycle

is detected. One fact that makes this possible is that any

three numbers (seeds) in a row can uniquely define the

sequence generated, and a second occurrence of these three

numbers in a row indicate a periodic cycle. Even

considering the speed of computers today, running these

programs to determine cycle length takes a significant

amount of time. Over twelve hours of computing time was

required on a 12 Mhz 80286 personal computer to determine

the 4 decimal place cycle length of 41 million numbers.

It seemed apparent that with this new methodology,

generators with more decimal places might have longer cycle

lengths. The potential existence of a mathematical

relationship between the number of decimal places and the

cycle length could make empirical determination of cycle

lengths unnecessary. The results of empirical testing to

determine maximum cycle length for each number of decimal

places are given in Table I.

TABLE I

MAXIMUM CYCLE LENGTHS

Decimal Places 1

Max Cycle Length 6

2

2339

3

277,118

4

41,098,617

21

From this information, the thought that the cycle length,

for a six or seven decimal place generator with the proposed

method, would be greater than 2 billion is legitimate.

CHAPTER VIII

TESTING AND COMPARISON

(AGAINST THE MINIMAL

STANDARD)

When proposing any new methodology it is important to

provide evidence that the new alternative is comparable, if

not better, than the current state of the art. As mentioned

earlier, the current minimal standard, as presented by Park

and Miller (1988), is the multiplicative linear congruential

generator with multiplier 16807 and modulus 231 - 1. A

brief description of the set up and testing procedures

precedes the results of the'comparison.

Set up - All of the testing was performed on an Epson

Equity II+ personal computer (80286 processor running at 12

Mhz - no math chip) using Microsoft's QuickBasic compiler,

version 4.5. Appendix B contains a complete listing of the

Basic code for the programs used in testing the pseudo­

random number generators.

An important aspect of any number generator is that it

be fast. All speed tests were performed on the various

generators tested using identical conditions. Using Basic's

TIMER, the time, in seconds, to generate 1000 values was

determined. This time included displaying a counter on the

22

23

screen. Tests were repeated several times for consistency.

Table II displays the comparison of the speed of the minimal

standard versus several lengths (decimal places) of the

proposed method. It should be noted that a smaller time

represents a faster generator.

MLCG

1.85

TABLE II

TIME (SEC.) REQUIRED TO PRODUCE
1000 RANDOM NUMBERS

4PLACE 5PLACE 6PLACE

0.89 1.19 1.26

7PLACE

1.35

A one way analysis of variance (a = .05) found these

differences to be significant, and a test of differences

between means showed a statistically significant difference

between the MLCG and 7PLACE generators (a= .05). This not

only shows comparable performance in speed, but rather

superior speed provided by the proposed method.

The amount of computer memory required to use a

generator may not be as important as other issues, however

it should be given some consideration. The linear

congruential generators are very short algorithms and hence

require very little memory. By comparison of the QuickBasic

program files used for the speed testing, the file for the

proposed method was slightly more than twice the size of the

24

program file for the MLCG. A true "table" look up pseudo­

random number generator would require much more memory, but

because the proposed method really employs a string of ten

digits, i,ts memory usage is essentially not much more than

any of the congruential generators.

The most emphasis of any comparison of pseudo-random

number generators would most likely fall on the empirical

testing. For each of the tests described in Chapter IV, a

series of 20 tests were performed on each generator. The

results from these tests are presented in Table III for

comparison. The table lists the number of tests that passed

out of a possible 20. The parameters used for the various

tests were:

Frequency test

Serial test (pairs)

Serial test (triples)

k=lOO, and n=lO,OOO,

k=50, and n=25,000 pairs (d=2),

k=14, and n=27,440 triples (d=3),

Serial test (quadruples) k=lO, and n=lOO,OOO quad. (d=4),

Runs test

Gap test

n=lO,OOO,

k=16 (runs down).

TABLE III

EMPIRICAL TEST RESULTS

Number of Tests Passed Out of 20
Proposed Method Minimal Standard

Frequency 19 19

Pairs 18 17

Triples 18 18

Quadruples 19 20

Runs 18 19

Gap 20 20

For all of the tests, an a level of .05 was used with the

null hypothesis stating the test sequence is uniformly

distributed, independent, or both. The chi-square test

statistic was calculated and compared to the theoretical

value with k-1 (or kd - 1) degrees of freedom.

A second hypothesis test was set up based on the fact

that the number of successes (tests passed) is a binomial

variable with a probability, p = .95, of success. The

25

expected value of the number of passes is 19, but the reject

region for an a of .05 is x < 18. This implies that any

number of successes less than 18 would be considered a rare

occurrence and is suspect. Examining Table III shows that

only one number of successes, x, is less than 18, which is

the serial test on pairs for the minimal standard. With

this information, statistically, one would reject the null

hypothesis that the sequence of values are independent and

identically distributed uniform random variables over two

space.

As was mentioned at the close of Chapter IV, some

sequences of numbers that are not random at all can and do

pass many, if not all of the empirical tests.

26

Unfortunately, even if a seemingly good generator fails a

particular test, running the same test again with a

different value of k or perhaps a different seed may provide

a successful result. This lessens enthusiasm about the

results in Table III. If anything, the results in Table III

show that the proposed method is just as good as the minimal

standard, or any other generator, in terms of empirical

testing.

CHAPTER IX

AN ALTERNATIVE EVALUATION

In Chapter II, an intuitive definition of randomness

was approached based on the idea of unpredictability. It

was noted that, if a sequence of numbers were uniform random

values, each number would have an equally likely chance of

occurring, and in the long run, each number would occur

approximately the same number of times. The term "uniform"

is important here, because random numbers could come from

any distribution. All of the pseudo-random number

generators considered here attempt to produce uniformly

distributed values on the interval [0,1].

The requirement that a pseudo-random number generator

create a sequence of values where each value is equally

likely is commonly tested with the frequency test discussed

in Chapter V. All of the generators considered in this

study, including the proposed method, show sufficient

evidence of meeting this requirement at the stated levels of

the given parameters. This was shown in the results of

empirical testing found in Chapter VIII.

Another requirement is that all pairs of numbers should

have an equally likely chance of occurring, as well as

triples, quadruples, etc. This attribute of random number

27

generators is tested by the group of serial tests. Again,

both the minimal standard and the proposed method show

sufficient evidence that the sequences produced meet these

requirements.

28

A major difference between the minimal standard and the

proposed method is in what occurs following the generation

of a given value in a sequence. Due to the nature of the

linear congruential generators, the sequence is completely

determined with the knowledge of any one number (seed).

Hence, when one particular value in the sequence appears for

a second time, the generator begins to cycle. This fact

would be revealed by performing a serial test with a large

value fork (>10000). In this scenario, the minimal

standard would fail the test. The proposed generator does

not have this problem because it is based on three seeds

uniquely defining a sequence.

The alternative evaluation provides findings that the

proposed method has a great advantage over the minimal

standard generator, and assuming the relationship between

unpredictability and randomness is valid, the proposed

method of pseudo-random number generation produces sequences

that are more random than those produced by any other method

described in the current literature. The proposed method

certainly fills a portion of the gap between pseudo-random

and truly random number generators.

CHAPTER X

A COMPLETELY RANDOM NUMBER GENERATOR

The third objective of this study was to provide a

modification of the proposed method that would render a

truly random number generator, in that the sequences

produced would be infinite and would not be repeatable. As

with the basis of the proposed method, numerous ways exist

in which modifications can be made. The foundation of the

completely random number generator is the use of the clock

inside the computer. In the case of a PC, a clock generates

a tick roughly 18.2 times per second. Although nearly any

modification would provide a similar end result, it was

decided to replace the direction indicator d 1 with the tens

place of the timer at the initiation of each newly generated

number. This provided the ability to generate an infinite

sequence of non-repeatable values with the same flexibility

in terms of number of significant digits required. It is

also a very simple modification.

29

I
'

CHAPTER XI

RECOMMENDATIONS AND CONCLUSIONS

The proposed random number generator presented in this

study demonstrates a fundamental change in the way pseudo-

random numbers are produced. It is simpler in

implementation across many languages and machines than the

minimal standard due, in part, to the way overflow is

handled. The new methodology has shown to be equal, if not

superior, in terms of the commonly used empirical tests, and

is superior in speed to the minimal standard. The proposed

method has also demonstrated potential for much longer

periodic cycle lengths which also allows numbers to be

duplicated exactly without caus~ng the generator to cycle.

The number 0 is also achievable without causing the

generator to degenerate.

The results shown in Chapter IX on alternative

evaluation of a random number generator display another

fundamental change, i.e., in the way randomness of a

sequence is evaluated based on predictability. The

association of predictability with randomness may provide an

approach in which a quantifiable measure could be applied to

random number generators in the future.

30

l
\

31

The difficulties associated with the proposed method

are concerned with predicting, if not determining, the cycle

length of a given x-decimal place generator and what types

of seeds will provide the maximum cycle length. For the

string that was evaluated with the proposed three seed

algorithm, maximum cycle lengths for different size (decimal

places) generators were given in Table I. Not all possible

seed combinations, however, result in the maximum cycle

length. For a single place generator three different cycles

are possible, for two places, fifteen different cycles are

possible ranging in length from 4 to 2339. Eleven cycles

are possible in a 3 place generator with a range of 90 to

277,118. The random permutation of the table or string used

also has an impact on the make up and length of the cycles

created. For these reasons, users are warned that any

particular seed combination and table should be tested for

cycle length before being used.

Even on a super computer, the time required to

determine all possible cycles and what seeds creates them

empirically would take hundreds of years. From a more

practical standpoint, several seed combinations that produce

a cycle greater than 2 billion numbers (5 or more decimal

places) can be found empirically in a much more realistic

amount of time. The fact that there are 10! possible orders

for the table or string implies that there are also that

many different streams available. Testing each of these

empirically is also not practical. These evaluations are

left to the true number theorists.

32

A SELECTED BIBLIOGRAPHY

Bratley, P., Fox, B.L., and Schrage, E.L. A Guide to
Simulation. 2nd Ed. Springer-Verlag, New York, 1987, pp.
192-227.

Carta, David G. "Two Fast Implementations of the 'Minimal
Standard' Random Number Generator." Communications of the
ACM. Vol. 33, Number 1 (January 1990), pp. 87-88.

Conant, Paul. "Routine Gives Nonrepeat Random Numbers."
EON. Vol. 29 (May 3, 1984), pp. 323.

Fishman, G.S. Princicles of Discrete Event Simulation.
Wiley-Interscience, New York, 1978, pp. 345-391.

Gleick, James. Chaos: Making a New Science. Viking Peguin
Inc., New York, 1987.

Kac, Mark. "More on Randomness." American Scientist. Vol.
72 (MayjJune 1984), pp. 282-283.

Knuth, D.E. The Art of Comcuter Programming. Vol. 2, 2nd
Ed. Addison-Wesley, Reading, Mass., 1981.

Kalata, G. "What Does It Mean to be Random?" Science.
Vol. 231 (March 7, 1986), pp. 1068-70.

Law, A.M., and Kelton, W.O. Simulation Modeling and
Analysis. McGraw-Hill, New York, 1982, pp. 219-239.

L'Ecuyer, P. "Efficient and Portable Combined Random Number
Generators." Communications of the ACM. Vol. 31, Number 6
(June 1988), pp. 742-749, 774.

Lehmer, D. "Mathematical Methods in Large-Scale Computing
Units." A-nals of the Computer Laboratory, Harvard
University, Vol. 26 (1951), pp. 141-146.

Marsaglia, G. "Random Numbers Fall Mainly in the Planes."
Proceedings of National Academy of Science. Vol. 61, Number
1 (September 1968), pp. 25-28.

Mihram, G. Arther. Simulation: Statistical Foundations and
Methodology. Academic Press, New York, 1972, pp. 147-208.

33

34

Ott, Lyman. An Introduction to Statistical Methods and Data
Analysis, 2d ed. Duxbury Press, Boston, 1984, pp. 179-205.

Park, Stephen K.; Miller, Keith w. "Random Number
Generators: Good Ones are Hard to Find." Communications of
the ACM. Vol. 31, Number 10 (October 1988), pp. 1192-201.

Pool, Robert. "Chaos Theory: How Big an Advance?"
Science. Vol. 245 (July 7, 1989), pp. 26-8.

Pritsk.er, A. Alan B. Introduction to s<imulation and SLAM
II, 3d ed. Halsted·Press, New York, 1986, pp. 694-719.

Steel, Robert G. D., and Terrie, James H. Principles and
Procedures of Statistics, 2d ed. McGraw-Hill, New York,
1980, pp. 58-59, 469-478.

Voelcker, John. "Picturing Randomness." IEEE Spectrum.
Vol• 25 (August 1988), pp. 13.

Wallich, Paul. "Random Numbers." IEEE Spectrum. Vol. 24
(February 1987), pp. 22.

Wichmann, B.A., and Hill, I.D.
Pseudo-random Number Generator."
31 (1982), pp. 188-190.

"An Efficient and Portable
Applied Statistics. Vol.

APPENDIXES

35

APPENDIX A

QUICKBASIC CODE FOR GENERATORS

36

4 PLACE GENERATOR

CLS
DEFINT A-P
N(O) = 4: N(1) = 7: N(2) = 0: N(3) = 5: N(4) = 6
N(5) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9
D(O) = 1: D(1) = -1: D(2) = 1: D(3) = -1: D(4) = 1
D(5) = -1: D(6) = 1: D(7) = -1: D(8) = 1: D(9) = 1
T = TIMER
S1 = 4752
S2 = 3186
S3 = 5927
D1 = 4: D2 = 7: D3 = 5: D4 = 2
A1 = 3: A2 = 1: A3 = 8: A4 = 6
B1 = 5: B2 = 9: B3 = 2: B4 = 7
POINTER = 1
FOR J = 1 TO 1000
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10
D1 = A1: A1 = B1: B1 = N(POINTER)
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10
D2 = A2: A2 = B2: B2 = N(POINTER)
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10
D3 = A3: A3 = B3: B3 = N(POINTER)
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10
D4 = A4: A4 = B4: B4 = N(POINTER)
CNUM = B1 * 1000 + B2 * 100 + B3 * 10 + B4
QNUM = CNUM * .0001
LOCATE 5, 5: PRINT J
NEXT
PRINT TIMER - T

37

CLS
DEFINT A-P
DEFLNG B-C

7 PLACE GENERATOR

N(O) = 4: N(1) = 7: N(2) = 0: N(3) = S: N(4) = 6
N(S) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT
T = TIMER
S1 = 47S2712
S2 = 3186337
S3 = S927976
D1 = 4: D2 = 7: D3 = S: D4 = 2: DS = 7: D6 = 1: D7 = 2
A1 = 3: A2 = 1: A3 = 8: A4 = 6: AS = 3: A6 = 3: A7 = 7
B1 = S: B2 = 9: B3 = 2: B4 = 7: BS = 9: B6 = 7: B7 = 6
POINTER = 4
FOR J = 1 TO 1000
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10
D1 = A1: A1 = B1: B1 = N(POINTER)
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10
D2 = A2: A2 = B2: B2 = N(POINTER)
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10
D3 = A3: A3 = B3: B3 = N(POINTER)
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10
D4 = A4: A4 = B4: B4 = N(POINTER)
POINTER= (POINTER+ 20 + D(DS) * (AS+ BS)) MOD 10
DS = AS: AS = BS: B5 = N(POINTER)
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10
D6 = A6: A6 = B6: B6 = N(POINTER)
POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10
D7 = A7: A7 = B7: B7·= N(POINTER)

38

CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+B5*100+B6*10+B7
QNUM = CNUM * .0000001
LOCATE 5, 5: PRINT J
NEXT
PRINT TIMER - T

CLS
DEFINT J

MINIMAL STANDARD GENERATOR

A = 1 I 2147483647
T = TIMER
SEED = 18235
M = 2 A 31 - 1
FOR J = 1 TO 1000
TEMP = SEED * 16807
SEED = TEMP - M * INT(TEMP I M)
NUMBER = SEED * A
LOCATE 5, 5: PRINT J
NEXT
PRINT TIMER - T

39

APPENDIX B

QUICKBASIC CODE FOR

EMPIRICAL TESTS

40

CLS
DEFINT A-P
DEFLNG B-C
DIM A(100)

PROPOSED GENERATOR TESTS

FREQUENCY TEST

N(O) = 4: N(1) = 7: N(2) = 0: N(3) = S: N(4) = 6
N(S) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9
D(O) = 1: D(1) = -1: D(2) = 1: D(3) = -1: D(4) = 1
D(S) = -1: D(6) = 1: D(7) = -1: D(8) = 1: D(9) = 1
S1 = 47S2712: S2 = 318633S: S3 = S927978
D1 = 4: D2 = 7: D3 = S: D4 = 2: DS = 7: D6 = 1: D7 = 2
A1 = 3: A2 = 1: A3 = 8: A4 = 6: AS = 3: A6 = 3: A7 = S
B1 = S: B2 = 9: B3 = 2: B4 = 7: BS = 9: B6 = 7: B7 = 8
POINTER = 7
FOR M = 1 TO 20
FOR J = 1 TO 10000
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10
D1 = A1: A1 = B1: B1 = N(POINTER)
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10
D2 = A2: A2 = B2: B2 = N(POINTER)
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10
D3 = A3: A3 = B3: B3 = N(POINTER)
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10
D4 = A4: A4 = B4: B4 = N(POINTER)
POINTER= (POINTER+ 20 + D(DS) * (AS+ BS)) MOD 10
DS = AS: AS = BS: BS = N(POINTER)
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10
D6 = A6: A6 = B6: B6 = N(POINTER)
POINTER= {POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10
D7 = A7: A7 = B7: B7 = N(POINTER)

41

CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+BS*100+B6*10+B7
NUM = INT(CNUM I 100000!)
A(NUM) = A(NUM) + 1
LOCATE 2, S: PRINT J
NEXT
FOR I = 0 TO 99
SUM= SUM+ ((A(I) - 100) A 2) I 100
A(I) = 0
NEXT
LOCATE 3 + M, S
PRINT SUM
SUM = 0: NEXT

CLS
DEFINT A-P
DEFLNG B-C
DIM A(50, 50)

SERIAL TEST - PAIRS

N(O) = 4: N(1) = 7: N(2) = O: N(3) = 5: N(4) = 6
N(5) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT
Sl = 4752712: S2 = 3186337: S3 = 5927976
D1 = 4: D2 = 7: D3 = 5: D4 = 2: D5 = 7: D6 = 1: D7 = 2
A1 = 3: A2 = 1: A3 = 8: A4 = 6: A5 = 3: A6 = 3: A7 = 7
B1 = 5: B2 = 9: B3 = 2: B4 = 7: B5 = 9: B6 = 7: B7 = 6
POINTER = 4
FOR M = 1 TO 20
FOR J = 1 TO 25000
FOR E = 1 TO 2
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10
D1 = A1: A1 = B1: B1 = N(POINTER)
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10
D2 = A2: A2 = B2: B2 = N(POINTER)
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10
D3 = A3: A3 = B3: B3 = N(POINTER)
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10
D4 = A4: A4 = B4: B4 = N(POINTER)
POINTER= (POINTER+ 20 + D(D5) * (A5 + B5)) MOD 10
D5 = A5: A5 = B5: B5 = N(POINTER)
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10
D6 = A6: A6 = B6: B6 = N(POINTER)
POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10
D7 = A7: A7 = B7: B7 = N(POINTER)

42

CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+B5*100+B6*10+B7
QNUM = CNUM I 10000000
G(E) = INT(QNUM * 50)
NEXT
A(G(1), G(2)) = A(G(1), G(2)) + 1
LOCATE 2, 5: PRINT J
NEXT
FOR I = 0 TO 49
FOR L = 0 TO 49
SUM= SUM+ ((A(I, L) - 10) A 2) I 10
A(I, L) = 0
NEXT: NEXT
LOCATE 3 + M, 5: PRINT SUM
SUM = O:NEXT

CLS
DEFINT A-P
DEFLNG B-C, J
DIM A(14, 14, 14)
DEFDBL Q

SERIAL TEST - TRIPLES

N(O) = 4: N(1) = 7: N(2) = 0: N(3) = S: N(4) = 6
N(S) = 3: N(6) = 1: N(7) = 8: N(8) = 2~ N(9) = 9
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT
S1 = 47S2712: S2 = 3186327: S3 = S92797S
D1 = 4: D2 = 7: D3 = S: D4 = 2: DS = 7: D6 = 1: D7 = 2
A1 = 3: A2 = 1: A3 = 8: A4 = 6: AS = 3: A6 = 2: A7 = 7
B1 = S: B2 = 9: B3 = 2: B4 = 7: BS = 9: B6 = 7: B7 = S
POINTER = 3
FOR M = 1 TO 20
FOR J = 1 TO 27440
FOR E = 1 TO 3
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10
D1 = A1: A1 = B1: B1 = N(POINTER)
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10
D2 = A2: A2 = B2: B2 = N(POINTER)
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10
D3 = A3: A3 = B3: B3 = N(POINTER)
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10
D4 = A4: A4 = B4: B4 = N(POINTER)
POINTER= (POINTER+ 20 + D(DS) * (AS+ BS)) MOD 10
DS = AS: AS = BS: BS = N(POINTER)
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10
D6 = A6: A6 = B6: B6 = N(POINTER)
POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10
D7 = A7: A7 = B7: B7 = N(POINTER)

43

CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+BS*100+B6*10+B7
QNUM = CNUM I 1E+07
G(E) = INT(QNUM * 14)
NEXT
A(G(1), G(2), G(3)) = ~(G(1), G(2), G(3)) + 1
NEXT
FOR I = 0 TO 13
FOR K = 0 TO 13
FOR L = 0 TO 13
SUM= SUM+ ((A(I, K, L) - 10) A 2) I 10
A(I, K, L) = 0
NEXT: NEXT: NEXT
LOCATE 3 + M, S: PRINT SUM: SUM = O: NEXT

CLS
DEFINT A-P
DEFLNG B-C, J

SERIAL TEST - QUADS

DIM A(10, 10, 10, 10)
DEFDBL Q
N(O) = 4: N(1) = 7: N(2) = 0: N(3) = S: N(4) = 6
N(S) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT
S1 = 47S2712: S2 = 3186337: S3 = S927976
D1 = 4: D2 = 7: D3 = S: D4 = 2: DS = 7: D6 = 1: D7 = 2
A1 = 3: A2 = 1: A3 = 8: A4 = 6: AS = 3: A6 = 3: A7 = 7
B1 = S: B2 = 9: B3 = 2: B4 = 7: BS = 9: B6 = 7: B7 = 6
POINTER = 4
FOR M = 1 TO 20
FOR J = 1 TO 100000
FOR E = 1 TO 4
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10
D1 = A1: A1 = B1: B1 = N(POINTER)
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10
D2 = A2: A2 = B2: B2 = N(POINTER)
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10
D3 = A3: A3 = ~3: B3 = N(POINTER)
POINTER= (POINTER+ 20.+ D(D4) * (A4 + B4)) MOD 10
D4 = A4: A4 = B4: B4 = N(POINTER)
POINTER= (POINTER+ 20 + D(DS) * (AS+ BS)) MOD 10
DS = AS: AS = BS: BS = N(POINTER)
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10
D6 = A6: A6 = B6: B6 = N(POINTER)
POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10
D7 = A7: A7 = B7: B7 = N(POINTER)

44

CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+BS*100+B6*10+B7
QNUM = CNUM I 1E+07
G(E) = INT(QNUM * 10)
NEXT
A(G(1), G(2), G(3), G(4)) = A(G(1), G{2), G(3), G(4)) + 1
LOCATE 2, S: PRINT J
NEXT
FOR H = 0 TO 9:FOR I = 0 TO 9
FOR K = 0 TO 9:FOR L = 0 TO 9
SUM= SUM+ ((A(H, I, K, L) - 10) A 2) I 10
A(H, I, K, L) = 0
NEXT: NEXT: NEXT: NEXT
LOCATE 3 + M, S: PRINT SUM: SUM = 0: NEXT

CLS
DEFINT C-R
DEFLNG C
DEFDBL B, S-T
DIM A(6, 6)

RUNS TEST

N(O) = 4: N(1) = 7: N(2) = 0: N(3) = 5: N(4) = 6
N(5) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT
FOR I = 1 TO 6
FOR K = 1 TO 6
READ A(I, K)
NEXT: NEXT
DATA 4529.4, 9044.9, 13568, '18091, 22615, 27892
DATA 9044.9, 18097, 27139, 36187, 45234, 55789
DATA 13568, 27139, 40721, 54281, 67852, 83685
DATA 18091, 36187, 54281, 72414, 90470, 111580
DATA 22615, 45234, 67852, 90470, 113262, 139476
DATA 27892, 55789, 83685, 111580, 139476, 172860
B(1) = 1 I 6: B(2) = 5 I 24: B(3) = 11 I 120
B(4) = 19 I 720: B(5) = 29 I 5040: B(6) = 1 I 840
S1 = 4752712
S2 = 3186337
S3 = 5927976
D1 = 4: D2 = 7: D3 = 5: D4 = 2: D5 = 7: D6 = 1: D7 = 2
A1 = 3: A2 = 1: A3 = 8: A4 = 6: A5 = 3: A6 = 3: A7 = 7
B1 = 5: B2 = 9: B3 = 2: B4 = 7: B5 = 9: B6 = 7: B7 = 6
POINTER = 4
FOR M = 1 TO 20
SUM= 0
L = 1
FOR J = 1 TO 10000
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10
D1 = A1: A1 = B1: B1 = N(POINTER)
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10
D2 = A2: A2 = B2: B2 = N(POINTER)
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10
D3 = A3: A3 = B3: B3 = N(POINTER)
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10
D4 = A4: A4 = B4: B4 = N(POINTER)
POINTER= (POINTER+ 20 + D(D5) * (A5 + B5)) MOD 10
D5 = A5: A5 = B5: B5 = N(POINTER)
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10
D6 = A6: A6 = B6: B6 = N(POINTER)

45

46

POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10
D7 = A7: A7 = B7: B7 = N(POINTER)
CNUM=B1*1000000!+B2*100000!+B3*10000!+B4*1000+B5*100+B6*10+B
7 IF CNUM < S3 THEN

L = L + 1
ELSE

IF L > 6 THEN L = 6
R(L) = R(L) + 1
L = 1

END IF
S3 = CNUM
LOCATE 2, 5: PRINT J
NEXT
FOR I = 1 TO 6 '
FOR K = 1 TO 6
TEMP= A(I, K)*(R(I) - 10000 * B(I)) * (R(K) - 10000 * B(K))
SUM = SUM + TEMP
NEXT
NEXT
FOR I = 1 TO 6: R(I) = O: NEXT
SUM = SUM I 10000
LOCATE 3 + M, 5: PRINT SUM
NEXT

c~

DEFINT A-P
DEFLNG B-C
DIM A(1S)

GAP TEST

N(O) = 4: N(1) = 7: N(2) = 0: N(3) = S: N(4) = 6
N(S) = 3: N(6) = 1: N(7) = 8: N(8) = 2: N(9) = 9
FOR I = 0 TO 8 STEP 2: D(I) = 1: NEXT
FOR I = 1 TO 9 STEP 2: D(I) = -1: NEXT
S1 = 47S2712: S2 = 3186337: S3 = S927976
D1 = 4: D2 = 7: D3 = S: D4 = 2: DS = 7: D6 = 1: D7 = 2
A1 = 3: A2 = 1: A3 = 8: A4 = 6: AS = 3: A6 = 3: A7 = 7
B1 = S: B2 = 9: B3 = 2: B4 = 7: BS = 9: B6 = 7: B7 = 6
POINTER = 4
FOR M = 1 TO 20
FOR J = 1 TO 10000
R = 0
GENERATE:
POINTER= (POINTER+ 20 + D(D1) * (A1 + B1)) MOD 10
D1 = A1: A1 = B1: B1 = N(POINTER)
POINTER= (POINTER+ 20 + D(D2) * (A2 + B2)) MOD 10
D2 = A2: A2 = B2: B2 = N(POINTER)
POINTER= (POINTER+ 20 + D(D3) * (A3 + B3)) MOD 10
D3 = A3: A3 = B3: B3 = N(POINTER)
POINTER= (POINTER+ 20 + D(D4) * (A4 + B4)) MOD 10
D4 = A4: A4 = B4: B4 = N(POINTER)
POINTER= (POINTER+ 20 + D(DS) * (AS+ BS)) MOD 10
DS = AS: AS = BS: BS = N(POINTER)
POINTER= (POINTER+ 20 + D(D6) * (A6 + B6)) MOD 10
D6 = A6: A6 = B6: B6 = N(POINTER)
POINTER= (POINTER+ 20 + D(D7) * (A7 + B7)) MOD 10
D7 = A7: A7 = B7: B7 = N(POINTER)

47

CNUM = B1*1000000+B2*100000+B3*10000+B4*1000+BS*100+B6*10+B7
IF CNUM < 8000000 THEN R = R + 1: GOTO GENERATE
IF R > 1S THEN R = 1S
A(R) = A(R) + 1: LOCATE 2, S: PRINT J
NEXT
FOR R = 0 TO 14

PROB = 10000 * (.2 * .8 A R)
SUM= SUM+ ((A(R) - PROB) A 2) I PROB
A(R) = 0

NEXT
PROB = 10000 * (.8 A 1S)
SUM= SUM+ ((A(1S) - PROB) A 2) I PROB: A(1S) = 0
LOCATE 3 + M, S: PRINT SUM: SUM = O:NEXT

MINIMAL STANDARD GENERATOR TESTS

CLS
DEFINT A-J
DIM A(100)
SEED = 982357
M = 2 A 31 - 1
FOR K = 1 TO 20
FOR J = 1 TO 10000
TEMP = SEED * 16807

FREQUENCY TEST

SEED = TEMP - M * INT(TEMP I M)
NUMBER = SEED I 2.147484E+09
JNUM = INT(NUMBER * 100)
A(JNUM) = A(JNUM) + 1
LOCATE 2, 5: PRINT J
NEXT
FOR I = 0 TO 99
SUM= SUM+ ((A(I) - 100) A 2) I 100
A(I) = 0
NEXT
LOCATE 3 + K, 5
PRINT SUM
SUM= 0
NEXT

48

CLS
DEFINT A-J
DIM A(50, 50)
SEED = 982357
M = 2 " 31 - 1
FOR K = 1 TO 20
FOR J = 1 TO 25000
FOR E = 1 TO 2
TEMP = SEED * 16807

SERIAL TEST - PAIRS

SEED = TEMP - M * INT(TEMP I M)
NUMBER = SEED I 2.147484E+09
JNUM(E) = INT(NUMBER * 50)
NEXT
A(JNUM(1), JNUM(2)) = A(JNUM(1), JNUM(2)) + 1
LOCATE 2, 5: PRINT J
NEXT
FOR I = 0 TO 49
FOR L = 0 TO 49
SUM= SUM+ ((A(I, L) - 10) "2) I 10
A(I, L) = 0
NEXT: NEXT
LOCATE 3 + K, 5
PRINT SUM
SUM= 0
NEXT

49

CLS
DEFINT A-J
DEFLNG J
DIM A(25, 25, 25)
SEED = 982357
M = 2 " 31 - 1
FOR K = 1 TO 20
FOR J = 1 TO 156250
FOR E = 1 TO 3
TEMP = SEED * 16807

SERIAL TEST - TRIPLES

SEED = TEMP - M * INT(TEMP I M)
NUMBER = SEED I 2.147484E+09
JNUM(E) = INT(NUMBER * 25)
NEXT
A(JNUM(1), JNUM(2), JNUM(3)) = A(JNUM(1), JNUM(2),
JNUM(3))+1
LOCATE 2, 5: PRINT J
NEXT
FOR I = 0 TO 24
FOR H = 0 TO 24
FOR L = 0 TO 24
SUM= SUM+ ((A(I, H, L) - 10) " 2) I 10
A(I, H, L) = 0
NEXT: NEXT: NEXT
LOCATE 3 + K, 5
PRINT SUM
SUM= 0
NEXT

50

CLS
DEFINT A-L
DEFLNG J

SERIAL·TEST- QUADS

DIM A(10, 10, 10, 10)
SEED = 982357
M = 2 " 31 - 1
FOR K = 1 TO 20
FOR J = 1 TO 100000
FOR E = 1 TO 4
TEMP = SEED * 16807
SEED = TEMP - M * INT(TEMP I M)
NUMBER= SEED I 2.147484E+09
JN(E) = INT(NUMBER * 10)
NEXT
A(JN(l), JN(2), JN(3), JN(4)) = A(JN(l), JN(2), JN(3),
JN(4)) + 1
LOCATE 2, 5: PRINT J
NEXT
FOR G = 0 TO 9
FOR H = 0 TO 9
FOR I = 0 TO 9
FOR L = 0 TO 9
SUM= SUM+ ((A(G, H, I, L) - 10) " 2) I 10
A(G, H, I, L) = 0
NEXT
NEXT
NEXT
NEXT
LOCATE 3 + K, 5
PRINT SUM
SUM= 0
NEXT

51

CLS
DEFINT C-R
DEFLNG C
DIM A(6, 6)

RUNS TEST

FOR I= 1 TO 6: FORK= 1 TO 6: READ A(I, K): NEXT: NEXT
DATA 4529.4, 9044.9, 13568, 18091, 22615, 27892
DATA 9044.9, 18097, 27139, 36187, 45234, 55789
DATA 13568, 27139, 40721, 54281, 67852, 83685
DATA 18091, 36187, 54281, 72414, 90470, 111580
DATA 22615, 45234, 67852, 90470, 113262, 139476
DATA 27892, 55789, 83685, 111580, 139476, 172860
B(1) = 1 I 6: B(2) = 5 I 24: B(3) = 11 I 120
B(4) = 19 I 120: B(5) = 29 I 5040: B(6) = 1 I 840
N = 2 /\ 31 - 1
SEED = 18235
S1 = SEED
FOR M = 1 TO 20
SUM= 0
L = 1
FOR J = 1 TO 10000
TEMP = SEED * 16807
SEED = TEMP - N * INT(TEMP I N)
NUMBER = SEED I N
IF NUMBER < S1 THEN

L = L + 1
ELSE

IF L > 6 THEN L = 6
R(L) = R(L) + 1
L = 1

END IF
S1 = NUMBER
LOCATE 2, 5: PRINT J
NEXT
FOR I = 1 TO 6
FOR K = 1 TO 6
TEMP2 = A(I, K) * (R(I) - 10000 * B(I)) * (R(K) - 10000 *
B(K))
SUM = SUM + TEMP2
NEXT:NEXT
FOR I = 1 TO 6: R(I) = 0: NEXT
SUM = SUM I 10000
LOCATE 3 + M, 5: PRINT SUM
NEXT

52

CLS
DEFINT A-J
DIM A(15)
SEED = 982357
M = 2 A 31 - 1
FOR K = 1 TO 20
FOR J = 1 TO 10000
R = 0
GENERATE:
TEMP = SEED * 16807

GAP TEST

SEED = TEMP - M * INT(TEMP I M)
NUMBER= SEED I 2.147484E+09
IF NUMBER < .8 THEN R = R + 1: GOTO GENERATE
IF R > 15 THEN R = 15
A(R) = A(R) + 1
LOCATE 2, 5: PRINT J
NEXT
FOR R = 0 TO 14
PROB = 10000 * (.2 * .8 A R)
SUM= SUM+ ((A(R) - PROB) A 2) I PROB
A(R) = 0
NEXT
PROB = 10000 * (.8 A 15)
SUM= SUM+ {{A{15) - PROB) A 2) I PROB
A(15) = 0
LOCATE 3 + K, 5: PRINT SUM
SUM= 0
NEXT

53

\
VITA

David Charles Musil

Candidate for the Degree of

Master of Science

Thesis: A FUNDAMENTAL CHANGE IN RANDOM NUMBER GENERATION

Major Field: Industrial Engineering and Management

Biographical:

Personal Data:
Born in Sheboygan Falls, Wisconsin, May 25, 1966,
the son of Leland c. and Shirley M. Musil.
Married to Maureen K. Albers on June 10, 1989.

Education:
Graduated from Sheboygan Falls High School in
June, 1984; received Bachelor of Science Degree in
Industrial Engineering from Marquette University,
Milwaukee, Wisconsin,, in May, 1988; received
Master of Science in Industrial Engineering and
Management from Oklahoma State University,
Stillwater, Oklahoma, in December, 1990.

Professional Experience:
Scientist, Kimberly Clark Corporation, May, 1988
to August, 1989; Co-op Engineer, Kohler Company,
January, 1987 to August, 1987; Engineering Intern,
General Motors Corporation, May, 1986 to August,
1986.

Publications:
Musil, David c., and Akbay, Kunter s., "Computer
Simulation Modeling of a Flexible Manufacturing
Cell." Industrial Engineering Magazine. November,
1989. Volume 21, Number 11.

