
   FROM SOIL ECOLOGY TO HUMAN NUTRTITION: 

CROP SYMBIOSIS WITH ARBUSCULAR 

MYCORRHIZAL FUNGI IN AGROECOSYSTEMS 

 

 

   By 

      ADAM BENJAMIN COBB 

   Bachelor of Science in Business Administration  
   Mount Vernon Nazarene University 

   Mount Vernon, Ohio 
   2005 

 
   Master of Agriculture  

   Oklahoma State University 
   Stillwater, Oklahoma 

   2011 
 

 

   Submitted to the Faculty of the 
   Graduate College of the 

   Oklahoma State University 
   in partial fulfillment of 

   the requirements for 
   the Degree of 

   DOCTOR OF PHILOSOPHY 
   July, 2016  



ii	
  
	
  

   FROM SOIL ECOLOGY TO HUMAN NUTRTITION: 

CROP SYMBIOSIS WITH ARBUSCULAR 

MYCORRHIZAL FUNGI IN AGROECOSYSTEMS 

 

 

   Dissertation Approved: 

 

Gail Wilson 

Dissertation Adviser 

Craig Watters 

 

Shane Robinson 

 

Jeff Wilson 

 

Barbara Stoecker 



iii	
  
Acknowledgements	
  reflect	
  the	
  views	
  of	
  the	
  author	
  and	
  are	
  not	
  endorsed	
  by	
  committee	
  
members	
  or	
  Oklahoma	
  State	
  University.	
  

ACKNOWLEDGEMENTS 
 
 

I would like to thank the NREM department, my PhD committee, and especially Dr. Gail 
Wilson – your mentoring and training were my greatest resources. 
 
I would like to thank those who facilitated our research and data analysis: Dr. Keith 
Owens, Dr. Tesafaye Tesso (Kansas State University), Dr. Tom Herald (USDA-ARS), 
Dr. Scott Bean (USDA-ARS), Dr. Twain Butler (Noble Foundation), Dr. Steve Bebee 
(CIAT), Dr. Michael Grusak (USDA-ARS), Dr. Rhett Kaufman (USDA-ARS), Dr. Carla 
Goad, Jim Vaughan (OSU Experiment Station), Parker Coppick, Rori Buresh, Kelsey 
Hildebrand, Dr. Malou Endano, Eric Duell, Gabrielle Flud, Tanner Simpson, Chelsea 
Click, Barbara Santi, and Beatriz Gallucci Mazziero. 
 
I would like to thank those who advised me on scientific methods, experimental design, 
interpretation of results, and professional communication: Dr. Assoumane Maiga, Dr. 
Karen Hickman, Dr. Craig Edwards, Dr. David Henneberry, Dr. Shida Henneberry, Dr. 
Hailin Zhang, Dr. Brian Arnall, Dr. Gebisa Ejeta (Purdue University), Rick Kochenower 
(OSU Extension), Dr. Nancy Johnson (Northern Arizona University), Dr. Mitch Greer, 
Dr. Cindy Blackwell, Dr. Chris Haynes, Katherine Zaiger, and Shelby Fraser. 
 
I would like to thank my Oklahoma friends for their incredible support and 
encouragement: Jennifer Jensen, Clint Taylor, Allison Taylor, Sara Siems, Tyler Siems, 
Evan Brothers, Matthew Potter, Roby Peters, Nick James, Fawn Jackson, Jared Bone, 
Emma Ajode, Beka Wilson, Shaun Hull, Matt Hopkins. 
 
I would like to thank my biological siblings, Skyler and Sara, and my parents, Brent and 
Marty, who equipped me to succeed as a dreamer, tinkerer, and communicator. I would 
like to thank my aunt and uncle, Mary and Bob, for helping me find my love of 
agriculture and sustainability years ago in Ohio. 
 
I would like to thank those who kindly challenged and gently guided me to adjustment 
my opinions and perspective in graduate school. My time at Oklahoma State University 
has initiated the most significant and enduring changes of my adult life. I can imagine no 
other place or community doing more to shape my future. Go Pokes!



iv	
  
	
  

Name: ADAM BENJAMIN COBB   
 
Date of Degree: JULY, 2016 
  
Title of Study: FROM SOIL ECOLOGY TO HUMAN NUTRTITION: CROP 

SYMBIOSIS WITH ARBUSCULAR MYCORRHIZAL FUNGI IN 
AGROECOSYSTEMS 

 
Major Field: NATURAL RESOURCE ECOLOGY AND MANAGEMENT 
 
Abstract: The Green Revolution helped us reduce global poverty, hunger, and 
malnutrition over the past 30 years. My research is part of an emerging Brown Revolution 
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CHAPTER I 
 

 

The effects of arbuscular mycorrhizal fungi on grain production and nutrition of 

sorghum genotypes: Enhancing yields and quality through ecological partnership 

 

ABSTRACT: The responsiveness of 3 hybrid sorghum genotypes and 3 open-pollinated 

sorghum genotypes to arbuscular mycorrhizal (AM) fungi and commercial fertilizers was 

assessed. This comparison was conducted to link grain production and quality with crop 

nutrition strategies (AM symbiosis versus fertility amendments). The open-pollinated 

genotypes produced an average of 206% more vegetative biomass and 285% more grain 

per plant, compared to hybrid genotypes when grown with AM fungi and no fertilization. 

Furthermore, the average protein production of open-pollinated genotypes was increased 

320%, compared to hybrid genotypes grown under the same low-fertility conditions. 

Percent AM root colonization was 149% greater in open-pollinated genotypes compared 

to hybrid genotypes, and across all genotypes, AM colonization was significantly 

correlated with total grain mineral content. African and Latin sorghum genotypes were 

significantly more responsive to mycorrhizal symbiosis than US hybrid genotypes for 

nutrient uptake and subsequent grain production and quality, while hybrid genotypes 

were significantly more responsive to fertilization. 
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INTRODUCTION 

Grain sorghum (Sorghum bicolor) is of growing interest as a food crop in the context of 

global climate change and mounting fertilizer costs because of superior production under 

dry and low-fertility conditions, as compared to corn (Zea mays) (Assefa et al. 2013). 

Sorghum (also called milo) has been, by some accounts, cultivated in sub-Saharan Africa 

and South Asia for over 5000 years (De Wet and Harlan 1971). It is common in US 

agriculture, with annual production estimated at nearly 11 million Mt in 2014 and over 15 

million Mt in 2015 according to USDA Annual Crop Reports (USDA 2015; 2016). 

One key to successful sorghum cultivation may be enhancing mutualistic 

partnerships with beneficial soil microbes, such as arbuscular mycorrhizal (AM) fungi. 

Mycorrhizas are structural relationships consisting of both the fungus and its host root 

system; they are considered nutritional symbioses, as they are primary providers of 

phosphorous and other trace minerals for the majority of land plants. Arbuscular 

mycorrhizal fungal hypha associated with plant roots can extend the reach of root 

systems and increase access to growth-limiting resources. The amount of hyphal biomass 

produced by AM fungi can be substantial (Miller et al. 1995); therefore, these fungi play 

a critical role as carbon sinks and in structuring soils (Wilson et al. 2009; Zhu and Miller 

2003). A review by Gosling et al. (2006) reported AM fungi not only play a role in 

improving plant nutrition but also disease resistance, water use efficiency, soil structure 

and beneficial microbial activity in natural ecosystems. However, AM benefits have been 

depleted in many agroecosystems because farm management practices such as soil 

fertilizer applications (particularly phosphorus [P]) reduce fungal abundance by reducing 

plant dependence on the symbiosis (Richardson et al. 2011). Furthermore, agricultural 
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fertilizers are widely recognized as off-farm pollutants, with water quality and natural 

ecosystem function negatively impacted by nutrient runoff (Daigle 2003). Increased 

energy, mining, and transportation costs have increased farmers’ cost burden from 

fertilizer inputs. Lower input agriculture is essential for environmental preservation. 

Under sustainable conditions, the multiple benefits of AM symbiosis can play a pivotal 

role in maintaining soil fertility and stabilization of soil structure while enhancing plant 

water uptake and food quality (Ellouze et al. 2014). In many of the tropical regions where 

low P soils are common, farmers lack access to commercial fertilizers (Ngwene et al. 

2010). Phosphorus limitations are also expected to increase in agriculturally developed 

countries, as food production must scale with human population growth (Cordell et al. 

2009). 

Potentially, enhancing symbiotic activity with AM fungi provides a path to 

maintain or improve food production and nutrition with fewer economically and 

environmentally costly fertilizer inputs (Elbon and Whalen 2015). Oruru and Njeru 

(2016) highlighted farming practices that could be utilized to replenish the AM fungal 

symbiosis and particularly benefit smallholder farmers; however, there are many 

variables, such as crop genetics, involved in harnessing the benefits of AM fungi in 

agriculture. Indeed, numerous studies indicate plant genotypes vary in their 

responsiveness to mycorrhizas (Liu et al. 2000; Smith and Read 1996). Determining the 

mycorrhizal responsiveness on agricultural genotypes is a critical first step in designing 

farm systems where AM fungi can improve water and nutrient-use efficiency, enhance 

soil structure, and sustain quality yields. 
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Symbiotic partnerships between agronomic crops and soil microbes have recently 

become a focus of research and discussion of 21st Century food systems (Denison 2012). 

Research linking AM fungi to crop productivity, as well as nutritional value of the food 

products is essential to understand the practical value of these soil microbial allies in 

agroecosystems. This research should be considered a step toward breeding sorghum that 

is more resource efficient and appropriate for subsistence farmers and sustainable 

agriculture. 

Our research seeks to understand the role of AM fungi on sorghum genotype 

grain production and nutritional value. Mycorrhizal colonization has previously been 

assessed for some sorghum genotypes (Mehraban et al. 2009), but the belowground 

assessment still needs to be linked to crop productivity and grain quality. Therefore, the 

primary objectives of our greenhouse study were (1) to assess responsiveness of African 

and Latin American open-pollinated (OP) genotypes, and hybrid sorghum genotypes to 

AM symbiosis in low-fertility and N and P fertilized soil and (2) to assess the role of AM 

fungal symbiosis on plant production, grain quality (starch characteristics, protein and 

mineral concentrations), and the total grain nutrient content produced by sorghum 

genotypes under two soil fertility levels. 

Because sorghum utilizes a C4 photosynthetic pathway and C4 grasses have been 

shown to be obligate symbionts with AM fungi (Wilson and Hartnett 1998), we 

hypothesized sorghum plants are highly dependent on the symbiosis for growth and grain 

production in low fertility soils. Although grain quality and nutrient content were not 

examined in previous studies, mycorrhizal responsiveness, determined by differences in 

mycorrhizal and mycorrhizal-suppressed total plant dry weight, have been assessed for 



5	
  
	
  	
  

many native prairie plants (Wilson and Hartnett 1998) and for crops such as sugarcane, 

corn, and soybean (Kelly et al. 2001). Hetrick et al. (1993; 1995) reported early land 

races of wheat (Triticum spp.) were highly responsive to AM fungi, yet modern wheat 

genotypes were less responsive and total plant dry weight was reduced, compared to their 

early ancestors, when grown in low fertility soil. Therefore, we hypothesized that OP 

sorghum genotypes are more responsive to AM fungi compared to hybrid genotypes, but 

that hybrid genotypes are more dependent on fertilizer applications than AM symbiosis 

for yield and grain quality. We further hypothesized that, in low fertility soils, the greater 

AM responsiveness of OP genotypes will result in increased grain protein and mineral 

content, compared to the less AM responsive hybrids that are more responsive to 

fertilizer. 

 

MATERIALS AND METHODS 

Experimental Setup. Two greenhouse studies were conducted – one in 2012 and a 

replicate study in 2013. A randomized complete block design was used with four 

replications in each trial, and a complete factorial design of six sorghum genotypes 

subjected to four soil treatments. The sorghum breeding and genetics program at Kansas 

State University provided open-pollinated African sorghum genotypes: Ajabsido 

(MNO9-7018) and Macia (PRO9110-4319); open-pollinated Latin American genotype 

Sureno (PRO9110-4317); and US hybrid genotypes Dekalb (54-00), Pioneer (84G62), 

and Seneca. The soil treatments were: 1) non-amended native soil (control); 2) native soil 

with fertilization (N and P); 3) native soil with fungicide (to suppress AM fungal 

activity); and 4) native soil with both fungicide and fertilizer amendments. 
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Ninety-six pots (26.5 cm diameter x 48cm height) were filled with 22 liters of 

Renfrow/Grainola (eroded silty clay Mollisol/Alfisol) soil collected from the Oklahoma 

State University Range Research Station (pH = 7.25, N = 16 ppm, P = 4 ppm, K = 137 

ppm, OM= 0.59%). The Soil, Water, and Forage Analytical Laboratory at Oklahoma 

State University analyzed the baseline soil samples. Soil NO3-N and NH4 were extracted 

by 1M KCl solution and analyzed using the Lachat Quickchem 8000 Flow Injection 

Autoanalyzer (Kachurina et al. 2000). Two grams of soil were extracted with 20 ml 

Mehlich 3 solution (Mehlich 1984) for plant available P and K, and the concentrations of 

P and K in the extract were measured by an inductively coupled plasma emission 

spectroscopy (ICP)(Pittman et al. 2005). Soil pH was measured using a pH electrode in a 

1:1 soil to water suspension. Soil organic matter (SOM) was determined by dry 

combustion using the LECO Truspec CN analyzer (Nelson et al. 1996). This field-

collected soil was not inoculated with additional soil microbes and contained only 

ambient AM fungi. 

For each N&P fertilized pot, 1.0g of monopotassium phosphate (0-52-34) was 

applied (rate equivalent to 100 kg per ha total phosphate and 292 kg per ha total 

potassium), and 1.4g of ammonium nitrate (34-0-0) was applied (rate equivalent to 120 

kg per ha total nitrogen). For each non-fertilized pot, 0.55g potassium chloride (0-0-60) 

was applied to non-fertilized pots (at rate of 292 kg per ha total potassium) to ensure 

uniform potassium across the study. Fertilizers were dissolved in 1 L of water and 

applied at the beginning of the study and at sorghum bloom. Fungicide was applied at 

planting and every 3 weeks thereafter as a solution of 7.8 grams Topsin® (Thiophanate-

Methyl) dissolved in 1 L of water per pot. 
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Sorghum seedlings were germinated in vermiculite and transferred to pots at the 

second-leaf stage. Replanting was allowed for failed transplants for the week following 

transplant. One liter of water was provided to all plants (including control) when fertilizer 

or fungicide was applied to ensure uniform soil moisture across the study. Plants were 

maintained under well-watered conditions, watering every 2-4 days. Greenhouse 

temperatures were maintained between 21-32 °C for both trials. Plants were harvested at 

16 weeks, following grain maturation. Total grain production (dry weight) and 

aboveground plant biomass (dry weight) were determined at harvest. 

Quantification of grain and starch characteristics. The USDA-ARS Center for Grain 

and Animal Health Research in Manhattan, Kansas, USA determined grain hardness, 

moisture, diameter, weight, protein, protein digestibility, starch granule size distribution, 

and amylose/amylopectin ratios. Hardness was determined (Single Kernel 

Characterization System) by crushing the grain, which was then recovered and utilized in 

the other evaluations (as per Kaufman et al. 2013). Subsamples of the crushed material 

were used to determine total protein using N combustion (Leco N combustion analyzer) 

and total starch (Megazyme total starch analysis). Sorghum protein digestibility was 

evaluated using the methods of Wong et al. (2009). Starch was isolated from the crushed 

grain using the method of Park et al. (2006). Starch granule size distribution (laser 

diffraction analysis) (Wilson et al. 2006) and amylose/amylopectin ratios (dual 

wavelength iodine binding) (Kaufman et al. 2015) were assessed. Correlations of all 

protein and starch analyses were evaluated against variations in the total digestibility of 

each sample. Grain production and protein concentration data were combined to calculate 

total protein production per plant. Grain and starch characteristics were unable to be 
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assessed for the mycorrhizal-suppressed non-fertilized treatment because production of 

grain was insufficient for analysis. 

Quantification of mineral concentrations. The USDA-ARS Children’s Nutrition 

Research Center in Houston, Texas assessed grain mineral concentrations for some of the 

minerals that are critical for human and animal health (Ca, Cu, Fe, K, Mg, P, and Zn).  

Using methods of Farnham et al. (2011), two subsamples (~0.25 g dry weight) of each 

ground sample were digested and processed for elemental analysis. Elemental analysis 

was performed using inductively coupled plasma–optical emission spectroscopy (CIROS 

ICP Model FCE12). Tissue mineral concentrations were determined on a dry mass basis 

(µg g–1 or mg g–1), and an average value was derived from the two sub-samples of each 

replicate. Grain production and mineral concentration data were combined to calculate 

total grain mineral contents per plant. Mineral concentrations were unable to be assessed 

for the mycorrhizal-suppressed non-fertilized treatment because production of grain was 

insufficient for analysis. 

Quantification of AM Colonization. A subsample of live roots were removed from the 

soil, washed, stained with trypan blue and scored for percent AM colonization using the 

magnified gridline intersect method (Mcgonigle et al. 1990). This method uses a digital 

microscope (Hirox KH 7700) to measure the percentage root length colonized by hyphae, 

vesicles, coils, and arbuscules, which were combined to determine total percent 

colonization. 

Statistical Analysis. AM root colonization, productivity, grain protein content, protein 

digestibility, and mineral content response variables were analyzed using mixed models 
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methods. Grain characterization and starch characteristics were analyzed using 

generalized linear mixed models methods. The Tukey multiple comparison method was 

utilized for significant effects and results reported as least square means.  Spearman 

correlation method was performed for grain mineral to AM root colonization correlations. 

Mycorrhizal and fertilizer responsiveness were calculated for each genotype origin (OP 

and hybrid) as follows. Percentage mycorrhizal responsiveness = [(dry mass of 

mycorrhizal plant) – (dry mass of mycorrhizal-suppressed plant) / (dry mass of 

mycorrhizal plant)] * 100 (Hetrick et al. 1996; Wilson and Hartnett 1998).  Percentage 

fertilizer responsiveness = [(dry mass of fertilized mycorrhizal plant) – (dry mass of non-

fertilized mycorrhizal plant) / (dry mass of fertilized mycorrhizal plant)] * 100.  

Differences between mycorrhizal and mycorrhizal-suppressed plants, and differences 

between fertilized and non-fertilized plants were determined using mixed models 

methods.  Responsiveness was considered to be significant when the total dry masses of 

the compared treatments were assessed as significantly different as determined by Tukey 

multiple comparison. All tests of significance were performed at the nominal 0.05 level. 

The data analyses were generated using SAS® version 9.4. Copyright © 2013 SAS 

Institute Inc. SAS and all other SAS Inc. product of service names are registered 

trademarks of trademarks of SAS Institute Inc., Cary, NC, USA. 

 

RESULTS 

Vegetative production. Open-pollinated genotypes produced significantly greater 

vegetative biomass compared to the hybrid genotypes when AM fungi were not 
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suppressed (hereafter referred to as mycorrhizal soil) and fertilizer was not added. 

However, fertilization of mycorrhizal soil resulted in similar growth for all genotypes 

(Figure 1). In non-fertilized soil, with fungicide application (hereafter referred to as 

mycorrhizal-suppressed soil), vegetative production was significantly reduced as 

compared to mycorrhizal soil that was non-fertilized. However, all genotypes responded 

to fertilization in mycorrhizal-suppressed soils with equivalent or increased growth 

compared to corresponding non-fertilized mycorrhizal soil, with the exception of 

Ajabsido (African) genotype. Ajabsido produced significantly greater biomass in 

mycorrhizal soil without fertilizers compared to fertilized mycorrhizal soil (Figure 1). 

Grain Production. African genotypes produced significantly more grain than the 

genotype Sureno or any of the hybrid genotypes in non-fertilized mycorrhizal soil; 

however, fertilization narrowed these differences in productivity, with all genotypes 

producing similar total grain in fertilized mycorrhizal soil expect for the hybrid Seneca 

(Figure 2). Mycorrhizal fungal suppression without additions of fertilizers resulted in a 

lack of grain production across all genotypes. African genotypes had similar grain yield 

regardless of fertilizer or fungicide applications. However, fertilization of mycorrhizal-

suppressed soil reduced grain yield of Sureno OP genotype compared to when it was 

grown in fertilized mycorrhizal soil (Figure 2).  Fertilizing mycorrhizal-suppressed soil 

significantly increased grain production for hybrid genotypes compared to other 

treatments, indicating hybrids are highly responsive to fertilizer applications. 

Grain Protein Concentration and Production. Grain protein concentrations were 

significantly different due to the interaction between genotype and treatments. Hybrid 

genotypes produced grain with lower protein concentration than OP genotypes in non-
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fertilized mycorrhizal soil, but fertilization reduced these differences in protein 

concentration (Figure 3). The highest grain protein concentration was in Sureno OP 

genotype in non-fertilized mycorrhizal soil (17.35% ± 0.58) and the lowest concentration 

was in Dekalb hybrid genotype in non-fertilized mycorrhizal soil (7.37% ± 0.82) (data 

not shown). Additionally, there were differences in total grain protein production (grain 

production x grain protein concentration), with African genotypes producing significantly 

greater total amounts of grain protein per plant than the other genotypes (Figure 3). The 

addition of fertilizers to mycorrhizal soil increased grain protein production in Sureno 

and the hybrid genotypes, but reduced protein production in African genotypes. When 

fertilizers were applied to mycorrhizal-suppressed soil, grain protein production was 

significantly increased in the hybrid genotypes compared to other treatments, with 

variable effects on the OP genotypes (Figure 3). 

Root Colonization Percentage. When grown in non-fertilized mycorrhizal soil, all 

hybrid genotypes were significantly less colonized, compared to the OP genotypes 

(Figure 4). This significant difference in colonization between genotypes was less 

pronounced following additions of fertilizer or fungicide, as both these applications 

significantly reduced the percentage root length colonization in all genotypes. 

Mycorrhizal suppression by fungicide consistently reduced AM colonization to ~10% or 

less for all sorghum genotypes. 

Mycorrhizal Responsiveness. There was a significant difference (P-value <0.0001) in 

the interaction of genotype origin (OP and hybrid) and soil (mycorrhizal and 

mycorrhizal-suppressed). Total plant dry weight between OP genotypes (59.87g ± 4.24) 

and hybrid genotypes (18.99g ± 4.28) (data not shown) in mycorrhizal soil were 
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significantly different, but there was not a significant difference in total plant dry weight 

between OP genotypes (7.78 ± 4.52) and hybrid genotypes (12.66g ± 4.34) (data not 

shown) in mycorrhizal-suppressed soil. Therefore, a significant difference in mycorrhizal 

responsiveness was calculated (Table 1). 

Fertilizer Responsiveness. There was a significant difference by the interaction of 

genotype origin (OP and hybrid) and fertilizer amendment (fertilized and non-fertilized). 

Total plant dry weight between OP genotypes (60.09g ± 7.41) and hybrid genotypes 

(18.88g ± 7.18) when they were not fertilized were significantly different, but there was 

not a significant difference in total plant dry weight between OP genotypes (50.69 ± 7.43) 

and hybrid genotypes (43.27g ± 7.18) when they were fertilized. Therefore, a significant 

difference in fertilizer responsiveness was calculated (Table 1). 

Grain Mineral Concentrations and Total Content. There were significant calcium, and 

potassium, and zinc grain concentration differences between OP and hybrid genotypes 

with higher concentrations in OP genotypes compared to hybrid genotypes; this was 

pronounced in non-fertilized mycorrhizal soil. Grain phosphorus, magnesium, and iron 

concentrations were significantly different by genotype with higher concentrations 

present in Ajabsido and Sureno (OP genotypes) than Dekalb and Seneca (hybrid 

genotypes), and Pioneer and Macia characterized by intermediate concentrations. There 

were no significant differences in copper concentrations by genotype or treatment. Total 

grain mineral content (combination of grain production and grain mineral concentration) 

followed similar trends across all analyzed minerals by genotype and treatment, with few 

significant differences (Table 2). Fertilization resulted in minor changes for all 

genotypes, with few significant differences. Application of fertilizer to mycorrhizal-
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suppressed soil resulted in a significant increase in mineral contents, as compared to non-

fertilized mycorrhizal soil, for only the hybrid genotypes. In non-fertilized mycorrhizal 

soil, correlations between AM root colonization and per plant grain mineral contents 

were significant for every mineral analyzed (Figure 5). 

Grain Protein Digestibility. For each genotype, fertilizer and/or fungicide did not 

significantly influence protein digestibility for that genotype. However, the interactions 

between genotype and treatments (fertilizer and/or fungicide) were significantly different 

for different genotypes (Figure 6). These differences did not significantly contrast 

between OP and hybrid genotype origins. 

Grain Physical Characterization. There were few significant differences in grain 

physical characteristics from the interaction of genotype and treatment (Table 3), and 

those differences are primarily the result of differences in genotype rather than treatment. 

Grain Starch Analysis.  There were no significant differences in grain starch granule 

distribution between the OP genotypes (A-granule = 51.16%, ± 1.152; B-granule = 

38.59%, ± 0.95; C-granule = 10.01%, ± 0.23) and hybrid genotypes (A-granule = 

55.70%, ± 1.50; B-granule = 34.64%, ± 1.21; C-granule = 9.34%, ± 0.29) (data not 

shown, n = 12). There was a significant difference in percentage of grain amylose 

between genotypes but not by genotype origin (Ajabsido = 25.40a ± 0.30, Macia = 

22.99b ± 0.27, Sureno = 23.52b ± 0.27, Dekalb = 26.34a ± 0.40, Pioneer = 25.99a ± 0.20, 

Seneca = 22.92b ± 0.35) (data not shown, n = 4); however, treatments did not have a 

significant effect. Because of this, only one season of the study was analyzed for starch 

characteristics. 
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DISCUSSION 

In our study, open-pollinated OP genotypes produced 206% more vegetative biomass and 

285% greater grain, compared to hybrid genotypes in non-fertilized mycorrhizal soil. 

This increase in biomass production was directly related to a 149% increase in percent 

AM root colonization. Additionally, grain protein concentrations were linked to 

mycorrhizal colonization, with OP genotypes outperforming hybrids. Most mineral 

concentrations differed by genotype, or genotype origin (OP and hybrid), and in non-

fertilized mycorrhizal soil were often similar or significantly greater for OP genotypes as 

compared to hybrid genotypes.  Similarly, total grain protein production of OP genotypes 

was 320% greater, on average, and total grain mineral contents were significantly 

correlated to AM root colonization of non-fertilized plants grown with mycorrhizal fungi. 

However, protein digestibility, starch granule distributions, amylose content, and grain 

size, weight, moisture, and hardness did not appear to be influenced by mycorrhizal root 

colonization of any sorghum genotypes, but rather by plant genetic traits. 

Hybrid genotypes receiving both fungicide (mycorrhizal-suppressed) and 

fertilization generally produced greater amounts of grain, total protein, and had greater 

mineral content, as compared to production in non-fertilized soils. Fertilization did not 

increase production or grain quality in Sureno or the African genotypes, with the 

exception of protein production of Ajabsido. These results indicate AM fungi provided 

similar benefits for Sureno and the African genotypes as high rates of N&P fertilization, 

in regards to plant growth and grain production and quality. Importantly, this was not 

observed for hybrid genotypes, presumably because mycorrhizal responsiveness has been 

reduced in these genotypes. 
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The major goals of crop breeding and genetics programs are to develop superior 

seed-lines, improved in biomass production capability and high grain quality and 

quantity. However, genetic enhancement and plant breeding efforts to improve genotypes 

for grain production may alter the strong positive plant-fungal relationship and leave the 

resulting genotypes less appropriate for low-input agriculture or where there is little 

access to fertilizer inputs. For example, the high mycorrhizal responsiveness of ancestral 

land races of wheat was suppressed in modern genotypes – even in low-P soil (Hetrick et 

al. 1993; Hetrick et al. 1995), presumably because they were bred and selected under 

high P input. We suggest breeding and selection of sorghum can produce more efficient 

genotypes if maintaining or enhancing this mutualistic association is included as a focus. 

It is critical to understand the interactions of plant hosts and fungal partners if breeders 

are to enhance the symbiotic relationship rather than inadvertently lose it through 

selective breeding. 

Mycorrhizal fungi were essential for the growth and reproduction of all 

genotypes, as fungicide reduced AM colonization to an average range of 4-11%, with 

significant reduction in plant biomass and little grain production for each genotype. 

Additions of N and P fertilization to fungicide-treated plants compensated for the loss of 

AM fungi and all sorghum genotypes produced equivalent or greater biomass and grain, 

compared to corresponding mycorrhizal plants. However, hybrid genotypes were 

generally more responsive to fertilization, resulting in increased vegetative biomass and 

grain production compared to control, while OP genotypes had a negative fertilizer 

response. Our results found African sorghum genotypes were more dependent on 

mycorrhizal symbiosis than hybrid genotypes for nutrient uptake and subsequent grain 
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production, particularly in low-fertility soils. These outcomes support the research 

hypotheses: that in low fertility soils, the greater AM responsiveness of OP genotypes 

would result in increased grain production, total protein, and mineral content, compared 

to the less AM responsive hybrids that are more dependent on fertilizer applications for 

yield and grain quality. 

It may be suggested that plant-microbe responsiveness be enhanced through 

genetic selection of the fungal strains in farm soils. However, breeding agricultural crops 

to manage the relationship with AM fungi may be more effective than developing 

agricultural strains of AM fungal inoculum. As Sanders and Croll (2010) explain, 

knowledge of AM fungal genetics is currently constrained by the enigmatic nature of the 

organism’s genome and reproduction. Because there are numerous nuclei in each fungal 

spore, mycorrhizal offspring may rapidly exhibit drastically different phenotypes and 

degrees of benefit for partner plants (Angelard et al. 2014). However, in the past 10 

years, new tools for isolating and analyzing chemical exudates of plants and soil biota 

have propelled understanding of the rhizosphere environment, with conceptual 

frameworks and models continuing to become more precise and complex, and these tools 

may allow for efficient selection of genotypes that are both highly responsive to AM 

symbiosis and produce high grain quality/quantity. The initiation and formation of AM 

symbiosis is dependent on the production and regulation of an array of chemicals both 

within the host plant and rhizosphere (Abdel-Lateif et al. 2012; Bonfante and Genre 

2015; Gutjahr 2014; Pozo et al. 2015; Takeda et al. 2015). Modern crop breeding may 

inadvertently disrupt this intricate chemical dialog between mutualist plants and AM 

fungal partners. If so, this uncoupling may help explain the loss of mycorrhizal 
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responsiveness in modern hybrids compared to responsiveness observed in OP 

genotypes. Even though our results suggest a loss of symbiotic potential occurred 

following modern sorghum breeding, we suggest our results also indicate an opportunity 

to harness the benefits of AM fungi for sustainable sorghum production through selective 

breeding, possibly under low fertility, may create a selective pressure for sorghum to 

invest more resources in its chemical dialog with AM fungi, enhancing root-fungal 

interactions and increasing grain quantity and quality. For example, the same 

phytohormones may be responsible for suppressing the activity of parasitic fungi while 

enhancing AM symbiosis (Dor et al. 2011). 

Our study indicates host plant and AM fungal ecological partnership translates to 

improved grain production and grain quality in low-nutrient soils. A hypothetical case 

based on our results, using a smallholder farmer with little access to fertilizers, 

demonstrates the value of sorghum genotypes that rely on AM symbiosis. By planting 

20,000 sorghum seeds of a highly mycorrhizal responsive genotype (Ajabsido or Macia), 

production would be 298.6 kg more grain with approximately 36.2 kg more total grain 

protein, compared to the average production of fertilizer-responsive hybrid genotypes 

(Dekalb or Pioneer). Grain harvested from those 20,000 plants would also contain 

approximately 1060 mg more iron and 900 mg more zinc compared to the total content 

that would be contained in the less mycorrhizal responsive genotypes. This hypothetical 

case illustrates context-appropriate genetics for small-scale subsistence farmers. 

However, as costs escalate, large-scale agricultural systems are under increasing pressure 

to optimize every farm input.  Our results indicate it is imperative for crop breeders to 
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include plant-microbial partnerships as an additional focus for breeding programs to 

deliver efficient genotypes for sustainable agricultural systems.  

 

CONCLUSION 

Natural ecosystems display stability because of symbiotic interactions. We must 

understand these ecological dynamics and operationalize systems that can add to the 

health of agricultural soils and the quality of the food produced. Sustainable agriculture 

may be improved if breeders select for traits, like AM responsiveness, that reduce 

fertilizer inputs and enhance soil quality, while maintaining, or possibly increasing, 

global nutrition security. These goals may be reached through a better understanding of 

the mechanisms and genetics underlying plant-soil-microbial interactions, such as 

arbuscular mycorrhizal fungi and agricultural crops. 

Beneficial soil fungi present a great opportunity to make global agriculture more 

efficient, more sustainable, and more productive (Ellouze et al. 2014; Rodriguez and 

Sanders 2015). In light of the multi-layered processes of the rhizosphere, it is critical that 

crop genotypes are assessed for symbiotic potential, that crop genomes are mapped to 

uncover the traits associated with mycorrhizal partnership, and that these traits are linked 

to productivity and food nutrition. We encourage best management practices for AM 

fungi in combination with crops genotypes selected for high AM responsiveness as a path 

to sustainability, through fertilizer cost reduction and reduction of their negative 

environmental impacts, while still providing human nutritional needs. 
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TABLES AND FIGURES 

Table 1. Mycorrhizal and fertilizer responsiveness (%) for open-pollinated                  
and hybrid sorghum genotype origins. 

Genotype Origin 
Mycorrhizal 
Responsiveness (%) 

 

Fertilizer 
Responsiveness (%) 

  
Open-pollinated +87.0a 

 
-18.5b 

  

Hybrid +33.3b 
 

+56.4a 
  

 

Dry weight of mycorrhizal and mycorrhizal-suppressed plants and mycorrhizal 

responsiveness (%) of sorghum genotypes by origin. Mycorrhizal responsiveness 

calculated Percentage mycorrhizal responsiveness = [(dry mass of mycorrhizal plant) – 

(dry mass of mycorrhizal-suppressed plant) / (dry mass of mycorrhizal plant)] * 100 

(Hetrick et al. 1996; Wilson and Hartnett 1998).  Dry weight of fertilized and non-

fertilized plants (mycorrhizal) and fertilizer responsiveness (%) of sorghum genotypes by 

origin. Percentage fertilizer responsiveness = [(dry mass of fertilized mycorrhizal plant) – 

(dry mass of non-fertilized mycorrhizal plant) / (dry mass of fertilized mycorrhizal plant)] 

* 100. Within a column, means that do not share a letter are significantly different (P < 

0.05). 
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 Table 2. Total grain mineral content (mg) for all sorghum genotypes by treatment.   

 Treatments: M = mycorrhizal non-fertilized, M+F = mycorrhizal fertilized, MS+F = Mycorrhizal-suppressed fertilized 

 Treatment Genotype Ca Cu Fe K Mg P Zn 

 M Ajabsido 2.91a 0.11abc 0.76bcd 83.2abc 28.6abc 54.7abc 0.54bc 
  Macia 2.14ab 0.10abc 0.80bcd 75.4abc 24.8bc 50.3abc 0.64abc 
  Sureno 1.16bc 0.05d 0.35d 36.1bc 16.1c 34.0c 0.29cd 
  Dekalb 0.69bc 0.03d 0.27d 33.7bc 12.2c 23.2c 0.19cd 
  Pioneer 0.46c 0.02d 0.22d 16.8bc 6.6c 13.6c 0.11d 
  Seneca 0.71bc 0.03d 0.29d 25.5bc 9.6c 20.8c 0.14cd 
 M+F Ajabsido 1.03bc 0.05cd 0.58cd 62.3bc 24.0bc 52.4abc 0.31cd 
  Macia 2.05ab 0.07bcd 0.48cd 77.4abc 22.5bc 49.6abc 0.34bcd 
  Sureno 1.56bc 0.06bcd 0.51cd 66.8bc 25.6bc 56.1abc 0.37bcd 
  Dekalb 1.74bc 0.07bcd 0.55cd 56.4bc 23.0bc 49.2bc 0.35bcd 
  Pioneer 1.60bc 0.07bcd 0.56cd 57.8bc 23.0bc 49.3bc 0.38bcd 
  Seneca 0.88bc 0.04d 0.38d 38.3bc 13.1c 29.5c 0.18cd 
 MS+F Ajabsido 3.69a 0.13ab 1.10abc 118.5a 39.6ab 83.8ab 0.74ab 
  Macia 2.38ab 0.13abc 0.92abcd 90.3abc 34.1abc 73.9abc 0.79ab 
  Sureno 1.21bc 0.07bcd 0.51cd 44.2bc 18.2c 41.5bc 0.37bcd 
  Dekalb 3.70a 0.14ab 1.39ab 133.8a 47.8a 93.8a 0.82a 
  Pioneer 3.77a 0.15a 1.51a 136.2a 48.9a 98.2a 1.12a 
  Seneca 2.73a 0.10abc 0.99abc 97.0ab 32.3abc 67.6abc 0.48bcd 

 Within a column, means that do not share a letter are significantly different (P < 0.05). 
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 Table 3. Grain physical characteristics* for all sorghum genotypes by treatment.   

 Treatments: M = mycorrhizal non-fertilized, M+F = mycorrhizal fertilize                                       
                     MS+F = Mycorrhizal-suppressed fertilized 

 Treatment Genotype Hardness Moisture (%) Diameter (mm) Weight (mg) 

 M Ajabsido 58.60c 8.94ab 2.29a 28.91a 
  Macia 76.15abc 8.73ab 2.25a 31.43a 
  Sureno 89.09a 8.28b 2.26a 29.81a 
  Dekalb 67.87bc 9.12ab 2.48a 35.05a 
  Pioneer 72.48abc 8.78ab 2.49a 34.28a 
  Seneca 82.75ab 8.59ab 2.43a 33.88a 
 M+F Ajabsido 60.49c 8.84ab 2.65a 34.43a 
  Macia 79.15abc 8.86ab 2.11a 28.17a 
  Sureno 87.86ab 8.54ab 2.27a 29.93a 
  Dekalb 69.14ab 8.95ab 2.23a 31.84a 
  Pioneer 77.15abc 8.82ab 2.41a 30.79a 
  Seneca 88.82a 8.71ab 2.06a 25.34a 
 MS+F Ajabsido 59.43c 9.44a 2.29a 28.55a 
  Macia 79.15abc 8.55ab 2.21a 31.28a 
  Sureno 85.34ab 8.36b 2.11a 28.64a 
  Dekalb 77.73abc 9.59a 2.32a 34.62a 
  Pioneer 78.77abc 8.88ab 2.51a 32.90a 
  Seneca 88.49a 9.22a 2.21a 29.06a 

 Within a column, means that do not share a letter are significantly different (P < 0.05). 

 *Single-kernel characterization system 
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Figure 1. Vegetative dry weight for sorghum genotypes in mycorrhizal and mycorrhizal-

suppressed soils, with no amendment (control), or fertilized with N&P.  From left to 

right, genotypes are open-pollinated African (Ajabsido and Macia), Latin American 

(Sureno), and hybrid (Dekalb, Pioneer, and Seneca).  Bars represent means, + SE (n = 8). 

Bars that do not share a letter are significantly different (P < 0.05).  

Ajabsido, Macia Sureno Dekalb, Pioneer, Seneca Figure 1 
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Figure 2. Grain production for sorghum genotypes in mycorrhizal and mycorrhizal-

suppressed soils, with no amendment (control), or fertilized with N&P.  From left to 

right, genotypes are open-pollinated African (Ajabsido and Macia), Latin American 

(Sureno), and hybrid (Dekalb, Pioneer, and Seneca).  Bars represent means, + SE (n = 8). 

Bars that do not share a letter are significantly different (P < 0.05).  
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Figure 3. Total grain protein production for sorghum genotypes in mycorrhizal and 

mycorrhizal-suppressed soils, with no amendment (control), or fertilized with N&P.  

From left to right, genotypes are open-pollinated African (Ajabsido and Macia), Latin 

American (Sureno), and hybrid (Dekalb, Pioneer, and Seneca).  Bars represent means, + 

SE (n = 8). Bars that do not share a letter are significantly different (P < 0.05).  
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Figure 4. Percent root colonization by AM fungi for sorghum genotypes in mycorrhizal 

and mycorrhizal-suppressed soils, with no amendment (control), or fertilized with N&P.  

From left to right, genotypes are open-pollinated African (Ajabsido and Macia), Latin 

American (Sureno), and hybrid (Dekalb, Pioneer, and Seneca).  Bars represent means, + 

SE (n = 8). Bars that do not share a letter are significantly different (P < 0.05).  
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Figure 5. Relationship between mycorrhizal root colonization and total grain mineral 

content of A) iron, B) zinc, C) magnesium, and D) phosphorous. These minerals are of 

particular importance to human, animal, and plant nutrition.  All mycorrhizal sorghum 

genotypes grown in non-fertilized soil are included. Spearman correlations were 

significant for all minerals.  
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Figure 6. Grain protein digestibility for sorghum genotypes in mycorrhizal and 

mycorrhizal-suppressed soils, with no amendment (control), or fertilized with N&P.  

From left to right, genotypes are open-pollinated African (Ajabsido and Macia), Latin 

American (Sureno), and hybrid (Dekalb, Pioneer, and Seneca).  Bars represent means, + 

SE (n = 8). Bars that do not share a letter are significantly different (P < 0.05). 
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CHAPTER II 
 

 

Soil ecology and the sustainable production of common bean and cowpea: 

Arbuscular mycorrhizal fungi, alternative farm inputs, and human nutrition 

 

ABSTRACT: The association of arbuscular mycorrhizal (AM) fungi with two genotypes 

of common bean and two genotypes of cowpea were assessed in two greenhouse studies, 

to investigate the role of AM symbiosis in agricultural production with alternative 

fertility amendments (compost and biochar). All genotypes were grown in local low-

nutrient soil. In the first study, plants were not fertilized (controls), amended with 

commercial fertilizers (N&P), or amended with worm compost. Measurements included 

AM root colonization, seed production, and total seed protein and mineral content. 

Productivity and total seed protein were similar between fertilizer and compost 

treatments, which were significantly improved compared to control. The genotypes 

Masaai Red (common bean) and Risina del Trasiorfino (cowpea) produced greater total 

seed (dry weight) and greater total protein than the other genotypes. Compared to 

common beans, cowpea genotypes had significantly increased seed zinc content and their 

roots were more highly colonized by AM fungi regardless of treatment, with the cowpea 

genotype Risina del Trasiorfino being the most highly colonized overall. We selected 

Risina as the model genotype of our second experiment, and we assessed 10 different soil 
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amendments (combinations of commercial fertilizers, biochar, and worm compost). For 

each soil amendment, we assessed AM root colonization, vegetative biomass at 45 days, 

and plant tissue total protein and mineral content. Commercial fertilizers (N&P) 

significantly decreased AM fungal colonization and increased vegetative production 

when included in any amendment. The combination of worm compost with biochar 

and/or commercial fertilizers, significantly improved total protein and plant tissue 

potassium and zinc compared to corresponding plants grown with soil amendments not 

containing worm compost. Our results indicate alternative fertility inputs have the 

potential to maintain belowground symbiosis and replace a portion of commercial 

fertilizer use without reducing agricultural productivity 

 

INTRODUCTION 

Cereal grains are important components of worldwide diets, yet research shows some of 

the essential amino acids (AAs) required for human and animal protein synthesis are not 

highly available from some cereals – particularly grain sorghum and maize (Cervantes-

Pahm et al. 2014). There is also a growing body of evidence on the impact of 

antinutritional factors present in many widely consumed staples (Gilani et al. 2012), and 

diet diversity is a universally recognized strategy in reducing risk of malnutrition (Ruel 

2003). Many subsistence farmers rely on diets of mostly maize and sorghum, but the 

inclusion of pulses, like cowpea (Vigna unguiculata) and common bean (Phaseolus 

vulgaris), can help protect populations from AA deficiencies, such as lysine malnutrition. 

For example, traditional sorghum foods in sub-Saharan Africa (SSA) prepared with 
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added cowpea flour showed significantly improved protein/AA and protein digestibility 

compared to food prepared without added cowpea (Anyango et al. 2011). 

These strategies to improve human nutrition using plant-proteins – as opposed to 

animal source proteins – are essential to meeting the needs of a growing human 

population efficiently and sustainably (Day 2013). Chronic human malnutrition has led to 

an increased focus on biofortification of food crops through genetic improvement and 

farm soil health management (Carvalho and Vasconcelos 2013). We must improve the 

sustainable cultivation of pulse crops in addition to cereal crops because they are widely 

consumed, farmers often grow them during different seasons than cereals, and many 

people depend on them for their caloric and nutritional needs. 

A review by Gosling et al. (2006) reported arbuscular mycorrhizal (AM) fungi 

play a role in improving plant nutrition, disease resistance, water use efficiency, soil 

structure and beneficial microorganism activity in natural ecosystems, but they have been 

depleted in many agroecosystems because of farm management practices. Oruru and 

Njeru (2016) highlighted some of the farming practices that could replenish AM fungi 

and be particularly beneficial to smallholder farmers. There are many variables, such as 

crop genetics, involved with harnessing the benefits of AM fungi, and simply adding 

more AM fungi to farm soils has not consistently resulted in improved yield or 

sustainability (Berruti et al. 2015). However, the increased soil stability associated with 

AM fungal activity can enhance global food production systems if farmers select 

genotypes and agricultural practices that support the symbiosis (Ellouze et al. 2014). 

Attention to the management of AM fungi in agroecosystems may also reduce the need 
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for fertilizer applications through improved plant nitrogen and phosphorus uptake (Hodge 

and Fitter 2010) and reduced nutrient leaching (Asghari and Cavagnaro 2011). 

Worldwide, humans consume common bean, by volume, more than any other 

pulse crop, and tropical bean farmers need improved seeds that are optimized for their 

specific issues (Beebe et al. 2014). Cowpea is also an important legume crop in many 

developing countries, but is often grown on poor soil without fertilization – leading to 

subsistence level yields (Ayodele and Oso 2014). However, field research reported as 

many as eight genera of AM fungi associating with cowpeas in SSA (Diop et al. 2015). 

This indicates AM fungi might provide some of the nutrient requirements of cowpeas and 

potentially boost seed nutritional quality. 

Our greenhouse studies assess belowground AM symbiosis with pulse crops 

under commercial and alternative fertility inputs (worm compost, pyrolyzed carbon 

[biochar]), and whether there is a link between the AM association of different genotypes 

and resulting vegetative and seed production and nutrition. This link may provide 

direction for international agricultural development and sustainable cropping systems, 

and improve our understanding of how to incorporate alternative amendments while still 

maintaining high pulse crop yields. 

There are several exciting synergies between AM fungal activity and the use of 

alternative soil fertility amendments. Commercial fertilizers have been used as a means 

of ensuring higher yield in farming systems for decades, however, ecological issues, such 

as eutrophication, have been associated with these inputs (Daigle, 2003). Additionally, 

increased energy, mining, and transportation costs have added external cost burdens to 
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farmers. Fertilizers are critical to improving yields in SSA; however, commercial 

fertilizers represent a substantial cost to farmers (Thurow 2013). Alternatives such as 

worm compost or biochar might improve yields at reduced expense, and need to be 

assessed in soil agroecology experiments. 

Community projects around the world are using worm compost to reduce local 

reliance on external fertility sources (Misra et al. 2003). Chaoui et al. (2003) reported that 

earthworm-based composts (vermicomposts) improved crop-nutrition on par with 

commercial fertilizers, with the additional benefits of slow nutrient release, reduced 

leaching, and protection from salinity stress as compared to commercial fertilizers. A 

review by Cayuela et al. (2013) concluded compost also typically maintains or enhances 

AM fungal root colonization. 

The feasibility of biochar production in developing countries will need to be 

assessed on a case-by-case basis that takes local natural resources into account. For 

example, Duku et al. (2011) concluded that incorporating locally produced biochar into 

agricultural fields in Ghana showed great potential for increasing the sustainability of 

local farming systems. Additional research suggests multiple beneficial outcomes from 

applying biochar in agroecosystems, including improved N-use efficiency in rice (Qian et 

al. 2014), greater AM root colonization in common beans (Vanek and Lehmann 2015), 

and improved water uptake and drought tolerance in wheat (Blackwell et al. 2010). 

For sustainable food production, it is critical to find biochar amendment rates that 

optimize outcomes for particular crops and soil types, as large quantities of biochar have 

been shown to significantly decrease AM fungal root colonization in some systems 



36	
  
	
  

(Warnock et al. 2010). Smaller, yearly additions may avoid this consequence, as soil 

biota and soil chemistry would be affected more gradually. In developing countries, it 

will be important to utilize farm management that relies both on research-based methods 

and local technological capacity (Chambers 1983). Our studies emulate a ‘trench and fill’ 

application method, which applies amendments in proximity to seeds under a shallow 

layer of soil (Filiberto and Gaunt 2013). This method can be utilized with simple hand 

tools in the field. 

With growing interest in incorporating alternative fertility amendments in 

sustainable agriculture and economic development, it is critical to assess the interactions 

of those amendments with different crop genotypes and AM fungi. Our current studies 

evaluate these with an overall goal of linking belowground characteristics with plant 

production and seed nutrition.  

Assessing AM root colonization of crop genotypes and the effect of fertility 

amendments on colonization and seed production are key steps in determining if AM 

symbiosis is critical to sustainable agriculture. The primary objectives of Study 1 were 

(1) to assess AM root colonization for common bean and cowpea genotypes grown in low 

nutrient soil and amended with commercial fertilizers (N&P) or worm compost, (2) to 

assess seed production and nutritional quality (protein and mineral content) of the cowpea 

and common bean genotypes, and (3) to select the genotype with the highest percentage 

of AM root colonization, greatest productivity, and high seed nutritional quality for use in 

Study 2. 



37	
  
	
  

Study 1: We hypothesize cowpeas will be more colonized by AM fungi than 

common beans. Additionally, we hypothesize worm compost amendments will support 

similar production and seed nutrient content, but increased AM fungal root colonization, 

as compared to commercial fertilizers regardless of genotype. Furthermore, we 

hypothesize that genotypes with greater AM fungal root colonization will produce greater 

quantity of seeds with higher total nutrition (protein, minerals) compared to genotypes 

with less colonization in non-amended control. 

If the mycorrhizal association of common bean and cowpea genotypes varies 

significantly, as was observed for grain sorghum genotypes (Chapter 1), AM fungal root 

colonization, productivity, and seed nutritional content will likely also vary across soil 

treatment and genotype. Therefore, we will select a model genotype, which has 

considerable mycorrhizal association and positive response to worm compost, for our 

second experiment. The primary objectives of Study 2 were (1) to assess AM root 

colonization for a genotype selected from Study 1 grown in low nutrient soil with ten 

different fertility amendments (combinations of commercial fertilizers, worm compost, 

and/or biochar), (2) to assess the role of AM fungal symbiosis on vegetative production 

and total tissue nutrition (protein and mineral content) at 45 days post plant emergence, 

and (3) to link productivity and nutrition to the three fertility amendment components 

(commercial fertilizers, compost, biochar) to discover a combination or combinations that 

have similar or improved results compared to typical farm applications. 

Study 2: We hypothesize the selected cowpea genotype (Risina del Trasiorfino) 

will have increased AM fungal root colonization in treatments with biochar and/or worm 

compost compared to corresponding treatments not containing biochar and/or compost, 



38	
  
	
  

and the inclusion of worm compost in any of the treatments will improve vegetative 

production and tissue quality. We also hypothesize that additions of commercial 

fertilizers will result in the greatest growth and tissue quality, however, combining 

biochar and worm compost with 50% of the typical commercial fertilizer rate will result 

in similar or improved plant production and root colonization, as compared to the 

treatment with a 100% rate of commercial fertilizers. Furthermore, we hypothesize that 

increased AM root colonization will improve productivity and tissue quality as compared 

to non-amended control. 

Linking AM fungi, crop genotype, and alternative fertility inputs will expand our 

abilities to improve soil health, food production, and nutritional quality outcomes in 

sustainable farm systems. The practical application of best crop genotypes and 

management practices may increase the benefits of AM fungi in agroecosystems and 

reduce the need for commercial fertilizers – mitigating negative environmental impacts 

while providing human dietary needs. 

 

MATERIALS AND METHODS 

Study 1 experimental setup. A greenhouse study was conducted to assess seed 

production, seed nutrition, and AM root colonization of common bean (Phaseolus 

vulgaris) and cowpea (Vigna unguiculata) genotypes. A randomized complete block 

design was used with four replications. A factorial design included two common bean 

genotypes; two cowpea genotypes; and soil that was not-amended (control), amended 

with commercial fertilizers (N&P), or amended with worm compost. The International 
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Center for Tropical Agriculture in Cali, Columbia provided the common bean genotypes 

(Dicta 105 and Masaai Red), and Baker Creek Heirloom Seeds provided the cowpea 

genotypes (Six-week Purple-hull and Risina del Trasiorfino). Four total replications of 

each genotype were grown in: 1) non-amended native soil (control), 2) native soil with 

fertilization (N and P), and 3) native soil amended with worm compost. The soil was not 

inoculated with additional soil microbes and contained ambient AM fungal propagules. 

Sixty-four Pots with a 26.5 cm diameter and 45cm height were filled with 22 

liters of Renfrow/Grainola (eroded silty clay Mollisol/Alfisol) soil collected from the 

Oklahoma State University Range Research Station (average: pH = 7.4, N = 20 ppm, P = 

3 ppm, K = 154 ppm, OM = 0.88%, Fe = 15.5 ppm, Zn = 2.1 ppm). The Soil, Water, and 

Forage Analytical Laboratory at Oklahoma State University analyzed all soil samples. 

Soil NO3-N and NH4 were extracted by 1M KCl solution and analyzed using the Lachat 

Quickchem 8000 Flow Injection Autoanalyzer (Kachurina et al. 2000). Two grams of soil 

were extracted with 20 ml Mehlich 3 solution for plant available P and K, and the 

concentrations of P and K in the extract were measured by an inductively coupled plasma 

emission spectroscopy (ICP)(Pittman et al. 2005). Soil pH was measured using a pH 

electrode in a 1:1 soil to water suspension. Soil organic matter (SOM) was determined by 

dry combustion using the LECO Truspec CN analyzer (Nelson et al. 1996). 

Study 1 treatments. Monopotassium phosphate (0-52-34) fertilizer was applied at a rate 

equivalent to 100 kg per ha total phosphate and 132 kg per ha total potassium, and 

ammonium nitrate (34-0-0) fertilizer was applied at a rate of 60 kg per ha total nitrogen. 

Potassium chloride (0-0-60) was applied to all non-fertilized pots (at 132 kg per ha rate) 

to ensure uniform potassium across the study. Fertilizers were dissolved in 1 L of water 



40	
  
	
  

prior to application. Worm compost was applied at a rate of 90,000 kg per ha (sample 

average: pH = 6.8, total N = 1.1% [of mass], total P = 0.5%, total K = 0.5%, Total C = 

12.9%, Fe = 6154 ppm, Zn = 610 ppm, moisture = 27.85%) was applied, adding an 

equivalent of 714 kg per ha total N, 357 kg per ha total P, and 357 kg per ha total K. The 

Oklahoma State SWAFL analyzed compost samples to determine composition using the 

methods of Peters et al. (2003). Half of the compost was incorporated under the top 2 

liters of soil in proximity to anticipated seed depth (~2cm), which simulates a field 

application method where soil is pulled back along the planting row to accommodate 

compost inputs before being replaced over the applied compost (Filiberto and Gaunt 

2013). One-half of the fertilizers and compost were applied at the beginning of the study 

and half at first plant bloom to simulate a ‘side-dressing’ field application method 

(Cavigelli et al. 2013). 

Study 1 conditions. Common bean and cowpea seeds were sown directly into moistened 

soil. Upon sprouting, plants were thinned to one plant per pot. Normal watering occurred 

every 2-4 days, as needed. Greenhouse temperature ranged from 19-30 °C. Seeds were 

harvested after maturation and pod drying (multiple pod production cycles were allowed 

for each plant), and seed production (dry weight) was determined. Root samples were 

collected at plant senescence to assess AM root colonization. 

Study 2 experimental setup. A follow-up greenhouse study was conducted to assess 

mycorrhizal response of the selected cowpea genotype (Risina del Trasiorfino) grown 

with alternative agricultural amendments. A randomized complete block design was used 

with six replications. Two cowpea plants were grown in each pot treated with: 1) non-

amended soil (control), 2) soil with 100% typical fertilizer rate (N&P), 3) soil amended 
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with worm compost, 4) soil amended with biochar, 5) soil amended with both worm 

compost & biochar, 6) soil amended with biochar and 150% fertilizer rate, 7) soil 

amended with biochar and 100% fertilizer rate, 8) soil amended with biochar and 50% 

fertilizer rate, 9) soil amended with worm compost & biochar and 150% fertilizer rate, 

10) soil amended with worm compost & biochar and 100% fertilizer rate, and 11) soil 

amended with worm compost & biochar and 50% fertilizer rate. 

Sixty-six pots with a 22 cm diameter and 22 cm height were filled with 7.5 liters 

of sand mixed with Renfrow/Grainola (eroded silty clay Mollisol/Alfisol) soil collected 

from the Oklahoma State University Range Research Station Station in a 2:3 ratio (final 

mix: pH = 7.4, N = 13 ppm, P = 5.6 ppm, K = 118 ppm, OM = 0.40%, Fe = 8.19 ppm, Zn 

= 0.33 ppm). Soil/sand mix was selected to simulate soil texture of on-going field trials. 

The soil was not inoculated with additional soil microbes and contained ambient AM 

fungal propagules. 

Study 2 treatments. In treatments containing commercial fertilizer (N&P), diammonium 

phosphate (18-46-0) and urea (46-0-0) were applied. The 100% typical fertilizer rate was 

established as equivalent to 100 kg per ha total nitrogen and 60 kg per ha total phosphate 

(150% = 150/90 kg per ha, 50% = 50/30 kg per ha). Each treatment containing biochar 

applied a rate of 2290 kg per ha (produced at 500-700 C, pinewood-based, average pH = 

9.49, Total N = 0.66%, Total Ash = 9.2%, Total Organic Carbon = 85.5%, Fe = 3839 

ppm, Zn = 9.2 ppm, moisture = 56.4%). Each treatment containing worm compost 

applied a rate of 4580 kg per ha (average: pH = 7.4, N = 0.53%, P = 0.1%, K = 0.2%, 

Total C = 7.32%, Fe = 5987 ppm, Zn = 51 ppm, moisture = 29.8%) adding an equivalent 

of 17 kg per ha total N, 3.2 kg per ha total P, and 6.4 kg per ha total K. Commercial 
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fertilizers, biochar, and worm compost were applied 24 hours before seeding and 

incorporated below the top 1 liter of soil in proximity to anticipated seed depth (~2cm). 

This procedure simulates a trench and fill field application. 

Study 2 conditions. Cowpea seeds were sown directly into moistened soil. Upon 

sprouting, plants were thinned to two per pot. Normal watering occurred every 2-4 days, 

as needed. Greenhouse temperature ranged from 20-32 °C. Plants were harvested 45 days 

after emergence and plant production (dry weight) was determined. Root samples were 

collected at plant senescence to assess AM root colonization. 

Quantification of seed mineral concentrations. The USDA-ARS Children’s Nutrition 

Research Center in Houston Texas assessed seed Ca, Cu, Fe, K, Mg, P, S, and Zn 

concentrations for each sample. Using methods of Farnham et al. (2011), two subsamples 

(~0.25 g dry weight) of each ground sample were digested and processed for elemental 

analysis. Elemental analysis was performed using inductively coupled plasma–optical 

emission spectroscopy (CIROS ICP Model FCE12). Tissue mineral concentrations were 

determined on a dry mass basis (µg g–1 or mg g–1), and an average value was derived 

from the two sub-samples of each replicate. 

Quantification of protein and tissue quality. The Soil, Water, and Forage Analytical 

Laboratory at Oklahoma State University determined percent protein for seed samples 

and protein and mineral concentrations for tissue samples. Samples were dried at 85ºC 

over night and ground to pass through a 1 mm screen. The moisture content was 

determined gravimetrically following drying each ground sample at 105ºC overnight. 

Total nitrogen (TN) and carbon were determined using a LECO Truspec dry combustion 
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Carbon/Nitrogen Analyzer (Undersander et al. 1993) and crude protein was calculated by 

multiply TN by 6.25. Mineral concentrations (Ca, Fe, K, Mg, P, and Zn) of the forage 

were analyzed by a Spectro Blue ICP following acid digestion (Undersander et al. 1993) 

and calculated in micrograms per gram (ppm). 

Quantification of AM Colonization. Live roots were subsampled, washed, stained with 

trypan blue, and scored for AM colonization using the magnified gridline intersect 

method (Mcgonigle et al. 1990). This method uses a digital microscope (Hirox KH 7700) 

to measure the percentage root length colonized by hyphae, vesicles, coils, and 

arbuscules, which were combined to determine total percent colonization. 

Statistical Analysis. The response variables of AM root colonization, seed production, 

plant biomass production, and protein and mineral concentrations and content were 

analyzed using mixed models methods. The Tukey multiple comparison method was 

utilized for significant effects. All tests of significance were performed at the nominal 

0.05 level. All data analyses were generated using SAS® version 9.4. Copyright © 2013 

SAS Institute Inc. SAS and all other SAS Inc. product of service names are registered 

trademarks of trademarks of SAS Institute Inc., Cary, NC, USA. 

 

RESULTS 

Study 1 

Seed Production. There were not significant differences in seed production among 

genotypes grown in non-amended soil (control), however, commercial fertilizers or 
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compost significantly improved productivity of every genotype compared to the control 

(Figure 2). There was a significant effect of genotype on seed production (Table 1). 

Masaai Red (common bean) and Risina (cowpea) were more productive than the other 

genotypes regardless of treatments, and Risina (which was selected as the genotype for 

use in Study 2) averaged 18.58g (data not shown). 

Seed Protein Concentration and Production. Seed protein concentrations were 

significantly different by treatment and genotype but not by the interaction of treatment 

with genotype (Table 1). Common beans had significantly lower protein concentration 

than cowpeas (Table 1), with the highest concentration in the Purple-hull genotype 

(25.20% ± 0.37) and the lowest concentration in Masaai Red genotype (21.87% ± 

0.39)(data not shown). By combining seed production and seed protein concentration 

data, total seed protein production was calculated in grams. Results followed a similar 

trend to total seed production, with significantly improved protein production for all 

genotypes growth in commercial fertilizer or compost compared to non-amended control 

(Figure 3). Genotype also had a significant effect on protein production (Table 1). Masaai 

Red (common bean) and Risina (cowpea) produced more total protein regardless of 

treatments, and Risina averaged the highest (4.17g)(data not shown). 

AM Root Colonization Percentage. There were no significant differences in AM root 

colonization by the interaction of treatment and genotype (Figure 1). However, there was 

an overall significant contrast (Table 1) between common beans and cowpeas. Roots of 

cowpea genotypes were more highly colonized by AM fungi regardless of treatments, 

and Risina was the most highly colonized (47.8%)(data not shown). 



45	
  
	
  

Seed Mineral Concentrations and Content. There were significant differences in seed 

mineral concentrations by genotype origin (Table 2) with common beans having a higher 

concentration of calcium and potassium than cowpeas, but cowpeas having a higher 

concentration of copper, magnesium, phosphorus, and zinc compared to common beans. 

Seed mineral concentrations were also significantly different by treatment (Table 2) with 

compost or commercial fertilizers increasing iron, phosphorus, and magnesium 

concentrations compared to non-amended control but decreasing copper, while 

commercial fertilizers decreased zinc and compost decreased calcium concentration 

compared to other treatments. There were no significant differences in sulfur 

concentrations by genotype or treatment, but there were significant differences by the 

interaction of those factors (Table 2) with the highest concentrations in Masaai Red and 

Risina when they were grown in soil treated with commercial fertilizers or compost. 

By combining seed production and mineral concentration data, total seed content 

for each mineral was calculated in grams. Differences in mineral contents followed 

similar trends across most of the analyzed minerals, with some significant differences 

(Table 2). Common bean genotypes had higher total seed calcium and potassium content 

compared to cowpeas, while cowpea genotypes had significantly higher total seed zinc 

content. There was also a significant genotype effect for some minerals (Table 2) with 

Masaai Red and Risina having more copper, iron, and sulfur content as compared to other 

genotypes and Masaai Red, Risina, and Purple-hull having more magnesium and 

phosphorus content as compared with Dicta 105. 
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Study 2 

Vegetative Production at 45 Days. Plants treated with commercial fertilizers, regardless 

of rate, produced significantly more vegetative biomass following 45 days of growth 

compared to non-amended control plants or plants treated with only compost and/or 

biochar (Figure 5). Orthogonal contrasts for the eight treatments containing biochar 

determined that, when included, worm compost did not have a significant effect on 

production within those treatments and the significant differences within those treatments 

were the result of including commercial fertilizers. 

Plant Tissue Protein Concentration and Production. Tissue protein concentrations 

were significantly different by treatment, with the combination of biochar, compost, and 

a 150% rate of commercial fertilizers resulting in the highest tissue protein concentrations 

(16.77% ± 0.93) and the combination of biochar with a 50% rate of commercial fertilizers 

resulting in the lowest concentration (11.13% ± 0.85)(data not shown); however, no 

treatments resulted in protein concentrations that were significantly different from plants 

grown in non-amended soil. Orthogonal contrasts for the eight treatments containing 

biochar determined that, both worm compost and/or commercial fertilizers significant 

increased protein concentration compared to treatments without compost and/or 

commercial fertilizers. By combining vegetative production and plant tissue protein 

concentration data, total protein production was calculated in grams. There was a 

significant difference between treatments, with several of the biochar blends producing 

significantly more total protein compared to the control (Figure 6). Orthogonal contrasts 

for the eight treatments containing biochar determined that inclusion of commercial 

fertilizers significantly increased total protein production. For those eight treatments, the 
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inclusion of worm compost also significant increased total protein production by an 

average of 0.12g. 

AM Root Colonization. Compared to control, there were not significant treatment 

effects on cowpea root colonization by AM fungi; however, the biochar treatment had the 

highest average colonization (Figure 4). Orthogonal contrasts for the eight treatments 

containing biochar determined that, when included, commercial fertilizers significantly 

decreased overall AM root colonization, while worm compost did not have a significant 

effect on root colonization for these treatments. 

Plant Tissue Mineral Concentrations and Total Content. Tissue mineral 

concentrations were significantly different by treatment for calcium, potassium, 

magnesium, phosphorus, and zinc but not iron. Various combinations of biochar, worm 

compost, and commercial fertilizers resulted in the highest tissue concentrations of 

calcium, potassium, and phosphorus compared to the lowest concentrations for the non-

amended control, except with zinc where use of fertilizer by itself resulted in the lowest 

tissue concentration and magnesium where amendment with only worm compost resulted 

in the lowest concentration. By combining vegetative production and tissue mineral 

concentration data, total tissue content of each mineral was calculated in grams. The total 

plant mineral content followed similar trends across all analyzed minerals, with 

significant differences resulting from the addition of fertilizers (Table 3). Orthogonal 

contrasts for the eight treatments containing biochar determined that treatments 

containing worm compost increased total potassium and zinc content compared to 

treatments without worm compost. 
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DISCUSSION 

In Study 1, the cowpea genotypes hosted a higher percentage of AM fungal root 

colonization as compared to common beans, as we hypothesized. The difference in root 

colonization did not appear to have an effect on crop performance as the common bean 

genotype Masaai Red and the cowpea genotype Risina del Trasiorfino had similar total 

seed production and nutritional content, regardless of treatment, and outperformed the 

other genotypes overall. This did not support our hypothesis, as we hypothesized greater 

AM root colonization would improve seed production and nutritional content 

(particularly in non-amended soil). Treatment with worm compost did not increase AM 

root colonization as we hypothesized. Cavagnaro (2015) proposed that because plants 

differ in their dependence on AM symbiosis, application of composts on different plant 

species often results in a range of production outcomes. Because legumes use a C3 

photosynthetic pathway, and C3 plants are generally less mycorrhizal responsive 

compared to C4 species, it is possible these results would differ for C4 crops such as corn 

and sorghum (Wilson and Hartnett 1998). Previous research found significant 

correlations between AM fungal root colonization of grain sorghum genotypes in low 

fertility soil and total grain mineral content for key elements like iron, phosphorus, 

magnesium, and zinc (Chapter 1); however, there were no significant correlations 

between root colonization and these minerals for common bean and cowpea genotypes. 

Worm compost supported similar productivity and seed nutritional content as 

compared to commercial fertilizers, as we hypothesized, and both fertility amendments 

significantly improved these responses as compared to control. These results concur with 

Chaoui et al. (2003) and Cayuela et al. (2013) and partially support our hypothesis. The 



49	
  
	
  

general lack of significant differences in seed micronutrient concentration or content 

between worm compost and commercial fertilizer treatments is noteworthy because 

worm compost contains additional micronutrient content that is not supplied by 

commercial N&P fertilizers. For example, previous research assessing compost with high 

levels of zinc, as compared to conventional fertilizers not containing zinc, did not detect 

significant productivity or grain zinc differences in corn (Hirzel and Walter 2015). This 

suggests that some crops or genotypes have a limited need or uptake capacity for zinc, 

and additions via compost will not always result in more zinc content in the seeds. 

Although the common bean genotype Masaai Red and cowpea genotype Risina 

produced similar seed quantity and nutritional quality, Risina was characterized by 

greater AM colonization and seed zinc content. Therefore, we selected Risina as the 

model genotype for Study 2. The additional seed zinc content we assessed may link with 

the greater AM root colonization of the cowpea genotypes. There is growing evidence for 

improved plant zinc uptake via the mycorrhizal pathway (Lehmann et al. 2014; Smith and 

Read 2010). Because it is relatively immobile in soil, the additional AM fungi hosted in 

the cowpea roots may have improved plant acquisition of zinc. 

In Study 2, we assessed fewer significant differences in AM root colonization 

between different treatments than we hypothesized. While treatments containing higher 

rates of commercial fertilizer had significantly reduced colonization compared to the 

biochar only treatment, neither was significantly different from non-amended control. 

Treseder and Allen (2002) and Johnson et al. (2006) discuss that AM fungi have 

substantial N&P requirements for their own physiological function; therefore low soil 

fertility can constrain their abundance and, alternatively, high soil fertility often causes 
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the plants to reduce carbon allocation to the fungal partner. This suggests an optimal zone 

of soil fertility exists in which AM abundance can be enhanced through careful farm soil 

nutrient management (Figure 7). This may also indicate that less mycorrhizal responsive 

C3 species have a narrow optimal zone of mycorrhizal benefit. We proposed that some of 

our study’s treatments (with commercial fertilizers) resulted in excessive soil N&P with a 

resultant loss of AM fungi, while some treatments (non-amended, compost only) resulted 

in insufficient soil N&P and AM fungi could not be adequately supported. 

The relatively high AM root colonization following biochar amendment may 

suggest biochar intensified plant nutrient limitation through nutrient absorption from the 

surrounding soil. Observations of AM fungi mining biochar, and 33P radiotracers have 

traced P movement from biochar into plant tissue via AM symbiosis (Hammer et al. 

2014). These results led researchers to advocate the potential of combining biochar and 

AM fungal management – utilizing the symbiont to access nutrients from the biochar 

reservoir. Our results may also indicate that biochar can boost host plant root colonization 

by AM fungi and concurs with Vanek and Lehmann (2015). 

When looking at biochar research, it is difficult to make general conclusions 

about how a particular plant-soil-microbial system will be impacted because of variable 

biochar characteristics (Keiluweit et al. 2010). A meta-analysis of biochar use in 

agriculture reported amendments typically resulted in significantly increased 

aboveground plant productivity, crop yield, rhizobia nodulation, and key nutrient 

concentrations, however, belowground productivity and percent AM root colonization 

were typically not significantly different from non-amended plants (Biederman and 

Harpole 2013). Lehmann et al. (2011) explained that cases where AM fungi abundance is 
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decreased by biochar are likely related to soil enrichment with plant-available nutrients. 

The range of biochar physical and chemical properties are affected by production 

temperature, time, and biomass inputs and can result in biochar that provides substantial 

nutrient additions to soil systems or is relatively resistant to microbial breakdown (Singh 

et al. 2010; Zimmerman 2010). The biochar we selected for our experiment was produced 

at high temperature and was therefore composed primarily of carbon and insoluble 

elements that would not be expected to significantly enrich soil N&P or reduce AM 

fungal root colonization. 

Our results also indicate that worm compost can improve plant protein production 

and zinc content when combined with biochar and fertilizers. Compost can add zinc 

directly to zinc deficient soil. In comparison, we did not observe increases in zinc uptake 

following compost amendments in Study 1. However, soil zinc was 6.36 times more 

abundant, in Study 1, compared to the soil used in our second study. Meta-analysis of the 

influence of AM fungi on zinc mobilization and crop plant nutrition concluded fungal 

mediation was affected by soil zinc concentration (Lehmann et al. 2014) and that AM 

fungi generally improved crop plant zinc nutrition. 

Alternative fertility inputs (biochar, compost) improved fertilizer efficiency in 

Study 2. Compared to the 100% rate of commercial fertilizers, the combination 

containing biochar or biochar & worm compost with 50% rate of commercial fertilizers 

produced similar vegetative biomass, protein, and tissue mineral content, as we 

hypothesized. This indicates that some of the cost of soil fertility management with 

commercial fertilizers may be replaced by locally produced worm compost and biochar. 
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This would also provide small business opportunities for the manufacturing of these 

products in developing countries (Hoornweg et al. 1999; Scholz et al. 2014). 

There is potential for biochar to mitigate GHG production by reducing N2O 

emissions in agroecosystems (Thomazini et al. 2015). Across a range of soil types, 

biochar addition significantly reduced N2O emission (from 10% to 90% reduction) in a 

denitrification incubation study (Cayuela et al. 2013). The authors hypothesized the 

physical and chemical characteristics of the biochar facilitate the conversion of N2O to N2 

gas. Lehmann et al. (2011) proposed that freshly produced biochars might release 

ethylene compounds that are partially responsible for observed alterations of soil 

microbial processes such as denitrification; potentially reducing human-induced climate 

change in addition to boosting agroecosystem efficiency. 

 

CONCLUSION 

Cavagnaro et al. (2015) reported that AM fungi can promote wide-scale sustainable 

nutrient cycling and use-efficiency directly through plant uptake and soil nutrient 

stabilization. In both our studies percent AM root colonization did not drop below 20%, 

regardless of treatment or genotype. Hosting AM fungi represents a substantial carbon 

cost to the plant, and indicates that there are enough benefits to compensate for the price. 

In Study 1, differences in seed production and nutritional quality were not observed 

between the more highly colonized cowpea genotypes and the less colonized common 

bean genotypes. In Study 2, AM root colonization was not highly variable between 

treatments; therefore we did not detect significant differences in production/nutrition that 
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could be attributed to the symbiosis. However, in previous experiments, where 

suppression of AM fungi was utilized to assess the role and strength of the symbiosis, 

bean plants were typically dependent on AM fungi except in high fertility soils (Ortas and 

Akpinar 2006; Yaseen et al. 2013). We propose that AM fungi were benefitting the pulse 

crops in our experiments and more research is needed to assess the interaction of AM 

fungi with plants grown in soil amended with compost and biochar. 

 For pulse crops, there are clear benefits to utilizing these alternative 

fertility amendments, to efficiently improve production and nutritional quality. 

Commercial fertilizers improved almost every production/nutrition factor we assessed, 

however, the rate of fertilization could be reduced to half the typical application without 

significant reductions in production/nutrition when the commercial fertilizers were 

combined with compost and/or biochar. This may provide a global benefit, in addition to 

reducing fertilizer costs and improving soil health, if farmers begin to apply yearly 

additions of biochar and compost along with commercial fertilizers. Government 

agencies, development organizations, and farmer interest groups should invest in training 

local producers to utilize these alternative inputs as a poverty reduction strategy. 
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TABLES AND FIGURES 

 

 Table 1. P-values of the fixed effects and contrasts of Study 1.   

 Fixed Effects & Contrasts:  Genotype = G, Treatment = T, Genotype Origin* = GO 

 Fixed Effects 
Seed 
Production 

Seed Protein 
Concentration 

Total Seed 
Protein 

Root 
Colonization 

 G   0.0022 <0.0001   0.0072   0.0402 

 T <0.0001 <0.0001 <0.0001   0.7096 

 G x T   0.0921   0.1437   0.1909   0.6554 

 Contrasts         

 GO   0.1570 <0.0001   0.9038   0.0071 

 GO x T   0.2737   0.7293   0.5241   0.5216 

 *Genotypes were categorized by origin: common beans (Dicta 105 & Masaai Red)             
 and cowpeas (Purple-hull & Risina del Trasiorfino). 
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 Table 2. P-values of the seed mineral concentrations and total seed mineral contents of Study 1.   

 Fixed Effects & Contrasts:  Genotype = G, Treatment = T, Genotype Origin* = GO 

 

Ca Cu Fe K Mg P S Zn 

 Fixed Effects Seed Mineral Concentrations 

 G <0.0001 <0.0001   0.0793 <0.0001 <0.0001   0.0003   0.1683 <0.0001 
 T   0.0001 <0.0001   0.0003   0.0803   0.0035 <0.0001   0.5944   0.0056 
 G x T   0.3080   0.0081   0.0005   0.1636   0.0180   0.0215   0.0112   0.0864 

 Contrasts                 
 GO <0.0001   0.0002   0.8756 <0.0001 <0.0001 <0.0001   0.7182 <0.0001 
 GO x T   0.0973   0.3592 <0.0001   0.1488   0.0146   0.0015   0.0065   0.4100 

 

Total Seed Mineral Contents 

 G   0.0006   0.0102   0.0002   0.0002   0.0027   0.0115   0.0050   0.0106 
 T <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
 G x T   0.4512   0.6470   0.0078   0.0396   0.0812   0.1448   0.0915   0.2287 

 Contrasts                 
 GO <0.0001   0.2224   0.0215   0.0008   0.5155   0.5675   0.0875   0.0157 
 GO x T   0.2290   0.6478   0.0052   0.0808   0.8690   0.1566   0.1228   0.7976 

 *Genotypes were categorized by origin: common beans (Dicta 105 & Masaai Red) 
 and cowpeas (Purple-hull & Risina del Trasiorfino). 
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 Table 3. Total cowpea (Risina) plant tissue mineral content (mg) by treatment.   

 Treatments:  CON = Control, WC = Worm compost, B = Biochar, NP = Nitrogen & Phosphorus fertilizers (% Rate) 

 Treatment Ca Fe K Mg P Zn 

 CON 14.8d 0.09c 21.8c 3.6d 2.1d 0.03d 

 WC 24.5cd 0.14c 31.6bc 5.6bcd 3.5cd 0.05bcd 

 B 18.8d 0.14c 25.9c 4.7cd 2.9d 0.04cd 

 WC + B 30.9cd 0.20bc 37.9bc 6.7bcd 5.0bcd 0.07bc 

 NP 100% 59.5ab 0.29ab 42.6abc 16.2a 5.5bcd 0.07abc 

 B + NP 150% 71.0a 0.41a 62.7ab 20.3a 10.1a 0.10a 

 B + NP 100% 60.1ab 0.40a 55.3ab 16.2a 7.4abc 0.08abc 

 B + NP 50% 48.1abc 0.27abc 48.0abc 12.9abc 7.8ab 0.08ab 

 WC + B + NP 150% 67.8a 0.40a 70.5a 18.9a 9.1a 0.10a 

 WC + B + NP 100% 63.5a 0.37ab 70.5a 17.1a 10.2a 0.12a 

 WC + B + NP 50% 57.6ab 0.32ab 65.6a 13.9ab 8.3ab 0.11a 

 Within a column, means that do not share a letter are significantly different (P < 0.05). 
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Figure 1. Seed production in grams of common bean and cowpea genotypes grown in 

soil that was non-amended (control) or amended with commercial fertilizers or worm 

compost. From left to right, genotypes are common beans (Dicta 105 and Masaai Red), 

cowpeas (Purple-hull and Risina). Bars represent means, + SE (n = 4). Bars that do not 

share a letter are significantly different (P < 0.05).  
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Figure 2. Seed protein production of common bean and cowpea genotypes grown in soil 

that was non-amended (control) or amended with commercial fertilizers or worm 

compost. From left to right, genotypes are common beans (Dicta 105 and Masaai Red), 

cowpeas (Purple-hull and Risina). Bars represent means, + SE (n = 4). Bars that do not 

share a letter are significantly different (P < 0.05).  
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Figure 3. Percent AM root colonization of common bean and cowpea genotypes grown 

in soil that was non-amended (control) or amended with commercial fertilizers or worm 

compost. From left to right, genotypes are common beans (Dicta 105 and Masaai Red), 

cowpeas (Purple-hull and Risina). Bars represent means, + SE (n = 4). Bars that do not 

share a letter are significantly different (P < 0.05).  
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Figure 4. Total vegetative production (dry weight) of Risina (cowpea) grown in non-

amended (control) or amended soils. Bars represent means, + SE (n = 6). Bars that do not 

share a letter are significantly different (P < 0.05).  
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Figure 5. Total plant tissue protein of Risina (cowpea) grown in non-amended (control) 

or amended soils. Bars represent means, + SE (n = 6). Bars that do not share a letter are 

significantly different (P < 0.05).  

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Figure 5 

a 

cde 

abc 

de 

bcd 

de 

abc 
ab 

e 

ab 

T
is

su
e 

Pr
ot

ei
n 

(g
) 

Biochar Blends Compost +  
Biochar Blends 

Fertilizer Rates Fertilizer Rates 

cde 



65	
  
	
  

 

Figure 6. Percent AM root colonization of Risina (cowpea) grown in non-amended 

(control) or amended soils. Bars represent means, + SE (n = 6). Bars that do not share a 

letter are significantly different (P < 0.05).  
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Figure 7. Arbuscular mycorrhizal fungi have substantial N&P requirements for their own 

physiological function, and low soil fertility can constrain their abundance while high soil 

fertility can result in reduced plant carbon allocation to the fungal partner. This suggests 

an optimal zone of soil fertility exists in which mycorrhizal fungal abundance can be 

enhanced through careful farm soil nutrient management. 

Low High 

AM fungi are N&P limited 

Plants are  N&P limited 
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carbon limited 
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Figure 7. Recreated from Treseder & Allen (2002) and Johnston et. al (2010). 
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CHAPTER III 
 

 

Grain quality and soil microbial assessments of hybrid and open-pollinated 

sorghums: Linking farm fertility inputs, cropping systems, and genotype 

 

ABSTRACT: Four genotypes of grain sorghum (two hybrids and two open-pollenated 

genotypes) were assessed for grain production, protein and mineral concentrations, and 

grain physical and starch quality characteristics, as well as their influence on soil 

microbial communities, particularly inter- and extra-radical arbuscular mycorrhizal (AM) 

fungi, in a field trial at two sites. All genotypes were grown as sole crops, while one 

hybrid and one open-pollinated genotype were also intercropped with cowpea to compare 

results between the two farm management systems. All genotypes were grown in low-

fertility soils at Oklahoma State University Wes Watkins Research and Extension Center 

(Lane, Oklahoma, USA) and the Samuel R. Noble Foundation (Ardmore, Oklahoma). We 

established three treatments: a non-amended control, commercial fertilizers (N&P), and 

worm compost. Genotype had a significant effect on grain nutritional quality, and grain 

physical characteristics, with the open-pollinated genotypes characterized by higher Ca, 

Mg, P, S, and protein concentrations, compared to hybrid genotypes, and hybrid 

genotypes characterized by a higher proportion of grain amylose and completely 

hydrolysable starch, regardless of fertilizer or management treatment. Intercropping
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and/or amendment with worm compost generally resulted in similar or improved grain 

quality as compared to sole cropping and/or amendment with commercial fertilizers. 

Differences were detected in the microbial communities associated with different 

genotypes, and there a higher fungal to bacterial biomass ratio present following 

amendment with worm compost. Grain production was not significantly different 

between genotypes or treatments, but percentage AM root colonization was significantly 

greater for plants grown in soil amended with worm compost, as compared to commercial 

fertilizers. 

 

INTRODUCTION 

Sorghum bicolor (also called milo) has been, by some accounts, cultivated in sub-Saharan 

Africa and South Asia for over 5000 years (De Wet and Harlan 1971). Annual production 

in the US was estimated at nearly 11 million Mt in 2014 (USDA 2015) and over 15 

million Mt in 2015 (USDA 2016). While the high tannin content of many grain sorghum 

genotypes generally reduces protein digestibility for humans and animals, high grain 

antioxidant content may also provide health benefits for people with adequate dietary 

protein (Wong et al. 2010). Enhancing grain sorghum nutritional quality is an important 

breeding consideration (Taylor et al. 2014), as this would benefit farming communities 

around the globe. Additionally, understanding the variation in starch characteristics 

between different genotypes is key to improving sorghum use in various food products 

(Kaufman et al. 2013a). Interest in reducing or eliminating dietary gluten and an increase 

of celiac disease is also driving current sorghum research. Sorghum cultivation in many 



69	
  
	
  

developing countries provides opportunities to address global nutrition security by 

improving breeding and biofortification strategies to produce the most beneficial and 

locally appropriate genotypes and farm systems for sustainable sorghum production. 

Fertilizers are critical to improving yields in sub-Saharan Africa (SSA) but 

represent a substantial cost to farmers (Thurow 2013), so alternative inputs like worm 

compost may provide a way to improve yield and soil health while reducing costs. 

Chaoui et al. (2003) reported that earthworm-based composts (vermicomposts) reduced 

nutrient leaching, as compared to commercial fertilizers, while maintaining yield. 

Arbuscular mycorrhizal (AM) fungi form beneficial associations with as many as 

80% of land plants. A review by Gosling et al. (2006) reported AM fungi improve plant 

nutrition, disease resistance, and water use efficiency in natural ecosystems, with the 

potential to improve agricultural production while reducing the rate of fertility inputs. 

Arbuscular mycorrhizal fungi present a great opportunity to make global agriculture more 

efficient, more sustainable, and more productive (Ellouze et al. 2014; Rodriguez and 

Sanders 2015). 

The major goals of sorghum breeding and genetics programs are often to develop 

superior seed-lines with improved grain production and disease resistance. However, 

breeding efforts to improve sorghum genotypes for grain production may have 

inadvertently reduced positive plant-fungal relationships. It is critical to assess not only 

the productivity and grain characteristics of sorghum genotypes, but also their influence 

on soil microbial communities, including interactions with AM fungi, as microbial 

communities serve as a link between soil health and agricultural sustainability. 
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An analysis assessing soil erosion suggests that losses are occurring between 30 

and 40 times faster than natural replenishment in many countries (Pimentel 2006). The 

contribution of AM fungi to soil aggregate formation, soil stability, and soil carbon 

sequestration could be as important as its contribution to crop nutrition, because AM 

hyphal structures can physically entangle soil particles and improve structure and carbon 

sequestration (Willis et al. 2013). The fragile state of many tropical and subtropical soils 

infer an increase in AM fungal abundance through selection of responsive crop genotypes 

and best management practices, may globally stabilize food production systems by 

enhancing soil organic matter and plant nutrient use efficiency (Andrews et al. 2012; 

Ellouze et al. 2014). 

Reactive nitrogen pollution is projected to more than double current levels by 

2050, and strategies to improve the efficient use of nitrogen in agriculture are critical to 

environmental conservation efforts (Bodirsky et al. 2014; Tilman et al. 2002). There is 

evidence that mycorrhizal association with legumes improves the fixation of atmospheric 

nitrogen and reduces leaching of mineralized nitrogen (Veresoglou et al. 2012). A review 

by Cavagnaro et al. (2015) reported AM fungi can promote wide-scale sustainable 

nutrient cycling and use-efficiency by facilitating plant uptake and by intercepting and 

incorporating excess nutrients into soil microbial networks. 

Many experts calculate world phosphorus reserves to be within 5-10 decades of 

exhaustion (Chen and Graedel 2016). The agricultural practice of intercropping may 

increase root and soil microbial interactions and the exploration of diverse soil horizons; 

thereby efficiently mobilizing more soil phosphorus (Hinsinger et al. 2011). Phosphorus 

is a key soil nutrient provided to plants through the mycorrhizal pathway (Smith and 
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Read 2010), and soil phosphorus limitation has been reported to increase sorghum AM 

fungal root colonization (Yoneyama et al. 2007) while plant benefits diminish with high 

phosphorous inputs (Richardson et al. 2011). Our research seeks to harness the benefits 

of AM fungi to improve crop nutrient-use efficiency. Previous assessment of these grain 

sorghum cultivars (Chapter 1) indicated a significant difference in their reliance on the 

AM symbiosis for acquisition of soil phosphorus and other limiting resources, with open-

pollinated African sorghums nearly 3 times as responsive to AM root colonization for 

grain production and nutritional content. The current study will extend our understanding 

of the farm-scale effects of sorghum genotypes (two hybrid and two open-pollinated) on 

the abundance of inter- and extra-radical AM fungi. 

Additionally, we will assess whether alternative planting systems (intercropping) 

and fertility amendments (worm compost) maintain or enhance plant-microbial 

partnerships, crop yields, and grain quality. We established three treatments: a non-

amended control, commercial fertilizers (N&P), and worm compost. All genotypes were 

grown as sole crops, while one hybrid and one open-pollinated genotype were also 

intercropped with cowpea (Vigna unguiculata) to assess these two farm management 

systems. Intercropping legume and grain crops has been reported to increase iron and 

zinc concentrations in seeds (Zuo and Zhang 2009). Globally, iron and zinc deficient 

diets affect as many as 35% of all children aged 0 to 5 and have severe negative health 

consequences (Yang et al. 2007).  

The primary objectives of this study were to (1) assess the productivity and grain 

quality of hybrid and open-pollinated sorghum genotypes grown in low nutrient soil with 

commercial fertilizers and worm compost, (2) to assess yield and grain quality 
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differences between sole crop sorghum and sorghum intercropped with cowpea (3) to 

assess the relative abundance of microbial community functional groups, including AM 

fungi, associated with each genotype, treatment, and cropping system combination using 

phospholipid/neutral lipid fatty acid (PLFA/NLFA) analysis, and (3) to assess the 

potential role of AM fungal colonization on sorghum grain production and nutritional 

quality. 

Because previous research suggests worm compost improves AM fungal 

diversity, abundance, and plant-benefits (Cayuela et al. 2013; del Mar Alguacil et al. 

2009; Zhang et al. 2012), we hypothesized the worm compost amendment would increase 

the abundance of intra- and inter-radical AM fungi associated with each sorghum 

genotype as compared to commercial fertilizers and non-amended control. We also 

hypothesized an increase in intra- and inter-radical AM fungi associated with the 

genotypes intercropped with cowpea compared to corresponding sole crops of those 

genotypes. Additionally, we hypothesized increased intra- and inter-radical abundance of 

AM fungi associated with open-pollinated genotypes, as compared to hybrid genotypes; 

we further hypothesized any significant increase in AM fungal abundance would result in 

significantly increased yield and grain nutritional quality, but not in changes to grain 

physical and starch characteristics. 

 

MATERIALS AND METHODS 

Experimental Setup. A modified completely randomized split-plot design, with four 

genotypes and three treatment combinations, was established for four sole crop sorghum 
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genotypes (hybrid genotypes were Dekalb [54-00] and Pioneer [84G62]; open-pollinated 

genotypes were Ajabsido [MNO9-7018] and Macia [PRO9110-4319]), while two 

genotypes (Dekalb and Macia) were also intercropped with the cowpea genotype Risina 

del Trasiorfino. The sorghum breeding and genetics program at Kansas State University 

provided all sorghum seed. All genotypes were grown in low-fertility soils at Oklahoma 

State University Wes Watkins Research and Extension Center (Lane, Oklahoma, USA) 

and the Samuel R. Noble Foundation (Ardmore, Oklahoma) were planted in April 2014. 

Three treatments: a non-amended control, commercial fertilizers (N&P), and worm 

compost, each with six replications were established at both field sites. Collection of 

grain, root, and soil samples occurred in August 2014. 

Sorghum genotypes were planted in 16m rows (10 cm seed-spacing, 76 cm row-

spacing) with an east/west orientation. Additional rows of Dekalb and Macia were 

planted as buffers to separate open-pollinated and hybrid genotypes as well as treatment 

borders. Cowpea was planted in two 16 m rows (20 cm seed-spacing, 76 cm row-spacing) 

between Macia and Dekalb for the intercrop portions. Six replicated plots of 12 seeded 

rows (Buffer, Dekalb, Pioneer, Buffer, Buffer, Ajabsido, Macia, Macia, Cowpea, 

Cowpea, Dekalb, Buffer) were planted at each field site using an Earthway 1001-B 

Precision Seeder®. Treatment applications were completely randomized as 4.0 m x 9.12 

m blocks across the twelve rows in each plot, and 2.0 m buffers separated treatment 

blocks. Sampling was confined to the middle two meters of each row. 

Soil and treatments. Eight soil samples containing 5 g were taken from both fields 

before experimental set up to determine baseline relative abundance of microbial 

functional groups and total microbial biomass at both sites (Figure 1 & Figure 2). Field 
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soils were analyzed for plant available nutrients, pH, and organic matter (Lane site: pH = 

6.3, N = 14 ppm, P = 17 ppm, K = 80 ppm, OM = 1.4%; Ardmore site: pH = 5.9, N = 10 

ppm, P = 5.1 ppm, K = 128 ppm, OM = 1.8%) by the Soil, Water, and Forage Analytical 

Laboratory (SWOFL) at Oklahoma State University. Soil NO3-N and NH4 were extracted 

by 1M KCl solution and analyzed using the Lachat Quickchem 8000 Flow Injection 

Autoanalyzer (Kachurina et al. 2000). Two grams of soil were extracted with 20 ml 

Mehlich 3 solution for plant available P and K (Mehlich 1984), and the concentrations of 

P and K in the extract were measured by an inductively coupled plasma emission 

spectroscopy (ICP)(Pittman et al. 2005). Soil pH was measured using a pH electrode in a 

1:1 soil to water suspension. Soil organic matter (SOM) was determined by dry 

combustion using the LECO Truspec CN analyzer (Nelson et al. 1996). 

The Ardmore site was converted from perennial rangeland two years prior to our 

study (Wilson silt loam, Alfisol); the Lane was in agricultural production for > 30 years 

prior to establishing our study (Bosville fine sandy loam, Alfisol). Commercial fertilizer 

treatments consisted of diammonium phosphate (DAP; 18-46-0) applied with a total 

target rate of 60 kg per ha phosphate combined with ammonium nitrate (34-0-0) applied 

with a total target rate of 100 kg per ha nitrogen. Potassium was applied to all plots as 

potash (0-0-60) with a total target rate of 132 kg per ha, to ensure uniform potassium for 

all plants. Worm compost was applied at a rate of 2100 kg per ha (pH = 7.2, total N = 

0.77%, P = 0.3%, K = 0.3%, total C = 9.96%, moisture = 27.9%), adding an equivalent of 

16.17 kg per ha total N, 6.3 kg per ha total P, and 6.3 kg per ha total K. The Oklahoma 

State SWAFL analyzed compost samples to determine composition using the methods of 

Peters et al. (2003). 
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All seeds were treated with Poncho™ (clothianidin) systemic agent for pest 

protection and Concep® (fluxofenim) herbicide antidote to allow the use of DUAL® (S-

metolachor) as a pre-emergent weed control applied at rate of 1.52L per ha. The 

Oklahoma Mesonet (Brock et al. 1995; McPherson et al. 2007) stations at Ardmore and 

Lane were used to track minimum levels of plant available water at soil depths from 10-

80 cm throughout the season (Table 1). Grain was harvested after maturation, and 

average production of each sample row was determined by collecting multiple grain 

heads and dividing grain dry weight by total number of plants harvested. 

Quantification of grain and starch characteristics. The USDA-ARS Center for Grain 

and Animal Health Research in Manhattan, Kansas, USA determined, grain hardness, 

moisture, diameter, weight, protein, protein digestibility, starch granule size distribution, 

and amylose/amylopectin ratios. Hardness was determined (Single Kernel 

Characterization System) by crushing the grain, which then was then recovered and 

utilized in the other quality evaluations, see Kaufman et al. (2013b). Subsamples of the 

crushed material were used to determine total protein using N combustion (Leco N 

combustion analyzer) and total starch (Megazyme total starch analysis). Sorghum protein 

digestibility was assessed using methods of Wong et al. (2009) and completely 

hydrolyzed starch percentage was evaluated using modified methods from Zhao et al. 

(2009). Starch was isolated from the crushed grain using the method of Park et al. (2006). 

Starch granule size distribution (laser diffraction analysis) (Wilson et al. 2006) and 

amylose/amylopectin ratios (dual wavelength iodine binding) (Kaufman et al. 2015) were 

assessed. Correlations of all protein and starch analyses were evaluated against variations 

in total digestibility. 
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Quantification of mineral concentrations. The USDA-ARS Children’s Nutrition 

Research Center in Houston, Texas assessed grain mineral concentrations for some of the 

minerals that are critical for human and animal health (Ca, Cu, Fe, K, Mg, P, and Zn). 

Using methods of Farnham et al. (2011), two subsamples (~0.25 g dry weight) of each 

ground sample were digested and processed for elemental analysis. Elemental analysis 

was performed using inductively coupled plasma–optical emission spectroscopy (CIROS 

ICP Model FCE12). Tissue mineral concentrations were determined on a dry mass basis 

(µg g–1 or mg g–1), and an average value was derived from the two sub-samples of each 

replicate. 

Quantification of Soil Microbial Communities. Relative abundances of soil microbial 

functional groups (gram- positive and negative bacteria, AM and saprophytic fungi), and 

total microbial biomass were assessed using phospholipid fatty acid (PLFA) and neutral 

lipid fatty acid (NLFA). At harvest, soil was collected from the rhizosphere of each plant 

sampled for grain measurements. Phospholipid fatty acid and neutral lipid fatty acid 

(NLFA) analyses were extracted from the soil using a modification of the Bligh and Dyer 

(Bligh and Dyer 1959) extraction (White and Ringelberg 1998). Total lipid extracts were 

separated into PLFA's and NLFA's using silicic acid chromatography; the fatty acids 

cleaved from the glycerol backbone using KOH saponification; and the harvested fatty 

acids methylated to form fatty acid methyl esters (FAME) (Allison and Miller 2005; 

White and Ringelberg 1998). The FAME's were then analyzed by gas chromatography 

and mass selection detection using a GCMS unit Agilent MS 5975C/GC 7890A. 

Biomarkers used to select for the functional group of gram-positive bacteria consisted of 

i-15:0, a-15:0, i-17:0, and i-16:0. For gram-negative bacteria, selected biomarkers were 
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16:1ω7, cy19:0, cy17:0ω9, 2-OH 14:0, 2-OH 16:0, 3-OH 14:0, and 18:1ω9 trans. For 

inter-radical AM fungal biomass, biomarkers consisted of 16:1ω5c, 20:1ω9, and 

22:1ω13. Biomarkers selected for the functional group of saprophytic fungi were 

18:2ω9,12 and 18:1ω9c. The abundances associated with these biomarkers were used to 

calculate a total nmol per gram of soil for each functional group and for total microbial 

biomass when all functional groups were added with non-specific markers (14:0, 15:0, 

16:0, 17:0, 18:0, and 20:0). 

Quantification of intra-radical AM abundance. Live roots were subsampled, washed, 

stained with trypan blue, and scored for AM colonization using the magnified gridline 

intersect method (Mcgonigle et al. 1990). This method uses a digital microscope (Hirox 

KH 7700) to measure the percentage root length colonized by hyphae, vesicles, coils, and 

arbuscules, which were combined to determine total percent colonization. 

Statistical Analysis. Soil PLFA/NFLA profiles, AM root colonization, productivity, 

grain protein concentration, protein digestibility, and mineral concentration response 

variables were analyzed using mixed models methods. Grain characterization and starch 

characteristics were analyzed using generalized linear mixed models methods. The Tukey 

multiple comparison method was utilized for significant effects, and results are reported 

as least square means. All tests of significance were performed at the nominal 0.05 level. 

The data analysis for this paper was generated using SAS® version 9.4. Copyright © 

2013 SAS Institute Inc. SAS and all other SAS Inc. product of service names are 

registered trademarks of trademarks of SAS Institute Inc., Cary, NC, USA. 
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RESULTS 

Baseline Soil Microbial Communities. Pre-planting PLFA data showed similar live 

microbial abundances for each field with a difference between means of 0.02 nmol per 

gram of soil for AM fungi (Figure 1). Baseline NLFA data were more variable for spore 

biomass of saprophytic fungi than those of AM fungi with a difference between means of 

0.38 nmol per gram of soil for AM fungi (Figure 2). Therefore, the sites were considered 

to have similar AM fungal abundances. 

Soil Microbial Communities at Grain Harvest. Soil in proximity to roots of the open-

pollinated (OP) genotype Ajabsido were significantly lower in relative abundance of AM 

fungi, saprophytic fungi, and gram-negative bacteria, as compared to soil in proximity to 

roots of the intercropped hybrid Dekalb (Figure 3). Dekalb soil, in the sole crop, was also 

significantly lower in abundance of gram-positive bacteria, as compared to intercropped 

Dekalb. Non-amended soil (control) and soil amended with worm compost had 

significantly more extra-radical AM fungi (nmol per gram of soil) than soil amended with 

commercial fertilizers (control = 1.9221a, compost = 1.9137a, commercial fertilizers = 

1.5076b) (data not shown). Overall, there was also significantly more extra-radical AM 

fungi, gram-negative bacteria (GNB), and saprophytic fungi associated with hybrid 

genotypes as compared to OP genotypes when grown as a sole crop, regardless of 

treatment.  

There were no significant differences between sorghum genotypes, cropping 

systems, or soil treatments for total microbial biomass (range: 31.726 to 40.527 nmol per 

gram of soil) or for neutral lipid biomarkers (range: 2.104 to 2.300 nmol per gram of soil 
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for AM fungi) (data not shown). There were significant differences in fungal:bacterial 

biomass (F:B) ratios by sorghum genotypes (Figure 4). Treatment also had a significant 

effect, with higher F:B in soils amended with worm compost as compared to soils 

amended with commercial fertilizers or non-amended soils. There was also significantly 

greater F:B associated with hybrid as compared to OP genotypes regardless of treatment 

and with sole cropped genotypes as compared to corresponding intercropped plants. 

Root Colonization. There was not a significant interaction between treatment and 

genotype for AM fungal root colonization (Figure 5). However, there was a significant 

treatment effect regardless of genotype, with the highest percentage of root colonization 

by AM fungi in soil amended by worm compost (control = 32.5ab, compost = 35.2a, 

fertilizer = 29.1b) (data not shown). 

Grain Production. There were not significant differences in sorghum grain productivity 

by treatment, genotype, or cropping system (Figure 6). 

Grain Characterization Data. There were no significant differences in grain physical 

characteristics between genotypes, except for grain moisture (Table 3). Grain moisture 

was significantly greater for Macia grown as a sole crop and amended with commercial 

fertilizers (10.56% ± 0.22) as compared to Macia grown as an intercrop in non-amended 

soil (9.20% ± 0.27) (data not shown). 

Grain Starch Analysis. There were significant differences in amylose percentage and 

completely hydrolysable starch percentage for the interaction of genotypes with 

treatments (Figures 7 and 8). Overall, there was significantly greater grain amylose in OP 
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genotypes, but significantly greater completely hydrolysable starch in hybrid genotypes, 

regardless of treatment or cropping system. 

Grain Protein Concentration. There were significant differences in grain protein 

concentration between genotypes (Figure 9), and OP genotypes had significantly greater 

grain protein compared to hybrid genotypes. Additionally, amendment with commercial 

fertilizers resulted in significantly greater grain protein concentrations compared to 

compost amendment, but neither of these treatments were significantly different from 

non-amended control. 

Grain Protein Digestibility. There were significant differences in grain protein 

digestibility for the interaction of genotypes with treatments (Figure 10). While there 

were not significant differences between OP and hybrid genotypes grown as sole crops, 

intercropped Macia had significantly more digestible protein as compared to intercropped 

Dekalb, regardless of treatment. 

Grain Mineral Concentrations. There was not a significant interaction between 

treatment and genotype for grain mineral concentrations of copper, iron, potassium, and 

zinc, but there were significant interactions for calcium, magnesium, phosphorus, and 

sulfur (Table 2). Grain iron concentration was significantly higher for genotype Ajabsido 

than for genotype Macia, regardless of treatment. There was also significantly higher 

copper concentration in sole cropped sorghum as compared to plants intercropped with 

cowpea. Grain calcium potassium, magnesium, phosphorus, and sulfur concentrations 

were significantly higher for OP genotypes compared to hybrid genotypes. 
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DISCUSSION 

Many of the observed soil microbial differences between genotypes were specifically 

associated with Ajabsido (OP genotype) and Dekalb (hybrid). Ajabsido and Dekalb may 

have specific root exudates that alter rhizosphere microbial communities. Additionally, 

there may be an exudate interaction between Dekalb and cowpea (when intercropped) 

that increased gram-positive bacteria, compared to Dekalb grown as sole crop. Root 

exudates influence multiple soil microbial community responses (Bertin et al. 2003), and 

sorghum genotypes have been shown to each produce a different array of rhizosphere 

exudates (Tesfamariam et al. 2014). The diversity of plant/soil/microbial interactions 

between the different genotypes in our study indicate an opportunity to breed sorghum 

genotypes for specific rhizosphere microbes. 

 A long-term experiment by Cong et al. (2015) found greater total root biomass 

and subsequent increases in soil C and N in intercrop systems, as compared to sole crops. 

Our results indicated similar or slightly improved microbial abundances for each 

microbial functional group associated with Macia and Dekalb genotypes when 

intercropped with cowpea. This increase in microbial biomass may contribute to greater 

soil C storage, as reported in Cong et al. (2015). Similarly, increases in fungal biomass 

has been shown to be tightly correlated with soil aggregation and C storage in tallgrass 

prairie (Wilson et al. 2009).  

Phosphorus fertilizers have been shown to decrease plant production of signaling 

hormones that are critical for AM root colonization (Yoneyama et al. 2013). In our study, 

amendments of commercial fertilizers (N&P) significantly reduced intra- and inter-
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radical AM fungal abundance, compared to the worm compost amendment. Lagerlöf et 

al. (2014) reported a range of microbial community metrics that did not significantly 

change in farm systems in Kenya, even following 20 years of improved practices. This 

suggests that soil microbial communities can be extremely slow to recover from farm 

management effects such as tillage and over-fertilization. In our study, worm compost 

generally resulted in similar or improved productivity and grain quality as compared to 

commercial fertilizers, but improved intra- and inter-radical AM abundance in one 

season. Use of compost as an alternative fertility amendment may result in even more 

sustainability benefits over time, through improved soil organic matter and soil structure. 

A review by Willers et al. (2015) reported soil phospholipids are a dependable 

method to determine shifts in microbial communities. Fungal:Bacterial (F:B) ratios are 

used to describe effects of various experimental variables (Frostegård et al. 2011). For 

example, organic amendments (e.g. manure) have been reported to increase F:B; tillage 

has been reported to decrease F:B (Frostegård and Bååth 1996). Differences in worm 

compost and commercial fertilizer amendments assessed in our study support that of 

Romaniuk et al. (2011) and Bragazza et al. (2015), as their studies found F:B ratios 

increased with increases in soil organic carbon. The high F:B ratio associated with sole 

cropped Dekalb in our study is due to decreased gram-positive bacterial abundance 

associated with sole cropped Dekalb compared to all other genotypes. 

Generally, sorghum genotypes explained differences in grain nutrition, starch, and 

physical characteristics, rather than soil amendments or AM fungi. Intercropping 

typically resulted in similar or improved grain qualities as compared to sole croping. 

Food nutritional (Zuo and Zhang 2009; Zuo and Zhang 2011) and soil conservation 
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(Zougmoré et al. 2000) benefits have been associated with intercropping, and our study 

also indicates intercropping is a promising sustainable farm method. While hybird 

genotypes had greater completely hydrolyzable starch, OP genotypes had greater grain 

amylose and higher concentrations of several minerals and protein. However, neither 

genotype origins had significantly more digestible protein. This suggests that breeding 

programs can utilize genetic material from OP genotypes without sacrificing grain 

nutritional quality, and further selective breeding may improve the hydrolysable starch in 

these African OP genotypes. 

Yield and root colonization did not significantly differ between genotypes, 

regardless of treatment or cropping system. In a previous study (Chapter 1), greater 

mycorrhizal responsiveness in OP genotypes significantly improved grain yield and 

nutrition, as compared to less responsive hybrid genotypes, when grown in low-fertility 

soil. Differences in phosporhus-availability and water-limitation between our previous 

greenhouse study and and our current field study presumably led to these differences. 

Plant-avaliabe soil phosphorus was lower in the greenhouse (4 ppm vs 17 ppm at Lane & 

5.1 ppm at Ardmore), and greenhouse plants were watered every 2-3 days, ensuring no 

water deficit. 

While average plant-available soil moisure was adequate throughout the growing 

season, as recorded by Mesonet stations at Lane and Ardmore, (Table 1), between 

emergence and harvest, there were eight distinct periods of 6 - 12 days with less than 0.5 

mm of precipitation, and average temperatures > 25 °C at each site. Periods of moisture 

limitations, in combination with the sandy soil profile of the field sites, suggest periodic 

dry soil regularly occurred in the top 10-20cm. Roots were subsampled from the top 10-
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20 cm of soil and assessed for inter-radical AM fungal colonization. The sampled roots 

may have been relatively more adapted to dry soil conditions, compared to the deeper 

root system. Spatical differnces in AM colonization of root systems have been well 

documented for nutrient-providing mycorrhizal partnerships (Bever 2015; Bever et al. 

2009), but less is know about the spatical variablitity of AM fungi for plants under water-

limited conditions. Upregulation of AM colonization (inter-radical abundance) for water 

acquisition may not require that plants have an overall water deficit, but rather that 

localized roots respond to dry soil conditions. 

 Propster and Johnson (2015) studied the interacting effects of water and 

phosphorus limitation on AM fungi associated with maize plants grown in soil collected 

across the Serengeti. Mycorrhizas provided the most benfit to host plants when the 

experimental limitation (water or phosphorus) matched the conditions common to the 

region of the Serengeti where that soil was collected, such that arid soil mycorrhizas 

assisted more with water uptake, and P-limited soil mycorrhizas assisted more with 

phosphorus uptake. Southern Oklahoma was selected for this trial because of charactristic 

low-P soils, however, frequent drought and sandy soil may have played a large role in 

shaping the AM communities. Likewise, AM communities of high clay, more mesic soils 

collected in Stillwater, OK, used for the greenhouse study, could differ substantially from 

those of the field soils in southern OK and partially explain observed differences in AM 

benefit between our greenhouse and field studies. 

It was beyond the scope of our current study to assess AM fungal genetic 

diversity. Mycorrhizal taxa have been shown to vary in value as plant mutualists and in 

physical forms within plant roots (Treseder 2013). Sangabriel-Conde et al. (2015) 
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assessed AM richness associated with both hybrid and landrace maize genotypes in 

Mexico, and found that native maize landraces associated with a more diverse AM 

community, as compared to hybrid maize. Furthermore, a local landrace genotype was 

more successful at capturing phosporous through the pathway, as compared to the hybrid 

genotype (Sangabriel-Conde et al. 2013). Though there is some ambiguity in genomic 

and phenotypic assessment of AM fungi (Angelard et al. 2014; Sanders and Croll 2010), 

including soil community genomic analyses in future studies will improve our 

understanding of the productivity and efficiency tradeoffs between different sorghum 

genotypes. 

 

CONCLUSION 

Due to finite reserves, the availibilty of phosphorus fertilizers will decrease while costs 

increase. It is critical to understand the impact of selective breeding on belowground 

microbial partnerships and crop nutrient use efficiency to produce genotypes most 

appropriate for sustainable agriculture (Wissuwa et al. 2009). It is also critical to assess 

strategies for improving microbial abundance in agricultural soils, as many agricultural 

practices reduce soil microbial community diversity and total microbial biomass as 

compared to native systems (Montecchia et al. 2011). The restoration of these microbial 

communities on farms is an important strategy to enhance soil sustainability. 

Our results indicate worm compost amendments and the intercropping of sorghum 

with cowpea maintained or enhanced AM fungal abundance both in sorghum roots and 

rhizosphere soil. Arbuscular mycorrhizal symbiosis with agricultural crops has global 
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implications as mycorrhizas are an important contributor of soil carbon storage 

(Soudzilovskaia et al. 2015). Selection of sorghum genotypes for agricultural systems 

designed around these alternative practices may also improve microbial benefits to crop 

nutrition, soil health, and farmer livelihoods.  
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TABLES AND FIGURES 

 

 Table 1. Minimum plant available water (mm)* in soils at both field sites 
 throughout the growing season (4/20/14 to 8/10/14). 

 Soil Depth (cm) Low (mm) High (mm) Average (mm) 

 Lane (Top 10cm) 7 28 22 

 Ardmore (Top 10cm 2 20 11 

 Lane (Top 40cm) 33 96 78 

 Ardmore (Top 40cm 17 83 53 

 Lane (Top 80cm) 81 188 158 

 Ardmore (Top 80cm 40 161 97 

 *Data acquired from Oklahoma Mesonet. 

 

  



92	
  
	
  

 Table 2. Grain physical characteristics* by genotype. 

 Genotypes: African open-pollinated genotypes (Ajabsido, Macia), 
                    hybrid genotypes (Dekalb, Pioneer), intercropped (IC) genotypes 

 Genotype Hardness Moisture (%) Diameter (mm) Weight (mg) 

 Ajabsido 51.21d 10.06a 3.01a 33.79a 

 Macia 81.04a 10.10a 2.45c 25.21c 

 Dekalb 70.30b 10.13a 2.54c 28.25bc 

 Pioneer 62.20c 10.18a 2.70b 29.08b 

 Macia (IC) 81.90a 9.77a 2.46c 24.81c 

 Dekalb (IC) 69.26b 10.06a 2.49c 27.95bc 

 Within a column, means that do not share a letter are significantly different (P < 0.05).  

 *Single-kernel characterization system 
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 Table 3. Grain mineral concentrations (ppm) for all genotypes by treatment, including sorghum intercropped (IC) with cowpea.   

 Treatments:  CON = control, NP = fertilizer, WC = worm compost 

 Treatment Genotype Ca Cu Fe K Mg P S Zn 
 CON Ajabsido 212a 8.1a 39.6a 3296a 1408abcd 2596abc 1247ab 26.7a 
  Macia 172abc 11.1a 35.2a 3084a 1206cd 2441bc 1214abc 28.3a 
  Pioneer 192ab 9.9a 42.4a 2963a 1292bcd 2300bc 1159bcd 31.8a 
  Dekalb 164abc 10.6a 38.1a 2908a 1200cd 2197c 1105bcd 25.7a 
  Macia (IC) 202ab 12.0a 38.6a 3189a 1428abc 2932ab 1242ab 31.5a 
  Dekalb (IC) 154bc 6.4a 35.0a 3206a 1199cd 2249bc 1069bcd 24.3a 
 NP Ajabsido 211a 9.0a 45.9a 3424a 1727a 3217a 1406a 31.6a 
  Macia 162abc 11.1a 38.6a 3161a 1359bcd 2812ab 1186abc 29.0a 
  Pioneer 132c 11.7a 36.3a 2804a 1126cd 2023c 961cd 26.2a 
  Dekalb 148bc 8.2a 40.9a 2971a 1378bcd 2532bc 1186bc 29.8a 
  Macia (IC) 151bc 8.2a 30.6a 2867a 1110d 2218bc 1054bcd 24.1a 
  Dekalb (IC) 166abc 9.7a 41.1a 3058a 1443abc 2625abc 1241ab 28.2a 
 WC Ajabsido 188ab 6.8a 39.4a 3248a 1535ab 2793abc 1186bc 26.5a 
  Macia 171abc 11.2a 34.8a 3141a 1245cd 2492bc 1165bc 27.8a 
  Pioneer 150bc 9.9a 36.2a 2911a 1121d 2042c 940d 26.2a 
  Dekalb 165abc 10.2a 36.9a 3074a 1188cd 2146c 1099bcd 23.8a 
  Macia (IC) 160bc 9.5a 32.6a 2994a 1228cd 2539abc 1096bcd 25.4a 
  Dekalb (IC) 141c 6.9a 33.6a 2948a 1169cd 2082c 1101bcd 23.3a 
 Within a column, means that do not share a letter are significantly different (P < 0.05). 
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Figure 1. Lane and Ardmore baseline total microbial biomass and microbial functional 

groups: AM fungi, saprophytic fungi (Sap), gram-positive bacteria (GPB), and gram-

negative bacteria (GNB), as determined by phospholipid fatty acid analysis (PLFA). 

Minimum, 1st Quartile, Median, 3rd Quartile, and Maximum values are represented by 

box & whisker (n = 8).  
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Figure 2. Lane & Ardmore field soil baseline total fungal biomass and microbial 

functional groups: AM fungi, and saprophytic fungi (Sap), as determined by neutral lipid 

fatty acid analysis (NLFA). Minimum, 1st Quartile, Median, 3rd Quartile, and Maximum 

values are represented by box & whisker (n = 8).  
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Figure 3. Soil microbial functional groups: AM fungi, saprophytic fungi (Sap), gram-

positive bacteria (GBP), and gram-negative bacteria (GNB) associated with rhizosphere 

soil of sorghum genotypes, as determined by phospholipid fatty acid analysis. From left 

to right genotypes are: Monocrop (open bars) Ajabsido, Macia, Pioneer, Dekalb & 

intercrop (hatched bars) Macia and Dekalb. African open-pollinated genotypes are the 

light-grey bars, and US hybrid genotypes are the dark-grey bars. Bars represent means, + 

SE (n = 36). Bars that do not share a letter are significantly different (P < 0.05).  
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Figure 4. Fungal to bacterial ratio associated with rhizosphere soil of sorghum 

genotypes, as determined by phospholipid fatty acid analysis. From left to right 

genotypes are: Monocrop (open bars) Ajabsido, Macia, Pioneer, Dekalb & intercrop 

(hatched bars) Macia and Dekalb. African open-pollinated genotypes are the light-grey 

bars, and US hybrid genotypes are the dark-grey bars. Bars represent means, + SE (n = 

36). Bars that do not share a letter are significantly different (P < 0.05).  
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Figure 5. Arbuscular mycorrhizal fungal root colonization (%) for sorghum genotypes x 

treatment (non-amended control, commercial fertilizers, or worm compost). From left to 

right genotypes are: Monocrop (open bars) Ajabsido, Macia, Pioneer, Dekalb & intercrop 

(hatched bars) Macia and Dekalb. African open-pollinated genotypes are the light-grey 

bars, and US hybrid genotypes are the dark-grey bars. Bars represent means, + SE (n = 

12). Bars that do not share a letter are significantly different (P < 0.05).  
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Figure 6. Total grain yield for all sorghum genotypes x treatment (non-amended control, 

commercial fertilizers, or worm compost). From left to right genotypes are: Monocrop 

(open bars) Ajabsido, Macia, Pioneer, Dekalb & intercrop (hatched bars) Macia and 

Dekalb. African open-pollinated genotypes are the light-grey bars, and US hybrid 

genotypes are the dark-grey bars. Bars represent means, + SE (n = 12). Bars that do not 

share a letter are significantly different (P < 0.05).  
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Figure 7. Grain amylose (%) for sorghum genotypes. From left to right genotypes are: 

Monocrop (open bars) Ajabsido, Macia, Pioneer, Dekalb & intercrop (hatched bars) 

Macia and Dekalb. African open-pollinated genotypes are the light-grey bars, and US 

hybrid genotypes are the dark-grey bars. Bars represent means, + SE (n = 12). Bars that 

do not share a letter are significantly different (P < 0.05).  
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Figure 8. Grain completely hydrolysable starch (%) for sorghum genotypes. From left to 

right genotypes are: Monocrop (open bars) Ajabsido, Macia, Pioneer, Dekalb & intercrop 

(hatched bars) Macia and Dekalb. African open-pollinated genotypes are the light-grey 

bars, and US hybrid genotypes are the dark-grey bars. Bars represent means, + SE (n = 

12). Bars that do not share a letter are significantly different (P < 0.05).  
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Figure 9. Grain protein concentration (%) for sorghum genotypes. From left to right 

genotypes are: Monocrop (open bars) Ajabsido, Macia, Pioneer, Dekalb & intercrop 

(hatched bars) Macia and Dekalb. African open-pollinated genotypes are the light-grey 

bars, and US hybrid genotypes are the dark-grey bars. Bars represent means, + SE (n = 

36). Bars that do not share a letter are significantly different (P < 0.05).  

Figure 9 Ajabsido, Macia Pioneer, Dekalb 
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Figure 10. Grain protein digestibility for sorghum genotypes (% of total grain protein). 

From left to right genotypes are: Monocrop (open bars) Ajabsido, Macia, Pioneer, Dekalb 

& intercrop (hatched bars) Macia and Dekalb. African open-pollinated genotypes are the 

light-grey bars, and US hybrid genotypes are the dark-grey bars. Bars represent means, + 

SE (n = 12). Bars that do not share a letter are significantly different (P < 0.05). 

 

 

Figure 10 Ajabsido, Macia Pioneer, Dekalb 
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CHAPTER IV 
 

 

Dissertation Synthesis, Implications, and Conclusions 

 

INTRODUCTION 

It is imperative to bridge research disciplines if the goal is developing sustainable, 

community-based food systems. Our research was inspired initially by discussions with 

scientists from sub-Saharan Africa (SSA) and their concern that US crop genotypes were 

ineffective for local farmers, often because they lacked sufficient access to commercial 

fertilizers. We explored belowground mechanisms that may alleviate the issues they 

observed. One method of increasing farm sustainability while maintaining productivity is 

utilizing an ecological driver that reduces the need for commercial fertilizers. 

Arbuscular mycorrhizal (AM) fungi are beneficial soil microbes that partner with 

the majority of agricultural crops. This association allows an exchange of resources 

between the plants and AM fungi – primarily phosphorous and carbon (Smith and Read 

2010). In natural ecosystems, these mutualistic fungi help ensure ecosystem health by 

stabilizing soil structure (Wilson et al. 2009), limiting nutrient runoff (Cavagnaro et al. 

2015), and reducing soil greenhouse gas emissions (Bender et al. 2014). Enhancing the
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effectiveness of AM fungi in farm systems presents an opportunity to utilize them as 

“natural biofertilizers” (Berruti et al. 2015)(p. 1) that can reduce costs and improve health 

in farming communities (Oruru and Njeru 2016). This idea is also gaining popularity as a 

way to mitigate some of the human impacts on natural ecosystems and the planet as a 

whole (Bender et al. 2015; Gosling et al. 2006). 

The overall purpose of my dissertation research is to harness the benefits of AM 

fungi for sustainable food production and nutrition – reducing farm dependence on 

ecologically harmful chemical inputs. Agricultural fertilizers are recognized widely as 

off-farm pollutants, with water quality and natural ecosystem function negatively 

impacted by nutrient runoff (Daigle 2003). Sustainable agriculture is essential for 

environmental preservation, and the multiple benefits of the AM symbiosis are likely to 

play a pivotal role – maintaining soil fertility and enhancing plant nutrient uptake, food 

nutritional value, and soil structure. 

As crop genetics are developed in breeding programs, selective pressures may 

create inadvertent trade-offs that reduce plant/microbial partnerships (Denison 2012). 

This would be an unintended consequence that reduces farm system efficiency. It is 

critical for agronomic researchers to consider the vast implications of Everett Rogers’ 

(2003) theory to avoid a pro-innovation bias that can lead to unintended consequences 

and innovations that are not appropriate for developing countries. Rogers’ innovation 

adoption framework provides guidance for scientific inquiry to improve local food 

systems. Additionally, it is vital to utilize his theory to investigate effective ways of 

diffusing sustainable agriculture by facilitating farmer adoption through understanding 

their personal and cultural characteristics. 
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The answer includes transdisciplinary collaboration and research projects that 

assess both soil ecology and human social dynamics in the context of local food 

production. Navarro (2008) suggested that effective solutions to the issues and causes of 

poverty should link local people, institutions, and their pooled indigenous knowledge 

with outside facilitators as “an interactive and integrative model of shared knowledge and 

joint discovery” (p. 75). This suggests that any innovation a change agency considers 

introducing to a community must be reimagined through the local prism and implemented 

in ways that are appropriate for that population. 

 

SOIL AND SECURITY 

Many developing countries are struggling to improve public health, education, and 

reduce poverty while needing to protect their natural resources – such as productive soils 

– that are major drivers for social and agricultural progress. A review of soil decline in 

SSA has indicated food production demands are leading to loss of soil fertility, loss of 

ecosystem services, and the inability of small-scale farmers to produce enough food for 

their families (Tully et al. 2015). Throughout history, loss of soil fertility has been linked 

with social instability and even the collapse of vast empires (Rimas and Fraser 2010). 

 Worldwide, soil resources are being degraded and lost at an alarming rate 

(Pimentel 2006), and this loss is linked to reduced food security as well as human health 

issues (Oliver and Gregory 2015). Mismanaged soils create an environmental condition 

where important micronutrients like iron and zinc are scarcely available to growing plants 

and therefore are not present at sufficient levels in human food (Yang et al. 2007). 
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Chronic malnutrition of protein, iron, and zinc impact about one-third of the world’s 

population, and these concerns have inspired a biofortification campaign through crop 

genetics and improved farm soil management (Carvalho and Vasconcelos 2013). 

 Lal (2009) suggested that, “ecologically restored and judiciously managed soil 

resources are adequate to meet the essential needs of the present and future populations” 

(p. 54). Because AM fungi can stabilize and enhance soil while benefiting most of our 

crops with increased water and nutrients, they are crucial to unlocking the power of living 

soil. Our research provides unique insights into the link between plant partnerships with 

AM fungi, alternative soil fertility amendments, and the resulting yield and food 

nutritional quality derived from these belowground interactions. 

 

AGROECOLOGY AND NUTRITION 

Numerous agencies and organizations work to reduce the rates and effects of poverty in 

underdeveloped countries throughout the world. Varied approaches include health and 

nutrition programs (Colecraft et al. 2012), the expansion of local agricultural and 

economic capacity (Mmari and Kileo 2015), ecological sustainability projects (Lewis et 

al. 2011), and social equity interventions through the education and empowerment of 

women and other marginalized populations (Gates 2014). 

An emerging paradigm of interconnected problems related to community 

malnutrition, poor agricultural management, and environmental degradation is being 

called econutrition (Blasbalg et al. 2011; Deckelbaum et al. 2006). This approach 

suggests that groups interested in finding solutions for any of these problems within a 
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community must integrate interventions to improve all three, rather than addressing a 

single issue (see Figure 1). Healthy soil is a foundation for multisectoral community 

programming, and links innovations in agriculture, environment, and nutrition. 

 

SUMMARY OF RESEARCH FINDINGS 

Our research indicates sorghum genotypes that are more responsive to AM fungi produce 

more grain (with equivalent or improved nutrition) when grown in marginal soil, as 

compared to less symbiotic genotypes (Chapter 1). If we seek to protect our global 

ecosystems and meet the needs of a growing population, we need to breed crops 

specifically for more efficient and sustainable agriculture. Our results also indicate that 

soil carbon sequestration and crop production/nutrition can be enhanced through the 

utilization of alternative farming inputs such as biochar and worm compost (Chapter 2). 

At the same time, farmer fertility input costs (Hoornweg et al. 1999) and environmental 

fallout from greenhouse gases can be reduced (Thomazini et al. 2015). We also found 

agricultural methods such as intercropping grains with legumes can result in similar or 

improved grain quality and productivity as compared to a sole grain crop while 

potentially benefitting soil health (Chapter 3). However, each soil type, crop type, and 

climate can alter outcomes in ways that are difficult to forecast. It is important to 

understand these elusive dynamics and operationalize systems that add to soil health and 

food quality. We can reduce poverty, hunger, and malnutrition while developing systems 

that are built on ecological foundations – regenerating soils while meeting human needs. 
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DIFFUSION OF INNOVATIONS THEORY 

Distilling the theoretical framework of Rogers (2003) starts with the understanding that 

the diffusion of a new idea occurs as a process over time as individuals form attitudes 

about the innovation by communicating with people in their social system or with change 

agents about the advantages or disadvantages of adopting the innovation (see Figure 2). 

This means that the way a change agent (such as an NGO or extension professional) 

communicates and manages the perceptions of potential adopters can speed up or slow 

down the process of diffusion, and that the social system’s characteristics can influence 

the receptivity of community members to new ideas in general and to the specific 

innovations being suggested by the development group (Rogers, 2003). 

The scale and design of technologies used in development may have a large 

impact on their rate of adoption and sustained use over time (Rogers, 2003). This can be 

overlooked by agricultural researchers, resulting in innovations that are not appropriate 

for communities in developing countries. It is imperative to connect agricultural scientists 

with local change agents so these groups can collaborate on appropriate innovations. 

 

IMPLICATIONS AND RECOMMENDATIONS 

Beneficial soil fungi present an opportunity to make global agriculture more efficient, 

more sustainable, and more productive (Ellouze et al. 2014). Crop symbiosis with AM 

fungi provides a potential path to maintain or improve food production and nutrition with 

fewer economically and environmentally costly fertilizer inputs. Some crop genotypes 
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rely strongly on AM fungal partnerships in low-nutrient soils, while other genotypes do 

not. Therefore, seed selection is critical to farming success in local communities. 

When encouraging the use of new seed varieties or cropping techniques, Rogers 

(2003) would suggest an important role for the characteristics of observability and 

trialability in the innovation decision process for potential adopters. If the change agent 

wants to speed up the rate of adoption of these new crop varieties and methods, planting 

fields as demonstration plots – displaying the new seeds and cropping techniques – will 

allow potential adopters to observe the outcome of the innovations. Another strategy 

could be providing support and incentive for local farmers to plant a small portion of 

their fields with the new seeds and using the new methods. If the farmers can observe 

better production because of the innovations, it may help them form a positive attitude 

about the relative advantages and improve their odds of implementing the change agent’s 

system. Examples like the One Acre Fund (Thurow 2013) demonstrate that improved soil 

management and enhanced crop genotypes can successfully diffuse through communities 

via Farmer Interest Groups (FIGs) that facilitate sharing the resource burden and the 

innovation’s benefits (La Rovere et al. 2009). 

Even though mycorrhizal association strategies and ecologically beneficial 

cropping systems have the potential to embody the econutrition paradigm by improving 

agricultural production, enhancing soil conditions, and impacting the nutritional quality 

of food without high input costs, it still represents a potentially large innovative shift 

from the current systems employed around the world. To effectively transfer these ideas, 

change agents need to employ Rogers’ (2003) theory base in communicating the 

importance of health soils to farmers. 
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Agroecosystems are inherently complex. Richards (1989) criticized the fallacy of 

envisioning discreet farm system components that can be researched separately and then 

recombined to form an optimized mechanism. In reality, research involving AM fungi in 

agroecosystems needs to address the multiple aspects of plant genetics, farm 

environment, and soil management, simultaneously (see Figure 3). 

The scientific literature contains numerous contradictory results for the study of 

AM fungi in agroecosystems. In some of these cases, the inconsistency may have arisen 

from researchers ignoring key aspects of AM research. For example, genetic differences 

in crops (leading to differences in AM benefit) may appear less pronounced if the field 

site is relatively depleted of fungal biomass because of previous farm management. 

Additionally, some research into management effects has ignored crop genetics. Other 

studies also have utilized complex technology or costly inputs that would not be 

applicable on small-scale farms in developing countries. This highlights the need for 

transdisciplinary teams that plan integrated sustainable farm system research. 

 

CONCLUSIONS 

Crops selected for microbial partnership and bred in low-nutrient soils may increase local 

production and food quality in developing countries. The resulting seed would provide 

relative advantage (Rogers 2003) compared to fertilizer-dependent genotypes which 

should increase the rate of adoption. These strategies will be conceived and implemented 

best if agricultural researchers consult with international extension professionals, and 
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develop together a mechanism to receive feedback from local communities (Navarro 

2008). 

If agronomic research ignores the lessons of Rogers (2003) and other change 

theorists, it may produce methods, technologies, and other innovations that are 

inappropriate and/or detrimental for farmers in developing countries. Unique issues 

related to fertilizer inputs, infrastructure, and the knowledge base of local farmers should 

be considered in research design (Navarro 2008). Our results demonstrate that carefully 

assessed microbial partnerships present an opportunity to enhance the sustainability of 

local food systems through suitable crop genetics, improved farm soil management, and 

other appropriate innovations. 
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FIGURES 

 

Figure 1. According to the econutrition framework, the interconnectedness of 

agriculture, environment, and nutrition explains the vicious cycle of community poverty. 

Poor agricultural management results in soil erosion and degrades the environment, 

leading to declines in food productivity and worsening local malnutrition, resulting in 

decreased human capital and feeding back on another cycle of debilitated farming. 

Improving agricultural practices and outcomes can result in a virtuous cycle of 

community development, especially if the farm innovations are compatible with 

environmental and nutritional objectives.  

CYCLE 
VIRTUOUS 

NUTRITION 

Enhances Soil Health 

Figure 1. Adapted from Deckelbaum et al. (2006) and Blasbalg et al. (2011). 
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Figure 2. When a researcher is able to innovate a new technology, method, or scientific 

idea, they must then notify potential adopters, who exist within a particular society, and 

who over time may accept the innovation. In the agricultural sciences the development of 

the innovation is the portion of the diffusion process that is typically conducted by an 

academic researcher, while understanding the local social context and communicating 

effectively to potential adopters is often the occupation of extension agents. However, 

linking these activities though collaborative networks can improve the process of 

appropriate innovation for the researcher, and the ability of change agents to understand 

and communicate the relative advantage of research findings.  

Figure 2. Adapted from Rogers (2003). 

Innovate 

Time Society 

Notify 
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Figure 3. Crop breeding research includes identifying and selecting for genetics that 

facilitate the efficient use of system resources, cooperation between plants and 

neighboring crops, and mutualism between plants and beneficial soil microbes. Farm 

management research includes methods that reduce tillage, the incorporation of diverse 

crop rotations, and planting different crop types in polyculture. Soil amendment research 

includes culturing and utilizing beneficial soil microbe inoculum, the integration of 

materials to enhance soil organic matter, and optimization of chemical fertilizer farm 

inputs. It is critical to unify these often-disparate lines of inquiry and design agricultural 

systems that are informed by all three areas. 

Figure 3 
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