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CHAPfERI 

INTRODUCTION 

This thesis is concerned with the identification of features within two-dimensional 

imagery. Current acquisition technology is capable of producing very high-resolution 

images at large frame rates and generating an enormous amount of raw data. Exceeding 

present signal processing technology in all but the simplest image processing tasks, the 

visual information contained in these image sequences is tremendous in both spatial and 

temporal content. A majority of this detail is relatively unimportant for the identification 

of an object, however, and the motivations for this thesis, at the core, are the study and 

development of methods that are capable of identifying image features in a highly robust 

and efficient manor. 

Biological vision systems have developed methods for coping with high­

resolution imagery, and these systems serve as a starting point for designing robust and 

efficient algorithms capable of identifying features within image sequences. By foveating 

towards a region of interest, biological systems initially search coarse-scale scene 

representations and exploit this information to efficiently process finer resolution data. 

This search procedure is facilitated by the nonlinear distribution of visual sensors within a 

biological vision system, and the result is a very efficient and robust method for 

identifying objects. Humans will initially identify peripheral objects as potential regions 

of interest, acquiring higher-resolution image information by focusing on the region, and 



-

deciding if the perceived object is actually present through the use of all availabJe 

knowledge of the scene. 

The majority of electronic image sensors, which provide data to signal processing 

devices, do not utilize nonlinear sensor distributions like their biological counterparts. 

Attempts to mimic the foveating behavior of a human visual system with software must 

replicate the advantages of these nonlinear scene descriptions with uniformly sampled 

data. The first important development in a digital coarse to fine search is encapsulated by 

continuous scale space theory, where it is proposed that an infinite number of scene 

representations exist and may be created by filtering the original signal with a linear, 

scale generating, filter. The result is a signal description that may be queried in a method 

similar to the biological coarse to fine search, as objects are initially identified in coarse 

resolution information, and this information used to guide and refine higher resolution 

inspections. 

Scale space theory provides a fundamental tool in developing object identification 

search techniques, but it is severely handicapped for actual image processing applications. 

Construction of scale space is quite expensive, requiring an infinite number of scene 

representations to follow features from coarse information to finer scene depictions. 

Additional deficiencies in the application of scale space theory to practical signal 

processing systems arise in the execution of the initial coarse scale identification, as 

searching this scene representation is computationally equivalent to searching the original 

image (which was already deemed excessive). While the introduction of scale space 

theory is an important first step in designing algorithms capable of replicating biological 
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vision systems, its direct application to image processing task does not reduce the 

computational requirements of feature identification. 

An attractive method for processing scale space data is expressed with an image 

pyramid. Image pyramids are constructed by successively filtering and subsampling the 

original image, resulting in a data structure that graphically resembles a pyramid. 

Effectively, these structures contain a discrete representation of scale space, quantizing 

traditional scale space theory along the scale parameter and quantizing the scale 

representations along spatial dimensions. Construction of these scene depictions is very 

efficient, and the initial identification of a feature in coarse scene infonnation comes with 

reduced computational requirements, compared to searching the original, high-resolution 

image. Theoretically, the image pyramid will provide a very robust and efficient solution 

to the object identification problem, allowing an algorithm to query higher resolution 

imagery only at locations of possible object occurrence and replicating the coarse to fine 

search method of a biological vision system. 

Unfortunately, image pyramid techniques have been largely unsuccessful in actual 

image processing applications, as traditional scale space theory dictates the use of a 

Gaussian linear kernel in the generation of the image pyramid. Constructed by 

successively convolving the original image with a Gaussian-weighted filter and 

subsampIing, the use of the Gaussian pyramid introduces difficulties in the 

implementation of recognition algorithms. Specifically, linear filtering induces feature 

movement between spatial representations, yielding poor edge localization, region 

merging, and increased system complexity. Within a Gaussian pyramid, features of 
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interest may still be identified within a coarse scene repre entation, but usmg this 

information to guide finer resolution inspections has been unfeasibJe. Gaussian pyramids 

undersample linear scale space along the scale parameter. 

While the practical difficulties inherent to the Gaussian kernel have hindered 

application of these pyramid structures, their appeal has motivated the relaxation of 

traditional scale space filter constraints and encouraged the exploration of alternative 

scale generating mechanisms. Many nonlinear operators have been investigated, but with 

the necessity of producing a scale space in which regions do not merge and edges do not 

move, a novel filtering technique has been developed. Modifying an alternative 

representation of the Gaussian kernel, the anisotropic diffusion smoothing process was 

designed to allow intra-region smoothing while inhibiting inter-region interactions. The 

anisotropic diffusion smoothing process attempts to generate scale spaces with minimal 

feature movement, overcoming the problems inherent to traditional, linear scale space 

construction. 

Development of the anisotropic diffusion equation does address the practical 

problems for image pyramid application; however, it posses one crucial design fl aw. 

Image pyramid construction (and scale space theory) requires information to be removed 

as the scale parameter of the filter is increased. The anisotropic diffusion operator, in 

fulfilling its goal of preserving all candidate edge locations, is unable to guarantee this 

filter performance. This trait introduces specific problems for the application of the 

anisotropic diffusion expression to an image pyramid, and it severely compromises the 

effectiveness of the filtering mechanism in any image processing application, as the 
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nonlinear smoother is unable to remove noise or flOe detai l. Sensitivity of the anisotropic 

diffusion equation to noise has received much attention from the research community and 

several modifications to the diffusion process have been suggested. However, in the 

development of these modified diffusion algorithms, application of the anisotropic 

diffusion process to image pyramid representations has been neglected. 

The purpose of this thesis is to formalize the construction of an anisotropic 

diffusion pyramid and apply it to the problem of object identification. This task wiJi 

require the introduction of, yet, another form of the anisotropic diffusion coefficient and 

the definition of filter parameters that allow the diffusion process to serve as a suitable 

prefilter for subsampling operations. Toward this goal, it will be necessary to discuss 

previous extensions to the diffusion expression, pointing out their respective flaws, and to 

model the anisotropic diffusion process as a piece-wise linear filter. Construction of an 

anisotropic diffusion pyramid will al so allow this thesis to consider the practical 

possibilities of replicating biological search methods with digital devices, and will 

specifically address issues relating to the application of the anisotropic diffusion pyramid 

to target tracking tasks. The goal of this thesis is to provide the first formal description of 

an anisotropic diffusion pyramid and apply this new multi-scale structure to the problem 

of object identification and tracking. 

The rest of the paper is organized as follows: Chapter II presents background on 

multi-resolution image pyramids, scale space theory, and the anisotropic diffusion 

equation. Chapter ill discusses prevIOUS extensions to the anisotropic diffusion 

expresswn, showing that they are incapable of fulfilling the original goals for the 

5 



-

diffusive process while accomplishing their extended goals. Chapter IV develops a novel 

diffusion representation, overcoming previous diffusion difficulties, and capable of 

generating scale space representations with reduced information content and with 

minimal feature drift. Chapter V formalizes the construction of the anisotropic diffusion 

pyramid, developing conditions for all filter parameters that allow the anisotropic 

diffusion process to serve as a suitable sampling prefilter. Chapter VI applies the new 

pyramid structure to an object identification and tracking system, presenting numerical 

simulations which display the performance possibilities of the anisotropic diffusion 

pyramid in a target tracking application. Chapter VII presents conclusions and future 

work. 
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CHAPTER II 

BACKGROUND 

Overview 

Edges are an integral part of most image processing applications. Through the 

recognition and location of these features, raw visual information is transformed into 

semantically meaningful representations and expressed in compact forms. This collection 

of edge information allows a vision system to query the data, identify objects, and 

determine their locations; all are fundamental tasks of an image processing system. 

Computational approaches towards locating edges are varied, but common 

methods incorporate first or second derivatives in the procedure and locate either local 

extrema or zero crossings. While these operations do provide meaningful measurement 

of region boundary existence, their application is problematic, as differentiation is 

sensitive to fine features, texture, and noise. Traditionally these spurious responses are 

suppressed by prefiltering the signal before differentiation, equivalent to enlarging the 

scale of the derivative calculation. 

Introducing a prefilter into the detection operation presents problems for the 

theoretical development of edge identification. Specifically, one would like to determine 

if there exists an optimal prefilter for the detection procedure and, if so, what is its ideal 

scale? Pursuit of these answers forms the background of this thesis, and the goal of this 
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section is to provide an introduction to several important concepts. The section begins 

with discussion of scale space theory and continues by presenting image pyramids as its 

discrete extension. Problems applying continuous scale space concepts within image 

pyramids necessitates work on novel filtering techniques, and the section concludes with 

the introduction of one such adaptive filtering mechanism, the anisotropic diffusion 

equation. 

Scale Space 

Scale space filtering was initially developed to manage the relationship between 

edge information over varying resolution. Since many signal characteristics, most 

notably derivatives, are calculated over a region where the region size influences the 

descriptive measurement, Witkin introduced scale space as a collection of signal 

representations, derived from the original image and generated by a scale space filter [37]. 

Scale space does not attempt to define an optimal scale for feature identification, but 

provides a method for establishing correspondence between edges found in heavily 

filtered signal representations and their location in the original signal. 

Construction of scale space is straightforward, and traditionally begins by filtering 

the original signal with an FIR filter of varying width. Hyper-planes within scale space 

contain a single filtered representation of the signal, while filtering the signal with a 

continuum of filter widths produces scale space. For a two-dimensional image, scale 

space may be visualized as a three-dimensional cube, containing an infinite number of 
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signal descriptions stacked upon one another. These representations are ordered by their 

respective filter scale parameter, and from these filtered images, features may be 

identified using traditional detection methods. An example scale space is shown in 

Figure 2.1. 

Figure 2.1 Scale space for the cameraman image. The original image is located at 
the top of the cube and lower levels are occupied by coarser representations of the 
scene. For this example, the coarse scale images are constructed by smoothing the 
original image with a Gaussian filter. 
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Plotting the locations of detected features versus the continuous scale parameter is 

defined as the scale space image and an example is displayed in Figure 2.2. Within these 

structures, objects may be recognized at coarse resolution representations and traced to 

their origin. This is referred to as a coarse to fine search and encompasses the power of 

scale space theory, allowing the initial identification of significant features to occur in the 

absence of spurious derivative results. The exact location of these edge points in the 

original image may then be obtained by traversing scale space towards finer resolution, 

resulting in a robust method for fusing multi-scale information and a procedure well 

suited to the edge detection problem. 

Figure 2.2 Scale space and the scale space image. Scale space images are 
displayed on the sides of the cube and show how smaller features disappear rapidly 
as scale is increased. Connectivity between levels is defined as spatial causality, as 
all coarse scale features correspond to features in the higher resolution 
representations. 

10 
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Specification of a viable scale space filter requires fulfi ll ing a specific smoothing 

criteria: if a feature is tracked across increasing scale, it should disappear. Conversely, a 

new feature should never appear while scale increases, as coarse resolution 

representations would no longer correspond to the original signal. Guaranteeing the 

presence of coarse scale objects in finer scene representations is expressed as spatial 

causality, maintaining a cause and effect relationship for features, and is a necessary 

condition for application of the multi-scale coarse to fine search method. 

The spatial causality criterion allows the specification of an optimal filter for scale 

space generation. Witkin initially restricted the scale generating filter to be symmetric, 

strictly decreasing about the mean, and linear. As a result of this definition, it has been 

shown that the Gaussian kernel is the only filter capable of satisfying these constraints in 

one-dimension while maintaining spatial causality [3]. The uniqueness of the Gaussian 

kernel for scale space construction has since been extended to higher dimensions [4 1], 

discrete signals [23], and the larger class of unsmooth kernels [39]. The Gaussian filter 

also has the unique property of minimizing the uncertainty principle [25]. 

Even with the discovery of a unique scale generating filter, application of scale 

space theory to practical problems is limited. Requiring an infinite (or near infi nite) 

number of scale representations necessitates large storage requirements, and performing 

feature detection tasks on each resolution level is computationally expensive. Efficient 

execution of a coarse to fine search demands quantization of the scale parameter, and is 

formalized by the image pyramid. 
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Image Pyramids 

Image pyramids are a discrete representation of scale space. By requiring the 

calculation of fewer scene representations, they reduce the computational requirements of 

scale space construction and the coarse to fine search. Image pyramids also introduce 

additional processing speed-up by coupling their choice of scale retention to the sampling 

properties of a scale generating operator. Allowing the decimation of coarse resolution 

representations results in decreased storage requirements, faster scale space construction, 

and a logarithmic improvement in coarse to fine matches. Theoretically, an image 

pyramid will provide a very efficient and robust solution to the feature identification 

problem. 

Construction of an image pyramid begins by filtering the original signal. This 

coarser resolution representation, now satisfying some sampling criterion, is then 

decimated, which traditionally consists of discarding all pixels belonging to the even row 

and columns of the image. Subsequent pyramid levels are created by iteratively filtering 

and subsampling the previous resolution representation, and the product is a set of image 

descriptions, each of smaller size than the original. Sorting these images according to 

scale is shown graphically in Figure 2.3 and presents the visual appearance of a pyramid 

structure, hence the name image pyramid. 

12 



-

Figure 2.3 An image pyramid, constructed by filtering the original cameraman image 
and subsampling. The original image is located at the bottom of the pyramid and 
coarser scale representations occupy successively higher pyramid levels. For this 
example, the coar3e scale images are constructed by smoothing the or'iginal image 
with a Gaussian filter. 

Gaussian pyramids correspond to the Gaussian generated scale spaces of the 

previous section, and they are constructed by using a Gaussian kernel as the scale 

generating filter and applying Shannon's sampling theorem for the decimation operat ion. 

Mathematically, the construction of pyramid level L of image 1 can be described as 

(2. I ) 

where Ga is a Gaussian scale generating filter of standard deviation a, J..S denotes 

subsampl.ing by a factor of S within each row and column, and 10 is the original image. 

To remove frequencies below the Nyquist rate, the Gaussian filter is defined to have 

width 2SInt [5]. 

t In this derivation, the high frequency limit of the Gaussian kernel is defi ned to be (no} l, equivalen t to 
twice the standard deviation of the filler in the frequency domain. 

13 
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Generation of an image pyramid provides significant performance enhancement 

for the coarse to fine search. Initialized on the coarse resolutions in the pyramid, the 

search procedure needs to only fully search a subsampled image representation. The 

result of this first search is then used to guide and refine progressively higher resolution 

inspections, restricting these subsequent examinations to small regions within the next 

scale description. Ignoring the effort for pyramid construction, the computational 

increase of searching a multi-scale structure, compared to inspecting the original full 

resolution image, has been shown to be S2L, where S is the sample factor and L is the 

coarsest level of the search [38]. The performance improvement between an image 

pyramid and traditional scale space would be the same, actually amplified by the 

decreased construction costs of an image pyramid. 

With the promise of computational efficiency and the inherent robustness of scale 

space, use of muJti-scaJe image pyramids has been widespread. Burt has discussed their 

application to motion analysis, object recognition, and selective transmission [7]. They 

have also been applied to image compression [8], scene matching [38], target 

identification [38], segmentation [10], multi-resolution splines [9], and texture synthesis 

[27]. Reducing computational requirements by orders of magnitude, real time 

implementations using these pyramid structures have been presented with application to 

feature identification [6,11]. 

Unfortunately, the wide application of pyramid structures has shown that the 

Gaussian kernel, previously defined as optimal, possesses several undesirable 

characteristics for quantizing the theory of scale space within a computer vision system. 
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Specifically, as the scale parameter of the filter is increased, regions tend to merge and 

edges move due to the lowpass response of the filter. In continuous scale space, 

movement between resolution representations presents no obstacle to the coarse to fine 

search and is accommodated by allowing minimal scale change between neighboring 

levels. Image pyramids contain a small number of scale representations, reducing the 

number of scales available to a pyramid search procedure, and with fewer scale 

depictions, large feature movement between pyramid levels makes attempts at following a 

feature across scales ineffective. This dramatically decreases system robustness and 

performance. 

Robust and efficient solutions to the feature identification problem have 

application to a large class of image processing tasks, and the theoretical promise of an 

image pyramid to deliver this quality of solution encourages the relaxation of initial 

restrictions on the scale generating kernel. Exploring the use of alternative scale 

generating filters, pyramids have been constructed with Baar wavelets [12] and 

morphological operators [33], both with the goal of generating scale spaces immune to 

feature movement while ensuring spatial causality_ A filtering process designed 

specifically for this purpose is the anisotropic diffusion technique, and this technique will 

be introduced in the next section. 
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Anisotropic Diffusion 

Evolution of the anisotropic diffusion equation originated as an enhancement of 

traditional linear filtering. The class of linear filters is widely used in signal processing 

and theoretically well developed; however, its characteristic global smoothing blurs 

region boundaries and results in edge removal or feature drift, undesirable attributes for 

tasks such as image pyramid construction. The anisotropic diffusion equation modifies 

the behavior of one member of the linear filter class, the Gaussian kernel, and creates a 

process which adaptively smoothes within regions while inhibiting intra-region 

interaction. 

In the traditional scale space representation, a Gaussian pyramid is usually 

constructed by convolving the original image with a suitable Gaussian kernel and 

subsampling. This multi-scale structure can also be implemented with the use of the heat 

equation [22]. For an image defined on a discrete grid, this process is approximated by 

the partial differential equation 

(2.2) 

where I is the input signal, \72 is the discrete Laplacian, and t is the solution time or scale 

parameter. 

Solution of the heat equation is completely defined by its Green's function, the 

Gaussian kernel, with the width of the resulting kernel proportional to solution time [36]. 

In creating a scale generating process with the capability of maintaining region integrity, 
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the heat equation may incorporate a spatially varying damping coefficient. The modified 

process becomes 

01 = div(c. VI), at (2.3) 

where I is the input signal, div is the divergence operator, V is the discrete gradient, and c 

is the adaptive diffusion coefficient. For a two dimensional image, one possible 

realization is 

(2.4) 

where !1t is the discrete solution time step, VN, Vs, VE, and Vw are the gradients (simple 

differences) in the north, south, east, and west directions, respectively, and CN, Cs, CE, and 

cware the diffusion coefficients in the north, south, east, and west directions, respectively 

[29]. These coefficients are traditionally bounded to the set [0,1] and decrease with 

increasing gradient, effectively inhibiting smoothing in regions of possible edge location. 

An example of filtering an image with the anisotropic diffusion equation is presented in 

Figure 2.4. 
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Figure 2.4 A visual example of filtering with the anisotropic diffusion equation. The 
original image is located at the top, and its filtered result is located below. Notice how 
the diffusion process smoothes within the boundaries of an object but preserves the 
edge locations. Maintaining all features with high contrast, especiaJly the smaller 
objects near the road, will motivate the exploration of spatially aware variants of the 
anisotropic diffusion process. 
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Construction of the anisotropic diffusion coefficient defines the performance of 

the nonlinear filter. With the initial goal of preserving regions of possible transition, 

varying the coefficient relative to local gradient is well motivated, and in the introduction 

of anisotropic diffusion as a filtering process, two possible realizations of the diffusion 

coefficient are suggested 1[29]. The first is of Gaussian shape and expressed as 

while the second suggestion is 

(IVII)1 
c(VI)= e k , 

1 
c(VI) = IIVIII . 

1+ ­
k 

(2.5) 

(2.6) 

In both diffusion coefficients, a gradient threshold, k, is introduced and its selection 

quantifies the minimum gradient magnitude which should be preserved by the smoothing 

mechanism. 

Alternative coefficient realizations have been derived by studying the stability of 

the diffusion difference equation. Researchers have found the initial diffusion 

coefficients in (2.5) and (2.6) to produce a system which is ill-posed, in the sense that 

small changes in the original image may result in large changes to the filtered result. 

Conditions guaranteeing that the diffusion process is not ill-posed have been presented hy 

You et al. [40], who show that evaluating the derivative of the coefficient at infinity will 

determine the suitability of a diffusion expression as a scale generating operator. One 

potential coefficient implementation, satisfying these criteria, is 
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c(VI) = 

p(k+£),J-' 

k 
IIVIII<k 

pOI VIII + £ )"-' IIVIII ~ k 
IIVIII ' 

where p is suggested to be 0.5, £ is suggested to be 1, and k is the gradient threshold. 

(2.7) 

Besides research of diffusion coefficient construction, theoretical developments 

relating to other diffusion parameters have also been presented. Work on the proper 

selection of gradient thresholds [35, 1] and solution stopping time criteria have been 

discussed [14, 4]. AdditionaJly, concerns over the computational complexity of an 

iterative scale generating filter have motivated studies of more efficient implementations 

of the anisotropic diffusion process, including analog realizations [30}, neural networks 

[15], and mathematical multigrid methods [32,2]. 

Anisotropic Diffusion and Scale Space 

Application of this new anisotropic diffusion process does produce a scale space 

void of edge movement, as depicted in Figure 2.5, and early applications include edge 

detection, scene segmentation, and stereo matching [32]. Coarse to fine search 

procedures in this new scale space no longer require the computation and storage of large 

numbers of scale representations, unlike traditional Gaussian generated scale space. 

Instead, only coarse information must be computed and examined, as features found in 

these scene descriptions will correspond to features occupying identical spatial locations 

in the original image. With limited feature movement, it appears that the anisotropic 
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diffusion equation produces a scale space well suited for scale quantization, as many 

scales must be traversed before a feature deviates from its original location. 

Figure 2.5 Anisotropic diffusion and its scale space image. The anisotropic 
diffusion process attempts to smooth while maintaining edge locality. Unlike the 
traditional linear scale spaces, features within these scale space images do not 
move across increasing scale. easing the problem of determining feature 
correspondence. 

In creating an image pyramid using anisotropic diffusion, one would successively 

diffuse and then subsampJe the original image. Unfortunately, Lhe filtering performance 

of the diffusion mechanism does not satisfy requirements for image pyramid construction, 

since signals filtered with the nonlinear anisotropic diffusion equation no longer display a 

systematic removal of information and cannot satisfy traditional sampling theorems . 
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Without the assistance of an image pyramid, creating coarse scene infonnation with the 

anisotropic diffusion mechanism is computationally expensive and searching these scale 

representations provides no performance increase, as the resolution of the original and 

coarse scene information is identical. At best, scale spaces constructed with traditional 

anisotropic diffusion present a robust solution to the edge identification problem, but at 

increased computational cost. 

More troubling for the application of 

anisotropic diffusion to signal processing tasks 

is that the diffusive process does not guarantee 

the removal of any information. For example, 

consider the one dimensional pulse train shown 

in Figure 2.6, where the pulse heights are 

identical and defined to be greater than the 

gradient threshold, k, of the diffusion 

coefficient. Anisotropic diffusion is designed 

to preserve regions of high gradient, and the 

traditional definitions for damping coefficients, 

presented above, result in coefficient values 

near zero at the pulse edges. S inee the 

diffusion update depends on a weighted sum of 

the product of local coefficient and gradient 

magnitudes, smoothing win not occur, as each 
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Figure 2.6 An input sequence which 
will not be smoothed by the diffusion 
process: (a) the original sequence and 
(b) its filtered result. The gradient 
threshold of the diffusion system is 
represented by k, and all gradients 
larger than this threshold are defined to 
be preserved. 
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signal location posses a gradient or coefficient value of zero. In this example, the filtered 

result will be identical to the original, and changes in solution time, or scale, do not affect 

information removaL 

Practical filtering problems are motivated by the need to remove noise and 

spurious detail, as encompassed with scale space theory, and it is apparent that traditional 

anisotropic diffusion expressions do not accomplish this, instead preserving all regions 

with high contrast. This characteristic introduces difficulties for the application of 

anisotropic diffusion to any filtering problem, and researchers have spent time addressing 

it. The result is a modification to the diffusion coefficient, creating a diffusion equation 

which is spatially aware. In these modified diffusion expressions, the goals of the 

nonlinear smoothing process are expanded, seeking to preserve features of high gradient 

and to remove regions of small spatial scale. 

Spatially Aware Anisotropic Diffusion 

Scale of a diffusion equation is enlarged by increasing the scope of the diffusion 

coefficient calculation. By incorporating greater spatial knowledge of the signal into the 

decision to diffuse, the filtering process is allowed to smooth small regions regardless of 

local contrast. A method providing the anisotropic diffusion equation with a direct 

specification of scale was first proposed by Catte et ai. [13], who suggest utilizing a 

Gaussian kernel to spatially expand the coefficient computation. Using the original 

coefficient expression in (2.5) as an example, a possible spatially aware diffusion 

coefficient is specified as 
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(IGcr .VII)2 
c(VI) = e k , (2.8) 

where Gcr is a Gaussian kernel with standard deviation (J. 

Other linear filters have been proposed to replace the Gaussian kernel in (2.8) 

[34], and proper selection of a spatially aware anisotropic diffusion coefficient is usually 

motivated by underlying assumptions of the noise distribution within the original signal. 

While the use of a linear filter within the diffusion coefficient may be viewed as "against 

the spirit of anisotropic diffusion" [40, 21], initial filtered results using these spatially 

aware expressions display their ability to remove small regions of high contrast. Figure 

2.7 presents a visual example of the smoothing performance of a scale aware anisotropic 

diffusion process, showing that filters using the spatially enlarged diffusion coefficients 

are capable of smoothing, and eventually removing, noise. 

Development of a spatially aware diffusion equation provides the first step in 

defining a pyramid structure based on an anisotropic diffusion process, since necessary 

information removal will be realized by enlarging the scale of the coefficient calculation 

and increasing the solution time of the diffusion equation. Admittedly, enlarged 

coefficient expressions will allow features slight movement; however, these coefficients 

present information reduction which has a more natural meaning of scale and is possibly 

suitable for sampling. If small objects exist throughout scale space, subsampling coarser 

resolution representations will result in severe aliasing and compromise the robustness of 

a coarse to fine search. Spatially aware diffusion variants remove these objects and their 

inherent difficulties. 
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Figure 2.7 A visual example of filtering with the spatially aware anisotropic diffusion 
equation. The original image is located at the top, and its filtered result is located 
below. This diffusion process is capable of smoothing regions of small spatial size and 
high contrast, as evident by the removal of the small objects near the road. Spatial 
smooth ing does reintroduce interaction across region boundaries, and this will be 
discussed in the next chapter. 
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A major obstacle in constructing image pyramids with spatially aware anisotropic 

diffusion expressions is that these new smoothing operators posses multiple definitions of 

scale. Traditional diffusion equations contain a single scale parameter, corresponding to 

solution time. Spatially aware anisotropic diffusion operations incorporate a second scale 

parameter, describing the region over which a diffusion coefficient is calculated. This 

thesis will discuss image pyramid construction within the context of sampling and spatial 

causality, and before it is possible to define filter criteria allowing the anisotropic 

diffusion equation to smooth a signal and produce a result suitable for sampling, it will 

first be necessary to model the smoothing properties of the scale aware anisotropic 

diffusion expression. 

In the next chapter, analysis of the scale aware diffusion processes, which 

incorporate linear filters into the diffusion coefficient, will be presented. The goal of this 

chapter will be to show that these coefficient expressions are incapable of removing 

regions of small size while preserving edges and possess smoothing characteristics which 

are ill-suited for pyramid construction. Subsequent chapters will abandon the scale aware 

diffusion coefficients presented in the literature and will develop a new coefficient 

expression using nonlinear morphological filters. These chapters will show that the new 

diffusion operations are capable of simultaneously smoothing a signal while maintaining 

edge locations and, therefore, suitable for image pyramid construction. 
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CHAPTERllI 

SPATIALLY AWARE ANISOTROPIC DIFFUSION 

Overview 

In the previous chapter, anisotropic diffusion was established as a smoothing 

filter, capable of reducing the information content of a signal while preserving significant 

discontinuities. Filtered representations generated with this anisotropic diffusion process 

allowed for the trivial identification of region boundaries, but without inducing feature 

movement. This property made the anisotropic diffusion equation applicable to many 

image processing tasks and provided the appealing possibility of encapsulating scale 

space theory within an image pyramid. 

Unfortunately anisotropic diffusion does not guarantee the removal of noise or 

fine detail, as original implementations of the diffusive mechanism require the 

computation of signal characteristics in a limited neighborhood. This initially makes the 

anisotropic diffusion equation unsuitable for image pyramid construction, but methods 

have been suggested which increase the scale of the diffusion operation and allow it to 

smooth small features. In these modifications, the filtering process employs spatially 

enlarged gradient approximations within its diffusion coefficient, calculated from 

weighted averages of the underlying signal. 
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The aim of this thesis is to fonnalize the construction of an anisotropic diffusion 

pyramid and apply it to the problem of target identification and tracking. Toward this 

goal, the purpose of this chapter is to develop a theoretical understanding of the 

smoothing performance of these new spatially aware anisotropic diffusion processes, 

since the construction of an image pyramid requires a diffusion operation which is 

capable of preserving edges while allowing the removal of information. 

The goal of this chapter is to show that the use of any linear filter within the 

diffusion coefficient creates a process incapable of simultaneously removing small scale 

regions while preserving edges and, therefore, inapplicable to the construction of image 

pyramids. This will be accomplished by studying the smoothing of several prototype 

edge functions and, in the larger structure of this thesis, wi1l motivate the introduction and 

analysis of diffusion coefficients which incorporate nonlinear filters. These new 

coefficient variants will be discussed in the following chapter. 

Preceding study of the scale aware anisotropic diffusion equation, this chapter will 

present several analytical tools which simplify its analysis. Specifically, discussion will 

be presented on the separability of the anisotropic diffusion equation, reducing the two~ 

dimensional equation into a sequence of one-dimensional operations. Additionally, 

invariance of the smoothing process with respect to coefficient design will be developed 

through study of the traditional anisotropic diffusion operation, allowing a generalized 

model for all diffusion systems to be used during theoretical discussion. 

This chapter is organized as follows : The first section introduces the two 

prototype edge functions used throughout the discussion. It also considers the 

28 



separability of the anisotropic diffusion equation and provides an overview of the 

spatially aware diffusion process. The second section abstracts analysis of diffusion 

realizations from the design and construction of their diffusion coefficient. Th.is is 

realized through study of the traditional anisotropic diffusion equation. The final section 

of this chapter explores the suitability of incorporating linear filters into the diffusion 

equation and their affect on filtering performance. This section will show that utilizing 

linear filters in the diffusion equation does not result in a diffusion process capable of 

removing features of small scale and low contrast, realizing the goal of this chapter. 

Background 

Before exploring the smoothing performance of the spatiaIJy aware anisotropic 

diffusion equation, it is first con venient to concisely present several definitions which 

will be used in the following discussion. This section consists of three distinct topics. It 

begins by defining two basic edge models, introducing both their spatial and gradient 

formulations. The second part of this section briefly derives a separable representation of 

the anisotropic diffusion equation and introduces an alternative gradient based realization 

of the diffusion operator. The third section outlines the computation of traditional and 

spatially aware anisotropic diffusion, developing terminology used in the study of linear 

filters incorporated into the scale aware coefficient expressions. These subsections 

present fundamental tools, to be utilized in the subsequent sections. 
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Edge Function Definition 

The two prototype edge models considered in this chapter are the step and finite 

width step functions. The step function is 

defined in one dimension as 

and its 

{o x <0 
u(x)= 1 x~O ' 

equivalent discrete 

(3.1 ) 

gradient 

representation is calculated using a right-hand 

difference approximation, expressed as 

{
I x =-1 

Vu(x) = o otherwise 
XEZ. (3.2) 

The edge location of this model is defined to be 

where the gradient is non-zero, which for the 

discrete step function is located at x = -I. 

.. -

.... -

Figure 3.1 graphically summarizes the 

Figure 3.1 The step function and its 
equivalent 9'radient representation. 

characteristic properties of the step edge model. 

Combining two step edges produces the second edge model , the finite width step 

function. This edge function is defined as 

u fW (x) = u(O) - u(W) , (3.3) 

where W is the width of the step, and its gradient representation is expressed as 

VUjW(x) = 8(-1)-8(W -1), (3.4) 
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where 8 IS the delta function. The 

characteristic properties of the finite width step 

function are summarized graphically in Figure 

3.2. 

Separability 

Presentation of the two edge models in 

the previous subsection occurred completely in 

one dimension, and though this thesis is 

concerned with the filtering of two-dimensional 

images, this is acceptable since, like the 

Figure 3.2 The finite width step 
function and its equivalent gradient 
representation. 

original Gaussian kernel, one iteration of the discrete anisotropic diffusion equation may 

be viewed as a separable filter. This allows a two-dimensional process to be analyzed as 

sequential one-dimensional operations and simplifies both theoretical and computational 

investigation. 

Implementing the diffusion update with horizontal and vertical components 

produces the system: 

(3 .5) 

and 

(3.6) 

where I,+tlJ H is the filtered result after smoothing in the horizontal direction. 
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Separability leads to another useful representation of the arusotropic diffusion 

process and allows its expression completely in terms of gradients. This eases 

visualization and further facilitates analysis of the filter goals, smoothing while 

preserving locations of significant discontinuity. In the one-dimensional diffusion 

equation (3.6), Vwl may be defined as VI[x]. Realizing that VEl is equal to -VI[x-I], the 

change in gradient between diffusion updates is expressed as 

Vlr+l'il [x] = VII [x] + J1t· (c[ x -1]· VI[ x -I] - 2c[x]· VIr x] + c[ x + I]· VI[ x + I]), (3.7) 

where VI[x] is the discrete right-hand derivative approximation at location x and c[x] is 

the spatially adaptive diffusion coefficient calculated at location x and unbiased with 

respect to gradient direction. A similar representation may be found for the vertical 

component of the diffusion equation (3.5), replacing the spatial variable x with y. These 

expressions are formally derived and presented in Appendix A. 

Linear Filters 

Diffusion coefficient expressions are traditionally defined to depend solely on 

local gradient information, with damping coefficient functions of the form c(VI). 

Inspection of the diffusion equation presented in (3.7) reveals a departure from original 

diffusion coefficient expressions, as the anisotropic diffusion coefficient is defined 

relative to the spatial variable x, and this facilitates the use of non-traditional diffusion 

coefficient realizations. The focus of this entire chapter is the study of diffusive 

processes that incorporate linear filter into their diffusion coefficients, and preliminary to 

this analysis, this subsection will provide an illustrative guide to the implementation of 
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the scale aware diffusion process. In doing so, initial restrictions on the candidate linear 

filters will be clarified and the nomenclature that describes the linear filter characteristics 

will be defined. These definitions will be used consistently throughout this thesis. 

Original anisotropic diffusion 

expressions attempt to preserve regions 

of high contrast and smooth regions 

with low gradient magnitude. A 

graphical outline of a prototypical 

diffusion process is presented in Figure 

3.3, and begins by computing the 

difference signal of the unfiltered 

sequence. (The example sequence and 

its difference signal are shown in Figure 

3.3a and 3.3b, respectively.) The next 

task within a diffusion process is to 

compute the diffusion damping 

coefficient, and 10 a traditional 

diffusion expression, coefficient values 

are dependent solely on the initial 

difference signal. Low values of the 

coefficient allow locations to be 

preserved and, referring to the example 
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Figure 3.3 A system representation for one 
iteration of the traditional anisotropic diffusion 
process: (a) the input signal, (b) its difference 
representation, (c) diffusion coefficients, and 
(d) the filtered result. 
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coefficient result presented in Figure 3.3c, correspond to candidate edge features. 

Multiplying individual gradient values by their corresponding diffusion coefficient 

completes the diffusion process, and using the update equation presented in (3.7), the 

result of diffusing the example sequence with one iteration of a traditional anisotropic 

diffusion realization is displayed in Figure 3.3d. 

Problems arise when attempting to smooth impulsive noise with the traditional 

anisotropic diffusion process, as these regions contain objects of high contrast that are 

maintained by the diffusive mechanism. Spatially aware anisotropic diffusion attempts to 

overcome this deficiency by incorporating a linear filter into the diffusion coefficient, and 

this effecti ve\y increases the spatial scale over which the damping values are calculated. 

Performing one iteration of the spatially aware anisotropic diffusion process is displayed 

in Figure 3.4 and is initially similar to traditional diffusion methods. The process begins 

with the calculation of difference signals from the initial input sequence, and these signal 

representations are shown in Figures 3.4a and 3.4b, respectively. The next step in the 

diffusive mechanism is the computation of the diffusion coefficient, and it is in the 

coefficient calculation that the diffusion processes differ. In a spatially aware anisotropic 

diffusion process, gradients used within the diffusion coefficient are first filtered with a 

linear kernel, while in traditional diffusion expressions, they are left unmodified. The 

result of a possible coefficient prefilter is shown in Figure 3.4c, and the coefficient 

calculation is shown in Figure 3.4d. Unlike traditional anisotropic diffusion coefficients, 

this example coefficient sequence no longer produces low smoothing values at all 
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locations of high contrast. Instead, 

computation of the diffusion update 

equation results In a filtered 

representation where small objects of 

high contrast may be smoothed. 

The construction of the scale 

generating linear filter will be 

developed 10 the following sections, 

and in this discussion, design criteria of 

the linear filter will be described by 

relationships between specific kernel 

values. The kemel of the linear filter 

will be referred to as H[-], and 

individual components of the kernel 

will be described by indices within the 

kernel vector. For example, the 

influence of a gradient in its own 

decision to diffuse is defined by the 

center value of the linear kernel, 

denoted as H[O]. 

Analyzing the suitability of 

incorporating a specific linear filter into 
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Figure 3.4 A system representation for one 
iteration of the scale aware anisotropic diffusion 
process: (a) the input signal, (b) its difference 
representation, (c) prefiltered with the linear, 
scale generating filter, (d) diffusion coefficients , 
and (e) the filtered result. The only difference 
between a scale aware diffusion expression 
and a traditional representation is the addition 
of the linear filter, denoted with the gray box. 
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the diffusion coefficient initially imposes no restrictions on the construction of a linear 

filter. Theoretically, any kernel could be convolved with the signal gradient before the 

coefficient calculation, and the discussion in the following chapters only assumes a 

candidate linear filter to be symmetric, as the spatial smoothing properties of a scale 

aware diffusion expression should smooth small scale object independent of their spatial 

relationships. However, in reviewing linear kernels utilized in the literature, FlR lowpass 

filters are often chosen to increase the scope of the coefficient calculation, and with the 

purpose of providing an intuitive representation of the system, three example filter 

kernels are presented in Figure 3.5. 

(a) (b) (e) 

Figure 3.5 Three example kernels which could be incorporated into a spatially aware anisotropic 
diffusion coefficient (a) Gaussian, (b) Average, and (c) Exponential filters. 

Generalized Anisotropic Diffusion 

Following the function definitions of the previous section, this section seeks to 

develop a general representation of the anisotropic diffusion equation. Several diffusion 

coefficient formulations have previously been presented, and the purpose of this section is 

36 

IIII 
' 111 
' 1 

'I' . , 
:~ 
I 'll 

" Ii 
' 111' .... 
::11 



to establish conditions under which all diffusion expressions have similar performance 

properties. Specifically, this section will explore cases guaranteeing the preservation of 

an edge, regardless of the specific realization of the anisotropic diffusion coefficient. 

This generalized model will then be used in the next section to show that the spatially 

aware anisotropic diffusion equation is unable to simultaneously smooth regions of low 

contrast and small spatial size. 

(a) 

: [ 

J [ 

(b) 

Figure 3.6 Gradient representations of 
a step function: (a) the original step 
function and (b) the result after 
smoothing with one iteration of 
anisotropic diffusion. 

The first step in dividing the analysis of 

the anisotropic diffusion smoothing filter from 

the implementation of its diffusion coefficient 

is to consider the characteristic smoothing of 

the step function. The difference in the 

original step function, before and after one 

iteration of smoothing, is shown in Figure 3 .6, 

where the change of the signal gradient 

between iterations is gi yen as 

using (3.7). 

While the manner in which the step 

function will smooth differs dependent on the 

realization of the anisotropic diffusion coefficient, all coefficient expressions are defined 

to have the common form of decreasing with increasing gradient, in orde r to realize their 

goal of preserving regions of possible transition. Independent of the anisotropic diffusion 
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expressions, as the step function increases in gradient magnitude, the diffusion coefficient 

is defined to decrease towards zero and will inhibit smoothing at possible edge locations; 

therefore, step functions with large gradient will sustain little change between iterations 

and will be preserved by the diffusion operation. 

The minimal height of a step edge which will remam unsmoothed by the 

anisotropic diffusion equation will be referred to frequently in this thesis, and it is defined 

as having a magnitude greater than ~(KDC,t), a function which denotes the smoothing 

threshold of the diffusion system on the step edge. Gradients below ~(KDC,t) will have 

significant values of E and will be smoothed. Gradients above ~(KDc,t) will undergo little 

change between iterations (E == 0) and will be preserved. The two parameters of the 

smoothing threshold correspond to the variables of the anisotropic diffusion operation. 

The first parameter, KDC, is analogous to the gradient threshold, k, found in all diffusion 

coefficients, with the subscript DC denoting that the gradient thresholds of different 

coefficients are not directly comparable. The second parameter, t, is the solution time or 

scale of the anisotropic diffusion process, indicating that small changes of the signal 

gradient will be amplified by increasing solution time. 

Smoothing thresholds are initially defined in terms of step functions, but the 

general smoothing performance of the anisotropic diffusion equation is not completely 

described by its response to the step function (unlike its Gaussian kernel parent). While 

the smoothing threshold is not valid for modeling the diffusion of an arbitrary initial 

sequence, it is a representative model for smoothing a restricted class of input signals. By 

considering an arbitrary sequence of step functions, it can be proven that a gradient 
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greater than ~(KDc,t) is guaranteed to be preserved if it is within a signal region which is 

locally monotonic. This property is formally derived in Appendix B and a visual example 

is presented in Figure 3.7. 

The development of a smoothing 

threshold abstracts the anisotropic diffusion 

equation from its coefficient realization, 

guaranteeing the preservation and identification 

of certain features In all diffusion 

implementations. The only requirement on the 

diffusion coefficient is that it decrease with 

increasing gradient, tending towards zero as 

gradients become large. In the next subsection 

these concepts are applied to the study of the 

scale aware diffusion process and its capability 

of removing small scale features. 
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(b) 

Figure 3.7 A visual example of the 
smoothing performance of traditional 
anisotropic diffusion within a monotonic 
region. Gradient representations of (a) 
the original signal and (b) its fiiltered 
result, notice that all gradients with 
magnitude greater than ~(KDC,~ are not 
diminished by the filtering operation. 
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Scale Aware Anisotropic Diffusion 

Incorporating a linear filter into the diffusion coefficient calculation allows the 

removal of small scale features and the possibility of constructing an image pyramid 

utilizing the anisotropic diffusion equation. In this section the result of using an arbitrary 

linear filter in the diffusion process is explored. The section begins with analysis of the 

diffusion equation applied to the finite width step function, deriving conditions on the 

linear filter which guarantee the removal of these small scale regions. A sequence of step 

functions will then be used to develop constraints which allow the diffusion equation to 

realize its second design objective, smoothing regions of small contrast. The section ends 

by showing the duality of these requirements, concluding that a diffusion coefficient 

incorporating any linear filter will be incapable of simultaneously removing small regions 

and preserving edges. Therefore, traditional scale aware diffusion processes are 

unsuitable for image pyramid construction. 

Use of a linear filter within the diffusion coefficient necessitates a clarification of 

the smoothing threshold presented in the previous section. Traditional diffusion 

coefficients are calculated from the underlying gradients of the original signal, and 

defining a step edge with height greater than the smoothing threshold, ~(K{)c,t), denotes 

that the resulting diffusion coefficient will be near zero and that the step function will be 

preserved. Incorporating a linear filter into the diffusion expression modifies the 

gradients used in the coefficient calculation, and defining a step function of height a to be 

greater than ~(KDc,t) does not account for the effect of the linear filter on the coefficient 
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calculation and does not guarantee the preservation of the feature. When using a linear 

filter within the diffusion coefficient, a step function will only be preserved if the gradient 

used in the calculation of the diffusion coefficient, laH[O}I, is greater than the smoothing 

threshold, ~(KDc,t), where H[O] is the kernel value of the linear filter at x = 0, and in the 

rest of this chapter, defining a step function to have magnitude greater than the smoothing 

threshold indicates that laH[O]I~~(KDc,t). 

Spatial Smoothing 

Differences between the traditional anisotropic diffusion equation and the 

spatially aware extensions are evident in the smoothing of a finite width step function 

with height a. If the height of the function is larger than ~(KDc,t), the traditional 

diffusion equation will be unable to smooth either gradient and will maintain the feature. 

The goal of a scale aware anisotropic diffusion process is to smooth aJl regions with small 

spatial size, independent of gradient magnitude. 

In describing a class of linear filters which, when incorporated into the diffusion 

coefficient, would alJow the anisotropic diffusion equation to remove the finite width step 

function of width W, it is required that the filtered gradients used in the coefficient 

calculation be smaller than the smoothing threshold, ~(KDc,t). Mathematically, the scaJe 

aware diffusion equation must satisfy 

I a(H[O]- H[WDI < f3(KDe ,t) (3.9) 

when 

(3.10) 
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where a is the height of the finite width step function, W is its width, aH[O] is the 

contribution of the positive gradient in the decision to smooth at location 0, -aH[W] is 

the contribution of the negative gradient in the decision to smooth at location 0, and 

a(H[O] - H[W]) is the gradient seen by the coefficient calculation at location O. These 

two conditions define a diffusive process which will remove a finite width step function 

determined solely by its scale. 

Candidate linear filters are further constrained by examining all step functions 

with width less than the spatial smoothing goal of the anisotropic diffusion expression, W. 

These functions should also be removed by a scale aware diffusion process, and this is ,. 
MI ," 

guaranteed when 

O<n$W, (3.11 ) 

where n is the width of the finite width step function and a(H[O] - H[ n]) is the gradient 

seen by the coefficient calculation at location O. 

Initial requirements on the linear filter for smoothing regions of small spati al 

extent appear to be H[O]> (H[O]-H[n]); however, the presence of the gradient 

magnitude, a, m (3.9) and (3.11) couples the spatial performance of the diffusion 

equation to the height of the feature. Ideally, the spatially aware anisotropic diffusion 

equation would be capable of removing small regions, independent of their gradient 

magnitudes. As the feature intensity becomes larger than ~(KDc,t), a becomes large and 

the difference between H[O] and H[n] is amplified. If H[O] :f. H[n], the limit 

(3.12) 
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guarantees that the spatially aware diffusion equation will be incapable of smoothing a 

finite width step function with significant magnitude. Setting H[O] == H[n], removes the 

gradient magnitude of the finite width step function from the diffusion decision, and since 

(3.t3) 

a diffusion expression incorporating the class of linear filters of the form 

H[O] == H[I] == ... == H[W -1] == H[W] (3.14) 

will be capable of removing all small regions of high contrast. 

While analysis of the finite width step function develops conditions on linear 

filters which allow an anisotropic diffusion process to remove regions of small spatial 

size, the next subsection will show that these conditions greatly handicap diffusion from 

smoothing features of low contrast. Conditions on the linear filter which allow the 

smoothing of low contrast regions will be developed in the next section, accomplished 

through analysis of two step functions. It will be shown that the reSUlting design criteria 

does not allow the construction of an anisotropic diffusion operation which, through 

incorporating a linear filter into its coefficient calculation, is capable of removing small 

objects while smoothing regions of small contrast. 

Gradient Smoothing 

Traditional anisotropic diffusion expressions smooth regions of small contrast and 

preserve candidate edge locations. An ideal scale aware anisotropic diffusion operator 

should attempt to mimic the traditional diffusion processes in the absence of small 

features. Consider the smoothing performance of anisotropic diffusion on the sequence 
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shown in Figure 3.8, consisting of two step functions of height r and a, respectively. 

Letting the gradient magnitude of the first step function be small (1')11[0]1=0) and the 

second gradient magnitude be large (laH[O]I~J3(KDc,t), traditional anisotropic 

diffusion would preserve (and possibly enhance) the second step edge while smoothing 

the smaller one. 

Presence of a linear filter within a 

diffusion coefficient allows an anisotropic 

diffusion process to remove small regions. In 

the sequence presented above, no small 

features are present and the spatially aware 

anisotropic diffusion equation should produce 

smoothing equivalent to the traditional 

anisotropic diffusion process, smoothing the 

smaller step function while preservmg the 

larger. Mathematically, the larger step 

function will be preserved by the spatially 

aware anisotropic diffusion expression if 

1 aH[O] + )H[-n] 1 ~ J3(KDe ,t) , (3.15) 

~·r 

I 

(a) 

I 

(b) 

Figure 3.8 A sequence of two step 
functions with arbitrary height. The 
equivalent gradient representation is 
shown in (b). 

where H[·] is the linear kernel incorporated into the diffusion coefficient and 

aH[O] + )H[-n] is the gradient seen by the coefficient calculation at location n. Since 

1 aH[ 0] 1 was initially defined to be greater than the smoothing threshold and y was 
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defined to be positive, preservation of the larger gradient IS assured if the fi lter 

coefficients of H[·] have the same sign. 

Conditions that guarantee the removal of the smaller step functions introduce 

further constraints on linear filter construction. Traditional anisotropic diffusion would 

smooth the smaller step function, and in a spatially aware anisotropic diffusion process, 

the smoothing of this step function will occur when 

(3.16) 

where )H[ a] + aH[ n] is the gradient seen by the coefficient calculation at location a. 

Though not sufficient for assuring the smoothing of the smaller step function , a necessary 

condition for its removal is 

(3.17) 

where aH[n] is the influence of the larger step function on the smoothing of the smaller. 

Therefore, removal of the smaller step function is facilitated when I aH[n] I is less 

than the smoothing threshold, while it has previously been defined that I aH[a] , is greater 

than the smoothing threshold. Candidate diffusion coefficients, capable of allowing the 

smoothing of small gradients, are initially constrained by these two conditions to 

incorporate linear filters of a form H[O] > H[n]. Linear filters suitable for coefficient 

construction are further constrained by considering the effect of gradient magnitude on 

the smoothing performance. Traditional anisotropic diffusion would smooth the smaller 

step function regardless of the amplitude of the larger step function, and attempting to 

construct a scale aware diffusion coefficient capable of mimicking this behavior further 
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restricts the candidate filters. Allowing a to increase in magnitude, while still requiring 

the diffusive process to smooth the smaller step function, requires a diffusion coefficient 

incorporating a linear filter of the form H[O] » H[nl 

This conflicting condition realizes the goal of this chapter, showing that an 

anisotropic diffusion coefficient utilizing a linear filter to increase its scale is unable to 

simultaneously remove regions of small spatial size and low contrast. Study of the finite 

width step function has shown that the successful removal of small objects with the 

anisotropic diffusion equation is guaranteed when the difference between the kernel 

values of the linear filter approach zero (H[O] == H[nD. Conversely, study of the second 

sequence of step functions has displayed that the characteristic anisotropic smoothing of a 

signal, preserving features of high gradient while smoothing smaller gradient features, is 

imitated by a scale aware diffusion process as the kernel values within the linear filter 

decrease sharply (H[O] »H[n]). Observing the contradiction of these two conditions, 

this chapter may conclude that it is impossible to design a linear filter which, when 

incorporated into an anisotropic diffusion process, will allow the systematic removal of 

small scale features and the simultaneous removal of regions of low contrast. 

Presence of the gradient magnitudes within the coefficient calculation results in 

conditions that make it impossible to design a linear filter capable of identifying small 

scale objects while still allowing the diffusion equation to smooth regions of small 

gradient. Construction of an anisotropic diffusion pyramid requires a smoothing operator 

capable of maintaining edge locations and producing filtered representations suitable for 

sampling, and in developing a scale aware diffusion expression possessing these 
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characteristics, studies of the linear filters suggest that gradient magnitudes should be 

separated from the spatial smoothing goals of the diffusion equation. This requirement 

motivates the use of a nonlinear filter, and in the next section, nonlinear morphological 

filters will be introduced into the anisotropic diffusion coefficient calculation. It will be 

shown that the resulting diffusive process is capable of smoothing small objects 

independent of intensity and without projecting spatial influence. These filter 

characteristics describe a filtering process suitable for image pyramid construction. 
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CHAPTER IV 

MORPHOLOGICAL ANISOTROPIC DIFFUSION 

Overview 

Anisotropic diffusion was originally designed to generate scale spaces with 

minimal feature movement. Construction of scale spaces with this property would 

alleviate problems in applying coarse to fine search methods to image pyramids. Image 

pyramids, however, require a scale generating process which guarantees the removal of 

information and satisfies necessary sampling conditions, and while traditional anisotropic 

diffusion expressions are incapable of generating these filtered results, scale aware 

extensions of the anisotropic diffusion equation attempt to smooth regions of low contrast 

and small spatial size. A smoothing operator possessing these characteristics would 

generate a filtered result suitable for sampling and an image pyramid suitable for coarse 

to fine search methods. 

Initial scale aware realizations of the anisotropic diffusion equation incorporate 

linear filters into the diffusion coefficient and effectively increase the scope of the 

coefficient calculation, allowing the smoothing of small regions. The previous chapter 

has shown that these original scale aware diffusion expressions are severely handicapped, 

as they are unable to smooth regions of small gradient while removing small scale 

features, and analysis of their smoothing performance implies that development of a scale 
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aware diffusion expression requires regions to be identified without removing their high 

frequency information. 

This criterion suggests the use of nonlinear filters in increasing the scope of the 

coefficient calculation and allowing the diffusion expression to smooth objects of small 

spatial scale. The purpose of this chapter is to explore anisotropic diffusion processes 

which incorporate nonlinear morphological filters into their diffusion coefficients, and the 

goal of this chapter is to show that these new diffusion expressions are capable of 

smoothing features of small spatial size while simultaneously smoothing regions of low 

contrast. This will be accomplished through both theoretical and experimental analysis 

and will allow the new morphological anisotropic diffusion processes to be utilized in the 

following chapters, as the construction of an anisotropic diffusion pyramid may then be 

formally defined. 

This chapter is organized as follows: Section IT introduces morphological filters 

and develops their equivalent gradient representations. Section ill derives conditions on 

the morphological operators necessary for smoothing regions of small spatial size and 

smoothing areas of low contrast, and shows that these two conditions may be 

simultaneously satisfied by a class of morphological filters. Section IV presents 

experimental results and compares the smoothing characteristics of the new diffusion 

coefficient to traditional and scale aware anisotropic diffusion realizations. 
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Morphological Filtering 

Morphological operators are able to produce image representations of increasing 

scale without eradicating edges. Approaching image processing from the vantage point 

of human perception, morphological operators simplify image data, preserving essential 

shape characteristics and eliminating irrelevancies [33, L 7]. The purpose of this section i 

to provide an introduction to these nonlinear filters, with emphasis on developing an 

equivalent gradient domain representation of their smoothing characteristics. This 

discussion wjJl utilize the fundamental edge models of the previous section and will 

conclude with the incorporation of a candidate morphological filter into a diffusion 

coefficient. 

Mathematical morphology was originally developed in the context of algebraic 

topology and is derived from the investigation of shape. Its use in digital signal 

processing IS defined with two fundamental operators - erosion and dilation. 

Implementation of the erosion and dilation filters is similar to a median filter and is 

accomplished with nonlinear minimum and maximum operations. An erosion removes 

regions of high intensity and is expressed as 

IBM = min{I(x- y)} , 
yeM 

(4.1 ) 

where M is the structuring element and e is the erosion operator. The mathematical dual 

of erosion is dilation and removes regions of low contrast by computing the maximum 

value within a region. A dilation is expressed as 

I EEl M = ~~x {I( x - y )} , (4.2) 
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where EEl is the dilation operator. In both fundamental filters, the realization of the 

structuring element defines the shape and scale of the morphologica1 filter and 

conceptually denotes the signal region from which the minimum (or maximum) value is 

drawn. 

Developing an equivalent gradient representation of the morphological operators 

is a major goal of this section and begins with analysis of the step function. These 

functions have been shown to be eigenfunctions of the morphological system t [24], and 

the effect of the morphological filters on the step function is shown in Figure 4.1. Notice 

that the resulting functions are not smoothed representations of the signal and, instead, 

are simply shifted by half the width of the structuring element. Applying an erosion to the 

edge function translates the signal to the right. Alternatively, filtering with a dilation 

shifts it to the left. The sequential application of these filters results in an infinite number 

of paths for the step function gradient to travel, but never modifies the gradient 

magnitude. Figure 4.1 b displays the right-hand derivatives of the function and its fil tered 

results, again showing the movement of the edge. 

t A morphological eigenfunction remains unchanged in signal amplitude and structure after being tiltered 
with a morphological operation. The only effect of the morphological filter on the eigenfunction is a 
possible translation of the original signal. 
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Figure 4.1 Effect of the fundamental morphological filters on a step function. The equivalent 
gradient representations are shown in (b) . 

A complete gradient understanding of the morphological operators continues with 

investigation of the negative of the original step function. The signal and its filtered 

results are displayed in Figure 4.2. Again, the morphological filters produce translation 

of the step edge and do not effect the signal amplitude. An important observation is that 

while the erosion translates the positive edge of Figure 4. 1 to the right, it translates the 

negative edge in Figure 4.2 to the left. The dilation produces a similar result, transporting 

positive and negative edges in opposite directions. This property of sign dependent 

translation defines the performance of the morphological filters. 
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Figure 4.2 Effect of the fundamental morphological filters on a negative step function. The 
equivalent gradient representations are shown in (b). 

Morphological filtering occurs as negative and positive gradients interact and 

remove each other. As displayed with the finite width edge model, eroding the function 

will eliminate it as the structuring element of the morphological filter becomes large. 

Results of filtering the finite width edge function using an erosion operation with several 

different structuring element sizes are shown in Figure 4.3, and equivalent gradient 

representations are shown in Figure 4.3b. 
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Figure 4.3 Eroding a fin ite width step function with structuring elements of different size, 
From top to bottom: the original finite width step function; the finite width step function eroded 
with a small structuring element; the finite width step function eroded by a larger structuring 
element; the finite width step function eroded with a structuring element larger than W/2. The 
equivalent gradient representations are shown in (b). 
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Analysis of the morphological operators becomes more difficult to visualize with 

an arbitrary signal. Relying on the eigenfunction properties of the step function, the sign 

dependent gradient representations, presented above, define the perfonnance of the 

fundamental morphological filters with respect to edge preservation and movement. An 

erosion may be expressed as 

(4.2) 

where t+t1t is the width of the structuring element, VII is the original image, V+ is the 

maximum value of either the gradient or zero, V- is the minimum value of either the 

gradient or zero, and i'J.t is the time step. A dilation is realized by reversing the direction 

of gradient propagation and expressed as 

VI/+&(x) = V+I/( x + ~t) + V-Ir( x _ ~t). (4.3) 

For discrete implementations of these fundamental morphological filters , tJ.t should be 

one. 

Application of a single erosion or dilation operation removes regions dependent 

on intensity. It also results in edge movement. In the anisotropic diffusion equation, it is 

of interest to remove regions independent of intensity and without inducing edge 

movement, and the sequential application of the fundamental fi Iters can produce 

morphological systems realizing these goals. An open operation removes regions of low 

intensity, without introducing feature drift, and is implemented by first eroding a signal 

and then dilating the result. The close operation removes regions of high intensity, 

without inducing feature drift, and is implemented by dilating and eroding. Combinations 
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of these higher level processes remove regions independent of intensity and without 

causing edge movement. 

Introducing morphological operators into the diffusion coefficient IS 

straightforward and concludes this section. Using the coefficient presented in (2.5) as an 

example, a possible realization of a morphological scale aware diffusion coefficient is 

_( IV(I EIl M)lr 
c(V'I) = e k , (4.4) 

where I EB M is the erosion of the signal I with structuring element M. The choice of 

morphological filter type and structuring element size is crucial to the construction of a 

scale aware diffusion coefficient and it will be the focus of the next section, where 

conditions will be developed which define morphological operators capable of identifying 

objects of small spatial size without interfering in the smoothing of small grad.ients. 

Theoretical Analysis 

The purpose of this section is to show that incorporating morphological filters into 

the anisotropic diffusion equation does create a process which can remove features based 

solely on gradient or spatial scale and is, therefore, applicable to image pyramid 

construction. This section parallels the analysis presented of the linear filters in the 

previous chapter and provides investigation of the smoothing performance of the 

morphological filters on the step and finite width edge models. All analysis is 

accomplished using the previously defined gradient representations of the morphological 

filters and the anisotropic diffusion equation. 
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Spatial Smoothing 

The spatial smoothing of a morphological anisotropic diffusion system is 

displayed with the finite width step function. Considering a step function whose 

amplitude is greater than the smoothing threshold, ~(KDc,t), traditional anisotropic 

diffusion expressions will preserve the gradients and maintain the feature. The goal of a 

scale aware diffusion process is to remove the region, independent of gradient magnitude. 

In describing a morphological filter which, when incorporated into the diffusion 

coefficient, will smooth the finite width step function, it is necessary to define two 

properties of the morphological filtering operation: the direction of gradient propagation 

and the distance of gradient translation. The first characteristic, the direction of gradient 

propagation, is defined by the morphological filter type and denotes whether positive 

gradients are shifted to the right or left. (Negative gradients will be shifted in the 

opposite direction.) The second characteristic, the distance of gradient translation, 

describes the spatial distance over which the gradients are moved and is defined by the 

solution time of the morphological system or, equivalently, the structuring element size. 

Using a morphological filtering operation to smooth a finite width step function 

provides an initial description of morphological sequences suitable for incorporating into 

the diffusion equation, and filtering the finite width step function requires that the 

gradients of the edge model interact and remove each other. Remembering that the finite 

width step function is constructed with a positive gradient located at the origin and a 

negative gradient located at location W, where W is the width of the edge model, feature 
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removal necessitates that the gradients move towards each other and requires that the 

positive gradient must move to its right while the negative gradient travels to its left. 

Construction of the finite width step function defines the direction of gradient 

propagation necessary for filtering, and interaction between the two gradients of the edge 

model defines the distance of gradient translation. Removal of the finite width edge 

function will occur when the positive and negative gradients interact, and since the 

gradients move towards each other with equal speed, their interaction will occur at the 

center of the edge model. Specification of a morphological operation which allows the 

diffusion equation to smooth small objects requires a morphological filtering sequence 

which shifts positive gradients to the right a distance of WI2. This requirement is shown 

graphically in Figure 4.4, and an example 

morphological sequence satisfying these 

requirements is shown in (4.2), described by an 

erosion operation. Solved for solution times 

greater than W, the erosion operation will 

translate positive gradients to the right a 

distance of WI2 and is a candidate fil ter for 

inclusion within a scale aware diffusion 

coefficient. 

Figure 4.4 Necessary gradient 
movement for removing a finite width 
step function of width W with a 
morphological filter. 

Scale aware diffusion expressions should remove regions of width W, and the 

erosion operation presented above satisfies this requirement. Scale aware diffusion 

expressions should also remove regions smaller than the spatial smoothing goals of the 
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anisotropic diffusion equation, and analysis of smaller finite width edge models develops 

conditions necessary for their removal. Smoothing of a finite width step function with 

width n (O<n~W) still requires positive gradients be transported to the right, but only 

necessitates that they be translated over a distance of n12. The requirements for removing 

Figure 4.5 Necessary gradient 
movement for removing all finite width 
step functions of width less than or 
equal to W with a morphological filter. 

all finite width step functions of width W or 

less are shown graphically in Figure 4.5, and an 

example morphological sequence capable of 

satisfying these conditions is the erosion 

operation solved solution times greater than W 

- the identical filtering operation derived for 

smoothing the larger finite width step 

functions. 

While study of the smaller finite width edge model did not refine the requirements 

of candidate morphological sequences that are suitable for application to the anisotropic 

diffusion coefficient, analysis of the negative finite width step function does further 

constrain the construction of the morphological filter and motivates the need for a more 

complex filter sequence. The negative finite width step function is given as 

u/w(x) = au(n)-au(O), O<n~ W (4.5) 

and should also be removed by the scale aware diffusion equation. Smoothing of this 

function introduces different requirements on the direction of gradient propagation within 

the morphological filter sequence, as the positive gradient of this edge model is located to 

the right of the negative gradient. (The positive gradient of the original finite width step 
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function was located to the left of the negative gradient.) Filtering necessitates that the 

gradients move towards one another, and for the negative finite width step function 

requires that the positive gradient travel to its left and the negative gradient travel to its 

right. Feature removal will occur when the 

gradients interact at the center of the edge 

model, nl2, and Figure 4.6 summarizes the 

requirements for removing all of the negative 

finite width edge models. A candidate 

morphological filter providing this smoothing 

is the dilation operation presented in (4.3) and 

solved for solution times greater than W. 

Consolidating the requirements for 

removing both finite width step functions 

concludes this subsection and defines the class 

of morphological filters suitable for providing 

a diffusion coefficient with the capability of 

identifying and smoothing regions of small 

spatial size. It has been shown that removing a 

positive finite width step function requires a 

Figure 4.6 Necessary gradient 
movement for removing all negative 
finite width step function of width less 
than or equal to W with a 
morphological filter. 

Figure 4.7 Necessary gradient 
movement for removing all negative 
and positive finite width step functions 
of width less than or equal to W with a 
morphological filter. 

morphological filter sequence which translates positive gradients to the right and that 

smoothing a negative finite width step function requires a filtering operation capable of 

translating positive gradients to the left. In both smoothing examples, the original 
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gradients must be transported over a distance equal to half the spatial smoothing goals of 

the anisotropic diffusion equation, WI2. These requirements are summarized graphically 

in Figure 4.7. 

While the single application of an erosion or dilation operation will not generate 

the necessary smoothlng performance for filtering both edge models, the sequential 

concatenation of these fundamental morphological operators will produce a filter capable 

of satisfying these requirements, transporting gradients throughout the desired reglons . 

Many morphological operations could be constructed, and an example morphological 

filter sequence, which produces the necessary gradient movement, is shown graphically in 

Figure 4.8 Necessary gradient 
movement for removing all negative 
and positive finite width step functions 
of width less than or equal to W. The 
morphological sequence consists of: 
(a) dilation, (b) erosion, and (c) 
erosion. 

Figure 4.8. The sequence is realized by dilating 

the signal with solution time W+ I and then 

eroding the result with solution time 2(W+ 1). 

This initially moves the positive gradient over 

the region to the left, removing positive finite 

width edge models, and then translates the 

gradient back to the origin and through the 

region to the right, removi ng negative fi nite 

width edge models. 

Analysis of the finite width step functions defines a class of morphological 

operators which remove features of small scale and whose incorporation into a diffusion 

coefficient would allow the anisotropic diffusion expression to smooth these small scale 

regions. The purpose of the next subsection is to define a class of morphological filters 
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which allows the anisotropic diffusion equation to smooth regions of low contrast. After 

deriving these smoothing conditions, the section will conclude that incorporating certain 

morphological filter sequences into a diffusive process develops a smoothing operation 

capable of simultaneously removing objects of small spatial size while smoothing 

gradients of small scale. 

Gradient Smoothing 

Filtering of small scale objects necessitates that positive and negative gradients 

interact, motivating morphological operators to be described through the regions over 

which a gradient must travel. Smoothing of 

small contrast regions with the anisotropic 

diffusion equation reqUlres that significant 

gradient magnitudes not interfere in diffusion, 

and in describing morphological filters which 

do not inhibit the smoothing of low contrast 

areas, filter types must only defined by the net 

distance of gradient movement and are 

unconcerned with the specific path a gradient 

undertakes. Consider the sequence of two step 

functions shown in Figure 4.9 and previously 

presented in the last chapter. Application of 

morphological operators to this sequence will 
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Figure 4.9 A sequence of two step 
functions with arbitrary height. The 
equivalent gradient representation is 
shown in (b). 
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never change the structure of the signal, as both gradients will travel in the same direction 

and at the same speed. Morphological operators applied to monotonic regions can only 

introduce delay. 

Defining the height of the first step function in Figure 4.9 to have small 

magnitude (y == 0) and the height of the second step function to be significant 

(a ~ {3(K DC' t)), traditional anisotropic diffusion expressions will maintain the larger 

edge function while smoothing the smaller step. An ideal scale aware diffusion 

expression will attempt to reproduce the smoothing properties of traditional anisotropic 

diffusion in the absence of small spatial features, and incorporating morphological 

operators into the diffusion coefficient simply necessitates that the larger gradient should 

not be translated to the position occupied by the smaller step function. Since the only 

spatial location guaranteed not to contain a smaller gradient is at the original location of 

the larger gradient, the simple criteria that must be satisfied by a morphological filter, 

which allows an anisotropic diffusion expression to smooth regions of low contrast, is 

that the morphological sequence produce a net translation of zero. 

This condition on the construction of morphological filters that, when 

incorporated into the diffusion coefficient, allows the smoothing of regions of low 

contrast completes this section. Analysis of finite width edge models developed criteria 

on the morphological operators for the identification of small scale objects and required 

specific regions through which gradients must travel. Analysis of the second edge 

sequence introduced no further constraints on the path of gradient movement, but only 

defined the morphological filters to have a net gradient translation of zero. 
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Morphological operators, unlike the linear filters, exist which are capable of 

simultaneously satisfying these conditions. As an example, the morphological open-close 

filter is constructed from an erosion-dilation-dilation-erosion sequence and propagates the 

gradients throughout the necessary region of influence while introducing a net translation 

of zero. A visual example of incorporating this morphological sequence into the 

anisotropic diffusion coefficient is shown in Figure 4.10. 

Study of the edge models has shown the success of the morphological filters in 

equipping the anisotropic diffusion equation with the capability of smoothing small scale 

objects without sacrificing its traditional ability to preserve edges. In the derivation of 

design criteria for the scale inducing morphological operators, only two edge sequences 

were considered, and though the step models are known to be eigenfunctions of the 

morphological system, the importance of the morphological anisotropic diffusion 

expressions in the following chapters motivates an experimental verification of the new 

morphological anisotropic diffusion process. The next section applies this new diffusion 

expression to the task of edge detection and presents performance results comparing 

traditional anisotropic diffusion and the enhanced linear scale aware diffusion 

representations. 
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Figure 4.10 A visual example of filtering with the morphological anisotropic diffusion 
equation. The original image is located at the top, and its filtered result is located 
below. Notice how the diffusion process smoothes within the boundaries of an object, 
preserving edge locations, but is still capable of removing objects of small spatial scale. 
For comparison to the other diffusion expressions, refer to Figures 2.4 and 2.7. 
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Results 

To display the effectiveness of the new morphological diffusion coefficient, 

simulations were conducted with three classes of the anisotropic diffusion coefficient. 

The first class was dependent solely on local gradient information and represented by the 

traditional diffusion coefficient expression, given as 

(1911)2 
c(VI) = e k , (4.6) 

where I is the original image and k is the gradient threshold. The second and third classes 

employed scale-modified definitions for the gradient. The second class used a linear filter 

in performing the gradient calculation, while the third class used a nonlinear 

morphological filter. These classes were represented by diffusion coefficients described 

by 

(4.7) 

where Ga is a Gaussian kernel with standard deviation cr, and 

(4.8) 

where M is a morphological structuring element and (1 0 M). M is the image I filtered 

with an open-close filter. 

Equivalent scale parameters for the linear and morphological filters in the scale 

aware diffusion coefficients were chosen to provide information removal of similar scale, 
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and both were defined by satisfying conditions necessary for subsampling a filtered 

representations by a factor of three. The Gaussian kernel used in the second coefficient 

class was defined to have a standard deviation of 61n, as suggested to approximately 

satisfy Shannon's sampling theorem in [5]. Similarly, the morphological kernel used in 

the third coefficient class was defined to be a square structuring element of width five, as 

suggested to satisfy the Homotopy Preserving Critical Sampling Theorem in [\6]. 

Producing a qualitative evaluation of the three processes, the anisotropic diffusion 

equation was applied to synthetic imagery corrupted by 40% salt and pepper noise. i 

Results are shown in Figure 4.11 (page 71). As can be seen, the diffusion equation based 

solely on local gradient information is unable to remove impulsive noise, while both 

spatially enlarged coefficients are capable of smoothing these small, high contrast objects 

and maintaining large scale edges. Results for coefficient classes two and three are 

visually similar, although closer inspection will show that the third class, the nonlinear 

morphological method, provides a slight improvement in feature definition. 

A second qualitative example of the three anisotropic diffusion processes was 

attained by applying the smoothing operations to the cameraman image. These results are 

similar to those achieved with the previous synthetic imagery, and they are presented in 

Figure 4.12 (page 72). Again, the first coefficient class, using a traditional gradient 

calculation, is unable to remove fine detail, as evident by the existence of the small 

objects present on the ground. The second coefficient class, using a linear filter within its 

gradient calculation, removes these small features, but at the expense of introducing edge 

t All noise processes are defined to be white and uncorrelated. 
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movement and feature drift. (Notice the excessive smoothing of the camera and the 

movement of the elbow.) The new morphological anisotropic diffusion algorithm is 

capable of overcoming both deficiencies, removing small objects while maintaining edge 

locality. 

While qualitative comparison of the three methods of anisotropic diffusion begins 

to distinguish the smoothing properties of the morphological diffusion coefficient, a 

quantitative comparison of their edge detection accuracy displays the advantages of the 

new diffusion expression. In determining the edge detection capabilities of the three 

variants of anisotropic diffusion, synthetic imagery was again corrupted by 40% salt and 

pepper noise. These images were then smoothed; and at each solution time, edges were 

identified and compared with known edge locations. Recognizing edges in the filtered 

imagery was accomplished with the use of a simple gradient based edge detector, welJ 

motivated by the smoothing properties of the anisotropic diffusion equation, and the 

threshold of the edge detector was defined to be equal to the gradient threshold of the 

diffusion coefficient, k. 

Experimental comparison of edge detection performance wa<; calculated using lWO 

quantitative metries. The first, Pratt's edge quality measurement, is defined as 

(4.9) 

where IA is the number of edge points detected in the filtered image result, I, is the 

number of edge points existing in the original, noise free imagery, d(i) is the Euclidean 

distance between an edge location in the original image and the nearest detected edge, 
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and a is a scaling constant, set to the suggested value of 119 [31]. Perfect recovery of all 

edge information in the original image results in an edge quality measurement of one 

(F=l); poor edge localization lowers the value. 

The second measurement group contains two more tangible representations of the 

candidate filter performance, and the first measurement is defined to be the percentage of 

original edge points successfully identified by the edge detection process. Correctly 

recovering all edges in the initial image results in a 100% identification percentage, not 

detecting a feature at its original location lowers the identification measurement. The 

second measurement describes the ability of the edge detector to identify edges without 

detecting false edge locations. Expanding on the previous measurement, edge features 

which are not recognized and image locations which are erroneously classified as features 

are calculated. Perfect recovery of the original image results in an identification 

measurement of 100%, incorrect identification of any image location lowers the 

measurement. 

The results of the numerical experiment are presented in Figure 4.13 (page 73). It 

may be seen that the linear coefficient initially outperforms the other diffusion variants in 

the edge quality measurement, but produces the poorest identification percentage. As 

solution time increases, the introduction of edge localization errors by the linear filter 

becomes more evident and is displayed by the rapid decrease in matched features. 

Specifically, at solution time three, the linear coefficient is unable to correctly identify the 

location of a single edge. The morphological anisotropic diffusion method provides 
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significant performance improvement, able to identify over 70% of the original edges and 

attain a solution quality measurement of 0.95. 

The purpose of this section was to explore anisotropic diffusion processes that 

incorporate nonlinear filters into the diffusion coefficient, and the goal of this chapter was 

to show that these new diffusion expressions are capable of smoothing features of small 

spatial size while simultaneously smoothing regions of low contrast. Presentation of 

numerical simulations concludes this chapter and, coupled with the theoretical 

development of the previous sections, has presented a new morphological anisotropic 

diffusion coefficient, capable of removing fine features and noise while maintaining 

feature locality and reducing edge movement. 

Development of a new diffusion expression is not the major goal of this thesis, 

however, and it serves only as a necessary step in the evolution of the anisotropic 

diffusion pyramid. ill the next chapter, these morphological diffusion coefficients will be 

used to define scale parameters of the diffusion process. The parameter values will allow 

the anisotropic diffusion expression to produce signal representations suitable for 

sampling, and within the context of image pyramids, these scale depictions will 

correspond to individual levels of a pyramid structure. Definition of these diffusion 

parameters will result is the first formal definition of an anisotropic diffusion pyramid -

the major goal of this thesis. 
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Figure 4.11 Three classes of anisotropic diffusion applied to synthetic imagery: (a) original image 
corrupted with 40% salt and pepper noise; (b) resuas obtained using original anisotropic diffusion; 
(c) results obtained using traditional scale aware anisotropic diffusion; (d) results obtained using 
morphological anisotropic diffusion (4.8). The gradient threshold, k=40, and the solution time, t=3. 
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(a) (b) 

(c) (d) 

Figure 4.12 Three classes of anisotropic diffusion applied to the cameraman image: (a) original 
image; (b) results obtained using original anisotropic diffusion; (c) results obtained using traditional 
scale aware anisotropic diffusion; (d) results obtained using morphological anisotropic diffusion 
(4.8). The gradient threshold, k=10, and the solution time, t=20. 
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Figure 4.13 Three quantitative measurements of edge detection performance: (a) percent of 
edges correctly identified; (b) percent of image pixels incorrectly classified by the edge detector; 
(c) results of Pratt's edge quality measurement. 
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CHAPTER V 

THE ANISOTROPIC DIFFUSION PYRAMID 

Overview 

Characterizing the smoothing performance of different anisotropic diffusion 

methods has been the major emphasis of the previOUS chapters. In the discussion, 

traditional representations of anisotropic diffusion have been shown to be ill-suited for 

prefiltering a signal before sampling, and original scale aware diffusion expressions, 

incorporating linear filters into their diffusion coefficients, have been shown to be 

incapable of simultaneously smoothing low contrast regions and smoothing small scale 

objects. In creating a smoothing mechanism capable of minimizing feature drift while 

providing necessary information removal, the last chapter has introduced nonlinear 

morphological operators into the diffusion coefficient. These diffusive processes have 

been shown to guarantee a reduction of information while preserving candidate edge 

locations. 

Developing a scale aware anisotropic diffusion process with such ideal spatial 

smoothing characteristics is a major milestone of this thesis. However, it is not the 

primary objective. The goal of this thesis is to formally construct an anisotropic diffusion 
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pyramid and apply it to the problem of object identification and tracking. This is 

motivated since, theoretically, these multi-scale structures will contain a set of scale 

depictions which simplify establishing feature correspondence across scale and will allow 

the application of robust coarse to fine search procedures. Conceptually, the construction 

of an anisotropic diffusion pyramid will provide a very efficient and robust solution to the 

object identification problem. 

The purpose of this chapter is to define the quantization of scale spaces generated 

by the anisotropic diffusion expression. Encapsulating scale space within an image 

pyramid requires the identification and selection of scale representations which satisfy 

sampling criteria, and in the construction of an anisotropic diffusion pyramid, this 

necessitates selecting filter parameters which produce a smoothed result suitable for 

sampling. Scale aware anisotropic diffusion expressions have multiple parameters of 

scale, and the goal of this chapter is to define parameter values such that the resulting 

anisotropic diffusion process will satisfy necessary sampling conditions. These 

smoothing parameters will be defined using a simple model of the scale aware diffusion 

process, presented in this chapter. 

This chapter is organized as follows: The second section presents an ideal model 

of the scale aware anisotropic diffusion process, and the third section uses this model to 

define filter parameters for the anisotropic diffusion equation. These parameters allow 

the decimation of coarser scene depictions while ensuring spatial causality. The fourth 

section concludes this chapter and realizes a major goal of this thesis, formally defining 

an anisotropic diffusion pyramid. 
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Ideal Anisotropic Diffusion 

Smoothing properties of the anisotropic diffusion expression are defined by the 

realization of their diffusion coefficients, and these diffusion coefficients are traditionally 

designed to preserve regions of high contrast while smoothing areas of low gradient. 

Several implementations of the anisotropic diffusion coefficient have been suggested in 

the literature, and the purpose of this section is to present a simple model of these 

processes for use in the next section, where smoothing parameters of the anisotropic 

diffusion pyramid are defined. Development of this model will abstract analysis of the 

diffusion equation from specific coefficient descriptions. 

Previous chapters have exerted significant effort 10 discussing scale aware 

diffusion processes, and a definition of the ideal scale aware model begins by recognizing 

these initial descriptions. The first smoothing representation presented in this thesis was 

of traditional anisotropic diffusion, where in its analysis, the smoothing operator was 

modeled with a single smoothing threshold. Use of the smoothing threshold allowed 

traditional anisotropic diffusion to be described as a non1inear filter, capable of preserving 

regions of significant gradient. It also suggested the unsuitability of using a diffusion 

operation as a sampling prefilter, showing that filtering sequences composed completely 

of high contrast objects did not remove any signal content. 

Extensions to the tradi tional diffusion expressions attempted to sol ve these 

perceived deficiencies and produced the second diffusion model of this thesis. These 

scale aware diffusion equations were still capable of preserving significant edges, like 
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traditional diffusion realizations, but were designed to also smooth regions of sma]} 

spatial size. Describing an ideal diffusion coefficient which models these performance 

constraints, prototypical scale aware diffusion expressions of the previous chapters have 

coefficient values near zero when in the presence of edges and coefficient values near one 

when in a small scale region. 

Expanding this initial spatially aware diffusion model into a more complete 

representation simply requires describing the smoothing performance of the diffusion 

operator when not in the presence of large gradients or small spatial regions. Ideally, the 

anisotropic diffusion process should smooth areas of low contrast while preserving 

candidate edge locations, and a simple realization of this smoothing performance is 

attained by allowing uniform smoothing in all regions of small gradients or small spatial 

size. Identifying small scale objects by prefiltering the gradient used in the coefficient 

calculation with an abstract filtering function G, the ideal sca1e aware diffusion 

coefficient is defined to be 

c(VI) = u(IIG(VI)II- k) , (5.1 ) 

where c is the diffusion coefficient, VI is the image gradient, G(VI)is the image gradient 

with small spatial features removed, u is the step function, and k is the gradient threshold 

of the diffusion system. A possible realization of G(VI) might utilize the morphological 

open-close filter, presented in the previous chapter. 

By assigning coefficient values of one to all locations with low gradient or with 

small spatial size and assigning smoothing values of zero to larger gradients belonging to 

large scale features, the ideal scale aware diffusion operator presents a very simple 
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filtering process and a useful tool for diffusion analysis. Inhibited only from smoothing 

across the boundaries of spatially large features, the diffusion coefficient smoothes all 

other locations within these boundaries uniformly. This filtering mechanism may be 

visualized as convolving the interior regions of a signal with a linear kernel while 

preserving significant edges and, effectively. a piece-wise linear filtering process. With 

constant coefficient values, the anisotropic diffusion expressions produce isotropic (or 

Gaussian) smoothing within these larger regions, and the performance of the ideal scale 

aware diffusion operator approximates a Gaussian lowpass filter at all locations of the 

original signal, except significant region boundaries. 

Scale aware diffusion coefficients equip the anisotropic diffusion process with 

specific smoothing goals, and while the use of the ideal diffusion coefficient may have 

negati ve effects on the practical utility of a diffusion process, it does provide a simple 

model of previously presented diffusion coefficients t. Its definition creates a diffusion 

process which approximates Gaussian scale space at ail locations internal to significant 

edges, while preserving these boundaries, and in the next section, this smoothing 

characteristic will be used to develop smoothing criteria for the suitable construction of 

an anisotropic diffusion pyramid. 

t Though the smoothing model is simple, it is nol necessarily trivial. Other filtering processes have been 
successfully modeled as binary decisions: the ideal low pass filter, for example. 
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Parameter Selection 

Construction of an anisotropic diffusion pyramid requires selecting the scale 

parameters of the anisotropic diffusion equation which will allow the filtered result to be 

sampled without loss of infonnation. In applying a pyramid structure to the problem of 

object identification and edge detection, sampling is not viewed within the context of 

reconstruction, but rather within the context of spatial causality. Spatial causality 

describes a cause and effect relationship between scale representations, and in thi s 

section, the construction of image pyramids which utilize the anisotropic diffusion 

equation as the scale generating operator will be considered. Throughout this discussion, 

the anisotropic diffusion equation will be analyzed using continuous input signals and 

treated as a piece-wise linear operator. Approximations of the continuous diffusion 

expressions with discrete difference equations will also be considered. 

The ideal model of scale aware anisotropic diffusion, presented in the prevIous 

section, provides the outline for this section. Capable of smoothing regions of low 

contrast and smoothing regions of small spatial size, parameters of the scale aware 

anisotropic diffusion process wHl be developed which ensure that these smoothed regions 

will not introduce extraneous edge features into subsampled results . This section will 

first define smoothing criteria for filtering regions of low contrast and will then develop 

conditions ensuring proper smoothing of regions of small spatial size. Since the 

smoothing characteristic of the ideal scale aware diffusion expressions contains spatial 

and gradient based smoothing which are independent, satisfying these two smoothing 
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conditions defines an ideal diffusive process, well suited for application as a sampling 

prefilter, and a scale generating operator for image pyramid construction. 

Sampling Regions of Low Contra')t 

Constructing an image pyramid with a fixed scale filter is possible only if the 

scale generating function also produces a signal suitable for sampling. For the traditional 

notion of scale space, encapsulated by the Gaussian pyramid, these sampling conditions 

are satisfied by the application of classical thoughts on sampling theory, and in 

considering the construction of an anisotropic diffusion equation, which ensures spatial 

causality within regions of Jow contrast, the smoothing conditions of an anisotropic 

diffusion pyramid and a Gaussian pyramid are equivalent. A region of low contrast is 

defined to be absent of internal edge features and, therefore, spatial causality is 

maintained if aliasing within the region is minimized. 

Using a frequency domain analysis, a signal can be reconstructed from its sampled 

representation only if the original data is first band limited, and this is accomplished by 

prefiltering the original signal, removing all frequencies not accommodated by the new 

sample domain, so that its frequency response is below half the sampling rate. In 

practice, for construction of a Gaussian pyramid, the limited frequency response is 

usually approximated by setting the standard deviation of the Gaussian filter, a, equal to 

twice the sample width divided by n, 2SIn [5]. 

The scale aware anisotropic diffusion process approximates a Gaussian filter 

within regions of low contrast, and the standard deviation of this filter is described by the 

80 



solution time parameter, t, of the anisotropic diffusion equation. The relationship 

between the width of a Gaussian filter and the solution time of the continuous time 

diffusion equation is defined as [36] 

(5.2) 

and using this equality (and a uniform 1 of S sampling scheme), a solution time satisfying 

the sampling requirements for image pyramid construction can be determined. 

Substituting 2Sln, for the filter width, cr, in (5.2) presents a sampling solution time, tLe, 

which ensures the maintenance of spatial causality within regions of low contrast. The 

solution time is expressed 3.S 

25 2 

t LC = -,-' n:. 
(5.3) 

where S is the decimation factor between pyramid levels. For a discrete approximation of 

the continuous diffusion process, this solution time describes the number of iterations the 

discrete system must be applied to the original signal, and for a discrete diffusion system 

to suitably smooth a region of low contrast the number of iterations is defined to be 

t LC ·l1t , where t1t is the time step used in the discrete realization of the diffusion equation 

[26]. 

The expression of a stopping time which removes all frequencies not supported in 

the next resolution domain ensures that subsampling regions of low contrast will not 

introduce edge features in coarser representations. However, this stopping time does not 

completely satisfy the sampling requirements of the anisotropic diffusion pyramid, as 

small spatial objects of high contrast may require additional smoothing to assure that they 
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do not interject edge features into subsampled scale depictions. To minimize the aliasing 

effects of sampling small scale regions, the diffusion process must remove all objects 

which cannot be spatially supported in the next resolution representation, reducing their 

gradients below the gradient threshold. In the next subsection, filter parameters will be 

defined which guarantee the spatial causality requirements of an image pyramid within 

these regions of small spatial size. 

Sampling Regions of Small Spatial Size 

The elimination of a sma]] region should result in its assignment to a larger one, 

and the purpose of this section is to develop smoothing criteria which will remove small, 

high contrast objects from subsampled scale space representations. Analyzing the 

anisotropic diffusion smoothing process as a linear filter within larger regIOns, the 

diffusion equation must smooth all internal features, reducing their gradients below the 

gradient threshold and accounting for the effects of sampling on the gradient 

measurement. The purpose of this subsection is to define smoothing criteria which will 

ensure spatial causality throughout a sampling operation, and the subsection begins by 

describing solution time parameters for smoothing spatially small features. After 

defining smoothing conditions which remove small scale objects from subsampled 

representations, the subsection concludes by defining the spatial size of an object which 

must be defined as "small" to maintain spatial causality. 

The gradient of a sampled signal representation is proportional to the gradient of 

the original representation by the sample factor S. Guaranteeing that small spatial 
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features wiIl be removed in coarser scale depictions is assured by smoothing all internal 

features such that all gradients are less than k/ S , where k is the gradient threshold of the 

diffusion system. Derivation of a solution time which satisfies this requirement is 

developed through the inspection of a single finite width step function of small spatial 

size and height a. This function and its smoothed result are shown in Figure 5.1. 

Treating the diffusion equation as a 

piece-wise linear filter, the smoothing 

conditions necessary for the removal of all edge 

features which belong to the finite width step 

function are derived by modeling the step 

function as a sequence of delta functions. This 

is allowable since the ideal scale aware 

diffusion equation is effectively a Gaussian 

linear filter within these spatially small regions, 

and inspecting the effect of smoothing a single 

impulse with the spatially aware diffusion 

expresslOn allows the definition of stopping 

parameters for the filtering of smaJl spatial 

objects. Figure 5.2 displays a single impulse 

function and its filtered result. The filtered 

representation is visually described as of 

Gaussian shape, and it may be mathematically 
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Figure 5.1 The original finite width 
step function and an intermediate 
smoothed result. The filtered 
representation was created by 
smoothing the original function with an 
isotropic diffusion process (a Gaussian 
filter) for a fixed solution time. 
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expressed as 

[ 
I _xl J 

a· ~4Tr t e 41 , 0 < t < 00 (5.4) 

where a is the magnitude of the impulse and t 

is the solution time of the scale aware 

anisotropic diffusion expression. 

Examining the derivative of a filtered 

impulse signal develops smoothing criteria 

guaranteeing that edge features are removed. 

Edges will be removed from subsampled 

representations if they are smoothed such that 

their gradients are less than kj S , and removal 

of a small finite width step function from 

coarser resolution representations ensures 

---

Figure 5.2 A single impulse function 
and its filtered result. Smoothing the 
impulse function with an isotropic 
diffusion process (a Gaussian filter) 
results in a filtered representation of 
Gaussian shape. 

spatial causality within regions of small spatial features. Solution times assuring its 

removal from subsampled signal representations must satisfy 

(5.5) 

where a is the magnitude of the impulse, k is the gradient threshold of the edge detection 

system, t is the solution time of the scale aware anisotropic diffusion expression, and S is 

the sample factor. Solving this equation, the minimum value of the spatial smoothing 

parameter, tss, is defined as 
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tss > ~ e 2 , 

kv 8n 
(5.6) 

which in the discrete approximation of the anisotropic diffusion equation is realized by 

smoothing the original signal with t ss . ru iterations of the diffusion expression, where 

l1t is the time step used in the iterative realization. 

Computation of an solution stopping time for actual construction of an anisotropic 

diffusion pyramid is accomplished by selecting the minimum value of the solution time 

parameter, t, which satisfies both the sampling requirements for smoothing regions of low 

contrast (5.3) and smoothing region of small spatial size (5.6). This is expressed as 

t, = max {t LC ' tss } , (5.7) 

and for an iterative approximati.on of the anisotropic diffusion equation, the number of 

diffusion iterations necessary for filtering a signal such that it is suitable for sampling is 

approximately t, ·l1t , where l1t is the time step used in the discrete approximation of the 

diffusion equation. 

This solution time parameter allows the scale aware anisotropic diffusion 

operation to smooth all regions of low contrast and all regIOns of small spatial Size, 

assuring that edge features appearing In the subsampled coarse scale scene 

representations will not correspond to features in these smoothed regions. While thi s 

section has now defined the solution scale of the diffusion expression or, equivalently, the 

number of iterations of its discrete approximation, the ideal scale aware diffusion process 

contains a second description of scale. This additional filter parameter specifies the scope 

of the diffusion coefficient calculation and defines the spatial size of objects which are 
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determined to be "small" and subsequently removed. This parameter must be defined 

before the construction of image pyramids is possible. 

Morphological operators have been used in the previous chapters to equip the 

scale aware anisotropic diffusion process w~th the capability of smoothing regions of low 

contrast and simultaneously smoothing regions of small spatial size. The operators are 

also important in defining the spatial size of objects which must be removed by the 

diffusion expression to ensure spatial causality. Borrowing from the mathematical study 

of topology, an image region may be viewed as a set and the region over which a 

coefficient is calculated defined. The diffusion system must preserve an object's 

homotopy across sampling domains, where homotopy is simply a one-to-one mapping of 

objects. 

Similar to the frequency based sampling strategy, homotopy will only be 

guaranteed if all sets are removed which are spatially unsupported by the new sample 

domain. This requires the identification and smoothing of all objects smaller than the 

sample grid, so that after sampling they will not exist, and using morphological operators 

within a diffusion coefficient to identify these small scale objects, the scale of the 

diffusion coefficient may be defined by the structuring element size of the morphological 

operators. Ensuring the identification and removal of all objects smaller than the sample 

grid, the morphological operators must utilize structuring elements with diameter greater 

than the sample factor, and for constructing an anisotropic diffusion coefficient, the 

structuring elements used by the morphological filters must have diameter of .fi. S, 

where S is the sample factor [16]. 

86 



Definition of the scale of the morphological diffusion coefficient concludes this 

section, and will allow the forthcoming description of an anisotropic diffusion pyramid. 

The goal of this section was to define the two parameters of the diffusion operator such 

that spatial causality could be ensured throughout subsampJed representations of 

anisotropic diffusion scale space. This was accomplished by considering the smoothing 

of regions with low contrast objects and regions of small spatial size and by devel.oping 

conditions which assured that, after sampling, no extraneous edges would be introduced 

within these features. The development of smoothing parameters allows the anisotropic 

diffusion expression to be viewed as a suitable sampling prefilter and completes a major 

goal of this thesis. In the next section, a mathematical description of the construction of 

an anisotropic diffusion pyramid will be presented. 

The Anisotropic Diffusion Pyramid 

The goal of this thesis was to formally construct an image pyramid utilizing the 

anisotropic diffusion expression as the scale generating operator. [n pursuing this goal, 

diffusion mechanisms have been developed which incorporate morphological operators 

into the diffusion coefficient and are capable of simultaneously smoothing regions of 

small spatial size and smoothing regions of low contrast. Maintaining spatial causality 

within an image pyramid is crucial for the application of traditional coarse to fine search 

procedures to discrete scale spaces, and development of diffusion parameters in this 

chapter ensures that spatial causality is maintained throughout a sampling operation. The 
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result is a smoothing operator capable of generating a scale space with minimal feature 

drift while satisfying conditions for prefiltering a signal before sampling. The purpose of 

this section is to formalize the anisotropic diffusion pyramid. 

Image pyramid levels are constructed by successively filtering and subsampling 

previous resolution representations. Using the traditional discrete approximation of the 

partial differential equation presented in (2.3), construction of coarser resolution images 

within an anisotropic diffusion pyramid may be expressed as 

(5.8) 

where ts is the solution time ensuring spatial causality from (5.7), J,s denotes subsampling 

by a factor of S, III is the time step used in the numerical solution of the anisotropic 

diffusion expression, and c is the ideal scale aware diffusion coefficient. For the 

generation of an anisotropic diffusion pyramid, the original image is first filtered with the 

anisotropic diffusion process with solution time parameters that assure the filtered result 

will be suitable for sampling. This intermediate filtered representation may then be 

subsampled, and this scale representation is referred to as the first pyramid level. (The 

original image is defined as the zero level within an image pyramid.) The higher levels of 

the multi-scale structure are computed by filtering and subsampling previous resolution 

representations. 

Definitions of the solution time parameters in this chapter assume the use of an 

ideal scale aware diffusion coefficient. A visual example of an actual anisotropic 

diffusion pyramid is presented in Figure 5.3 and employs a more practical diffusion 
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damping coefficient. This scale aware diffusion coefficient, which is used in thi s section 

and the next chapter, is constructed by substituting a previously suggested realization of 

the scale aware diffusion coefficient [40], presented in (2.7), for the ideal scale aware 

diffusion expression. The diffusion coefficient used in the rest of this thesis is defined to 

be 

1, IIV((I e M)oM)11 < k 

c= 
( k~(k+l) JIIV((IeM)OM)II>k ' 
lIIV((1 e M) 0 M)II ~(IIV((I- M) 0 M)II + 1)' -

(5.9) 

where k is the gradient threshold, (I- M) 0 M denotes the close-open filtering of an 

image, and M is the structuring element, defined to have diameter gFeater than the sample 

factor, .fi. s. 

Figure 5.3 Six levels of an anisotropic diffusion pyramid. The largest image is the 
original image. Smaller representations correspond to coarser scene depictions, each 
generated by filtering and subsampling the previous pyramid level. Notice that the 
cameraman is still visible in the coarsest level of the pyramid. 
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Presentations of the anisotropic diffusion pyramid concludes this chapter and 

realizes the major goal of this thesis. Its definition results in a scale space representation 

that preserves edge locations while providing necessary resolution reduction, and its 

creation is initially motivated by the theoretical promise of a robust and efficient solution 

to the object identification problem. In the next chapter, the integration of an anisotropic 

diffusion pyramid into an object identification and tracking system is explored. Results 

will be presented which show the computational efficiency and robustness of the new 

diffusion pyramid when applied to the identification problem. These results will also 

serve as verification of the pyramid construction techniques utilized in this chapter. 
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CHAPTER VI 

ANISOTROPIC DIFFUSION PYRAMIDS: 

APPLICATION TO MULTI-SCALE TRACKING I 

Overview 

The previous chapters have explored smoothing properties of several expressions 

of the anisotropic diffusion process. During this analysis, models of various diffusion 

characteristics were developed, and in the last chapter, these models were utilized in the 

formal construction of an anisotropic diffusion pyramid. The definition of an anisotropic 

diffusion pyramid presents a discrete scale space representation in which edge features 

are allowed minimal movement between scales, and theoretically, this should result in a 

very robust and efficient search method for an object identification problem. Creating a 

diffusion pyramid with these properties was the original moti vation of th is thesis. 

The purpose of this chapter is to apply the anisotropic diffusion pyramid to a 

practical object identification problem, and the goal of this chapter is to measure the 

enhancement in solution quality provided by the pyramid structure. Displaying the 

improvements attained through the use of an anisotropic diffusion pyramid should 

indirectly verify its construction, and exhibiting the ability of the diffusion pyramid to 
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identify objects in a robust and efficient manner should validate the original motivations 

of this thesis. These results will complete the development of the anisotropic diffusion 

pyramid, showing that the newly created multi-scale structure does indeed present a 

robust and efficient solution to the object identification problem. 

Solution quality improvements will be derived by incorporating the anisotropic 

diffusion pyramid into a target tracking system. As a prelude to assessing the quality of 

the tracker, the next section presents background on fundamental components of a multi­

scale search. This search procedure initially locates an object at a coarse resolution 

representation within a pyramid, and it then utilizes these results to decrease the number 

of inspections in the finer scene representations. The perlormance gain provided by the 

coarse to fine search method is highly sensitive to the proper selection of the initial coarse 

resolution level, and the next section will also describe how these initial pyramid levels 

are defined. 

The chapter is organized as follows: The second section provides background 011 

the coarse to fine search procedure, discussing the realization of a multi-scale search 

within an image pyramid and the selection of the coarsest level in which the search 

procedure is initialized. The third section presents numerical simulations comparing 

traditional single resolution search techniques to methods incorporating the anisotropic 

diffusion pyramid. These results wil1 show that the anisotropic diffusion pyramid 

provides a very robust and efficient solution to the object identification problem. 
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Background 

The advantage of using a multi-resolution search and track technique is embedded 

in the utilization of coarse scene representations for the initial identification of an object. 

Coarser scene information is created by successively filtering and subsampling the 

original image, and its use allows initial object identification to query information absent 

of noise and represented at reduced sample densities. Maximizing the benefits of these 

coarse to fine search procedures is accomplished by initially identifying an object at the 

coarsest resolution possible, and in a multi-scale search, this level is defined to be the 

root level of the search. 

The purpose of this section is to discuss the application of coarse to fine search 

methods to the anisotropic diffusion pyramid, and in the next subsection the selection 

procedures necessary for identifying a root level will be presented. After developing 

criteria for determining the coarsest pyramid level used in a multi-scale search method, 

the second subsection will discuss the realization of a coarse to fine search within the 

anisotropic diffusion pyramid and its target tracking system. 

Root Level Selection 

The root level of an object simply defines the coarsest resolution representation in 

which the object wil1 be identifiable. Consider the anisotropic diffusion pyramid 

presented in Figure 6.1, consisting of an infrared image of a plane in flight. Coarse to 
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fine search procedures will maximize both search efficiency and identification robustness 

by initially identifying this object at the coarsest resolution possible, and thi s level may b~ 

visually recognized as the third level of the pyramid structure. The purpose of this 

subsection is to describe the selection of this level for an arbitrary target object. 

Figure 6.1 An infrared image of a jet airplane in flight and its corresponding 
anisotropic diffusion pyramid . The coarsest representation which contains edge 
features belonging to the aircraft is the fourth largest image ot the pyramid (the third 
level). 

The first step in deriving root level definitions is to model the arbitrary object as a 

collection of smaller convex features. As an example, the jet aircraft in Figure 6.1 may 

be modeled as a composition of four smaller features: the fuselage, wing, tail, and landing 

gear. Expressing an arbitrary object, 0, as the union of a set of smaller convex sets, the 

object may be described as 
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0= UOm where OJ (10j = 0 forVi,j ~ M, (6.1 ) 
m=1 

where 0 is the object of interest and Om are individual features. Considering all targets as 

a collection of convex features, the derivation of an object's root level is straightforward. 

Defining the root level of an object with respect to its own internal composition is 

the first selection criteria considered in this subsection, and it necessitates defining the 

coarsest pyramid level that contains the object. The anisotropic diffusion expression 

removes all regions of small spatial scale, and for the complete r·emoval of a target, the 

anisotropic diffusion process must remove all features of the target. These features will 

be removed according to tneir spatial size, with smaller features being removed before 

larger ones, and the selection of pyramid levels which contain the target require the 

representation to contain the largest target feature. 

Subsampling a target feature reduces its spatial dimension, and in an anisotropic 

diffusion pyramid, spatial measurements of large objects. before and after sampling, are 

related by the proportionality factor S, where S is the sample factor used for pyramid 

construction. For example, the original length of the aircraft fuselage in Figure 6.1 is [34 

pixels. Measuring the length of the fuselage representation contained in the next pyramid 

level, constructed by filtering and subsampling the original image with a sample factor S, 

the sampled description of the fuselage has a length of 67 pixels. Therefore, subsampled 

objects have dimensions that are 5"' the size of the original object, and the size of a large 

object at pyramid level L may be expressed as 

(6.2) 
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where Y is the original measurement and YL is the equivalent spatial dimension in the 

subsampled domain. 

Continuously filtering and subsampling an object should eventually result in its 

removal, and within an anisotropic diffusion pyramid, a feature is defined to be removed 

when its spatial size is smaller than the sample grid (YL < S). The largest feature of the 

target will disappear in the construction of pyramid level L+ I, when 

y 
S>-L' 

S 
(6.3) 

where Y is the smallest spatial dimension of the feature (the minor axis), S is the sample 

factor, and L is the previow:; pyramid level. 

Rearranging this equation produces the first definition of the root level of an 

object. The coarsest pyramid level in which a target will exist may be expressed as 

(6.4) 

where LR is the root level defined by the internal characteristics of an object, S is the 

sample factor used in pyramid construction, and y is the minor axis of the largest convex 

feature of the target. 

While the root level may be described by its internal composition, a complete 

definition must consider the content and construction of its environment. A target may 

also elude identification when multiple objects merge, as the search procedure will no 

longer be capable of resolving either individual object. Describing the separation 

distance between the target and the second object with the distance z, the two objects will 

merge in the construction of pyramid level L+ 1, when 
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z 
S>-L' 

S 
(6.5) 

where z is the minimum distance between the two objects, S is the sample factor used in 

the construction of the pyramid, and L is the previous pyramid level. Rearranging (6.5) 

presents the second description of the root level of a target, expressed as 

(6.6) 

where LR is the root level defined by the external characteristics of a scene. 

The definition of the root level used in a coarse to fine search is determined both 

by an object's internal and external characteristics, and it may now be defined as 

LR = max{L: L < logs Idl- I}, (6.7) 

where 

The procedure used for selecting 

the root level of a coarse to fine 

search is best illustrated with an 

example. Consider the image 

presented 10 Figure 6.2, 

consisting of two aircraft. In 

determining the root level 

necessary for the identification of 

the smaller plane, two scene 

measurements must be 

d = min{y,z}. (6.8) 

Figure 6.2 Designing a coarse to fine search that is 
capable of identifying the smaller aircraft in the 
infrared image. Hoot level selection is dependent on 
two variables, the minor axis of the target's largest 
feature (.0 and the minimum distance between the 
target and other objects of similar or greater scale (z) . 
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determined. The first measurement is the minor axis length of the largest target feature, 

describing the pyramid level at which the target will be removed. In this example, the 

distance is denoted graphically with the variable y and is measured to be 18 pixels. The 

second scene measurement necessary is the shortest distance between the smallest object 

and other large scale features. This measurement describes the pyramid level in which 

the two objects will merge, and in the figure, this distance is represented with the variable 

z and measured to be 55 pixels. After identifying the two scene measurements, 

computation of the root level is accomplished by choosing the minimum of the two 

distance measurements and solving (6.7). In this example, the smallest scene 

measurement is the minor axis length of the target (18 pixels), and the root level of the 

smaller aircraft is defined to be the third level of the image pyramid, where the pyramid is 

constructed with a 1 of 2 sampling operation. 

Coarse to Fine Search Procedures 

With the definition of the root level, a coarse to fine search procedure may be 

initialized to maximize the efficiency and structure of the anisotropic diffusion pyramid. 

These search methods identify an object within coarse resolution representations and then 

use these results to constrain higher resolution inspections. The practical realization of 

this search procedure is the topic of this subsection, and the goal is to describe the search 

method incorporated into the anisotropic diffusion pyramid and its target tracking system. 

This tracking system is used to present experimental measurements of the accuracy and 
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efficiency of the anisotropic diffusion pyramid in locating objects, and these results will 

be presented in the following section. 

A coarse to fine search begins by identifying the 

target within the root level. In the target tracking system 

used in the nex t section, identification utilizes binary 

edge maps of the candidate target and the current scene. 

These edge maps are constructed by thresholding the 

gradient of the image, and an example of a multi-scale 

edge template is presented in Figure 6.3. Computing a 

binary exclusive-OR between coarse scale template 

information and the scene, and then summing the result, 

facilitates locating an object in the root level of the image 

pyramid. This operation may be described as 

x y 

Figure 6.3 A multi­
resolution template for the 
anisotropic diffusion 
pyramid presented in Figure 
6.1 . Coarser template 
representations are used to 
search coarser scene 
descriptions within the 
pyramid. 

(6.9) 

where TLR is the template representation at the root level, I/>R is the scene representation 

at the root level, and ffi denotes an exclusive-OR operation. Higher values for the binary 

template match correspond to higher similarity between template and scene, and in the 

simulation results to follow, the hi ghest match is defined to correspond to the target. 

Having found the best match between scene and template at location (iJ) in level 

LR of the pyramid with the binary template match measurement, the goal of a coarse to 

fine search procedure is to use these results to guide and refine progressively higher 

resolution inspections_ Anisotropic diffusion pyramids were designed to maintain spali al 
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causality, and this ensures that a features which exists at location (iJ) in a coarse 

resolution representation will exist within the region (S· (i ± Y2), S . (j ± Y2)) In higher 

resolution depictions, where S is the sample factor used in the construction of the image 

pyramid [lO]. Using this relationship between feature locations at different levels of a 

pyramid structure, the realization of a coarse to fine search procedure is straightforward. 

Target identification begins by locating the best match between edge template and scene, 

using (6.9). With these results, higher resolution information may be successively 

queried, and the binary template match needs only to be computed at four possible object 

locations. The identification results attained from inspecting the level LR-1 are then used 

to constrain the search of the next level, LR-2, and the procedure terminates after finding 

the target in the original image, La. 

Presentation of the coarse to fine search method concludes necessary background 

on the construction of a target tracking system incorporating the anisotropic diffusion 

expression. In the next section, results will be presented which compare the solution 

quality of a traditional, single resolution, identification algorithm to the anisotropic 

diffusion tracking system. These results will show that the anisotropic diffusion pyramid 

does provide a robust and efficient solution to the object identification problem, verifying 

its construction and validating its creation. 

100 



Results 

The purpose of this section is to present experimental results that attest to the 

solution quality of the anisotropic diffusion pyramid in object identification tasks. These 

results were attained by processing three "real world" image sequences with two object 

identification methods. The first method utilized the anisotropic diffusion tracking 

system, whose key components were discussed above, and the second method consisted 

of a traditional, single resolution, template matching algorithmt . Comparisons were then 

drawn which described the solution quality improvement provided by the anisotropic 

diffusion pyramid over a traditional search system. In the following simulations, solution 

quality will be described with two metrics: the measurement error between an object's 

identified location and ground truth and the computational requirements of the search 

routine. The results will show that the anisotropic diffusion pyramid provides a more 

robust and efficient solution to the object identification problem than traditional, single 

resolution, approaches. 

t A single resolution template matching algorithm is analogous to a multi-scale search, with the root level 
defined to be the original image. 
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Jet Sequence 

The first image sequence used in the solution quality 

simulations consisted of 25 frames of a jet airplane in flight. 

Each original image, and the base of tbe corresponding 

pyramid, had a resolution of 256x256 pixels, and all pixels 

were capable of representing 256 intensity levels. The 

anisotropic diffusion pyramids were constructed with a 1 of 2 

uniform sampling scheme, a gradient tbreshold (k) of 15, and a 

!1t of 1.1.1. (Figure 6.4 shows a montage of the image sequence, 

while Figure 6.1 dispJayed the pyramid constructed for the first 

frame of the sequence.) Implementing a multi-resolution 

search for the identification of the jet aircraft required the 

definition of the root level, and within the entire sequence, the 

largest element of the aircraft was its fuselage. Using (6.7), the 

root level of the sequence was defined to be the third resolution 

representation above the original image. The multi-scale 

template used in the simulations was shown in Figure 6.3. 

Applying the coarse to fine search techniques to the 

target identification problem and using the third level of the 

pyramid as the root level, object recognition tasks were 

performed using the binary, edge based, template matching 

routine. The result was a significant increase in computational 

ta2 
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efficiency between the single resolution and multi-scaJe techniques. A single resolution 

match required approximately 172 seconds per frame on a Sun Ultra J 1170, while the 

multi-resolution approach required approximately 8 seconds per frame, including the 

construction costs of the anisotropic diffusion pyramid. The effect was a system 

performance improvement of 21 times tradition single-resolution methods. 

Besides providing computation 

efficiency, multi-resolution techniques also 

increase system robustness. Using the same 

binary template matching routine, pixel 

localization errors were computed for both 

single and multi-resolution trials. These results 

are summarized in Figure 6.5, where the 

localization errors are expressed as the 

Euclidean distance between identified object 

locations and ground truth. For the first 14 

frames of the sequence, the algorithms produce 

simjJar measurements. In the final 11 images, 

the multi-scale search was able to locate the 

target while the single-resolution method was 

not. This displays the inability of the single-

resolution method to accommodate slight 

changes between the later images and the 
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Figure 6.5 Localizat,ion errors for the 
original jet sequence. Errors were 
calculated for both the single resolution 
and multi-resolution identification 
procedures by computi,ng the 
Euclidean distance between identified 
target locations and known position 
information. The two algorithm 
produce equivalent results for the first 
14 frames of the sequence. In the 
later frames of the sequence, the 
single resolution technique does not 
reliably identify the target. 



template, while the anisotropic diffusion pyramids are more resilient, taking advantage of 

the high similarity between coarse scale descriptions within the image sequence. 

To further display the robustness of the anisotropic diffusion pyramid, simulations 

were performed on the same sequence of images, but with each corrupted by Gaussian 

distributed noise. (The mean-square signal to noise ratio of the test images was 15.72, 

and Figure 6.6 shows the first frame of the sequence.) As can be seen from the 

identification results presented in Figure 6.7, the pixel localization error of the multi-scale 

technique increased in the presence of the additive noise, but the coarse to fine search 

method was still capable of providing acceptable estimates of the object location. 

Figure 6.6 The first frame of the jet 
sequence, corrupted with additi,ve 
Gaussian noise. 

Conversely, the single resolution method 

was unable to reliably determine the 

location of the target during any frame of 

the sequence. The ability to find an object 

in high clutter allowed the multi -scale 

object recognition system to provide a 

smaller pixel localization error, with a mean 

error of 3.69 pixels compared to 195.29 

pixels of the single resolution system. 
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Figure 6.7 Localization errors for the corrupted jet sequence. 
Errors were calculated for both the single resolution and multi­
resolution identification procedures by computing the Euclidean 
distance between iidentified target locations and known position 
information. The anisotropic diffusion tracking system is capable 
of identifying the target in noisy imagery and only introduces small 
errors into the localization measurement. Single resolution 
identification techniques are not as robust, and the algorithm was 
not capable of correctly classifying the target in a single frame of 
the sequence. 
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Semi Sequence 

The second image sequence used for measunng the 

performance properties of the anisotropic diffusion tracking 

system consisted of 74 infrared images of a semi truck in 

motion. (Figure 6.8 shows an overview of the sequence.) All 

original images had a resolution of 320x240 pixels, and each 

pixel represents 256 intensity levels. The pyramids used for 

this evaluation were constructed with a 1 of 2 uni form 

sampling scheme, a gradient threshold (k) of 15, and a 111 of 114. 

(Figure 6.9 shows the pyramid constructed for the first frame 

of the sequence.) Implementing a multi-resolution search 

requires the root level of the target to be defined, and this 

necessitated the identification of the largest feature of the 

target. In the entire sequence, the most significam element of 

the semi was its trailer, and using (6.7), the root level of the 

sequence was defined to be the second resolution 

representation above the original image. Figure 6.10 shows the 

multi-scale edge template used in the simulations. 

The first performance measurement of the simulation 

was the comparison of computational requirements between 

the multi-scale search and the single resolution identification 

procedure. Applying the multi-resolution techniques to the 
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Figure 6.8 Overview 
of the semi sequence. 



l 

target recognition problem and using the second level of the pyramid as the root leve l, the 

object identification tasks were performed using a binary template matching routine. For 

the single resolution match, the algorithm required approximately 46 seconds per frame 

on a Sun Ultra 11170, while the multi-resolution technique needed approximately 6 

seconds per frame. These results show an overall system performance improvement or 

7.7 times tradition single-resolution methods . 

Figure 6.9 The first frame of the semi sequence and its corresponding anisotropic diffusion 
pyramid. The semi is visible only in the first three scene representations within the diffusion 
pyramid, resulting in the selection of the second level of the pyramid as the root level of the multi­
scale search. 

Figure 6.10 The multi-scale template 
used for the semi sequence. 
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While the semi sequence again shows the presence of computational 

enhancements through the use of the anisotropic diffusion pyramid, the performance 

gains within this sequence account for only 1/3 of those attained with the previous jet 

aircraft simulation. As these two tracking sequences utilize different pyramid levels for 

their root level, the differences between the performance improvements within these 

images displays the sensitivity of the multi-scale method to root level selection. Coarser 

root levels allow more efficient and robust 

solutions then finer root levels. 

Using the same binary template matching J. 
IN 

routine, pixel localization errors were also 

computed for both single and multi-resolution 

trials. These results are summarized in Figure 

6.11, where the localization errors are expressed 

as the Euclidean distance between the observed I ... 

point and ground truth. These results show that 

the increased computational efficiency of the 

multi-scale search does not introduce extra 

localization error. For the entire sequence, the 

multi-scale and single-scale algorithms produce 

similar measurements. The mean localization 

error for the anisotropic diffusion tracking 

system was 1.08 pixels while the mean 
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Figure 6.11 Localization errors for 
the original semi sequence. Errors 
were calculated for both the sing,le 
resolution and multi-resolution 
identification procedures by 
computing the Euclidean distance 
between identified target locations 
and known position information. The 
two algorithm produce comparable 
results, though the multi-scale 
technique requ:ires less 
computational resou rces. 



localization error for the single resolution technique was 1.11 pixels . 

To display the robustness of the anisotropic diffusion identification system. the 

simulations were performed on the same set of images, but corrupted by Gauss ian 

distributed noise. (The mean-square signal to noise ratio of the test images was 

approximately 15.34, and Figure 6.12 shows the first frame of the noisy sequence .) As 

can be seen from the identification results presented in Figure 6.13 , the pixel loca li zat ion 

error of the multi-scale technique increases in the presence of noise, but the algorithm is 

still capable of estimating the object location in the majority of the frames. The res ult of 

the single resolution method is very much in contrast, unable to locate the object durin g 

Figure 6.12 The first frame of the semi 
sequence corrupted with Gaussian distributed 
noise. 
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any frame of the corrupted sequence. 

The ability to find the target in noi sy 

imagery allows the multi-scale object 

recognition system to provide a 

small e r pixel localization error , with a 

mean error of 19.15 pixe ls compared 

to 140.32 pixe ls of the sIngle 

resolution system. 
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Figure 6.13 Localization errors for the noisy semi sequence. 
Errors were calculated for both the single resolution and multi­
resolution identification procedures by computing the Euclidean 
distance between identified target locations and known position 
information. The multi-scale algorithm is capable of classifying the 
target in a majority of the frames, denoted by the regions of low 
measurement error. Single resolution techniques are unable to 
find the target in any frame, denoted by large measurement error 
within each frame of the sequence. 
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Truck Sequence 

The final sequence used in the solution quality 

simulations consisted of 123 images of the rear of a truck. 

(Figure 6.14 shows several frames from the sequence.) The 

original images had a resolution of 320x240 pixels, and each 

pixel has a range of 256 intensity levels. The pyramids used 

for this evaluation were constructed with a I of 2 uniform 

sampling scheme, a gradient threshold (k) of 15, and a flt of 

l,4. (Figure 6.15 shows the pyramid constructed for the first 

frame.) To implement a multi-resolution search, the root level 

of the object must be identified, and in the entire sequence, the 

largest element of the truck is the back of its traile r. Using 

(6.5), the root level of the sequence is defined to be the fifth 

resolution representation above the original image. However, 

presence of other large objects in the scene necess itate 

selecting a lower initial level for the multi-scale search (in this 

example, the road and frame edge must be considered objects). 

In the following simulations, the root level of the target was 

defined to be the third resolution representation above the 

original image. Figure 6.16 shows the multi-scale edge 
Figure 6.14 Overview 

template. of the truck sequence. 
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Fig,ure 6.15 The first frame of the truck sequence and its corresponding anisotropic diffusion 
pyramid. The truck is still visible in the sixth scene representation within the diffusion pyramid. 
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Figure 6.16 The multi-scale template 
used for the truck sequence. 

Applying multi-resolution techniques to the object recognition problem and U~1f1t' 

the third level of the pyramid as the root level, object recognition tasks were performed 

using a binary, edge based, template matching routine. For a single resolution match , the 

algorithm required approximately 325 seconds per frame on a Sun Ultra 11170, wh ile the 

multi-resolution technique required approximately 9 seconds per frame, includll1g 

pyramid construction costs. The results show a system performance improvement of 36 

times traditional single-resolution methods, again displaying the dependence of the 

anisotropic diffusion pyramid to the selection of the root level. 
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Increased computational efficiency does not introduce additional error into the 

identification results, and using the binary template matching routine, pixel localization 

errors were computed for both single and multi-resolution trials. These results are 

summarized in Figure 6.17, where the localization error is expressed as the Euclidean 

distance between the identified target location 

and ground truth. For the first 55 frames, the 

algorithms produce similar measurements. 

During the remaining images of the sequence, 

portions of the truck become occluded, with the 

top of the truck moving out of the image during 

frames 56 to 78 and the side of the truck 

occluded during the rest of the sequence. Both 

identification techniques are incapable of 

locating the target when the top of the truck is 

absent from the frame; however, the single-

resolution method is also unable to 

accommodate the occlusion of the side panel in 

the later portions of the sequence. Anisotropic 

diffusion pyramids, and their coarse to fine 

search, are more resilient to these target changes, 

reacquiring the truck as it becomes entirely 

visible in the scene. Overall, the multi-scale 
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Figure 6.17 Localization errors for 
the original truck sequence. Errors 
were calculated for both the single 
resolution and muiti-reso'lution 
identification procedu res by 
computing the Euclidean distance 
between identified target locations 
and known position information. The 
two algorithm initially produce 
comparable results. At approximately 
frame 55, significant portions of the 
truck become occluded. Upon 
reappearance, the multi-scale 
approach is capable of identifying the 
slightly deformed target while the 
single resolution technique is not. 



technique had an average error of 7.06 pixels and the single resolution technique had an 

average error of 68.31 pixels. 

Performing the simulations on a corrupted representation of the image sequence 

again displays the increased robustness of the anisotropic diffusion pyramid. (The image 

sequence was created by adding Gaussian noise to the original images, resulting in a 

mean-square signal to noise ratio of 2.64, and the first frame of the noisy sequence is 

show in Figure 6.18.) As can be seen from the data presented in Figure 6.19, the pixel 

localization error of the multi-scale technique increases in the presence of noise, while the 

single resolution method actually provides better results than attained on the original 

image set. The ability of the anisotropic diffusion pyramid to provide similar solutions to 

the identification problem in the presence of noise makes the multi-scale structure a more 

Figure 6.18 The first frame of the noisy truck 
sequence. The images were corrupted with Gaussian 
additive noise. 
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robust solution to the object 

identification problem and allows 

its mean error to increase by only 

14.60 pixels. The mean error for 

the single resolution 

identification method decreased 

by 41 .60 pixels, providing little 

correspondence to the original 

image sequence results . 
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Figure 6.19 Localization errors for the corrupted truck sequence. 
Errors were calculated for both the single resolution and multi­
resolution identification procedures by computing the Euclidean 
distance between identi'fied target locations and known position 
information. Using the anisotropic diffusion pyramid produces 
similar results between the original and noisy sequences. 
Application of traditional, single resolution techniques produce 
significant deviations in identification performance. 
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The purpose of this chapter was to apply the anisotropic diffusion pyramid to a 

practical object identification problem and to measure the introduced enhancement of 

solution quality. Reviewing the results presented for the three "real world" image 

sequences, it can be seen that the anisotropic diffusion pyramid does provide a robust and 

efficient solution to the object identification and tracking problem. Resulting in 

computational load improvements between 770-3600% over single resolution techniques 

(including the cost of image pyramid construction), the diffusion pyramid introduces 

significant processing reductions. This computational speed-up does not come at the 

expense of increased localization error in the identification of an object, as the multi-scale 

approach provides equivalent or lower errors than those attained with the single 

resolution methods. Anisotropic diffusion pyramids also proved to be robust, and the 

performance of the diffusion pyramids on the corrupted image sequences displays this 

solution characteristic. Using coarse scale information, absent of spurious noise and fine 

features, the diffusion pyramid was capable of identifying objects even in the presence of 

heavy noise. Single resolution methods were ineffective in these test sequences . 

This chapter has shown that the diffusion pyramid does provide a robust and 

efficient solution to the object identification problem. Further solution quality 

improvements are possible, though, and they may be attained by incorporating temporal 

models of the target motion into the search procedure. A realistic anisotropic diffusion 

tracking system must consider the integration of the anisotropic diffusion process with 

predictive filters, as these tracking systems introduce additional refinements into the 

search procedure, allowing the system to filter measurement noise and provide location 
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estimates when a target becomes occluded. The formal construction of the anisotropic 

diffusion pyramid did not require these temporal models, nor did the experimental 

verification of the coarse to fine search procedure. However, development of an 

anisotropic diffusion tracking system would benefit from the inclusion of a predicti ve 

filter, and discussion of the integration of these temporal models with the anisotropic 

diffusion pyramid may be found in Appendix C. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

This thesis has formalized construction of an anisotropic diffusion pyramid. 

Toward this goal, a new morphological diffusion mechanism has been introduced and 

diffusion stopping time criteria has been developed. This criteria has allowed the 

nonlinear diffusion operation to serve as a suitable sampling prefilter, and completion of 

these tasks has allowed the generation of an image pyramid absent of edge movement. 

This thesis has quantized the continuous scale space of diffusion within an image 

pyramid, and for the anisotropic diffusion expression, completed the task which provided 

its original motivation. Construction of an anisotropic diffusion pyramid creates a 

discrete scale space representation and, coupled with a coarse to fine search, allows image 

features to be identified in a robust and efficient manor. 

Introduction of the anisotropic diffusion pyramid has also allowed this thesis to 

consider the construction of a multi-scale target tracking system. This thesis has 

presented experimental results using three "real world' image sequences, and these results 

have shown the diffusion pyramid possesses robust identification properties, capable of 

locating a target in highly corrupted imagery. Experimental simulations have also 

displayed significant reductions in system computational requirements, as the multi-scale 

technique is able to identify objects approximately an order of magnitude faster than 

traditional, single resolution, procedures. 
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While this thesis has introduced a novel diffusion mechanism and an image 

pyramid with minimized feature movement, it has also presented many areas of future 

work. Scale aware anisotropic diffusion expressions, which incorporate linear filters into 

the diffusion coefficient, have been shown to be incapable of removing features of small 

spatial size while preserving edges. This property lead to the exploration of nonlinear 

filters within the diffusion coefficient and resulted in the presentation of a morphological 

anisotropic diffusion expression. While morphology is useful in the construction of an 

image pyramid, it is not suggested to be the "optimal" nonlinear filter for generating scale 

aware diffusion representations. Other nonlinear filters exist, and future work should 

consider these filters for diffusion coefficient integration. 

Design of the anisotropic diffusion pyramid introduces another area with open 

tasks, as the smoothing parameters were derived using simple models of the diffusion 

expression. The experimental success of the resulting pyramid structure initiaJly attests to 

the viability of this diffusion model, but analysis of actual diffusion mechanisms is 

needed to determine how they may deviate from this ideal representation. A second area 

of future work has also been presented in the construction of the anisotropic diffusion 

pyramid, as stopping time criteria were developed by considering the diffusion process in 

its continuous form and deriving solution parameters that allowed the removal of 

continuous features. Image processing applications operate on discrete imagery, and 

while the diffusion process was initially motivated by the continuous heat equation, its 

discrete realization is merely an approximation. Analysis of the difference equations used 
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In the application of the anisotropic diffusion expressiOn may also reveal deviations 

between theoretical models and actual application. 

Experimental results have shown the validity of integrating coarse to fine search 

methods into the anisotropic diffusion pyramid. By providing a scale space 

representation with minimal feature drift, the diffusion pyramid now provides a 

mechanism to explore multi-scale applications without the inherent correspondence 

problems of linear pyramids. Within the scope of target tracking applications, future 

work includes study of the coarse to fine search realization, automatic selection of root 

levels, integration of image pyramids with predictive filters, and maintenance of target 

templates. Other practical problems may also benefit from the use of the anisotropic 

diffusion pyramid, and these problems could include stereo matching, scene 

segmentation, image coding, and compression. 

This thesis has been concerned with the identification of features within two­

dimensional imagery. It has formalized the anisotropic diffusion pyramid, presented a 

novel diffusion coefficient expression, developed sampling conditions for the nonlinear 

diffusion process, and applied the new pyramid structure to a multi-scale target tracking 

system. Current acquisition technology demands robust and efficient solutions to the 

object identification problem. The anisotropic diffusion pyramid has been shown to 

provide these sol utions. 
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APPENDIX A 

ANISOTROPIC DIFFUSION: A GRADIENT UPDATE EQUATION 

One Dimension 

Beginning with the one dimensional diffusion equation, the purpose of the first 

section is to present an equivalent diffusion expression based completely on signal 

gradient. The second section will extend these results to two dimensions. The original 

update equation is given as 

(A. I ) 

where IrMt is the one dimensional signal at time t+flt, II is the one dimensional signal at 

time val ue t, I1t is the solution time step of the discrete system, V wI and VEl are the signal 

gradients in the east and west directions, respectively, and CE, and Cw are the diffusion 

coefficients in the east and west directions, respecti vely. 

In the discrete equation, signal gradients and diffusion coefficients are calculated 

by simple differences. The east gradient, computed for signal location x, is expressed as 

V EI[x] = I[x + 1] - I[x], (A.2) 

and the west gradient of the signal is expressed as 

Y' wl[x] = I[x -1] - I[x] . (A.3) 
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Diffusion coefficients vary relative to these gradient magnitudes, and the computation of 

the two coefficients may be described as 

(A.4) 

and 

Cw [x] = cOlv wl[x ]11)· (A.S) 

Using the these signal gradient and diffusion coefficient expressions, the diffusion 

update equation may be simplified, described with a single gradient and diffusion 

coefficient. To accomplish this, define a new gradient and diffusion coefficient, where 

VI[x] = I[x -1] - I[x] 

and 

c[x] = c(lIVI[x]ll). 

Then, determine the relationship between the original gradients and coefficients. 

Vlw[x] = I[x - 1] - I[x] 

= VI[x] 

Vle[x] = I[x + 1]- I[x] 

= -(I[x] - I[x + I]) 

= -VI[x - I] 

cw[x] = c(liV wI[x]11) 
= cOIVI[x]11) 

= c[x] 
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(A.6) 

(A.7) 

(A.S) 

(A .C») 

(A. 10) 



cdx] = cOlv E1[x]ID 

= c(ll-VI[x -1111) 
= c(IIVIIx -1]11) 
= c[x -1] 

Finally, substitute the above equalities into (A. I) 

IHAI [x] = I, [x] + M( -c[x -l]VI[x - 1] + c[x ]VI[x]). 

(A.11) 

(A.12) 

Development of (A.l2) allows the first goal of this chapter to be realized, 

developing an equivalent representation of the diffusion update equation based 

completely on signal gradient. Substituting (A.12) into (A.6) and simplifying, the 

expression for VII+ll.,[x] is found to be 

(A. 13) 

V'I'+ll.1 [x] = I, [x + I] + ~t( -c[x ]V'I[x] + c[x + l]VI[x + 1]) 

- (1/ [x] + ~t( -c[x -l]VI[x - 1] + c[x lV'I[xl) ) 
(A.14) 

V1 1+ll.J [x] = VI, [xl + M(c[x + l]VI[x + I] - 2c[x]VI[x ] + e[x - I]VIlx - I)) . 

Two Dimensions 

Extension of the one dimensional update equation to two dimensional imagery is 

simplified by considering traditional discrete anisotropic diffusion realizations. The two 

dimensional update equation is expressed as 

(A.16) 
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where V NI and V sl are the image gradients in the north and south directions, respectively, 

and eN and Cs are the diffusion coefficients in the north and south directions, respectively. 

This process may be separated into vertical and horizontal components, and Chapter 3 

introduced the system: 

(A.17) 

and 

(A.tS) 

where Ir+Ar is the signal after filtering in the horizontal direction. 

The horizontal component of the two dimensional diffusion system is similar to 

the one dimensional equation considered in the previous section, except that the signal I 

possesses an additional dimension. Incorporating this second parameter into the 

difference expressions, gradient and coefficient parameters for the horizontal system 

component may be described as 

V [I[x, y] = I[x + I,y] - I[x, y], (A.19) 

V wI[x,y] = I[x -l,y]- I[x,y], (A.20) 

C E [x, y] = c(IIV EI[x, y]11) , (A.21) 

and 

(A.22) 

The vertical component of the two dimensional diffusion system is calculated with 

respect to the second spatial variable y, with x held constant. These parameters are 

defined as 

129 



v NI[x, y] = I[x, y + 1] - I[x, y] , (A.23) 

V sI[x,y] = I[x,y -1] - I[x.y], (A.24) 

eN [x, y] = c(IIV N1[x , y]11) , (A.25) 

and 

eN [x, y] = cOIV N1[x, y]11) . (A.26) 

Development of a two dimensional update expression parallels the work of the 

previous section, beginning with the definition of four new gradient and diffusion 

parameters. These parameters are defined as 

VI[x] = I[x -l,y] - I[x,y] (A.27) 

VI[y] = I[x,y-l]- I[x,y] (A.28) 

c[x] = c(IIVI[x]ID. (A.29) 

and 

c[y] = c(lIVI[y]11) . (A.30) 

Next, the relationship between the original diffusion parameters and the new gradient and 

coefficient expressions are determined. These equalities are described as: 

VIN[x,y] = I[x,y+ 1]- I[x,y] 

= -(I[x,y] - I[x, y + 11) 

= -VI[y-1) 

VIs[x] = I[x,y-l]- I[x,y] 

= VI[y] 
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V1dx,y] = I[x+ l,y]- I[x,y] 

= -(lex, y] - I[x + 1, y n 
= -VI[x-1] 

VIw[x,y] = I[x-l,y]-I[x, y] 

= VI[x] 

cN[x,y] = c(liV NI[x,y]li) 

= c(lt-VI[y - 1]10 
= c(lIVI[y - 1]11) 
= c[y-l] 

c s [x, y] = c(!lv sI[x, y]ID 
= cOIVI[y]11) 
= cry] 

C E [x, y] = c(llv E1[x, y]11) 

= c(II-VI[x -1111) 

= c(lIVI[x - 1]11) 
= c[x-1] 

cw[x,y] = c(llv wI[x,y]ID 

= c(lIVI[ x ]11) 
= c[x] 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

(A.35) 

(A.36) 

Substituting these relationships into (A.I7) and (A.IS) presents an intermediate 

expression of the two dimensional diffusion equation. This process is described with the 

vertical and horizontal components: 

I r+w [x, y] = Ir+lirll [x, y] + l!.t( -cry - I]VI[y - 1] + cry ]VI[y 1) (A.37) 

and 
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1 A. [x,y] = 1,[x,y]+M(-c[x-l]VI[x-I]+c[x]VI[x]) . r+'-"H (A.38) 

Development of CA.37) and (A.38) allows the second goal of this chapter to be 

realized, extending the gradient based diffusion update equation to two dimensions. The 

expression for the horizontal component of the diffusion system is derived by substituting 

(A.38) into CA.27) and (A.28). The simplified expression becomes 

Vlr+t.rl/ [x] = 11+t.11/ [x + I, y] - I r+t.rl/ [x, y] 

VI1+tJJl/ [y] = 11+t.11/ [x, y + I] - I,+tJJl/ [x, y] 

Vlr+t.I" [x] = It [x + 1, y] + 8t( -c[x ]VI[x 1 + c[x + I]VI[x + 1]) 

- (I, [x, y] + 8t( -c[x - I]VI[x -1] + c[x]VI[xJ) ) 

Vl r+t.'1/ [y] = I,LX,y + I] + 8t(-c[x]VI[x] + c[x]VI[x]) 

- (I I [x, y] + 8t( -c[x ]VI[x] + c[x ]VI[x l) ) 

Vlr+t.l" [x] = VI, [x] + 8t(C[X + I]VI[x + I] - 2c[x ]VI[x] + c[x - i]VI[x - 1]) 

V1atJJ)Y] = VI,[y] 

(A.39) 

(A.40) 

The gradient update expression for the vertical component of the diffusion sysLcm is 

derived by substituting CA.37) into (A.27) and (A.28) . The simplified expression 

becomes 

VI,+t.Jx] = I,+t.r [x + J,y]- I!+tJJ[x,y] 

VI 1+t.1 Ly] = Ir+tJJ [x, y + 1] - I at.! [x, y] 

VI r+t.r [x] = I !+tJJl/ [x + I, y] + 8t( -cry ]VI[y] + cry ]VI[y J) 

- (Ir+tJJl/ [x, y] + ~t(-c[y ]VI[y] + cry ]VI[ y J) ) 

VIr+t.r [y] = 11+t.r" [x, y + 1] + 8t( -cry ]VI[y]] + c[y + l]VI[y + 1]) 

- (Ir+tJJl/ [x,y] + 8t(-C[Y -l]VI[y -1] + c[y]VI[y])) 
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(A.42) 



VI,+At [x] = VI,+At H [x] 

VIl+ill [y] = VI,+u,)Y] + ~t(c[y + I]VI[y + 1] - 2c[y ]VI[y] + cry -I]VI[y - 1])· 
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APPENDIXB 

EDGE PRESERVATION IN MONOTONIC REGIONS 

Theorem 
If there exists a function ~(K DC' t) such that for any lal ~ N K DC' t), c( ex) == 0 .. then the 

discrete anisotropic diffusion equation will preserve all regions with gradient magnitude 
greater than ex, if the gradient exists within a monotonic region. 

Proof 
Given a locally monotonic sequence, S, and a diffusion coefficient c, where c{x} ~ 0 Vx , 

the diffusion update equation is expressed as 

V'S 61 [x] = V'S[x] + ilt( c(V'S[x - l])V'S[x - 1] - 2c(V'S[x ])VS[x] + c(V'S[x + l])V'S[x + 1]). 
where t1t ~ o. 

Now, let V'S[x] be a gradient of significant magnitude. :.IV'S[x]1 ~ P(KDC,t) and 

c(V'S(x J) == o. Incorporating this into the update equation produces a simplified form, 

expressed as V'S61 [x] = V'S[x] + M( c(V'S[x - IJ)V'S[x - 1] + c(V'S[x + 1])V'S[x + 11) . 

Since S is defined to be monotonic in a neighborhood around x , the sign of the gradients 
in the update equation do not change sign. Recall that the diffusion coeffici ent is defined 
to be positive, c(x) ~ 0 Vx, then the update will always have the same sign as V'S[x ] , 

and the gradient magnitude of V'S[x] will never diminish as 

1 V'S[x]I+IV'S[x-l]I+IV'S[x+l]I=1 V'S[x]+V'S[x-I]+VS[x+l] I· 

Thus, I VS[ x] + ilt( c(V'S[ x - 1 ])VS[ x - 1] + c(VS[ x + l})V'S[ x + I]) I ~ IVS[ x]l, which can be 

simplified. Substituting VS 6J x] for the left hand side of the inequality, the eq uation 

reduces to I V'S 6J [ x] 1 ~ I V'S[ x ] I· 

Therefore, if IVS[x]1 ~ N K DC' t) then IV'S 61 [x]1 ~ P( K DC,t), V M . 
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APPENDIX C 

ANISOTROPIC DIFFUSION PYRAMIDS: 

APPLICATION TO MULTI-SCALE TRACKING II 

Overview 

Locating an object using the anisotropic diffusion pyramid can provide significant 

improvement in system robustness and computation efficiency. Chapter 6 presented 

experimental results verifying this solution quality increase, and these results were 

generated by incorporating the anisotropic diffusion pyramid into a target tracking system 

and measuring the difference between locations identified as containing a target and 

ground truth. Showing the improved performance properties concluded development of 

the anisotropic diffusion pyramid and validated the original moti vations for its 

construction. 

Target tracking systems traditionally incorporate temporal models of the tracked 

object into their identification procedure, and this information provides further increases 

in computational efficiency and system robustness. Complete realization of a target 

tracking system utilizing and anisotropic diffusion pyramid requires the integration of 

predicti ve filters, and the purpose of this appendix is to discuss methods for incorporating 

diffusion pyramids into a target tracking system. The goal of this appendix is to introduce 
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three possible design strategies for the construction of a multi-scale target tracking system 

and to provide experimental results comparing these three methods on an actual tracking 

sequence. 

This appendix is organized as follows: The second section presents necessary 

background on the Kalman filter. This filter provides an optimal linear mean squared 

error prediction of the target's next location, based on previous object measurements. 

After developing the predictive filter, the third section discusses three methods of 

integrating the diffusion pyramid with the predictive filter. The appendix concludes by 

presenting results quantifying solution quality improvements attained by incorporating the 

anisotropic diffusion pyramid into a target tracking system. 

Background 

Kalman Filtering 

Taking advantage of the knowledge of an object's previous location, the Kalman 

filter can be utilized for target prediction [20]. This filter is a combination of filter and 

predictor, where the predictor estimates the location of the target at time t given l-I 

observations and the filter improves this estimate by accounting for measurement 

uncertainty and random drift. For an image tracking application, the Kalman filter is 

divided into two independent and identical systems which correspond to the horizontal 

and vertical directions of the current frame. Since these systems are identical, and 
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assumed independent, the following discussion will detail the implementation of the 

Kalman filter for the prediction of row location i. 

Given a sufficiently high acquisition rate, the constant velocity, or alpha-beta, 

model of the Kalman filter may be used and velocity changes accounted for as random 

drift. With this assumption, the prediction of the target's next position is given by 

~+III = ~II + 8T 0;+11, ec.l) 

where 1all, is the prediction for time t+ 1 at time t, i'l, is the filtered estimate of the 

observed location, 0;+111 is the predicted velocity, and 8J is the time difference between 

the two observations. The estimate i'll provides a filtered representation of the observed 

location, accounting for measurement uncertainty, and is given by 

(C.2) 

where i'lI-I is the predicted location at time t - 1, i,D is the actual observed location, and a, 

is the filter gain. This gain determines the balance between the previous track history and 

new observation. If a, is near one, then the observations are very reliable and the track 

history is ignored. In the case of strong measurement noise, a, is set near zero. 

The target velocity v: is modeled by 

i i ; 
V' +I = v, + u, , (C.3) 

where u; IS the velocity drift, or acceleration, and the prediction for the velocity 

component at time t is 

(C.4) 
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where f3, controls the effect of the new observation on the predicted velocity. If f3, IS 

near zero, the observations are deemed unreliable and the velocity thought constant. 

Computing the Kalman gains 

One of the properties of the constant velocity model is that, assuming stationarity, 

the gains may be computed before the tracker is implemented. Since these gains 

converge quickly to constants, only a few computations are necessary, and computational 

efficiency is further improved. In precomputing the gains of the predictive filter, both 

gains are dependent on the variances of the noise processes and the state vector error 

covariance matrix. 

Letting the state vector X, be defined as X, = [~:l containing the actual position 

and velocity of the target, the state vector of the predictor can be expressed as 

XrI,-J = [~:'-I], and the state vector for the filter X/ir constructed similarly. The error in 
V,Ir_1 

the predicted state vector is X, - X,Jr-J , and the error for the filter stale vector is X, - X/I' . 

Since these errors are stochastic vectors, they have covariance matrices, where the 

predicted state vector covariance matrix is 

(C.5) 

and the filtered state vector error covariance matrix is 

(C.6) 
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In order to provide the minimum mean squared error prediction, a , and f3t are chosen to 

minimize ~IJ' 

Assuming normality for both noise processes, measurement noise variance O'~ 

and velocity drift noise variance O'~ , the solution that minimizes ~I I is [18] 

pll 
a = 111-1 

r pll + 0'2 
111-1 n 

(C7) 

and 

n = ~~~Ior 
}J 1 II ? • 

~I/_I +0';' 
(C8) 

For the constant velocity alpha-beta model, P'I/-I in (C7) and (C8) can be computed 

recursi vely as follows: 

( II 12 )2 

P II _ pll 12 p22 ~II - I + ~I/-I 
1+11, - 11/-1 + 2P'11_1 + 11/-1 - II 2' 

P'II-J + (J" 

(C9) 

(
pll pl 2 J 12 _ 12 22 12 111-1 + ti l - I ' 

~+ 111 - P'lt-1 + ~Ii-I - ~It-I pi I 2' 
11/-1 +0'" 

(CIO) 

21 12 
~+III = ~+ I I I' (CII) 

and 

( 12 )' 
P22 _ 22 2 P'lt-l -

1+ 111 - P'lt-1 + au - II ? . 

~It-I + a~ 
(C12) 

Initializing the Kalman filter 

To realize the Kalman filter, the initial conditions for P'I/-I (= ~IO) are needed. 
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For a description of these conditions two additional parameters: a~ , the variance in the 

initial position and a:. ' the variance of the initial velocity are defined. Assuming that the 

initial position is a uniformly distributed random variable, the calculation of a; is 

straightforward. The computation of a~i can be derived using a priori knowledge of the 

target velocity range and distribution. 

The filtered state vector error covariance at time 0 is given by 

0] 2 • 
a l ,. 

(C.13) 

~IO can be computed using 

(C.14) 

where Ao is the state transition matrix, and 

(C. 15) 

(20 is the covariance of the system noise, and is gi ven by 

[a~ (20= 

° 
0] 2 • 

0'" 
(C. 16) 

A 

To initiate the tracker, io,o is set to the first acquired position. The first velocity estimate 

is indeterminate and can be set to any possible velocity. 

Integrating the pyramid and Kalman filter 

The Kalman filter is implemented using the following method. For initialization, 
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~IO is computed and used to precompute the gains, a, and fi" for each t. Next, the target 

position is acquired and the filtered position, i,I,' is computed. This filtered location is 

then used to obtain the predicted velocity, V:+ 1I/ , which allows the computation of the 

predicted position, ['+11/. Once the next target position is predicted, it can be used to 

restrain the object search within the next scene. 

The simplest view of a multi-resolution tracking system can be conceptualized as 

two independent systems, the image pyramid and tracking predictor. Within this context, 

the pyramid is generated with no knowledge of the predictive information from the 

tracker. The system is initialized by a multi-resolution search which locates the object of 

interest and passes its initial location to the tracker. Besides the initial acquisition of the 

target, the image pyramid is not constructed and the search performed on the highest 

resolution image. Given a reliable tracking prediction, this system would provide 

significant performance enhancement, since the cost of pyramid construction is restricted 

to the initial target search. Unfortunately, the robustness of the system is dependent 

solely on the accuracy of the tracking model and does not take advantage of the multi-

scale recognition techniques. Additional inefficiencies are realized in practical 

implementations as the original signal must be preprocessed to remove noise . Gi ven a 

filter which satisfies the prefiltering requirements of a decimation operation, the search 

becomes inefficient as redundant information is processed. 

If the two systems are allowed to interact then further gains are possible. Since 

the prediction mechanism has its own uncertainty attribute, the root level of the search 

should be redefined to account for the accuracy of the prediction. In the event that the 
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predictive uncertainty is low, the root level would be lowered and the search constrained 

to finer scene representations in the pyramid. Alternatively, if the prediction uncertainty 

is high, then the root level would be defined as it was originally. In this case, the initial 

search would begin at the original root level, but search only a small region. Both cases 

allow the multi-resolution search additional refinement, increasing computational 

efficiency and system robustness. 

Besides constraining the search, the predictive information could also constrain 

the pyramid and further increase computational efficiency. Given a prediction with 

known uncertainty, the image pyramid will only be searched within a region defined 

completely by the predicted position and the root level of the search. This does not 

require construction of a full image pyramid, but rather one centered at the predicted 

information and of size determined by the object size and root level. This optimization 

provides further computational efficiency, assuming the pyramid generating mechanism 

can be utilized for other purposes, without sacrificing solution quality. The actual 

performance of these different integration methods are presented in the next chapter. 

Results 

To provide a quantitative evaluation of system performance, the anisotropic 

diffusion pyramid was applied to a sequence of 25 infrared images of a jet airplane in 

flight. Here, results are presented which compare the multi-scale techniques to single 

resolution methods for both target recognition and tracking applications . 
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The pyramids used for this evaluation are constructed with a I of 2 uniform 

sampling scheme, a gradient threshold of 15. and a /).1 of 14. The original infrared images . 

and the base of the pyramid, have a resolution of 256x256 pixels with each pixel able to 

represent 256 intensity levels. Figure C. I shows the pyramid constructed for the first 

frame of the sequence. To implement a multi-resolution search , the root level of the 

object must be identified. In the entire 

sequence, the largest element of the aircraft 

is its fuselage, and using the method 

discussed in Chapter 6, the root level of the 

sequence is defined as the third resolution 

representation above the original image. 

Figure C.1 The first four levels of the 
anisotropic diffusion pyramid for frame #1 
of the original sequence. 

Applying multi-resolution techniques to the object recognition problem and using 

the third level of the pyramid as the root level. the object recognition tasks were 

performed using a binary edge based template matchin g routine . For a single resolution 

match, the algorithm required approximately 172 seconds per fram e on a Sun Ultra 1/170. 

The multi-resolution technique required approximately 8 seconds per frame. The results 

show a system performance improvement of 21 times tradition single-re solution methods. 

Besides providing computation efficiency, multi-resolution techniques a lso 

increase system robustness. Using the same binary template matching routine, pixel 

localization errors were computed for both single and multi-resolution trials. These 

results are summarized in T able C.1, presented at the end of this appendix. where the 

localization error is expressed as the Euclidean distance between the observed point and 
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ground truth. For the first 14 frames, the algorithms produce similar measurements. In 

the final 1) images, the multi-scale search is able to locate the target. while the single-

resolution method is not. 

To display robustness , the s imulations were performed on the same set of images. 

but corrupted by Gaussian distributed noise. Figure C.2 shows the pyramid constructed 

Figure C.2 The first four levels of the 
anisotropic diffusion pyramid for frame #1 
of the corrupted sequence. 

for the first frame of the noi sy sequence. Tht' 

mean-square signal to noise ratio of the lest 

images was approximately 15.7. As can be 

seen from Table C.l, the pixel localization 

error of the multi-scale technique increases . 

but the algorithm IS still capablc 01 

estimating the object location. The single resolution method is unable to locate the object 

during any frame of the sequence. The ability to find an object in high clutter allows the 

multi-scale object recognition system to provide a smaller pixe l localization CITOJ' With 

mean error of 3.69 pixels compared to 195.29 pixels of the single resolution system. 

After displaying the efficiency and robustness of the multi -scalc techniques to 

object recognition, results were then computed for a variety of tracking systcms. 

Previously, three techniques were suggested for integrating a multi-scale structure and a 

predictive tracking filter: a multi-scale search followed by single resolution inspections, a 

multi-scale search followed by multi-scale examinations, and a multi-scal e search 

followed by the inspection of a constrained pyramid . The results in Figure C3 compare 

the localization errors for the single resolution approach [0 the three mu lti-resolution 
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systems usmg both the original and conupted sequences. Figure C.4 compares the 

computational requirements of the single resolution and multi-resolution approaches. 

Pixels 
1 

I\'ean Error I\'ean Error 
(N:::Jisy Irrage<y) 

lSirge AesdUlon 

I Pyrarrid Q-ce 

o Pyranid lWiays 

OPyranid Crt:wed 

Figure C.3 Comparison of the multi-scale tracking 
methods. Object localization errors are the Euclidean 
distance between the observation and ground truth . 
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Figure C.4 Computational requirements of the multi-scale 
tracking methods. 

The results of the tracking simulations initially show the single resolution method 

as the most accurate solution to the tracking scenario. To achieve this performance, the 

algorithm was constrained to inspect only nine possible object locations within a frame. 

The prediction of these locations is the responsibility of the tracking filter. Since the 

original test data consists of well behaved constant velocity motion, these estimates are 
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accurate, and the system performs reliably and efficiently. Comparatively, the pyramidal 

algorithm is capable of searching 729 possible object locations while increasing the 

localization error by only 3%. Allowing the single resolution tracking system the same 

number of possible target locations results in the misidentification of the target within the 

first three images. 

Increasing the system robustness with the introduction of an image pyramid, also 

increases computational efficiency. Initial searches, for this data set, were computed 20 

times faster with a multi-scale structure. Subsequent inspections on equivalent search 

areas were performed over two times faster than single resolution techniques. This 

performance is further increased with the localization of pyramid construction to a 

smaller region. Results show that a constrained pyramid, simulating large uncertainty 

from the tracking filter, is capable of an additional perfonnance increase of two times 

over a system which completely constructs the multi-scale structure for each frame . 
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Localization Errors 

Frame Multi-Scale Single Resolution 
Number Original Noise Original Noise 

1 4.47 9.06 4.47 207 .76 
2 3.35 5 .22 3 .35 206 .71 
3 3 .16 2 .24 3 .16 219.59 
4 2.83 2 .24 2 .83 211.15 
5 1 .41 1 .00 1 .41 208.81 
6 1 .41 2 .24 1 .41 200.35 
7 1 .12 4 .72 1.12 199.20 
8 1.00 1.41 1 .00 209 .85 
9 0 .50 1.80 0 .50 208.63 

10 0 .50 1 .12 0 .50 206.59 
11 1 .12 3.50 1.12 194.16 
12 1.12 2.06 1.12 192.55 
13 1 .00 4.24 1.00 195 .73 
14 1 .12 3.04 1.12 192.49 
15 2 .06 2.69 159 .00 189.18 
16 1 .12 5.32 1 .12 194.31 
17 1 .12 4 .27 155 .98 186.60 
18 1.12 3.64 1.12 185 .50 
19 3.35 6 .73 162 .65 185.58 
20 2.50 4.61 175.02 184 .29 
21 1.12 5.41 159 .89 182 .77 
22 2 .50 5.32 166 .90 180 .13 
23 3.35 2.69 154 .84 180 .57 
24 3.61 1.41 149 .05 180 .23 
25 3.61 6.40 99.82 179 .61 

Mean 1.98 3.69 56.38 195.29 

Table C.l Pixel localization erro rs lor multi­
scale and single resolution object identification 
algorithms . Errors are expressed as the 
Euclidean distance between observed location 
and ground truth. 
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