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CHAPTER I 

 

INTRODUCTION AND  

LITERATURE 

REVIEW 

 
Lycopene is a carotenoid pigment responsible for the color of red fleshed 

watermelons, as well as for other fruits and vegetables such as tomatoes, guava, 

papaya, mango, red grapefruit, autumn olive and more (Johnson, 2002; Wilberg 

and Rodrigez-Amaya, 1995). In humans it can be found in blood plasma, adipose 

and adrenal tissues (Stahl and Sies, 1996), and it has also been detected in 

ocular tissues (Khachik et al., 2002). 
The major source of lycopene in today’s nutraceutical market is tomatoes 

and tomato based products (Edwards et al., 2003; Johnson, 2002), with more 

than 85% of our dietary lycopene coming from tomato-based products (Bramley, 

2000). Red fleshed watermelons are another rich source of lycopene; some 

cultivars contain more lycopene per wet basis than tomatoes (Perkins-Veazie et 

al., 2001). Currently watermelons are used almost exclusively for fresh and 

minimally processed markets, while there is no market for nutraceutical use. 
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1.1       Properties of Lycopene 

1.1.1   Chemical, Structural and Biological

Lycopene has an acyclic carbon chain with 11 conjugated double bonds 

(C40H56) (fig.1) and a chemical structure similar to tetraterpenes (C40H64), since 

its skeleton contains eight isoprenic groups (Chasse et al., 2001; Stahl and Sies, 

1996). In fruits and vegetables it is found naturally in the all-trans (or E) form 

(Schierle et al., 1997), while in processed tomato products and human serum 

both trans and mono-cis isomers (5-, 9-, 13- and 15-cis) of lycopene are present 

(Lee and Chen 2002). The same authors tested under illumination (2000-3000 

lux for 1-144h) and heat (50OC, 100OC and 150OC at various times) a standard of 

trans- lycopene, which contained several cis isomers, such as 5-cis-, 9-cis, 13-

cis-, 15-cis-lycopene, and possibly one more mono-cis and four di-cis isomers. 

They concluded that during illumination isomerization and degradation of 

lycopene and its cis- isomers may proceed simultaneously, and that all-trans 

lycopene might be isomerized to form mono-cis- or di-cis-lycopene. Heating at 

50OC and 100OC initially showed isomerization of the mono-cis isomers to the di-

cis-, however degradation was more prevalent as heating time proceeded. At 

150OC a large decrease was observed for the concentration of all trans-lycopene, 

and no lycopene was detected after 10 minutes. 

Along with β-carotene, lycopene belongs to the group of carotenes, which 

are very fat soluble (Johnson, 2002). Consequently lycopene is insoluble in water 

and very soluble in organic solvents such as hexane, benzene, chloroform and 

methylene chloride (Vasapollo et al., 2003). Carotenoids such as α-carotene, β-
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carotene and cryptoxanthin have provitamin A activity, but lycopene does not 

(Bramley, 2000; Rao and Agarwal, 2000; Stahl and Sies, 1996), as it lacks the β-

ionone ring structure (Setiawan et al, 2001; Clinton, 1998).  

Lycopene is a photo-sensitive compound and degrades when exposed to 

light, oxygen and heat (Lee and Chen, 2002; Wright and Kader, 1997; Sharma 

and Maguer, 1996). In many studies it has been suggested that the action of 

lycopene is limited by its bioavailability in human tissue. Lycopene was more 

bioavailable from tomato paste than from raw tomatoes, possibly due to 

isomerization caused by thermal processing steps (Edwards et al., 2003; 

Johnson, 2002; Giovannucci, 2002). When different varieties of tomatoes were 

compared (Cherry-CA, Roma and on the Vine), Cherry-CA had the highest 

lycopene content on a wet weight basis and Roma had the highest on a dry 

weight basis (Tawfik, 2002). In the same study four tomato products were studied 

(paste, puree, juice and ketchup) and lycopene content was highest in the paste 

form followed by puree and ketchup. Juice had the lowest content on a wet 

weight basis, but on a dry weight basis ketchup contained the least amount of 

lycopene. 

Lycopene has been found in a number of human tissues, such as liver, 

lung, breast, cervix, skin, cilliary body and retinal pigment epithelium (Khachik et 

al., 2002). It is also located in high concentrations in the adrenal, testes (Stahl 

and Sies, 1996) as well as in human serum and prostate tissue (Rao and 

Agarwal, 2000). 
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1.1.2   Antioxidant

Many of the beneficial effects of carotenoids in human health are 

attributed to lycopene and its antioxidant properties as a strong singlet oxygen 

(1O2) quencher. Among the carotenoids, lycopene has the highest Trolox-

equivalent antioxidant capacity (Bramley, 2000) and  it can also reduce the levels 

of oxidation of DNA and LDL (Low Density Lipoproteins), preventing initiation of 

specific types of cancer, heart problems and mutagenesis (Tawfik, 2002; Heber 

and Lu, 2002; Chasse et al., 2001; Rao and Agarwal, 2000). The effectiveness of 

lycopene in preventing prostate cancer, the most common cancer in American 

men, has been documented (Giovannucci, 2002). It may also be active in 

prevention of cardiovascular disease and cataracts (Setiawan et al., 2001). 

Lycopene may also promote increased cell-to-cell communication and modulate 

immune responses (Dwyer and Wang, 2003). The cell-to-cell communication 

activity is thought to reduce tumor proliferation by upregulating the expression of 

the connexin 43 gene (Heber and Lu, 2002). 

Several studies illustrate this antioxidant activity against specific radicals. 

Yaping et al. (2002) found that lycopene can rapidly react with the trichloromethyl 

peroxyl radical CCl3O2·, which may explain why CCl4- damaged rats survived 

when fed lycopene. Lycopene can also scavenge nitrogen dioxide (NO2·), thiyl 

(RS·) and sulphonyl (RSO2·) radicals, as well as reactive oxygen species (ROS) 

(Rao and Agarwal, 2000). When compared to other carotenoids, lycopene is a 

stronger oxygen quencher (Setiawan, 2001; Miller et al., 1996; Krinsky et al., 



5

1990); followed by α-tocopherol, α-carotene, β-cryptoxanthin, zeaxanthin, β-

carotene and finally lutein (Heber and Lu, 2002). Miller et al., (1996) report that 

lycopene was also a stronger scavenger for the ABTS·+ radical cation. 

 

1. 2     Stability of Lycopene during Storage 

In a study by Sharma and Maguer (1996) lycopene content of tomato pulp 

reportedly decreased under different heating treatments. Other factors like acids, 

sugars, air, and light also increased lycopene degradation. During storage, 

freeze-dried samples were more susceptible to lycopene loss when compared to 

oven dried samples between 25 and 75OC. They concluded that lycopene 

degradation kinetics during heating fitted a pseudo first order model reaction at 

100OC; L = LO x [exp(-Kt)], where L= amount of lycopene at time t (mg/100g Total 

Solids), LO= initial amount of lycopene (mg/100 g TS), K= apparent reaction rate 

constant (min-1) and t= time of heating (min). 

Lee and Chen (2002) studied the effects of heating and illumination on 

lycopene stability. The heat treatments were 50, 100, and 150OC. Heating times 

ranged from 20 to 120 minutes for 50 and 100OC, while the heating time 

shortened from 2 to 10 minutes for 150OC, because of excessive lycopene loss 

under high temperature. At 50OC isomerization from trans to cis form was 

favored during the first 9 hours, and followed by degradation. At higher 

temperatures of 100 and 150OC, degradation always occurred instead of 

isomerization. Activation energy was found to be 61kJ/mol. Illumination intensity 
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ranged from 2000-3000 lux for 6 days at 25OC, and caused isomerization before 

degradation. The degradation and isomerization processes of lycopene fitted a 

first-order model.  

As already mentioned, most lycopene (97%) in fresh tomatoes is found in 

all-trans isomers. Isomerization to cis-isomers (mainly 5-cis-, 9-cis- and 15-cis-) 

takes place during exposure to high temperature as a consequence of 

processing. The cis-isomers were more bioavailable than trans- isomers, causing 

enhanced lycopene bioavailability in processed tomato products as compared to 

fresh tomato fruits (Shi and Le Maguer, 2000).  

In a study of Su et al. (1999), stability of carotenoids in human plasma

was tested under fluorescent light for up to 72h (0, 4, 24, 48, 72), extracted and 

then stored in darkness at -20OC, 4C and room temperature (19-22OC), for up to 

48h (0, 4, 24, 48). Most of the carotenoids in human plasma were stable under 

fluorescent light. Greater variability in measurement of most analytes was 

observed at the room temperature storage than at 4OC and -20OC, but with small 

range, having little biological significance. Lycopene showed a non significant 

decrease with time at room temperature conditions. Craft et al. (1988) also 

observed a slight decrease of lycopene in plasma at room temperature in the first 

four hours, when stability of individual carotenoids was tested for up to 24h. 

 Fish and Davis (2003) investigated the frozen storage effects on lycopene 

stability in watermelon puree and cubes. Over one year storage, 30-40% losses 

were observed under storage at -20OC, and 5-10% losses at -80OC. During the 

initial freeze-thaw a lycopene degradation of 4-6% was observed.  Lycopene in 
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pureed flesh was more stable compared to watermelon cubes at -20OC; where 

no difference was observed in lycopene content of cubes or puree held at -80OC. 

Stability of fresh-cut watermelon was also evaluated in 5cm flesh cubes 

from a seeded (‘Summer Flavor 800’) and a seedless (‘Sugar Shack’) cultivar 

(Perkins-Veazie and Collins, 2004). Cubes were placed into unvented 

polystyrene containers, stored for 2, 7 and 10 days at 2OC, and evaluated for 

juice leakage, carotenoid composition, color changes, soluble solids content, and 

titrable acidity. Results showed that juice leakage was about 13% for ‘Summer 

Flavor 800’ and 11% for ‘Sugar Shack’ after 10 days of storage. Lycopene 

content loss were 6 and 11% after 7 days at 2OC, for ‘Summer Flavor 800’ and 

‘Sugar Shack’ respectively, while β-Carotene and cis-lycopene contents did not 

change. CIE L* and chroma values suggested a loss in color saturation and 

increased lightening of watermelon flesh after 10 days storage. No chilling injury 

symptoms were found, but a slight decrease in soluble solids content was 

observed. Levels of atmospheric CO2 and O2 were also monitored, were CO2

increased and O2 decreased linearly after 10 days storage, creating a modified 

atmosphere of 10kPa of both CO2 and O2.

A carrot variety, Daucus carota L. var. Kintoki, contains 9 mg lycopene per 

100g wet weight and can be considered as another potential source of lycopene 

(Mayer-Miebach and Spieß, 2003). Blanching at high temperature (90OC) and 

under oxygen-free conditions provided high lycopene availability and stability in 

carrot products from this variety. 
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Grapefruit (Citrus paradisi Macfad) juice concentrates had a more intense 

color fade when they were stored for 12 months at -23OC in plastic containers 

compared to metal cans, with estimated shelf life for lycopene of 18 months and 

26.1 months respectively (Lee and Coates, 2002). In addition, more than 20% 

loss of lycopene and about 7% loss of β-carotene was observed for the same 

storage conditions. 

When fresh cut persimmons (Diospyros kaki L.) were held in controlled 

atmosphere of 2% O2 at 5C for eight days, β-cryptoxanthin content decreased 

while lycopene increased (Wright and Kader, 1997). 

 

1.3      Instrumentation - Extraction 

Fish et al. (2002) modified the method of Sadler et al. (1990) for extracting 

lycopene from food sources that utilized reduced volumes of organic solvents. 

The conventional method uses 25ml of 95% ethanol, 25ml acetone with 0.05% 

(w/v) BHT (Butylated HydroxyToluene) added, and 50ml hexane per sample. 

Fish et al. (2002) reduced the volumes of these solvents 5 times to volumes of 5, 

5 and 10ml respectively, with also reduced sample sizes to 0.4 or 0.6g. Precision 

of this method was very close to the conventional method (average STD error 

per triplicate was 1.22± 0.84% S.D.). 

A study by Vasapollo et al. (2003) proposed a supercritical CO2 lycopene 

extraction from tomato, using vegetable oil as co-solvent. The co-solvent was 

reported to increase lycopene extraction and stabilize it. The highest amount 

recovered with this procedure was 60% of the total lycopene. The optimum 
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parameters for extraction of lycopene were found to be: pre-treatment of raw 

material (dry, grind, screen), pressure 450bar (≈6,526.7psi), temperature 65-70C, 

CO2 flow rate 18-20 kg/h, 1 mm particle size, and 10% (w/w) vegetable oil used 

as co-solvent in the extractions. Hazelnut oil with its lower acidity avoided 

lycopene loss during extraction and resulted in higher extraction yields compared 

to other vegetable oils like almond, peanut, and sunflower seed oil. The presence 

of the co-solvent was believed to promote transportation and solubility of 

lycopene from solid to supercritical phase.  

Arias et al. (2000) reported that the color classification of tomato ripening 

stages using a chroma meter camera correlated with objective HPLC lycopene 

content. They suggested that lycopene content in tomatoes could be determined 

non-destructively with a portable chroma meter camera.  

Tawfik (2002) used a 5µm C30 stationary phase column, with a flow rate of 

1ml/min and a linear slope of 40%-50% methanol and methyl t-butyl ether mobile 

phases for 35 minutes. He separated lycopene isomers (cis-, all-trans- and 5-cis) 

from three raw tomato varieties (Cherry-CA, Roma and On the Vine) and 

different tomato products (tomato paste, puree, juice and ketchup). Lycopene 

content was highest in tomato paste, then puree and depending on fresh or dry 

weight basis, juice or ketchup had the lowest content respectively. 

In 2004 Pόl et al. developed a method that could eliminate lycopene 

losses during analysis. A supercritical fluid extraction system (SFE), with CO2 as 

an extraction medium, was connected on-line with a High Performance Liquid 

Chromatography system (HPLC), using a single monolithic column to trap and 
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separate the analytes. Lycopene was determined in several fruits and food 

products and due to the on-line structure of the system, lycopene was not 

influenced by air or oxygen. This procedure proved to be fast (about 35min for 

the whole lycopene determination process), sensitive (the limit of detection for 

the HPLC was 0.5ng for the trans-lycopene) and repeatable. A range of 

temperatures for extraction was tested from 40-140OC, with maximum extraction 

yield at 80-100OC. Optimum temperature of 90OC was suggested for lycopene 

extraction. 

Setiawan et al. (2001), studied carotenoid content of Indonesian fruits. 

They found that Salak (Salacca edulis) and guava (Psidium guajava) are 

excellent sources of provitamin A carotenoids (140+ µg retinol eguivalents/100g 

wet weight), while mango (Mangifera indica), red watermelon (Citrulus vulgaris)

and papaya (Carica papaya) were good sources as well (70+ µg retinol 

eguivalents/100g wet weight). 

A lycopene market is needed for stabilization and expansion of the 

watermelon industry and to provide a value added product. The long term goal of 

this research is to develop and evaluate processing steps for watermelons as an 

alternative source of lycopene for the nutraceutical market and as a good 

colorant source. The goal of this project was to use a novel filtration procedure 

with centrifugal precipitation processing to evaluate cultivar and maturity 

differences in lycopene content and purity. 
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1.4      Objectives 

• To evaluate filtration processing and extraction steps necessary for 

purification of lycopene  

• To determine maturity influence on lycopene distribution during filtration 

processing of red-fleshed watermelons 

• To evaluate temperature effect on lycopene segregation during processing 
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Abstract. 

Lycopene from ground watermelon (Citrullus lanatus) flesh can be segregated 

between filtrate and filter cake by coarse filtration. Low speed centrifugation of 

the filtrate can further segregate filtrate lycopene between an easily recoverable 

precipitated high lycopene pellet (approximately 600-800µg•gm-1) and a serum. 

Lycopene in watermelon flesh increases steadily during maturation and remains 

constant, or slightly decreases in overripe melons. This study was conducted to 

document the effect of watermelon maturity on lycopene segregation during 

filtration/centrifugal processing. Flesh from seedless watermelon cultivars 

‘Hazera 6007’, ‘Hazera SW1’, ‘Sugar Shack’, ‘Hazera 6008’, ‘Hazera 5109’ and 

‘Sugar Time’ was ground and filtered through two layers of Miracloth. Filter cakes 

were rinsed with water and filtrates were centrifuged at 3500g to precipitate 

lycopene. Centrifugal recovery of lycopene from filtrates was about the same for 

undermature and mature melons (50-70%), but was much lower for overripe 

watermelons (35-45%). Lycopene centrifugal recovery from overripe filtrates was 
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improved up to 85% if ground flesh was heated to 60OC or 85OC prior to filtration. 

Lycopene from preheated flesh (60OC or 85OC) shifted segregation into the filter 

cake for all three ripeness stages and increased the total recoverable lycopene 

from ground flesh by 5-10% more than the no heat procedure. This was 

especially beneficial for overripe melons. When heat treated filter cakes were 

rinsed and refiltered to reduce the high sugar content of the filter cake, lycopene 

was redistributed from the filter cake to the filtrate. These results show that 

heating watermelon puree can be used to improve lycopene recovery into the 

filter cake, especially in overripe watermelons. 

 

Introduction 
Lycopene is one of the most potent antioxidants in today’s nutraceutical 

market, believed to prevent the initiation of certain types of cancer, especially 

prostate cancer (Giovannucci, 1999). Lycopene has also shown promising 

results in prevention of alcohol-induced liver injury by prevention of severe 

oxidative stress induced by arachidonic acid in liver cells (Tapiero et al., 2004). 

The major dietary source of lycopene in the U.S. is tomatoes (USDA, 

2004) with average concentration of 3mg/100g of fresh weight (Perkins-Veazie et 

al, 2001). Lycopene is also found in watermelon, guava, papaya, mango, red 

grapefruit and autumn olive (Johnson, 2002). Several watermelon cultivars 

contain more lycopene on a fresh basis than tomatoes (on average 5-

6.5mg/100g of fresh weight) (Perkins-Veazie et al, 2001). Bőhm et al. (2003) 

reported rosehip (Rosa canina L.) as another potential source of lycopene (12.9- 
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35.2 mg/100 g). Lycopene bioavailability has been reported to increase with heat 

and/or homogenization from tomato products, probably due to break down of the 

cell walls, allowing carotenoid release (Stahl and Sies, 1996). Lycopene in 

tomato products is typically found 80% or greater in the trans- form, whereas in 

plasma lycopene and other carotenoids are found generally >50% in the cis- 

form. Isomerization of trans- to the cis- form is hypothesized to occur during 

digestion, but only after trans- lycopene is released from the food matrix (Boileau 

et al., 2002). In the studies of Nguen and Schwarz (1998) and Schierle et al. 

(1997), only small increase of lycopene isomerization   to the cis- form was 

reported during thermal processing. 

During storage of fresh cut watermelon cubes at 2OC, loss of 6-11% 

lycopene was observed after seven days, probably due to oxidation, without any 

isomerization (Perkins-Veazie and Collins, 2004).  

In a study of Fish and Davis (2003), stability of watermelon puree and 

flesh chunks was evaluated under storage conditions at -20OC and -80OC after 

up to 12 months in storage. Faster rate of lycopene deterioration was observed in 

chunks than puree at -20OC, while at -80OC they behaved similarly. About 10% of 

lycopene from puree degraded after 30 days of storage at -20OC, while less than 

that degraded over a year’s storage at -80OC. A lycopene loss of 4-6% was 

attributed to an initial freeze-thaw cycle of watermelon tissue, while such a loss 

hasn’t been reported in the tomato system.   No isomerization of lycopene from 

all-trans to cis- forms was observed during storage. 
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Recovering and utilizing lycopene from watermelons would present an 

untapped secondary market for marketable watermelons, and offers a market for 

cull watermelons (20-80% of production). A means to concentrate and stabilize 

lycopene from watermelons is needed to meet the demands of this potential 

market. In our study we outline a procedure to obtain lycopene from watermelons 

using a filtration and centrifugal precipitation process, and investigate the 

maturity and temperature influence on the segregation of lycopene during the 

various steps of the procedure.  
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MATERIALS AND METHODS 

 

2.1      Plant Material  

Watermelon seeds for 2003 and 2004 plantings were obtained from Sugar 

Creek Seed Inc, cultivars ‘Sugar Shack’ and ‘Sugar Time’, and from Hazera 

Genetics Ltd, cultivars ‘SW1’, ‘6007’, ‘5109’ and ‘6008’ (‘Extazy’). All cultivars 

were triploids (seedless). ‘XIT 101’ (Sugar Creek Seed, Inc.) was used as diploid 

pollinator in both years. 

In 2003 seeds from cultivars ‘Sugar Shack’, ‘6007’ and ‘SW1’ were 

planted in Speedling flats on May 16th, held under high humidity and warm 

temperature for two days to enhance uniform germination and grown at the 

horticulture greenhouse facilities in Stillwater, OK. Seedlings were transplanted 

on the 4th of June (after 17 days) at the Oklahoma State University Vegetable 

Research Station (OSU VRS) in Bixby and harvested at different maturity stages 

during August and until early September (first harvest on August 14th, last on 

September 4th). In both years, seeds of ‘XIT 101’ were also sown and 

transplanted in the field in alternating rows (one row of pollinator followed by two 

rows of triploids) to serve as diploid pollinator. Plants were placed 0.7m apart 

within the row, and rows were 6m apart. In 2004, seeds from cultivars ‘Sugar 

Time’, ‘6008’ and ‘5109’, were planted on May 5th in the Horticulture greenhouse 

facilities in Stillwater and transplanted on 1st of June at OSU VRS in Bixby (after 

28 days). Watermelons were harvested at different maturity stages in late August 

(the 24th).  
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2.2      Initial Watermelon Handling 

Watermelon maturity stage was initially based on characteristics evaluated 

on site at the field. In particular, color of the groundspot (surface of the 

watermelon touching the ground), tendril vitality and sound of fruit by thumping 

were applied. Several melons were cut to assure validity of our methodology just 

prior to harvest for these studies. 

After harvest, watermelons were transferred to a research lab at Stillwater 

and held at room temperature (20-25OC) until processing.  

 

2.3      LABORATORY PROCESSING 

Individual watermelons were cleaned to remove soil residues, weighed 

and cut in half through the center of the ground spot from stem to blossem end.  

Additional observations were recorded using destructive “in lab” observations 

(OBRIX, flesh color and texture, rind thickness, flesh firmness). Three maturity 

stages were utilized for segregation processing: 

2003   (‘Sugar Shack’, ‘6007’, ‘SW1’)

1. Under mature - Green succulent tendril, greenish groundspot, 6-7 
OBRIX, pink to white flesh color, crisp texture; 2. Mature - Dead tendril, 

yellow groundspot, 7.5-8.5 OBRIX, red flesh color, crisp texture; and 3. 

Overripe - Brown, dead tendril, yellow groundspot, 7.5-9 OBRIX, pale red 

flesh color with an orange tint at the flesh/rind interface, grainy texture. 
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2004   (‘Sugar Time’, ‘6008’, ‘5109’)

Same characteristics as 2003 except the OBRIX was lower for the 2004 

cultivars. 

1. Under mature: 5-6.5 OBRIX; 2. Mature: 5-7 OBRIX; and 3. Overripe: 7-8 
OBRIX 

 

Flesh was carefully separated from rind for three melons each 

representing the three maturity stages identified above (nine melons per cultivar), 

and were placed into individual preweighed tubs. Weight was recorded and rind 

was discarded. Flesh was chopped in small chunks (<4cm), mixed and nine 

samples (≈ 1 to 2 g) of raw watermelon were taken for lycopene analysis, placed 

into prelabeled brown bottles (120ml) and stored in a freezer at -20oC for 

lycopene quantification procedure. Six samples of ≈1 g flesh were also placed 

into small preweighed and prelabeled metal weighing boats for moisture content 

analysis and placed into an oven at 70-100OC. Samples of juice were placed into 

2 dram vials (17x60mm screw thread with rubber lined cap; Fisherbrand, Fisher 

Scientific LLC, Denver, CO), centrifuged for 15min using a Speed Vac centrifuge 

(Savant RVT4104 Refrigerated Vapor Trap, Savant Instruments Inc., 

Farmingdale, NY) (approximately 3500g) and duplicate 50 µl samples were 

obtained and frozen at -20oC for sugar analysis.  
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2.3.1   2003 FILTRATION PROCESSING 

For this study a total of 27 melons were used, representing three melons 

each per three maturity stages and three cultivars. 

Chopped flesh (500g) was proportioned into three prelabeled and 

preweighed quart grinding jars. Each jar was weighed and then contents were 

homogenized on ice using an Omnimixer homogenizer with polytron attachment 

(Post Mounted Homogenizer, Omni-Mixer with interchangeable rotor stator and 

20mm diameter x195mm length w/saw teeth polytron-style generator probe; 

OMNI International, Waterburry, CT) at speed 6 for 2 bursts of 1 min each, 

recovering 99% of the flesh. With a large mouth Pasteur pipette triplicate 

samples were withdrawn from puree for lycopene analysis (≈1ml) and placed into 

preweighed and prelabeled 2 dram vials. Weights of vials were recorded and 

they were capped and stored at -2OC to await analysis. Duplicate samples for 

sugar analysis (50µl into 2 dram vials) were also obtained. The remaining 

contents were then reweighed and filtered through two layers of Miracloth under 

vacuum, using a Buchner funnel into vacuum flasks until no dripping occurred 

(approximately 10-15 minutes). Grinding jars were reweighed for any residues.  

The filtrates (90% of the flesh weight) were transferred from the vacuum 

flasks into preweighed and prelabeled 1L plastic bottles. Filtrate weight was 

obtained for later use in filter cake rinsing. With a calibrated pipette triplicate 

1.0ml samples were withdrawn during agitation into 2 dram glass vials from each 

filtrate for lycopene analysis and duplicate samples were also withdrawn for 
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sugar analysis (50µl into 2 dram vials). Filtrate was then used for centrifugal 

processing as described in the next section. 

Filter cakes (10% of the flesh weight) were placed with miracloths onto 

large preweighed and prelabeled plastic weighing boats. Weights were obtained 

and filter cakes were transferred into another large preweighed weighing boat. 

Weights of filter cakes and soaked miracloths were obtained, and miracloths 

were discarded. Triplicate samples (≈0.5g) from each filter cake were stored in 

prelabeled 120ml brown bottles for lycopene analysis. Equal amount of samples 

was placed onto preweighed and prelabeled metal weighing boats for moisture 

analysis. 

 

2.3.1.1 Filtrate Centrifugation Procedure 

Sets of 18 preweighed 2dram vials (6 samples from 3 separate filtrates, 

2.00ml each) were centrifuged for 15 min in the Speed vac to precipitate 

lycopene. The supernatant layer (serum) was withdrawn and transferred into 

separate preweighed and prelabeled 2dram vials using a Pasteur pipette, and 

the centrifuged vials were weighed to obtain pellet weight. A 50µl subsample was 

withdrawn from the serum samples with a calibrated pipette, placed into 

prelabeled 2dram vials and stored at -20OC for sugar analysis. Weights for 

serums were recorded and vials were capped and stored at -20OC for lycopene 

analysis. Nine vials containing pellets (3 out of 6 from each filtrate) were capped 

and stored at -20OC for lycopene analysis. 
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To the other nine vials, 2ml of deionized water was added and vials were 

capped and vortexed until mixed. Vials were re-centrifuged for 15 min in the 

Speed vac, and then serums were transferred into preweighed and prelabeled 2 

dram vials and processed as described above. All vials were then capped and 

stored at -20OC until lycopene analysis. 

 

2.3.1.2 Filter Cake Rinse 

The remaining paste-like filter cake fraction, derived from ground flesh 

filtration and sampled as described previously, was rinsed with deionized water. 

The volume used was equal to the ratio of filtrate to filter cake for the preceding 

filtrate, accounting for loss of filter cake weight from sampling. Filter cake and 

water were magnetically stirred for 15min, and the mixture was filtered as before. 

Samples for lycopene and sugars were taken as previously described. 

Filtration resulted in two new fractions; a set of new filter cakes and new 

filtrates. Nine samples of 2ml each were placed into 2 dram vials from the new 

filtrates (3 samples from each of 3 filtrates), centrifuged and separated into 

serum and pellet as before with no additional water rinse of pellets. The new filter 

cakes were rinsed once more as before and re-filtered to segregate a third set of 

filter cakes and filtrates. Samples of lycopene, moisture and sugar were taken at 

all appropriate steps as mentioned previously. All samples were stored at -20OC

until analysis. 
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2.3.2   2003 HEATING TRIAL 

A small trial was conducted to test heat influence on lycopene segregation 

during processing. Six overripe watermelons from the ‘SW1’ cultivar were used 

and treated as two triplicate sets. All melons from both sets were handled as 

before until just after the grinding step. After the three 500g aliquots were ground, 

the contents of each quart jar were treated differently. For each watermelon in 

the first triplicate set, the contents of the first jar were transferred into a 1L 

fleaker, covered with aluminum foil and heated to 85OC ±2OC for two minutes 

before filtration. The contents of the second jar were first filtered and the 

subsequent filter cake was resuspended in a volume of deionized water equal to 

the volume of the preceding filtrate and then heated to 85OC ±2OC for two 

minutes (heat was applied after the first filtration). The third jar was handled 

entirely as described previously, at 25OC (room temperature). All other 

treatments were as described in the 2003 study, with three filtrations (two filter 

cake rinses) and two filtrate centrifugations (1st and 2nd filtrate). The second 

triplicate set of watermelons was handled the same as the first, except that filter 

cakes for the first and second jars were rinsed with hot water (≈80OC), instead of 

room temperature water, to investigate the effect of rinse water temperature on 

the segregation pattern of lycopene. The third jar was handled entirely at 25OC, 

as before. Samples for lycopene, moisture and sugar were taken at all steps as 

before.  
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2.3.3   2004 FILTRATION PROCESSING AND HEATING PROJECT 

For this study, a total of 27 fruit, representing three per maturity per 

cultivar (‘Sugar Time, ‘6008’ and ‘5109’), (Undermature, Mature and Overripe), 

were processed into red flesh as described earlier. 

To further investigate and characterize temperature influence on lycopene 

segregation during processing, three 500g aliquots were prepared and ground as 

before, but were treated with stirring in three different ways; heated at 60oC for 

5min, heated at 85oC for 2min or held at 25oC for 15min. 

Ground flesh from jars 1 and 2 were transferred into preweighed and 

prelabeled foil wrapped 1L glass fleakers for heat treatments. Ground flesh from 

jar 3 was transferred into a 1L plastic bottle and stirred at 25OC as before. For 

heat treatments at 60±2OC or 85±2OC, foil wrapped fleakers were placed onto a 

hot plate and stirred vigorously.  Temperature was monitored with a 

thermocouple thermometer and once the target temperature was reached, 

fleaker contents were maintained at ±2OC of the treatment temperature by 

periodically removing from the hot plate. Immediately after treatment, fleakers 

were reweighed and sampled. Triplicates of approximately 1gm were obtained 

with a wide mouth Pasteur pipette into preweighed and prelabeled 2 dram vials 

for lycopene analysis and weights were recorded. The contents of the fleaker 

were then reweighed and filtered as before. The non-heated sample was also 

sampled and filtered as before. All containers were reweighed, after transfer onto 

miracloth in a buchner funnel for filtration, to account for residual sample.  
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Filtration resulted again in an aqueous filtrate and a pasty semisolid filter 

cake. All filtrates and filter cakes were weighed and samples for lycopene (filter 

cake, ≈0.1-0.5g into 120ml brown bottles; filtrate, 1ml into 2dram vials) and 

sugars (filtrate only, 50µl into 2 dram vials) were frozen at -20oC to await 

analysis. Triplicate samples of 0.5g from the filter cakes were also taken for 

moisture content determination. 

 Following the first filtration all resultant filter cakes were rinsed once at 

25OC, with a volume of water equivalent to the previous filtrate volume and then 

re-filtered. Sampling was conducted as described before, except that a third 

filtering was not conducted. Filtrate and filter cake samples were obtained as 

before for lycopene and sugar analysis. 

 

2.4      Sugar Analysis 

Sugars were analyzed following the HPLC procedure of Leskovar et al. 

(2004); 50 µl juice samples were diluted appropriately with dionized water, and 

1ml samples were placed into an AS-3500 autosampler. Samples were injected 

automatically onto a Dionex DX-500 HPLC system (Dionex Corporation, 

Sunnyvale, CA), overfilling a 50µl injection loop. Sucrose, fructose and glucose 

were separated with a 4mm x 250mm Carbopac PA-1 column under isocratic 

conditions of 92% water and 8% 0.5M NaOH for 20 minutes. Peaks were 

detected with a pulsed electrochemical detector in pulsed amperometry mode 

and a Peak-Net data station. A flow rate of 1ml per minute was used and after 

every 30 injections the carbonate buildup was removed using 50% water and 
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50% 0.5M NaOH rinse, at the same flow rate for 60 minutes. Five minutes prior 

to injection, the column was allowed to reequilibrate at isocratic conditions. 

Sugars were identified by co-elution with authentic standards and quantitated by 

the external standard procedure. 

Samples collected during processing were obtained only from liquid 

fractions and were diluted as described for HPLC analysis to determine sugar 

content of those liquid fractions (filtrates and serums). We assumed that the solid 

fractions (filter cakes and pellets) had the same concentration of sugars in their 

aqueous portion as filtrate serums; moisture content of these fractions was used 

in combination with the concentration of their paired liquid fraction from 

processing (e.g. 1st filter cake- 1st filtrate and 2nd pellet- 2nd serum etc.), to 

estimate sugar content of the solid fractions.  

 

2.5      Lycopene Analysis 

Lycopene was quantitated by a modified spectrophotometric procedure of 

Sadler et al. (1990). Tissue samples were thawed at room temperature and 

ethanol, acetone and hexane were added at 1:1:2 ratios respectively, along with 

0.05% BHT (Butylated HydroxyToluene). For smaller sample sizes, the 

procedure of Fish et al. (2002) for reduced organic volume extraction was used, 

at the same solvent ratios. Samples were agitated for 10min on a shaker, then 

dionized water was added (three ml of water for every 10ml hexane used) to help 

phase separation and shaking was continued for another 5 minutes. Samples 
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were then allowed to stand for 15min, after which a fraction of the top hexane 

layer was filtered through Whatman no.1 paper using a 5ml syringe with a 

Millipore syringe filter (Swinney Stainless, 13mm; Millipore Corp., Bedford, MA).  

Lycopene was quantified with a dual beam Shimadzu spectrophotometer 

at 503nm (Shimadzu UV-160U Visible Recording Spectrophotometer, Shimadzu 

Scientific Instruments, Houston, TX). 

The µg/g per sample was calculated by the formula: 

(Abs@503nm / 0.172) x Organic volume used (ml) X 0.5369,     (2.5.1) 
Weight of the sample (gm) 

 

were Abs@503nm is the spectrophotometric absorbance units as given by the 

instrument; 0.172 is the extinction coefficient of lycopene in hexane; organic 

volume stands for the volume in ml of the hexane used for extraction; weight of 

the sample used for extraction is in grams and 0.5369 is the molecular weight of 

lycopene divided by 1000 (536.9 g/Mole). 

For lycopene data analysis we followed a split plot design with cultivar, 

maturity and temperature as the main plots, and the different fractions of the 

procedure as subplot. Lycopene concentration on a per fraction basis (µg

lycopene per g of fraction) was normalized (µg lycopene per g red flesh) to 

simplify comparisons between different cultivars and maturity levels. 
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RESULTS  

 

Lycopene results were normalized to allow comparison among 

watermelons varying in size (cultivars, maturity stage) and between various 

fractions from these fruit (filter cakes, filtrates and filtrate pellets). The absolute 

concentration in µg lycopene/g sample was normalized to µg lycopene/g ground 

flesh that segregated into that fraction during the procedure. An example of 

weight yields for fractions during processing is indicated in fig. 2. 

Our filtration processing steps outlined in materials and methods caused 

lycopene to segregate into two fractions, filtrate and a filter cake, with weight 

yields of 90-95% for the filtrate and 5-10% for the filter cake (Fig. 2). We consider 

as final utilizable products the filter cakes derived from filtrations, and the pellets 

precipitated from filtrates after centrifugation (about 2% of filtrate weight). Filtrate 

supernatant serums were considered waste, since they could not be further 

purified, or such a procedure would be economically unfavorable. 

Watermelon lycopene concentration was influenced by maturity and 

differed among cultivars. Although cultivars differed in normalized lycopene 

concentration (‘6007’> ‘SW1’, ‘6008’> ‘5109’ ≥ Sugar Shack, Sugar Time), the 

maturity influence within cultivars was relatively constant. Undermature melons of 

all cultivars generally contained less lycopene than mature and overripe melons 

(Fig. 3).  

In 2003 we focused on evaluating lycopene segregation as affected by 

watermelons maturity during filtration processing at 25OC. Segregation of 
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lycopene between filtrate and filter cake was strongly influenced by maturity. 

Lycopene segregated more into the filtrate especially as maturity increased, 

reaching nearly 90% for overripe melons (Fig. 4). Although lycopene was much 

higher in terms of absolute concentration in the filter cakes, the filtrates contained 

more total lycopene on a normalized basis (Fig. 5) due to the greater weight of 

filtrate versus filter cake (Fig. 2). This high filtrate lycopene content, and its high 

total weight, led us to search for means to purify lycopene from the aqueous, 

high sugar environment. Precipitation by centrifugation proved to be an effective 

method.  

Filtrates were centrifuged (3500g) to produce a high lycopene pellet 

(Table 1) and a serum, of about 2-3% and 97-98% weight recovery respectively 

(Fig. 2). Maturity effect was clear on lycopene recovery into the pellet for the first 

filtrate, where 55-80% of the lycopene from under-mature and mature melons 

was precipitated as a pellet (Table 2). One notable exception was for mature 

‘6007’ where only 37% precipitated. Although there was a higher segregation of 

lycopene into the first filtrate fraction from overripe melons (Fig. 4), centrifugal 

lycopene precipitation was much less, with pellets containing less than 35% of 

the total filtrate lycopene (Table 2).  

One water rinse of the pellets reduced sugar concentration from 6-9% to 

less than 0.1% (data not shown). Pellet lycopene content was not affected for the 

cultivar ‘Sugar Shack’, as well as for overripe ‘SW1’, and both mature and 

overripe melons of ‘6007’ (data not shown), but was reduced for all maturity 

stages of the 2004 cultivars (25OC on table 3).   
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Rinse of the first filter cake, followed by a second filtration, reduced the 

segregation of lycopene into filtrate to less than 70% when compared to the first 

filtration (Fig. 4). Subsequent centrifugation also altered lycopene precipitation, 

where the supernatant replaced the pellet as the dominant fraction (Table 2). 

Consequently, lycopene yields decreased between filter cake rinses and 

subsequent second and third filtrations (second filtration yields shown in Fig. 6).  

In 2003, an initial effort to change the segregation pattern and yields of 

lycopene, especially from overripe melons, led us to conduct the heat trial 

described in Materials and Methods, where only overripe melons of cultivar 

‘SW1’ were used. Our aim was to identify a method which could change the 

segregation pattern of lycopene and enhance lycopene content of one of the 

recoverable fractions (filter cake or filtrate pellet). 

Heating showed promising results by retaining lycopene into the filter cake 

fraction during the first filtration, minimizing the segregation into the filtrate (Table 

4). About 90% of lycopene was segregated into the filter cake for heated melons, 

but only 15% segregated into the filter cakes with no heat application. This effect 

was only observed for ground flesh heated prior to the first filtration; further 

heating of the rinsed filter cake after first filtration did not favor lycopene retention 

in the following filter cake fraction, with less than 50% recovery from filtrates as 

pellet after centrifugation (Table 4).  

After conducting the initial heat trial on the overripe watermelon cultivar of 

2003, we documented our initial findings of the heat influence on lycopene 

segregation during processing in 2004. The 2004 study was based on heat 
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treatments applied to three watermelon cultivars similar to the 2003 ones, at the 

same three maturity stages. Heat applications included the control at 25OC and 

heating of ground flesh to 85OC ±2OC for two minutes, as well as one additional 

treatment of heating to 60OC ±2OC for five minutes. 

The 2004 cultivars could be paired in terms of normalized lycopene 

concentration with the 2003 cultivars as follows: ‘6007’-‘6008’ (35-53 and 28-47 

normalized µg/g respectively, range is relative to maturity stage), ‘SW1’-‘5109’ 

(28-44 and 11-50 normalized µg/g respectively) and ‘Sugar Shack-Sugar Time’ 

(20-28 and 18-27 normalized µg/g respectively) (Fig. 3). Comparing the control 

treatment of 2004 (25OC) with the 2003 procedure, we saw initially the same 

segregation pattern for lycopene distribution after the 1st filtration (Fig. 7). More 

lycopene segregated into the filtrate fraction as maturity increased, but after 

centrifugation less than 45% of the lycopene was recoverable as a precipitated 

pellet for the overripe melons (25OC in Table 5). In contrast for mature and under 

mature watermelons, 75-85% of the filtrate lycopene was recovered as a pellet.  

Rinsing of the filter cake once with deionized water caused lycopene to 

segregate equally as filter cake and filtrate after the second filtration (Fig. 7). 

Centrifugation of the produced filtrate precipitated less than 60% of the lycopene 

as a pellet for all maturity stages (25OC in Table 5) resulting in a total lycopene 

recovery from rinsing (2nd filter cake plus 2nd pellet) of less than 60%, similar to 

the 2003 yield (Fig. 6). 

Initial heating of ground flesh at either 60OC or 85OC caused lycopene loss 

(measured as difference in lycopene content prior to heating versus just after 
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heating) of approximately 20-25%, regardless of cultivar and maturity stage 

(Table 6). 

When compared to 25OC, both heat treatments increased lycopene 

segregation into the filter cake fraction after the first filtration, by at least two fold 

for under mature and mature melons, and four fold for overripe melons (Fig. 7). 

After centrifugation of the filtrates, an increased segregation of lycopene from 

overripe melons as a pellet was observed for both heat treatments, while less 

lycopene was present in the filtrate fraction (Table 5). 

Rinsing the filter cake once and a subsequent second filtration, resulted in 

50-60% segregation of lycopene as a new filter cake for undermature and mature 

melons treated at 25OC and 60OC. Heating at 85OC segregated 55-70% of the 

lycopene into the second filter cake for all maturity stages, with higher 

segregation observed for overripe melons (Fig. 7). 

Centrifugation of the produced second filtrate showed approximately 45-

70% loss of lycopene (into the serum fraction) for the 25OC treatment depending 

on maturity, with 45-50% for undermature and mature, and 70% for overripe 

melons. Heat influence of both treatments (60OC and 85OC) decreased that loss 

to about 35% - 45% for all maturity stages (Table 5). 
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DISCUSSION 

 Our filtration processing and lycopene precipitation steps provided a 

means to concentrate watermelon lycopene into two fractions; a filter cake and a 

centrifugal filtrate pellet. These fractions present a means to collect lycopene 

from watermelons in less than 10% of the original watermelon weight. 

Segregation in to these two fractions was maturity dependent, with overripe 

melons loosing more than 45% of filtrate lycopene to the supernatant serum 

fraction after centrifugation (Table 2). This excessive lycopene loss was probably 

caused as a part of senescence, where extended breakdown of chromorplast 

membranes occur in overripe watermelons, releasing lycopene from its matrix 

and affecting lower lycopene precipitation. 

Heating puree prior to filtration at 60OC and 85OC increased segregation 

of lycopene by at least two fold into the filter cake fraction, for all maturity stages 

(Fig. 7). This change in lycopene segregation away from the filtrates was 

especially useful for the overripe melons where lycopene segregation was four 

fold into the filter cake fraction, and lycopene recovery from filtrates of unheated 

purees was poor. 

Rinsing the centrifugal pellets from filtrates with water, successfully 

reduced sugars to less than 0.1%, with an acceptable lycopene loss (25OC in 

Table 3), or even negligible lycopene loss for the heat treatments (60OC and 

85OC in Table 3). On the other hand, rinsing of the first filter cake can not be 

recommended due to substantial lycopene loss into the subsequent centrifuged 

filtrate serum fraction (Table 5).  
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The two products that best serve as a means to concentrate and recover 

lycopene were the filter cakes and filtrate pellets from a single filtration. Optimum 

recovery of lycopene following this procedure was maturity dependent without 

heat application, and highly temperature dependent when watermelons flesh was 

subjected to heat treatments (table 6).  

For the 2003 cultivars, the total amount of lycopene yielded from ground 

flesh (as a total of normalized µg/g) after one filtration step was about the same 

for all maturity stages. However, due the different amounts of initial lycopene 

contained on undermature, mature or overripe melons, the recovery was greater 

for undermature and mature watermelons than for overripe watermelons (45-50% 

compared to 25% respectively) (Table 6). Lycopene recovery without heat was 

best for ripe watermelon with one filtration step, utilizing the first filter cake and 

first pellet and resulting in 45% recovery. 

Following heat treatments of 60OC, or 85OC, total lycopene recovery from 

puree filtration step (as a total of normalized µg/g) was not significantly different 

among temperatures (Table 6).  Despite the significant retention of lycopene in 

the 1st filter cake fraction described earlier of heat treatments on lycopene 

segregation (compared to the 25OC), total lycopene recovery was about the 

same due to the difference of lycopene content in the utilized fractions. In 

particular for the total lycopene recovery at 25OC, a lower content filter cake and 

high content filtrate pellet was produced (similar to 2003), while for the heat 

treatments a high content filter cake and a lower content filtrate pellet was 

produced (Table 5). Recoveries yielded about 50-60% of the lycopene content of 



38

ground flesh, which could be 75-80% from heated ground flesh, if heat loss prior 

to filtration is factored in (2004 in table 6). Consequently, any treatment would 

yield about the same amount of lycopene after one filtration step, with differences 

only in the amounts contained in the final products. We recommend use of 

mature and overripe melons since they contain more lycopene than undermature 

melons (Fig. 3).  

Best lycopene yields could be achieved after only one filtration step, thus it 

is recommended to utilize the two concentrated fractions produced from ground 

flesh filtration; the first filter cake and the centrifuged first filtrate pellet.  Because 

lycopene segregation in these two fractions is maturity dependent, but can be 

altered with heat application of ground flesh, the maturity level of the 

watermelons should be determined to utilize the best procedure for lycopene 

recovery. Consequently, for undermature and mature melons, no heat application 

is necessary, since we can recover about 45-50% of the total initial lycopene as a 

high content (low weight) pellet and a lower content filter cake. To achieve similar 

or higher lycopene recoveries from overripe melons (on average 50-60%), 

heating of the ground flesh is necessary to drive lycopene away from the filtrate. 

In this case a high content filter cake is used with a lower content filtrate pellet. 

Using concentrations of the cultivars used in this study, as shown in figure 3, we 

can estimate lycopene yields using our procedure. For example, a 3000g 

undermature watermelon (about 1500g flesh) can yield about 8.3-26.3mg 

lycopene and a mature watermelon can yield about 19.5-38.5mg lycopene 

depending on the cultivar used, without heat application (50% recovery). Similar 
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size overripe melons can yield about 25.2-47.7mg lycopene, depending on 

cultivar, using the heat processing extraction (60% recovery).  

This procedure gives a means to potentially utilize two high lycopene 

fractions; a filter cake and a precipitated pellet. However, stability of these 

fractions during storage is not yet known and needs to be investigated, for 

potential marketing and shipping requirements. For instance, a freeze-drying 

procedure could be tested with the high moisture filter cake, and different oil 

suspensions (hazelnut oil, sunflower oil etc.) for the highly concentrated pellets. 

In addition, a larger scale experiment of this procedure would be very helpful to 

evaluate if similar recoveries of lycopene are applicable when larger quantities of 

melons are used, and try to engineer equipment for close-to-field application 

(harvesters, rind-flesh separation, low light-oxygen facilities etc.). 
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Table 1. Lycopene concentration of first pellet versus first 

serum for the different maturity levels of 2003 melons. 

Fraction µg lycopene • gm fraction-1 
Undermature  Mature  Overripe 

1st Pellet 535 abz 643 a 376 b
1st Serum 2 e 7 d 19 c
z Means with different letters denote significance at P≤0.05 among 

fractions and maturity stages. 
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Table 2. Lycopene recovery in normalized µg/g after: A) first filtration, B) first filtrate 

centrifugation, C) 2nd filtration and D) 2nd filtrate centrifugation of the different cultivars and 

maturity levels of 2003 melons. Comparison of filter cakes vs. filtrates and pellets vs. 

serums. 

Processing step Fraction Normalized µg/g lycopene 
Undermature Mature Overripe 

 
‘6007’ ‘SW1’ ‘SuSh’ ‘6007’ ‘SW1’ ‘SuSh’ ‘6007’ ‘SW1’ ‘SuSh’

A) 1st Filtration 
1st Filter 
Cake 8.8 ay 5.2 a 2.6 a 5.0 a 4.6 a 4.9 a 3.5 a 3.5 a 2.4 a

1st Filtrate 15.5 bc 15.1 bc 9.1 c 37.8 a 21.4 b 14.1 bc 44.6 a 38.3 a 18.2 bc 
NS * NS  * * * * * *

B) 1st Filtrate 
Centrifugation 1st Pellet 12.5 a 8.3 a 6.0 a 14.0 a 13.7 a 9.6 a 10.8 a 5.2 a 5.8 a

1st Serum 1.1 d 1.9 cd 0.6 d 14.2 abc 2.4 cd 1.6 d 20.4 ab 21.0 a 8.3 bcd 
* * * NS * * * * NS 

C) 2nd Filtration
2nd Filter 
Cake 2.5 a 1.5 a 0.6 a 1.2 a 1.4 a 1.2 a 1.5 a 0.6 a 0.4 a

2nd Filtrate 3.8 a 2.4 a 1.4 a 2.9 a 2.5 a 2.7 a 1.8 a 1.9 a 1.3 a
NS NS NS NS NS NS NS NS NS 

D) 2nd Filtrate 
Centrifugation 2nd Pellet 0.4 a 0.5 a 0.5 a 1.3 a 0.6 a 1.3 a 0.7 a 0.5 a 0.5 a

2nd Serum 0.9 a 0.5 a 0.3 a 0.9 a 0.7 a 1.0 a 0.8 a 0.9 a 0.6 a
NS NS NS NS NS NS NS NS NS 

y Means with different letters denote significance at P≤0.05 between maturity stage and cultivars in the same 

row. NS, * Non significant or significant at P≤0.05 between means in the same column for the same processing 

step.  
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Table 3. Temperature effect on first pellet lycopene concentration (normalized 

µg/g), after rinse with deionized water of 2004 cultivars. 

Fraction   Undermature Mature Overripe
25OC 60OC 85OC 25OC 60OC 85OC 25OC 60OC 85OC

1st Pellet 8.0 2.8 1.7 13.3 4.2 2.4 12.6 5.2 0.8 

Rinsed 1st 
pellet 6.5 2.3 1.4 9.5 4.1 2.4 8.5 4.6 0.8 
 * NS NS * NS NS * NS NS 

NS, * Nonsignificant or significant between fractions in the same column at P≤0.05. 
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Table 4. Lycopene recovered concentration in normalized µg/g after: A) 

Heated ground flesh, B) Filtration of heated ground flesh (first Filtration), 

C) Heated first filter cake (2nd Filtration) and D) 2nd Filtrate 

centrifugation, on 2003 heat trial. 

Processing Fraction Temperature 
Step  

25C 

85C Heat 
before 1st 
Filtration 

85C Heat 
after 1st 

Filtration 
A) No Filtration Ground Melon 42.5 a 42.6 a 43.0  ax

Heated Ground Flesh  31.5  
 *
B) 1st Filtration 1st Filter cake 4.6 b 20.1 a 5.2 b

1st Filtrate 27.7 a 2.2 b 30.1 a
* * *

C) 2nd Filtration 2nd Filter cake 1.2 b 11.9 a 1.8 b
2nd Filtrate 2.4 7.3 1.1 

 NS NS NS 

 
D)      2nd Filtrate 2nd Pellet 0.7 a 2.7 a 0.7 a

Centrifugation 2nd Serum 1.2 a 3.5 a 0.7 a
NS NS NS 

x Means with different letters denote significance at P≤0.05 between temperature 

treatments in the same row. NS, *  Non significant or significant at P≤0.05 between 

means in the same column at the same processing step. Solid filled cells show the 

fraction where heat was applied. 
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Table 5. Lycopene recovery in normalized µg/g after: A) first filtration, B) first filtrate 

centrifugation, C) 2nd filtration and D) 2nd filtrate centrifugation of different maturity and 

temperature levels of 2004 melons. Comparison of filter cakes vs. filtrates and pellets vs. 

serums. 

Processing step Fraction Normalized µg/g lycopene 
Undermature Mature Overripe 

 
25OC 60OC 85OC 25OC 60OC 85OC 25OC 60OC 85OC

A) 1st Filtration 
1st Filter 
Cake 5.3 b 12.0ab 12.8ab 6.0 b 17.7 a 18.9 a 4.4 b 17.9 a 22.1 aw

1st Filtrate 9.5 bc 2.4 c 2.1 c 17.9 b 3.8 c 2.4 c 29.3 a 6.1 c 0.9 c
NS * * * * * * * *

B) 1st Filtrate 
Centrifugation 1st Pellet 8.0 abc 2.8 abc 1.7 c 13.3 a 4.2 abc 2.4 bc 12.6 ab 5.2 abc 0.8 c

1st Serum 1.2 a 0.5 a 0.7 a 4.2 a 0.7 a 0.7 a 10.2 a 1.1 a 0.3 a
* NS NS  * * NS NS * NS 

C) 2nd Filtration
2nd Filter 
Cake 1.9 ef 4.2 cdef 5.0 bcde 2.1 def 6.2 bc 8.3 b 1.2 f 5.4 bcd 13.5 a

2nd Filtrate 1.5 a 4.2 a 3.6 a 1.5 a 5.3 a 4.8 a 1.4 a 8.4 a 4.8 a
NS NS NS NS NS * NS * *

D) 2nd Filtrate 
Centrifugation 2nd Pellet 0.9 a 2.9 a 2.0 a 0.9 a 3.3a 2.3 a 0.6 a 3.2 a 1.8 a

2nd Serum 0.7 a 1.4 a 1.7 a 0.9 a 1.9 a 2.3 a 1.3 a 3.8 a 2.3 a
NS NS NS NS NS NS NS NS NS 

w Means with different letters denote significance at P≤0.05 between maturity stage and temperature in the 

same row. NS, * Non significant or significant at P≤0.05 between means in the same column for the same 

processing step.  
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Table 6. Total lycopene recovery from watermelon ground flesh in 

normalized µg/g after 2003 and 2004 processing. Total lycopene 

expressed as a summary of the produced filter cakes and pellets

depending on the processing termination step. Fractions: A) 1st filter cake 

+ 1st pellet, B) 2nd filter cake + 1st and 2nd pellets and C) 3rd filter cake +1st

and 2nd pellets. 

Processing  Fraction Normalized µg/g lycopene 
step  Undermature Mature Overripe 

2003 Ground Flesh 27.4 II 36.8 I,II 43.2 Iv

1st Filtration A 14.5 a, I 16.7 a, I
v 10.4 a, I 

2nd Filtration B 10.9 b, I 14.3 b, I 8.7 b, I 
3rd Filtration C 9.7 c, I 13.2 c, I 7.9 b, I 

25OC 60OC 85OC

2004 Ground Flesh 31.2  I 33.1 a, I
v 32.4 a, I 

 
Heated 
Ground Flesh  26.7 b, I 24.5 b, I 

1st Filtration A 16.5 a b 19.7 au 19.6 a
2nd Filtration B 14.2 b 12.8 b 12.9 b

v Means with different Latin numbers denote significance at P≤0.05 in the same row, 

and different letters denote significance at P≤0.05 in the same column. u Means with 

different letter denote significance at P≤0.05 between temperatures and A and B

fractions for 2004 melons.  
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FIGURE LEGENDS 
 
Figure # Legend Page

1 Chemical structure of 5 cis and trans isomers of lycopene. 49 
2 Example of weight distribution (in gm) of a mature 'SW1' 

watermelon during the various steps of processing of 2003 50 
3 Normalized µg/g concentration of ground flesh for 2003 and 

2004 watermelon cultivars. Means with different letters denote 
significance at P≤0.05 between cultivars and maturity stages 
for the same year. 51 

4 Lycopene % segregation from 1st and 2nd filtrations, to filter 
cake and filtrate of 2003 cultivars at undermature, mature and 
overripe maturity stages. Percent with different letters denotes 
significance at P<0.05 between all cultivars, maturity stages 
and fractions. 52 

5 Comparison of absolute µg/g versus normalized µg/g for first 
filter cake and first filtrate of 2003 cultivars at three maturity 
stages. Different letters above bars denote significance at 
P<0.05 between all maturity stages and fractions of the same 
concentration. 53 

6 Lycopene recovery (%) as a total of 2nd filter cake plus 2nd 
pellet after 2nd filtration of 2003 and 2004 cultivars at 25OC. 54 

7 Lycopene segregation (%) in filter cake and filtrate from first 
and 2nd filtrations, as affected from temperature at all maturity 
stages on 2004 melons. Different letter designations above 
bars, denote significance at P<0.05 between all maturity 
stages, temperature and fractions. 55 
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Figure 1. Chemical structure of 5 
cis and trans isomers of lycopene. 

trans-lycopene
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Figure 2. Example of weight distribution (g) of a mature 'SW1' watermelon during 
the various steps of processing of 2003. 
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Figure 3. Normalized µg/g concentration of ground flesh for 2003 and 2004 
watermelon cultivars. Means with different letters denote significance at P≤0.05 
between cultivars and maturity stages for the same year.  
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Figure 4. Lycopene % segregation from first and 2nd filtrations, to filter cake and 
filtrate of 2003 cultivars at undermature, mature and overripe maturity stages. 
Percent with different letters denotes significance at P<0.05 between all cultivars, 
maturity stages and fractions. 
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Figure 5. Comparison of absolute µg/g versus normalized µg/g for first filter cake 
and first filtrate of 2003 cultivars at three maturity stages. Different letters above 
bars denote significance at P<0.05 between all maturity stages and fractions of 
the same concentration. 
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Figure 6. Lycopene recovery (%) as a total of 2nd filter cake plus 2nd pellet after 
2nd filtration of 2003 and 2004 cultivars at 25OC. 
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Figure 7. Lycopene segregation (%) in filter cake and filtrate from 1st and 2nd 
filtrations, as affected from temperature at all maturity stages on 2004 melons. 
Different letter designations above bars, denote significance at P<0.05 between 
all maturity stages, temperature and fractions. 
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