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CHAPTER I 
 
 

INTRODUCTION 

The energy system of the future must be renewable, sustainable, cost-effective, 

convenient and safe. Given the present demand for fossil fuel, the depletion of the 

world’s petroleum resources is inevitable. In the last 30 years, worldwide efforts toward 

identifying, developing and commercializing technology for alternative transportation 

fuel has gained significant momentum. Putsche and Sandor (1996) indicated that 

petroleum supplies 97% of the energy consumed for transportation, and petroleum 

imports represent 20% of the growing US trade deficit (Sheehan and Himmel, 1999). 

Petroleum provides the single largest fraction of the world’s energy, accounting for 37% 

of all global energy (US DOE, 2002). Burning petroleum has become the major 

mechanism of global climate change primarily due to the emission of carbon dioxide to 

the atmosphere (Gnansounou et al. 2005). These changes also result in substantial health 

costs in our society that are not reflected in the cost of gasoline (Sheehan and Himmel, 

1999). Further, petroleum is not sustainable and newer forms of energy need to be 

developed to address the economic and environmental issues and ensure a greater energy 

security and reliability.  

Fueled by the Iran, Libyan and Arab oil embargoes of the 1970’s, development of 

alternate sources of energy became a national priority. This crisis also led to the 

development of technologies to utilize renewable energy sources such as wind, solar and 
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biomass. Given the control of Oil Producing and Exporting Countries (OPEC) over the 

petroleum prices, the development of domestically produced renewable transportation 

fuel has gained strategic importance (Sheehan and Himmel, 1999). DOE’s Energy 

Information Administration (1996) paints a dismal picture of growing dependence on 

foreign oil in terms of increased imports, increased reliance on Middle East oil and 

continued decrease in domestic supplies with an ever increasing domestic demand. 

Bioenergy represents about 8% of the total energy used in the US annually (National 

Research Council, 2000). The National Research Council (1999) indicated several drivers 

that provide impetus to pursue development of bioenergy and biobased products. The 

drivers include emerging market opportunities, increased rural development needs, 

reduced environmental impacts, increased energy diversity and security, reduced fossil 

carbon emissions and meeting the increasing demand for energy and materials with 

sustainable technologies. Bioenergy can be produced from a variety of carbohydrates 

(mono-, di-, polysaccharides) sourced from various agricultural residues such as corn 

stover (corn cobs and stalks), sugarcane waste, wheat and rice straw, forestry and paper-

mill residues, the paper portion of municipal waste, and dedicated energy crops – 

collectively termed ‘biomass’.  

The United States produced about 14.8 billion L of ethanol in 2005 with 85% of it 

coming from corn (Renewable Fuels Association, 

http://www.ethanolrfa.org/industry/statistics/). Ethanol offers dramatic environmental, 

economic, strategic and infrastructure advantages that were not appreciated in the past. 

For countries with limited petroleum resources, production of ethanol is considered 

economically strategic by reducing the trade deficit, thereby helping grow the economy 
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(Wyman, 2001). Until the late 1930’s, the production of ethanol compared economically 

with gasoline; however, with the discovery of many cheaper oilfields, ethanol 

progressively lost its market. During the first worldwide oil crisis in the 1970’s, ethanol 

became cheaper than gasoline, which led to increased investment in developing 

technologies and projects to scale up ethanol production (Wyman, 2001). Ethanol 

production in the United States grew from just a few million gallons in the mid-1970’s to 

over 1.7 billion gallons in 2001. The initial impetus for ethanol commercialization was 

due to the oil embargo in 1973 and the Iranian revolution of 1978, which caused oil 

prices to rise dramatically and created much concern over the security of national energy 

supplies. In 1990 ethanol production received a major boost when the Clean Air Act 

Amendment (CAA) was passed in an effort to control carbon monoxide and ground-level 

ozone (Shapouri et. al, 2002). Public policies aimed at increasing production of ethanol 

are largely motivated by the desire to improve air quality and enhance energy security. A 

study conducted by DOE in 1993 found that, compared with reformulated gasoline (RFG, 

gasoline containing lower aromatic compounds resulting in lower air pollutants), a 95% 

ethanol/5% gasoline (E95) blend reduces sulfur dioxide emissions 60 to 80%, volatile 

organic emissions 13 to 15%, and ozone precursors such as nitrous oxide and carbon 

monoxide emissions 20 to 30% (Tyson et al. 1993).  

Total production of ethanol fuel worldwide in 2004 was 32 billion L with Brazil 

contributing 47%. Demand will continue to grow to about 65,000 million L by 2015, 

twice the present demand (Gnansounou and Dauriat, 2005). The demand is fueled by the 

following factors: 

• Ban on methyl tertiary butyl ether (MTBE) in gasoline 



 4 

• New legislations promoting the increased utilization of domestically 

produced, renewable, biobased motor vehicle fuel supplies in the US 

• Growth in demand for Flexible Fuel Vehicles (FFV) in Brazil and other 

countries 

• European directive on motor bio-fuel 

• Introduction of E10 in China, India and other Asian countries. 

The major feedstocks for the current large-scale biomass-to-ethanol industry include 

sugarcane in Brazil, sugar beets and wheat in the EU, corn and milo (sorghum) in the US. 

Several studies have shown that sufficiently abundant cellulosic biomass is also available 

to make a sizeable impact in the transportation fuel market (Wyman, 2001). The primary 

difficulty in commercialization of ethanol is its high production cost compared to 

gasoline. The recent increase in gasoline prices has helped bridge this gap; however, 

feedstock and investment costs significantly affect the economies of scale. Hence the 

primary challenge for ethanol competitiveness is to reduce the cost of biomass processing 

to convert this low-cost material into a competitive product.   

Sweet sorghum has the potential of being the next U.S. energy crop due to its high sugar 

content and its adaptability of being grown in diverse environmental conditions. The 

original concept of Sorganol (ethanol from sweet sorghum) production was conceived by 

Mr. Lee McClune, (President, Sorganol Production Co. Inc, Knoxville, IA., 

www.sorganol.com). A schematic representation of the process is depicted in Figure 1.1. 

The proposed ethanol production process involves harvesting and pressing the sweet 

sorghum stalks using a new mobile field harvester (patent pending) with a multi-roller 

press and juice collection unit mounted on the harvester. The harvester accomplishes both 
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harvest and juice expression in a single pass through the field. The unit uses a standard 

forage chopper/header and feed rollers.  After the stalks are pressed, they are expelled 

back onto the field. Juice is then pumped from the harvester directly into large storage 

bladders in the field, where fermentation takes place. Since the fermentation is conducted 

under non sterilized conditions, it will be important to determine whether the addition of 

acid will help in inactivating the native microflora present in sweet sorghum juice. It is 

envisioned that bladders of 75,000-100,000 L will be used to ferment the juice when the 

process is fully optimized and commercialized. After fermentation, the ethanol would be 

concentrated with a mobile distillation unit. It is also envisioned that spent baled stalks 

could be used to fuel the mobile distillation unit. 

 

Figure 1.1. Proposed SORGANOL process. 

 

1.1 Research Objectives 

Given the background on the Sorganol process, the primary objective of this research was 

to design a framework and validate the process of in-field production of ethanol from 
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sweet sorghum, with minimal or no process control. Specific objectives of this research 

include: 

1. Determine the microorganism most suitable for the in-field fermentation process 

2. Determine the efficiency of the fermentation process at the ambient temperature 

extremes 

3. Investigate the need for nutrient (urea) addition 

4. Determine the effect of pH on the fermentation process 

5. Determine the effect of scale-up on the fermentation process 

6. Understand the effect of agitation on the fermentation process 

7. Determine the compositional stability of sweet sorghum juice at refrigerated 

conditions 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

2.1 Sweet Sorghum 

Sweet sorghum (Sorghum bicolor (L) Moench spp saccharatum) is a C4 cereal grass with 

broad corn like leaves and large clusters of grain atop tall stalks. Sorghum is believed to 

have originated in Africa and is the world’s fifth major cereal crop after wheat, rice, 

maize and barley. The annual production of grain and sweet sorghum in the world 

exceeds 140 billion kilograms with a value approaching $30 billion. In the United States, 

sorghum production ranks third among the cereal crops with about 4 million hectares 

planted in 2000, exceeded only by corn and wheat (USDA, 2002).  

Compared to grain sorghum, sweet sorghum has a greater height and higher sugar content 

in the juice. The sorghum plant typically grows to a height of about 120 cm to 400 cm 

depending on the variety and growing conditions and can be either an annual or short 

perennial crop (Gnansounou et al. 2005). Seeds are typically sown after the rainy season 

and as soon as the soil temperature remains above 15-18oC. Seed germinates within 24 h 

in warm and moist soils.  

Water and solubles represent about 85% of the total fresh stem weight (Woods, 2000). 

The sweet sorghum juice composition is known to vary depending on the crop. Mohite 

and Sivaraman (1984) reported a composition of 60% sucrose, 33% glucose and 7% 
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fructose in the sweet sorghum juice. Sweet sorghum is harvested seasonally at a high 

moisture level (70-80%) which leads to rapid deterioration of readily available 

carbohydrates. Even when sweet sorghum is bundled and stored dry at ambient 

temperatures (silage) it is known to deteriorate rapidly. Natural microflora of the sweet 

sorghum includes heterolactic Leconostoc mesentroides and Leuconostoc dextranicum, 

coliform bacteria such as Aerobacter aerogenes and several yeast genera. 

Sweet sorghum is characterized by high photosynthetic efficiency and is one of the most 

promising crops for ethanol production. It can be grown in diverse temperate zones in 

both irrigated and non-irrigated environments. It has the C4 carbon pathway which 

enables it to bypass the photosynthetic pathway and hence achieve maximum short term 

growth rates (Loomis and Williams, 1963). C4 is an adaptive mechanism in response to 

low atmospheric CO2 availability, and warm, dry environments. The mechanism helps to 

increase the water use efficiency and avoids the energetically wasteful photorespiration 

step. Sweet sorghum is a high biomass yielding crop with a high sucrose content and has 

the adaptability of being grown in various parts of the United States as an alternate crop 

for ethanol production. Gosse (1996) found that out of the many ‘new crops’ currently 

being investigated as a potential future energy crop, sweet sorghum seems to be the most 

promising one. It is genetically diverse with over 4000 varieties and is resistant to 

drought conditions. 

 Sweet sorghum is considered a versatile and potentially ideal high-energy crop as it 

offers numerous advantages (Grassi et al. 2004): 

• High yielding crop (up to 80 tons/hectare) 
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• Can be grown in a wide range of latitudes, from tropical to temperate zones 

• Can be grown on deficient soils in a pH range of 5.0-8.5 

• Nitrogen inputs are low (approximately 100-200 kg/ha per year). This further 

reduces the risk of water contamination. In areas of restricted land availability, 

sweet sorghum can be rotated with leguminous crops.  

• Low water requirement (approximately 200 kg per kg biomass). This is half 

the water requirement for corn and about one-third that of sugarcane. 

• It has 75% of the biomass distributed in the cane, thus providing ready access 

of the available carbohydrates   

• It has two times the photosynthetic efficiency when compared to other 

feedstock such as sugar beet and sugarcane.  

• Crop is resistant to natural calamities such as drought, floods, soil salinity and 

alkaline conditions. 

• Growing period of sweet sorghum is short (4-5 months), compared to 

sugarcane, which lasts for about 8-24 months, thus allowing for quicker 

turnover of the agricultural land.  

• Sowing requirements are low, requiring 10-15 kg/ha of seeds, compared to 

corn which requires 40 kg/ha. 

• Sweet sorghum has a high calorific value of 4125 kcal/kg. It also has low 

sulfur content and a CO2 balance close to zero. 

Sweet sorghum variety, and the location and environment in which it is grown have a 

significant influence on the fermentable sugar availability in the crop. Currently, most 

sweet sorghum research focuses on improving yield, disease resistance, stability under 
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different environmental conditions and improving fermentation performance by 

improving digestibility of the cellulose fraction. For sweet sorghum to be successfully 

utilized for ethanol production, several major issues need to be addressed, including 

carbohydrate storage and accessibility of the lignocellulosic fraction to enzymatic 

hydrolysis. 

Seasonal availability and storability of sweet sorghum are important factors in use of this 

renewable biomass. Coble et al. (1984) observed that sugar extraction and storability are 

two serious problems that have limited sweet sorghum as a potential energy crop. 

Environment has a significant effect on chemical composition and physical properties of 

the sweet sorghum which in turn significantly affects ethanol yields. Typically juice 

containing 10 to 15% sugar has been extracted or pressed from sweet sorghum pulp. The 

low sugar yield is mainly due to low juice press efficiencies, which average between 50 

and 60%. The juice can then be fermented directly or evaporated to molasses for storage.  

Cost of ethanol is also dependent on the length of the harvesting/processing season 

because the length of the season determines the amount of fermentable sugar 

concentrated in the feedstock. The amount of fermentable sugar available is directly 

related to the ethanol yield and for a given production facility the unit production cost of 

ethanol will decrease as the production volume increases. Flowering (50% bloom) is 

considered as the initial stage of harvest as the fermentable sugars tend to accumulate at 

this point. Collier (1884) observed that delay in harvesting led to a decrease in 

fermentable sugar in a standing crop. Hence, storage duration between the harvesting and 

processing of sweet sorghum will dictate the choice of harvest date to avoid a loss in 

fermentable sugars. Eiland et al. (1983) studied the influence of three different harvesting 



 

 11 

methods on loss of fermentable sugars in sweet sorghum, and observed the highest juice 

brix in hand cut stalks compared to billeted and chopped stalks from a harvester. They 

also observed that most of the sugar content decreased rapidly in the first 24 h due to 

continuous respiration by the plant cells, which also caused the temperature in the stored 

stalks to rise rapidly.  

Sweet sorghum is a multipurpose crop serving as a feed, biomass and substrate for 

crystalline sugar production. The best way to take advantage of this crop is through a 

flexible conversion facility capable of serving both the sugar and ethanol market demand 

as influenced by the relative market price of either (Gnansounou et al. 2005). 

2.2 Ethanol Production 

Ethanol has the potential to ease both natural resource limitations and reduce 

environmental pollution, and its demand for direct use as a fuel is growing significantly. 

Around 6 billion L of ethanol were produced in 2002 in the US, mainly from the 

fermentation of cornstarch (Zhan et al. 2003). 

Ethanol (ethyl alcohol, CH3CH2OH) is a clear, colorless liquid with a characteristic 

agreeable odor. It is a chemical compound containing a hydroxyl group, ‘–OH’, attached 

to a carbon atom. Ethanol can be and is used as an automotive fuel by itself. It can also be 

mixed with gasoline to produce what is referred to as ‘Gasohol’. Gasohol is available in 

10% and 85% blends commonly referred to as E10 and E85. One liter of ethanol has an 

energy equivalent of 20.5 MJ compared to 30.5 MJ from gasoline (Gnansounou and 

Dauriat, 2005). The ethanol molecule contains an oxygen atom, hence it allows 

automotive engines to more completely combust the fuel, resulting in fewer emissions of 
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sulfur oxide and carbon dioxide and ozone precursors such as nitrogen oxide (NOx) and 

other hydrocarbons. Physical properties of ethanol are given in Table 2.1.  

Table 2.1 Physical properties of ethanol 

Properties Values 

Chemical Formula C2H5OH 

Molecular Weight (g) 46 

Carbon (%/w) 52.2 

Hydrogen (%/w) 13.1 

Melting Point -114.1oC 

Boiling Point 78.5oC 

Density (at 20oC) 0.789 g/ml 

Latent heat of vaporization (KJ/Kg) 845 kg 

Heat of combustion (MJ/kg) 29.7 

Stoichiometric air/fuel ratio 9.0 

Research octane number 107 

 
Source: http://www.eere.energy.gov/afdc/pdfs/fueltable.pdf 

 

Different methods are known to produce simple alcohols: 

• Hydration of ethylene in a three-step process using sulfuric acid (John, 1969) or by 

direct hydration of ethylene gas combined with water and passed through a fixed bed 

reactor to form ethanol according to the following reaction (Nelson and Courter, 1954 

   C2H4 + H2O                CH3CH2OH  

• Lignocellulose to Ethanol: Lignocellulose is the principal component of plant cell 

walls and is composed of 40-60% cellulose, 20-40% hemicellulose and 10-25% lignin 

fractions (Hamelinck et al. 2005). The lignocellulosic feedstock is first pretreated to 

dissolve the hemi cellulose fraction and make the cellulose fraction more accessible 
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during hydrolysis. The pretreatment methods broadly include physical, physico-

chemical and biological treatment. Research is currently focused on the development 

of simultaneous saccharification and fermentation (SSF) of the lignocellulosic 

fraction. SSF fermentation involves the use of usually exogenous enzymes, capable of 

hydrolyzing the lignocellulose fraction, to be used in conjunction with principal yeast 

or bacteria to ferment to ethanol. 

• Starch to Ethanol: Starch consists of two major polysaccharides, amylose and 

amylopectin, which are polymeric chains of α-glucose monomeric units. The 

conversion of starch to ethanol is a two step process. In the first step, the polymer 

chain of α-glucose is hydrolyzed into D-glucose, an isomer of glucose, by the action 

of gluco-amylase and α-amylase enzymes. 

  (C6H10O5)n + nH20    
gluco-amylase   nC6H12O6  

In the second step, microbial fermentation of D-glucose yields ethanol, which is then 

distilled and dehydrated to anhydrous ethanol.  

• Cellulose to Ethanol: The cellulose fraction of the biomass is converted to ethanol in 

a two step process. In the first step, cellulose is hydrolyzed into glucose either by 

enzymatic hydrolysis using cellulases (endoglucanases, exoglucanases, β-

glucosidases and cellobiohydrolases), (Ingram and Doran, 1995; Laymon et al. 1996) 

or by chemical hydrolysis (dilute or concentrated sulfuric acid). In the second step, 

glucose is fermented to ethanol by a fermenting yeast or bacteria. Another approach 

of converting cellulose is termed simultaneous saccharification and fermentation 

(SSF). During the SSF process either the same microorganism produces cellulase or 

cellulose is externally added and the glucose is fermented simultaneously.  



 

 14 

• Direct fermentation of biomass sugars to ethanol: Common sugars found in biomass 

include sucrose, glucose, xylose, mannose, galactose and arabinose. The sugars 

provide a ready source of carbon to be utilized by the yeast and bacteria. Sucrose, for 

instance is a disaccharide made up of glucose and fructose monosaccharide units and 

is the most common disaccharide used for ethanol production. Utilization of sucrose 

during ethanol production is a two step process. First invertase (an enzyme present in 

the yeast) catalyzes the hydrolysis of sucrose to glucose and fructose.                                

             C12H22O11 + H2O   
Invertase      

C6H12O6 + C6H12O6 
 

Next the monosaccharide undergoes a series of enzyme catalyzed reactions, called 

glycolysis to produce ethanol and CO2. 

                        C6H12O6  
Glycolysis  

2CH3CH2OH + 2CO2 

 

2.3 Fermentation 

Fermentation is an internally balanced oxidation-reduction reaction in which some atoms 

donate electrons and become more reduced while other atoms receive electrons and are 

oxidized. In this process, energy is produced in a step termed phosphorylation. One of the 

common chemical pathways observed in most fermenting microorganisms utilizing 

glucose as the carbon source is called glycolysis or the Embden-Meyerhoff-Paranas 

(EMP) pathway (Figure 2.1).  

Glycolysis is divided into three stages involving a series of enzymatic reactions (Madigan 

et al. 2003). Stage I is a preparatory rearrangement reaction in which no oxidation-

reduction reaction takes place. Glucose is the primary six-carbon sugar broken down into 

two molecules of  glyceraldehyde 3-phosphate, a key intermediary compound. No energy  
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Figure 2.1. Embden-Meyerhoff-Paranas (EMP) pathway for glycolysis exhibited by 
 fermentative microorganism (Ingledew, 1999). 

 

 

is produced in this stage. Stage II is an oxidation-reduction step wherein energy is 

conserved in the form of ATP and two molecules of pyruvate are formed. Stage III is a 

second oxidation-reduction reaction where pyruvate acts as the central hub of glycolysis, 

and depending upon the organism and the enzyme catalyzing the reaction, different end-

products are formed.  
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The ultimate result of glycolysis is the consumption of glucose resulting in the formation 

of various fermentation end products under anaerobic conditions and conservation of 

energy in the form of two ATP’s. Common end products of glycolysis include ethanol, 

lactic acid, alcohols, gaseous substances and a variety of other acids, depending on the 

organism.   

Under aerobic conditions, yeast growth is stimulated, leading to biomass generation. 

Under anaerobic conditions, carbohydrate sugars are fermented to ethanol (Banat et al. 

1996). Yeasts manifest two types of temperature profiles: an associative and a 

dissociative profile. Yeasts exhibiting a dissociative profile show no significant effect of 

temperature on exponential growth and are known to be thermotolerant. Yeasts exhibiting 

associative profiles show a decline in growth yield coefficients above the optimum 

temperature (van Uden, 1984a). Changes in sugar content will also affect the 

fermentation process. In general Saccharomyces cerevisiae is glucophilic, indicating that 

the yeast has a clear preference for glucose when a mixed sugar source is available in the 

media (Cason et al. 1987; Vidrih and Hribar, 1999). The process of sugar uptake is the 

major control mechanism for the rate of glycolytic flux under anaerobic conditions 

(Pretorius et al. 2003). Glucose fermentation by S.cerevisiae is generally inhibited by 

oxygen, but micro-aerobic conditions has been shown to enhance the specific alcohol 

production rate. Hoppe and Hansford (1984) found that a small amount of oxygen does 

not affect the conversion of sugars to ethanol. However the maintenance coefficient 

necessary for transport of metabolites across the membrane is greatly reduced.  

Inoculum level was also observed to affect ethanol fermentation. An increase in cell 

inoculum from 105 to 106 cells/ml improved the fermentation rate but also caused 
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excessive foaming and higher fermentation temperature caused by too rapid a 

fermentation rate (Chen, 1981). Normally an inoculum level of 10% corresponding to a 

population of 106-107 is recommended for batch fermentation (Strehaiano et al. 1983). 

S.cerevisiae is the preferred yeast for ethanol fermentation because of its versatility. 

Industrial strains are selected with acquired traits such as greater ethanol fermentation 

capacity, greater tolerance to by-products and greater process hardiness compared to the 

strains adapted to controlled laboratory conditions. Garay-Arroyo et al. (2004) observed 

that the industrial S.cerevisiae strains grown on Yeast Potato Dextrose (YPD) media, 

showed different responses to different imposed stress conditions. The cells showed 

increased survival rates under oxidative stress imposed by adding H2O2 to a final 

concentration of 10 mM and heat shock applied by growing cells at 50oC, but when the 

cells were subjected to chilling stress imposed by growing cells at -20oC for 2 days and 

osmotic stress imposed by adding 1.5 M sorbitol, a decreased survival rate was observed.  

Constant environmental changes to which present day industrial S.cerevisiae strains are 

commonly exposed to include (Kelsall and Lyons, 1999): 

• Wide variety of feedstocks such as cellulosic and lignocellulosic biomass (e.g.  

wood; agricultural residues such as straws, bagasse and corn stover; grasses 

such as switch grass and bermuda grass), sugar crops such as sugar cane and 

beets, starch sources such as corn, and other alternative carbon sources such as 

whey, spent grains, spoiled and waste food products and  syrups.  

• Temperature variations from 4 to 50oC. 

• Varying medium ethanol concentration of 16 to 23% w/v.  

• Varying solute concentration 
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• Varying medium ionic strength as influenced by the presence of minerals such 

as phosphates, sulfates and other macro and micro elements.   

• Reactive oxygen species (ROS) such as the superoxide anion radical, the 

hydroxyl radical and hydrogen peroxide that are produced under oxygen 

limiting conditions that are known to damage DNA, protein and cellular 

membranes.  

• Toxins in culture media such as furans, phenolics and acetic acid. 

Saccharomyces cerevisiae 

Industrial ethanol production is dependent on the microbial activity particularly of yeasts. 

Vast literature studies indicate a narrow temperature range, 30 to 35oC, for S.cerevisiae 

growth. Ethanol and temperature tolerance appear to be heavily interrelated in industrial 

ethanol production. Bioreactor configuration will also have a great impact on yeast 

performance and ethanol production. Storage viability of S.cerevisiae is improved when 

stored at low temperature and under vacuum or a nitrogen atmosphere.  

Zymomonas mobilis  

Z.mobilis is a gram negative bacteria and is considered an alternative organism for large 

scale ethanol production due to its numerous advantages over a variety of yeasts. 

Z.mobilis has been cited in various literatures for higher sugar uptake and ethanol yield, 

low biomass production, high ethanol tolerance, amenability to genetic manipulation and 

lack of a micro-aerobic oxygen requirement.  

The main limitation of Z.mobilis is the fact that the utilizable substrate range is restricted 

to glucose, fructose and sucrose. It is a facultative anaerobic bacteria utilizing glucose 
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and fructose via the Entner Deudoroff (E-D) pathway. Ethanol yields as high as 105 g/L 

in 70 h have been reported by Torres and Barrati (1988) in their batch fermentation 

studies utilizing wheat starch hydrolysate with an initial sugar concentration of 223 g/L. 

Kluyveromyces marxianus 

K.marxianus is defined as a respiratory yeast characterized by conversion of low amounts 

of glucose to ethanol under aerobic conditions and high specific ethanol production rates 

under anaerobic or micro-aerobic conditions. K.marxianus produces ethanol and has a 

tolerance to pH and osmotic activity comparable to S.cerevisiae. Strains of 

Kluyveromyces were reported by Hughes et al. (1984) to produce ethanol above 40oC and 

to have a maximum growth temperature of 49oC. Others have reported maximum growth 

temperatures upto 52oC (Banat et al. 1992) in a thermotolerant K.marxianus IMB3 strain 

with high levels of ethanol, however ethanol tolerance was low for the strain compared to 

S.cerevisiae.  

2.4 Ethanol Production Scenarios 

Use of ethanol as an additive in gasoline has become a billion gallon per year market. It 

has value as an oxygenate in “CO nonattainment” markets and as a fuel extender and 

octane booster. Two limitations in the production of ethanol and its use are the 

availability of biomass and the cost of ethanol. Analysis by Oak Ridge National 

Laboratory indicates that the maximum amount of agricultural residues that could be 

collected today is around 144 million dry tons producing 38-53 billion L of ethanol, 

which is enough to fuel 10% of the light motor vehicles (Walsh et al. 1998). For a long 

time, the greatest impediment to ethanol’s use as an alternative fuel was the availability 

of ethanol-compatible vehicles in the US. The status has changed considerably, with 
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automotive manufacturers offering standard automobile models able to run on both E85 

and gasoline. 

The US Department of Energy’s (DOE) research on the development of renewable, 

domestically produced fuels for transportation is driven by important national issues such 

as national security, economic competitiveness in the global market, rural economic 

development, climate change and air pollution (Sheehan and Himmel, 1999).  

Process design for ethanol production is based on a fundamental framework comprised of 

choice of process technology and configuration, choice of feedstock, proposed plant size 

and dedicated ethanol/electricity versus biorefinery concept (Wooley et al. 1999). The 

technology platforms available for conversion of biomass to ethanol includes conversion 

of carbohydrate biopolymers to sugars, fermentation of sugars to ethanol, ethanol 

recovery and residue utilization.  

Each of the biomass to ethanol conversion processes is associated with a preferred 

feedstock, a conversion rate and certain final and by-products. Assessment of the 

processing facility also depends on the economies of scale which influences the capital 

and operating costs. A large bio-energy conversion facility will be cheaper to run per 

output unit compared to smaller facilities.  

2.4.1 Ethanol in Brazil 

Brazil is currently the world’s largest producer of ethanol. This is due to both widespread 

availability of sugarcane and heavy governmental subsidies. A National Alcohol Program 

(PNA) was established in 1975 following the 1973 energy crisis. The PNA has also led to 

the development of a great number of subsidiary industries for the production of 
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pesticides and fertilizers, chemicals and equipment required by distilleries and sugar 

plantations. Cultivation of sugarcane and its subsequent use has contributed significantly 

to the Brazilian economy. The ethanol industry in Brazil represents 2.3% of the Gross 

Domestic Product (GDP) (Zanin et al. 2000). The socio-economic impact of the ethanol 

industry includes creating 1 million production jobs. 

One percent of the total cultivated area in Brazil (4.5 million hectares) is presently 

devoted to sugarcane cultivation. Products created from sugarcane include: sugar, 

anhydrous ethanol, hydrated ethanol, electricity, biodegradable plastic (e.g. 

polyhydroxybutyrate, PHB) and acetaldehyde and its derivatives. Currently Brazil 

consumes 55% of its sugarcane for ethanol production and the remaining 45% is used for 

sugar processing (da Silveria, 2004).  

On average one hectare of land produces 81 to 82 tons of sugarcane and about 7000 L of 

ethanol (Pessoa-Jr., et al. 2005). The average cost of production is about USD 180/ton of 

sugar or USD 0.20/L of ethanol. Each ton of sugarcane has an energy equivalent of 1.2 

barrels of petroleum. Brazil produced 14.4 billion L of ethanol in 2003-2004. Installed 

capacity is 18 billion L equivalent to 100 million barrels/yr (http://www/unica.com).  The 

distribution logistics are consolidated by well laid pipelines, railways and highways 

catering close to 30,000 fuel stations equipped with the necessary infrastructure. 

(Albuquerque, 1999).  In 2003, a fleet of around 18 million light vehicles consumed 27.5 

billion L of fuel, 40% if it coming from hydrated or anhydrous ethanol. The vehicles are 

built with gasoline powered, hydrated ethanol and flex fuel engines, able to run on 

gasoline and ethanol in any proportion. The flex fuel vehicles are equipped with sensors, 
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able to detect the proportion of gasoline and ethanol in the mixture and adjust the 

combustion accordingly.  

Three types of juice treatments are employed in the distilleries (Rossell, 1988). The 

physical treatment uses screens to separate large solid materials and hydrocyclones to 

separate smaller particles. High contamination, flocculation and gum production are some 

of the disadvantages associated with physical treatment. The physical and thermal 

treatment involves the use of screens and hydrocyclones in conjunction with clarification 

of sugarcane juice at 105oC and then cooling down to the fermentation temperature. In 

the complete treatment the juice is treated with lime before subjecting it to thermal 

sedimentation in large clarifier tanks.  

Most of the current distilleries use the third generation continuous processes involving 

multiple stage reactors based on the Melle-Boinot principle of yeast recovery (Zanin et al. 

2000). The process uses a centrifuge to separate yeast cream, which is then diluted with 

fresh water. Suspension pH is reduced to 2.0 to 2.5 by the addition of sulfuric acid and 

constantly agitated for 1.5 to 4.0 h. Before the start of a new batch, the suspension is 

aerated and returned to the fermentors. Fed batch and continuous fermentation processes 

with cell recycling, based on the Melle-Boinot principle, were introduced as 

advancements to the batch process. In the fed batch process, treated yeast cream is 

pumped to the fermentor. Wort is continuously pumped into the fermentor, for 4 h while 

maintaining a brix below 9% (Laluce, 1991). Continuous process involves the use of 

multiple stage stirred reactors (Zanin et al. 2000). In this process, broth along with yeast 

cream is fed at the top of the first and emptied from the bottom of each stage, then flows 

by gravity to the middle of the next stage. Reactor design is characterized by 60o conical 
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bottom and with a cylindrical part aspect ratio of 1.2 (height/diameter). Heat from each 

reactor is removed by an external plate heat exchanger. Kinetic energy of the liquid 

exiting the heat exchanger is used for agitating the contents of the tank. Gases and foam 

are removed from the top of each reactor and washed in a perforated plate column and the 

gas is collected. Advances to the continuous process include the use of decanters and 

flocculent strain of S.cerevisiae to substitute the use of capital intensive centrifuges.  

The residue leftover after distilling ethanol from the sugarcane fermentation medium is 

called stillage, which is rich in water, potassium, calcium, iron, phosphorous and other 

organic compounds. With its nutritional content and its ability to improve the soil 

porosity, stillage is being used as fertilizer. On an average production of 1 L of ethanol 

generates 12 to 15 L of stillage. Stillage can also be converted to biogas and biofertilizer 

following anaerobic digestion. One ton of sugarcane also produces 140 kg of bagasse (∼ 

50% wwater/wbagasse), which finds use in thermal and electric energy generation.  

2.4.2 Ethanol from Corn 

Corn is presently the most important and economical feedstock for ethanol production in 

the United States. Nine states account for about 80% of the corn grown and 91% of the 

ethanol produced in the country (Shapouri et. al, 2002). As of 2004, there were 76 plants 

with a total production capacity of 11.4 billion L and an additional 12 plants under 

construction, each with a capacity of 1.9 billion L (Bothast and Schlicher, 2005). Over 

the past three decades, converting corn into ethanol has made significant improvement in 

terms of economic and technical feasibility mainly due to higher corn yields, lower 

energy use per unit of output in the fertilizer industry and advances in conversion 

technology. The corn kernel is comprised of 70 to 72% (dry weight basis) starch. Ethanol 



 

 24 

from corn is produced either by a dry grind (67%) or wet milling process (33%). The 

process selected depends on the focus of resource utilization. The focus of a dry grind 

plant is to maximize capital return per gallon of ethanol while in a wet milling plant, the 

extent of capital investment allows for production of other valuable components. 

Compared to the dry grind process, the wet milling process is a capital and energy 

intensive process. Available technologies produce 10.6 L of ethanol per bushel of corn by 

dry grind process while the ethanol yield is 9.5 L in a wet milling process. Co-products of 

value produced from a dry grind process are distillers dried grain with or without solubles 

(DDGS) and from a wet milling process corn oil, corn gluten meal and corn gluten feed 

are produced.  

In the dry grind process (Bothast and Schlicher, 2005), corn is cleaned, ground and 

slurried with water to form a mash. Alpha amylase is added at pH 6.0 to break down 

starch polymer into soluble dextrins. The mash is cooked at 100oC for several minutes 

and cooled to 80-90oC and additional alpha amylase added to further liquefy the starch. 

The mash is cooled and glucoamylase enzyme added at pH 4.5 to convert the dextrinized 

mash to glucose. The fermentable sugars are then converted to ethanol by the 

microorganisms. The mash is then cooled to 32oC and transferred to fermentors where the 

added yeast converts the sugar to ethanol. A final ethanol concentration of 10 to 12% is 

obtained in 48 to 72 h. The distillation step separates ethanol from water and other 

impurities. 

In a wet milling process (Bothast and Schlicher, 2005), corn is first separated into its four 

basic components: starch, fiber, gluten and germ by steeping in dilute sulfur dioxide 

solution at 52oC for 24 to 48 h to break the starch and protein bridges. It is then coarsely 
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ground to break the germ loose from other kernel components. Subsequent 

saccharification, fermentation and distillation of ethanol are similar to the dry grind 

process.  

Shapouri et al. (2002) indicate a Net Energy Value (NEV) of 5.86 MJ/L with a net energy 

ratio of 1.34 for corn based ethanol. However, significant differences in determining the 

NEV of corn by various authors exist due to different assumptions about corn yields, 

ethanol conversion technologies, fertilizer manufacturing efficiency, fertilizer application 

rates, co-product evaluation and the number of energy inputs included in the calculations. 

Raw material cost, processing efficiency and exchange rates are the major sources of 

competitive advantage when comparing the feedstocks. When corn is compared with 

sugar as the feedstock, distinct differences arise due to the difference in the valuation of  

by-products. Corn processors return the protein and oil fraction to feed and food markets 

after starch extraction. Compared to corn, sugarcane does not yield byproducts of much 

value and the residue is being used in power plants for power generation.  

2.4.3 Ethanol from Sweet Sorghum  

The estimated cost for growing sweet sorghum is 296 USD per hectare, compared to the 

estimated cost of growing corn at 370 USD per hectare with a yield of 308 bu/hectare 

(Duffy and Smith, 2004; University of Georgia, 1999). Use of sweet sorghum for ethanol 

production has been extensively studied for the Piedmont, a geographic region in the 

eastern U.S. covering seven states, which is known for having drought-prone, low 

productivity soil (Worley and Cundiff, 1991). In the Piedmont, sweet sorghum has been 

shown to produce more carbohydrates per hectare than corn (Parrish et al. 1985). Unlike 
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corn in which carbohydrates are concentrated in the grain, sweet sorghum carbohydrates 

are stored in the stalk. This provides both advantages and disadvantages in using sweet 

sorghum for ethanol production. The primary advantage is that sugars are directly 

available for fermentation after simply pressing the biomass; no enzymatic treatment is 

necessary. Major disadvantages include the seasonal availability, sugar extraction and 

storability of the crop. Sweet sorghum is harvested seasonally at a high moisture content 

of 70 to 80%, which provides an ideal environment for the deterioration of available 

carbohydrates by the native microflora of the juice. The available sugars are known to 

deteriorate even when the stalks are bundled and stored at dry ambient temperatures 

(Coble et al. 1984). In contrast, Parrish and Cundiff, (1985) indicated that minimal 

carbohydrate losses occur in whole sorghum stalks that have been stockpiled for less than 

30 days.  

Various harvesting and processing models have been investigated for producing ethanol 

from sweet sorghum. One model system involved the development of a whole-stalk 

sorghum harvester which cuts and windrows stalks (Rains et al. 1990). In this system, the 

stalks could be stored for up to 30 days in the windrows, and were then transported to a 

processing site near the edge of the field. At the processing site, stalks were run through a 

screw press where the juice was collected and the pith presscake was ensiled in a nearby 

trench silo for later conversion (Worley and Cundiff, 1991). The juice was transported 

either to an evaporation plant for concentration or to a fermentation/distillation plant for 

immediate conversion to ethanol. A slight variation to this system was one in which a 

hypothesized pith combine was used instead of the whole-stalk harvester, where the 

forage was chopped and loaded onto a forage wagon (Worley and Cundiff, 1991). The 
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wagon was then taken to a nearby location for juice expression, similar to the previous 

scenario. The difference between these two models is that in the latter there was no 

storage of stalks, as the juice must be pressed within hours to avoid unacceptable losses. 

In both scenarios, it was envisioned that the ensiled presscake would then be transported 

to the fermentation plant for conversion of the cellulose to ethanol.  Other studies have 

focused on enzymatic conversion of the cellulosic sorghum stalks to ethanol, and have 

demonstrated that a large portion of the insoluble carbohydrate from sorghum can be 

converted to ethanol by simultaneous saccharification and fermentation (Lezinou et al. 

1995). 

The above-mentioned studies share one common theme: each involves a scenario where 

juice and/or ensiled stalks are transported to a central processing plant where ethanol is 

produced, and the resulting process is not found to be economically feasible. The cost of 

ensiling and transporting, combined with the capital costs of the central processing plant, 

make these processes very costly. 

Sugar concentrations of 15 to 22 oBrix have been reported for sweet sorghum, depending 

on growing location (Rains et. al, 1993). Typical sorghum juice expression ratios for 

roller mills have ranged from 0.47 to 0.58 g juice/g input biomass, depending on the 

specific crop (Lamb et al. 1982; Monroe et al. 1984). Nominal sorghum yields have been 

reported as about 75 tons/hectare (University of Georgia, 1999).  
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Using knowledge of current and projected yields and conversions, the expected ethanol 

yield from the proposed in-field process to produce ethanol from sweet sorghum can be 

estimated as follows: 

Assumptions:    Sweet Sorghum yield of 75 tons/hectare 

    Sugar content of stalks: 17% 

    Juice yield (with roller mill) = 0.55 g juice/ g biomass 

Theoretical ethanol conversion from hexose sugars is 0.511 g ethanol/g sugar 

(Hettenhaus, 1998). Ethanol yields fall short of theoretical yields because approximately 

5% of the sugar is used by the yeast for growth and for producing other minor products 

such as glycerol, acetic acid, lactic acid and fusel oils (Bothast and Detroy, 1981). Using 

a conversion rate of 95%, these estimates give an ethanol yield of approximately 3400 L 

of ethanol per hectare of sweet sorghum. As a point of comparison, ethanol yields from 

corn are estimated to be about 9.5 L/bu, and at a corn yield of 309 bu/hectare, that 

equates to 2930 L of ethanol per hectare of corn (Shapouri et. al, 2002). In terms of 

carbohydrate quantity and production capability, sweet sorghum has the potential to 

compete very favorably with corn. 

The sugar content from fresh sorghum stalks have been found to deteriorate upon storage 

and hence needs to be extracted immediately. However under temperate conditions, Li 

(1997) reported storing stalks in the field for 4-5 months as silage. 

Sorganol- Proposed Economics 

Economics of in-field ethanol production from sweet sorghum juice is currently being 

studied at Oklahoma State University (Huhnke, 2006). Due to the lack of sweet sorghum 
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production data, many assumptions must be made to develop a set of scenarios to better 

determine economic feasibility. Base assumptions include: sweet sorghum is rotated with 

other row crops, fertility requirements are approximately one third that of corn, and 

pesticide requirements are comparable to grain sorghum production. In addition, the 

sweet sorghum crop is planted in May and harvested late September through mid-

November using a single pass harvester-juicer system. A conservative sweet sorghum 

juice yield of 9400 L per hectare is pressed and fermented in 75,000-100,000 L 

collapsible bladders. Using a conversion efficiency of 95%, approximately 800 L of 

ethanol is produced per hectare. Estimated production cost is less than $0.50 per L of 

ethanol. A cost of $10.50 per 1000 L is assumed for transporting 38,000 L of ethanol 

over a distance of up to 100 kilometers. Net return on investment is over $400 per hectare 

with a payback period of less than seven years. 

2.4.4 Ethanol from Lignocellulose 

Lignocellulose represents the largest fraction of biomass available on earth. Common 

lignocellulosic biomass include agricultural and forestry residues, paper and municipal 

solid wastes, paper and pulp industry wastes, herbaceous and woody plants, softwood 

such as spruce and pine, grasses such as switchgrass and bermudagrass, crop residues, 

and solid animal waste. Lignocellulose is primarily composed of 40-60% cellulose, 20 to 

40% hemicellulose and 10 to 25% lignin (Gnansounou et al. 2005). Conversion of 

lignocellulose to ethanol is a two step process. In the first step cellulose is hydrolyzed to 

fermentable sugars by the action of cellulase enzyme. In the second step, sugars are 

converted to ethanol by fermenting microorganisms. The crystalline structure of cellulose 

along with the protective hemicellulose and lignin sheath around the cellulose makes it 
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inaccessible for hydrolysis. Pretreatment of lignocellulose substrate by physical, 

physicochemical and biological methods results in delignification of the substrate thereby 

exposing the fermentable sugars. Pretreatment also reduces cellulose crystallinity and 

increases the porosity thereby improving the cellulose digestibility and the conversion 

efficiency.  

2.4.5 Non-Sterilized Fermentation 

Ethanol production under non-sterilized conditions has gained significant attention by 

researchers and industries because of its economic advantage. Hashiyada and Flor (1981) 

worked with raw digestion of starch and found that ethanol fermentation using a non-

sterilized medium can save about 30 to 40% of the energy consumed compared to the 

sterilization commonly carried out in an industrial fermentation process. Sterilization of 

the fermenting substrate prior to fermentation also results in loss of sugar and nitrogen 

and undesirable pigmentation due to Maillard reaction. This can be avoided by sterilizing 

the reducing sugars and other nutrients separately and then mixing them aseptically. This 

is possible for a tailor made synthetic media, but is not possible when utilizing a biomass 

substrate and hence loss of nutrients is inevitable. Loss of 8 g/L of glucose has been 

reported by Kechang (1995). The above procedure also leads to process complexity and 

adds to the risk of cross contamination. Tao et al. (2005) also found that the glucose to 

ethanol conversion yield was higher in non-sterilized media compared to autoclaved 

media. The yield obtained was 0.488 g/g in non-sterilized media compared to 0.468 g/g 

in sterilized media. Gibbons and Westby (1989) found yeast inhibition in unpasteurized 

sweet sorghum juice was due to a combination of factors. One of the factors was the 

presence of high levels of bacterial contaminants. The source of the contaminating 
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bacteria in sweet sorghum is primarily from the soil and environment. The inhibitory 

effects of bacteria variety of feedstock fermentation are well documented. Another 

possible factor was the presence of inhibitory substances present in sorghum juice. 

2.4.6 Comparison of Ethanol Production Technologies 

Current processes for producing ethanol include either direct fermentation of sugars, 

enzymatic conversion of starch-based crops such as corn, or acid/enzymatic hydrolysis of 

lignocellulosic feedstocks. The majority of current ethanol production is from the 

fermentation of corn, accounting for 90% of total commercial production (Chum and 

Overend, 2001). The corn ethanol fermentation process involves enzymatic conversion of 

the starch to simple sugars, followed by yeast fermentation, and distillation to concentrate 

the ethanol. Ethanol production from lignocellulosic feedstocks such as wood, stover, and 

grasses requires more stringent enzymatic methods in order to break the cellulose into 

fermentable simple sugars, and this adds to ethanol production costs. Major 

disadvantages of current processes include high cost of enzymes, the formation of waste 

streams, long fermentation times, and federal subsidies required for economic returns, 

although major efforts are being extended to eliminate these disadvantages (Eriksson et 

al. 2002; Mielenz, 2001). As is evident, the level of difficulty in producing ethanol 

increases from sugar crops to starch-based crops to lignocellulosic plants as a result of the 

increasing complexity of the sugar components of the raw materials.  

2.5 Environmental Influence on Fermentation 

Physiology and molecular biology of stress responses in yeast cells has received 

widespread attention in recent years because of its practical implication in biotechnology. 

In alcoholic fermentation processes, yeast cells encounter several environmental stresses 
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that adversely affect their ability to perform efficiently and consistently in the conversion 

of sugars to ethanol (Figure 2.2). For instance, yeast cell death induced by extreme 

temperature or by toxic ethanol concentration levels has a direct impact on yeast 

fermentation performance. Environmental stress is also known to decrease cell viability.  

Atala et al. (2001) observed 60-70% reduction in cell viability with an increase in 

fermentation time. This was probably due to highly stressful conditions experienced as 

the fermentation progresses owing to high ethanol and cell concentrations.  

Yeast management before, during, and after fermentation should endeavor to minimize 

physiological stresses imparted on the fermenting yeast cells. Stress may be imposed on 

fermenting yeast at pre-fermentation (e.g. acid washing, cold-shock, oxidative stress and 

nutrient starvation), primary and secondary fermentation (e.g. osmostress, ethanol 

toxicity, pH/temperature fluctuations and CO2/hydrostatic pressure); and post-

fermentation (e.g. mechanical shear, cold-shock, and nutrient starvation (Quain, 1990). 

An improperly managed ethanol fermentation process may also lead to stuck or sluggish 

fermentation. During a stuck fermentation the rate of sugar utilization is greatly reduced 

or protracted especially during the end of the fermentation process primarily due to the 

deficiency of vital nutrients in the fermentation media or due to inefficient control of the 

fermentation temperature.  

2.5.1 Temperature 

Yeasts employed in the ethanol industry are subjected to wide variations in temperature. 

Fermenting yeasts experiences temperatures lower than 5oC during cold storage and 

higher than 40oC in non-cooled fermentors. Temperature becomes critical when 

designing a fermentation process operating under environmental conditions. Optimal  
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Figure 2.2 Typical yeast factors known to influence yeast fermentation capacity  
      (Ingledew, 1999) 

 

 

temperatures for ethanol production by brewing yeast are higher than those required for 

growth (Jones et al. 1981). The optimal temperatures for the growth of S.cerevisiae are in 

the range of 30-35oC, and increasing the fermentation temperature from 30 to 39oC 

resulted in higher ethanol productivity, but also caused greater cell death (Krouwel and 

Braber, 1979). The influence of temperature on fermentation kinetic parameters must be 

considered since it is usually difficult to control temperature during large scale alcoholic 

fermentation. Since the ethanol fermentation process is an exothermic process, small 

fluctuations in the temperature (2 to 4oC) will deviate the optimal process temperature. 

Understanding the temperature influence on fermentation kinetics is a useful strategy for 

process optimization. Change in surrounding temperature can have a direct influence on 

metabolism characteristics and control, the structure of cells, enzyme reaction and cell 

permeability. Oh et al. (2000) found in the same study that in the range of 30 to 42.5oC, 
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the maximum specific production rate decreases by 2.5% with every 1oC rise in 

temperature above 30oC. A typical ethanol fermentation process is exothermic, and in a 

process carried out at ambient temperatures (40oC) with no cooling system, an increase of 

11oC can be experienced leading to limited ethanol productivity (Burrows, 1970). 

However, fluctuations in temperature cannot be avoided in large industrial fermentors 

due to difficulties related to agitation and cooling when the external temperature reaches 

high values. Currently, thermotolerant yeast strains capable of growth and ethanol 

production above 40oC are being actively sought through screening, temperature 

adaptation, protoplast fusion, mutagenesis technique, molecular biology techniques and 

isolation techniques to improve upon the ethanol production efficiency (Banat et al. 

1996).  

Heat and high ethanol concentrations cause membrane disordering, protein denaturation, 

glycolysis inhibition and enhanced mutation. Exposure to lower temperatures may also 

prove to be lethal, especially in the presence of ethanol due to loss in essential cellular 

components through the lesions in the yeast cell membrane. Cold shock may also inhibit 

bud development, vacuolar rearrangement, and induction of ‘cold-shock’ proteins 

(Fargher and Smith, 1995).  

2.5.2 Ethanol 

The primary limiting factor during ethanol production is the influence of high ethanol 

concentration on yeast growth and fermentation. In general, as the initial amount of 

ethanol in the medium is increased, the specific growth rate and specific ethanol 

production rate decreases. Bailey and Ollis (1986) found that tolerance to high ethanol 

concentration is strain specific with a maximum allowable concentration of 10% w/v for 
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growth and 20% w/v for ethanol production exhibited by the most tolerant strains. 

However, Oh et al. (2000) observed that the maximum allowable ethanol concentration 

above which the cell stops growing was 8% w/v and the maximum allowable ethanol 

concentration, above which cells stop producing ethanol, was determined to be 10% w/v. 

The inhibitory effect of ethanol on ethanol production was more severe than that for the 

cell growth. Contradictory results by Bajpai and Margaritis (1982) indicate that high 

initial ethanol concentration is known to inhibit the maximum specific growth (μmax) rate 

but had no effect on final ethanol concentration and cell yields or on sugar utilization. 

Ethanol is known to alter the degree of polarity of the cell membrane and the cytoplasm, 

causing disruption of growth due to membrane fluidity (Lynd et al. 1991). Plasma 

membrane phospholipids have been shown to play a significant role in the ethanol 

tolerance of yeasts (Ingram and Buttke, 1984). At higher temperatures, higher saturated 

fatty acids such as palmitic and palmitoleic acids are formed in the cell membrane at the 

expense of unsaturated acyl chains such as oleic, linoleic and linolenic acid. This results 

in the loss of membrane fluidity required for various cellular activities.  

Higher concentrations of membrane unsaturated fatty acids, vitamins and proteins 

(D'Amore and Stewart, 1987; Ingram, 1984) along with other physiological factors such 

as medium composition and mode of substrate feeding (Dombek and Ingram, 1986a, 

1986b; Yamamura et al. 1988), intercellular ethanol accumulation (D'Amore et al. 1988), 

temperature and osmotic pressure can all lead to increased tolerance to ethanol (D'Amore 

and Stewart, 1987; Jones et al. 1981; Ohta and Hashiyada, 1983; Vienne and Stockar, 

1985). In addition trehalose was found to act as both a membrane stabilizer and a 
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protectant for yeast cells under stressful conditions, especially under higher ethanol 

concentration (Kida et al. 1993; Majara et al. 1996).  

2.5.3 Agitation 

The purpose of liquid circulation (mixing) in a fermentation bioreactor is to 

homogeneously distribute the substrates and the products, and the physicochemical 

factors such as temperature and pH with respect to the microbial cells. Mixing is 

achieved by different means such as mechanical agitation, gas injection or by 

recirculating the contents of the fermentor. However, installing an agitator in a large scale 

process significantly adds to the cost, affecting the economic feasibility of the in-field 

process. Intensive mixing leads to mechanical destruction of the cells while insufficient 

mixing intensity inhibits substrate and oxygen mass transfer leading to cell damage. 

Galindo et al. (1989) observed a longer fermentation time by S.cerevisiae on sugarcane 

molasses when the fermentors were not agitated. The effect was more pronounced when 

the fermentor volume was scaled up due to increased residence time of CO2, biomass, 

ethanol and sugar. They observed an increase of 36% in ethanol concentration and a 

reduction of 4 h in the fermentation time when the fermentors were agitated. Toma et al. 

(1999) observed that under intensive mixing conditions cells of Z.mobilis are prolonged 

while the cells of S.cerevisiae form continuous chains similar to hyphae and exhibit 

unusually high rate of substrate utilization (Berzins et al. 2001).  

In contrast, Farid et al. (2002) found in their ethanol fermentation study with co-culture 

of Aspergillus awamori and Saccharomyces cerevisiae that the ethanol production 

decreased as the agitation speed increased. Maximum ethanol concentration was 

produced at 50 rpm and the lowest level of ethanol was produced at 200 rpm. This is 
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attributed to the fact that at 200 rpm there is an accumulation of inhibitory substances 

such as tryptophol (Hango et al. 1967). Similar findings were published by Converti et al. 

(1996) who observed a decrease in biological intensity due to increasing mixing intensity 

in S.cerevisiae cells, a phenomenon termed as turbohypobiosis. Shear stress caused by 

mechanical agitation also results in increased calcium ion channeling across the 

membranes of bacterial and yeast cells leading to synthesis of stress proteins (Namdev 

and Dunlop, 1995). 

2.5.4 Acetic Acid and Other Weak Acids 

Various growth inhibitors such as organic acids, aldehydes, higher alcohols and fatty 

acids produced by yeasts are known to accumulate during fermentation (Maiorella et al. 

1983). Organic acids are known for their fungistatic and fungicidal effects which are 

maximal at low pH. Octanoic and decanoic acid in the presence of ethanol affect growth 

and thermal death parameters of S.cerevisiae (Viegas et al. 1985). Weak acids are also 

known to increase the ethanol induced thermal death by increasing the entropy of 

activation without affecting the enthalpy of activation of thermal death (Leao and van 

Uden, 1985).  

The inhibitory effect of acetic acid on the growth rate is dependent on the pH of the 

medium, its dissociation and molar constants (Narendranath et al. 2001). Acetic acid is 

usually formed during the fermentation of D-glucose by S.cerevisiae (Fraenkel, 1982) 

and has been shown to inhibit growth and induce cell death (Moon, 1983; Pinto et al. 

1989).  
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The inhibitory effect of acid can be explained by the classic weak acid theory (Maiorella 

et al. 1983). Toxicity of acetic acid is pH dependent, since the undissociated form of the 

acid diffuses through the cell membrane. Pampulha and Loureiro (1989) found that acetic 

acid inhibits S.cerevisiae in an exponential way, the effect becoming more pronounced at 

lower pH. At extracellular pH values below the pKa of acetic acid (pH 4.74), the fraction 

of undissociated acid and toxicity increases. The extent of pH inhibition is also 

influenced by medium composition, medium pH and buffering capacity of the acids. 

Hence interference of acetic acid results in an increased ATP requirement for cell 

maintenance. In other words, ATP available for cell mass is channeled for maintaining 

the cell pH homeostasis rather than growth resulting in decreased cell biomass.  

2.5.5 Nitrogenous Constituents 

Yeasts require low molecular weight nitrogenous compounds such as inorganic 

ammonium ion, urea, amino acids and peptides (Patterson and Ingledew, 1999). 

Deficiency of nitrogen results in stuck or sluggish fermentations. The growth is found to 

increase linearly in the presence of 100 mg/L of free amino nitrogen (Pierce, 1987). 

Higher levels were found not to have any influence on cell growth, but significantly 

improved the rate of fermentation. Absence of nitrogen in the fermentation system leads 

to catabolism of amino acids and degradation of proteins (Cooper, 1982). Generally 

nitrogen in the form of ammonium ion is provided to yeasts by supplementing the growth 

medium with urea, sulfates and phosphate salt. Urea is broken down by yeasts to provide 

two molecules of ammonium and one molecule of carbon dioxide.  

Devine and Slaughter (1980) observed that ethanol production was stimulated only in  the 

presence of NH4
+ in a media containing glucose and not in presence of other carbon 
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sources such as maltose, fructose and sucrose, however NH4
+ was observed not to 

influence the cell growth in the fermentation medium. Saita and Slaughter (1984) 

observed that the rate of fermentation by S.cerevisiae was dependent on the availability 

of NH4
+

  and an increase of 50 to 150 mg N/L improved the rate of ethanol production 

and ethanol yield. Yeasts cannot utilize all available amino acids. Schultz and Pomper 

(1948) observed that alanine, arginine asparagine, aspartic acid, glutamic acid, leucine 

and valine when used as a sole nitrogen source promoted yeast growth. The utilization of 

amino acids was strain dependent and hence a balanced mixture of amino acids is more 

efficient in providing nitrogen than a single source.  

2.5.6 Magnesium 

Magnesium is involved in many essential physiological and biochemical functions in 

yeast cells, including growth, cell division and enzyme activation. Yeasts have a very 

high growth demand for magnesium ions, and magnesium accumulation by yeast 

correlates closely with the progress of fermentation. Walker et al. (1996) found that 

supplementing fermentation media with magnesium resulted in stimulation of 

fermentation. Walker (1998) summarized the influence of magnesium in ameliorating the 

stressful effects of ethanol, high osmotic pressure, heat shock and heavy metals known to 

damage the yeast cell by affecting the structure and function of the plasma membrane. 

The results indicated that the availability of exogenous magnesium results in reducing the 

deleterious effects of ethanol concentration on the cellular magnesium homeostasis. 

Structurally, magnesium stabilizes the biological membrane by cross-linking the 

carboxylated and phosphorylated groups of membrane lipids (Cowan, 1995). 
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Functionally, magnesium stimulates the activity of membrane bound H+-ATPase, which 

is necessary for the physiological function of the yeast cell (Rao and Slayman, 1996). 

2.5.7 Other Growth Requirements 

Yeasts require micro-aerobic conditions to supply approximately 8-20 ppm of oxygen 

required for necessary function and integrity of cell membranes (Ingledew, 1999). 

Oxygen in small amounts is required for the synthesis of sterols and unsaturated fatty 

acids. When yeast cells are grown in absence of oxygen, the available fatty acids and 

sterols become limited by sharing with new daughter cells and the cell stops growing.  

Phosphorous and sulfur are the two important minerals required for the growth of yeasts. 

Phosphorus is required for sugar metabolism, lipid synthesis and production of nucleic 

acids in yeast cells. Sulfur is required at a concentration of 0.3 to 0.5% for the synthesis 

of sulfur containing amino acids. Yeasts also require other macro elements such as 

potassium, magnesium, calcium, iron, zinc and manganese at a concentration of 0.1 to 1.0 

mM. Micro elements such as cobalt, boron, cadmium, chromium, copper, iodine, 

molybdenum, iodine, nickel and vanadium were required at a concentration of 0.1 to 100 

µM (Matthews and Webb, 1991).  

Berry and Brown (1987) indicated the importance of various vitamins such as biotin, 

pantothenic acid, inositiol, thiamin, nicotinic acid and pyridoxine as growth factors for 

yeasts. These vitamins play a major role in aerobic propagation of yeasts and may not 

prove to be critical during ethanol fermentation. Dry distillers yeast commonly employed 

during alcohol fermentation are known to multiply for only a few generations and hence 

the deficiencies of these vitamins may not prove to be critical. 



 

 41 

CHAPTER III 
 
 

EXPERIMENTAL MATERIALS AND METHODS 

The overall goal of this study was to design and optimize an in-field process of ethanol 

production from sweet sorghum. The specific objective of the study was to determine the 

feasibility of performing the in-field fermentation of sweet sorghum juice with little or no 

process control. Laboratory scale experiments and two in-field experiments were 

conducted to answer the various research questions to establish the feasibility of in-field 

processing of sweet sorghum.  

3.1 Laboratory Experiments 

Laboratory experiments were conducted in 500 ml shake flasks using fermentation media 

prepared in reference to the composition of sweet sorghum juice. These experiments were 

conducted to test and refine the various process variables. Shake flasks were incubated 

under controlled conditions to test the adaptability and ethanol production capacity under 

similar in-field conditions. Objectives of the first experiment were: 

- To test and compare the ethanol production capacity of different microorganisms 

belonging to Saccharomyces cerevisiae (Fermax and Superstart Distillers yeast), 

Zymomonas mobilis, Kluyveromyces marxianus species and their different combinations. 

- To test different levels of incubation pH. The pH levels tested were 3.75, 4.3, 5.4 and 

7.0. 
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- To test the adaptability and ethanol production of the microorganisms at different 

incubation temperatures of 15, 30 and 35oC, and alternating 41 and 15oC every 12 h. 

- To develop analytical procedures for the estimation of total sugars, volatiles, cell 

biomass and nutritional composition of sweet sorghum juice and fermentation media. 

Testing of different types of fermenting microorganisms, maintained at different levels of 

pH and incubation temperatures enabled us to understand the impact of these variables on 

the fermentation performance and the sugar-to-ethanol conversion efficiency during a 

fermentation process. The composition of sweet sorghum juice was used as a reference 

when preparing the fermentation media. Sugars in the fermentation media included 

sucrose, glucose, and fructose, at concentrations of 85 g/L sucrose, 45 g/L glucose and 40 

g/L fructose. Yeast extract and peptone were added at 5g/L level to enable the growth and 

ethanol production of fermenting microorganisms.  

To design an in-field process, it was necessary to carry out the fermentation without 

sterilization of the media. Ethanol production under non-sterilized conditions has gained 

significant attention by researchers and industries. All shake flask studies were conducted 

in 500-ml Erlenmeyer flasks with a working volume of 250 ml. The flasks were fitted 

with two-holed rubber stoppers. A disposable syringe with a 14-gauge blunt end needle 

was inserted through one of the holes. Flexible plastic tubing was connected to the other 

hole by using a plastic elbow fitting. The other end of the plastic tubing was inserted into 

a bottle containing water. The flexible tubing was used to obtain anaerobic conditions 

required for the fermentation process by venting the CO2 produced during fermentation 

while preventing the influx of air into the fermentation vessel. 
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3.1.1 Yeast 

One objective of this study was to test microorganisms from different sources for ethanol 

production and compare the process efficiency of sugar to ethanol conversion. The 

microorganisms tested were S.cerevisiae (Fermax yeast, Superstart Distillers yeast), 

K.marxianus and Z.mobilis. The microorganisms were also tested in different 

combinations to determine if conversion efficiency improved. The pH of the medium was 

adjusted to pH 4.3 by gradually adding 2N H2SO4 and 2N NaOH (if required). The flasks 

were incubated at 30oC in an orbital shake incubator without agitation.  

3.1.2 Temperature 

Most yeast strains of interest operate within a finite optimum temperature range, and if 

left to environmental conditions, the temperature range for the in-field fermentation 

process could be very large. Temperature data was obtained from the Oklahoma Mesonet 

for the state of Oklahoma in the months of August, September, and October (likely 

harvest months for sweet sorghum) over the last ten years. The Oklahoma Mesonet is a 

joint effort by Oklahoma State University and the University of Oklahoma in recording 

real-time weather information from over 100 stations across the state (Brock et al. 1995).  

The average low temperature during this three-month period was 7oC, and the average 

high temperature was 37oC. In addition, the lowest temperature recorded was -7oC and 

the highest temperature recorded was 43oC. This obviously indicates a very large 

potential temperature range for fermentation. Incubation temperature conditions tested 

were: Fermax yeast at constant temperature of 15, 30, 35oC, and alternating temperatures 

between 41 and 15oC every 12 h by incubating the flask in incubators. The incubation 

temperatures were selected to determine the ability of the yeast to produce ethanol at 
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unfavorable fermentation temperatures. This was necessary from the research stand point 

because the in-field fermentation experiments were to be conducted under ambient 

conditions. By alternating the incubation temperature every 12 h between 41 and 15oC 

the ambient environmental temperature was imitated.  

3.1.3 pH 

Laboratory scale tests were conducted to determine whether acidification of the media 

was necessary if the fermentation was carried out in the absence of sterilization. The 

theory behind these tests was that sufficient acidification may help in inactivating the 

native microflora present in the sorghum juice. However, acidification of the 

fermentation is an added expense resulting in increased processing cost. The levels of pH 

were selected based on initial screening experiments where the amount of ethanol 

produced at different pH levels was compared. Experiments to evaluate the effects of pH 

included fermentation using Fermax yeast at pH 3.75, 4.3 and 5.5. and Z.mobilis at pH 

4.3 and 7.0. pH 5.5 is the native pH of the sweet sorghum juice. The initial screening 

experiments indicated that the rate of ethanol production at pH 3.75 was superior to pH 

4.3, but produced similar concentrations of ethanol. The pH of the medium was adjusted 

to pH 4.3 by gradually adding 2N H2SO4 and 2N NaOH (if required). The flasks were 

incubated at 30oC in orbital shake incubator without agitation. 

3.1.4 Agitation 

Agitation helps to provide uniform heat and mass transfer inside a fermentation vessel;  

however, installing an agitator in a large scale process significantly adds to the cost. The 

objective of this study was to test the influence of agitation on fermentation. Experiments 

were conducted using Z.mobilis and Fermax yeast in combination. Conditions tested 
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were: Z.mobilis and Fermax Yeast with agitation, Z.mobilis with agitation, and Z.mobilis 

and Fermax Yeast without agitation. All flasks were incubated at alternating 15 and 41oC 

every 12 h. The agitated flasks were incubated in an orbital shake incubator placed in a 

cold room at 4oC. The lower temperature of the room helped to better stabilize the 

fluctuations in incubation temperature.  

3.2 In-Field Experiments 

3.2.1 Experiment I 

The objective of the study was to determine the effect of several fermentation variables 

on ethanol yield. The variables tested included two different yeasts (Fermax yeast from 

Martrex Inc., www.martrexinc.com, and Superstart Distillers yeast from Crosby and 

Baker), two different pH levels (4.3 and 5.4- the natural pH of the sweet sorghum juice) 

and with and without added urea. The levels of pH were chosen based on the preliminary 

results from the laboratory experiments which indicated the ethanol yield at pH 4.3 and 

3.75 was similar. Hence, pH 4.3 was selected as one of the pH levels and compared with 

the native pH of the sweet sorghum juice at pH 5.4.  

Experimental Design 

A factorial design was used which included three factors, each at two levels to give a 23 

factorial design, plus replicates. Treatments were tested in triplicate, to produce 24 

different fermentation samples. Factor levels were chosen following an extensive 

literature search and preliminary laboratory experiments. The experimental setup for the 

twenty four vessels is shown in Table 3.1. 
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Table 3.1. Experiment I Design of Experiment 

Drum # Size (L) 
Temperature 

Logger Yeast pH Nutrient Temperature 

1 3.8 1-Submerged Fermax 4.3 Urea Ambient 

2 3.8 None Fermax 4.3 Urea Ambient 

3 3.8 None Fermax 4.3 Urea Ambient 

4 3.8 1-Submerged Fermax 4.3 Without Urea Ambient 

5 3.8 None Fermax 4.3 Without Urea Ambient 

6 3.8 None Fermax 4.3 Without Urea Ambient 

7 3.8 1-Submerged Fermax 5.4 Urea Ambient 

8 3.8 None Fermax 5.4 Urea Ambient 

9 3.8 None Fermax 5.4 Urea Ambient 

10 3.8 1-Submerged Fermax 5.4 Without Urea Ambient 

11 3.8 None Fermax 5.4 Without Urea Ambient 

12 3.8 None Fermax 5.4 Without Urea Ambient 

13 3.8 1-Submerged SD 4.3 Urea Ambient 

14 3.8 None SD 4.3 Urea Ambient 

15 3.8 None SD 4.3 Urea Ambient 

16 3.8 1-Submerged SD 4.3 Without Urea Ambient 

17 3.8 None SD 4.3 Without Urea Ambient 

18 3.8 None SD 4.3 Without Urea Ambient 

19 3.8 1-Submerged SD 5.4 Urea Ambient 

20 3.8 None SD 5.4 Urea Ambient 

21 3.8 None SD 5.4 Urea Ambient 

22 3.8 1-Submerged SD 5.4 Without Urea Ambient 

23 3.8 None SD 5.4 Without Urea Ambient 

24 3.8 None SD 5.4 Without Urea Ambient 

 
SD- Superstart Distillers yeast 
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Source of Sweet Sorghum Juice 

Sweet sorghum juice was obtained from the Kerr Center, Poteau, OK. Sorghum stalks 

(Dale variety) were harvested manually and then pressed in a mechanical roller press by 

Kerr Center staff (Figure 3.1a and b). Extracted juice was filtered and collected in 19-L 

buckets and prepared for fermentation within 4 h of juice pressing.  

Fermentation 

Fermentation experiments were conducted under unsterilized conditions in twenty-four, 

3.8-L PETE vessels (Rubbermaid, Item # 66273, 100-400 Cap Size). Fermentation 

vessels were equipped with a cylindrical air trap filled with water (Cellar Homebrew).  A 

14-gauge blunt end syringe (Fisher Scientific) was inserted into each lid using a rubber 

stopper for sample collection. A submerged temperature logger (Type: HOBO Pendant 

Temp/Alarm 8K, Onset Computer corporation) was submerged in one fermentation 

vessel in each treatment set to monitor the temperature throughout the fermentation 

process. A temperature logger was also used to monitor the ambient temperature. Figure 

3.2a shows the schematic setup of the fermentation vessel.  

Dry yeast was weighed @ 0.05% w/v and hydrated using water at 35oC for 1 h.  Juice 

(3.5 L) was measured using a graduated cylinder and filled into each of the fermentation 

vessels. Hydrated yeast was added to each fermentation vessel. Urea (MN, 

www.martrexinc.com) was added at 200 ppm if required based on the experimental plan. 

The pH of fermentation media was reduced to pH 4.3 by the gradual addition of 36 N 

Sulfuric Acid as required based on the experimental plan. The contents were mixed 

thoroughly and allowed to ferment under ambient conditions (Figure 3.2b). Samples were 
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taken at 24 h intervals and analyzed. Fermentation was allowed to continue until the 

sugar in the media was completely consumed by the fermenting yeast. 

Figure 3.1. Pretreatment of sweet sorghum stalks at Kerr Center a) Manual harvesting, 
and b) Mechanical pressing using roller press 
 

Figure 3.2. Fermentation vessel (3.8-L) setup:  a) Schematic representation, and  
b) Ambient temperature fermentation 

 



 

 49 

3.2.2 Experiment II 

The objective of the second experiment was to examine the influence of process variables 

on the fermentation performance at a larger scale and determine the ethanol yield under 

field conditions. The original experimental plan was laid out in a completely randomized 

design with triplicate treatments for each of the test variables. The experimental plan was 

to use three 760-L, twenty-one 209-L, nine 19-L, and twenty-four 3.8-L fermentation 

vessels, requiring a total sweet sorghum juice volume of 7000 L. The objective of the 

extensive experimental plan were to understand the influence of agitation, influence of 

vessel scale up, mass transfer properties, the influence of two different varieties of 

S.cerevisiae, two levels of pH, and urea addition on the fermentation performance. It was 

also planned for the experiment to be conducted in the field. The plan relied heavily on 

the successful operation of the prototype harvester/presser juice system. Since the design 

and development of the harvester/presser juice system was still in its infancy, the 

availability of the juice became the major constraint. Due to the delay in availability of 

the fully functional harvester/presser juice system, harvesting of the sweet sorghum was 

delayed until the month of November when the environmental temperatures became 

unfavorable for in-field fermentation. Henceforth, the experimental plan was revised to 

accommodate the limited juice volume availability and to conduct the experiment under 

controlled temperature conditions. 

The revised experimental plan tested the process variables fermentation vessel size 

(scale-up effect) and agitation. Temperature data was recorded at the top and bottom of 

the fermentation vessel to understand heat transfer during fermentation. Analysis samples 

were taken from the top and bottom of the fermentation vessel to understand mass 
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transfer during fermentation. Temperature and analysis samples were taken at the same 

level of the fermentation tank to provide similar points for comparison.  

Experimental Design 

A 2 by 2 experiment was designed to test process variables. Two sizes of fermentation 

vessels were used. Analysis samples were taken from the top and bottom of the 

fermentation vessels. The statistical design of the experiment is shown in Table 3.2.  

Detailed experimental plan is shown in Table 3.3.  

 

Table 3.2. In-field Experiment-II Layout 

Class Levels Description 
Vessel Size 2 19-, 209-L 
Sampling Location 2 Top, Bottom 

 

 

Sweet Sorghum Source 

Sweet sorghum juice for the experiment was obtained from a 50-acre field on S&S farms, 

Hinton, Oklahoma (Agricultural producer: Dean Smith). Sweet sorghum was harvested 

and pressed in the field using a prototype harvester/presser system (Source: Lee 

McClune, OH). A total of 600 L of juice was pressed from 1 acre of sorghum harvest. 

Figure 3.3a shows the sorghum plot at Hinton. Figure 3.3b shows the rear view image of 

the harvester/presser juice system. Figure 3.4a shows the harvest of the sweet sorghum 

crop. Figure 3.4b shows the incubation of the fermentation vessels under controlled 

condition.   
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Figure 3.3. In-field experiment II at S&S Farms, a) Sweet sorghum plot, and 
 b) Prototype harvester. 

 

 

Figure 3.4. In-field Experiment II, a) Mechanical harvest of sweet sorghum plot, and  
b) Controlled condition fermentation of the fermentation vessel.  
  

 

       



 

  

 

 

 

 

Table 3.3.  Design of Experiment II

Drum 
# 

Size 
(L) 

Agitation Sampling 
Port 

Temperature 
Logger 

Yeast Yeast 
Quantity 

(g) 

pH Temperature Urea 
Quantity 

(g) 

1 209 Yes Top & 
Bottom 

Top & 
Bottom 

Fermax 105 5.5 7 & 37oC 41.8 

2 209 None Top & 
Bottom 

Top & 
Bottom 

Fermax 105 5.5 7 & 37oC 41.8 

3 19 None Top & 
Bottom 

1-Submerged Fermax 10 5.5 7 & 37oC 3.8 

4 19 None Top & 
Bottom 

1-Submerged Superstart 
Distillers

10 5.5 7 & 37oC 3.8 

52 
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Fermentation Vessel Setup and Design 

Experiments were conducted in two 209-L and two 19-L high density polyethylene 

(HDPE, Airgas Mid-South, OK, www.airgas.com) vessels. The vessels were setup at the 

Food and Agricultural Products Research and Technology Center (FAPRTC, OSU, OK). 

Figure 3.5a shows the 19-L fermentation vessel assembly. The assembly consisted of two 

sampling ports, one temperature logger and an air lock. Samples from the top of the 

vessel were collected using a disposable syringe fitted with a 14-gauge blunt end needle 

(Cat # 14-825-16N, www.fishersci.com) inserted in the lid using a rubber stopper. 

Samples from the bottom were collected through an existing spigot located at 0.05 m 

from the base of the vessel. Anaerobic conditions in the fermentation vessel were 

maintained using a cylindrical air lock filled with water (Cellar Homebrew, 

www.cellarhomebrew.com). The air lock expels the CO2 produced during fermentation 

and prevents air from entering the vessel, thereby creating an anaerobic environment. 

One temperature data logger (Type: HOBO Pendant Temp/Alarm 8K, Onset Computer 

corporation, www.onset.com.) was placed at the bottom of the vessel to monitor the 

temperature throughout fermentation. One data logger was also used to monitor ambient 

temperature. 

The 209-L fermentation vessel assembly included two sampling spouts, two temperature 

loggers and an air lock (Figure 3.5b). One of the 209-L vessels was fitted with an agitator 

drive assembly. The vessels were 1m in height with an internal diameter of 0.5 meter. 

The vessel lids were removable and were secured by screw fit and a metal clamp. The 

vessels were fitted with two sampling ports to collect samples from the top and bottom of 

the drum. One 0.076 meter air lock was fitted on the top of the lid by using a Number 7 
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a) 19-L Vessel b)  209-L Vessel     

    
 
      

          
 
                     0.25 m 
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                 0.37 m                    0.5 m 
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   0.0064 m      
     0.5 m    
Legend:          

 
 

Sampling Port 
 

              Temperature Loggers 

                   Sampling Syringe               Air Lock 
 

Figure 3.5 Experiment II assembly of fermentation vessels, a) 209-L, and b) 19-L vessel 
 

rubber adapter. Two temperature loggers (Type: HOBO Pendant Temp/Alarm 8K, Onset 

Computer corporation, www.onset.com) were suspended from the lid by means of a 

stainless steel link chain to measure the temperature at the top and bottom level of the 

drum. The sampling ports and the temperature loggers were fixed at a distance of 0.25 m 

from the top and bottom of the drum.  

The agitator assembly consisted of a drive (Magmotor Corporation, P/998, Grainger 

Corporation 3 hp, 300-3000 rpm, 100 psi,) and impeller (Figure 3.6). The impeller shaft 

was 0.865 m in length with a diameter of 0.0095 m and made from 316 SS (Figure 3.6a). 

The agitator drives were mounted on the lid and supported by guide rollers (Figure 3.6b). 

Agitator 
Assembly 



 

 55 

The impeller blades were paddle type and made from polytetrafluroethylene (PTFE) with 

a dimension of 0.102 x 0.127 m (Figure 3.6c). Three holes of 1 cm diameter were 

punched on the impeller blades for greater mixing properties. The blades were screwed to 

the impeller shaft.  

 

 a) Impeller Shaft    b) Agitator Guide Rollers 

 
 
       

     0.305 m      

      0.102 m   
 
   

 0.865 m      

      
          0.0305 m 

  
   0.356 m 

     

          
 
   

      0.102 m  0.002m               0.0254 m 

     0.0095 m  0.0075 m     

 Front View  Side View     

     0.0254 m  

 c) Impeller Blade       
 
 0.025      0.076       

         0.032 m     

       0.013 m     

      0.013 m     

  
          0.102m 

    0.013 m     

       0.032 m     

        

 0.127 m      0.033 m     

 Front View          Side View      
 
Figure 3.6. Fermentation vessel agitator design a) Impeller shaft; b) Agitator guide 
rollers; c) Impeller blade 
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Fermentation 

Fermentation experiments were carried out under unsterilized conditions. Dry distillers 

yeast was weighed @ 0.05% w/v and hydrated using water at 35oC for 1 h. The amount 

of water used for hydration was approximately 10 times the culture volume. Urea (MN, 

www.martrexinc.com) was added at 200 ppm. 600 L of sweet sorghum juice was pressed 

on the field using the harvester/presser system. The pressed juice was filtered using an 

inline sieve and filled into a collection unit mounted at the back of the harvester. Juice 

from the collection tank was pumped simultaneously into the fermentation vessels on an 

attached flatbed trailer. Sweet sorghum juice was filled into each fermentation vessel to 

give a working volume of 200 L and 18 L in the larger and smaller vessels, respectively. 

Hydrated yeast and urea were added while filling the sweet sorghum juice to ensure 

uniform mixing. Fermentation vessels were then allowed to ferment under controlled 

conditions at the Advanced Technology Research Center (ATRC, OSU, OK). The vessels 

were alternated between incubation temperatures of 37 and 7oC every 12 h to imitate the 

environmental temperature conditions. The incubation of the non-agitated vessel was 

started at 37oC while the agitated vessel started incubating at 7oC due to the space 

constraint in the incubation room. Samples were taken every 24 h and analyzed. The 

fermentation was continued until the sugar was completely utilized by the yeasts.  

3.3 Microbiology 

Saccharomyces cerevisiae 

Dry industrial distillers yeast was procured from two suppliers. Fermax dry distillers 

yeast was procured from Fermax Inc. (MN, www.Fermaxinc.com) and Superstart 

distillers yeast was procured from Superstart (Catalogue # 9804A, Crosby and Baker, 
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Atlanta, GA www.crosby-baker.com). Both yeasts were stored under refrigerated 

conditions (4oC) until used.  

Zymomonas mobilis 

Freeze dried Zymomonas mobilis spp. mobilis culture (ATCC 10988) was obtained from 

American Type Culture Collection (ATCC, VA, USA, www.atcc.org) and stored at 4oC 

until used. 

The freeze dried culture was revived using ATCC Zymomonas medium consisting of  

glucose- 20 g/L; yeast extract- 5 g/L; deionized water- 1000 ml; pH- 4.8+0.2; and agar- 

20g/L (for plating). The media was autoclaved at 121oC for 15 minutes and cooled to 

room temperature. Under anaerobic conditions, 0.5 ml of broth is transferred from a 

single test tube containing 5-6 ml of broth into the culture vial. The aliquot is aseptically 

transferred back into the broth tube. The tubes are incubated under anaerobic conditions 

at 30oC for 48 h, which corresponds to the ideal condition for achieving exponential 

growth of the cells. Following incubation the broth tubes are refrigerated at 4oC until 

used.  

The cultures were subcultured every 30 days using a media consisting of glucose- 20 g/L; 

peptone- 5g/L; yeast extract- 5 g/L; deionized water- 1000 mL and pH- 7.0. The sterile 

media was inoculated with 10% of previously grown culture and incubated anaerobically 

at 30oC for 48 h. The flasks were stored at 4oC until used.  
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Kluyveromyces marxianus 

Freeze dried Kluyveromyces marxianus culture (ATCC 12708) was obtained from 

American Type Culture Collection (ATCC, VA, USA, www.atcc.org) and stored at 4oC 

until used. 

The freeze dried culture was revived using ATCC YM medium No. 200 consisting of 

yeast extract-3 g/L; malt extract-3 g/L; peptone-5 g/L; dextrose- 10 g/L; deionized water- 

1000 ml; and agar-20 g/L (for plating). The pH of the media was adjusted to pH 4.3+0.2 

using 2 N sulfuric acid. The media was autoclaved at 121oC for 15 minutes and cooled to 

room temperature. Using a sterile pipette, 0.5 ml of sterile distilled water was applied 

directly to the pellet. The suspension was then aseptically transferred to a test tube 

containing 5 ml of sterile distilled water. The freeze dried culture was allowed to hydrate 

for 12 h at 25oC.  One ml of this suspension was then inoculated into YM liquid medium 

and incubated at 28oC for 48 h.  

The cultures were subcultured monthly using a sterile media consisting of glucose-     

20g/L; malt extract-5 g/L; yeast extract- 5 g/L; peptone-5 g/L; and deionized water- 1000 

ml at pH-4.3. The sterile media was inoculated with 10% of previously grown culture and 

incubated anaerobically at 30oC for 48 h. The flasks were stored at 4oC until used.                                

3.4 Sweet Sorghum Juice Composition and Stability 

Two liters of pressed sweet sorghum juice was collected and immediately refrigerated at 

4oC for analyzing the nutritional composition and determining the total sugar availability 

over extended periods of refrigerated storage. The objective of this study was to ascertain 

the storage stability of the sweet sorghum juice. The nutritional composition of the juice 
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was analyzed in terms of total sugars, anions, cations, proteins and pH. To assess the 

stability of nutrients when stored at 4oC, the total sugar concentration of the juice was 

analyzed every 24 h. The measure of change in sugar concentration was indicative of the 

change in the availability of the nutrients.  

3.4.1 Anion Analysis 

Availability of anions such as fluoride, chloride, acetate, nitrate, phosphate, citrate and 

sulfate in the sweet sorghum juice was analyzed using liquid chromatography Dionex 

DX-600 (Dionex Corporation, Sunnyvale, CA, www.dionex.com) under the following 

conditions: 

Equipment:  LC20 chromatography module 

GP50 Gradient Pump 

ED50 Electrochemical Detector 
 

Column:  IonPac AS11 Analytical 

   IonPac AG11 Guard 

IonPac ATC-1 Anion Trap 
 

Eluent:    E1: Deionized water 

   E2: 5.0 mM Sodium Hydroxide 

   E3: 100 mM Sodium Hydroxide 
 
Flowrate:  2.0 ml/min 

Detection:  Suppressed Conductivity, ASRS 

   AutoSuppression recycle mode 
 
Injection Volume: 10 μL  

Background  

Conductivity:   0.5 mM NaOH: < 1 μS 

   35 mM NaOH: < 3.5 μS 
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Operating  
Backpressure:  11 MPa (1600 psi) 
 
Wave Form:             Fluoride, Chloride, Acetate, Nitrate, Phosphate, Citrate,  

Sulfate 
 

Gradient: 
 
 
 
 

 
 
 
 
 

Stock analyte standard solutions were prepared by dissolving the amount of each salt 

listed in Table 3.4 in deionized water to obtain 1000 mg/L (1000 ppm) solutions. 

 

Table 3.4. Anion standard preparation table 

Analyte Salt Amount (g) 

Fluoride Sodium fluoride 2.210 

Chloride Sodium chloride 1.648 

Acetate Sodium acetate 1.389 

Nitrate Sodium nitrate 1.371 

Phosphate Potassium dihydrogen phosphate 1.433 

Citrate Citric acid 1.000 

Sulfate Potassium sulfate 1.814 

 

 

 

Time E1 E2 E3 
Initial 90 10 - 
2.00 90 10 - 
6.00 - 100 - 

18.00 - 62 38 
18.10 90 10 - 
25.00 90 10 - 
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3.4.2 Cation Analysis 

Availability of cations such as sodium, ammonium, magnesium, calcium, and potassium 

in the sweet sorghum juice was analyzed using liquid chromatography Dionex DX-600 

(Dionex Corporation, Sunnyvale, CA, www.dionex.com) under the following conditions: 

Equipment:  LC20 chromatography module 

GP50 Gradient Pump 

ED50 Electrochemical Detector 
 

Column:  IonPac CS12A Analytical (4 mm) 

   IonPac CG12 Guard (4 mm) 

IonPac CTC-1 Cation Trap 
 

Eluent:    E1: DI Water 

   E2: 100 mM Methanesulfonic acid  
 
Flowrate:  1.0 ml/min 
 
Injection Volume: 25 μL  
 

Detection:  Suppressed Conductivity, CSRS 

   AutoSuppression recycle mode 
 
Operating  
Backpressure:  1300 psi 

Wave Form:  Sodium, Ammonium, Magnesium, Calcium, Potassium 

 
Gradient: 
 
 
 
 
 
 

Stock analyte standard solutions were prepared by dissolving the amount of each salt 

listed in Table 3.5 in deionized water to obtain 1000 mg/L (1000 ppm) solutions. 

Time E1 E2 
Initial 84 16 
5.00 84 16 
5.01 60 40 

10.00 60 40 
10.01 84 16 
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Table 3.5. Cation standard preparation table 

Analyte Salt Amount (g) 

Sodium Sodium chloride 2.542 

Ammonium Ammonium chloride 2.964 

Potassium Potassium chloride 1.906 

Calcium Calcium chloride hydrate 3.668 

Magnesium Magnesium chloride hexahydrate 8.365 

 

3.4.3 Protein Estimation 

Protein content in the sorghum juice was estimated based on the bicinchoninic acid 

(BCA) colorimetric detection and quantification of total protein method (Application 

number 23227, Pierce, Rockford, IL, www.piercenet.net). The method is based on the 

biuret reaction principle where Cu+2 is reduced to Cu+1 followed by selective colorimetric 

detection of the cuprous cation (Cu+1) by using BCA. The reaction results in a purple 

colored end product which exhibits a strong absorbance at 562 nm that is nearly linear at 

a broad protein concentration range (20-2000 μg/ml).  

The procedure involved preparing a dilute bovine serum albumin standard over the 

required concentration range. The working reagent was prepared by mixing reagent A 

with reagent B in a 50:1 ratio. 0.1 ml of sample was mixed with 2.0 ml of working 

reagent. The vials were then incubated in a water bath at 37oC for 30 minutes and cooled 

immediately to room temperature by placing the vials in a ice water bath. An ultraviolet 

spectrophotometer was zeroed using distilled water blank and the sample absorbance was 



 

 63 

measured at 562 nm within 10 minutes. Standard samples were analyzed in triplicate and 

corrected averages were used to determine the standard curve. Determination of the 

standard curve for protein estimation is shown in Table 3.6 and Figure 3.7.  

 

Table 3.6. Calculation of BSA Standard Assay 

Vial 
Volume 

of 
Diluent 

Volume and Source of BSA 
Final BSA 

Conc. 
Corr.  Avg. Abs 

(562 nm) 

A 0 300 ml of stock 2000 μg/ml 1.8225 

B 125 ml 375 ml of stock 1500 μg/ml 1.5022 

C 325 ml 325 ml of stock 1000 μg/ml 1.0992 

D 175 ml 175 ml of vial B dilution 750 μg/ml 0.8749 

E 325 ml 325 ml of vial C dilution 500 μg/ml 0.6088 

F 325 ml 325 ml of vial E dilution 250 μg/ml 0.3123 

G 325 ml 325 ml of vial F dilution 125 μg/ml 0.1542 

H 400 ml 100 ml of vial G dilution 25 μg/ml 0.0251 

I 400 ml 0 2000 μg/ml 0.0000  
 

 
 
 
 

 

 

 

 

 

 

Figure 3.7. Standard curve for protein estimation using the BCA assay. 
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3.4.4 pH 

pH of the sweet sorghum juice was measured using the digital pH meter (Model 310, 

Orion Research Inc., MA). The reported pH value was the average of the three pH 

readings.  

3.5 Analysis of Fermentation Samples 

Fermentation media samples were taken every 24 h using the inserted 10 ml disposable 

syringe (Cat # 14-823-2A, Fisher Scientific., www.fishersci.com). A sample volume of 3 

ml was taken at each sampling time after thoroughly mixing the fermentation media. 

Samples for cell biomass estimation were taken and tested immediately.  

3.5.1 Cell Biomass Determination 

Cell growth was determined by measuring the optical density (OD) of the fermentation 

sample (Bulawayo et al. 1996). Cell concentration was determined by measuring the OD 

at 570 nm on a UV Vis spectrophotometer (Cary 50 Bio UV visible spectrophotometer, 

varianinc.com). The measured OD values were read using a computer interface using the 

Cary WinUV Simple Reads software supplied by the vendor. The instrument was zeroed 

with the media blank using the same dilution factor as that of the analysis sample. Media 

for the blank preparation was stored at 4oC until used. Analysis samples were diluted 

using Ultrapure Milli-Q water to a final sample volume of 1.5 ml. The sample volume 

required for estimating the cell biomass differed as the fermentation progressed in order 

to ensure that the measured OD fell within an OD range of 0.2 and 1.0 which corresponds 

to the linear limits on the standard curve. A dilution factor of 6 was used for the initial 

sample prepared by diluting 0.25 ml of the sample in 1.25 ml of deionized water (DI). In 

a similar fashion, the dilution factor for the other sample intervals was prepared. In 
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general, a dilution factor of 15 was used for 24 and 48 h sample and for the rest of the 

sampling intervals a dilution factor of 30 was used. Standard curve for determining the 

cell biomass was obtained by correlating the absorbance of the cell suspension versus 

with the dry weight of the yeast (Cramer et al. 2002). Table 3.7 shows the dilutions made 

for obtaining the standard curve. The standard curve is shown in Figure 3.8. Standard 

curves were prepared for each of the fermenting microorganisms.  

Table 3.7. Table for the biomass standard determination 

 

 

 

 

 

 

 

Figure 3.8. Biomass Standard Curve 

Sample #  Dilution Water SS 

Initial 
Weight 

(g) 
Final 

Weight (g) 

Biomass 
Weight 
(g/L) 

Λ (570 
nm) 

1 25% 37.5 12.5 1.0686 1.1136 0.90 1.6603 

2 20% 40.0 10 1.065 1.1073 0.85 1.5102 

3 15% 42.5 7.5 1.0667 1.0916 0.50 1.3193 

4 10% 45.0 5 1.0639 1.0843 0.41 1.0333 

5 5% 47.5 2.5 1.0667 1.0771 0.21 0.5963 

6 0% 50.0 0 1.0664 0 0.00 0 
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3.5.2 Sample Preparation for Volatile and Total Sugar Estimation 

A fermentation media sample volume of 1.5 ml was pipetted into a 1.5 ml micro-

centrifuge tube (Cat # 05-408-129, www.fishersci.com). The tubes were centrifuged at 

14000 rpm for 15 min in a microcentrifuge (Model Force 14, Labnet International Inc.).  

Immediately after centrifuging, 125 μL of the supernatant pipetted into ion 

chromatography vials (Cat # 038008, www.dionex.com) and diluted 40 times using 

deionized water (18 MΩ-cm). The vials were capped (Cat # 038009, www.dionex.com) 

and the samples tested on a Dionex ion chromatography system for sugar estimation. For 

the volatile estimation, 1.0 ml of the supernatant was transferred into gas chromatography 

vials (Cat # 21141, www.restek.com). The vials were capped (Cat # 24486, 

www.restek.com) immediately to prevent the loss of any volatiles. Samples were tested 

on Agilent gas chromatography system for volatile estimation. 

3.5.3 Volatiles Estimation 

Volatile (Methanol, Ethanol, Acetic Acid, Propionic Acid, Butyric Acid and Butanol) 

were analyzed using a 6890 Gas Chromatograph (Agilent Technologies, Wilmington, 

DE). The operating conditions are listed below.  

Oven:   Initial Temperature:   200oC 

   Initial Time:    13 minute 

   Maximum Temperature:  225oC 

   Equilibration Time:  0.50 minute 

 

Front Inlet:  Initial Temperature:  200oC 

   Flow:    25.8 ml/min 

   Carrier Gas:   Nitrogen 
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Column:  Packed Column 

Model:    Porapak QS 80/100, 8 feet 

Maximum temperature:  250oC 

Mode:      Constant flow 

Nominal Initial Flow:  25.0 mL/min 
 

Front Detector: Flame Ionization Detector (FID) 

   Temperature:   250oC (On) 

   Hydrogen Flow:  30.0 mL/min (On) 

   Air Flow:   400.0 mL/min (On) 

   Mode:    Constant makeup flow 

   Makeup Flow:   25.0 mL/min (Off) 

   Makeup Gas Type:  Nitrogen 
 

Signal 1:  Data Rate:   20 Hz 

 

Injection Volume:     1.0 μL   

3.5.4 Sugar Analysis 

Soluble sugars were analyzed by Ion Chromatography (IC) using a Dionex DX-600 

equipped with a CarboPac MA1 anion-exchange column and a pulsed amperometric 

detector (Dionex, Sunnyvale, CA). The mobile phase was 700 mM NaOH with a flow 

rate of 0.40 ml/min at room temperature. Glucose, fructose, sucrose and cellobiose 

standards were prepared by dissolving 12.5 g in 1000 ml deionized water to give 12500 

mg/L standard solution. Subsequent dilutions for each sugar were prepared by dissolving 

the standard solution in deionized water to give a final volume of 5 ml (Table 3.8). 

Standard curves for the individual sugars and the equation are shown in Figure 3.9. 

 

 

 



 

  

 
 

 

Table 3.8. Sugar standard table 
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Sugar Conc. 
(mg/L) 

Vol. of Stock 
Sol (ml) 

Vol. of DI 
H2O (ml) 

Glucose 
Area 

Fructose 
Area 

Sucrose 
Area 

Cellobiose 
Area 

0 0 5.00 0.0000 0.0000 0.0000 0.0000 

25 10 4.99 0.0101 0.0034 0.0080 0.0098 

125 50 4.95 0.0507 0.0206 0.0258 0.0340 

625 250 4.75 0.2510 0.1140 0.1473 0.1547 

1250 500 4.50 0.4948 0.2592 0.2976 0.3264 

2500 1000 4.00 0.9558 0.5180 0.5765 0.6493 

5000 2000 3.00 1.9243 0.9913 1.0964 1.3473 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Sugar standard curves
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3.5.5 Sugar Conversion Efficiency 

The ability of yeasts to produce ethanol from the available sugar can be expressed as the 

sugar conversion efficiency given by the following equation (de Manchilla and Pearson, 

1984): 

  SCE =  alcohol content (% w/v) x 100 

                                    media sugar content (%) x 0.504 

3.6 Statistical Analysis 

Design of experiments using factorial design helps in estimating both the main effects 

and interactions in contrast to the classical design in which each response is investigated 

for each factor in turn while keeping the other factors constant (Miller, 1988; 

Montgomery, 1997).  

Dependent variables used to interpret the data were: cell biomass content, ethanol 

concentration, and total residual sugar. Statistical differences were tested using analysis 

of variance and multiple comparisons of means. Analysis of variance of data was 

conducted using the General Linear Model procedure of SAS (SAS Institute Inc., 1989). 

Multiple comparison of means were tested by LSD (Least Significant Differences) at α = 

0.05. 
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CHAPTER IV 

 
 

RESULTS AND DISCUSSION 

This chapter contains a description of results obtained from the laboratory and in-field 

experiments. Parameters tested were: type of fermenting microorganism, effect of 

temperature conditions, effect of pH conditions, and effect of agitation.  

4.1 Laboratory Experiments 

A series of laboratory experiments was conducted to screen the optimal conditions for 

sweet sorghum fermentation. The tests included screening different microorganisms for 

highest sugar to ethanol conversion efficiency; comparison of fermentation efficiency at 

different pH and temperature levels; and determination of effects of agitation during 

fermentation. All the fermentations were conducted in prepared media containing 

sucrose, glucose, fructose, proteins and minerals at levels similar in composition to the 

sweet sorghum juice composition.  

In the first set of experiments, the fermenting ability of different microorganisms, both 

individually and in combination, at 30oC and pH 4.3 was compared (Figure 4.1 and 4.2). 

Microorganisms tested were Z.mobilis; K.marxianus; Superstart Distillers yeast; Fermax 

yeast; Z.mobilis and Fermax Yeast; and Z.mobilis, Fermax yeast and K.marxianus.  

Comparing the curves in Figure 4.1, it can be seen that Z.mobilis resulted in highest sugar 

conversion efficiency (SCE) of 93.8% with an ethanol production of 81.1 g/L. Superstart 
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Distillers yeast produced 57.0 g/L of ethanol with a SCE of 73.0%. The results are similar 

to earlier findings of high sugar utilization and ethanol yield with a low biomass 

production by Z. mobilis. Comparing the curves in Figure 4.2 it was observed that 

Fermax yeast resulted in the highest SCE of 94.1% with an ethanol production of 80.2 

g/L. Comparing both Figures 4.1 and 4.2, Fermax yeast resulted in the highest SCE 

compared to all the other fermenting microorganisms. It is also interesting to note that the 

available sugars were utilized by Fermax in 72 h compared to 96 h required by Z.mobilis, 

K.marxianus and Superstart Distillers yeast which indicates a higher rate of ethanol 

production under similar fermentation condition.  

The mixed culture of Z.mobilis and Fermax yeast resulted in 79.2 g/L of ethanol with a 

SCE of 86.5%. The mixed culture of Fermax yeast, Z.mobilis and K.marxianus resulted 

in a lower ethanol yield of 63.8 g/L of ethanol with a SCE of 69.9%. The results indicate 

that the conversion efficiency was lower when the microorganisms were used in 

combination when compared to individual fermentation performance. However, the 

sugars were completely utilized by the mixed culture in 72 h compared to the 96 h 

required by the individual culture of K.marxianus, Z.mobilis and Superstart Distillers 

yeast. The result suggests that some of the sugars are utilized for the maintenance of 

mixed culture rather than for ethanol production, hence a higher rate of ethanol 

production but with lower SCE.  
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Figure 4.1. Comparison of fermentation performance of a) Z. mobilis, b) K. marxianus 
and c) Superstart Distillers yeast at 30oC and at pH 4.3. 
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Figure 4.2. Comparison of fermentation performance of a) Fermax yeast, b) Z. mobilis  
+ Fermax yeast and c) Z.mobilis + Fermax yeast + K. marxianus at 30oC and at pH 4.3. 
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The goal of the second laboratory scale experiment was to determine the fermentation 

performance of Fermax yeast at pH 4.3 and at different temperature conditions of 15, 30, 

and 35oC, and alternating between 41 and 15oC. Fermentation results are shown in 

Figures 4.3 and 4.4. Fermax yeast performed best at 35oC, producing 84.8 g/L of ethanol 

from a starting total sugar concentration of 185 g/L, giving a SCE of 95.7%. The result 

indicates that Fermax yeast was able to produce higher ethanol levels at elevated 

temperatures. At 30oC (the published optimal temperature for growth of Fermax yeast), it 

produced 82.9 g/L of ethanol from a starting total sugar of 185 g/L, giving a SCE of 

88.9%. However, the rate of ethanol production was higher at 30oC with the available 

sugars being utilized in 39 h compared to the rate of ethanol production at 35oC. This 

ensures a more efficient use of available facilities for potentially greater process 

efficiency through quicker turnaround of the fermentation equipment.  

Fermax yeast also produced 50 g/L of ethanol when the fermentation was carried out at 

15oC indicating the large temperature range over which it can perform. When the 

fermentation vessels were incubated at temperatures alternating between 41 and 15oC, 

Fermax yeast produced 67.8 g/L of ethanol. This indicates that the yeast is able to 

ferment at extreme incubating temperatures and perform equally well at fluctuating 

temperature conditions compared to the fermentation at optimum temperature. This 

fermentation ability of the Fermax yeast makes it a good candidate for ethanol production 

under field conditions. 

 

 



 

76  
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b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Comparison of fermentation performance of Fermax yeast at pH 4.3 and 
incubating at a) 30oC and b) 15oC. 
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Figure 4.4. Comparison of fermentation performance of Fermax yeast at pH 4.3 and 
incubating at a) alternating between 41 & 15oC and b) 35oC.  
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The third laboratory-scale experiment was performed to understand the effect of using 

different fermenting microorganisms in combination and the effect of incubating at 

alternating temperatures of 41 and 15oC on the ethanol yield. The pH of the fermentation 

media was maintained at pH 4.3. Results shown in Figures 4.5 and 4.6 compare ethanol 

production at alternating temperature to optimum incubation temperature of 30oC. From 

Figure 4.5, maximum ethanol (69.4 g/L) was produced by the mixed culture of Z.mobilis 

and Fermax yeast at 30oC. When the incubating temperature was alternated between 15 

and 41oC, only 36.1 g/L of ethanol was produced, giving a SCE of 67.2%. The mixed 

culture of Z.mobilis, Fermax yeast and K.marxianus produced 63.8 g/L of ethanol at 

30oC. However when the fermentation vessels were alternated between 15 and 41oC, only 

40.8 g/L of ethanol was produced giving a SCE of 59.4%. It can be observed that the 

ethanol yield was much higher when the fermentation was carried out with a single 

microorganism than with mixed culture. Even under unfavorable fermentation 

temperatures, the SCE of individual microorganisms was higher than for the 

combination. 
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b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5. Comparison of fermentation performance of combination of Z.mobilis + 
Fermax yeast at pH 4.3 and incubating at a) 30oC and b) alternating between 41 & 15oC. 
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Figure 4.6. Comparison of fermentation performance of combination of Z.mobilis +   
Fermax yeast + K.marxianus at pH 4.3 and incubating at a) 30oC and b) alternating 
between 41 & 15oC. 
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Figure 4.7 shows results from a laboratory experiment to understand the impact of 

agitation on ethanol production. Agitation was achieved using an orbital shaker and the 

flasks were agitated at 75 rpm. Results (Figure 4.7a) indicated that under agitated 

conditions, Z.mobilis produced 81.2 g/L of ethanol with a SCE of 94.2% even when the 

fermentation temperature was alternated between unfavorable temperatures of 41 and 

15oC. This ethanol yield was higher than the non-agitated fermentation at an optimal 

temperature of 30oC which had a SCE 93.5% (Figure 4.1a). The results indicate that the 

agitation appears to have a marked positive influence on the ethanol production by 

Z.mobilis. Figures 4.7b and 4.7c compare the ethanol fermentation by a mixed culture of 

Z.mobilis and Fermax yeast under agitated and non agitated conditions. The SCE is 

observed to be 80.6% with an ethanol yield of 69.5 g/L under non agitated conditions 

compared to SCE of 72.1% with an ethanol yield of 50.4 g/L under agitated conditions. 

This indicated that while agitation was favorable for the growth and ethanol production 

of Z.mobilis, it had a negative effect on Fermax yeast.  
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 

 
c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7. Impact of agitation on the microbial fermentation performance of a) Z. 
mobilis, b) Z.mobilis +  Fermax yeast, and c) Z.mobilis +  Fermax yeast at pH 4.3 and at 
an incubating temperature of 15 and 41oC. 
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The next laboratory experiment was conducted to understand the impact of pH on the 

fermentation performance of Fermax yeast and Z.mobilis. Figure 4.8 compares the 

fermentation of Z.mobilis at pH 7.0 and pH 4.3. Z.mobilis is observed to produce higher 

amounts of ethanol (56.9 g/L) at pH 7.0 with a SCE of 71.4% compared to 65.2% SCE at 

pH 4.3 with an ethanol yield of 54.4 g/L. The optimal pH for growth and maintenance of 

Z.mobilis is pH 7.0 and lowering the pH to 4.3 appears to have an inhibitory effect on its 

fermentation performance.  

 
a)  

 
 
 

 
 
 
 
 
 
 
 
 
 

 
b) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8. Comparison of fermentation performance of Z.mobilis incubating at 30oC and 
at a) pH 7.0 and b) pH 4.3. 
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Figure 4.9 compares the fermentation performance of Fermax yeast at pH 3.75, 4.3 and 

5.4. It was observed that Fermax yeast produced higher amounts of ethanol at pH 4.3 

compared to pH 3.75 and 5.4, with a SCE of 92.9% at pH 4.3 compared to SCE of 92.4% 

and 90.9% at pH 3.75 and 5.4, respectively. Comparing the ethanol production capacity 

at pH 4.3, it was observed that Fermax yeast produced 82.9 g/L with a SCE of 92.9 % 

compared to 54.4 g/L of ethanol with a SCE of 65.2% by Z.mobilis (Figures 4.8b and 

4.9b). The rate of ethanol production was also found to be higher for Fermax yeast with 

the available sugars utilized in 39 h compared to 96 h by Z.mobilis. 

The results indicate that lowering pH to 4.3 appears to have a positive effect in improving 

the SCE of Fermax yeast. However, when the pH was lowered to 3.75, the pH seems to 

have created an unfavorable environment for the growth of the yeast as no marked 

increase in ethanol yield is observed. Appendix A.1 compares the SCE for each of the 

laboratory experiments. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9. Comparison of fermentation performance of Fermax yeast incubating at 30oC  
and at a) pH 3.75, b) pH 4.3 and c) pH 5.4. 
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4.2 In-Field Experiment 1 

The objective of the first in-field experiment was to compare the fermentation 

performance of Fermax and Superstart Distillers yeast at different levels of pH (4.3 and 

5.4), with and without added urea. All the experiments were conducted under ambient 

conditions in 3.8-L fermentation vessels using sweet sorghum juice. All curves are the 

average of three replicate treatments. The SCE at each of the treatment conditions was 

comparable with one another with all values above about 95%. As can be seen from the 

Figures 4.10 and 4.11, sugars are completely utilized in 120 h, and final ethanol 

concentrations are about 79 g/L. One of the possible explanation for the better 

performance of the in-field experiments compared to the laboratory experiments is the 

availability of necessary nutrients for the yeast growth and fermentation in the sweet 

sorghum juice.  

Figures 4.10 and 4.11 compare the sugar consumption, ethanol production and cell count 

for fermentation treatments with Fermax yeast at pH 4.3 and 5.4, with and without added 

urea. Parts a and b of each figure show the treatments with and without added urea, 

respectively. As can be seen, there is no apparent difference in fermentation performance 

with the addition of urea. Maximum ethanol (79.6 g/L) with a SCE of 97.8% is produced 

at pH 5.4 with no added urea. Fermax yeast produced 79.6 g/L of ethanol with a SCE of 

97.8% at pH 4.3 with no urea added compared to 78.9 g/L of ethanol with added urea. At 

pH 5.4 Fermax yeast produced 78.9 g/L of ethanol with no urea added compared to 77.1 

g/L when urea was added to the medium. At either pH treatment, a higher ethanol 

production level and a higher SCE was observed when no urea was added compared to 

added urea treatment. This indicates that pH has a minimal effect in improving the 
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ethanol yield with Fermax yeast. Also, the addition of urea does not appear to improve  

the ethanol production by Fermax yeast.   

 

 
a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10. Comparison of fermentation performance of Fermax yeast at pH 4.3 and 
with a) Urea and b) No urea added. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11. Comparison of fermentation performance of Fermax yeast at pH 5.4 and  
with a) Urea and b) No urea added. 
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Figures 4.12 and 4.13 compare the sugar consumption, ethanol production and cell count 

for fermentation treatments with Superstart Distillers yeast at pH 4.3 and 5.4, with and 

without added urea. Maximum ethanol (78.1 g/L) was produced by Superstart Distillers 

yeast at pH 4.3 with added urea. When no urea was added the yeast produced 76.8 g/L 

with a SCE of 94.4%. At pH 5.4, Superstart Distillers yeast produced a higher 

concentration of ethanol (77.0 g/L) when no urea was added, compared to ethanol 

concentration of 74.7 g/L (SCE of 91.8%) when urea was added. The results indicate that 

the urea appears to enhance the ethanol yield for Superstart Distillers yeast when the pH 

environment was lower than optimum for the yeast. The yeast is able to produce 

comparable concentrations of ethanol at pH 5.4, at either nutrient condition, indicating 

that it is able to ferment in the presence of native microflora in the sweet sorghum juice, 

and further acidification is not necessary.  

Addition of urea appears to have a greater influence on the ethanol production by 

Superstart Distillers yeast at pH 4.3 than at pH 5.4. Addition of urea did not enhance the 

ethanol production by Fermax yeast. Results obtained for Superstart Distillers yeast at pH 

4.3 are in accordance with the results obtained by Nain and Rana (1988) in their nutrient 

optimization study during the production of ethanol by S.cerevisiae. They observed that 

supplementation with either nitrogen in the form of ammonium sulfate or urea ( 0.025%) 

or phosphate (0.003%) or in combination resulted in greater ethanol yield with greater 

fermentation efficiency and reduced fermentation time. 

However comparing the fermentation performance of Fermax and Superstart Distillers 

yeast it can be observed that the Fermax yeast is able to utilize all the available sugars in 

120 h, whereas the Superstart yeast took 144 h to completely utilize the available sugar 
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under identical fermentation conditions. Appendix A.2 compares the sugar conversion 

efficiency (SCE) for each of the fermentation treatments. 

 

a) 

 

 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.12. Comparison of fermentation performance of Superstart Distillers yeast at  
pH 4.3 and with a) Urea and b) No urea added. 
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a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.13. Comparison of fermentation performance of Superstart Distillers yeast at pH  
5.4 and with a) Urea and b) No urea added.  

 

4.2.1 In-Field Experiment I: Rates of Reaction 

Figures 4.14 and 4.15 show a comparison of ethanol production rates for Fermax and 

Superstart Distillers yeast at pH 4.3 and 5.4 with and without urea addition. The curves 

shown are the average of three replicate treatments. Rate of ethanol production by 

Fermax yeast was generally observed to be higher than Superstart Distillers yeast. In 
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general, rate of ethanol production by Fermax yeast increased for the first 48 h of 

fermentation and then decreased. However, for Superstart Distillers yeast, the rate of 

ethanol production increased to a maximum at 72 h and then decreased with the progress 

of fermentation. When urea was added to the fermentation media, both yeasts exhibited a 

slightly higher initial rate of ethanol production.   

For all the treatments except at pH 5.4 with added urea, Fermax yeast exhibited higher 

rate of ethanol production for the first 48 h compared to Superstart Distillers yeast. The 

trend reversed after 48 h, with Superstart Distillers yeast exhibiting a higher rate of 

ethanol production. At pH 4.3, addition of urea enhanced the rate of ethanol production 

for the Superstart Distillers yeast. Comparing pH 4.3 and 5.4 for Superstart Distillers 

yeast, it was observed that the yeast took 144 h to convert the available sugars into 

ethanol at pH 4.3 while it took 120 h at pH 5.4, which indicates that pH 5.4 is favored for 

the Superstart Distillers yeast activity. Fermax yeast, on the other hand, exhibited a 

higher rate of ethanol production with added urea for the first 72 h, but afterwards the 

rate was higher without added urea. This trend was seen at both pH 4.3 and 5.4. Addition 

of urea did not enhance the rate of ethanol production by Fermax yeast significantly.  

Fermentation vessel temperature and ambient temperature monitored throughout the 

fermentation process are also represented on the curves. The fermentation vessel 

temperature fluctuated between 31 and 10oC, nearly identically overlapping the ambient 

temperature curve. This indicates that there seems to be a uniform heat distribution in the 

3.8-L fermentation vessels. Although the fermentation process is exothermic, the 

expected increase in the fermentation vessel temperature was not observed, probably due 

to the small size of the vessel and the influence of the ambient temperature.  
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Figure 4.14. Comparison of rate of ethanol production of Fermax and Superstart Distillers 
yeast at pH 4.3 and with a) Urea and b) No urea added. Average temperature in the 
fermentation vessel is also plotted.  
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a) 
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Figure 4.15. Comparison of rate of ethanol production of Fermax and Superstart Distillers 
yeast at pH 5.4 and with a) Urea and b) No urea added. Average temperature in the 
fermentation vessel is also plotted. 
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4.2.2 In-field Experiment I: Statistical Analysis  

The three process variables Yeast, pH and Nutrient were laid out in a 2 by 2 by 2 

Factorial Arrangement within a Completely Randomized Design (CRD) experiment.  

Response variables were analyzed based on the Mixed Procedure by testing the fixed 

effects for each of the factorial effects. Standard error and the estimated value of each 

treatment combination were obtained using the Least Square Means (LSM). Each pair of 

treatment combinations was compared and the estimated difference determined. 

Significant differences were obtained by determining the level of significance at α = 0.05.  

An analysis of variance was conducted to determine significant factorial effects for the 

factors of pH, yeast, and nutrient addition. The analysis was conducted for all three 

response variables (ethanol, sugar, and cell mass) at every 24-h interval of sample 

collection. The results of most significance are those related to ethanol concentration, 

which are shown in Table 4.1. Part (a) lists the significant and non-significant factorial 

effects at each time interval, and part (b) shows the estimated values for ethanol 

concentration for the significant interactions at the end of the fermentation (T = 120 h). 

From the table, it can be seen that significant interactions occur throughout the 

fermentation process.   

A significant two-level interaction between yeast and pH on the ethanol production level 

was observed at the end of fermentation (T=120 h). Fermax yeast was found to produce 

significantly higher levels of ethanol than Superstart Distillers yeast. Superstart Distillers 

yeast produced a higher level of ethanol at pH 5.4 (estimated value 75.84) than at pH 4.3 

estimated value 73.72), however, Fermax yeast shows a slightly higher ethanol level at 

pH 4.3 (estimated value 79.27) than at pH 5.4 (estimated value 78.01).   
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Table 4.1. Statistical summary for the variable ethanol 

 
a) Significant and non-significant effects for the dependent variable ethanol at various 
sampling time intervals 

 
S- Significant 
NS- Not Significant 
 
b) Estimated ethanol values for significant interactions at a sampling time = 120 hrs 
 

Time Standard Error Yeast pH Nutrient Estimated Value 

120 h 0.35 Fermax 4.3 - 79.27 

  Fermax 5.4 - 78.01 

  SuperStart 4.3 - 73.72 

  SuperStart 5.4 - 75.84 

 0.35 - 4.3 Urea 76.38 

  - 4.3 No-Urea 76.61 

  - 5.4 Urea 77.95 

  - 5.4 No-Urea 75.90 

 

 

 

Source Effect 24 h 48 h 72 h 96 h 120 h 

Yeast S S S S S 

pH S S S S NS 

B v b          Yeast x pH NS NS S NS S 

Nutrient NS S NS NS S 

Yeast x Nutrient NS NS S NS NS 

pH x Nutrient NS NS S S S 

Yeast x pH x Nutrient NS NS S S NS 
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A significant interaction between pH and nutrient on the ethanol production levels was 

also observed at the end of the fermentation. With the pH of the fermentation media 

initially adjusted to 4.3, addition of urea did not have a significant effect on the ethanol 

production levels. However, when the fermentation was carried out at the native pH of 

the sweet sorghum juice, adding urea resulted in slightly higher ethanol production levels 

(estimated value 77.95) compared to when no added urea (estimated value 75.90). 

Fixed effects showing significant and non significant interactions for the three process 

variables, Yeast, pH and Nutrient are shown in Appendix A.3. The estimated values for 

each of the significant source of interaction between the independent variables on the 

dependent variables, cell count, ethanol and total sugar, are tabulated in Appendix A.4 

through Appendix A.6.  

An analysis of variance indicated that there was a significant three-level interaction 

amongst yeast, pH and nutrient on the cell biomass and ethanol production levels 

observed during the growth stage of the yeast, i.e. between 48 and 96 h of fermentation. 

A significant three level interaction was also observed with respect to the sugar 

utilization at the end of fermentation, however it is interesting to note that this effect is 

mainly due to the null estimates of available sugars in the media. 

Difference in least square means (LSM) of the process variables on the cell biomass and 

ethanol is tabulated in Appendix A.5 and A.6 respectively, at a statistical level of 

significance, α = 0.05. Significant differences were observed for the ethanol 

concentration at the end of 72 and 96 h of incubation. Fermax yeast shows higher 

difference between Urea and No Urea condition on ethanol levels at pH 4.3 [p=0.03] than 
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at pH 5.4 [p=0.12]. Superstart Distillers shows significantly larger difference in ethanol 

production at both pH 4.3 [p=0.02] and pH 5.4 [p<0.0001]. However at the end of 96 h, 

no significant difference is observed for Fermax yeast [p>0.05] while significantly larger 

difference is expressed by Superstart Distillers yeast [p<0.0001]. While for a given pH 

and nutrient condition Fermax yeast shows a significantly higher biomass and ethanol 

production levels than Superstart Distillers yeast [p<0.0001].  

Comparing the two yeasts at the pH, nutrient and temperature conditions encountered in 

the in-field Experiment I, it was observed that Fermax yeast produced the greatest 

amount of ethanol in the shortest time.  

4.3 In-Field Experiment II 

The second in-field experiments were carried out in 19- and 209-L fermentation vessels 

under controlled incubation temperature. The objectives of the experiment were to 

understand the influence of scale-up and agitation on fermentation performance and 

ethanol production. As was mentioned previously, the extensive experiments initially 

planned were not possible due to a lack of available juice volume. All resulting 

fermentations were carried out using sweet sorghum juice at the native pH 5.4 of the 

juice. Temperature data were also collected to understand the heat distribution within a 

fermentation vessel. Analysis samples were taken from the top and bottom of the 

fermentation tank and analyzed to understand the distribution of mass during the 

fermentation process.  
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a)  

 

 

 

 

 

b) 

 

 

 

 

 

Figure 4.16. Comparison of fermentation performance of a) Fermax yeast and b) 
Superstart Distillers yeast in 19-L fermentation vessel. Average temperature in the 
fermentation vessel is plotted.  

 

Figure 4.16 compares the fermentation performance of Fermax and Superstart Distillers 

yeast in 19-L fermentation vessels without agitation. Temperature in the vessels varied 

between 39 and 8oC. Both yeasts produce maximum ethanol concentration within 48 h of 

fermentation. However Fermax yeast produces greater amounts of ethanol (77.8 g/L) in 

120 h compared to 63.8 g/L produced by Superstart Distillers yeast. Alternating the 
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incubation temperature between 7 and 37oC does not seem to inhibit the ethanol 

fermentation. However the rate of ethanol production is generally reduced or remains 

constant once the yeast cells are exposed to extreme incubation temperatures possibly due 

to the cold-shock experienced by the yeast cells. This is evident from the flattening of the 

curve after 48 h of incubation. The impact is much more dramatic on Superstart Distillers 

yeast as the cells are unable to breakdown the available sugars to ethanol and residual 

sugar is still available at the end of fermentation.  

Figure 4.17 compares the fermentation results for Fermax yeast in 209-L fermentation 

vessels with and without agitation. Samples taken from the top and bottom of the 

fermentation vessel were analyzed for total sugar and ethanol concentration every 24 h. 

The time required for the completion of fermentation was 120 h. The ethanol yield was 

comparatively lower compared to the treatment conditions in the first in-field experiment 

possibly due to larger vessel volume, greater cell settlement and non-uniform distribution 

of the sugars and other nutrients. A lead time of approximately 5 h was also involved 

from the time that the juice was pressed and the time that the yeast was pitched into the 

fermentation vessel leading to competitive inhibition of the fermentation process by the 

native microflora.  

 As is evident from the plots, the ethanol and sugar curves for the top and bottom samples 

overlap each other, indicating that there is uniform mixing within each vessel. The 

temperature profiles at the top and bottom of the vessel are identical for the agitated 

vessel, while an average difference of 3oC is observed for the non agitated vessel. A steep 

increase in ethanol concentration with a subsequent decrease in total sugar level is 

observed within 48 h of fermentation in the non-agitated vessel after which the levels 
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a) 

 

 

 

 

 

 
b) 

 

 

 

 

 

Figure 4.17. Impact of a) Agitation and b) No agitation on the fermentation performance 
of Fermax yeast in 209-L fermentation vessel. Average temperature at the top and  
bottom of the fermentation vessel is plotted.  

 

plateau. Ethanol concentration in the non-agitated vessel was higher (61.1 g/L) than the 

agitated vessel (50.7 g/L). This is primarily due to the different incubation regimes 

employed for the two fermentation vessels. The agitated vessel incubation was started at 

7oC while the incubation of the non-agitated vessel was started at 37oC.  It is known that 

the optimum temperature for the growth of S.cerevisiae is 28oC and the optimum 
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temperature of fermentation is 35oC. Yeasts cells exposed to low temperature, experience 

‘cold shock’ causing impairment of protein synthesis and reduced membrane fluidity 

(Fargher and Smith, 1995). In addition to this, agitation may have increased oxygen 

levels above the micro-aerobic levels, thereby switching the yeast cells from ethanol 

production to biomass generation. Similar observations were reported by Banat et al. 

(1996). Levels of oxygen greater than required, will also lead to stuck or sluggish 

fermentation (Sablayrolles et al. 1996).  

Compared to the first in-field experiment, the ethanol levels produced in the experiment 

II were lower due to the lower concentration of fermentable sugars available in the sweet 

sorghum juice, however, the sugar conversion efficiency for both experiments were 

comparable. Sweet sorghum stalks for the experiment I were hand harvested in the month 

of October, while the stalks for experiment II were harvested in the month of November 

using a prototype harvester. Studies have indicated that higher fermentable sugars were 

obtained when the stalks were hand harvested compared to mechanical harvesting (Eiland 

et al. 1983). From a commercial perspective, it is a trade off between the rate of 

harvesting and the fermentable sugars and it is not a feasible option to harvest the stalks 

by hand. Time of harvest also has a significant bearing on the fermentation sugar 

availability in the juice as observed by Collier (1884).  

4.3.1 In-Field Experiment II: Rates of Reaction 
 
Figures 4.18-4.20 compare the rate of reaction under different fermentation conditions. 

All the treatments were incubated under controlled temperature conditions alternating 

between 7 and 37oC to imitate the ambient conditions. Fermentations were carried out 

using sweet sorghum as the media and at the native pH of the sweet sorghum juice. 
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Figure 4.18 compares the rate of ethanol production of Fermax and Superstart Distillers 

yeast in the 19-L fermentation vessels. After 24 h of fermentation, Fermax yeast shows a 

significantly higher rate ethanol production (2.59 g/h) compared to Superstart Distillers 

yeast (1.81 g/h). The rate of reaction is observed to decrease from start to 72 h of 

fermentation and then remain constant until the end of the fermentation. Both yeasts 

show similar rates of ethanol production as the fermentation progresses after 72 h. 

Temperature curves for both yeasts overlap each other, indicating no significant 

differences in the fermentation temperature as the process progresses. 

 

 

 

 

 

 

Figure 4.18. Comparison of rate of ethanol production for Fermax and Superstart  
Distillers yeast on the rate of ethanol production in 19-L fermentation vessels.  
Temperature in the fermentation vessels is also plotted.  

 

Figure 4.18 compares the rate of ethanol production in the agitated and non-agitated    

209-L fermentation vessels. The non agitated fermentation vessel shows a significantly 

higher rate ethanol production (2.21 g/h) compared to the agitated fermentation vessel 

(1.15 g/h). However the rate curve tends to flatten out at 48 h for the non-agitated drum 

and at 72 h for the agitated drum. The rate curves overlap each other after 72 h of 
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incubation. The initial lower rate observed in the agitated fermentation vessel was 

primarily due to the start of incubation at 7oC while the non-agitated drum started 

incubating at 37oC. Start of fermentation at low incubation temperatures might have 

caused ‘cold shock’. Sensitivity of the yeast cells to cold shock causes lethal and 

sublethal injuries. Cold shock is a cascade of physiological, biochemical and genetically 

controlled events leading to loss of protein and ATP synthesis and vacuolar 

rearrangement. Other contributing factors affecting rate of ethanol production could have 

been mechanical shear of the yeast cells and the incorporation of oxygen, similar to the 

results obtained by Berzins et al. (1989).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.19. Impact of agitation on the rate of ethanol production by Fermax yeast in  
209-L fermentation vessels. Temperature in the fermentation vessels is also plotted.  

 

Figure 4.20 compares the fermentation performance of Fermax yeast in 209- and 19-L 

fermentation vessels. Rates of ethanol production by Fermax yeast show similar patterns 

irrespective of the size of the fermentation vessel. The rates were found to be maximum 

after 24 h of fermentation, then decrease as the fermentation progresses. Rates are very 

209-L: Agitation vs. NoAgitation

-2.0

0.0

2.0

4.0

6.0

0 24 48 72 96 120

Time, h

R
at

e,
 g

/h

0

10

20

30

40

T
em

p
er

at
u

re
, 

0 C

Agit-EtOH NoAgit-EtOH Agitation Temp No Agitation Temp



 

105  

similar after 72 h of incubation for both treatment conditions. The rate of ethanol 

production was higher in the 19-L fermentation vessel (2.59 g/h) compared to the 209-L 

vessel (2.21 g/h). In the 209-L fermentation vessel, the rates of ethanol production and 

sugar utilization decreased from start to 48 h of fermentation and then remain constant 

until the end of the fermentation. However, for the 19-L fermentation vessel, the rate 

decreased until 72 h of incubation and then remained constant until the end of 

fermentation.  

 

 

 

 

 

 

Figure 4.20. Comparison of fermentation vessel size (209- and 19-L) on the rate of  
ethanol production for Fermax yeast.  

 

It is also interesting to compare the temperature profiles within the two different vessel 

sizes. It can be seen in Figure 4.20 that the temperature fluctuation in the smaller 19-L 

vessel is significantly larger than in the 209-L vessel. This confirms the fact that larger 

vessels with larger thermal mass and a larger surface area to volume ratio will tend to be 

more resistant to large ambient temperature fluctuations.  
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4.3.2 In-Field Experiment II: Statistical Analysis 

For experiment II, the effect of sampling location, fermentation vessel size and their 

interaction on the ethanol production and total sugar utilization during the fermentation 

process were tested using the SAS GLM procedure. Variables were laid out as a split plot 

in a Completely Randomized Design (CRD). Results are tabulated in Appendix B.1 and 

B.2. Since the experiments did not involve replications, the observations from the data 

analysis are suggestive and indicative. Following a larger experimental design, it can be 

expected that some of the interactions between the variables will be significant, thereby 

providing conclusive observations. All p values > 0.05 were interpreted as insignificant. 

Cell biomass, one of the dependent measured variables, was not statistically interpreted 

due to the difficulty in obtaining a representative sample. This situation arose due to the 

sedimentation of the yeast cells in the fermentation vessel.  

Significant differences in ethanol production (p=0.02) and total sugar utilization (p=0.01) 

was observed at the end of 120 h of incubation. Sugar concentration was significantly 

different between the top and bottom sample locations in the 19-L fermentation vessel 

(p=0.00). However no significant difference was observed in the 209-L fermentation 

vessel (Appendix B.2). Ethanol concentration, on the other hand differed significantly 

between the top and bottom samples taken from the 19-L (p=0.00) and 209-L (p=0.01) 

fermentation vessels.   

4.4 Sweet Sorghum Juice Stability and Nutrient Analysis 

Table 4.2 shows the analysis of nutrients available in sweet sorghum juice. The juice was 

analyzed immediately after pressing. Results indicate that sweet sorghum juice has 
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various cations and anions available. The juice contains on average 16% fermentable 

sugar, 0.23% protein, and the pH of the juice is around 5.4.  

Pressed sweet sorghum juice was stored under refrigerated conditions (4oC) and analyzed 

for total sugar at a sampling frequency of 24 h for a period of eight days. Results from the 

study are shown graphically in Figure 4.21. An error of 2 g/L in estimation of the sugar 

content is also marked on the curve. The initial sugar in the sweet sorghum juice was 

analyzed to be 146.7 g/L. The sugar level in the juice remained stable over a period of 8 

days, as is evident from the curve. The native microflora in the sweet sorghum juice did 

not breakdown the sugar. Refrigerated storage conditions appear to inhibit the activity of 

the native microflora, thus aiding in stabilizing the sugar level. The nutritional stability of 

sweet sorghum juice in the present study is similar to the results obtained by Mamma et 

al. (1996), where they periodically analyzed the stalk composition of sweet sorghum and 

observed no significant difference when stored at -20oC for six months. 

  

 

  

 

 

 

 

 

 
Figure 4.21. Stability of total sugar available in the sweet sorghum juice. 
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Table 4.2. Composition analysis of sweet sorghum juice 

 

Parameter Method Component Amount 

Cation 
Ion 
Chromatography Sodium 0.13 g/L 

    Ammonium 0.05 g/L 

    Magnesium 0.79 g/L 

    Calcium 2.42 g/L 

Anion 
Ion 
Chromatography Fluoride - 

    Chloride - 

    Acetate - 

    Nitrate 2.06 g/L 

    Phosphate 0.13 g/L 

    Citrate - 

    Sulfate 0.014 g/L 

Sugars 
Ion 
Chromatography Glucose 41.26 g/L 

    Fructose 26.72 g/L 

    Sucrose 93.54 g/L 

    Total Sugar 161.52 g/L 

Protein 
BCA Protein 
Assay Total Protein 2.33 g/L 

pH pH Meter Initial 5.40 
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CHAPTER V 
 
 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Specific conclusions from the in-field fermentation experiments are summarized below. 

1) Comparison of the fermentation performance of the yeasts.  

It was observed from the series of laboratory scale and in-field fermentation experiments 

using sweet sorghum juice as the fermentation media, that Fermax yeast was the better 

candidate for carrying out the in-field process for ethanol production. Fermax yeast 

produced 79.6 g/L of ethanol under field conditions in 120 h compared to Superstart 

Distillers yeast (78.1 g/L). Fermax yeast performed equally well under different 

fermentation conditions of temperature, pH and nutrients. Fermax yeast also showed 

significantly superior rates of sugar utilization and ethanol production compared to 

Superstart Distillers yeast.  

2) Heat and Mass distribution in fermentation vessel.  

Results indicate that uniform heat and mixing takes place in the fermentation vessels and 

no significant difference exists between the concentration of ethanol and total sugar in the 

fermentation vessel. 
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3) Addition of urea 

Results indicated that ethanol production was not significantly different when urea was 

added to the medium. Native sweet sorghum juice contains the necessary nutrients and 

fermentable sugars to produce viable amounts of ethanol.  

4) Comparison of fermentation pH on ethanol production.  

Results obtained from the in-field experiments indicate that reducing the pH of sweet 

sorghum juice from pH 5.4 to 4.3 did not enhance fermentation rate or increase ethanol 

production. It was hypothesized that reducing pH would inhibit the native microflora 

present in the sweet sorghum juice, making the nutrients in the media completely 

available for the fermenting yeasts. However, Fermax yeast showed no significant 

difference in the ethanol production levels at pH 4.3 (79.58 g/L) and pH 5.4 (79.0 g/L). 

Superstart Distillers yeast also showed no significant differences in ethanol production 

levels at pH 4.3 (76.8 g/L) and pH 5.4 (77.0 g/L). These findings are economically 

significant by reducing the cost required for the adjustment of the media pH. 

5) Ethanol yield due to scale-up 

No significant difference in ethanol production was observed among fermentation vessel 

volumes of 3.8-L, 19-L and 209-L. A uniform heat and mass (ethanol and fermentable 

sugars) transfer was observed in the vessel irrespective of the vessel volume.   

6) Results from agitation were inconclusive 

Agitation appeared to have a detrimental effect on the fermentation performance and 

ethanol production. Ethanol production in the agitated fermentation vessel was found to 

be 45.8 g/L compared to 58.5 g/L in the non-agitated fermentation vessel. However, 
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because the agitated and non-agitated vessels were fermented under two different 

temperature regimes, the effects of agitation were inconclusive.  

7) Sorghum juice composition stability under refrigerated storage conditions 

Analysis of the sweet sorghum juice over a period of eight days indicated that the 

available nutrients and fermentable sugars were stable under refrigerated conditions. This 

result is encouraging in terms of storing the sweet sorghum juice, thereby making the in-

field process flexible.  

From the present study it appears that in-field fermentation of sweet sorghum juice can be 

carried out under ambient conditions with no pre-sterilization of the fermentation media 

and equipment, no temperature control, no added nutrients, no pH adjustment and is a 

feasible process option for ethanol production. 

5.2 Recommendations for Future Research 

1. Perform fermentation experiments in 1000, 10000 and 250000 L fermentation vessels 

with a view to commercialize and further understand the influence of scale-up on 

fermentation. 

2. Investigate simultaneous saccharification and co-fermentation of sweet sorghum 

biomass and make an economical comparison to the submerged fermentation process. 

3. Develop an in-field process for distillation of ethanol. Consider the economics of 

using sweet sorghum bagasse as a source of energy for the distillation unit. 

4. Perform experimental trials to further understand the impact of agitation on the 

fermentation performance.  

5. Perform heat and mass balance study of the in-field fermentation process. 
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APPENDIX A.1 

 
Sugar Conversion Efficiency (SCE) for different process variables as observed in 
laboratory shake flask under different treatment conditions.   
 

Microorganism pH Temperature (oC) 
Sugar Conversion 

Efficiency (%) 

Z.mobilis 4.3 30 93.8 

K.marxianus 4.3 30 45.4 

Superstart Distillers Yeast 4.3 30 73.0 

Fermax Yeast 4.3 30 94.1 

Z.mobilis + Fermax Yeast 4.3 30 86.5 

Z.mobilis + Fermax Yeast + 
K.marxianus 

4.3 30 69.9 

Fermax Yeast 4.3 30 88.9 

Fermax Yeast 4.3 15 71.8 

Fermax Yeast 4.3 41 & 15  75.9 

Fermax Yeast 4.3 35 95.7 

Z.mobilis + Fermax Yeast 4.3 30 74.2 

Z.mobilis + Fermax Yeast 4.3 41 & 15 67.2 

Z.mobilis + Fermax Yeast + 
K.marxianus 

4.3 30 68.6 

Z.mobilis + Fermax Yeast + 
K.marxianus 

4.3 41 & 15 59.4 

Fermax Yeast 3.75 30 92.4 

Fermax Yeast 4.3 30 92.9 

Fermax Yeast 5.4 30 90.9 

Z.mobilis 7.0 30 71.4 

Z.mobilis 4.3 30 65.2 
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APPENDIX A.2 

Sugar Conversion Efficiency for Fermax and Superstart Dry Distillers yeast under Urea 
and No Urea added conditions and at different treatment pH conditions 
 

Microorganism pH Nutrient 
Sugar Conversion 

Efficiency (%) 

Fermax Yeast 4.3 Urea 97.0 

Fermax Yeast 4.3 No-Urea 97.8 

Fermax Yeast 5.4 Urea 94.7 

Fermax Yeast 5.4 No-Urea 97.0 

Superstart Distillers 
Yeast 

4.3 Urea 96.0 

Superstart Distillers 
Yeast 

4.3 No-Urea 94.4 

Superstart Distillers 
Yeast 

5.4 Urea 91.8 

Superstart Distillers 
Yeast 

5.4 No-Urea 94.5 
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APPENDIX A.3 

 
Table of fixed effects for Experiment I showing significant and non significant effects for 
the independent process variables (Yeast x pH x Nutrient). Results are tabulated for each 
of the dependent variables (cell count, ethanol, total sugar). [α = 0.05] 
 
A) Cell Count       

Source Effect 0 h 24 h 48 h 72 h 96 h 120 h 
Yeast  S S S S S NS 
pH NS S NS NS NS S 
Yeast x pH S NS NS NS NS NS 
Nutrient S NS NS NS NS NS 
Yeast x Nutrient S NS NS NS NS NS 
pH x Nutrient NS S NS S S NS 
Yeast x pH x Nutrient NS NS S S NS NS 
B) Ethanol       

Source Effect 0 h 24 h 48 h 72 h 96 h 120 h 
Yeast    S S S S S 
pH   S S S S NS 
Yeast x pH   S NS S NS S 
Nutrient   NS S NS NS S 
Yeast x Nutrient   NS NS S NS NS 
pH x Nutrient   NS NS S S S 
Yeast x pH x Nutrient   NS NS S S NS 
C) Total Sugar       

Source Effect 0 h 24 h 48 h 72 h 96 h 120 h 
Yeast    S S S S S 
pH   S S S S S 
Yeast x pH   S NS NS NS S 
Nutrient   NS NS NS NS S 
Yeast x Nutrient   NS NS NS NS S 
pH x Nutrient   NS NS NS NS S 
Yeast x pH x Nutrient   NS NS NS NS S 
 
S- Significant 
NS- Not Significant 
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APPENDIX A.4 

Table showing the significant source of interaction between the process variables (Yeast, 
pH and Nutrient) for the dependent variable Cell Count as observed in Experiment I. 
Results are tabulated for each of the sampling times.     

Time Significant Source 
Standard 

Error 
Yeast pH Nutrient 

Estimated 
Value 

24 h pH x Nutrient 0.06 - 4.3 Urea 2.65 

   - 4.3 No-Urea 2.43 

   - 5.4 Urea 2.32 

   - 5.4 No-Urea 2.51 

 Yeast 0.04 Fermax - - 3.39 

   SuperStart - - 1.57 

48 h Yeast x pH x Nutrient 0.08 Fermax 4.3 No-Urea 4.44 

   Fermax 4.3 Urea 4.40 

   Fermax 5.4 No-Urea 4.43 

   Fermax 5.4 Urea 4.54 

   SuperStart 4.3 No-Urea 3.30 

   SuperStart 4.3 Urea 3.43 

   SuperStart 5.4 No-Urea 3.52 

   SuperStart 5.4 Urea 3.18 

72 h Yeast x pH x Nutrient 0.30 Fermax 4.3 No-Urea 6.96 

   Fermax 4.3 Urea 7.20 

   Fermax 5.4 No-Urea 7.41 

   Fermax 5.4 Urea 7.45 

   SuperStart 4.3 No-Urea 5.05 

   SuperStart 4.3 Urea 6.09 

   SuperStart 5.4 No-Urea 6.07 

   SuperStart 5.4 Urea 5.06 

96 h pH x Nutrient 0.10 - 4.3 Urea 6.43 

   - 4.3 No-Urea 6.16 

   - 5.4 Urea 5.96 

   - 5.4 No-Urea 6.36 

 Yeast 0.07 Fermax - -  

   SuperStart - -  

120 h pH 0.09 - 4.3 - 6.08 

   - 5.4 - 6.66 
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APPENDIX A.5 

Table showing the significant source of interaction between the process variables (Yeast, 
pH and Nutrient) for the dependent variable Ethanol as observed in Experiment I. Results 
are tabulated for each of the sampling times.  

Time Significant Source 
Standard 

Error Yeast pH Nutrient 
Estimated 

Value 
24 h Yeast x pH 0.50 Fermax 4.3 - 19.88 

     Fermax 5.4 - 15.48 
     SuperStart 4.3 - 8.08 
      SuperStart 5.4 - 9.81 

48 h Yeast 0.35 Fermax - - 53.51 
     SuperStart - - 31.57 
  pH 0.35 - 4.3 - 39.90 
     - 5.4 - 45.19 
  Nutrient 0.35 - - No-Urea 41.86 
     - - Urea 43.22 

72 h Yeast x pH x Nutrient 0.85 Fermax 4.3 No-Urea 65.66 
     Fermax 4.3 Urea 68.47 
     Fermax 5.4 No-Urea 74.16 
     Fermax 5.4 Urea 76.11 
     SuperStart 4.3 No-Urea 51.10 
     SuperStart 4.3 Urea 54.18 
     SuperStart 5.4 No-Urea 56.17 
      SuperStart 5.4 Urea 47.88 

96 h Yeast x pH x Nutrient 0.57 Fermax 4.3 No-Urea 73.05 
     Fermax 4.3 Urea 74.06 
     Fermax 5.4 No-Urea 77.98 
     Fermax 5.4 Urea 77.51 
     SuperStart 4.3 No-Urea 60.41 
     SuperStart 4.3 Urea 64.55 
     SuperStart 5.4 No-Urea 68.55 
     SuperStart 5.4 Urea 62.75 

120 h Yeast x pH 0.35 Fermax 4.3 - 79.27 
     Fermax 5.4 - 78.01 
     SuperStart 4.3 - 73.72 
     SuperStart 5.4 - 75.84 
  pH x Nutrient 0.35 - 4.3 Urea 76.38 
     - 4.3 No-Urea 76.61 
     - 5.4 Urea 77.95 
      - 5.4 No-Urea 75.90 
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APPENDIX A.6 

Table showing the significant source of interaction between the process variables (Yeast, 
pH and Nutrient) for the dependent variable Total Sugar as observed in Experiment I. 
Results are tabulated for each of the sampling times.  
 

Time Significant Source Standard Error Yeast pH Nutrient Estimated Value 

24 h Yeast x pH 3.91 Fermax 4.3 - 65.29 

   Fermax 5.4 - 43.89 

   SuperStart 4.3 - 111.04 

   SuperStart 5.4 - 109.34 

48 h Yeast 3.23 Fermax - - 38.35 

   SuperStart - - 66.27 

 pH 3.23 - 4.3 - 59.65 

   - 5.4 - 44.97 

72 h Yeast 2.83 Fermax - - 10.33 

   SuperStart - - 40.24 

 pH 2.83 - 4.3 - 29.96 

   - 5.4 - 20.61 

96 h Yeast 2.16 Fermax - - 5.73 

   SuperStart - - 20.67 

 pH 2.16 - 4.3 - 17.16 

120 h: No Significant Interaction considered     
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APPENDIX A.7 

Table showing the differences in least square means for the three level interaction 
between the process variables (Yeast x pH x Nutrient) for the dependent variable Cell 
Count as observed in Experiment I. Results are tabulated for each of the sampling times.  
 

Time Yeast pH Nutrient Estimate p-Value Significance 

48 h Fermax 4.3 Urea 0.04 0.72 Not Significant 

 Fermax 5.4 Urea -0.11 0.36 Not Significant 

 SuperStart 4.3 Urea -0.22 0.30 Not Significant 

 SuperStart 5.4 Urea 0.34 0.01 Significant 

 Fermax 4.3 No-Urea 1.14 <0.0001 Highly Significant 

 Fermax 4.3 Urea 0.97 <0.0001 Highly Significant 

 Fermax 5.4 No-Urea 0.90 <0.0001 Highly Significant 

 Fermax 5.4 Urea 1.36 <0.0001 Highly Significant 

72 h Fermax 4.3 Urea -0.24 0.58 Not Significant 

 Fermax 5.4 Urea -0.03 0.94 Not Significant 

 SuperStart 4.3 Urea -1.04 0.03 Significant 

 SuperStart 5.4 Urea 1.01 0.03 Significant 

 Fermax 4.3 No-Urea 1.91 0.00 Highly Significant 

 Fermax 4.3 Urea 1.11 0.02 Significant 

 Fermax 5.4 No-Urea 1.34 0.01 Significant 

 Fermax 5.4 Urea 2.38 <0.0001 Highly Significant 
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APPENDIX A.8 

Table showing the differences in least square means for the three level interaction 
between the process variables (Yeast x pH x Nutrient) for the dependent variable Ethanol 
as observed in Experiment I. Results are tabulated for each of the sampling times. 
 

Time Yeast pH Nutrient Estimate p-Value Significance 

72 h Fermax 4.3 Urea -2.18 0.03 Significant 

 Fermax 5.4 Urea -1.95 0.13 Not Significant 

 SuperStart 4.3 Urea -3.08 0.02 Significant 

 SuperStart 5.4 Urea 8.27 0.00 Highly Significant 

 SuperStart 4.3 No-Urea 14.58 0.00 Highly Significant 

 SuperStart 4.3 Urea 14.29 0.00 Highly Significant 

 SuperStart 5.4 No-Urea 17.99 0.00 Highly Significant 

 SuperStart 5.4 Urea 21.93 0.00 Highly Significant 

96 h Fermax 4.3 Urea -1.01 0.23 Not Significant 

 Fermax 5.4 Urea 0.47 0.57 Not Significant 

 SuperStart 4.3 Urea -4.15 0.00 Highly Significant 

 SuperStart 5.4 Urea 5.80 0.00 Highly Significant 

 SuperStart 4.3 No-Urea 12.64 0.00 Highly Significant 

 SuperStart 4.3 Urea 9.51 0.00 Highly Significant 

 SuperStart 5.4 No-Urea 9.44 0.00 Highly Significant 

 SuperStart 5.4 Urea 14.76 0.00 Highly Significant 



 

131  

APPENDIX B.1 

Table showing the significant source of interaction (p-value) between the process 
variables (Sampling Location x Fermentation Vessel Size) for the dependent variable a) 
Ethanol  and b) Total Sugar as observed in Experiment II. Results are tabulated for each 
of the sampling times. [α = 0.05] 
 

a) Ethanol    

Time Sample Location Vessel Size Size x Location 

24 h 0.06 0.51 0.27 

48 h 0.61 0.29 0.62 

72 h 0.93 0.26 0.37 

96 h 0.35 0.17 0.19 

120 h 0.00 0.20 0.02 

144 h 0.18 0.23 0.22 

168 h 0.99 0.24 0.74 

192 h 0.26 0.19 0.34 

b) Total Sugar    

Time Location Size Size x Location 

24 h 0.37 0.94 0.98 

48 h 0.39 0.53 0.45 

72 h 0.40 0.50 0.43 

96 h 0.37 0.50 0.43 

120 h 0.00 0.54 0.01 

144 h 0.07 0.52 0.23 

168 h 0.83 0.53 0.06 

192 h 0.16 0.53 0.83 
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APPENDIX B.2 

Table showing the least square means for the significant two level interaction observed at 
T=120 h in Experiment II. Results are tabulated for the dependent variables (Total Sugar 
and Ethanol). [α = 0.05] 

 

Dependent Variable Source p-Value Significance 

Total Sugar 19-L Top vs. 19-L Bottom 0.00 Significant 

 209-L Top vs. 209-L Bottom 0.15 Not Significant 

Ethanol 19-L Top vs. 19-L Bottom 0.01 Significant 

 209-L Top vs. 209-L Bottom 0.00 Significant 
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