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CHAPTER 1 

INTRODUCTION 

Problem 

During the past several years, digital imaging has become more popular. As the 

number of image-enabled applications grows, the demand for high quality images also 

grows. However, a problem exists for imaging applications running on today's hardware. 

A typical digital image requires a large amount of storage space. If a source image with a 

size of8.5 by 11 inches is scanned (digitized) at 300 dots per inch, the resulting digital 

image is 2550 by 3300 pixels, or 8.4 million pixels. Depending on the number of colors 

needed, each pixel contains from 1 to 24 bits of color resolution. Today, a high quality 

color image has 24 bits (8 bits for each primary color; red, blue, and green). The 

resulting digital image has a size of just over 25 million bytes. Obviously, today's typical 

computer cannot store many of these images nor can the images be transmitted or 

processed rapidly. 

Image compression is an area that has seen considerable interest for just this 

reason. The total size of the stored image can be reduced, saving storage requirements 

and transmission time. There have been several image compression methods proposed, 

each with different qualities and each with varying degrees of acceptance. Currently, no 

still frame image compression method offers a greater potential than the transform 

compression method; the most popular being the Joint Photographic Experts Group 

(JPEG) standard [JPEG Draft 92] which is based on the discrete cosine transform (DCT). 

1 
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The JPEG algorithm, the transform and supporting coding, is CPU intensive, both 

in the compression stage and in the decompression stage. To make matters worse, once 

the original image is decompressed, the image must often be scaled in size to match a 

particular output device such as a video monitor. The scaling step is often an inaccurate 

approximation that involves errors from interpolation. Aliasing is often apparent if the 

scaling algorithm results in minifying the image. A similar problem is encountered under 

magnification, where pixelization occurs. 

The process for reducing these distortions requires two steps: First, reconstruct 

the continuous image signal from the discrete image, and second, resample the new 

continuous image signal at desired output positions to match the output device 

characteristics. The decompression, reconstruction, and resampling steps all contribute to 

a longer than desired delay before the image can be viewed. Although the JPEG 

algorithm uses only the discrete image samples, the continuous image signal is needed for 

the scaling and resampling. The original discrete samples are usually thought of as a 

sampling of the original continuous image. A high quality scanning device or digital 

camera usually provides the first continuous to discrete operation. 

A fast method to view a JPEG image is needed. However, the JPEG algorithm is 

intended to provide a high quality image but still maintain good compression. The 

tradeoff is between maintaining the high quality level of the original image, and 

providing a fast algorithm for decompression, reconstruction, and resampling. 

Proposed Research 

Previous research focuses on three main areas, image compression using 

transform coding, reconstruction functions, and scaling algorithms. Although the discrete 

cosine transform has been around for some time [Ahmed 74], and has been suggested as 

part of an image compression process, its use in a widely accepted international standard 
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is very recent. While there is reference to the possibility of combining these three steps 

using the Fourier transform [Wolberg 90], there is no research using the cosine transform. 

This is due to two main reasons. First, the JPEG algorithm is new, therefore few people 

have investigated its properties. Second, while Fourier analysis is often used to show the 

· frequency properties of a particular reconstruction algorithm, the algorithm is usually 

implemented in the spatial domain for performance reasons and clarity. When a 

frequency domain study is performed in the literature, it is performed in the Fourier 

domain. The most likely reason seems to be that the Fourier transform and domain are 

clearly understood, and are a useful reference across many disciplines. 

There are now several implementations of a JPEG decompression algorithm, but 

the reconstruction and scaling steps have been ignored, either because of performance 

reasons or because the original characteristics of the image are already matched to the 

output device and no reconstruction or scaling is required. 
Jl/f<'-~-::r 

The ideas presented here describe a unique approach to this process. The 
,.,)'1 eLu.i-tO 

proposed research is to combine the reconstruction-with the scaling, and to operate 

directly on the compressed image data in the cosine-frequency domain before the 

decompression. In this manner, the reconstruction and scaling process will involve only 

the compressed image data, not the decompressed image data. This research determines 

if the operations required in the frequency domain are more complex and time consuming 

than those required in the time domain. As will be seen, the complexity of each operation 

is somewhat adjustable, depending on the interpolation and reconstruction algorithm 

used. 



CHAPTER2 

BACKGROUND 

Image Definitions 

Pratt [Pratt 91] defines an image as a continuous, infinite extent field whose value 

represents some aspect of a scene. The values are often considered to represent some 

known physical property, such as luminance, absorption, reflection or some range of 

energy [Jain 89], [Pearson 91]. The data is not required to have such meaning, but it 

often helps in conceptualizing the process involved. 

In an image sampling system, the sampled discrete image, Fs(x,y), can be 

obtained by multiplying the continuous image, F(x,y), by a sampling function, S(x,y), 

such as the comb function, or a two-dimensional grid of Dirac delta functions, spaced Ax 

and ~y apart. 

00 00 

S(x,y)= L L8(x-jAx,y-ki\y) (2-1) 
j=-ook=-oo 

where S(x,y) is the spatial sampling function based on a grid of Dirac delta functions. 

The sampled image then becomes 

4 
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CX) CX) 

Fs(x,y) = F(x,y)S(x,y) = F(x,y) L Io(x- jAx,y-kdy) 
j=-ook=-<X> (2-2) 

where F(x,y) is the continuous ideal image, and Fs(x,y) is the sampled image. 

Moving the continuous image function, F(x,y), inside the summation, yields 

CX) CX) 

F5 (x,y) = L IF(jAx,kdy)x 8(x- jAx,y-kdy) 
j=-<X>k=-CX> (2-3) 

where FGD.x, kD.y) is determined at only the sample pointsjD.x, kD.y. 

Fourier Analysis 

The Fourier transform is a well known linear transform [Andrews 70], [Russ 92], 

[Goodman 68]. The Fourier transform decomposes a signal into an infinite set of 

coefficients of orthogonal complex waveforms. The Fourier transform is just one of a 

number of ways of decomposing the signal into coefficients of orthogonal waveforms. 

Any orthogonal transformation will provide a similar decomposition. In particular the 

cosine transform, which is an orthogonal transformation, has similar properties as the 

Fourier transform, and was originally derived from the Fourier transform [Ahmed 74]. 

If the Fourier transform of the continuous image, F(w 1, w2), is convolved with 

the Fourier transform of the sampling function, S( w 1, w2), the result, 

(2-4) 

is the Fourier transform of the sampled image. This equation for the Fourier sampled 

image, F8(w 1, w2), from the Fourier continuous image reduces to 
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(2-5) 

where W 18, and w28, are the discrete sampling frequencies corresponding to the 

sample spacing D.x, and Doy, used in the sampling function. 

Let R(x,y) be a reconstruction function. Then, in order to reconstruct the 

continuous image from the sampled image, the sampled image can be spatially 

interpolated using Fs(x,y), and R(x,y), or it can be filtered with a reconstruction function 

using F8(w1,w2), and R(w 1,w2). where R(w1,W2) is the Fourier response of the 

reconstruction function. In this case the reconstructed image, FR(x,y), can be written as 

the convolution of the sampled image, Fs(x,y), and the interpolation function, R(x,y), as 

FR(x,y) = F8(x,y)® R(x,y) 

or, using the Fourier transform of this equation, we have 

Using the same properties as before in the continuous to sampled case with 

Equation 2-5, the transform of the reconstructed image becomes 

(2-6) 

(2-7) 

(2-8) 

From [Pratt 91], and ignoring aliasing problems, the reconstructed image is equal 

to the ideal image if~ w 1,wi) removes all the values except where j, k = 0. 
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Reconstruction 

Image reconstruction is an area of research concerned with recreating an image 

after some spatial manipulation or spatial scale function has been applied to the original 

sampled image [Andrews 72], [Fant 86]. Many times an image starts as a one-to-one 

mapping of pixels in the sampled image to pixels on a display device. But, this one-to

one spatial mapping often changes, either because the original display device is no longer 

available, or the image is rendered under some different spatial mapping function. 

Magnification and minification are examples. 

When the image is magnified, pixel duplication can be used to render the image 

[Andrews 76]. For example, if one were to render the image at half its normal resolution 

( doubling its physical size), one image pixel would be translated into 4 identical pixels ( a 

2 by 2 square). This process leads to a phenomenon known as pixelization. 

Likewise, under minification, the simplest method is to drop pixels, or decimate 

the image. In a similar example, if the image were rendered at twice its normal physical 

resolution (making the image half its size), every other pixel value would be dropped. 

This simple process leads to aliasing, which is well documented in the signal processing 

area. 

Thus, image reconstruction should render the image in a new coordinate system, 

while these artifacts, such as pixelization and aliasing [Heckbert 86]. There are two steps 

to the reconstruction stage. ( The first step is to establish a continuous image, and the 

second step is to resample the new continuous image at some interval that will minimize 

the distortions, while lending itself to the output grid. Once a continuous image is 

correctly produced, the resampling grid can be of any interval, without causing the 

distortion artifac~ 

In order to recreate the continuous image signal, a continuous function is matched 

to two ( or more) image sample points. The missing image values between the two points 
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are assumed to be equal to the continuous function. Once the continuous signal is 

recreated in this manner, the image signal can be sampled wherever a value is needed. In 

contrast, if the original sampled image is used, image data is available only at the original 

sampling interval. Fitting a function to a set of data points is similar to using a low pass 

filter on the data signal. Since, the continuous function smoothes the original image 

sample data. As expected, the resulting image under magnification will not exhibit the 

same pixelization artifacts, since these high frequency changes have been smoothed by 

the interpolation function. 

Interpolation functions can be implemented as a convolution in the spatial 

domain, but this approach in not usually applied because of time requirements. Usually, 

interpolation is performed by evaluating the interpolation polynomial. Interpolation can 

also be performed as a multiplication in the frequency domain. In order to use this 

frequency approach, the image data and the spatial interpolation function must both be 

transformed into a particular frequency domain, then multiplied, and the inverse 

transformation applied to the result. This frequency filtering process also has significant 

time penalties, because the computational requirements for the forward and inverse 

transformation of the entire image are usually substantial. However, examination of the 

frequency filtering method proves to be useful when developing a spatial interpolation 

function. Ideal interpolation in the frequency domain is a simple rectangle function 

[Ratzel 80], [Parker 83]. The frequency rectangle function filters out frequencies higher 

than one-half the sampling frequency, while passing unchanged the frequencies less than 

this cutoff frequency. If this ideal frequency function is transformed to the spatial 

domain, the result is the sine function. 

Sine Function 

The sine function is defined as 
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sin(nx) 
sinc(x) = (2-9) 

7tX 

and is an the ideal spatial interpolation function, corresponding to the ideal rectangle 

function in the frequency domain. While this function, shown in Figure 2-1, is the exact 

function needed for reconstruction, it has computational problems that prohibit its use. 

1 R(x) 

0 

-+ -2 O 2 + X 

Figure 2-1. 
The Sine Function 

From the graph of the sine function, Figure 2-1, it is easy to see that it has 

significant· energy in the side bands, which have infinite extent in the space domain. If 

this function is truncated in the space domain [Ratzel 80], [Parker 83], then the loss of the 

sideband energy produces ringing in the frequency domain. In Ratzel's comparisons, this 

method of truncating the sine function proved to be inferior to some of the other 

interpolation functions like the cubic B-spline approach, which is discussed below. 

Nearest Neighbor Interpolation. 

This is the simplest method of interpolation. Since it represents the zero-order 

polynomial, it is computationally the quickest, but has corresponding accuracy 

drawbacks. 



\-1 
X 

\+2 

~ Image Samples 

~ Interpolated Point 

Figure 2-2. Nearest Neighbor Interpolation 

10 

As shown in Figure 2-2, each output pixel takes on the value of its nearest 

neighbor on the input grid. This is also called the point shift algorithm, and is defined as 

c. xk-1 + xk < xk + x. k+t 1or <x---~ 
2 2 

(2-10) 

In the spatial domain, nearest neighbor interpolation can be achieved by convoluting the 

image with 

R(x)=l, O~jxj<0.5 

R(x) = 0, 0.5 ~ jxj. 
(2-11) 

This is a simple rectangle, as shown in Figure 2-3. It is also called the box filter, Fourier 

window, or the sample-and-hold function. 
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R(x) 
1.0 

0 ~---------1----1 0 X 

Figure 2-3. 
The Rectangle Function 

The nearest neighbor function results in pixelization in magnification, and when 

doing minification, the image is sampled, and produces aliasing artifacts. The image is 

also subject to position errors of up to one half of a pixel width ( or height). For example, 

if the new sample falls between two of the original samples, the new pixel takes on the 

value of one of the original pixel values, but its location on the new grid is half way 

between the original points. This results in the new pixel position having a phase error of· 

one half a pixel width. For minor scaling changes, nearest neighbor is usually considered 

adequate given its computational efficiency. For large scaling changes, nearest neighbor 

results in either aliasing or pixelization. 

This method has seen much general use in the academic image processing field, 

and the commercial document imaging field. It is still used today where quick estimates 

are needed [Asal 86], [Eldon 90], such as in real time magnification. However, it is being 

replaced by more sophisticated algorithms. 

Linear Interpolation 

Linear interpolation uses a first-order polynomial function, as shown in Figure 2-

4. 



~(x) 

~ Image Samples 

m Interpolated Point 

Interpolation Function 
-4---~.l....---~~L-----1~-----1>~--

Figure 2-4. Linear Interpolation 

For a linear interpolation function, the interpolated point lies on a straight line 

defined by the neighboring two image samples. The value of the function at the 

interpolated point is 

12 

(2-12) 

which is the equation for a line passing between the two sample points. 

In the spatial domain, linear interpolation is achieved using convolution with a 

triangle fun~ion 

R( x) = 1 - lxJ, 0 ~ JxJ < 1 

R(x) = 0, 1 ~ Jxl, 

which is shown in Figure 2-5. 

This interpolation function is a simple, but reasonable low pass filter in the 

frequency domain. It is useful to note the triangle function in Figure 2-5 is the 

convolution of two box functions. 

(2-13) 
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R(x) 

·1 0 X 

Figure 2-5. 
The Triangle Function 

Second·Order Interpolation 

If the triangle function is the convolution of two box functions, convolution with 

another box function yields a second order bell shaped wave form defined as 

R(x) = t(x + f )2, _.1 < X <-.l 2 - - 2 

(2-14) 

and shown in Figure 2-6. 

R(x) 

1.125 

0.5 

0 '-------f"'---,t-+--+-----
·l5 -.5 o .5 t5 X 

Figure 2-6. 
The Bell Curve 
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If this process of convoluting rectangle functions is continued, the eventual result 

is a gaussian shaped bell curve, shown in Figure 2-7. 

R(x) 

1.0 

(\ 
0 '---~-------=-

o X 

Figure 2-7. 
The Gaussian Curve 

However, there are a few more functions of interest before the convergence to this 

curve. 

Second order polynomials are shown to be space variant [Schafer 73], [Abdou 82] 

and exhibit a phase distortion. In fact, this problem exists with all even number 

polynomials. Therefore, even powered polynomials are not used for interpolation. 

Further, higher order polynomials may not converge, so these are not used. However, 

higher order polynomials can be approximated by using a low order polynomial on 

repeated subintervals. 

Cubic B-Spline Interpolation 

If-rectangle functions are continuously convolved together a B-spline will be 

created [Hou 87], [Lee 83]. Although the general n-degree B-spline is defined as Bn = B0 

* Bn_1, the cubic B-spline the most useful here. AB-spline of degree one is the triangle 
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function, degree two is the bell function, and degree three is the cubic B-spline, as shown 

in Figure 2-8. 

R(x) 

0.66 

0.16 

-2 -1 0 

Figure 2-8. 
The Cubic B-Spline 

In interpolation applications, a B-spline is used to join data samples into a 

continuous function. Interpolation with a first degree B-spline (the triangle) is to join the 

data samples with straight lines (linear interpolation). Second order B-splines (bell 

functions) join the data samples with parabolas, with the span limited to three samples. 

Cubic B-splines are typically limited to matching four data samples, as shown in Figure 

2-9. 

~ lma~e Sample5 

~ Interpolated Point 

- Interpolation Function 
-1---~-----t~i.ij,ii...-__.i:,,;~---llo.l'.I.....--

\-1 
X 

xk.+2 

Figure 2-9. Cubic B-Spline Interpolation 



16 

Cubic B-splines are used in image interpolation because the first and second order 

derivatives are continuous, and they provide smoothing. The cubic B-spline is defined as 

R(x)=t+tlxl3 -(x)2, Oslxlsl 

= t(2 -lx1)3, 1 S lxl S 2 
(2-15) 

Cubic Convolution 

Rifman and McKinnon [Rifman 74] originally suggested the cubic convolution 

algorithm as an approximation to the sine function. It was developed at TRW to help in 

the reconstruction of Landsat digital images and is known as the TRW cubic algorithm. 

It has been shown [Pratt 91] thatifthe digital image is band-limited and 

sufficiently sampled, then it can be reconstructed completely by using the ideal 

interpolation function from Equation 2-9, 

sin(,cx) 
sinc(x) = 

7CX 
(2-16) 

The spatial sine function in Equation 2-17 corresponds to the rectangle function in the 

frequency domain. The rectangle function is a low-pass or band-pass filter that does not 

introduce any distortions inside the passband. 

However, Equation 2-17 is not a practical function to implement in the spatial 

domain, due to its infinite extent. In practice, the number of samples used to reconstruct 

one new sample point must be limited, and a limited approximation to the sine function is 

needed. If the sine function is limited to five points, there is a slope discontinuity at the 

end points, -2, and 2 [Park 82a]. This produces ripples in the :frequency spectrum. Cubic 

convolution [Keys 81] is an attempt to eliminate these ripples by making the slope zero at 

the end points. This produces an approximation to the sine function in the area of interest 



(-2 < x < 2), while preserving the continuous end points. This cubic curve, which is 

actually a range of piecewise continuous functions, is given by 

R(x)=(a.+2)lxl3 -(a.+3)lxl2 +1, lxl<l 
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= a.lxi3 - Sa.lxl2 + Sa.Ix!- 4a., 1 ~ lxl < 2 

= 0 otherwise. 

(2-17) 

The parameter a. is an adjustable variable. This parameter corresponds to the slope at 

x= 1. The ideal sine function has a slope of -1 at x= 1, thus the parameter a. is usually set 

to -1 to duplicate the ideal function. However, Park shows that a choice of-0.5 is 

actually a better choice than either the standard -1, or-0.75, which is also used at times. 

This choice of a. gives a frequency response superior to nearest neighbor, and linear 

interpolation. This method can also be incorporated into an adaptable scheme, where the 

parameter a. is based on local image statistics. In particular, for an image with edges as 

its main point of interest, Park suggests a value of -0.666 is an optimal choice for 

minimizing error. 

Filter Choice 

Several authors have studied various filters used in the reconstruction of discrete 

images [Maeland88], [Mitchell 88], [Park 82a], [Park 82b], [Naiman 87]. Schreiber and 

Troxel [Schreiber 85] emphasized the importance of a perceptual based evaluation of the 

filters. In this study, which compared the nearest neighbor, truncated sine, linear, B

spline, gaussian, and a sharpened gaussian, the results showed a subjective preference for 

the sharpened gaussian filter. This study is of particular interest because it emphasizes a 

real world approach. In the sharpened gaussian case, separable filter were cascaded 

together to form a combined sharpened gaussian function. The sharpening portion of this 



filter is used to emphasize the high frequency edges in an image, mimicking the human 

eye. By using a separable filter, the authors kept the computations relatively short. 

Coding 

There are many different methods to encode image data. This research is 

concerned with the two types used in the JPEG OCT image compression scheme. The 

JPEG algorithm uses transform coding (OCT-based) to encode the image samples, and 

uses predictive coding to encode transform coefficients. 

Predictive Coding 
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Predictive coding .makes use ofredundancy in the data. In image compression, 

redundancy is highly dependent on the type of image being compressed. For example, an 

image of a constant blue sky will be highly predictable, as will an image of a starfield. Of 

course, most images of interest are much more random. In predictive coding, the 

algorithm can either base its predictions on some fixed value, or on a adaptive value. 

Adaptive values commonly include the average pixel value, the previous pixel value, or a 

local average pixel value. 

Most images contain some form of structure-to them. For example, a natural 

scene image may contain a man-made building, a person, a tree, or other objects which 

are likely to contain similar colors and textures. Within that area of the image, the pixels 

may be highly predictable. However, when considered as a whole, the image may not 

contain elements that lead themselves to prediction. An adaptive algorithm [ Arps 88] 

always makes more accurate predictions because of this. However, the tradeoffin 

algorithm complexity and speed may make a non-adaptive algorithm more suitable. 
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Transform Coding 

The Fourier transform discussed above and other frequency space transforms, 

such as the cosine transform, are used in image processing for many different reasons. 

The use of transforms in image coding first began about 1970 [Chen 84], [Wintz 72]. 

However, because of the computational difficulties and resulting large delays, transform 

image coding did not receive much attention. Recently, due in part to advances in digital 

computers, there has been renewed interest in using frequency transforms for image 

compression and coding. It has proven to be an efficient means of image compression 

[Lohscheller 84]. The algorithm for computing the discrete cosine transform (OCT) has 

been an area of concentrated research over the last twenty years [Duhamel 90], [Chen 77], 

[Narasinha 78], [Ahmed 74], [Suehiro 86], [Lee 84] and [Vetterli 84]. Some of this 

research is directly applied to computing small (16 by 16, and 8 by 8) sub blocks of two 

dimensional image transform data. The resulting speed improvements have helped make 

the OCT an acceptable solution for time-constrained image compression problems. 

In a typical image coding algonthm, the original image is divided into small 

subblocks, 8 or 16 pixels per side. Each block undergoes a two-dimensional 

transformation, producing an equal size block of transform coefficients. Each block of 

coefficients is converted into.an one-dimensional array, and then quantized and coded. 

Generally the low frequency components are quantized mostfinely, and the higher 

frequency coefficients are quantized more coarsely. Finally the quantized coefficients 

.may be compressed further using some form of predictive coding, usually Huffman 

coding or arithmetic coding [Langdon 84], [Pennebaker 88]. 
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The JPEG Draft 

Background 

The Joint Photographic Experts Group (JPEG) draft [JPEG Draft 92] is the 

accepted method for compression of natural scene images,. and is likely to become an ISO 

standard. It includes four modes of compression; sequential, progressive, lossless, and 

hierarchical. In sequential encoding, each image pixel is encoded in a single left-to-right, 

top-to-bottom stream. Progressive encoding operates across the image in multiple scans, 

allowing the viewer to watch the restoration in multiple passes. The lossless encoding 

mode sacrifices compression ratio for image quality, guaranteeing an exact recovery of 

the compressed image. Finally, hierarchical encoding creates multiple images of 

differing resolutions, so that low resolution versions may be accessed without 

decompressing the full image at high resolution. 

The lossy method includes the discrete cosine transform (DCT), to be formally 

defined below. The simplest process is called the baseline sequential process. The 

coding pathway shown in Figure 2-10 starts by grouping the image data into 8x8 blocks 

of a single color component. Each color component of the image is handled 

independently, and there can be up to 255 separate components. Each 8x8 block is then 

transformed into a set of 64 discrete cosine coefficients with the forward DCT (FDCT). 

The coefficients are quantized using a predetermined quantization table, and are 

then prepared for the entropy encoder. The coefficients are passed through the one of two 

possible entropy encoders (either a Huffman encoder or an arithmetic encoder). Both 

again use a predetermined table (not specified in the JPEG draft). 
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Grouped into 8x8 blocks 
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Figure 2-10. The JPEG Compression Process 
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The decoding steps in Figure 2-11 are essentially the inverse of the coding steps. 

The compressed image data is first passed through the entropy decoder. The coefficients 

are reorganized into the proper order (2-D), and the difference encoding is reversed. The 

data continues to the dequantization step, which converts the data back into DCT 

coefficients. Finally the inverse DCT reconstructs the 8x8 block of image data. 

Entropy 
Decoder 

Compressed Image 
Including tables 

Table 

Organization Dequantizer IDCT 

_,_1. _____ _ 
I I 
-i-,-------

1 I 
I I 

Reconstructed Image 
Grouped into 8x8 blocks 

Figure 2-11. The JPEG Decompression Process 

Forward and Inverse Discrete Cosine Transform 

The FDCT used in the JPEG draft is: 

:f(u,v)=-CuCvLLF(x,y)cos -(2x+I) cos -(2y+I) I 7 7 (U1t ) (V1t ) 
4 x=O y=O 16 16 

and IDCT used in the JPEG draft is: 

(2-18) 



F(x,y)=-IIcuCv.f(u,v)cos -(2x+l) cos -(2y+l) 1 7 7 
( U7t ) ( V7t ) 

4 u=O v=O . 16 16 

where: 

Cu = Cv = 7r for u, v = 0 

and C = C = 1, otherwi8e. 
U V 

Quantization and Dequantization 
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(2-19) 

A single DCT coefficient, .f(u,v), is quantized by a uniform quantization formula: 

Jq ( u, v) = round(~~:~ 5). (2-20) 

The step size Q(u,v) comes from the quantization table, and rounding is done to the 

nearest integer. Jq(u,v) is the 9uantized DCT coefficient. Inside the decoding process, 

the normalization is removed by an inverse process: 

fuq(u, v) = Jq(u, v) x Q(u, v) (2-21) 

where fuq(u,v) is the unquantized DCT coefficient. 

Data Preparation 

The first (DC) coefficient of the block is encoded with the difference equation: 

DIFF = DC - PRED (2-22) 
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The PRED value is the unquantized value of the DC component of the preceding block, 

Juq(O,O). The remaining AC components are arranged in a zig zag sequence as show in 

Table 2-1. 

0 1 
2 4 
3 8 
9 11 

10 19 
20 22 
21 34 
35 36 

TABLE2-1 

ORGANIZATION OF COEFFICIENTS 

5 6 14 15 
7 13 16 26 

12 17 25 30 
18 24 31 40 
23 32 39 45 
33 38 46 51 
37 47 50 56 
48 49 57 58 

Compression Ratio and Image Quality 

27 28 
29 42 
41 43 
44 53 
52 54 
55 60 
59 61 
62 63 

All frequency transform-based compression schemes can produce varying levels 

of image quality. Basically, the more high frequency components that are discarded in 

the quantization step, the better the compression, at the expense of the image quality. For 

OCT-based compression schemes, the levels shown in Table 2-2 have been found by 

[Wallace 91], [Leger 91] and [Mitchell 89] to be a consistent framework for image 

quality measurements. 



Bits Per 
Pixel 

0.25 to 0.5 

0.5 to 0.75 

0.75 to 1.5 

1.5 to 2.0 

TABLE2-2 

COMPRESSION VERSUS QUALITY 

Subjective Quality 

moderate to good, sufficient for some applications 

good to very good, sufficient for many applications 

excellent, sufficient for most applications 

usually indistinguishable from the original, sufficient for the most 
demanding applications 
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From this information it is possible to predict the amount of compressed data 

needed for a given level of quality. For a quick example, a image 512 by 512 and 24 bits 

deep (6.3 Megabytes) could be reduced to 65 Kilobytes, while maintaining a moderate 

image quality. For the JPEG algorithm, this is an intermediate result. The DCT 

coefficients are further compressed using the zig zag organization and Huffman coding. 

According to [Mitchell 89], this allows for a ISDN network to display a recognizable 

image in less than one second. This assumes the decompression can be done in real time, 

which is 64 Kilobits per second for ISDN. An excellent quality image would be achieved 

in 5 to 10 seconds, and a visually indistinguishable image in 20 seconds. 



CHAPTER3 

RESEARCH OUTLINE 

Background 

Traditional image reconstruction begins with a digitized image and includes the 

following steps: First, interpolation between the original image samples recreates the 

continuous image signal, then scaling of this continuous signal produces an image of the 

correct size. Finally resampling the scaled continuous image creates a new digitized 

image. The traditional method is shown in Figure 3-la. Figure 3-la includes the IDCT 
',>',LJC"'"'-"·"'2• 

operation for later comparison. ') 
,/._ , ,· 

This research examine( the possibility of performing the interpolation and scaling 
'•.,,.. 

operations in the frequency domain, rather than the spatial domain. This idea fits nicely 

with the JPEG image compression algorithm, because the JPEG algorithm uses the 

discrete cosine frequency transform to compress the image. The goals of this research are 

first to determine if this approach is feasible, and second, if feasible, to determine what 

benefits this approach can offer. The new frequency reconstruction method shown in 

Figure 3-1 b. The new method uses the transformed image data and produces a scaled, 

resampled image stream by applying the reconstruction process to the DCT transform 

coefficients. 

25 
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Reconstructed 
DCTCo efficients " .a1 ' .a2 Im.age Data 

"\ Tradition.al 
method (a) 

DCTCoe 

/ IDCT 
r--_;; 

Reconstruction 
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scaling 
resampling 

fficients , b1 ~ b2 
/ Reconstruction IDCT 

filtering scaling 
resampling 

/ 

r-: l c... ;., 
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Im.age Data 

"\ 
/ 

,tf\.v,, 1-

New 
method (b) 

Figure 3-1. Reconstruction Methods: a) Traditional Method; 
b) New Method 

If the reconstruction can be done in the frequency domain as a multiplication 

(filtering), rather than in the spatial domain as a convolution, the resulting reconstruction 

algorithm will be much faster. The new cosine domain-based reconstruction algorithm 

requires three related operations. They are filtering, scaling, and resampling. The 

filtering operation multiplies the OCT coefficients with the reconstruction kernel. The 

scaling operation adjusts the frequencies used in the IOCT operation. The resampling 

operation samples the scaled OCT basis frequencies at the new sample locations. Of the 

three steps in the process, the filtering operation is the only separate module. The scaling 

and resampling steps are integrated into the IOCT process) 

Spatial Implementation 

· ( The first phase of the ~~c~-covers the spatial implementations of the cubic, 

and th~ sharpened gaussian reconstruction functi~ns)Q'hese two spatial function~are well 

documented in previous research literature, and €7-~f :~ho sen because of their wide 

acceptance as high quality image interpolation functions. Although both functions are 

used in a two-dimensional manner, both are implemented in a one-ditµensional fashion.) 
. . / 
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The separable implementation matches the previous research in the literature. (A 
separable function operates in a two-pass method, the data is interpolated first the 

horizontal direction, then in a vertical direction. The result is a rectangular two

dimensional interpolation function:) These spatial implementations, developed in Chapter 
"' 

4, are needed for error analysis in later steps, as well as implementation guides during the 

frequency domain development presented in Chapter 5. 

(As part of the first phase to develop a suitable reconstruction process, the 
'l, 

interp~l;tion function will be combined with the scaling process. ('.:[he interpolation 

function is used to interpolate between samples of the original image and the second 

function, the scaling function, scales the image to the correct size. The combined 

reconstruction function will contain an adjustable parameter, l;, to specify the degree of 

scaling ( either spatial magnification, l;> 1, or spatia! minification, l; <l) desired) Details of 
.,.-.r 

the spatial implementation is presented in Chapter 4. 

Frequency Implementation 

r . 

{Jb.e second phase covers the frequency domain investigations, starting in the 

Fourier frequency domain, then extending the results to the discrete cosine frequency 

domain. The purpose of the Fourier work is to provide a basis of understanding and 

comparison, since little research of this nature is available in the cosine domain)(!he 
. ~ 

frequency phas~\ofthe research, presented in Chapter 5/produces two individual 
/ \ 

reconstruction filters ( cubic and sharpened gaussian) which are implemented and 

documented in the discrete cosine domain, as well as the Fourier domain for reference. 

As part of the Fourier analysis, the ideal reconstruction filter is also examined. The ideal 

filter is used to calculate and predict the cutoff frequencies used to prevent aliasing. 

Using the ideal filter in the cosine domain, an ideal image of the correct size is generated 

and used as a basis for numerical error analysis. 
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The result of the frequency domain implementation phase is three filters, the 

combined cubic-scaling filter, the combined sharpened gaussian-scaling filter, and the 

ideal-scaling filter, all implemented and documented in the cosine domain. These 

functions are independent of any specific implementation which constrains the frequency 

range. In particular, they do not depend on the JPEG implementation of an 8x8 OCT 

block, which limits the possible frequencies to those represented by the 64 OCT 

frequency coefficients. 

Application to the JPEG Data Stream 

The third phase, presented in Chapter 6, demonstrates the use of these filters 

during JPEG decompression. The JPEG algorithm constraints the range of frequencies 

that are available to the reconstruction process because it uses an 8x8 block of 

coefficients. Only 64 discrete frequencies are allowed and the higher frequencies are set 

to zero. During this phase, two well known test images will be used; the Lena and 

mandrill images. A black and white reproduction of each image is shown in Figures 3-2 

and 3-3. 
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Figure 3-2. The Lena Test Image 
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Figure 3-3. The Mandrill Test Image 

Much of Chapter 6 is devoted to a discussion of differences (both subjective and 

quantitative) between the spatial and frequency versions of the images. This includes a 

discussion of the impact of filtering out the high frequencies (anti-aliasing) during the 

frequency reconstruction. This chapter includes a documentation of the implementation 

differences between the spatial and frequency research, primarily centering on the 

differences in circular and rectangular filters. Speed comparisons are also discussed for 

each process path. Finally, in the error analysis section of Chapter 6, the numerical errors 

are plotted for varying scaling factors, for both the Lena and mandrill images. 
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Evaluation 

The research summary in Chapter 7 presents conclusions found in this research. 

The conclusions are largely subjective for two reasons. First, when applying the 

magnification and minification algorithms, the original correct image may not be 

available for any error analysis, although if possible, the ideal filter is used for this 

purpose. Secondly, there is no single quantitative measure that m.iinics the human visual 

system, the eventual receiver. 

For example, in similar works [Ratzel 80, Ready 72] it is suggested that a 

numerical error evaluation, such as a minimum mean square error (MSE), may not be an 

appropriate choice when the actual receiver is the human eye. As an example, consider a 

small grayscale image with a range for each pixel from Oto 255. If the value of 1 is 

added to every pixel value, the resulting MSE will be quite large, however the visual 

effect is not too disturbing. The same MSE results if 1 is added to every even numbered 

pixel in even numbered lines, and odd number pixels in odd numbered lines, and 1 is 

subtracted from all other pixels. This results in a checkerboard pattern that is more 

disturbing to the human visual system, yet yields the same MSE value. 

Summary 

Using the convolution and scaling properties of the discrete cosine frequency 

transform,.this research implements and evaluates a new method of manipulating the 

transform data directly, before the final inverse transformation of the image data is 

accomplished. Three operations (filtering, scaling, and resampling) are combined into a 

single, adjustable reconstruction process. 



CHAPTER4 

SPATIAL IMPLEMENTATION 

Notation 

Image Coordinates 

This research uses three coordinate systems in the description of an image. It is 

useful to use three different sets of variables to help clarify these descriptions. First, the 

normal, unscaled image is described using x (horizontal) and y (vertical) dimensions, as 

shown in Figure 4 .. 1, Each pixel represents one unit in these coordinates. For purposes 

of the JPEG DCT, this means that x and y are limited to the block size, N=8. The 

variables x and y then vary between O and 7. 

In the discrete cosine frequency space, the frequency coordinates are u and v. 

When referring to the JPEG DCT algorithm, the DCT is limited to an 8 by 8 block, so u 

and v also vary from Oto 7. In the Fourier frequency domain, the variables w 1, and w2 

are used to distinguish the Fourier frequency space from the cosine frequency space. 

The third description of an image is the scaled IDCT output space (the 

reconstructed image space). This output space is given coordinates r and s. This 

coordinate system is the same as x and y when the scaling is 1. However, when the 

scaling is not 1, the new scaled space does not have the same range as the original 8 by 8 

block. Instead, each block is scaled to a new size, described in terms of r and s. As 

indicated in Figure 4-1, the range or block size (N) is 8 for the JPEG DCT. The scaled 

' (reconstructed) block size is M = round(Nc'.;), where c; is the scaling facto!,discussed in 

Chapter 2. 
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Figure 4-1. Coordinate Spaces 

Interpolation functions use values of surrounding sample points to estimate the 

value of an intermediate interpolated point between the samples. (separable interpolation ( 

functions are implemented in a one-dimensional manner, and operate in a two-pass 

fashion. In this research, the spatial reconstruction functions are implemented in a 

separable fashion. The first pass interpolates horizontally and produces four intermediate 

points, the second pass interpolates in the vertical direction using the intermediate points 

and produces the final interpolated point0 Separable functions are advantageous for speed 

of computation and simplicity during the· implementation phase. 

( When the interpolated point lies directly on an original data sample, it is usually 

assumed the interpolated point will exactly match the original sample. However, in the 

case the sharpened gaussian, the interpolated point will not match the original data, but 

will produce a sharpened version of the data set instead. In the case of the cubic function, 

the new interpolated point will exactly match the original data. 

Interpolation functions have the general form 



g(x)= ~:Ckz(x-xk), r\ 
k '2- (-1-,~ -~ ":'') 

-z...(O""\ 
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(4-1) 

where g(x)is the interpolating function applied to a sampled function f(x) (the sampled 

image), xk corresponds to the sample data points, z is the interpolation function (i.e., the 

cubic function). The ck's are parameters based on the sampled data, so that g(xk) =f(xk) 

for each xk. The sampling increment is assumed to be normalized to one. 

Parametric Cubic Convolution 

Conditions and Restrictions 

·· l The parametric cubic kernel, described in Chapter 2,)contains four segments, (-2, -

1), (-1,0), (0,1), and (1,2) [Ri:fm_an-7-4]-~ark-82-a]-fl(eys"TI]. It is defined to be zero ----\ 
outside this interval. However, since the kernel must be symmetric to avoid phase shifts, 

the domain can be limited to (0,1) and (1,2), and reflected about the zero axis. With this 

simplification, the kernel has the form: 

,.,.., 

f { A 1x3 + B1x2 + C1x + Di, 0 < x < I 
z(x)= A 2x3 +B2x2 +C2x+D2 , · l<x<2 

0, 2< x . 

(4-2) 

. where x is measured as an offset distance from the interpolated point. 

By imposing additional conditions on the interpolation kernel, z(x), the 

coefficients in Equation 4-2 can be established. Since the value of the kernel function 

must be equal to the sampled data at the interpolated point when the offset is zero; 

z(x)=l, x=xk 

z(x) = 0, x :;t: xk 
(4-3) 



thus, using xk instead of x, 

g(xk) = Ickz(xk -xk) 
k 

I 
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(4-4) 

Since z(x)=O unless x=O, and z(x)= I at x=O, then g(xJ = ck. Combining this result with 

the requirement g(xJ = F(xJ, the end result is 

(4-5) 

And: 

l=z(O)=D1 

, 0 = z(r) = Al + Bl + cl + DI 

."' 0=z(i+)=A2 +B2 +C2 +D2 

(4-6) 

0 = z(2-) = 8A2 +4B2 +2C2 + D2 

Pm.4tjParc~aJ-alsg._imp0ses-that-the interpolation kernel, z(x), has a continuous 
tls-u ~ k J-

derivative, z'(x), for all x. Keys [Keys 81] translates pits to the cubic family as: 

-C1 =z'(0-)=z'(O+)=C1 

3A1 + 2B1 + C1 = z' (I-).= z' (I+) = 3A2 + 2B2 + C2 

12A2 +4B2 +C2 =z'(2-)=z'(2+)=0. 

(4-7) 

The first condition implies C1~0. Putting the results of Equation 4-6 and Equation 4-7 in 

-malrix form gives / 

.~ 
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0 0 0 1 0 0 0 0 A~ 1 

1 1 1 1 0 0 0 0 B1 0 
0 0 0 0 1 1 1 1 cl 0 

0 0 0 0 8 4 2 1 D.1 0 
(4-8) 0 0 1 0 0 0 0 0 A2 = 0 

3 2 1 0 -3 -2 -1 0 B2 0 
0 0 0 0 12 4 1 0 C2 0 

0 0 0 0 1 0 0 0 D2 a 

This gives seven equations in eight unknowns plus the relation A2 = ex. For this last 

equation, a range of values. has been proposed for ex. The value A2 corresponds to the 

slope at x= 1 )rufman [Rifman 7 4] originally proposed a value of A2=- l, to match the 

sine function. However, Keys [Keys 81] selec{a value of-0.5, to make the Taylor series 

expansion of R(x) in Equation 2-17 match the interpolation function g(x) to as many 

terms as possible. The same value, -0.5, was used in this implementation. The result is a 

function based on the four surrounding points, the parameter ex, and x, the offset from the 

interpolation point. 
V f"' I')== ~ e_,<. 'Z-c_ rx-1< ti.> 

r·---, 
~ 

l 

g( x) = -[ a( ck+2 - ck-t) + ( a. + 2 )( ck+t - ck) ]x3 + / 

[ 2a.( ck+t - ck-t) + 3( ck+t - ck)+ a.( ck+2 - ck )j~ -
) 

(11. --;;:; 

(4-9) 

\ 

Equation 4-9 can be rewritten as a reconstruction kernel, R(x), by removing the sample 

data points, and separating the two functions, the first from O to 1, the second from 1 to 2, 

then reflecting these two functions about the axis. This is the same as Equation 2-18. 
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R(x)=(a+2)jxj3 -(a+3)jxj2 +1, jxj<l 

= ajxj3- 5alxl2 + 8alxl- 4a, 1 S !xi < 2 (4-10) 

=O otherwise. 

Sharpened Gaussian 

Conditions .mid Restrictions 

t!'he sharpened gaussian function is a combination of three gaussian functions, one 

central and two side lobes. The two side lobes have a negative gain, and are displaced by 

the amount of scaling. The gains of the central and side lobes are arbitrary set to provide 

a pleasing visual result. This is a change from the cubic function, where the gain is 

determined by minimizing numeric difference between the sine function. The sharpened 

gaussian is designed by subjective measures, where the cubic is designed by numeric 

measure0 

Ratzel [Raztel 80] investigates the subjective quality of the image versus filter 

width. In particular, he studies the tradeoff between filter width in the frequency domain 

versus filter width in the spatial domain. One of the results of this paper is that a filter 

width given by u=0.375 gives good results. 
(.. :::: 0,')7,( 
(_Th@value of <J" is used in ~implementation of the sharpened gaussian filter for 

the central and ~ the side lobes1 However, the gains for the central and side lobes are 

different than the gains Schreiber [Schreiber 85] or Ratzel used. Schreiber starts out with 

the same gaussian parameters, however, he implements it in a discrete fashion. First he 

convolves the entire image with a sharpened filter given by 

(4-11) 
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This removes most of the intersample interference, or dependence. After the entire image 

is sharpened in this manner, a two pass convolution, first horizontal, then vertical, is used 

as the interpolation step. The discrete interpolation filter he uses is 

(4-12) 

which is his approximation to a central gaussian. The data is scaled to reduce the gain 

introduced by the interpolation and sharpening filters. 

Schreiber results are used in this research, the same value for <T is used, but the 

two functions are combined into one, and a constant test image is used help fine-tune the 

gains of the central and the side lobes. The resulting filter is shown in Figure 4-2. It is 

identical to the previous sharpened gaussian filters, except it is a single continuous filter, 

and the adjusted gains used here eliminate the final scaling step done in Schreiber's work. 

R(x) 
1.5 

0 .......... -=---t--r----t---t-~~ 
-0.27 X 

-2 -1 0 2 

Figure 4-2. 
Sharpened Gaussian 
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The central lobe is described as 

Centra x = ex 1( ) LS ( -0.5x2 J 
2.5066 X 0.375 p ( 0.375)2 

(4-13) 

and the two side lobes are 

S.d ( ) -0.27 ( -0.5x2 J 1ex= ex . 
2.5066 X 0.375 p ( 0.375)2 

(4-14) 

These are consistent with the modified gaussian curves presented by Ratzel, and 

Schreiber. The final curve shown in Figure 4-2 is a result of adding the three curves 

together. The central gain, 1.5, and the side lobe gain, -0.27, were selected using a 

constant test image, to be discussed in the error analysis section. 

Error Analysis 

To test and adjust these functions and their parameters (particularly the gain of the 

sharpened gaussian function), different two-dimensional functions were used to simulate 

the image data. The first function used was a constant image ( each pixel value equal to 

100). The other artificial image used was a linearly varying image. Each pixel value was 

computed with the function 

Pixel Value = (Row Number)+ 10 x (Column Number). (4-15) 
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Using these functions as test data, the cubic function performed as expected, and needed 

no further modifications. However, the gains of the sharpened gaussian were adjusted to 

1.5 and -0.27 to produce a subjective minimum distortion using the constant test image. 

In this research, there is a slight distortion introduced by round off errors. A four point 

window is used, which can lead to a phase distortion when centered the interpolated point 

lies on a sample data point. This problem is caused by the right most point of the 

window does not evaluate to zero. This is shown in Figure 4-3a. The four dark vertical 

lines in both figures represent the sample data points, xk_1, xk, xk+i, and xk+i· 

R(x) 

-2 -1 0 
X 

2 

Figure 4-3a 
On-Center Interpolation 

R(x) 

-2 -1 0 

Figure 4-3b 
Off-Center Interpolation 

X 

2 
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When the interpolated point is not centered on a data sample, xk, as in Figure 4-3b, there 

is the balancing left sample, xk-I · However, in Figure 4-3a, the right most sample point, 

xk+2, does not evaluate to zero because the interpolation kernel, R(x), is not quite zero. 

This amount of distortion turns out to be significant. On the constant image test, this 

right most sample contributed a distortion of 3.6 percent. For separable horizontal and 

vertical implementations this is magnified because of the two pass implementation. The 

first pass contributes 3.6 percent, then the second pass adds another 3.6 percent. One 

method of compensating for this would be to decrease the width of the filter. o match 

Schreiber's work on spatial versus frequency filter width tradeoffs, the fil r width was 

not changed. However, this idea could be subject to subsequent stu . A typical 

interpolated (one dimensional) line is below in~, sho'Yi g these ripple-like 
~ 

distortions. The odd pixel locations are the on-center values(the even are the off-center 
/ 

interpolated values. 
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Figure 4-4. Sample Sharpened Gaussian Response 

Using these values, a numerical estimate for the error can be computed. Both the on and 

off center interpolated are supposed to have a value of 100. The error can be measured 

against this artificial image. 

error = ~(100 - 100.8)2 + (100 - 99.8)2 = 0.4123 
2 

Summary 

(4-16) 

This chapter covers the first phase of the research, the spatial implementation of 

two interpolation kernels, the parametric cubic convolution, and the sharpened gaussian. 

This phase is important because it gives a method of comparing this research to other 

research in the literature. It will also be used later to compare the spatial implementation 

to the frequency implementation. Deviations from the literature include a one-pass 
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combined method, rather than the two-pass sharpen-interpolate scheme. Both functions 

perform 2 dimensional interpolations, first horizontally, then vertically. 

Because of the on-center/off-center problem, the implementation of the sharpened 

gaussian function gave an error based on the scaling value. If the function is aligned ( on

center) with a data sample, the error is about 3.5 percent greater than if the function is 

halfway between the data samples (off-center). 



CHAPTERS 

FREQUENCY IMPLEMENTATION 

JPEG DCT Definition 

l The JPEG draft [JPEG Draft 92] specifies the forward and inverse discrete cosine 

transforms to be used for image compression and decompression~ Recalling Equations 2-

18 and 2-19, ~e forward (FDCT) and inverse (IDCT) transforms are defined as 

FDCT: :fs(u, v) = .!_CuCv ±±Fs(x,y)cos(u1t (2x + 1))cos(v1t (2y+ l))J 
4 x=O y=O 16 16 

IDCT: F8 (x,y) = .!_ ±± CuCv:fs(u, v)cos(u1t (2x + 1))cos(v1t (2y+ 1)) (5-1) 
4 u=O v=O 16 16 · 

1 
where Cu, Cv = Ji for u or v = O; Cu Cv = 1 otherwise. 

where an 8x8 block of image samples is assumed\ 

Scaling 

(Using the linear scaling property, the original image transform data is scaled to 

another size. By contracting the two axes in the frequency domain, the spatial axes are 

expanded. Likewise, by expanding the frequency axes, the spatial axes are contracted. 

This relationship [Jain 89] between a spatial function and its frequency transform is 

expressed as 
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1 U V 
F(l;x,l;y) ~ s2 :f( ~' s). 
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(5-2) 

' where l; is the scaling factor, and l; > 1 pro~uces spatial magnification)\The two axis('. 

could be scaled independently by different amounts, but this research makes use of a )r f' veP~e,J 

single scaling factor, corresponding to the scaling factor applied to the entire image. 

(By inserting this scaling property into the inverse discrete cosine process, the 

resulting spatial data is, in effect, scaled to the correct size, or sampling rate. ' 

Fs(sx,l;y)~-II ~ :fs(u,v)cos -(2x+l) cos -(2y+l) 1 11 cc (nu )· (nv ) 
-" 4 u=O v=O S 16l; 16l; 

(5-3) 

The impact of scaling the basis frequencies is illustrated in Figures 5-1 and 5-2. These 

figures show plots of the cosine terms in the summation 

Icos -· -(2x+l) 
7 

( 7tU ) 

u=O 16l; 
(5-4) 

for t_hre~_cliff~E~!!!.Y!tlM~~-~L~ anct!~2.A-if~i:eJ1t"'!111!~es of l;. Figure 5-1 shows the case of 

l;=l; the original, unscaled case. 

As the scaling factor l; is increased to 1.25 as in Figure 5-2, the frequency axis is 
~,,. ;~"',,;~- ~·-r . --··· . , . 

effectively compressed. TJ.n.:s inverse relationship between the spatial axis and the 

frequency axi~J8 used to scale the image data in this research. 
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Figure 5-1. Unscaled Cosine Frequencies, s=l 
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Figure 5-2. Scaled Cosine Frequencies, s=l.25. 

By scaling the frequencies in the discrete cosine transform, the image in the spatial 

domain is effectively scaled in the inverse manner. 

O x=O 

••=1 
• •=2 

O xzO 

••=1 
• x=2 
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As an example, consider the spatial magnification scaling process shown in 

Figure 5-3. 

1 I J J I 
I __ -1- __ I __ -1- _ -1- _ -1- __ I 

Figure 5-3a. Figure 5-3b. 
The Continuous Image. The Initial Sampled Image. 

Figure 5-3c. The Scaled (Magnified) 
Sampled Image. 
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Figure 5-3d. Resampling the Scaled Image to Fit 
the Output Requirements. 

Figure 5-3a and Figure 5-3b show the original continuous and sampled image for a 6x5 

pixel array for a display device of a given size. The scaling step in Figure 5-3c scales 
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both spatial axes uniformly. In Figure 5-3b, the first sampling step, the image is sampled 

to 6x5 pixels, as it is in Figure 5-3c. However the size of each pixel is larger in Figure 5-

3c than 5-3b. The image is still 6x5, but each unit has been scaled. In Figure 5-3d, the 

units are returned to the original size, but now the image is resampled to 7.5x6.25 pixels. 

~he expansion by 25 percent in Figure 5-3 corresponds to the contraction of the 

frequency axis by 25 percent in Figure 5-2) 

Each pixel in an image has frequency information associated with it. The edges 

of the letter in Figure 5-3a have very high frequencies, while the white areas have only 

DC frequency content. As the image in Figure 5-3c is scaled, the edges still retain the 

high frequencies, only the position (relative to the top left comer of the image) is 

changed. Likewise, as the FDCT is computed over a block of image samples, the 

positional relationship of the samples to the DCT basis frequencies is encoded in the 

resulting 8x8 DCT coefficients. By changing the basis frequencies during the IDCT 

process to match a new sampling grid, the positional information is interpreted as 

matching that new grid al:) 

Spatial and Fourier Domain Reconstruction 

In order to resample the sampled image, the original image, F(x,y), can be 

convolved with a reconstruction kernel, R(x,y). Using the convolution property [Jain 89], 

the t~ansform of the convolved functions is equal to the product of the transforms of the 

functions. This relationship can be written as 

F(x, y)® R(x, y) ~ F(ro 1,ro 2 )R(ro1,ro 2 ) (5-5) 

Recalling Equation 2-2, 
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Fs(x,y) = F(x,y)S(x,y). (5-6) 

The sampled image, Fs(x,y), is the product of the continuous image, F(x,y), and the 

sampling function S(x,y). The sampled image, Fs(x,y), is termed the ideal image, Fi(x,y), 

if the sampling function used exactly matches the desired sampling function needed to 

match a given display device. The initial sampling function used to digitized the image is 

normally assumed to be different ~an the sampling function desired for the displaying 

the image on the output device. 

The convolution of the sampled image, Fs(x,y), and the spatial sampled 

reconstruction kernel, Rs(x,y) is the sampled reconstructed image, FR(r,s). 

FR (r,s) = F/x,y)® R/x,y) (5-7) 

Using the Fourier transform on Equation 5-7, but ignoring the change in variables from 

x,y to r,s gives 

a•-+= 
FR ( roi,ro2) = Fs ( roi,roJRs ( roi,ro2) (5-8) 

where Fs( w 1,w2) is the transform of the sampled image, Fs(x,y), defined in Equation 2-5 

as 

"' "' 
Fs(roi,ro 2) = L LF(ro 1 - jro1s,C0 2 -kro2s), (5-9) 

j=-ook=-oo 

and the Fourier domain sampling frequencies, W 1s, and W 2s are defined as 
. ., 

2n 2n 
ro 1s = -. , and ro2S = -. 

~x ~y 
(5-10) 
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Rs(W1,w2) is the transform of the sampled reconstruction kernel. 

If the original sampled image, Fs(x,y), is bandlimited and sufficiently sampled, 

the spectrum of the reconstructed image, FR(w1,w2), can be made equal to the spectrum 

of the ideal image, Fi(w 1,W2) by using an ideal reconstruction function, Ri(w 1,w2). In 

this case the spatial versions, Fs(x,y) and Fi(x,y), of the images can be made equal. To 

show this, recall Equation 5-6. The sampled image Fs(x,y) is the product of the 

continuous image and the sampling function S(x,y). Using Equation 2-1, the sampling 

function is the summation of dirac delta functions, located on a grid spaced 8X and lly 

apart, 

00 00 

S(x,y)= L ~)>(x-jllx,y-kAy). (5-11) 
j=-ook=-oo 

Using Equation 5-11 in Equation 5-6, and moving the continuous image function inside 

the summations, yields 

00 00 

Fs(x,y) = L IF(jllx,kAy) X o(x-jllx,y-kAy). (5-12) 
j=-ook=-oo 

Taking the continuous two dimensional Fourier transform of Equation 5-12 above gives 

Fs(W 1,w2), the Fourier transform of the sampled image [Pratt 91]. 

Fs ( ro i, ro 2) = JJ Fs ( x, y )e-i(©1x+co2y) dxdy (5-13) 
00 



The Fourier transform of the sample image, Fs(W 1,w2), can be expressed as the 

convolution of the Fourier transform of the continuous image and the Fourier transform 

of the sampling function. 
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(5-14) 

The Fourier transform of the spatial sampling function, Equation 2-1, is an infinite array 

of Dirac delta functions. 

(5-15) 

Performing the convolution in Equation 5-14 as a multiplication in the spatial domain 

gives 

(5-16) 

Using the sifting property of the delta function and combining the integration and 

summation: 

(5-17) 

Finally, Equation 5-17 can be compared to the reconstructed image spectrum 

(5-18) 
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which is Equation 5-8, with Equation 5-9 used to expand the image spectrum. 

The only difference is the presence of the transform of the sampled reconstruction 

function, Rs( W 1,W2). Since by definition a reconstruction function filters out the image 

samplesj, kt:O, the two spectrums, Fs(W 1,w2), and FR(w 1,w2) are equal, except for the 

weighting of the reconstruction function. Differences will exist in the form of aliasing 

problems if either image is insufficiently sampled. In the discrete transform domain, the 

image spectrum is replicated at the sampling frequency. These replications can overlap if 

the sampling increments, .1x or .1y, are too large, resulting in aliasing errors. 

In order to prevent the replicated spectrums from overlapping, the spatial 

sampling increment is chosen so that the region bounded by the cutoff frequencies, W1c, 

and W 2c, is inside the region bounded by one-half of the sampling frequency: 

C01s C02s 
CO < and C02c _<-1c --, 2 2 

(5-19) 

or 

(5-20) 

For image acquisition systems, this means the sampling increments must not be 

larger than one-half of the smallest detail in the image.(In the case of the reconstruction, 

the higher frequencies (greater than one half the sampling frequency) can be filtered out) 

during the calculation of Equation 5-17, by limiting the range of the summation terms to 

only include one spectrum. 
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Ideal Reconstruction 

Ideal reconstruction changes the original sample spacing to match the desire~ 

sample spacing for the final output device. There are two simple reconstruction filters to 

be examined as represented in Figure 5-4. The first is a rectangular area enclosing the 

cutoff frequencies, W 1c, and W 2c· This is the simplest extension of the one-dimensional 

case. The second filter is a circle enclosing the same cutoff frequencies. The spatial 

versions of these filters are sine functions and first order Bessel functions, respectively. 
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Figure 5-4 .. Reconstruction Filter Shapes 

This r'e'arch uses a circular reconstruction filter for the DCT frequency 

implementation in this chapte9 because the offset from the DC coefficient in Table 2-1 is 

used to calculate the reconstruction function. \!owever, the rectangular filter is examined 

in order to determine cutoff frequencies. Both the circular and rectangular filters have 

the same cutoff frequencies, but the rectangular filter is easier to describe mathematically 

and conceptualize. 



The Fourier frequency response [Pratt 91] of the rectangular reconstruction 

function is 

R(roi,roi) = K, for lro 1I ~ C0 1v and lro 2I ~ ro 2L 

R(roi,ro 2 ) = 0, otherwise 

where W 1L and W 2L are between the cutoff frequencies and one half the sampling 

frequencies. The inverse Fourier transform of R(w 1,w2) is 
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(5-21) 

(5-22) 

Eq.uation 5-22 is not a practical filter to implement in the spatial domain because 

the sine functions are infinite in extent. However, in the frequency domain, this function 

reduces to a scaling constant K. 

/"Parametric Cubic Convolution 

Used as an approximation to the ideal interpolation function in the spatial domain, 

the cubic kernel is a limited extent function design to match the sine function at up to two 

points away from the center. It is described [Keys 81] as two functions, the first 

extending from zero to one, the second from one to two, reflected about the. y axis. 

Equation ~-23 is the two dimensional form, with the offset from the central point 

weighting both axis equally. 



R(x,y) =(a+ 2)(x2 + y2)1 -(a+ 3)(x2 + y2)+ 1, 

for O::;; ~x2 + y2 ::;; 1 

R(x,y) = a(x2 + y2)! -5a(x2 + y2)+ 8a(x2 + y2)t -4a, 

for 1 < ~x2 + y2 ::;; 2 
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(5-23) 

Taking the continuous Fourier transform ofR(x,y) in Equation 5-23, and ignoring 

the limits of integration for now, these two functions are: 

R(ro 1,ro 2 ) = 
fJ [(a+ 2)(x2 + y2 )! -(a+ 3)(x2 + y2 ) + l]e-i(roix+cozy)dxdy, 

"' 
for o::;; ~x2 +y2 ::;;1 

(5-24) 
R(ro1,ro 2)= 

fJ [a(x2 + y2 )t -5a(x2 + y2) + 8a(x2 + Y2i -4a]e-i(ro1x+ro2Y>dxdy, 

"' 

for 1 < ~x2 +y2 ::;;2 

Equation 5-24 is given as a reference for now, and is used later to compare the cosine 

frequency domain implementation of the parametric cubic convolution algorithm. The 

cosine frequency domain implementation of the parametric cubic convolution function is 

used in Chapter 6 during the reconstruction of JPEG compressed images. 

Sharpened Gaussian 

The sharpened gaussian function was developed is Chapter 4 and offers a balance 

between the computational problems inherent in a high order interpolation filter or spline, 
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and the pixelization problems of a low order function. Ratzel [Ratzel 80] compared this 

function to other common functions by visual methods but did not compare it to the cubic 

convolution or ideal reconstruction functions. The results of this comparison determined 

the best width of the spatial kernel compared to the width of the frequency kernel. Ratzel 

defined the spatial function as 

(5-25) 

where C and Sare gains applied to the central and side lobes, respectively, 

C = 1.5 , and S = 0.27 
2.50660" 2.50660" 

(5-26) 

and 

cr = 0.375. (5-27) 

As discussed in Chapter 4, the values of C and S are modified in this research by the 

central gain, 1.5, and the side gain, 0.27. The value of a is also modified by the scaling 

factor, all in an effort to keep the filter width consistent with results in the literature. 

The Fourier frequency domain counterpart for Equation 5-25 is 

R( COi,C02) = 
JJ [Ce-05(x2+y2)/a2 -se-05((x2+y2)+1)/a2 -Se-05((x2+y2)-l)/a2 ]e-i((l)1X+(l)2Y)dxdy (5-28) 

co 
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using Equations 5-26 and 5-27 as definitions for the gains and a. As with Equation 5-24, 

Equation 5-28 is provided as a reference for later cosine frequency domain 

implementations of the sharpened gaussian reconstruction function. The cosine domain 

versions of these reconstruction functions are used to reconstruct JPEG images. 

Cosine Domain Reconstruction 

hkru. Reconstruction 

During the initial digitization of a continuous image, one sampling function is 

used to produce the image for compression and storage. During reconstruction, a 

different sampling function is often desired to produce a sampled image which matches 

the output device characteristics. No practical reconstruction function can exactly 

reproduce the original image data lost during the initial digitization, a reconstruction 

function can only interpolate between known image data samples to estimate the 

intermediate points. An ideal reconstruction function exactly reconstructs the original 

continuous image from the digitized version, and resamples this image to match the 

output device. 

The ideal reconstruction function in the frequency domain is defined in Equation 

5-21. It shows a scaling constant defined over a limited frequency range, and zero 

outside that range. This research is concerned with scaling images to different sizes. In 

order to define where to set cutoff frequencies, this section examines the ideal 

reconstruction case. The cutoff frequencies developed here will be applied to the cubic 

and sharpened gaussian reconstruction cases. 

The first case to explore is magnification, the second is minification. The 

continuous image is assumed to be bandlimited and sufficiently sampled during 

digitization to prevent aliasing. However, as the image is reconstructed it is possible to 

reintroduce aliasing problems. Figure 5-5 illustrates a one-dimensional case of the 



original sampled image spectra. The spectra is repeated each integer multiple of 

sampling frequency, Ws, 

F(ro) . Ideal 
~ Reconstruction r-------- --------, 

Filter I I 
I I ~ 

I ( 

I 

-ros 0 

Figure 5-5. Original Spectra 
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(0 

During magnification, the new sampling rate is higher than the original sampling 

rate. Since the spectra is fixed (and bandlimited) at this point, the effect of the higher 

sampling rate is to spread out these repeated spectra. This is shown below in Figure 5-6. 

- cos 

F(ro) 

-roe 0 roe 

Increased 
Sampling 
Rate ~--

cos 

Figure 5-6. Increasing Sampling Rate 

co 

Clearly, in the case of magnification, no adjustment of the reconstruction filter 

cutoff frequencies is needed (at least the cutoff frequencies do rtot have to be restricted). 

In fact, the reconstruction filter can be relaxed to include higher frequencies, if they are 

available. Although this may seem to reduce aliasing, this is not an accepted method of 

anti-aliasing. If the image is not bandlimited, the individual spectra extend beyond We, 

No matter how far the spectra are moved out by magnification, there will still be aliasing 
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problems. In fact, depending of the frequency content of the image, aliasing may become 

more apparent. 

In the case of minification, the filter cutoff frequencies do need to be restricted. 

This is shown in Figure 5-7. As the sampling rate decreases, the repeated spectra move in 

toward the center, causing the spectra to overlap, resulting in aliasing. 

F(co) 
,-,-- ---i--~ 
I I ----1 1-----

-cos O I cos 

Decreased 
Sampling 
Rate 

adjusted filter cutoff ',original filter cutoff 

Figure· 5-7. Decreasing Sampling Rate 

co 

By adjusting the cutoff frequency, We, to one-half the new sampling frequency, 

Ws, the aliasing problem is reduced (although not eliminated). If the new cutoff 

frequency is moved in further, aliasing can be further reduced, and eventually eliminated, 

at the cost of reducing the high frequencies inside the passband. 

In order to find the new correct cutoff frequency, the new sampling frequency 

must be known. Recalling Equation 5-19 and 5-20, 

(5-29) 

and 

(5-30) 



the new cutoff frequencies w ic and W 2c are available from either the new sampling 

frequency, or the new sampling spacing. 

These new cutoff frequencies are applied to the JPEG algorithm during 

reconstruction. During minification, the high frequency coefficients are set to zero, 

effectively filtering out the higher DCT frequencies. To get a better idea of the actual 

cutoff frequencies used during a JPEG reconstruction, it is useful to examine the JPEG 

algorithm more closely. 
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The algorithm starts with either 8 or 12 bits of precision (unsigned) per color 

component sample. These represent the magnitude of a particular chrominance 

component, or luminance field. These numbers are level shifted to be centered about 

zero, by subtracting 2P-1, where Pis the precision used. For 8 bits the shift is 128, for 12 

bits the shift is 2048. These signed numbers (-128 to +127 and-2048 to +2047) are 

transformed into DCT coefficients using the FDCT algorithm in Equation 5-1, which may 

include a loss of precision. In order to achieve (lossy) compression, the DCT coefficients 

are then quantized using one of four tables. The two recommended tables are shown 

below (Table 5-1 and Table 5-2), one for the luminance channel, and one for the different 

chrominance components. Because the coefficients are rounded to the nearest integer 

after division, the quantizing tables reflect the relative importance (visually) of the 

frequencies for both luminance channels and chrominance channels. Using these tables 

as a heuristic guide, different cutoff frequencies can be set for the respective channels. 



TABLE5-L 

JPEG LUMINANCE QUANTIZATION FACTORS 

16 11 10 16 24 40 51 61 
12 12 14 19 26 58 60 55 
14 13 16 24 40 57 69 56 
14 17 22 29 51 87 80 62 
18 22 37 56 68 109 103 77 
24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 99 

TABLE 5-2 

JPEG CHROMINANCE QUANTIZATION FACTORS 

17 18 24 47 99 99 99 99 
18 21 26 66 99 99 99 99 
24 26 56 99 99 99 . 99 99 
47 66 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 

The OCT coefficients for all channels are quantized ( and later unquantized) using the 

above tables and Equations 2-20 and 2-21, 
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J;,(u, v)= round( ~t::n and J'.,(u,v)= _r,,(u, v)x Q(u, v) (S-31) 
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where Q(u,v) is a quantization value from a table, :fq(u,v) is a quantized DCT coefficient, 

and Juq(u,v) is the recovered (unquantized) DCT coefficient. 

When performing the inverse operation, the data is first unquantized, then the 

shifted image values are generated using the IDCT in Equation 5-1, and the shifted values 

are level shifted back to their unsigned representation. This ignores the entropy coding, 

and other formatting operations, since this does not affect the data used in this research. 

Since the JPEG algorithm uses 8x8 DCT blocks, there is an obvious limitation on the 

high frequencies one block can represent. Each color component can also be sampled at 

a different rate. In order to locate which coefficients represent which frequencies, the 

respective contribution for each coefficient must be known. The coefficients are ordered 

as shown in Table 2-1. The higher transform frequencies of the JPEG algorithm are 

located in the lower right comer, and thus, are encountered last in the data stream. Using 

the FDCT portion of Equation 5-1, 

:fs(u,v)=-CuCvLLFs(x,y)cos -(2x+l) cos -(2y+l) 1 7 7 (U7t ) (V7t ) 
4 x=O y=O 16 16 

(5-32) 

and ignoring the input Fs(x,y) for the moment, the transform frequency coefficient 

output, :fs(u,v), is the coefficient of a particular transform frequency set by the 

coordinates (u,v). The frequency referenced by (u,v)is not the Fourier frequency, but 

rather the cosine transform frequency. The difference is important when comparing these 

results to the Fourier transform (or any other transform). The high cosine frequencies in 

the lower right comer do not relate directly to the high frequencies in either the 

continuous Fourier, or the discrete Fourier. In fact, the high frequencies in one transform 

may include the low frequencies of another. 
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To find the actual frequency corresponding to a particular coefficient, the original 

sampling frequency must be known in order to relate the units. It is not necessary to 

assign units to the frequency term, all that is needed is a relative measure, using the value 

of one as a normalized, unscaled case. Since the frequency is related to the number of 

zero crossings for a particular transform (a generalization for the Fourier), the transform 

frequency is related in the same manner to the row and column indices of the JPEG 

algorithm. As the row ( or column) indices increase, the number of zero crossings in that 

dimension increase linearly. Thus the product of the indices, divided by the entire space, 

is an accurate relative frequency term. Thus, the cutoff frequencies 

U V 
Uc =-us, and Ve= -Vs 

N N 
(5-33) 

are relative to the original sampling frequency, Us and Vs, The original sampling 

frequencies, us and vs, are assumed to have a value of one for simplicity in this research. 

The new cutoff frequency can also be calculated directly from l;, the scaling 

factor. Since the cutoff frequency is one-half the sampling frequency, the new cutoff 

frequency is the product of the scaling factor and the Nyquist frequency. Using Equation 

5-29, 

Uc :::;; l; X Us ' and V C :::;; l; X Vs 
2 2 

(5-34) 

For example, if the original sampling frequency is one, the Nyquist frequency is one-half. 

Is s·~ 1, there is no change needed, assuming the original was sufficiently sampled and 

bandlimited. If l; < 1, the cutoff frequencies are reduced by that amount. Using a circular 

filter centered on the DC coefficient with l:;=0.25, only three (0, 1, and 2) low frequency 



coefficients are non-zero in Table 2-3. Depending on the extent of aliasing allowable, 

higher frequencies (4, 3, and 5) can still be included. 

Thus, as in the Fourier case, Equation 5-21, the cosine domain ideal 

reconstruction filter is a simple scaling constant defined over the passband, and zero 

elsewhere. 
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'.R(u, v) = K, for ju!:-:;; u1 , and !vi::;; v1 

'.R( u, v) = 0, otherwise 
(5-35) 

Parametric Cubic Convolution 

Using Equation 5-23, the spatial definition for the cubic kernel, and Equation 5-1, 

the definition of the JPEG OCT, the corresponding cosine reconstruction filters are: 

1 
'.R(u, v) = -CuCv x 

4 
7 7 3 

LL[(a+2)(x2 +y2 ) 2 -(a+3)(x2 +y2 )+1]x 
x=O y=O 

co{ ~(2x+l))co{ 7; (2y+l)) 

for o:-:;;~x2 +y2 :-:;;1 

x=O y=O 

co{ ~(2x+l))co{ ;; (2y+l)) 

for 1 < ~x2 + y2 ~ 2 

(5-36) 

This is the cubic convolution reconstruction kernel used in the reconstruction of the JPEG 

image data. Equation 5-36 does not include the scaling and resampling portion of the 



algorithm. This 8x8 array of DCT coefficients is used to multiply the image DCT 

coefficients, resulting in a cubic filtered 8x8 array of image coefficients. 

Sharpened Gaussian 

Using Equation 5-25, the spatial definition of the sharpened gatissian 

reconstruction function, and the definition of the JPEG DCT, the cosine domain 

reconstruction function is defined as: 

7 7 
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I:~)Ce-05(x2+y2)/cr2 -Se-05((x2+y2)+1)/cr2 -Se-05((x2+y2)-1)/cr2] X (5-37) 
x=O y=O . 

cos(nu(2x+1))cos(1tv (2y+l)) 
16 16 · 

The 8x8 DCT coefficient array produced from Equation 5-37 is used to filter the image 

data with the sharpened gaussian kernel. 

Error Analysis 

Ideal reconstruction in the spatial domain requires an infinite-order interpolation 

between the sample points. In the frequency domain, ideal reconstruction can be 

achieved if the image is bandlimited, sufficiently sampled, and a proper reconstruction 

filter is used. For image reconstruction systems applied to existing images, the 

continuous image has already been sampled at a predetermined increment. Often the 

original sampling increment is unknown and all that is available are the actual image 

samples. If the image is not sufficiently sampled for the limits of the passband, aliasing 

will result, and contribute to the total error. The amount of initial aliasing depends on the 

image, the original sampling increment, and the cutoff frequency used. This initial 
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aliasing is ignored in this research because the image is assumed to be correctly sampled 

when it is digitized. 

For purposes of error analysis, the ideal image is used as a basis to measure 

against. The total error resulting from a non-ideal reconstruction filter is the difference 

between the ideally reconstructed image and the non-ideally reconstructed image. 

Relating the total error measured to the non-ideal filter, the total error measured has two 

components. The non-ideal passband response, Ep, resulting in a modification of the low 

and mid frequencies, and the non-ideal stopband response, Es, resulting in aliasing or 

excessive high frequency reduction. These two components are shown in Figure 5-8. 

-ros 
Stopband Error 

F(ro) . Ideal 
~ - - - - - - - - - - - - - - - - ~ ., / Imperfect 

I ~ ~ 
( 
I ---

0 
F' assband Error 

Figure 5-8. Components of the Total Error 

0) 

The passband error affects :frequencies less than the cutoff :frequency, while the 

stopband error affects :frequencies greater than the new cutoff frequency. 

Using energy as an error estimation value, the energy of the ideally reconstructed 

image, is 

. "° "° 2 

energy= L IIF1(ro 1,ro 2 )I . (5-38) 
m1=-«>m2=-«> 

Since the ideal reconstruction filter stops at the Nyquist :frequencies, the summation terms 

in Equation 5-38 can be limited to those frequencies, 



~ 

energy= I 
2 
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(5-39) 

The passband error, Ep,ofthe non-ideal reconstruction filter is also limited to the 

new cutoff frequencies. The passband error can be written as the difference in the energy 

of the ideal, Fi(w 1,wi), and non-ideal, FR(W1,wi), reconstructed image spectra, 

°'2S 2 O>(S .!!JS. 2 

IIF1(m1,m2)l - I· IIFR (m1,m2)l · 

The stopband error, Es, is the energy in the non-ideally reconstructed image 

spectra, FR(w1,w2), above the cutoff frequency We, 

~ ~ 2 ao ao 2 

Es= L LIFR(m1,m2)l + L LIFR(m1,ID2)l 

(5-40) 

(5-41) 

Both the passband error, Ep,and the stopband error, Es, are usually normalized by 

dividing by the total energy in the ideally reconstructed image as defined in Equation 5-

39. 

During ideal reconstruction only the passband aliasing is present. During non

ideal reconstruction, both passband and stopband aliasing are present. One method of 

reducing aliasing is to reduce the cutoff frequency below one-half the sampling 

frequency. However, as the cutoff frequency is reduce, more high frequency information 

is lost. The tradeoff is to allow some aliasing, and retain more of the high frequencies, or 

to eliminate the passband aliasing by reducing the cutoff frequency, and thus, more high 

frequencies. 
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The passband error is due both to passband aliasing (if present), and attenuation or 

amplification due to the non-ideal gain of the reconstruction filter. When considering the 

case of JPEG, there are other sources of error that should be included. JPEG is a lossy 

compression scheme, due to round-off errors in both the forward and inverse OCT, and 

quantization errors. Only the inverse OCT round-off error is part of the reconstruction 

stage. The inverse quantization step does not introduce any new errors. The quantization 

error is assumed to be entirely contained in the forward process. The error introduced in 

the cosine terms is more difficult to determine for all implementations. In this research, 

the cosine terms are computed with an accuracy of 19 digits. Because of this, the error 

resulting from inaccurate calculations of the cosine terms is negligible. 

Although not part of the reconstruction process, the forward cosine calculations 

are also accurate enough not to be a factor. The calculation errors then can be assumed to 

lie entirely in the forward quantization step. Recalling Equation 5-31, the forward 

quantization of 

:F, (u, v) = round(J'(u, v)J 
q Q(u,v) 

(5-42) 

reduces the accuracy of the coefficient to two or three (in the higher frequency -

luminance case) decimal places. Considering the DC case which is quantized into 16 

steps and has a range from -16384 to + 16384, the step size is about 2048. Therefore the 

maximum error will be half the step size, or 1024. Normalized, this is just over three 

percent. This is a useful maximum error due to quantization using the default tables, 

Table 5-1 and 5-2. These default tables were derived in this manner [JPEG Draft 92], and 

if the values are divided by two, the results are designed to be indistinguishable from the 

original source image. 



CHAPTER6 

RESULTS 

Background 

The purpose of this research was to investigate the feasibility of using the discrete 

cosine transform (DCT) image data directly while performing basic operations on the 

image. Of particular interest was interpolation and the subsequent reconstruction of the 

scaled image using two of the proven interpolation filters, the cubic filter, and the 

sharpened gaussian filter. In order to investigate the properties of these two filters, a 

baseline image of the correct size was created with an ideal filter to measure errors 

against. 

In the spatial implementation of this research, the JPEG OCT coefficients 

representing the image were uncompressed with the standard JPEG IOCT algorithm, 

described in Chapter 2. This decompression results in the original spatial sampled image, 

Fs(x,y). The traditional approach to reconstruction spatially convolves the original 

spatial sampled image with a sampled reconstruction kernel, Rs(x,y), such as the cubic or 

sharpened gaussian. The result is the reconstructed spatial image, FR(r,s). The spatial 

sampled reconstruction kernel, Rs(x,y), is defined by Equation 4-10 for the cubic kernel, 

or Equations 4-13 and 4-14 for the sharpened gaussian kernel. 

This research introduces a new frequency implementation of the reconstruction 

process, beginning with the JPEG compressed image. The frequency image is composed 

of several 8x8 OCT coefficient blocks, termed :f(u,v). Each coefficient block of the 

image is multiplied with the reconstruction filter, ~u,v). This multiplication is the 
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equivalent of convolution in the spatial domain, and performs either the cubic or 

sharpened gaussian filtering. The cosine domain reconstruction filter ~u,v) is obtained 

by first computing the spatial reconstruction filter, R(x,y), and second computing the 

cosine reconstruction filter, ~u,v). The spatial cubic reconstruction filter is defined by 

Equation 5-23, and the spatial sharpened gaussian reconstruction filter is defined by 

Equation 5-25. Using the FDCT process in Equation 5-1, the cosine reconstruction filter, 

~u,v) is computed. The IDCT process in Equation 5-3 is used to scale and resample the 

image. 

Reconstruction 

As indicated earlier, the JPEG DCT uses a value of 8 for the range or block size 

N. The scaled block size is M = round(Nl;), where l; is the scaling factor. Recalling 

Equation 5-1, the JPEG draft gives the DCT definition as: 

FDCT: :fs(u, v) = _!_CuCv ±±Fs<x,y)cos(u1t (2x + 1))cos(v1t (2y+l)) 
4 x=O y=O 16 16 

IDCT: f 5 (x,y) = _!_ ±± CuCv:fs(u, v)cos(U7t (2x + 1))cos(V1t (2y+ 1)) (6-1) 
4 u=O v=O 16 16 

where Cu, Cv = }i for u or v = O; Cu Cv = 1 otherwise. 

The image space (x,y) is replaced with the reconstruction space (r,s), giving a slightly 

more general definition of the DCT process, defined in Equation 6-2. 
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FDCT: :fs( u, v) = !cu CV±± Fs (x, y)cos(U7t (2x + 1))cos( V7t (2y + 1)) 
4 x=O y=O 16 16 

IDCT: Fir,s) = ! ±± CuCv:fs(u, v)cos(un (2r + 1))cos(v1t (2s + 1)) (6-2) 
· 4u=0v=0 , 16 16 

where Cu, Cv = }i for u or v = O; Cu Cv = I otherwise. 

Equation 6-2 is used as the starting point for the new OCT process developed in 

this research, before the scaling and filtering operations are added. 

Ideal Reconstruction 

The ideal reconstruction filter for the IDCT process was developed to provide a 

baseline image to measure errors against, and to help establish the cutoff frequencies 

needed during reconstruction. Scaling is accomplished by adjusting the frequency axis in 

the opposite direction as the spatial· axis with the scaling factor l;. This is defined in 

Equations 5-3 and 6-3, where Fs(r,s) is the reconstructed image. 

F8(r,s)=-2 LLCuCvJ's(u,v)cos -(2r+I) cos -(2s+I) I 1
7 ·(u1t ) (V7t ) 

4l; u=O v=O · 16{; 16{; 
(6-3) 

Cosine Domain Reconstruction 

The two spatial reconstruction filters, cubic and sharpened gaussian are applied to 

the JPEG OCT data in the following manner. First, the circular spatial filter, R(x,y), is 

calculated, then the FDCT is applied to the filter, resulting in the cosine domain version 

~u,v). ~u,v) is multiplied with each JPEG DCT coefficient block, and the scaled

IDCT process is used to reconstruct the sampled image, FR(r,s). 

The cosine domain filter is defined as 
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'.R(u, v) = !cucv ±±R(x,y)cos(U7t (2x + 1))cos(V7t (2y+ 1)). (6-4) 
4 x=O y=O 16 16 

where R(x,y) is the spatial filter, either the cubic, or the sharpened gaussian. The spatial 

version of the reconstructed and scaled image, FR(r,s), is 

FR(r,s)=-2 LLC0 Cv.f'.R(u,v)cos -(2r+l) cos -(2s+l) 1 7 
7 

( U7t ) ( V7t ) 

4l; u=O v=O l 6l; l 6l; 
(6-5) 

where JR(u,v), the reconstructed DCT coefficient block, is defined as 

J'.R (u, v) = :fs(u, v)'.R(u, v). (6-6) 

.fs(u,v) is the FDCT of the original sampled image given by Equation 6-2. 

Parametric Cubic Convolution 

The cubic interpolation filter is developed in Chapter 4 and Chapter 5. The spatial 

version of the cubic reconstruction filter, R(x,y), is defined in Equation 5-23. Using 

Equation 5-23 and Equation 6-4, R(u,v) can be calculated. This cosine frequency cubic 

filter, R(u,v), in Equation 6-4 is shown in Figure 6-1. 
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Figure 6-la. Three dimensional view of the DCT Cubic Filter 
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Figure 6-lb. Top view of the DCT Cubic Filter 

From Figure 6-1, it is easy to see that the cubic filter, R(u,v), attenuates the higher 

frequencies of a JPEG DCT block as expected, and thus can be described as a low pass 

filter. 
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Sharpened Gaussian 

The spatial version of the sharpened gaussian function, R(x,y), is developed in 

Chapter 4. Chapter 5 includes development of the frequency version ofthis filter. 

Equation 5-25 gives the definition of R(x,y). 
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Figure 6-2a. Three dimensional view of the DCT Sharpened Gaussian Filter 
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Figure 6-2b. Top view of the DCT Sharpened Gaussian Filter 
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Using Equation 5-25 with Equation 6-4, the cosine frequency version, ~u,v), of 

the sharpened gaussian filter can be calculated. The sharpened gaussian filter ~u,v), is 

shown in Figure 6-2. As in the case of the cubic function, the sharpened gaussian filter is 

a one pass filter, based on the radial distance from the interpolated point. The sharpened 

gaussian is slightly different than the cubic filter shown in Figure 6-1, but is also 

essentially a low-to-mid pass filter. 

Implementation Differences 

In this section, the differences between the spatial implementation and the cosine 

domain implementation are examined. In the figures below, a simple image represented 

by a pulse function (Figure 6-3) is filtered and reconstructed with a scaling factor of one. 

The cubic and the sharpened gaussian functions in both the DCT domain and in the 

spatial domain are applied and the percent error is evaluated. The spatial version of the 

cubic function has no errors, since that is how the cubic function is defined for a scaling 

value of one. 
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Figure 6-3. 
The Pulse Function as the Original Image 

Figure 6-4 shows the pulse function after reconstruction (s=l) with the new DCT

based method. Notice that the pixel value of the reconstructed pulse function extends past 

the original value (255). If this reconstruction process were part of an imaging 

application, the pixel value would be subjected to clipping or normalization. In either 

case, the resulting percent error would not be as severe. In the test images processed in 

this research, the clipping method produced a more visually pleasing image, because of 

the sharpening effect of the spurious noise, and the overall brightening of the image. Test 

images processed with normalization reduced both the percent error at the pulse location, 

and the spurious noise introduced by reconstruction, as well as reducing the apparent 

brightness of the image. 

The pulse function reconstructed with the traditional spatial method did not have 

any measurable errors. The cubic spatial function exactly reconstructs the original data 

when the scaling factor is one, because the new interpolated points coincide with the 

original sample points. 
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In Figure 6-Sa, the reconstructed pulse function is shown, this time after 

processing with the OCT-based sharpened gaussian function. When compared to Figure 
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6-4a, the sharpened gaussian function obviously introduces more distortion. However, 

the purpose of the sharpened gaussian function is to produce a pleasing visual result, not 

to produce a numerically correct result. Figure 6-5b shows the percent error for the 

reconstructed pulse, before clipping or normalization. The maximum percent error, near 

100 percent, is reduced after limiting the range of the pixel value. As in the case of the 

cubic function, clipping the values produced a visually pleasing image with the Lena and 

mandrill test images. However, the images that were processed with normalization after 

the sharpened gaussian function were subjectively better than the normalized images 

reconstructed with the cubic function. By clipping the values in the sharpened gaussian 

image, the·spurious noise is not sufficiently reduced, and begins to interfere with the 

image. 

Figure 6-6a shows the pulse function after sharpened gaussian reconstruction in 

the spatial domain using the traditional approach. The pulse value in Figure 6-6a has a 

greater percent error than the pulse value in the OCT case, but the noise introduced is 

reduced to the sharpening range of the function. Subjectively, there was little apparent 

difference in the quality of the two sharpened images. These subjective evaluations 

should only be used a heuristic guide for later research, there was no attempt to employ 

outside observers, and the evaluation was not done under ideal conditions. 
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As mentioned previously, both reconstruction filters can be described as low-mid 

pass filters that attenuate the high frequencies. It is useful to explore how this attenuation 

results in errors. The effect of this truncation, and the overall high frequency attenuation 

can be seen in the next set of figures where l;=l. These figures also serve to help explore 

the high frequency truncation introduced by minification. During minification, l; <l, the 

cutoff frequency is reduced to avoid aliasing problems. 

Figure 6-7a shows the DCT transform coefficients produced by the pulse depicted 

in Figure 6-3. After the 8x8 block ofDCT coefficients are calculated, the high 

frequencies are set to zero, simulating the low-pass filter, and the reduced cutoff 

frequency used during minification. The radial distance is used in these figures as the 

cutoff frequency. The second figure, Figure 6-7b, shows the resulting percent error, 

measured against the original pulse in Figure 6-3. Figure 6-7b clearly shows the ringing 

in the spatial domain as a result of truncating in the frequency domain. For this first 

cutoff frequency, the resulting maximum error is approximately one percent, which is 

below the JPEG three percent threshold before errors are considered noticeable. 

Figures 6-8 through 6-11 follow the same description. The cutoff frequency is 

reduced by steps to a radial distance of 1, in Figure 6-11. As the cutoff frequency is 

reduced in the remaining figures, the maximum error grows quickly, and is centered at 

the original pulse location. The rest of the block shows an increasing percent error, but it 

is relatively small compared to the maximum. Since the high frequencies in the pulse test 

image are located at the origin, that is the location of the resulting errors as the high 

frequencies are truncated. This is to be expected since by truncating the high frequencies, 

the resulting filter smoothes the data over the entire block. By truncating the high 

frequencies during minification, the resulting image is smoothed in this manner. Thus the 

effect of the sharpening filters is reduced during minification, and may not be worth the 

computation. The minification-sharpening tradeoff is not pursued in this research, but 

would prove interesting for future study. 
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Rectangular awl Circular Filters 

During reconstruction, a convolution is performed with the reconstruction kernel 

(filter) and the image data. The traditional spatial method performs this convolution in 

the spatial domain with a rectangular kernel. In the new method, the convolution is 

performed as a multiplication in the OCT domain with a circular filter. This difference 

may seem to be trivial, but on closer examination these two similar cases tum into two 

different filters. In Figure 6-12, the two cases are shown in the spatial domain. First, the 

rectangular case receives a positive (smoothing) weight from the inner rectangle, and a 

negative (sharpening) weight from the area between the two rectangles. Outside the outer 

rectangle, the weights are zero. Likewise, the circular filter receives a positive smoothing 

weight inside the inner circle, and a negative sharpening weight between the two circles. 

As Figure 6-12 shows, the rectangular filter is influenced by 16 points, while the 

circular is influenced by at most 12 points. Because of this, the rectangular cubic filter 

will be more of a sharpening filter and less of a smoothing filter when compared to its 

circular counterpart. However, before that can be assumed for all cases, the actual 

weighting of each point must be considered.· Note that if the radial distance for the 

circular filter is increased slightly, the four comer points left out previously will be 

included, and the circular filter will be influenced by all 16 samples, although at a 

different weighting than the rectangular case. 
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In Figure 6-13, the two different methods of reconstruction are shown. The 

traditional method is shown in Figure 6-l 3a, and the new reconstruction process 

developed in this research is shown in Figure 6-13b. The primary difference between the 

two methods is when the reconstruction activity is performed relative to the IDCT 

operation. If the reconstruction is done after the inverse discrete cosine transform (IDCT) 

is computed, the spatial image is processed using the traditional method. If the 

reconstruction is done before the IDCT, the DCT coefficients are processed by the new 

method. 
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Consider the algorithms in the two IDCT blocks (al and b2) in Figure 6-13. If the 

IDCT algorithms are the same and equally optimized, the speed of these blocks is directly 

related to the amount of data processed. For a standard JPEG algorithm, this means that 

for every new pixel produced, the algorithm processes the entire scaled DCT block once. 

In block al of the figure, the input block size is 8x8 and the output is 8x8. Thus 64 

passes over 64 DCT coefficients, or 4096 operations are required. In block b2, the 

reconstruction has been completed and the input block size is 8x8, but the output block 

size is 8(;x8(;. For block b2, this means 64(;2 passes over the 8x8 DCT coefficients, or 

4096(;2 operations. This gives a sense of the difference in the amount of computation 

required for the IDCT blocks in the two methods. All things being equal, if it takes 1 

time unit to perform the IDCT operation in block al, it will take t;2 units to perform it in 

the new IDCT block b2, ignoring the M = N(; round off. 

The two reconstruction blocks in Figure 6-13 are labeled a2 and b 1. The 

traditional method, a2, takes an 8x8 block of image pixels, and processes to an 8t;x8(; 

block of image pixels. The new reconstruction block, b 1, takes an 8x8 block of DCT 

coefficients, and processes it to an 8x8 block of DCT coefficients. If we stop here, we 

can say that if the scaling factor is less than one (minification), the IDCT process is 



improved by a factor of t:,2 (from the IDCT operation). If the scaling factor is greater 

than one (magnification), the same factor of a power of 2 slows down the new IDCT 

process. In the reconstruction blocks, if the scaling is less than one, the speed of the 

traditional method is improved by t:,2, while if the scaling is greater than one, the power 

of 2 slows down the speed of the traditional method. 
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However, before reaching any final conclusions, the two reconstruction blocks 

should be examined in more detail. In the traditional spatial case, a2, in order to generate 

one new pixel, the cubic convolution function must be evaluated five times (four times 

horizontal, and once vertical) with four points on each curve. To compute the cubic 

function, there are 5 multiplies and 4 adds in the center, where the inner two points are 

evaluated. There are 9 multiplies and 3 adds in the outer function, where the sharpening 

occurs. This equals 28 multiplies, and 14 adds per intermediate point generated. Since 

there are 5 intermediate points per new pixel, this gives 20 intermediate points generated 

for each pixel, for a total of 560 multiplies and 280 adds per new pixel generated. 

In the frequency reconstruction case, b 1, if the image is sufficiently large, the 

effect of computing the filter can be ignored, since it is done only once, before processing 

begins. The reconstruction is a multiply of each 8x8 DCT block. Each coefficient ( and 

thus each new pixel) is one multiply, with no adds, compared to 560 multiplies and 280 

adds in the traditional method. This is a dramatic difference, but should be considered a 

best guess only, since the actual implementation can vary these results. Several 

optimized algorithms [Duhamel 90][Chen 77][Lee 84][Narasinha 78][Suehiro 

86] [V etterli 84] exist for IDCT evaluation as well as cubic function evaluation. Table 6-1 

presents the average times to perform the reconstruction of the Lena image, using the 

cubic filter and the sharpened gaussian filter. Times for both the traditional spatial 

method, and the new cosine method are given. All of the times in Table 6-1 include 

reading the compressed image off the local disk, decompression, reconstruction, and 

writing the final image back to the local disk. The traditional method includes the time to 
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decompress the original JPEG image using a non-optimized IDCT algorithm. The JPEG 

IDCT definition is given in Equation 6-1. 

TABLE6-l 

RECONSTRUCTION TIMES 

Reconstruction Time (seconds)a 

s=o.5o s=o.15 s=1.oo 

Spatial Cubicb 41 84 301 
Spatial Cubic 976 1019 1236 
Spatial Sharpened Gaussianb 292 706 1156 
Spatial Sharpened Gaussian 1227 1641 2091 
Cosine Cubic 237 516 944 
Cosine Sharpened Gaussian 237 517 945 

aFor the Lena image (512x512), on a 80486 33MHz computer. 
bReconstruction time not including the IDCT process. 

s=1.25 

707 
1642 
1967 
2902 
1447 
1449 

s=1.5o 

1205 
2140 
2823 
3758 
2090 
2095 

If an optimized IDCT is used, the reconstruction times for the spatial algorithms would be 

less. However, the spatial reconstruction time, not including the IDCT process,, would be 

the same. For scaling values less than one, the new method is significantly faster. This is 

due to the reduced number ofIDCT operations needed. For scaling values greater than 

one, the difference is not as large and diminishes, because the time to evaluate the 

expanded IDCT grows faster than the time to evaluate the spatial reconstruction curves. 

Error Analysis 

The method used for determining the error was to compute both the ideal and the 

reconstructed version of the test image at a given scale factor. Then a pixel-by-pixel 

comparison was performed, with the error being measured as a percentage of the total 
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pixel range. Both the spatial and the frequency interpolated images were rounded in the 

same manner, and both were subjected to clipping at 255, with negative values set to 

zero. The method used earlier in Figures 6-7b through 6-11 b measures the response of 

the algorithms to a known mathematical function, a pulse at location zero. That method 

compares the results of the two filters without subjecting them to any clipping. 

The individual component pixel percent error is: 

(6-7) 

This was computed for each pixel and each color component (red, green, blue), 

and averaged to find the fmal interpolation percent error. In the case of positional errors, 

this was averaged over each block of the entire image, then plotted based on pixel 

position in the scaled block. The percent error was also computed for the DC image for 

comparison. The DC version was computed by only using the first coefficient (the DC 

coefficient) during the block reconstruction. This DC coefficient is the average of the 

8x8 block. 

Figure 6-14 shows the percent error averaged over the entire Lena image. The 

actual numbers given for percent error are somewhat misleading. The numbers indicate 

an error of about 3 .5 percent for the DC coefficient image. According to the JPEG 

specification, 3 percent is regarded as the minimum difference the human eye can detect. 

However, the image reconstructed with just the DC coefficient is very noticeably 

distorted. Likewise, the other two images have noticeable imperfections. These 

numbers do give an idea of the relative distortion between the two different methods. As 



expected, the cubic filter outperforms the sharpened gaussian filter when comparing 

average numerical errors. 
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Figure 6-15 shows the same error measures computed for the mandrill image. The 

mandrill image has more high frequencies than the Lena image. As expected, the DC 

mandrill image has a larger average error than the DC version of Lena. 
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In both cases ( cosine cubic and cosine sharpened gaussian), the major 

objectionable visual distortion is the loss of high frequency information. Both of the 

reconstruction filters serve as low-to-mid pass filters because they smooth the data. This 

smoothing is related to the power of the interpolation function. For example, the cubic 

function can match a quadratic curve, but smoothes the higher frequencies. The high 

frequencies corresponding to those abrupt changes are lost. 

This gives a good indication of where the visual artifacts can be expected. 

Numerically, even the highest distortion within a block is not bad (usually about 3 

percent -- or in the just-noticeably-different range). If the entire block had a uniform 

error distribution, the images would be much better visually, even at the higher percent 

error. However, since each block has this error pattern, with the high frequencies having 

a higher than average distortion, the blocking is noticeable when viewing areas 

containing strong sharp lines that curve through several blocks, as in parts of the Lena 

image. Figure 6-16 shows the Lena image ((,=1) after reconstruction in the cosine 
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domain using the cubic filter. The blocking artifacts are particularly noticeable along the 

mirror edge, and the shoulder edge. Figure 6-17 shows the mandrill image (s=l) after 

cubic cosine reconstruction. No blocking artifacts are visible because there are no high 

frequency edges that span several blocks. 

Figure 6-16. The Cosine Cubic Lena 
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Figure 6-17. The Cosine Cubic Mandrill 
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Figure 6-18 shows the Lena image (s=l) after cosine domain reconstruction using the 

sharpened gaussian filter. Although the same blocking artifacts are present, the high 

frequencies are slightly enhanced compared to the cubic version. Both the cubic and 

sharpened gaussian versions are enhanced compared to the original, Figure 3-2. Again, 

the blocking artifacts are a result of working with the JPEG 8x8 DCT block, not a result 

of performing the reconstruction in the DCT domain. 

Figure 6-18. The Cosine Sharpened Gaussian Lena 
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Figure 6-19 shows the mandrill image (s=l) after cosine domain reconstruction, using the 

sharpened gaussian filter. As with Figure 6-17, there are no blocking artifacts visible, 

and like Figure 6-18, the high frequencies are enhanced compared to the cubic version in 

Figure 6-17. The original mandrill image is shown in Figure 3-3. 

Figure 6-19. The Cosine Sharpened Gaussian Mandrill 
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Figure 6-20 shows a difference image for the Lena image (l:;=1). Figure 6-20 was 

generated by taking the difference between the ideal image and the cubic cosine image. 

Because the differences were too small to be visible, each pixel value was multiplied by 

10. For reproduction purposes, the image was reversed, so the darker the pixel, the 

greater the error. The high frequency blocking artifacts are clearly visible in Figure 6-20. 

The low frequency background does not show the artifacts, which is as expected. 

Figure 6-20. The Difference Image for Cosine Cubic Lena 

The parts of the Lena image that do not contain strong inter-block edges, like the 

background, do not exhibit any noticeable blocking. The blocking was not noticeable in 

any region of the mandrill image, because the image is busy, and does not contain high 

frequency edges that span several blocks. 



CHAPTER 7 

SUMMARY 

Problem 

As the availability of higher-quality images increases, the need for mass storage 

of these images also increases. One method of increasing the capacity of mass storage 

devices is to compress the images before storage. The Joint Photographic Experts Group 

(JPEG) has proposed a method of compressing natural scene image data. The JPEG 

algorithm is based on a discrete cosine transform (DCT) that moves the spatial image data 

into the cosine frequency domain. The DCT coefficients can be quantized and 

compressed without adversely affecting the original image data. 

However, the time needed to decompress the image back to a displayable format 

can be substantial. Once the image is decompressed, the image data frequently needs to 

be scaled to fit a particular display device or resolution. This last scaling step can be 

extremely time consuming if the reconstruction uses a high quality cubic, or gaussian 

curve to interpolate the data in two dimensions. This scaling delay can be a significant 

prohibiting factor in the use of high quality imaging systems. 

Proposal Review 

Traditional image reconstruction involves beginning with a digitized image, 

interpolating between the original image samples to recreate the continuous image signal, 

100 
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scaling that continuous signal to the correct size, then resampling the scaled continuous 

image to create a new digitized image. 

This research developed a method for performing the interpolation and scaling 

operations in the frequency domain, rather than the spatial domain. This idea fits nicely 

with the JPEG image. compression algorithm, because the JPEG algorithm uses the 

discrete cosine frequency transform to compress the image. The goal of the research was 

first to determine if it was feasible, and second, if feasible, to determine what benefits this 

approach could offer. 

If the scaling step can be done in the frequency domain as a multiplication,· rather 

than in the spatial domain as a convolution, the resulting algorithm will be much faster. 

The new cosine domain-based reconstruction algorithm required three related operations. 

They are: 

• filtering, which reconstructs the continuous image from the sampled image, 

• scaling, which scales the continuous function to the new dimensions, and 

• resampling, which samples the continuous function at the new locations. 

The first phase of the research covered the spatial implementations of the cubic, 

and the sharpened gaussian reconstruction functions. These two spatial functions are well 

documented in previous research literature, and were chosen because of their wide 

acceptance as high quality image interpolation functions. 

The second phase covered the frequency investigations. The frequency research 

starts in the Fourier domain, then extends the results to the discrete cosine domain. The 

purpose of the Fourier work was to provide a basis of understanding and comparison, 

since little research of this nature is available in the cosine domain. The frequency phase 

research produced two individual algorithms ( cubic and sharpened gaussian) which were 

implemented and documented in the discrete cosine domain. 
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The third phase was the application of these algorithms to the JPEG data stream. 

There are some restrictions imposed on the algorithms by the JPEG standard, and this 

phase investigated the consequences of these restrictions. 

Conclusions 

This research has shown that performing the interpolation and scaling in the 

cosine domain is completely feasible. This method of reconstruction requires both the 

image and the reconstruction filter be implemented in the discrete cosine domain. 

Therefore, this method is particularly attractive for use with images compressed with the 

JPEG DCT algorithm. Otherwise, the computational cost of transforming the entire 

image to the cosine domain will likely be greater than the computational benefits 

produced by this method. 

· The riew reconstruction method uses a precalculated filter, and the time to 

calculate the filter can be ignored if the image is of large enough size. While the speed

up of the new method is potentially large, the data observed in this research assumes the 

IDCT operation is a non-optimized version. If an optimized version of the IDCT were 

. used in the traditional method, the observed speed-up would be smaller. 

Using either method, a magnified image (t,>l) takes more time to produce and a 

minified image (t,<l) takes less time to produce. The computational time in both the 

traditional method and the new method are affected by the scaling factor, but not to the 

same degree. In the new method, the IDCT operation is slowed by t,2, while in the 

traditional method, the reconstruction operation is slowed by the same factor of t,2. Since 

the time to calculate the IDCT in the new method is less than the time to calculate the 

reconstruction curves in the traditional method, the new method is not influenced by the 

scaling factor to the same degree as the traditional method. 
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Depending on the image, there are visible artifacts that result from working in the 

JPEG DCT space. Since the DCT reconstruction filters are low-mid pass filters, the high 

frequencies are attenuated, as they are in the traditional method. However, the difference 

is that in the spatial domain, the entire image is processed. In the JPEG DCT domain, 

only an 8x8 block is processed at any one time. The result is that if the image has strong 

sharp lines (high frequencies) that span several blocks, as in the Lena image, the 

distortion introduced by high frequency loss (per block) may be noticeable. The 

distortion is also present in the spatially reconstructed image, and it can be numerically 

larger, however, the distortion is not patterned in blocks and is usually not apparent to the 

eye. This is the only case found where the cosine reconstructed images were visually 

different from the spatially reconstructed images. This type of distortion is a result of the 

8x8 block imposed by the JPEG algorithm, and is not a result of operating in the 

frequency domain. Also, this distortion is image dependent. It is not apparent in the 

mandrill image, for example. Thus it is unlikely that the images produced by the new 

method and the traditional method will be distinguishable. Except in special cases (l;=l), 

the new method resulted in numerically lower percent errors than the traditional method. 

Unlike the traditional spatial case, the errors do not increase with the scaling 

factor. For both cosine filters, the percent errors for the new method varied less than one 

percent over a wide range of scaling factors. In the traditional method, the percent error 

increased with the scaling factor, and also exhibited significant fluctuations. Also in the 

traditional method, computational speed can be improved if the reconstruction curves are 

simpler (nearest neighbor, etc.). In the new method, the time to calculate the 

reconstruction filter is negligible compared to the rest of the process, so there is no 

computational benefit in using a simpler filter. 

As expected, both methods introduced errors in the reconstructed image. 

Depending on the application and the image, the distortions (the loss of high frequencies) 

introduced may or may not be objectionable. For an average natural scene image, the 
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distortions are not objectionable. It is possible to perform an ideal reconstruction directly 

in the cosine domain, and bypass the reconstruction filter altogether. This special case of 

the new method has several advantages over the traditional method, and can offer 

improvements to the cosine reconstruction method. The speed of computation is 

improved because no cosine reconstruction filter is needed, and the resulting image has 

about 5 percent less error. However, the image may be prone to aliasing errors if the high 

frequencies are riot removed in some manner. 

As expected with the new method, pixelization was reduced, giving a better image 

when compared to nearest neighbor or other lower-order interpolation methods. Aliasing 

was not apparent (although it was not altogether eliminated) when viewing the images 

during minification, since the higher frequencies were reduced in this process. 

Finally, the total percent error rates were much better than expected, usually 

within 3 percent (or less). The DCT based JPEG algorithm is lossy, and usually lies in 

this region of distortion (within 3 percent), although the quality is adjustable at the 

expense of the compression ratio. 

Future Work 

There are four areas of suggested future work; speed improvements to the current 

process, reducing reconstruction errors in the current process, evaluating reconstruction 

results, and improvements to the entire process. 

The scaling and resampling portions of the new reconstruction method would be 

very useful for all imaging applications, except for the present requirement of using a 

non-optimized IDCT process. If the scaling and resampling capability case could be 

applied to one of the optimized IDCT algorithms, it would be possible to improve the 

speed of the entire process. This process could lead to fewer errors if applied to the 

subsampled components in a JPEG image. 
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Future study in the error reduction area should make use of a panel of viewers and 

evaluation should be carried out under controlled viewing conditions. Potential subjects 

for error reduction include clipping versus normalization tradeoffs, rectangular versus 

circular filters ( or other possible filter shapes), and methods of interblock sampling when 

the sampling increment is larger than the block size. 

Possible improvements to the process include cutoff frequency determination 

based on the frequency content of an individual block. Also, methods of varying 

individual block sizes during reconstruction would allow any size image to be 

reconstructed. 
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