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CHAPTER 1

INTRODUCTION

Pluripotent stem cells, derived from embryonic tissues, have the unique capacity 

to theoretically produce every cell type in the body.  By studying this cellular plasticity 

and elucidating the properties and mechanisms of pluripotency, an understanding of how 

to induce the pluripotent state in a variety of cell types may be developed.  This would be 

significant in that cells induced to become pluripotent in nature may be used in the 

treatment of diseases such the muscular dystrophies, leukemias, diabetes, Parkinson’s, 

and Alzheimer’s. An understanding of the properties of cellular pluripotency has the 

potential to enhance stem cell development and ultimately be used to take stem cell-based 

treatments into the clinic.  

A classical marker of embryonic stem (ES) cells (cultured cells derived from the 

pluripotent inner cell mass (ICM) cells of pre-implantation embryos) and in vivo

embryonic blastocyst cells is the transcription factor, Oct-4.   Oct-4, exclusively 

expressed by embryonic and germ cells, plays a critical role in the establishment and/or 

maintenance of pluripotency [1-3]; this transcription factor binds specifically to an 

octamer sequence of DNA, ATGCAAAT [4].  The structure of this DNA binding domain 

allows for such flexibility that it can profoundly influence the activity of transcriptional 

regulators.  Two fused heterodimers are brought together to form a single DNA-binding 
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unit.  The linker has little apparent structure and increases the versatility in its interaction 

with DNA [5].   The Oct-4 gene transcript is found in the totipotent and pluripotent stem 

cells of the early mouse embryo and is down regulated when the cells differentiate [4, 6].  

Oct-4 is active in the ICM cells and down regulated in the pre-trophectoderm cells, or 

cells of the outer layer of the blastocyst.  The ICM cells are pluripotent and give rise to 

cell types of the three embryonic germ layers, i.e., ectoderm, mesoderm, and endoderm 

[7].   The Oct-4 transcript levels are maintained in the epiblast, but expression soon 

becomes gradually restricted to cells of the germline as gastrulation proceeds [3, 8].  Oct-

4 is the first described protein which appears to be specific for the mammalian totipotent 

cycle [8, 9].  The Oct-4 protein can either repress or activate transcription in particular 

target genes during embryonic development.  These varied, initiating molecular events 

remain uncertain and complex, and deciphering these cell differentiation pathways is 

pivotal to the growth of stem cell technology [10].  

The Oct-4 gene has been found only in mammals, and the human sequence is 

87% identical to that of the mouse [10, 11].  The 5’ upstream regulatory region of the 

human, bovine and murine Oct-4 genes reveal four conserved regions of homology 

between these species, and the murine Oct-4 gene is highly conserved in humans and 

cows as evidenced by 87% and 81.7% overall protein sequence identity, chromosomal 

mapping to the major histocompatibility complex (MHC) and the genomic organization 

into five exons of the three species [2, 12].  The Oct-4 gene, also designated Oct-3 or 

POU5F1 [12] has a transcript encoded of about 1.5 Kb [13, 14].  Understanding the 

molecular basis of the pluripotent phenotype is critical to isolating and propagating 

human stem cells. Elucidation of the mechanisms that govern cell signaling will provide a 
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paradigm for understanding tissue differentiation and growth control in later stages of 

development [15].

Pluripotency reflects a cellular diversity which is driven by an adaptive response 

to a functional pressure [16].  With the expression of Oct-4, a connection has been 

investigated on fetal germ cells, between the retention of pluripotency, and the ability to 

transform into variable tumors [17].  A high abundance of Oct-4 in carcinoma in situ

(CIS) cells is consistent with pluripotent characteristics.  Gidekel and co-workers 

demonstrated that Oct-4 is a critical player in the genesis of testicular germ cell tumors 

[18].  Deregulation of homeobox genes is functionally relevant for carcinogenesis [18].  

Oct-4, which is essential for the development of pluripotent murine cells, is often used as 

a marker of pluripotency in primates, and ES cells provide a model to study human 

embryology and investigate novel growth factors and medicines [19].  The transcription 

factor, Oct-4 is regarded as a candidate master regulator for the initiation, maintenance, 

and differentiation of pluripotent cells [15, 20-22].  An understanding of this gene’s 

expression will provide experimental evidence for clarification of target genes controlled 

by Oct-4 [22].  Because the quantitative expression of Oct-4 defines differentiation and 

self-renewal of ES cells [20], the ability to regulate Oct-4 expression is a vehicle to 

understanding tumorigenesis, increasing pluripotency of somatic cells, and modeling of 

the multiple layers of transcription and growth factors involved in embryology.  

Protein transduction, the internalization of proteins into the cell from the external 

environment, is an emerging technology which relies on the property of some proteins to 

penetrate the cell membrane [23].  Although protein transduction is still in its infancy, it 

holds potential for the basis of an entirely new form of therapy.  Expressed and purified 
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fusion proteins permit the study of stem cells and their regulation.  Oligopeptides and 

oligonucleotides transduced with the Transcription-activating factor (TAT) vehicle could 

change transcription expression and provide an integration of the two broad fields of 

mammalian gene regulation and stem cell biology through protein fusion.  This 

interdisciplinary study could have vast implications for the development of therapeutic 

applications described above.

Proteins participate in signal transduction, gene transcription, intracellular 

movement and cell to cell communication [24].  New, non-invasive methods of delivery 

of functional peptides to cells have been developed.  These proteins translocate across the 

plasma membrane in an energy independent pathway [25].  A peptide derived from the 

homeodomain of the transcription factor encoded by the Antennapedia gene can 

translocate across the plasma membrane of living cells and permits the transport of 

conjugated oligopeptides and oligonucleotides [25].  A similarly functioning protein is 

the herpes simplex virus type 1 protein, VP22, which is secreted from, and then re-

internalized by live cells [25].  TAT, our protein of interest, is encoded by a portion of the 

Human Immunodeficiency Virus (HIV).  The TAT domain is 86-102 amino acids in 

length, depending on the viral strain of the HIV [25].  It is divided into three functional 

domains:  1) an acidic N-terminal region; 2) a cysteine-rich DNA binding region and 3) a 

basic region responsible for nuclear entry (amino acids 48-59 which include six arginine 

and two lysine amino acids).  TAT is also secreted and then re-internalized by the living 

cells that encode the TAT protein in a time- and concentration-dependent manner [25].  

The commonality between each protein transduction domain (PTD) is the presence of the 

basic amino acids (lysine and arginine), which might be important for penetration of the 
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membrane, or lipid interactions, or both [26, 27].  TAT is the region responsible for the 

protein’s ability to transduce membranes.  The TAT fusion protein has several 

advantages over the VP22 delivery system.  TAT fusion proteins are rapidly internalized 

so that timing can be controlled precisely; also, virtually all eukaryotic cell types tested to 

date are susceptible to transduction, excluding yeast [28, 29].  TAT fusion proteins have 

readily transduced into nucleated and enucleated whole blood cells, peripheral blood 

lymphocytes, diploid human fibroblasts, keratinocytes, bone marrow stem cells, 

osteoclasts, glioma cells, renal carcinoma and hepatocellular carcinoma cells [30].  

Internalization has been demonstrated with more than ten TAT-derived short peptides; 

this transduction occurs within minutes and is not altered by lowering the temperature to 

4°C [25].  PTD proteins have been introduced into mice and exhibit delivery of active 

enzymes across the blood-brain barrier [28].  PTDs have potential to deliver drug 

compounds and proteins to combat viral infections, kill cancer cells and regulate gene 

transcription [28].  Schwarze and co-workers introduced a 120 kDa enzyme that is 200 

times larger than compounds that are normally able to cross cell membranes into all cells 

of a mammal.  This was the first intraperitoneal delivery of TAT-fusion proteins in vivo

with TAT-β-galactosidase into mice [27, 29].  

Of prime importance is sifting through the milieu of environmental signals to 

determine which specific factors can selectively coax cells down a specific pathway.  

Elucidating the molecules that orchestrate specific developmental programs are important 

steps in determining the key components of stem cell regulation [31].  Currently, one of 

the best candidates for an embryonic regulatory factor is the transcription factor Oct-4 

[10].  Future experiments focusing on Oct-4 protein expression and repression are 
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necessary to establish the unique biological functions of Oct-4 in both murine and human 

cells [15, 32].  While the pharmacology of protein transduction is poorly understood, it 

requires extensive study to realize its therapeutic potential [23].  Melding the technology 

of protein transduction with the early embryonic pluripotency factor, Oct-4, implicated in 

patterning of the vertebrate embryo, will clarify pluripotent regulation in embryonic cells. 

Our first hypothesis is that porcine trophoblastic elongation and placental 

differentiation is associated with the Oct-4 gene expression.  Studying the gene 

expression of the porcine embryos exhibiting epithelialchorial placentation requires a 

collection and pooling of conceptuses for day 10, 12, 13, 15 and 17 of development.  We 

will perform quantitative real-time analysis on the conceptus mRNA using a one-step 

RT-PCR amplification.  

Our second hypothesis is that we’ll find a murine up-regulation of Oct-4 in the 4-

cell, 8-cell, and blastocyst whole embryos, and the individual pluripotent cells will show 

an increase in single cell gene expression.  Testing this hypothesis will involve mastering 

the techniques to perform whole murine embryo messenger ribonucleic acid (mRNA) 

extraction and quantification.  In order to elucidate the quantification of the Oct-4 

transcript present in our model murine organism, it is necessary to investigate the steps 

needed to collect whole embryos, extract and reverse transcribe the RNA in individual 

embryos and then perform Real Time PCR on the individual 4-cell, 8-cell and blastocyst 

embryos.  While Oct-4 transcripts have been studied in murine organisms through 

immunocytochemistry, whole embryo expression of the Oct-4 gene has not been 

quantified.  An analysis of the production of Oct-4 in these mammalian species (murine 

and porcine) will be the first reported documentation of the specific quantities of Oct-4 
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during various stages of development of the preimplantation embryos using Real Time 

polymerase chain reaction. 

Our goal in this study is to construct plasmids within a prokaryotic expression 

system capable of expressing our particular genes, GCNF, Bmp8b, and Oct-4, fused to 

the TAT transduction domain and test the recombinant proteins, with transduction trials, 

on somatic and pluripotent cells.  We hypothesize that through proper cloning with 5’ 

restriction site mutagenesis, cloning of the PCR products, and protein expression in 

bacteria and purification through FPLC, we can quantitate the protein, and prove protein 

acquisition through SDS-PAGE and Western Blotting.  We can also indicate transduction 

of the proteins through immunocytochemistry of Vero cells.  This study is a necessary 

step toward the transduction of the repressor and promoter of the distal enhancer for the 

Oct-4 gene in somatic cells and ES cells.  The purification of TAT fusion proteins will 

allow for the subsequent mimicry of various internal cellular environments with suitable 

regulation of pluripotent characteristics.   TAT fused to an Oct-4 enhancer, bone 

morphogenetic protein 8b (BMP8b) and an Oct-4 repressor, germ cell nuclear factor 

(GCNF) will allow for future data analysis of Oct-4 regulation and pluripotency.

This proposed research leads to our ultimate goal of investigating regulation of 

nuclear transfer (NT) derived preimplantation embryos.  This proposed research 

investigates the regulatory components of nuclear transcription in embryonic cells.  

Protein transduction is a biotechnology tool that can be used to improve our 

understanding of stem cell regulation.

If pluripotent stem cells derived from human embryos behave like their murine 

counterparts, they could be used to treat a wide variety of human diseases [1].  These 
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murine and porcine models will contribute to understanding our own species’ 

developmental biology [1].   Certainly, the homology seen between these models and the 

human will allow for the opportunity to study stem cell characteristics without human 

embryonic cells.

Human ES cell research is in its initial stages and to date, there is no universally 

accepted standard to determine what characteristics will predict the ability of such cells to 

be useful for the development of therapies.  Some scientists require evidence of the 

expression of certain genes such as Oct-4 before cell types will be used in ES cell studies 

[33].  While our hypotheses use animal models, it is understood that these results will 

differ specifically to human stem cells.  
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CHAPTER II

REVIEW OF LITERATURE

Introduction

A powerful approach for studying cellular function is found in the internalization 

of exogenous macromolecules by living cells.  New therapeutic approaches will be 

developed from the understanding of the mechanism of transfer from the extracellular 

milieu to the cytoplasm and nucleus [34].  All eukaryotic cell types (except yeast) appear 

transducible with proteins linked to PTDs.  Since Oct-4 is expressed almost exclusively 

in stem cells of the early embryo, both maternally and zygotically [14], an understanding 

of its effect on embryonic cells, and somatic cells coupled with protein transduction 

requires a review of Oct-4 expression, structure and regulation.  Protein transduction 

vehicles will be studied with specific attention to the HIV TAT protein history of 

development through studies conducted by Frankel, Green, and Fawell [35-37].  A 

review of recent work completed with TAT fusion proteins will reveal the specific 

capabilities of the technology.  Successful embryonic development requires specific gene 

expression for placental and embryonic differentiation; a study of the early embryonic 

murine and porcine environment is essential to understanding normal embryo 

development.  This review of Oct-4 and protein transduction domains is necessary 
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background to meld these topics into a complete biotechnology study in stem cell 

research.

Oct-4 Expression and Characteristics

Oct-4, an octamer binding protein stimulates transcription and is found in primary 

germ cells (PGCs), unfertilized oocytes and pluripotent ES cells; when the stem cells are 

induced to differentiate, the amount of the octamer binding factor decreases [13, 38].  It 

was suggested by Scholer and co-workers that the Oct-4 protein was not only present in 

oocytes but could be synthesized de novo by zygotic expression in the embryo [13].  Oct-

4 was shown to be the first transcription factor described for the early stages of mouse 

development and maps to murine chromosome 17 near the MHC [39].  

This mammalian transcription factor is exclusively expressed by embryonic and 

germ cells.  Transcription factors are DNA binding proteins that can control the rate of 

transcription of certain genes.  Understanding how transcription factors are expressed and 

function is a requirement for comprehending developmental processes.  Oct-4 plays an 

important role during the early stage of mouse embryogenesis and in the germline as an 

essential component of regulation for germline maintenance [11].  Developmental lineage 

begins at the end of the cleavage stage of an embryo with compaction and leads to the 

development of the blastocyst.  The trophectoderm, or outer layer of the blastocyst, 

generates the trophoblastic components of the placenta, while the ICM cells develop into 

the pluripotent progenitors of all of the fetal cell types, including the germ cells and the 

nontrophoblastic extraembryonic tissues [15].  Understanding the molecular basis of 

these pluripotent cells is critical to efforts to propagate stem cells.  The explanation of 
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molecular interaction that governs the trophoblast and ICM development will provide an 

outline of complex tissue interaction in further development [15].  Oct-4 can either 

repress or activate transcription in particular target genes and is one of the best candidates 

for an embryonic regulatory factor.  These varied, embryonic initiating molecular events 

remain uncertain and complex, while Oct-4 has emerged as a critical transcription factor 

that establishes pluripotency [10].  Deciphering the cell differentiation pathways is 

pivotal to growth of stem cell technology.

Murine Oct-4 Expression

Oct-4 expression is crucial to the success of murine preimplantation development

[38-42].  Maternal Oct-4 mRNA and protein are present in unfertilized murine oocytes 

[4] and in the nuclei of subsequent cleavage stages [4, 14, 43].  During the first two 

cleavage stages, the levels of Oct-4 mRNA decrease to background and then steadily 

increase thereafter.  After cavitation, in murine hatched blastocysts, Oct-4 mRNA is 

found in the ICM which differentiates into epiblast and hypoblast (second 

extraembryonic lineage) [2]; as the murine blastocyst forms, Oct-4 expression is 

downregulated, and with expansion, Oct-4 protein and mRNA are primarily found in the 

ICM [3, 4].    As the ICM differentiates into the epiblast (embryonic ectoderm) and the 

hypoblast (embryonic endoderm), and the hypoblast cells migrate along the inner surface 

of the trophectoderm, high levels of Oct-4 protein are found within these tissues [3, 39, 

43]. The Oct-4 gene transcript is found in totipotent and pluripotent stem cells of the 

early mouse embryos and is only down regulated when the cells begin to differentiate [4, 

6].  Palmieri and co-workers (1994) found Oct-4 at high levels in the hypoblast that 
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differentiate and migrate along the inner surface of the trophectoderm.  The Oct-4 protein 

levels increase in cells of the hypoblast, but decrease drastically as the hypoblast 

differentiates [4, 42].  Detection of the Oct-4 transcripts were identified in the 

postimplantation mouse embryonic ectoderm at day 7, but not in the endoderm, allantois 

or other extraembryonic tissues forming at day 7.5 [39].  Within the murine epiblast, Oct-

4 expression is high until the germ layers form.  Thereafter, expression is downregulated 

from anterior to posterior as the somatic lineages form and gastrulation proceeds.  As 

gastrulation ends, neurulation and somitogenesis progress and restrict the potency of 

ectodermal and mesodermal cells [2]. After 8.5 dpc, the expression of Oct-4 is restricted 

to PGCs, or primordial germ cells [2, 6, 11, 12, 44-46].  The pluripotent cells of the 

murine embryo and germ line, and ES cells in culture are characterized by expression of 

the homeobox gene, Oct-4 [47].

It also appears that expression of Oct-4 differs between species.  High levels of 

human Oct-4 were detected in the oocyte, not in the two-cell or four-cell embryos and 

then embryonic Oct-4 was detected in human blastocysts with a lower expression than 

found in the 10 week fetus [48].  Similar to murine embryos, human blastocyst mean Oct-

4 expression was 31 times higher in totipotent ICM cells than in differentiated 

trophectodermal (TE) cells [49].   Microarrays containing more than 16,000 

oligonucleotides examined the gene expression in six of the 11 available human ES cell 

lines.  A common subset of 92 genes was identified that included Oct-4 and then verified 

through a variety of techniques including comparison with databases, RT-PCR and 

immunocytochemistry.  The human ES cell lines appear similar to each other and express 

a unique molecular signature of 92 genes which includes Oct-4 [50].
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The three best characterized types of stem cells in vertebrates are embryonic 

(ESC), neural (NSC) and hematopoietic (HSC) stem cells.  Transcriptional profiles of 

these cell types were compared by Ramalho-Santos and co-workers [51] to define a 

genetic program unique to stem cells.  Using the stem cell samples and amplification 

probes hybridized to DNA microarrays, the scanned arrays were analyzed with software 

to identify transcripts specific to certain cell lines and those which intersected all three 

cell lines.  Stem cells were determined to be distinct and clearly identified by specific 

genes identified.  Interestingly, the human chromosome 17 contains 3.7 times the number 

of SC-enriched genes that would be present if the genes were randomly distributed, and 

Oct-4 was identified as a nucleic acid binding ES cell-enriched gene [51].

Using a gene construct of portions of the upstream region, five exons of the Oct-4 

gene, and enhanced green fluorescent protein (EGFP) as a reporter, expression of the 

gene was monitored in porcine, murine and bovine with in vitro and in vivo models.  

Different from the murine pattern of expression, the bovine and porcine expression of 

Oct-4 was detected in both the ICM and the TE [43].  The unique Oct-4 expression 

pattern found in murine embryos was extended to pluripotent cells of the rhesus monkey 

[52].  Embryonic genome activation in the monkey initiates at 4-8-cell stage and Oct-4 

gene expression was first obvious at the 16-cell stage.  At the hatched blastocyst stage of 

the rhesus monkey, only ICM cells were positive for Oct-4 protein, similar to the human 

expression [49, 52].
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POU Transcription Factor Characteristics

The Oct-4 POU (Pit-1, Oct-1, unc-86) domain (pronounced ‘pow’) was first 

reported by Herr and co-workers, in 1988, with a sequence homology seen between the 

pit-1, oct-1, oct-2 and unc-86 mammalian gene products.  [42, 48, 53-55].  The octamer 

motif ATGCAAAT is recognized by the Oct-4 family of transcription factors, while 

similar domains are present in the pituitary-specific transcription factor Pit-1 and the 

Caenohoabditis elegans unc-86 cell line product.  Within this shared POU domain lie two 

subdomains: a POU-related homeo box and a POU-specific box [53] .  The DNA-binding 

domain confers specificity of transcriptional activation and targets the trans-activator to 

the promoter carrying the corresponding octamer DNA-binding site.  Oct-4 was first 

found with gel-shift analysis in embryonal carcinoma (EC) cells and cDNA was cloned

independently as Oct-3 and Oct-4 [6, 41, 42, 45].  The earliest expressed gene known to 

encode the transcription factor is also referred to as Pou5f1 (murine) POU5f1 (human) 

and bPOU5F1 (bovine) [42].

Transcription factors are proteins that bind DNA and can modulate the rate of 

transcription of various genes.  The POU transcription factors have been isolated from a 

variety of different invertebrates and vertebrates and have been grouped into six or seven 

classes according to their amino acid sequence similarity [55, 56].  Conservation through 

functional constraints on the protein products is supported by the high degree of sequence 

conservation in proteins present in organisms as diverse as nematodes and humans [54].  

Either of the two structurally independent helix-turn-helix domains, specific or 

homeodomain, can bind alone to the DNA.  However, specificity and stability of binding 

are increased when the POU transcription factors bind simultaneously to opposite sides of 
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the DNA helix and cooperate functionally as a fused heterodimeric DNA-binding unit [5, 

55, 57].  The length of the linker region, which ranges in size from 15 to 56 amino acids 

within the POU family of proteins, probably plays an important role in enabling the 

POU-specific domain to assume various orientations relative to the homeodomain, thus 

enabling the recognition of various DNA elements [55].  POU domain proteins regulate 

key developmental processes and Class V POU domain proteins are expressed almost 

exclusively during the early stages of embryonic development.  The ability of the DNA 

octamer to allosterically modulate the specificity of the POU domain coactivator 

interaction coupled with the understanding that POU domain proteins utilize specific 

coactivators, provide the molecular foundation by which specific POU domain proteins 

can regulate transcription both temporally and spatially [55]. The embryonic Oct-4 has 

the following characteristics: a more conserved N-terminal domain of about 75 residues 

(POUS), a more divergent C-terminal homeodomain of approximately 60 amino acids 

(POUHD), and a linker to connect the two domains that is variable in sequence and length 

[5, 6, 11, 55, 58].  The fused heterodimer protein binds specifically to the octamer motif 

of ATGCAAAT, while the bipartite flexible structure of the two domains allows the 

protein to bind in different conformations.  The two domains bind to the major groove on 

opposite sides of the DNA molecule.  The POUS domain consists of four α-helices 

surrounding a hydrophobic core while the α3 helix makes specific contact to the first half 

of the octamer motif (ATGC).  The POUHD domain has three α-helices and the helix α3 

makes specific base contacts with the second half of the octamer motif (AAAT).  The 

second and third helices of the homeodomain form a helix-turn-helix motif [46].  The 



16

Oct-4 mRNA encodes a 352 amino acids long protein (with 324 amino acids in the open 

reading frame) [5, 6, 11, 46, 55, 59].  

Regulation of Oct-4 Expression

Promoters and Enhancers

Oct-4 is the earliest known gene of the mammalian embryo that is differentially 

regulated [60].  The 5’ upstream regulatory region of the human, bovine and murine Oct-

4 genes reveal four conserved regions of homology (CR 1 to 4) between these species 

with a 66-94% conservation [12].  The Oct-4 gene has five exons with a transcript 

encoded of about 1.5 Kb [14, 39].  The gene lacks a TATA box promoter, but contains a 

GC-box to which Sp1-family (specificity protein) members bind in vitro [58, 60].  

Members of the Sp family of transcription members bind with varying affinities to GC-

boxes, CACCC-boxes, and basic transcriptional elements.  Murine Oct-4 maps to 

chromosome 17 near the MHC while the human homologue of the Oct-4 gene is mapped

to chromosome 6 [11, 39]. 

Oct-4 gene expression is dependent on at least three regulatory cis-regions [10], 

the promoter region, the proximal enhancer and the distal enhancer.  The first of the 

three, is the promoter region, located within 250 bp of the transcriptional initiation site.  

The TATA-less promoter of Oct-4 contains a set of well-characterized sequences that are 

highly conserved in mice and humans [14, 61].  Within the basal promoter, a cluster of 

binding sites overlap.  A hormone response element (HRE), partially overlaps with the 

GC-box and is recognized by a number of steroid-thyroid hormone receptor family 
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members such as retinoic acid (RA) [11, 62].  The HRE of the mouse Oct-4 basal 

promoter has three repeats (R1, R2, R3) of an AGGTCA-like sequence which might 

interfere with specific members of the nuclear receptor family.  This HRE can function as 

a positive regulator of transcription or as a director of an adjacent binding factor such as 

Sp1.  The Sp1 transcription factor is thought to bind to the GC-box and as such regulates 

initiation of transcription from promoters that lack a TATA box.  A point mutation that 

abolishes Sp1 binding in band shift assays decreased Oct-4 gene activity more than 25-

fold in different ES and EC cells lines [63].  The HRE might also function as a repressor 

of Oct-4 production [11, 12].  This region resembles the RARE (retinoic acid response 

element), and is recognized by receptors including retinoic acid and retinoid X receptors 

(RAR, RXR, respectively) [10, 60].  Through upstream region deletion mutagenesis, the 

cis element (RAR1) was recognized as an enhancer, yet RA-repressible [61].  Recently, it 

has been determined that the direct repeats are bound by two factors; the initial repression 

of Oct-4 by RA coincides with the disappearance of one factor and then the appearance 

of a transiently induced factor as evidenced in electrophorectic mobility shift assays [44].  

Also, several members of the orphan nuclear hormone receptors superfamily 

preferentially bind to the direct repeat DR1 between R1 and R2 and are thought to be 

involved in Oct-4 down-regulation [44].  

Transgenic analysis revealed two upstream regulatory regions of the Oct-4 gene 

[8].  The proximal enhancer (PE) is located approximately 1.2 Kb upstream of the 

initiation site; this particular site is mediated by RA down-regulation of Oct-4 [61].  

Another regulatory region, the distal enhancer (DE) is about 2 Kb upstream, and its 
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activity is restricted to totipotent cell types [11].  The switch from DE to PE occurs 

around implantation [8, 10].

Expression patterns of the Oct-4 gene were studied through a lacZ gene inserted 

into an 18kb genomic fragment encompassing the Oct-4 gene with the endogenous 

embryonic expression pattern of Oct-4 in transgenic mice [8].  Similarly, transgenic mice 

expressing green fluorescent protein (GFP) in the germ cell line were generated using the 

same genomic fragments.  Expression patterns were analyzed in detail through all stages 

of germ cell development [9].  In each study, the transgene expression in pre-

implantation embryos and PGCs is driven by the DE, while the PE is necessary for the 

expression in the epiblast.  ES, EC, and embryonic germ (EG) cells respectively resemble 

cells found in the ICM of blastocysts, epiblast cells and PGCs [11].  A DE is active in 

ICM cells of the preimplantation embryo, ES and EG cell lines and PGCs, while a PE, is 

active in the epiblast and EC cells [8, 9, 59, 64].  

Additional Mechanisms of Down-Regulation

Complete physiological processes of down-regulation of Oct-4 in some 

blastomeres are still unknown, however location of cells within the embryo might be one 

mechanism [32]. Another possible mechanism of down-regulation involves cell to cell 

proximity with a signal cascade from E-cadherin to β-catenin to lymphoid enhancer 

factor; E-cadherin deficient mouse embryos fail to form TE [2, 3, 10]. 

Extinction of the Oct-4 gene expression is accompanied by a change in activity of 

trans-acting factors (either induction of repressors or loss of activators) acting on the 

upstream region of the gene.  Suppression of Oct-4 expression in EC fibroblast somatic 



19

cell hybrids and RA treated EC cells is achieved through changes in methylation, 

chromatin structure and trans-acting factors on the upstream regulatory region [58].  Oct-

4 is expressed in EC cells and is repressed in (RA)-differentiated EC cells.  The promoter 

for the gene has no RARE, however, it harbors a RARE motif, RAREoct, which acts as a 

binding site for positive regulators of transcription; in RA- differentiated EC cells, it acts 

as a binding site for negative regulators [62, 65].

While Oct-4 is expressed in EC cells and repressed in RA-differentiated EC cells, 

the complexity of modulation of gene expression is described in P19 and RA-treated P19 

cells.  Orphan receptors from the chicken ovalbumin upstream promoter transcription 

factors [60] ARP-1/COUP-TFII and EAR-3/COUP-TFI repress Oct-4 activity through 

the RAREoct site [62].  Three different RA receptor: retinoid X receptor (RAR:RXR) 

heterodimers activate Oct-4 transcription through the RAREoct site.  Oct-4 expression is 

modulated through the antagonism between the orphan receptors and the RAR:RXR 

heterodimers.  Transcription of the gene is controlled by a complex interaction of positive 

and negative regulatory elements.  ARP-1/COUP-TFII and EAR-3/COUP-TFI interfere 

with the binding and transactivation ability of the RAR:RXR heterodimers.  Thus, in RA-

treated EC cells, the kinetics of Oct-4 repression inversely correlates with the kinetics of 

the orphan receptor activation.  Inhibition of Oct-4 expression occurred through the 

binding of the orphan receptors to the RAREoct site [62, 65, 66].  RARs by themselves 

are inefficient DNA binders and require auxiliary nuclear proteins such as RXRs for 

effective responses [66].  The upstream regulatory region contains an RA-negative 

element in the enhancer and at least one in the promoter region.  Pikarsky and co-workers 

[66] suggested that these repressors are differentially used at specific stages of 
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development and since suppression of Oct-4 expression is crucial during embryogenesis, 

several RA-negative regulators may be employed for accurate development.

Regulation Through Oct-4 Expression

Specific Genes Regulated by Oct-4 

Oct-4 belongs to a group of octamer-binding proteins that bind by the POU 

domain to promoter and enhancer regions of various genes with octamer sites [32].  At 

this time, about nine genes have been found to contain Oct-4 binding sites; some of these 

sites are negatively and others positively regulated by the Oct-4 gene [10, 15]. The α and 

β subunits of human chorionic gonadotrophin (hCG) are repressed while the platelet-

derived growth factor (PDGF) α receptor is activated by Oct-4 [32].  The Oct-4 

repression of both human chorionic α and β (hCG α, β) shows that Oct-4 not only 

activates genes expressed in stem cells, but also prevents the expression of genes which 

are activated during differentiation pathways [67].  While the concensus view is that Oct-

4 prevents differentiation by maintaining the expression of key embryonic genes, Oct-4 

may also silence transcription of genes that are associated with differentiation into the TE 

[68].  Oct-4 appears to be a potent silencer of bovine IFN-τ promoters when the 

transactivator, Ets-2 is overexpressed.  Ezashi and co-workers [68] described the 

silencing as a quenching when the protein interferes with the ability of the DNA-bound 

transactivator to interact with the basic transcriptional machinery.  Fibroblast growth 

factor-4, Fgf4, and osteopontin, Opn were described as top candidates for genes that Oct-
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4 regulate [11]. Possibly, Oct-4 controls the expression of Opn [10, 52, 56, 69] and Esg-

1 [52].  

Through suppression-subtractive hybridization, identification of putative 

downstream genes were identified by Du and colleagues [67].  Oct-4, Rex-1, Sox-2, 

Creatine kinase B (a pivotal enzyme in cellular energy metabolism), Makorin 1, Importin 

β (a cytosolic receptor for nuclear transport), Histone H2A.Z, Ribosome protein S7 and 

four new genes were identified as putative downstream genes of the Oct-4 protein in ES 

cells [67].

Transcriptional Activation by Oct-4 Through Cooperation With Partners: E1A, 

Sox2, Rox-1 

Oct-4 action appears to go beyond a simple repression of trophoblastic lineage 

and activation of ES cells; it activates transcription of genes through cooperation of 

protein “partners.”   Thus, Oct-4 regulates expression of multiple genes via interactions 

with other transcription factors such as: Sry-related (Sex determining region on the Y) 

Sox-2 [15, 20, 67] , a stem-cell-restricted E1A-like protein [10, 15, 20, 67, 70], and the 

transcription factor Rox-1 [20]. 

Transactivation by Oct-4 is stimulated in the presence of E1A in differentiated 

cells.  The distance-independent transcriptional activation suggests that E1A functions as 

a bridging factor allowing the Oct-4 protein to interact with downstream enhancers.  It is 

suggested that an E1A-like factor recognizes through coactivation one surface of Oct-4 

and with another surface recognizes the basal initiation complex, thus activating 

transcription from a distance [70].  It has been suggested that the product of the 
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adenoviral gene, E1A, will synergize with Oct-4 and mimic stem cell-specific bridging 

factors.  Interaction of the Oct-4 POU domain with the E1A may induce conformational 

changes in the Oct-4 molecule which enables transactivation to occur [59]. Scholer led a 

research group at the European Molecular Biology Lab (EMBL) on gene expression 

during 1996 and proposed that not only E1A, but other viral oncoproteins of several 

tumor viruses share the ability to mimic embryonal E1A-like activity in order to convey a 

permissivity for proliferation that is typical of embryonic tissues [71]. It appears that 

transactivation of various genes is dependent on connecting a remotely bound Oct-4 

molecule with the transcription sites mediated by E1A, while binding of Oct-4 with Sox2, 

a cofactor, to adjacent sequences enables transactivation of Fgf4 and Utf1 genes [72].   

Sox-2 acts as a positive or negative regulator of Oct-4 activity.   The Fgf4 gene 

has an octamer-containing enhancer in its 3’ noncoding regions and responds to Oct-4 in 

a Sox2-dependent fashion [15, 59, 73].  Sox2 forms a ternary complex with the Oct-4 

protein on FGF-4 enhancer DNA sequences.  Yuan and co-workers (1995) identified 

FGF-4 as the first known embryonic target for Oct-4 or any of the Sox factors [73].

Fibroblastic growth factor 4 (FGF4) maintains normal trophoblast precursors and the 

Oct-4 directed secretion of FGF4 by the ICM and epiblast may sustain the diploid 

trophoblast [15].  The FGF-4 produced by undifferentiated ICM cells acts in the peri-

implantation period of embryogenesis to influence the endoderm cells derived from the 

ICM cells [74].  FGF-4 mRNA is found at all stages of preimplantation mouse embryos 

from 1-cell through blastocyst; the FGF-4 gene promoter contains a response element for 

the octamer binding factor.  In the preimplantation mouse, Oct-4 and FGF-4 have 

temporally and spatially overlapping expression patterns [74].   Oct-4/Sox2 
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heterocomplexes also activate transcription of Utf1 (undifferentiated embryonic cell 

transcription factor 1) whose protein displays further characteristics of transcriptional 

coactivator in early embryogenesis [75].  That the UTF1 gene is a target gene of Oct-4 

and also regulated by the synergistic action of Oct-4 and Sox-2, indicates the Oct-4/Sox2 

transcription requirement of FGF-4 enhancer is a general mechanism of activation of 

Oct-4 [76].

Oct-4 was also found by Ben-Shushan and co-workers to activate or repress the 

Rex-1 promoter depending on the cellular environment [65] .  The Rex-1 promoter 

contains an octamer motif that is a binding site for Oct-4; Rex-1 is a developmentally 

regulated zinc finger gene regulated in a dose dependent manner.  A novel regulatory 

element found within 11-bp of the Rex-1 sequence binds a protein, Rox-1 and plays a key 

role in expression of Rex-1 in stem cells [65].  Rex-1 repression was also enhanced by 

E1A.  Activation and repression of the Rex-1 gene by Oct-4 depends on cellular 

environment, amount of Oct-4 protein present and the Rox-1 binding site; these factors 

provide the specificity of the expression of the Rex-1 gene in early embryogenesis [65].  

Transcriptional Control Through Conditional Expression

Niwa and co-workers used conditional expression and repression in ES cells to 

deliver a precise level of Oct-4 [20].  Three distinct fates were found in the ES cells.  A 

less than twofold increase in expression caused differentiation into hypoblast and 

mesoderm.  To maintain the undifferentiated stem cell, the expression had to remain 

within 50% plus or minus of normal diploid expression, and when the Oct-4 expression is 

decreased, stem cells are directed into the TE lineage [20].  Also, the transcriptional 



24

responses of five target genes to changed Oct-4 level were studied. Otx1 and Ebaf were 

upregulated on induction of the Oct-4 transgene, while Upp and Zfp42 were 

downregulated and Fgf4 expression wasn’t appreciably changed [20].  Thus, increased 

expression of Oct-4 had divergent effects on different target genes.  The expression, or 

quantity of mRNA of various marker genes was also examined.  Gata4 mRNA found in 

the endoderm of embryos and the mesodermal marker, brachyury T were activated during 

elevation of Oct-4 expression.  Two transcription factors implicated in trophoblast 

differentiation, Hand1 and Cdx2 were induced upon suppression of Oct-4 [20].    Thus, 

up-regulation of Oct-4 caused commitment to extraembryonic lineages, and down 

regulation enhanced trophoblastic development.  Niwa and co-workers, show that 

maintaining Oct-4 expression within a certain range appears to be crucial for stem-cell 

renewal, while any increase or decrease triggers differentiation to endoderm/mesoderm or 

TE, respectively [20].  Oct-4 is a master regulator of pluripotency that determines lineage 

commitment and illustrates the complexity of critical transcriptional regulators with the 

need for quantitative analyses [20, 56].  

In mouse ES cells, down-regulation of Oct-4 through transfection of Oct-4 

specific short interfering RNA was accompanied by an increased expression of the 

endoderm-associated gene Gata6.  The human Oct-4 knockdown induced the overtly 

differentiated cells coincident with up-regulation of Gata6 [77]. 

Oct-4 and Osteopontin

Oct-4 and Opn are coexpressed in murine premigratory endodermal cells; this is 

consistent with the proposal that Oct-4 is involved in the regulation of the Opn gene, and 
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that osteopontin is involved in cell migration [10]. Homodimer formation with elevated 

Oct-4 may enhance expression of the target osteopontin gene [20, 69].  The osteopontin 

(OPN) protein, secreted by cells of the preimplantation embryo binds to specific integrin 

subtypes and can modulate cell adhesion and migration.  Immunoprecipitation studies of 

the first intron of osteopontin (i-opn) in the murine preimplantation embryo show that 

Oct-4 and OPN are coexpressed and that Oct-4 binds to this fragment in vivo .  POU 

proteins can homo- or heterodimerize on a novel palindromic Oct factor recognition 

element (PORE) found on the osteopontin fragment.  The dimerization of Oct-4 depends 

on the palindromic motif ATTTG-CAAAT, which has to be spaced by more than five 

nucleotides [69].  Botquin and co-workers isolated an Oct-4 recognition sequence within 

the osteopontin gene [69].  Sox-2, a transcriptional factor, also coexpressed with Oct-4, 

represses Oct-4 mediated activation of i-opn by way of a Sox element that is located 

close to the PORE found on osteopontin. Sox-2 belongs to the Sox (Sry-related High 

Mobility Group (HMG) box-containing) gene family.  The HMG box of Sry is DNA-

binding and induces a strong architectural bend on binding to the DNA [69].  Botquin and 

colleagues (1998) suggested that the Opn gene is tightly regulated by Oct-4 and Sox-2 in 

ICM and also in hypoblast cells, which will migrate along the TE and become parietal 

endoderm[69].  OPN is an extracellular protein that mediates adhesion to and migration 

along the surface of cell types. A GenBank-EMBL sequence database search of the Sox 

element within 40 bp of the octamer motif identified 17 sequences and OPN was the only 

candidate with respect to adhesion and migration [69].  Through in situ hybridization 

experiments, OPN was expressed selectively in the ICM of early murine blastocysts (3.5 

dpc) and in cells destined to form the hypoblast (4.0 dpc).  OPN becomes undetectable in 
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the embryo by 5.5 dpc.  The coexpression of Oct-4 and OPN with overlapping expression 

domains found in the preimplantation embryos along with the previously mentioned 

immunoprecipitation of the two expressed proteins clearly suggest a physiological link 

between the cell adhesion molecule OPN and the transcription factor, Oct-4 [10, 59, 69].  

Sox-2, expressed in EC and undifferentiated cells of the early embryo [11], is a candidate 

for modulator of Oct-4 transcription; Sox-2 Oct-4 mediated repression of the osteopontin 

enhancer is directly opposed to the Sox-2 Oct-4 mediated activation of the fgf–4 gene 

enhancer [69].

Opn expresses mRNA at the morula stage and is involved in cell migration [10].  

OPN binds to cells displaying particular integrins on their surface; the murine Opn gene 

encodes a secreted phosphoprotein which binds through integrins to cells as well as to 

components of the extracellular matrix [69].  The particular murine integrins include: 

αvβ1, αvβ3, αvβ5.  The formation of the hypoblast derivities, parietal and visceral 

endoderm, depend on the proper interaction between the ICM and integrins [69].  Murine 

Oct-4 expression precedes the onset of OPN expression in preimplantation mouse 

embryos and Opn is likely a direct target gene of Oct-4 in murine preimplantation 

embryos [69].  Of interest is the observation that Palmieri and colleagues concluded that 

Oct-4 protein expression in the early endodermal migrating cells is higher than in the 

ICM [4].  

Implications of Abnormal Oct-4 Expression

Less than half of all somatic cell clones develop to the blastocyst stage, and of 

those, less than one-third develop beyond implantation.  A favored hypothesis for the 
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developmental incompetence of clones is inadequate reprogramming of the transplanted 

nucleus.  Abnormal Oct-4 expression in clones alone account for the majority of failures 

currently observed for somatic cell cloning [21].  While the blastocyst is the most 

meaningful preimplantation stage at which to analyze participation of the transplanted 

nucleus in development, the improper spatial Oct-4 distribution or observed lack of

expression in cloned blastocysts may be caused by failure of onset of gene expression or 

down-regulation in development [21].

Pluripotent cells can be isolated from pre-implantation mouse embryos as ES cells 

and maintained indefinitely as a pluripotent population in vitro in the presence of 

cytokines of the IL-6 family [47].  The cells can be reintroduced into a host blastocyst 

and contribute to all adult tissues of the mouse including germ cells [47].  Nichols and 

colleagues [15] studied mouse embryos with a homozygous deletion for the Oct-4 gene;  

the mice produced structures that resembled blastocysts but they did not form a 

pluripotent ICM.  They died shortly after implantation with an inability to form 

embryonic tissues.  An absence of Oct-4 results in peri-implantation lethality before the 

murine egg cylinder forms [15].  Inactivation of the endogenous Oct-4 gene through short 

interfering RNAs and knock-out technology has defined the role of Oct-4 during 

embryogenesis [15, 52, 78]  The mouse embryos deficient in Oct-4 developed to 

blastocysts that lacked an ICM.  

Oct-4 and Oct-4 GFP transgene were used as markers for gene reprogramming 

and were directly related to developmental potential of somatic cell clones [21].  While 

the Oct-4 temporal activation in somatic cell clones appeared to be normal, the 

maintenance of expression and cell type-specific Oct-4 regulation in the TE and ICM 
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were not.  The abnormalities of Oct-4 expression in clones suggested that pluripotency 

was compromised.  Activation of Oct-4 is not due to a general opening of chromatin after 

NT.  Thus, gene regulation in later stage clones may involve transcription factors 

available in the oocyte cytoplasm or the chromatin remodeling might become 

dysfunctional [21].

Theoretically, totipotency can be restored to the nuclei of somatic cells by 

reprogramming the nucleus with the technique of NT.  A change in gene expression of 

the somatic cells must accompany this nuclear reprogramming.  The expression of the 

regulatory control gene, Oct-4, was chosen as an ideal marker to check for proper gene 

re-activation following NT since Oct-4 expression is specifically expressed in mouse 

oocytes, preimplantation embryos and becomes restricted to the epiblast at murine 

implantation [79].

Experiments using systems to up- and downregulate Oct-4 protein in vivo are 

necessary to determine whether modifications of its level determine a “reprogramming” 

of cell fate during murine development.  A perturbation of the Oct-4 equilibrium through 

artificial modification of Oct-4 expression levels might result in specific phenotypic 

changes of stem cells [72].  

Complementation of non-cell-autonomous defects of genetically identical, but 

epigenetically different embryos result in improved expression of Oct-4 [80].  Boiani and 

co-workers [80] observed that in somatic mouse cell clone blastocysts, a higher number 

of cells correlated with the correct expression of Oct-4.  When somatic cell clones at the 

4-cell stage were combined with each other to generate aggregate blastocysts, Oct-4 

expression was normal in most embryos and rates of post-implantation and full-term 
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development increased.  Aggregation of the cells at the 4-cell stage would precede onset 

of Oct-4 expression and blastomere polarization at the morula stage; gap junctional 

intercellular communication at the 4-cell stage and subsequent development could 

compensate for defects.  Perhaps more developmental potential with complementation 

via intercellular signaling between clone components can occur subsequent to 

aggregation [80].

Abnormal expression of members of different families of homeobox genes is 

attributed to the development of leukemias, lymphomas and solid tumors.  Jin and co-

workers [81] found that the expression of the embryonic transcription factor, Oct-4 was 

only detected in breast cancerous cells as compared to normal human breast tissue 

samples.  Homeobox genes exert their functions mainly by programmatically controlling 

the expression of downstream target genes involved in morphogenesis, cell growth and/or 

cell cycle.  The studies by Jin and colleagues indicate that breast cancer cells re-gain their 

ability to express Oct-4 [81]. This expression implies that cancer cells may regain their 

ability to express this gene that is normally only active in germ and embryonic cells.  In 

an effort to find a possible cancer antigen associated with the initiation of 

deprogramming (demethylation) and a return to the proliferative stem cell state 

associated with the immortality and/or invasiveness of cancer cells, candidates to target 

in cancer treatment or development of a cancer vaccine, human embryo-specific 

expressed genes were tested for their expression in a panel of human cancers [82].  The

Oct-4 gene was expressed in blastocysts and various cancer cell line cDNA’s, but not 

expressed in fibroblasts.  Processes occurring during tumorigenesis may be similar to 
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early developmental processes; both processes exhibit genome-wide demethylation, 

promoter hypermethylation and silencing of other genes [82].   

The transcription factor, Oct-4 occupies a preeminent position of transcriptional 

regulator of stem cell fate.  Understanding the molecular basis of the pluripotent 

phenotype is critical to studies to isolate and propagate stem cells from humans [15].  

Elucidation of the mechanisms that govern the cellular signaling will provide a paradigm 

for understanding tissue differentiation and growth control in later stages of development 

[15].   Maintaining Oct-4 expression within a certain level appears to be critical for stem-

cell renewal.  Future experiments focusing on the Oct-4 protein expression and repression 

are necessary to establish the biological functions of the gene in mammalian embryos.  

Protein Transduction

Cells are designed to exclude invaders, while the AIDS virus HIV transactivating 

factor of transcription (TAT) protein passes through the cellular membrane and has 

recently been synthetically mimicked in the laboratory for drug delivery.  Just one part of 

the HIV molecule is responsible for the ability to cross the membrane. Paul Wender of 

Stanford University, California has studied these cell-smuggling feats and has 

synthesized ‘peptoid’ molecules that mimic this portion of the TAT molecule [83].  The 

basic domain TAT49—57  (RKKRRQRRR) was the template for a series of analogues.  The 

cellular uptake of the fusion protein into Jurkat cells was determined by flow cytometry.  

Work on protease resistent transporters are being studied for drug delivery, while at 
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present, a nona-peptide of high arginine content is primarily responsible for the cellular 

uptake of TAT49—57 [83, 84].  

The ability to introduce full-length proteins in a concentration-dependent fashion 

would alleviate the technological problems found in transfection or viral introduction of 

cDNA expression vectors (overexpression, broad intracellular concentration ranges, low 

percentage of cells targeted) [29, 30].  Antisense approaches also have both specific gene 

and cell-type restrictions.  Protein transduction is a highly efficient method of infusing 

proteins into cells.  Often called protein therapy, it is an alternative to gene therapy.  

Rather than giving deficient cells the gene to make a missing protein, protein transduction 

is the science of the delivery of the protein directly into the cell. 

Three Common Transduction Vehicles Described

Protein transduction efficiency rests on the identification of domains in the 

protein that confer the ability to enter the cell and even the nucleus.  The three most 

studied domains include the Drosophila antennapedia peptide, the herpes simplex virus 

VP22 protein and the HIV TAT protein [23, 27, 30, 85].  The antennapedia family of

proteins recognize and bind DNA through a sixty amino acid region arranged in three α-

helical sequences, called the homeodomain, AntpHD [23, 85].  Of interest is the third 

helix of the homeodomain, with sixteen amino acids, which can also move small 

molecules into living cells, the AntpHD peptide. The herpes simplex virus type 1 (HSV-

1) VP22 protein forms a portion of the viral tegument between the envelope and capsid 

regions of the virion [23].  VP22 has been shown to introduce large proteins into various 

cells, and direct cellular uptake of the protein has been shown.  The TAT protein, 
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encoded by the HIV, is a regulatory protein which trans-activates genes that are 

expressed from the HIV long terminal repeat (LTR) [36].  Currently, the most efficient 

PTDs at transduction include residues 47-57 of TAT, the third alpha helix (residues 43-

58) of ANTP and 267-300 residues of VP22 [26].  Each PTD section listed has a great 

percentage of basic amino acids (arginine and lysine). Similar to the HIV TAT protein, 

the high arginine and lysine content of the AntpHD peptide supports the “inverted 

micelle” hypothesis of movement across the plasma membrane.  While the mechanism of 

transduction across a lipid bilayer is unknown, it is clear that transduction doesn’t occur 

with the classical receptor-, transporter- or classical endosome-mediated fashion [23, 30, 

86].  Transduction into cells is a rapid, concentration-dependent process that targets the 

cells in a receptor independent fashion [29, 30, 87-89].  

The TAT Protein History

The TAT protein is a promising vehicle to move proteins into cells.  A product of 

the HIV regulatory gene, the TAT protein is 86 amino acids long.  Made by transcription 

of the viral genome after it has been integrated into the host cell chromosomes, it 

normally attaches to the LTR region of the viral genome inside the nucleus and increases 

the transcription of the HIV genes.  Green and Frankel, in 1988, independently 

discovered the HIV TAT protein’s ability to cross cell membranes and trans-activate the 

HIV promoter [35, 36].  Alan Frankel and Carl Pabo discovered that the HIV-1 purified 

protein could be taken up by cells in culture and could trans-activate the viral promoter 

[35].  The TAT protein found in HIV, is a regulatory protein not found in other 

retroviruses.  TAT trans-activates the HIV LTR and is essential for the viral replication in 
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vitro [35].   Frankel found that as little as 100 ng of the protein could cause trans-

activation and the dose response was linear [35].  TAT protein produced in bacteria is 

active when introduced into mammalian cells [35, 86].  The TAT-responsive element 

(TAR) is a 60-80 nucleotide sequence at the 5’ end of the viral RNA [36].  Green and 

Loewenstein, in 1988, synthesized amino acid mutant TAT peptides to establish the 

essentiality of functional domains of the protein on TAR [36].  Transactivation was 

specific to the TAT peptide [36].  Green suggested four regions, small domains, of the 

TAT protein affect LTR trans-activation autonomously.  The 86 amino acid HIV-TAT 

protein contained a putative 11 amino-acid (residues 38-48) that was identified as the 

TAT activation domain [36].  HeLa cells were transfected with plasmids with various 

constructs to compare the control, TAT-only plasmid with various deletion plasmids and 

complete plasmids [36].  Mutant peptides of simply 21 to 41 amino acids of the protein 

exhibited significant activity.  Green and Loewenstein found that only two regions were 

necessary for transactivation; these regions were described as an activation domain and a 

nucleic acid binding domain [36].  Data suggested that the basic amino acid region was 

essential for transactivation; substituting three of the basic amino acids with alanine 

eliminated most activity.  The candidate nucleic acid binding domain and the TAT 

activation domain were named by Green and Loewenstein in 1988 [36]. 

  Fawell, in 1994 showed that chemically cross-linking a 36-amino acid domain of 

TAT (residues 37-72) to four diverse heterologous proteins conferred the ability to 

transduce the proteins into cells [30, 35-37, 86].  It was reported that exogenously added 

TAT protein could be chemically cross-linked to peptides and delivered into cells in 

culture and in vivo tissues in mice.  The possibility of TAT-mediated uptake for 



34

therapeutic delivery of macromolecules was evident [37].  TAT peptides conjugated to 

the proteins were delivery independent of cell types [29, 37].  Using a chimeric protein 

with β-galactosidase-TAT, chemically crosslinked conjugates of the enzyme with either 

TAT-(1-72) or TAT-(37-72) were compared.  TAT-(37-72) was consistently the most 

successful to retain essential full enzymatic activity, in vitro [37].  Mice injected 

intravenously with the 36-amino acid domain of TAT to heterologous proteins via the tail 

vein and subsequent histological staining showed high tissue-associated activity in the 

liver, spleen and heart [37]. 

Specific TAT Details

The HIV TAT is an 86 amino acid protein made from exons of 72 and 14 amino 

acids [23].  In infected cells, the TAT protein is one of the first viral products to be 

produced after the viral genome has been transcribed into DNA and integrated into the 

cell chromosomes.  The TAT protein then passes back from the cytoplasm into the 

nucleus and attaches to the LTR region of the viral genome.  This binding causes a 

marked increase in the rate of transcription of the HIV gene.  This region of TAT that 

binds to the LTR is the same region responsible for the ability of the protein to transduce 

membranes [90].  Only eleven amino acids long, this region of the protein carries five 

arginines and three lysines, thus an exceptionally high positive charge in this basic region 

[90].  The most active region corresponds to aa 47-57 of TAT (YGRKKRRQRRR) and 

has a high net positive charge at physiological pH [23, 29].  A model of internalization is 

based on the formation of an inverted micelle; the positively charged peptide recruits 

membrane phospholipids which form a hydrophilic cavity and carries the protein to the 
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cytoplasm [23, 34].  The biological tool of TAT-fusion transduction presents the 

opportunity to treat intact living cells and gain access to the intracellular environment.  

Specific pTAT-HA Details

A traditional full-length TAT fusion protein transduction method utilizes urea-

denatured, shock-misfolded, genetic in-frame protein purification.  Dr. Steven Dowdy of 

Washington University and Howard Hughes Medical Institute gave our lab the pTAT-HA 

bacterial expression vector. TAT-fusion proteins are constructed in an expression vector, 

pTAT/pTAT-HA.  This vector contains an amino-terminal, in-frame 11 amino-acid, 

minimal transduction TAT domain.   This vector also contains an ampicillin resistance 

marker, a T7 polymerase promoter, 6-histidine leader, glycine residues for free bond 

rotation, a hemagglutinin (HA) tag, and a polylinker or multiple cloning site [91-93].  

Protein Transduction Domains as Biological Tools

Transduction is rapidly developing as a biological tool since Fawell demonstrated 

in 1994 that enzymes crosslinked to the PTD could transduce into cells [37].  The 

Antennapedia transduction molecules have been used to transduce antisense DNA [85].  

The amyloid precursor protein (APP) is a transmembrane protein that is expressed by 

glial and neuronal cells and appears to have both a normal and pathological function.  

Amyloid βA4 peptide-containing deposits are found in Alzheimer’s patients; while in 

normal tissue, the APP protein promotes neurite outgrowth and cell adhesion to substrate.  

Studies to determine the function of the APP molecule and aimed at blocking APP 

expression used a vector peptide to move APP antisense oligonucleotides inside the cell.  
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The AntpHD, the homeodomain of Antennapedia, linked to an APP antisense DNA could 

affect neurite outgrowth and decrease APP protein levels [85].  The decrease in APP 

neosynthesis provoked a distinct decrease in axon and dendrite outgrowth by embryonic 

cortical neurons developing in vitro [85].  DNA delivery by protein transduction 

regulated the cell transcription levels.

Steven Dowdy has shown that large proteins can be transduced into cells by 

attaching them to transcription factors [94].  Dowdy has developed the ability to 

transduce intermediate and large protein molecules (>5000 d) into cells by coupling them 

to the eleven residue PTD [94] .   Dowdy is particularly interested in tumor-suppressor 

proteins, p16 and RB; the genetic pathway of these proteins is mutated in almost ninety 

percent of cancers [95].  Dowdy organized a team of investigators in a TAT study to 

include cancer research, the blood brain barrier and anti-HIV protein therapy.  The 

following review of studies which include Lissy, Schwarze,Vocero-Akbani, Gius, 

Ezhevsky and Nagahara have all collaborated with Dr. Dowdy.

Nagahara and co-workers described a bacterial expression vector, pTAT-HA to 

produce genetic in-frame TAT full length fusion proteins [30].  Nagahara introduced the 

p27, a multifunctional, cyclin-dependent kinase inhibitor into Jurkat cells.  The wild type 

transduction of the protein showed loss of Cdk2 kinase activity compared to the controls 

and arrested cells in the G1 phase of the cell cycle in a dose-dependent trial. 

Transduction of this protein into human hepatocellular carcinoma cells induced cell 

scattering also. The production of energetically unstable, urea-denatured fusion proteins 

often found in bacterial inclusion bodies transduced inside 100% of the cells in a rapid 

concentration-dependent manner.  The proteins refolded in vivo and retained known 
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biological activity [30].  Denatured proteins may transduce more efficiently into cells 

than low energetic, correctly folded proteins [30].  Once inside the cells, the protein may 

be correctly refolded by chaperones.  Florescein FITC conjugated protein was added to 

the cell culture and then analyzed by fluorescence activated cell sorting (FACS) [30].  

The TAT-p27-FITC protein transduced into ~100% of the cells, and achieved maximum 

intracellular concentration in less than ten minutes in a variety of cell types.  The 

misfolded TAT-p27 protein resulted in a substantial G1-phase cell-cycle arrest [30].    

Another complex biological question was studied using the transduction of a full-

length protein directly into cells by Ezhevsky and colleagues [87].  The cyclin-dependent 

kinase inhibitor, p16INK4a tumor suppressor gene negatively regulates cyclin complexes 

that phosphorylate the retinoblastoma tumor suppressor gene product (pRb).  Inactivation 

of kinase inhibitors or pRb, and/or amplification of the cyclin complexes is found in 

many human malignancies; loss of negative regulation of G1 phase cell cycling 

progression causes uncontrolled proliferation.  Ezhevsky and co-workers transduced full 

length p16 kinase inhibitor proteins directly into cells to determine the cyclin complexes 

responsible for the pRB phosphorylation status with the transcription factors necessary 

for cell cycling [87]. When a TAT-p16 fusion protein was allowed to enter several cell 

types, it specifically bound to certain cyclin-dependent kinase complexes, prevented the 

pRb hypophosphorylation, and caused a G1 specific cell-cycle arrest through 

hyperphosphorylation by activated cyclin E complexes [86, 87].  Bacterially produced 

wild-type TAT-p16 proteins of ~ 20 kDA efficiently transduced into 99% of cells and 

was able to bind to its cognate intracellular target [87].  Obviously, studies to restore 
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tumor suppressor function or to interfere with oncogenic pathways are an exciting aspect 

of this technology.

Yu and colleagues studied the roles of pRB and cyclin D kinases in melanocytes 

using a transducible TAT-p16INK4a protein [96].  The major target of cyclin D:cdk4/6 

kinase activity is believed to be the retinoblastoma tumor suppressor protein, and the 

current dogma of G1 phase cell cycle regulation is alteration of the kinase activity in 

cancer that leads to the deregulated proliferation by the inactivated pRB.  Injection of 

TAT-p16 was sufficient to block regeneration of the hair growth cycle in an in vivo hair 

follicle cycling mouse model [96]. 

Cell cycle regulatory mechanisms involved in receptor-mediated apoptosis has 

been studied by Lissy and co-workers [88].  These pathways may be involved in 

autoimmunity and malignancy.  The results suggest that cell cycle regulation is integral in 

deciding cell fates in response to stimuli of peripheral negative selection and 

reestablishment of the immune context after an immune response [88].  Peripheral T cells 

must be able to activate their proteolytic caspases and DNA fragmentation after an 

immune response so that the patient doesn’t suffer from an autoimmune-like syndrome.  

T cell receptor antigen induced death (AID) and the involvement of the cell cycle were 

studied.  Since pRb is a negative regulator of the late G1 restriction point, Lissy et al.

rescued the cells from AID by inactivating pRb through a TAT fusion protein that binds 

pRb [88].

Schwarz and colleagues and his associates fused a 120-kilodalton β-galactosidase 

protein to the TAT protein and determined the intraperitoneal delivery of the fusion 

protein to tissues in a mouse, including the brain.  A 15-oligomer peptide was synthesized 
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containing the 11-amino acid TAT PTD, proceeded by an NH 2-terminal fluorescein 

isothiocyanate (FITC)-Gly-Gly-Gly- Gly motif that transduced into cells in culture and in 

vivo [97].  Murine blood, liver, kidney, heart and splenic cells showed an intracellular 

concentration of the transduced protein.  The tissue samples were assayed by X-Gal 

staining and FACS transduction analysis [27].  Of particular interest is that all brain 

sections from the mice after ip injections of TAT-β-Gal showed strong activity, while the 

blood-brain barrier remained intact using the Evan’s blue albumin test. [97].  

An experimental anti-HIV protein therapy based on a transducible HIV protease-

activated caspase-3 that causes apoptosis in HIV-infected cells, selectively was 

introduced by Vocero-Akbani [89].  Production of infectious viruses from HIV-infected 

cells, depends on an HIV protease for cleavage and maturation of viral structural 

proteins.  Vocero-Akbani and co-workers engineered a modified caspase 3 protein, TAT-

Casp3, with endogenous cleavage sites specifically activated by HIV protease in infected 

cells.  The resulting apoptosis in infected cells would be coupled with the inactive 

zymogen Casp3 in uninfected cells [89].  In the HIV-infected cells, TAT-Casp3 becomes 

active by HIV protease, causing apoptosis.  Caspase activates DNase which causes cell 

death.  The ‘Trojan horse’ strategy depended on the substitution of endogenous cleavage 

sites for the HIV proteolytic cleavage sites.  The TAT-Casp3 was activated by HIV 

protease in the infected cells, and apoptosis occurred.  In the uninfected cells, the TAT-

Casp3 remained in the inactive zymogen form.  With the substitution of proteolytic 

cleavage sites, other pathogens encoding specific proteases could be targeted as 

evidenced by this landmark study of transduced TAT-fusion proteins fighting HIV [89].  
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Guis and colleagues were able to study the timing and duration of cyclin D 

complexes involved in phosphorylating pRB and the G1 cell cycle progression [98].  By 

use of the p16INK4a fused with the TAT protein transduced into human keratinocytes, 

100% of the cells were assayed for pRB phosphorylation and the kinetics of the cell cycle 

was studied.  With this in vivo biochemical assay for pRb phosphorylation, entire cell 

populations were studied with precise timing intervals.  It was determined that cyclin D 

activity is required for early G1 phase progression and up to but not beyond the activation 

of cyclin E complexes inactivating hyperphosphorylation of pRb at the restriction point.  

Cyclin D complexes with activating hypophosphorylation of pRB in early G1, were 

nonredundant with the cyclin E complexes in cell cycle progression [98].

Cu, Zn-superoxide dismutase (Cu,Zn-SOD) is an enzyme by which cells detoxify 

free radicals and protect themselves from damage of oxidative molecules [99].  Kwon 

and co-workers hypothesized that the TAT-SOD fusion protein could enter the 

membranes of HeLa cells and protect the cells from oxidative stress (determined through 

an addition of paraquat onto the cells) better than a control SOD-only protein [99]. This 

study compared the denatured TAT-SOD transduction rate to the native TAT-SOD and 

control SOD-only transduction rates.  The scientists showed that unfolded proteins 

transduce at a greater rate than folded proteins.  Also, through enzymatic studies, the 

group proved that transduced, unfolded proteins can regain their folded structure and 

restore their molecular functions.  The confirmation of correct protein size was verified 

by both SDS-PAGE and Coomassie brilliant blue staining; the results demonstrated that 

TAT-SOD exhibited a protective function against oxidative stress [99].
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TAT fusion proteins are powerful tools for the treatment of focal ischemia when 

delivered both before and after the ischemic insult; TAT fusion proteins may offer a 

future strategy in stroke therapy [100].  A glial line-derived neurotrophic factor (GDNF) 

and TAT fusion protein were intravenously applied either before or after intraluminal 

thread occlusion of the middle cerebral artery.  Western blot analysis revealed a strong 

GDNF transduction with no transduction detectable in the control animals.  The 

intravenous infusion of the fusion protein was able to transduce the blood brain barrier 

while requiring no surgical intervention.  The TAT-GDNF prevented both apoptotic and 

necrotic injury after ischemia [100].

Snyder and co-workers reported of a transducible D-isomer RI-TATp53C’ 

peptide that activated the p53 protein in cancer cells, but not in normal cells; TAT-

mediated transduction may be a useful strategy for delivery of tumor suppressor 

molecules to malignant cells [101].  Mutation of genes in the p53 pathway is thought to 

be nearly universal in human cancer.   In cancer cells, the p53C’ peptide induces 

apoptosis by activating the wild-type p53 protein.  Snyder and co-workers [101]

synthesized a double inversion, thus RI (retro-inverso) D-peptide with the TAT PTD that 

represented a double inversion of the surface topology of the parental sidechains intact to 

stabilize the active peptide for in vivo application .  This application often produces 

greater stability with increased potency.  A single dose of the D-isomer peptide was 

sufficient to maintain a G1 cell cycle arrest for greater than 7 days.  Further studies 

indicated that the peptide induced a permanent growth arrest in the plated cells.  In a 

terminal peritoneal carcinomatosis mouse model, the tumor-bearing mice lived on 
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average a greater than 6-fold increase in lifespan over mutant peptide- or vehicle-treated 

mice.   

Possible Mechanisms of PTD Membrane Translocation

The exact mechanism of translocation of the proteins coupled to PTD has 

remained elusive.  While fusing proteins to membrane-permeable PTDs is one of the 

main strategies for intracellular protein delivery, the membrane translocation properties 

have recently been questioned [102].  Studies in 2004 [101, 102] suggested that TAT-

linked cargo is taken up by concentration-dependent, but receptor-independent, 

macropinocytosis.  

Lundberg and colleagues [103] suggested that PTD membrane translocation  was 

due to a fixation artifact and that PTDs were internalized by constitutive classical 

endocytosis.  With the PTDs positively charged due to a high content of arginine or 

lysine residues, the positive charge mediates the electrostatic binding to the negatively 

charged nuclear DNA [103].  Lundberg also suggested that increased fluorescence 

verified through flow cytometry was due to cell surface adherence rather than actual 

translocation.  While Lundberg also suggested the possibility of postfixation movement 

of proteins which would invalidate methods requiring fixation, the study did verify that 

several studies of PTD showed functional delivery such as p16INK4a  [98] , p27Kip1 [30], 

and an HIV protease activated caspase [89]. 

Ferrari and co-workers suggested that transduction did not occur in a fast and 

temperature-independent way as previously suggested but the internalization of the 

protein exploits a caveolar-mediated pathway that is inhibited at 4°C [104].  This 
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particular study also stressed the essential role of actin cytoskeletal elements in the 

displacement of TAT vesicles toward the nucleus.  Caveolae are invaginated plasma 

membrane domains with the integral membrane protein caveolin-1 (Cav-1) involved with 

many endogenous cellular processes.  Ferrari cites some evidence that the HIV-1 virus 

uses caveolae for transcytosis [104].  A TAT-EGFP with glutathione S-transferase was 

placed on cultured cells and the fluorescent signal was studied with laser irradiation.  

Also, when the cells were treated with heparin, no association of the protein with vesicle 

inclusions or cell membranes were detected; it was suggested that cellular heparin 

sulfates act as cellular receptors for anchorage of the fusion protein to the membrane.  A 

positive marker of clathrin-mediated endocytosis did not colocalize with the fusion 

protein positive vesicles while a significant colocalization signal existed between the 

protein and a marker for caveolar endocytosis [104].

In February of 2004, Wadia and colleagues suggested that after an initial ionic 

cell-surface interaction, TAT-fusion proteins are internalized by a lipid raft-dependent 

macropinocytosis [102].  The transduction is independent of caveolar- and clathrin-

mediated endocytosis and phagocytosis.  This study group then enhanced the fusion 

protein by including a pH-sensitive peptide that allowed enhanced escape from the 

macropinosomes.  The group removed cholesterol from the plasma membrane which 

would disrupt caveolae and macropinocytosis, both lipid raft-mediated endocytic 

pathways.  Disruption of the cholesterol resulted in a dose-dependent inhibition of protein 

function.  Several forms of endocytosis, including clathrin-, and caveolar- mediated 

endocytosis require dynamin GTPase activity to form vesicles.  While expression of a 

dominant-negative mutant of dynamin blocked endocytic pathways, the blocked pathway 
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did not restrict the transduction of the protein into the cells.  Also, treatment of the cells 

with macropinosome inhibitors resulted in dose-dependent reduction in transduction. An 

endosomal escape mechanism that takes advantage of the pH drop in mature endosomes 

involved the co-treatment of reporter cells (treated with macropinosome inhibitors) with 

the N-terminal region of the influenza virus hemagglutinin protein, a pH-sensitive 

fusogenic peptide that destabilizes lipid membranes at low pH [102].  The cotreatment 

(macropinosome inhibitors with the fusogenic peptide) resulted in a marked dose-

dependent increase in functional transduced protein. The group concluded that the 

internalization of the fusion protein occurs through a lipid raft-dependent process that is 

exclusive of caveolar- and clathrin-mediated endocytosis [102].

Cationic PTD peptides with variable arginine residues entered cells exclusively 

through macropinocytosis, while no PTD peptide was found to enter at 4°C as previously 

reported [105].  This group designed an extensive washing system to remove any external 

cell surface bound PTD peptides to measure the transduction capabilities.  Each time the 

cells were treated with the TAT peptide, the cells were treated with tyrpsin and heparin to 

remove all extracellular bound proteins.  The cells were also treated with two selective 

inhibitors of macropinocytosis (cytochalasin D, an inhibitor of F-actin or EIPA, an 

inhibitor of the Na+/H+ exchange.  The combination of trypsin and heparin treatment of 

the fusion protein/live cells at 4°C resulted in less than 5% association of the protein with 

the cells.  It appears that little to no PTD peptide enters the cells at 4°C as previously 

reported.  The cell surface cholesterol removal by β–cyclodextrin resulted in a dose-

dependent inhibition of internalization.  Both macropinosome inhibitors resulted in a 

dose-dependent reduction of the peptide uptake.  Following the ionic interaction between 
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the positively charged fusion protein and the negatively charged cell surface 

proteoglycans, macropinocytosis is induced.  These observations are consistent with a 

mechanism by which TAT-fusion proteins >30,000 Da and peptides (1000-5000 Da) 

enter cells by macropinocytosis [105].

Maternal to Zygotic Transition

The maternal to zygotic transition (MZT) is characterized by changes in both the 

origin and quantity of mRNA found in the developing embryo [106].  This period 

describes the change in control of embryonic development transferring from maternal 

stored transcripts to newly synthesized, embryonic-derived transcripts.  Major activation

of the embryonic genome at the MZT occurs during the porcine four-cell stage while in 

murine embryos the transition is at the two-cell stage.  Bovine and ovine undergo the 

transition during the eight to sixteen cell stage [106-111], although some observations 

suggest that MZT starts as early as the two-cell stage in bovine embryos [111].

The cascade of events involved with MZT is gradual and complex.  Murine 

maternal protein synthesis continues into the eight-cell stage while maternal mRNA 

degradation is triggered by meiotic maturation and is 90% completed in two-cell embryos 

[112].   Nothias and co-workers (1995) injected extrachromosomal plasmid DNA into the 

nuclei of murine oocytes and cleavage stage embryos and studied the endogenous gene 

expression with specific cis-acting regulatory sequences and trans-acting proteins in 

conjunction with the unique injected sequence expression [112].  Extrachromosomal 

DNA responds to the same molecular signals that regulate cellular DNA.  The transition 
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from a one-cell to a two-cell murine embryo is marked by the appearance of chromatin-

mediated repression that reduces the activity of any promoter.  Chromatin-mediated 

repression can be overcome by enhancers; the repression ensures that genes are not 

expressed until the appropriate time in development when enhancers (positive factors) 

can relieve this repression.  Position of nucleosomes in relation to DNA binding sites and 

histone acetylation determine the accessibility of the binding sites.  Enhancers consist of 

transcription factor binding sites distal to the start site in either orientation upstream or 

downstream of the promoter while promoters consist of transcription factor binding sites 

located upstream and proximal to the transcription start site.  Enhancers provide the 

means to impose tissue specificity on promoter activity; the enhancer stimulation of 

promoters is not observed until formation of a two-cell murine embryo.  The ability to 

utilize enhancers does not appear until the two-cell embryo stage, and stimulation of 

murine promoters by an enhancer does not require a TATA box until cell differentiation 

is evident.  Enhancer-mediated stimulation of TATA-less promoters allows for 

housekeeping gene expression early in development [112]. 

Porcine transition from maternal to embryonic control of development is a 

gradual event occurring during the third cell cycle or four-cell stage.  The third cell cycle 

has a shortened G1 phase as DNA synthesis (S phase) begins within the first two hours 

after cleavage to the four-cell stage.  The S phase is completed at 16 h after cleavage and 

the prolonged G2 phase results in a 50-hour cell cycle.  Proteins derived from embryonic 

transcripts appear at 16 hours and, in particular, at 24 hours after cleavage.  Embryonic 

protein synthesis is necessary for the down regulation of the maternally derived 

translation products and is essential for further embryonic development [109]. 
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The major transcriptional activation often occurs in parallel with nucleolar 

formation evidenced through the transcription of ribosomal RNA genes.  In swine 

embryos, functional ribosome-synthesizing nucleoli become recognizable toward the end 

of the third post-fertilization cell cycle (four-cell stage); localization of proteins to the 

nucleolar anlage is apparently completed at the onset of the fourth cell cycle [113-115].  

Development of the nucleolus may serve as an indirect marker of embryonic genome 

activation through the three main ultrastructual components: fibrillar centers, dense 

fibrillar components and the granular component.  The recent biosynthesis model of 

nucleolar formation includes: a fibrillar center with the transcriptional enzymatic 

apparatus; primary unprocessed transcripts in the dense fibrillar component; and the 

processed transcripts in the granular component.  First signs of development of fibrillar 

centers in porcine embryonic nucleoli are displayed toward the end of the third cell cycle.  

At 20 and 30 hours after cleavage to the four-cell stage, different stages of nucleolar 

formation are evidenced which include fibrillar centers (FC), and dense fibrillar and 

granular components (DFC and GC, respectively).  The nucleolus consist of the rRNA 

genes and their transcripts including all the proteins that play roles in rRNA transcription 

and processing [113-115].  Also, antibody labeling patterns used against six important 

nucleolar proteins are compatible with the formation of the fibrillo-granular nucleoli 

toward the end of the third cell cycle [109].  Embryonic nucleologenesis in the porcine 

embryo with FCs, DFC, and GC on the nucleolar anlage was more similar 

morphologically to murine embryo nucleologenesis than in the bovine embryo [113].     

Bjerregaard and colleagues demonstrated that development of embryonic nucleoli 

requires de novo mRNA transcription [108].  Some of the key nucleolar proteins involved 
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in development of embryonic nucleoli are described as: RNA Pol I, polymerase bound to 

the rRNA; the RNA Pol I associated factor PAF53, polymerase association factor 

involved in the formation of the initiation complex at the promoter by mediating the 

interation between Pol 1 and UBF (upstream binding factor) for the active rRNA 

synthesis; and UBF which binds the RNA Pol I to the rRNA thereby activating actual 

transcription.  These proteins are transcribed de novo as shown by specific inhibition with 

α-amantin on controls [108].   Bjerregaard and co-workers used the expression of these 

proteins to study the quality of porcine embryos [108]. 

In another study of porcine embryonic development, message levels of the cell 

cycle controller cdc25c during the MZT were studied in four-cell in vivo- and in vitro-

derived porcine embryos.  Quantitative reverse transcription-competitive polymerase 

chain reaction (RT-cPCR) measured the maternal and embryonic derived cdc25c 

transcripts.  The essential positive regulator of mitotic entry, cdc25c, message post-4-cell 

cleavage (P4CC) shifted to embryo derived message production between 10- and 18-hour 

P4CC.  The shift to embryonic cdc25c message was accompanied by degradation of the 

maternal transcripts [106].

Murine Implantation and Placentation

Implantation and development of the placenta occur in a stepwise manner with 

most of the major roadblocks to development in utero occuring during the major 

transitions in the development of the placenta [116, 117].  Initial developmental decisions 

in the mammal involve formation of three extraembryonic lineages that are precursors to 
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the placenta.  First, trophoblast cells form the specialized epithelial cells of the placenta, 

and then the endodermal and mesodermal components of the placenta arise from the ICM 

cells.  The first differentiation event occurs with the formation of the TE on the outside of 

the morula, still enclosed within the zona pellucida at murine day 3.5; this produces the 

blastocyst.  Polar murine TE that overlie the ICM continue to proliferate, while the cells 

away from the ICM stop dividing and become primary trophoblast giant cells [116].  The 

transition from TE to trophoblast includes morphologic and behavioral transformations 

[118].  The trophoblast giant cells in mice such as the cytotrophoblast cells in humans 

regulate maternal physiological processes through the production of hormones [117].  

Both implantation and early vasculogenesis are mediated by the trophoblast giant cells 

with the transformation of the TE into invasive trophoblast [118].  

Implantation in the mouse occurs soon after the blastocyst hatches from the zona 

pellucida at day 4.5.  Within a few hours of this implantation event, the murine decidual 

response, the transepithelial invasion of the trophoblasts and the apoptosis of the uterine 

epithelium occurs [116].  While the uterus undergoes developmental changes during 

preimplantation by action of the ovarian estrogen and progesterone from the follicles and 

corpora lutea respectively, a second surge of estrogen from the follicles induces 

implantation.  An “exquisite synchrony” between the maternal cells and the blastocyst is 

required during implantation [116].  MUC-1 integral membrane protein expressed on the 

murine uterine epithelium is down-regulated; this possible barrier to blastocyst adhesion 

is removed.  Ablation of the second surge of estrogen prevents attachment and the 

blastocysts may remain in diapause as long as 30 days before a single injection of 

estrogen will cause implantation [116].



50

In response to the estrogen, the uterine epithelium secretes cytokines such as 

epidermal growth factor (EGF) and leukemia inhibitory factor (LIF) [116].  EGF 

receptors (EGF-R) are also expressed on the TE of the murine conceptus.  Implantation 

depends on maternal events to open the “window for implantation” but also on secondary

events triggered by the blastocyst [116].  Blastocyst production of interleukin-1β (IL-1β) 

appears necessary for implantation.

Specific integrins binding to their extracellular matrix ligands mediate the binding 

of the trophoblasts to the murine uterine epithelium.  Laminin receptors are up-regulated 

as uterine glycosaminoglycans such as chondroitin sulfate and hyaluronic acid participate 

in adhesion with the murine blastocyst [116].

The murine decidual response to the implanting embryo includes an initial, acute 

inflammatory response with the production of proinflammatory cytokines and a 

proliferation of a thickened uterine wall.  Large numbers of macrophages and 

lymphocytes proliferate and exhibit a reduced alloreactivity.  The pregnancy paradox is 

that the placenta, a semi-allograft of fetal tissue avoids maternal immune rejection [116, 

119].  The TE forms the ectoplacental cone and trophoblast giant cells outside the 

placenta form the interface with the maternal cells [116].  The ectoplacental cone 

contains proliferating cells that supply the differentiating trophoblast giant cells [118].  

Mouse trophoblast cells invade primarily by directed phagocytosis of apoptotic decidual 

cells [118].  In rodents, as in primates, trophoblasts are invasive making maternal blood 

in direct contact with the trophoblasts (hemochorial placentation).

The act of mating in rodents causes pulsatile prolactin release from the pituitary 

that sustains progesterone production; mating a nonfertile male induces pseudopregnancy 
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in a rodent.  The trophoblasts produce prolactin-like hormones in the rodent, while the 

porcine antiluteolytic agent is estrogen and in ruminants the active factor is interferon-τ
(IFN-τ) [116].  The embryonic secretory signals that sustain the function of the corpus 

luteum, is described as the maternal recognition of pregnancy [119].

Blastomeres of the four-cell morulae can each give rise to a mouse, while early 

eight-cell stage blastomeres cannot generate a mouse by themselves [120].  With 

cleavage to the 16-cell stage, a gradual restriction in the developmental potency of the 

cells exists due to the production of the TE and the ICM lineages [120].  The murine fully 

expanded blastocyst contains about 64 cells with approximately 20 in the ICM.  During 

the fifth day of development, the blastocyst hatches from the zona and is ready for 

implantation [120].

Porcine Early Embryonic Development

Porcine embryonic development through morphogenesis has been documented 

since the late 1800’s [121].   After fertilization in most mammals, the zygote undergoes 

several cleavage divisions; it compacts and then cavitates to form the blastocyst, and 

finally the blastocyst hatches.  These early events are collectively called preattachement 

embryogenesis [122].  The first cleavage of the fertilized egg is usually accomplished 

within 3.5 hours following copulation in the pig.  Blastocyst formation with fluid 

accumulation and morphological specialization of the trophoblast is described at the 

sixteen-cell stage.  Inner cell masses have been photographed with 30 or more cells at the 

day four stage.  By day 7 after copulation, the porcine trophoblast is growing and the 

zona pellucida, a mucopolysaccharide coat, disappears [123, 124].  The 0.2 to 0.3 mm 
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diameter egg contains a bilaminar blastocyst, while the 0.6 mm cell demonstrates an 

inner-cell mass that is sharply marked off from the overlying trophoblastic cells (referred 

to as Rauber’s layer) [121].

Porcine Peri-implantation

Porcine peri-implantation development is marked by a rapid remodeling and 

elongation of the trophoblastic membrane.  Generally, porcine conceptuses have a 

spherical morphology with diameters ranging from 0.3 to 8.0 mm on days 8, 9 and 10, 

respectively.  Spherical blastocysts are bilaminar, with an external layer of TE cells and 

an inner layer of hypoblast cells [124].  The spherical blastocyst is transformed, over a 

period of 1 or 2 days, into a long thread of minute diameter, passing rapidly through a 

spherical, then oblong and finally filamentous shape accompanied by a rapid reduction in 

diameter [123]. These changes in spherical to tubular to filamentous forms occur between 

day 10 and 12 of pregnancy [121, 125, 126].  At day 10 or 11, the spherical conceptuses 

grow approximately 0.25 mm /hour in diameter up to 9 mm, followed by a faster increase 

in length of 30-45 mm /hour in the rapid transformation to tubular and filamentous stage 

[125].  The onset of blastocyst elongation occurs through changes in cellular organization 

rather than cellular hyperplasia, and the transition from spherical to tubular to 

filamentous results in a flattening of TE cells and an increase in microvilli [125].  

Successful epitheliochorial placentation in pigs is dependent on rapid conceptus 

expansion throughout the uterine horns and release of estrogen, the “maternal recognition 

of pregnancy” to maintain the corpora lutea [127].  However, spherical as well as tubular 

and early filamentous conceptuses can be found within the same litter on day 11 [124].  A 
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large amount of variation exists in stage of conceptus development with day post coitus, 

therefore, often the data are analyzed with conceptus size within the uterine horn [128].   

Following rapid expansion of the TE on day twelve of pregnancy, porcine conceptuses 

initiate attachment to the uterine lumenal surface.  The rapid remodeling and elongation 

of the trophoblastic membrane within the uterine horns determine success of the 

epitheliochorial placentation [127].  Initial trophoblast attachment to the uterine surface 

begins on day thirteen of pregnancy with interdigitation of uterine surface and trophoblast 

occurring on day 15 and 16 [125, 129].

The uterine lumen mucosal surface is greatly folded, and the conceptus may attain 

a length of a meter or more while occupying only 20-30 cm of uterine horn [123].  

Continuance of pregnancy beyond the duration of the estrous cycle depends on the fetal 

occupancy of the whole length of the uterine horns.  In 1981, it was suggested by Perry 

and colleagues that this occupancy probably prevents the production of a prostaglandin 

which in the non-pregnant animal causes the corpora lutea to regress and stop the 

production of progesterone [123].

Integration describes the bringing together of cells in the right place at the right 

time with the control of their changing positional relations and the regulation of all 

histogenetic changes and functional activities; understanding the operation of the 

controlling factors is a fascinating challenge to experimental embryology [130].  Genes 

for steroidogenic enzymes, extracellular matrix receptors, estrogen receptors, growth 

factors and their receptors, as well as retinoic acid receptors are expressed during 

elongation in the pig [109].
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Temporal associations with the developing conceptus within the uterine porcine 

lumen include ions, proteins, and enzymes produced by both the conceptus and 

endometrium.  During elongation of the TE and differentiation of the conceptus, 

development is controlled by synchronized gene expression patterns.  Conceptus 

synthesis of steroids and proteins may interact in a paracrine and/or autocrine fashion 

with the endometrium to prepare the uterine histotroph for trophoblastic elongation [131].  

Mammalian uteri contain endometrial glands that secrete histotroph, which nourishes the 

conceptus, and produces pregnancy recognition signals, immunoprotection, attachment, 

implantation and placentation [132].  The histotroph includes enzymes, growth factors, 

cytokines, lymphokines, hormones and transport proteins [132].  A survey of the porcine 

uterine microenvironment with information gathered from some rabbit and bovine studies 

reviews the molecular biology foundation of this study.

Attachment of the conceptus to the uterine surface in polytocous species is of 

importance due to similarity of uterine environmental issues.  Differentially expressed 

genes, specifically at the implantation sites in the rabbit endometrium were identified 

through subtraction/suppressive hybridization.  Expression for particular genes is specific 

for epithelial cells at the implantation sites and is not detected in non-implant-site 

endometrium.  Genes induced by the embryo, specifically at the implantation site are of 

particular importance to the success of pregnancy.  Cell-surface proteins, including 

integrins and sulfated oligosaccharide selectin ligands, may function in the initial 

attachment of the embryo [133].

In domestic animals, the prereceptive stage describes the period between 

blastocyst hatching from the zona pellucida and conceptus attachment to the uterus.  
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Domestic animals have a prolonged preimplantation period characterized by migration of 

the embryo, spacing of the embryos, endometrial gland secretion and generation of the 

conceptus signal for maternal recognition of pregnancy [119].  The prereceptive, 

nonadhesive stage of the porcine uterus detects Muc-1 as a candidate for maintenance of 

the prereceptive state.  Muc-1 staining is detected in day 0 pregnant gilts but was absent 

by day 10 [129].  The prereceptive uterine epithelial cells exhibit the apical glycocalyx of 

Muc-1, a glycosylated integral transmembrane glycoprotein, and the expression of Muc-1 

was down-regulation during the implantation window.  Porcine conceptuses are 

unattached in the uterus for almost a week from hatching at approximately day six to 

attachment on day thirteen [129].  Porcine trophoblast cells do not penetrate the uterine 

epithelium, but maintain an apical-apical cellular union throughout the implantation 

process [119].  Bowen also detected the presence of two extracellular matrix proteins, 

fibronectin and vitronectin (found in the uterine epithelium and conceptus TE) and four 

specific integrin heterodimers (found in the porcine conceptus TE) on day 11 to 15 of 

pregnancy [119].  Integrins are adhesion molecules implicated in the attachment of the 

conceptus to the uterine epithelium.  Conceptus TE and uterine epithelium in pigs express 

integrins and these heterodimers can bind to the fibronectin and/or vitronectin matrix 

molecules [119].  Integrin β-1 was detected in spherical, tubular and filamentous 

conceptuses studied by Yelich and co-workers [134].  The integrin receptor-ligand 

complex spans the cell membrane and may have an important role in restructuring of the 

TE during elongation.  Integrins serve as receptors for laminins and fibronectins: the 

integrin receptor-ligand complex spans the cell membrane and unites the extracellular 

matrix with the cytoskeleton [131, 134].  Together, these matrix molecules and integrin 
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heterodimers are available for supporting implantation during the window of implantation 

or period of recognition of pregnancy [129]. 

Between day 11 and 12, estrogen production by porcine conceptuses is initiated, 

which is the “signal” for maternal recognition of pregnancy [128, 135, 136].  Spherical 

conceptuses measuring 9-10 mm produce estrogens as compared to little or no detectable 

estrogen production by conceptuses that measure 2-4 mm [128].  Estrogen synthesis 

involves two key cytochrome enzymes: P450 17α-hydroxylase (P45017α) and aromatase 

(P450arom).  The gene expression pattern of both of these cytochrome enzymes increases 

just before elongation [127].   Day 10 to 12 of porcine pregnancy include several events 

critical for embryonic survival and maternal recognition of pregnancy.  These factors are: 

rapid trophoblastic elongation, conceptus attachment to the uterine epithelium and 

inhibition of maternal immune rejection [127].  The porcine conceptuses provide the 

estrogen signal that prevents the decline of progesterone production to block regression 

of the corpus luteum (CL) on day 11 of pregnancy [119].  During normal cyclicity of the 

sow, prostaglandin F2α (PGF2α) from the uterine endometrium provides the luteolytic 

stimulus that causes regression of the CL.  During pregnancy, the conceptus and uterus 

secrete prostaglandin E (PGE) which has been shown to block the luteolytic PGF2α

effects [119].   Porcine embryonic estrogens are paracrine effectors of uterine secretion 

and exhibit an antiluteolytic signal that allows for the continued progesterone production 

by the corpora lutea to initiate and maintain pregnancy [137].

A known regulator of uterine IGF-I (insulin-like growth factor-I) secretion is 

estrogen, which is produced by porcine pre-implantation embryos.  Ko and colleagues 

(1994) examined the conceptus steroidogenic enzyme gene, aromatase cytochrome P450 
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mRNA and protein with uterine concentrations of IGF-I [138].  Maximal concentrations 

of IGF-I at day 12 of porcine development parallel the relative higher levels of aromatase 

P450 protein in the conceptus.  The growth factor, IGF-I, controlled by conceptus 

estrogen appeared critical to the uterine receptivity for embryonic implantation.  Uterine 

IGF-I molecules modulate the embryonic functional expression of estrogen which, in 

turn, could modulate endometrial preparation of the uterus for implantation [138]. 

The estrogen biosynthetic capability in the perimplantation porcine conceptus is 

transient, coincides with trophoblast elongation, and is temporally associated with the 

maximal uterine release of insulin-like growth factor (IGF-I) into the uterine lumen 

[137].  The potential regulation by uterine IGF-I of the conceptus P45017α  and P450arom

was studied through the in vitro addition of IGF-I to day twelve filamentous and spherical 

morphologies.   Filamentous conceptuses exhibited increased amounts of P450arom

mRNA and contrasted with decreased levels of P450arom mRNA in the spherical 

conceptuses.  Thus, the complex biochemical dialogue between the endometrium and 

conceptus possibly involves the regulation of embryonic steroidogenesis through IGF-I 

[137].  

Geisert and co-workers suggested that the appearance of uteroferrin was 

associated with the initiation of conceptus estrogen synthesis on day 12, while, estrogen 

later suppresses synthesis and/or secretion of uteroferrin, a progesterone-induced 

glycoprotein by day 14 [128].  Uteroferrin plays a role in iron transport throughout 

pregnancy, and may serve as a hematopoietic stem cell (HSC) growth factor during early 

development of the conceptus [127].  
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Increased estrogen content of uterine flushings occurred when conceptuses 

reached approximately 10 mm which corresponds to the late spherical stage at about day 

11.5 of pregnancy [139].  The conceptus estrogens may stimulate the release of free 

calcium from the uterine epithelium with a subsequent increase in prostaglandin 

production and a release of secretory proteins into the uterine lumen [128].  Estrogen 

content increased almost 4-fold in flushings containing tubular compared to spherical 

conceptuses.  Calcium, prostaglandin F and prostaglandin E2 increased in association 

with the release of estrogen [128].  The calcium content had declined by day fourteen 

while the PGF and PGE2 continued to increase to day fourteen.  The estrogen-conceptus 

local effect would allow for maintenance of the corpora lutea, establishment of pregnancy 

and conceptus nourishment [128, 139].  Transmission electron microscopy also revealed 

a synchronized release of secretory vesicles from the glandular epithelium with the 

formation of tubular conceptuses and onset of conceptus estrogen production [128, 139].  

It is postulated that the porcine estrogens stimulate uterine epithelial cell secretion 

through calcium mediated events and that an increase in prostaglandins cause calcium 

activation of phospholipase A2 and subsequently the arachidonic acid cascade [139].  

This release of material from the glandular epithelium parallels a flattening of the surface 

epithelium (TE cells) observed by scanning electron microscopy.  This flattening could 

increase the endometrial surface area between day twelve and eighteen of pregnancy 

[128].  It has been suggested that conceptus elongation may be essential to the 

establishment of pregnancy by increasing the uterine luminal surface area [125].  

Yelich and co-workers [134] used RT-PCR to study a series of developmentally 

important proteins in individual pig embryos during day ten to twelve of preimplantation 
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development.  Conceptuses having 2 to 4, 5, 6, 7, 8, 9, and 10 to 12 mm spherical, 13 to 

25 mm tubular, and  >100 mm filamentous morphologies were studied.  The initial 17-

alpha-hydroxylase was detected in early spherical conceptuses of 2-4 mm and increased 

through to the 7 mm conceptuses, while the aromatase gene expression increased in 6 to 7 

mm conceptuses with the increased expression throughout development.  The 8 mm 

spherical conceptuses, therefore, appear to be fully activated by 17α-hydroxylase and 

aromatase gene transcription to produce the increased amounts of estradiol needed for 

recognition of pregnancy.  Initial expression of brachyury in the 6 mm conceptuses 

precedes the initial detection of 10 mm conceptus mesodermal outgrowth [134].  

Leukemia inhibitory factor (LIF) is one of the most notable cytokines secreted by the 

porcine endometrium; LIF is a hematopoietic regulator involved in cellular differentiation 

and growth [134, 140].  LIF transcripts were detected in all stages of the conceptuses 

studied; leukemia inhibitory factor receptor (LIFR) gene expression increased 

dramatically after the 5 to 7 day spherical conceptus stage and endometrial LIF gene 

expression was maximal on day 11 to12 [134].  The increase of LIFR prior to elongation 

may indicate a binding to LIF that appears to be necessary for implantation in the mouse 

and may play a role in trophoblastic membrane remodeling of the porcine conceptus 

[109, 134]. 

Embryonic development is extremely sensitive to vitamin A as both an excess and 

deficiency of the morphogen can lead to bovine abortion and embryonic malformation 

[110, 131, 134].  A disappearance of the bovine transcript for retinol-binding protein and 

nuclear retinoic acid receptors between the eight to sixteen-cell and the subsequent 

elevation at the morula stage or the initiation of embryonic transcription suggests that RA 
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is likely to directly regulate gene expression during bovine preimplantation development 

[110, 131, 141].  Retinol is believed to serve as a potent morphogen in vertebrate 

embryonic development.  It has been proposed that retinol binding protein (RBP) binds 

retinol and is involved in the systemic and intercellular transport of the retinol from the 

plasma to its target cell.  Retinol is oxidized by dehydrogenases to its active form, RA.  

Retinoic acid binds with two subgroups of nuclear receptors, nuclear RAR and RXRs, 

and their various isoforms.  These receptors together with RA and other proteins form 

complexes with retinoic acid response elements, or enhancer elements, on the DNA 

molecule and exert transcriptional control [110, 131, 134, 142].  Yelich and colleagues 

detected transcripts for retinoic acid receptors in both day 12 spherical and tubular 

conceptuses [131].  Individual conceptuses were used for the RNA extraction and 

subsequent RT-PCR such that gene expression events could be detected within a 2 to 3 

hour period of transition of trophoblastic elongation.  A RBP peak occurs just prior to the 

10mm stage of rapid trophoblastic remodeling and elongation, and another dramatic 

increase in RBP occurs with the tubular to filamentous morphology [110, 131, 134, 142, 

143].   The presence of RBP in the TE certainly suggests that the retinoid system plays a 

role in trophoblastic remodeling.  Retinol supplementation enhanced embryo survival in 

swine, and vitamin A administration to sows before ovulation enhanced embryonal 

survival [143].  Bovine whole mount in situ hybridization and RT-PCR detected three 

retinoid X receptors and retinaldehyde dehydrogenase 2.  The simultaneous expression of 

these molecular players in the retinoid signaling pathway suggests that the early bovine 

embryo may be competent to regulate gene expression during preattachment development 

through retinoic acid signaling [143].
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OPN is an extracellular matrix protein that binds integrins and promotes cellular 

attachment and communication.  The use of in situ hybridization localized OPN 

messenger RNA to specific regions of the porcine uterine luminal epithelium (LE) on day 

15 of pregnancy and to the entire LE thereafter.  OPN mRNA expression was located in 

discrete regions of the uterine LE adjacent to the conceptus beginning on day 12, 

increasing by day 15, and then throughout the luminal epithelium surface by day 20 of 

pregnancy.  It is speculated that OPN, expressed by the uterine epithelium may interact 

with integrin receptors on the conceptus and uterus to promote conceptus development 

and signaling between the tissues for attachment and placentation [144].  Integrins are 

transmembrane heterodimeric glycoprotein ligand receptors that are associated with the 

cytoskeleton and signaling [129, 144].  Specific integrin subunits are expressed by the 

luminal epithelium during the maternal recognition of pregnancy and are localized to 

implantation sites [129].  The OPN expression gives evidence to the speculation that a 

paracrine factor from the conceptus may be responsible for the LE production of OPN 

mRNA, and the OPN binds conceptus and uterine integrins to initiate functional 

intracellular signals [129, 132, 144].   OPN is a cytokine of the extracellular matrix and a 

component of the histotroph [132].  As a substrate for cleavage by matrix 

metalloproteinases, the OPN fragments initiate adhesion and migration [132, 145].

The inter-α-trypsin inhibitor family of serine protease inhibitors is composed of a 

combination of two heavy chains and the light-chain member, bikunin [146].  Bikunin 

inhibits trypsin, cathepsin G, elastase and plasmin and could assist in the regulation of 

porcine conceptus proteolysis of the uterine cellular surface [146].  Hettinger and 

colleagues compared the bikunin protein production during the estrous cycle and early 
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pregnancy and quantified the expression of bikunin mRNA in the porcine endometrium 

[146].  Protease inhibitors possibly protect the uterine epithelium from the proteolytic 

activity of developing porcine conceptuses.  Other inhibitors of the porcine endometrium 

include plasmin/trypsin inhibitor and tissue inhibitors of metalloproteinases.   A 30- to 

100-fold increase in endometrial bikunin gene expression between day ten and eighteen 

of the estrous cycle and pregnancy corresponded with the detection of free bikunin in the 

uterine flushings and localization of bikunin mRNA in glandular epithelium [146].

Maintenance of the corpora lutea and facilitation of the placental attachment are 

involved in the establishment of pregnancy.  During day ten to day fifteen, pregnant sows 

exhibited a 3-fold increased activity of the serine protease, kallikrein from low activity on 

day 10 [147, 148].  Kallikrein, a serine protease, may cleave inter-α-trypsin heavy chain 

4 (IαIH4) and play a role in extracellular matrix stabilization [147-149].  The heavy 

chains of IαI family possess a von Willebrand type A domain that targets integrins, 

proteoglycans and heparin for adhesion [127, 147-149].  With the previously described 

reduction in Muc-I, the conceptus can interact with adhesion molecules such as integrins 

and proteoglycans.  Cleavage of endometrial IαIH4 could permit conceptus trophoblast 

adhesion to the uterine epithelium during conceptus elongation [127].  

Kallikrein is a member of the kininogen-kallikrein-kinin system in which 

kininogen is cleaved with the release of bradykinin, a vasoactive peptide, with bioactive 

properties that cause a release of calcium and conceptus prostaglandins and an increase in 

blood flow [148].  Kinins are vasoactive peptides known to be involved in the 

inflammatory-associated effects such as increased blood flow, tissue prostaglandin 

synthesis, and induction of smooth muscle contraction [150]. Thus, kallikrein could assist 
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with opening sites for conceptus attachment through the cleavage of IαIH4 molecules 

and providing vascular support for the conceptus.  

Kallikrein is also related to the insulin-like growth factor (IGF) system.  Insulin-

like growth factor binding proteins (IGFBPs) were present in days one to ten of pregnant 

porcine uterine flushings but these binding proteins were not present in the pregnant 

uterine flushings from day 12 or 15.  Insulin growth factors (IGF-1 and IGF-II) were two 

to three times greater on day 12 of pregnancy in contrast to cyclic gilts [151].  When 

incubated with protease inhibitors, IGFBPs indicated that cleavage through serine 

proteases such as kallikrein could release IGF-I and IGF-II.  The presence of IGFBPs can 

affect the ability of IGF-I to interact with its receptors [151].  The period of conceptus 

elongation exhibits the greatest uterine luminal content of IGF-I, while Geisert and co-

workers [151] indicated that the loss of the IGFBPs was probably regulated by 

progesterone-stimulated kallikrein activity and activation of matrix metalloproteinases.

Allen and colleagues suggested the importance of the inflammatory kallikrein-

kinin system in porcine implantation through the increase in bradykinin in the porcine 

uterine lumen and alteration of endometrial bradykinin receptor expression during 

porcine placentation [150].  Endometrial bradykinin β2 receptor mediates the majority of 

physiological effects of kinins.  The study compared the bradykinin content in the porcine 

uterine lumen and the alteration of endometrial bradykinin receptor expression during 

early pregnancy and the estrous cycle.  Bradykinin uterine flushing concentrations were 

5-fold greater in pregnant gilts than in cyclic gilts on day 12 with an 8- to 10-fold greater 

increase for bradykinin in the pregnant gilts uterine flushings on day 15 and 18, 

respectively.  A 6-fold increase in expression of the endometrial gene expression of 
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bradykinin β2 receptor on days 12 to 15 of the estrous cycle and pregnancy was indicated 

when compared to day 5 and 10.  With the estrogen receptors in the uterine endometrium 

and glandular epithelium of the pig showing abundance on day 10 and 12 of pregnancy, 

estrogen may play a regulatory role in the release of bradykinin from the porcine 

endometrium [150]. 

Analysis of differential gene expression during trophoblastic elongation (day 

eleven to twelve of gestation) from spherical, ovoid, tubular to filamentous stages 

indicates the events necessary for successful implantation and embryonic survival [126].  

During this period, conceptus release of estrogen causes the maternal recognition of 

pregnancy with a simultaneous acute phase response.  Recently, using suppression 

subtractive hybridization, S-adenosylhomocysteine hydrolase (SAHH) and heat shock 

cognate 70KD (HSC70) protein were shown to produce an expression increase of 

approximately 7-fold and 10-fold, respectively, from spherical to filamentous porcine 

conceptuses [126].  Ross and co-workers suggested that SAHH serves as a biological 

regulator of transmethylation reactions by reducing SAH (S-adenosylhomocysteine) to 

homocysteine.  The release of a methyl group from s-adenosylmethionine (SAM), a 

universal methyl donor, creates S-adenosylhomocysteine (SAH), while maintaining the 

SAM/SAH ratio for transmethylation reactions to occur could be necessary for optimal 

porcine conceptus development.  The HSC70 has been associated with neural tube 

development and cytoskeletal conceptus remodeling [126].

In gestating sows, the number of major MHC class II-expressing cells were 

reduced on day nineteen of gestation in the surface epithelium [152].  This could reflect a 

suppression of the immune response during the implantation period to prevent embryo 
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rejection.  Immunomodulation of the MHC class II expressing cells indicate that the 

porcine trophoblast influences the endometrium required for porcine embryonic 

attachment and survival.  The effects of pregnancy on the day 19 endometrium 

demonstrated a significant reduction in T cells, natural killer cells, and cytotoxic T cells 

in the surface epithelium, and with no T helper cells compared with earlier stages studied.  

The MHC class II expressing cell number was low.  This indicates that the porcine 

embryos may initiate at this stage some processes to suppress the immune response in the 

surface epithelium [152]. 

The presence of elongating conceptuses within the uterine lumen of pigs 

correlates directly with increased uterine release of the enzyme cathepsin.  Cathepsins are 

a class of lysosomal cysteine proteases.    A dramatic increase in cathespin L activity and 

the immunoreactive, epithelial location on day 15 of pregnancy in the gilt and a decline 

on day 18, corresponds to the initial formation of the allantochorionic membrane during 

placental attachment [140].  While the function of cathepsins during conceptus 

attachment is unclear, Cathepsin L possibly serves as a modulator of invasion, with 

limited proteolysis of the epithelium in the species that has an endothelial-chorial type of 

placentation, or cathepsin may function to hydrolyse small peptides for subsequent 

conceptus uptake [140].

Porcine Endothelialchorial Placentation

A glycocalyx on both the maternal and fetal epithelium before close contact is 

established with day thirteen and fourteen post coitus endometrium, exhibit protruding 

epithelial proliferation which work to immobilize the conceptus and keep the maternal 
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and fetal sides together so that cell to cell contact will develop [153, 154].  Subsequently 

the trophoblastic and uterine epithelium become partly depleted of microvilli on day 14 

with the appearance of development of interdigitating microvilli on day 15 and 16 [135, 

153, 154].  The luminal uterine epithelium is changed from a columnar epithelium to a 

dome-like epithelium devoid of microvilli [119].  The trophoblast cells play an important 

role in the relationship between maternal tissues and the developing embryos in animal 

with prolonged pre-implantation stages [124].  Trophoblastic initial attachment to the 

uterine epithelium begins on day 13 of pregnancy with completion of the epitheliochorial 

placenta occurring on day 18 [125].  With growth and fluid expansion of the allantosis 

between days thirteen and eighteen of pregnancy the full apposition and adhesion of the 

maternal and conceptus TE occurs [146].

Formation of Chorion and Amnion

Soon after elongation, the first mesodermal cells appear from the ectoderm of the 

embryonic disc.  The sheet of tissue formed increases in area and soon extends beyond the 

margins of the embryonic disc.  The central portion will be incorporated into the 

developing embryo; the ‘extra-embryonic’ portion splits with one layer overlying the 

endoderm and the other layer underlying the ectoderm.  The extra-embryonic coelom is 

formed this way.  The outer layer of mesoderm is raised with the covering ectoderm 

around the embryonic disc [123].  The outer layer of mesoderm and the overlying 

trophoblast make up the chorion [123].  The two amniotic folds fuse above the embryonic 

disc; this forms the amnion, and is separated from the chorion [123].  The amnion forms 
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by folds in the extra-embryonic portion of the somatopleure; these folds rise up and 

surround the embryo at the periphery of the embryonic plate.  This folding occurs before 

the first somites appear [121].  The allanto-chorion in the pig has an outer single layer of 

ectodermal trophoblastic cells while the endoderm is also single- layered and lines the 

allantois; the intervening tissue is mesoderm and contains extra-embryonic blood vessels 

[123].

The porcine chorion grows up to 1.4 meters in length by day 17.  From the 13th to 

17th day post coitus (p.c.) in the pig, while the ectoderm of the embryonic disc has formed 

the neural tube and the beginnings of a nervous system, the mesoderm has formed somites 

(or beginnings of the muscle system and vertebrae) [121, 123].  The allanto-chorion 

provides nutrition and respiration for the developing embryo. 
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CHAPTER III

DETECTION OF Oct-4 GENE EXPRESSION IN PORCINE CONCEPTUSES
DURING PERI-IMPLANTATION DEVELOPMENT

Need for Improved Porcine Reproductive Technology

A major problem in porcine reproductive efficiency is that porcine prenatal 

mortality incidence ranges from 20% to 46% at term [109].  Most of the loss occurs 

before day twenty of gestation including the period between day 11 and 12, when the 

conceptus is undergoing rapid differentiation and expansion of the TE [125, 131, 134].  

About 30% of porcine conceptuses are lost between days 12 and 15 of gestation [136].  

An understanding of the sequential activation of the embryonic genome in vivo is crucial 

to optimize the different embryological techniques [109].

Efficiency of all pig NT embryos is low [109].  The efficiency of animal 

production by cloning is very low following somatic cell NT.  Reprogramming of the 

donor nucleus must occur to produce an embryonic profile of gene expression needed for 

development to proceed [155].  Daniels and colleagues (2000) described a detailed 

analysis of developmentally important genes, including bovine Oct-4 in granulosa cell 

nuclear transfer (GNT) embryos as compared to IVF-derived bovine embryos.  Patterns 

of gene transcription in cDNA of granulosa cells and in IVF-derived preimplantation 
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embryos were established through RT-PCR.  In IVF-derived embryos, Oct-4 transcripts 

were found with a high PCR intensity in the oocyte and decreased intensity as 

development progressed to the 8-cell stage and then increased again to the blastocyst 

stage.  Presumably, the degradation of maternally inherited mRNA was followed by an 

onset of embryonic transcription.  Transcripts of Oct-4 were not detected in granulosa 

cell cDNA, and the onset of transcription of Oct-4 in GNT embryos compared with that 

in IVF embryos was a critical factor when assessing the effects of nuclear reprogramming 

in cloned embryos. The GNT embryos displayed a similar pattern to that detected in 

preimplantation embryos for the Oct-4 gene [155].  Although the reprogramming of the 

somatic cell nucleus was sufficient to produce the proper Oct-4 expression, several other 

genes, IL6 (Interleukin-6), FGF4 (Fibroblast Growth Factor 4), and FGFr2 (Fibroblast 

Growth Factor receptor 2) exhibited a delayed or lack of expression. 

Need for Porcine Conceptus/Uterine Gene Expression Patterns

A better understanding of stage-specific gene expression patterns is necessary.  It 

is presumed that successful preimplantation and early fetal development is reliant on the 

temporal and spatial gene expression of approximately 10,000 genes [156]. In order to 

get healthy cloned animals, the restoration to nuclear totipotency in differentiated somatic 

cells following nuclear transfer remains remarkable but inefficient and prone to 

epigenetic errors [157].  The degree of donor cell differentiation affects cloning 

efficiency.  The cloning efficiencies with blastomere donors are approximately one order 

of magnitude higher than the somatic cells (35% versus 0.6% in mice) [157].  Transferred 

cloned embryos reconstructed from murine ES cells derived from embryonic blastomeres 
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produce a higher proportion of transferred cloned embryos than somatic cell clones (10-

20% of ES cell derived embryos reached adulthood, compared with only 1-3% in somatic 

donor cells) [157].  ES cell derived blastocysts express key embryonic genes such as Oct-

4 [157].  Bortvin and colleagues [158] suggested that the failure to reactivate the full 

spectrum of Oct-4 and Oct-4-related genes may contribute to the embryonic lethality 

found in somatic-cell clones.  Included in the study were the following genes: Prame/4

(PRAME-like 4), Ndp52a (Nuclear domain 10 protein 52-like1), Dppa3 (Developmental 

pluripotency associated 3), and Dppa4 (Developmental pluripotency associated 4) [158].  

Therefore, it has been hypothesized that the limited developmental potency of certain 

cloned embryos is a result of incomplete reactivation of certain pluripotency genes; a 

similar theme of developmental potency has been studied regarding different porcine 

breeds and genetic expression patterns found in the uterine environment. 

Meishan-Landrace sows with a larger litter size were compared with conventional 

Landrace sows; the two different porcine breeds were compared through suppression 

subtractive hybridization (SSH) [136].  The differential expression of the endometrium 

and the conceptuses following SSH and cloning, transforming, sequencing and BLAST 

searches were compared.  62% of the endometrial tissue clones and 78% of the conceptus 

library clones showed homology with known genes.  Of the cDNA sequences found in 

the subtracted libraries, 38% derived from the endometrial tissue and 22 percent of 

conceptus origins were described as novel genes with sequences having no identity to any 

GenBank entries or corresponding to hypothetical proteins and repetitive DNA elements.  

It is surprising that such a large number of cDNA clones remain unrecognized with the 

exponential growth in the database in recent years [136].  Information gleaned through 
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expression profiling of embryonic cells and the uterine environment is critical to 

understanding cell differentiation.  

Oct-4: A Master Regulator of Embryonic Transcription

Oct-4, a Class V of the POU transcription factor family exhibits conservation in 

protein sequence, genomic organization and chromosomal localization [43].  Bovine and 

humans share a 90.6% overall sequence identity at the protein level [42, 43].  

Interestingly, human Oct-4 expression was found in the heart, kidney, liver, placenta, 

spleen and pancreatic islets using RT-PCR technology [40], while the actual protein and 

activity of that protein in these tissues hasn’t been demonstrated.  The Oct-4 gene was 

localized to the sixth, seventeenth, and twenty-third chromosomes in the human, murine 

and bovine species, respectively [40, 42, 61].

While embryos of the mouse, pig and cow all progress through compaction, 

cavitation and expansion transitions with hatching and implantation, some differences of 

the preimplantation embryos are evident.  Timing of the MZT occurs at the 2-cell, 4-cell, 

and 8-cell stages in murine, porcine and bovine embryos, respectively [141]. Cells within 

the early murine embryo respond to their relative positions on the inside or outside of the 

cellular aggregate and then differentiate along different lineages according to their 

positions.  Early during the 8-cell stage, murine cells develop a stable axis of polarity 

based upon the cell-cell adhesion that mediates intercellular flattening.  This cell 

polarization gives spatial heterogeneity to each blastomere and to the embryo itself [159].  

The segregation of inner and outer cells in porcine morulae follows a different pattern 
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compared to mouse embryos.  Porcine segregation of inner and outer cells is less strictly 

regulated and is perhaps a random process [160]. 

In the search for pluripotency molecular markers, Van Eijk and co-workers [42]

isolated and evaluated the bovine ortholog of POU5F1 and followed its expression 

during early embryonic development.  The gene was localized through segregation 

analysis of a PCR product to the MHC on bovine chromosome 23.  Immunocytochemical 

evaluation of the Oct-4 expression in bovine oocytes and embryos revealed expression in 

the nucleus and cytoplasm of all stages until day 10 of development.  A marked nuclear 

localization of Oct-4 existed during segmentation but a more diffuse distribution of Oct-4 

was expressed upon formation of the blastocoel.  Oct-4 was not found in bovine 

conceptuses at day 14 and 16.  With the expression of Oct-4 in the trophoblast cells, 

expression is thus not limited to pluripotent cells of the early bovine embryo [42].  

 Kirchhof and co-workers investigated the potential of individual blastomeres to 

express the Oct-4 protein using a construct consisting of selected parts of the upstream 

region of the murine Oct-4 gene [43].  The construct, an 18-kb fragment, GOF18-∆PE 

EGFP, contained a modified promoter with the PE removed.  The genomic Oct-4 

fragment (GOF), included the GC-box, hormone response elements and the DE.  An 

EGFP factor was inserted in frame and introduced in front of the ATG of the Oct-4 gene; 

the EGFP served as a reporter.  Pronuclei of bovine, murine and porcine zygotes were 

microinjected with the gene construct.  Of significance is the timing of the activation of 

the embryonic genome (MZT) transition from maternal to zygotic control of transcription 

[141].  Therefore, murine cells were examined at day 3 and porcine and bovine cells 

examined on day 5, with day of microinjection and the beginning of in vitro culture 
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defined as day 1.  Fluorescence of embryos, both before and after major activation of the 

embryonic genome was checked.  After transfection, positive blastomere expression of 

fluorescence was contrary to expectation as fluorescence wasn’t restricted to ICM cells 

but also seen in bovine and porcine TE cells.  Mice, cattle and pigs exhibited 

fluorescence in their embryonic cells after the three species were microinjected with the 

murine upstream region.  The fluorescence of all three species seems to indicate that all 

three species have similar control mechanisms for this promoter [43].

Kirchhof and co-workers also included whole mount immunocytochemistry on in 

vivo-derived bovine, murine and porcine blastocysts [43].  Polyclonal antibodies raised in 

rabbits against the Oct-4 protein were purified and applied to the blastocysts.  Secondary 

goat anti-rabbit antibodies incubated in propidium iodide were applied to the blastocysts 

mounted on slides and analyzed using confocal scanning laser microscopy.  With 

maturation of the murine blastocysts, Oct-4 protein disappeared from the TE and was 

restricted to the ICM.  The protein was localized in all cases to the murine nucleus.  

Bovine and porcine embryos showed a very different immunostaining pattern.  Oct-4 was 

revealed in the blastocyst ICM as well as in TE cells with signal in the cytoplasm as well 

as in the nuclei of these cells [43].  Porcine day ten and day eleven Oct-4 mRNA was 

detected by RT-T7 RNA-dependent amplification in both the TE and the primitive 

ectoderm cells [43, 161] .

The Need for Porcine Peri-implantation Gene Expression

 Kirchhof hypothesized that the delayed downregulation of the Oct-4 gene in large 

mammals may be the consequence of the lengthened period of preimplantation [43].    
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Observations of porcine conceptus expression on day 8 to 15, is an important window to 

study the down regulation of Oct-4 expression [43]. 

Murine, porcine and bovine species exhibit great differences following 

blastulation.  Murine embryos form an egg cylinder stage with hatching and implantation 

occurring more or less simultaneously, while the livestock germinal disc-stage embryos 

exhibit a delayed implantation [43].  Expansion of the murine blastocyst is relatively 

modest with mitosis occurring only among the TE cells overlying the ICM [43].  

Contrastingly, porcine trophoblast cells continue to divide and expand by several orders 

of magnitude prior to implantation; bovine trophoblast expansion isn’t quite as extensive 

as the porcine but does increase more than the murine trophoblastic cells [43].  Kirchhof 

and co-workers established the necessity to measure Oct-4 activity quantitatively as the 

mere presence of Oct-4 protein does not define pluripotency [43].  The porcine model has 

not been previously studied, and further experiments are needed to confirm porcine Oct-4 

expression.  Through Real Time RT-PCR we will characterize the expression of the Oct-

4 gene and compare the stage-specific gene expression during porcine preimplantation 

development.

Materials and Methods

Conceptus Collection

Research was conducted in accordance with and approval by the Oklahoma State 

University Institutional Animal Care and Use Committee.  Cyclic, crossbred gilts 

(Animal Science Department, Oklahoma State University) were checked for estrus 

behavior twice daily (0700h and 1800h) in the presence of intact boars and were bred 
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naturally at the onset of estrus (day 0) and twelve hours later.  Gilts were hysterectomized 

through midventral laparotomy on day 10, 12, 13, 15 and 17 as previously described 

[162].  Conceptuses were recovered in sterile Petri dishes and classified as spherical, 

tubular or filamentous morphologies; conceptus diameters were also recorded [163].  

Identical morphologies were transferred to cryogenic vials (Fisher Scientific, Pittsburgh, 

PA) snap-frozen in liquid nitrogen and stored at -80°C.   

RNA Isolation

Total RNA was isolated from pools of similar individual conceptuses using an 

RNA isolation reagent, RNAwiz (Ambion, Inc., Austin, Texas).  Using 1 ml of RNAwiz 

for every 100 mg of tissue, the samples were disrupted in a Virtishear polytron 

homogenizer (Virtis Co. Inc., Gardiner, NY).  The homogenate was incubated at RT for 

five minutes to dissociate the nucleoproteins from the nucleic acids.  A 0.2X starting 

volume of chloroform was added to the homogenate and vortexed for ~ 20 seconds.  

Following incubation at RT for 10 minutes, the mixture was centrifuged at 14,000 X g for 

25 minutes at 4°C.  The aqueous phase was transferred into a clean, 1.0 ml RNase-free 

tube without disturbing the interphase.  A 0.5X starting volume of RNase-free water 

(Epicentre, Madison, WI) was added and mixed well.  A 1X starting volume of 

isopropanol was added, mixed and incubated at RT for 10 minutes.  Following 

centrifugation at 10,000 x g for 45 minutes, the samples were placed in –20°C for 45 

minutes and then 10 minutes in –80°C.  Finally, the samples were incubated at RT for 10 

minutes.  The supernatant was decanted and the pellets vortexed with cold 75% ethanol.  

The samples were centrifuged at 10,000 X g for 5 minutes at –20°C.  The supernatant 
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was discarded.  The pellet was air dried and then the RNA resuspended in RNase-free 

water, DNase I, and DNase buffer for 30 minutes at 37°C followed by a 70°C to heat 

inactivate the DNase I. The RNA was quantified spectrophotometrically, and the purity 

of RNA was determined based on absorbance at the 260nm wavelength using the 

260:280 (RNA light absorbance to protein light absorbance) ratio. The concentration of 

RNA in each sample was determined using the equation: A260 X 40 (dilution factor) X 50 

(extinction coefficient) / 1000 = ng/ul. The RNA samples were diluted to 25 ng/ul with 5 

ul of each sample used in subsequent manipulations.  A total of 24 conceptus pools 

representing:  4, day 10; 6, day 12; 3, day 13; 7, day 15; and 4, day 17 morphologies were 

assembled. 

Porcine Oct-4 Primer Construction and cDNA Synthesis

Preparation of the porcine Real Time primers involved several steps.  The first 

Oct-4 primer sets used by our lab were derived from murine Oct-4 sequences shared in 

papers by Vassilieva and Pesce [3, 164]. The oligonucleotide sequences are Oct-4 

forward 5’-GGCGTTCTCTTTGGAAAGGTGTTC-3’ and the Oct-4 reverse is 5’-

CTCGAACCACATCCTTCTCT-3’ (prepared by Oklahoma State University 

Recombinant DNA/Protein Resource Facility, Stillwater, Oklahoma). These sequences 

were verified as complementary on the murine Oct-4 cDNA (accession X52437) and 

referenced by Scholer in Nature [6].  

Porcine conceptuses, both oblong and spherical, were gathered at Oklahoma State 

University in Stillwater, Oklahoma and reverse transcribed according to the directions for 

Cells-to-cDNA Kit from Ambion (Ambion, Inc., Austin, Texas).  The kit contains Cell 
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Lysis Buffer, DNase I, RT Buffer M-MLV Reverse Transcriptase, RNase Inhibitor, 

dNTP Mix, Random Decamers and Nuclease-free water.  Basically, cells were treated 

with a cell lysis buffer, gently centrifuged and covered with RNase and protease free 

mineral oil (Sigma-Aldrich, St. Louis, MO) to prevent evaporation and then placed in a 

70°C water bath for 10 minutes.  DNase I is then added to the samples to rid each sample 

of genomic contamination and incubated at 37°C for 30 minutes.  The DNase I is 

inactivated at 75°C for 5 minutes.  The 20 ul reverse transcription reaction includes 6 ul 

of cell lysate RNA, 4 ul dNTP Mix, 2 ul Random Decamers (50 uM) and up to 16 ul 

Nuclease-free Water.  The mixture is centrifuged gently and heated 3 minutes at 70°C.  

The cell mass is placed on ice for 1 minute, centrifuged briefly and then placed back on 

ice.  Two microliters of 10X RT Buffer and 1 ul of M-MLV (Moloney Murine Leukemia 

Virus) Reverse Transcriptase and 1 ul of RNase Inhibitor are added, gently mixed and 

centrifuged.  A control sample with no reverse transcriptase is always included to check 

for genomic contamination.  The contents are incubated at 42°C for one hour and then the 

transcriptase enzyme is stopped with an incubation at 95°C for 10 minutes.  The reaction 

is then stored at –20°C or used immediately.  The 20.0 ul PCR reaction is gently mixed 

and includes 2.5 ul of the RT reaction, 0.2-1 uM final concentration of each primer and 

12.5 ul of  “D” FailSafe PCR 2X PreMix  (Epicentre, Madison, WI) with 0.5 ul of 

FailSafe PCR Enzyme Mix.  Thermocycler conditions are as follows: initial denaturation 

at 2 minutes, 94°C; cycling conditions with denaturation at 94°C for 30 seconds, 

annealing 55°C for 30 seconds and extension at 72°C for 30 seconds with a total of 35 

cycles.  The products are extended at 72°C for 5 minutes in the Perkin Elmer 9600 

thermocycler (PE Biosystems, Foster City, CA).  The murine primer sequences 
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(described above) were used as primers on the porcine mRNA.  Through touch prep and 

QiaQuick PCR Purification Kit (Qiagen, Valencia, CA), the porcine DNA amplification 

products were purified.  The DNA was spectrophotometrically quantified and sequenced 

using the PCR amplification primers described above (Oklahoma State University 

Recombinant DNA/Protein Resource Facility).

The chromatograms of the raw sequences of the reverse porcine and forward 

porcine sequences were aligned with the BioEdit 

(www.mbio.ncsu.edu/BioEdit/bioedit.html) biological sequence alignment editor and 

then a consensus sequence was derived from the two traces.   The porcine sequence was 

then entered into the TIGR Gene Indices program (http://tigrblast.tigr.org/tgi/), and a 

BLASTN search was performed.  An 89% homology was found with the Sus scrofa

(TC58938) octamer-binding transcription factor 3.  This particular sequence was then 

compared with sequences in NCBI (http://www.ncbi.nlm.nih.gov/) database and a high 

homology with Bos taurus POU domain (NM_174580.1) and Sus scrofa MHC class I 

(SSC251914) were found.  We were interested in finding homologous sequences for 

bovine and porcine Oct-4 to design one primers/probe set for both species.   The 

(TC58938) TIGR sequence which was homologous to the bovine sequence, was then 

imported into the ABI 7700 software to design TaqMan primers and probe.  A TaqMan 

probe specific for porcine Oct-4 was designed to contain a fluorescent 5’ reporter dye (6-

FAM) and a 3’quencher dye (TAMRA).  The Oct-4 forward primer is 5’-

TGGTCCGCGTGTGGTTCT-3’ and the reverse primer 5’-

TCGTTGCGAATAGTCACTGCTT-3’ with the fluorescent-labeled Oct-4 probe 
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5’CAACCGTCGCCAGAAGGGCAAAC[Tamra~Q] (prepared by Qiagen, Valencia, 

CA).

Quantitative, Real-Time, One-step RT-PCR

Using Qiagen QuantiTect Probe RT-PCR Kit (Qiagen; Valencia, CA), both 

reverse transcription and PCR take place in a single tube.  The RT mix contains 

Omniscript and Sensiscript Reverse Transcriptases with a HotStarTaq DNA Polymerase 

that remains completely inactive during the reverse transcription reaction (Qiagen, 

Valencia, CA). Conceptus Oct-4 gene expression was evaluated by Real Time 

Polymerase Chain Reaction using a fluorescent reporter and 5’ exonuclease assay system.    

The RT-PCR took place in an ABI PRISM 7700 Sequence Detection System 

(PE/Applied Biosystems, Foster City, CA).  First, reverse transcription was allowed to 

proceed for 30 minutes for 50°C; since RNA cannot serve as a template for PCR, the first 

step is to reverse transcribe the RNA template into cDNA.  Then, the DNA Polymerase is 

activated by a 15 minute 95°C incubation step; this step also inactivates the reverse 

transcriptase enzymes and therefore, temporally separates the reverse transcription from 

the PCR.  The two-step cycling also includes an annealing/extension of 60 seconds at 

60°C with 45 cycles, followed by a final extension at 72°C.  The TaqMan Ribosomal 18S 

RNA internal control was supplied by PE/Applied Biosystems (Foster City, CA).  This 

normalization control corrects for loading discrepancies.  Fifty nanograms of total RNA 

were tested for each morphology studied.     

Using the products from the Real Time RT-PCR, the amplification efficiencies of 

the target sequence was prepared by a 10X dilution series in sterile, nuclease-free water 
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(Epicentre, Madison, WI).  Each dilution was amplified by RT-PCR.  The CT values of 

the target gene, Oct-4 were subtracted from the CT values of the internal control 18S.  

The plot of the difference in CT values against the logarithm of the template resulted in a 

line with a slope <0.1  (Data not shown).  Amplification efficiencies were therefore, 

comparable.  Confirmation of target and normalization genes was collected with 

continuous fluorescent data acquisition of the melting curve graph.  

Relative Quantitation of Oct-4 Expression

Gene expression was quantitated by the determination of the threshold cycle (CT) 

number of the FAM fluorescence within the geometric region of the semi-log plot 

generated during Real Time PCR.  Within the geometric region of the amplification 

curve, each difference of one cycle is equivalent to a doubling of the amplified product of 

the PCR.  The relative quantitation of Oct-4 expression across conceptus morphologies 

was evaluated using the comparative CT method [165-167].  The ∆CT value was 

determined by subtracting the ribosomal 18S CT value for each sample from the Oct-4 CT 

value of that sample.  Calculation of the ∆∆CT  value is achieved by using the highest 

mean ∆CT value as an arbitrary calibrator to subtract from all other mean ∆CT 

morphology values.  Fold changes comparing the various porcine morphologies were 

then determined by the expression, 2-∆∆CT .
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Statistical Analysis

Quantitative RT-PCR ∆CT values were analyzed using the Statistical Analysis 

System with the Mixed Procedure [168, 169].  The statistical model used in the analysis 

tested the fixed effect of Developmental Stage (day 10, 12, 13, 15, and 17) of conceptus 

development.  Significance (P<0.05) was determined by probability differences of least 

squares means between conceptus day of development and gene expression of Oct-4.  

Results are presented as the arithmetic mean ± SEM.

Results

RT-PCR Quantitation Using Taqman PCR

Through the initial investigation of the porcine cDNA with the murine primers, it 

was discovered that the murine Oct-4 primers could bind and amplify the porcine cDNA.  

Another indication of homology between species, found during the TIGR and NCBI 

database searches, is the fact that both the porcine and bovine Oct-4 gene sequences are 

located near the MHC.  While the pluripotent cells of the embryo appear to be expressing 

the Oct-4 transcript during early peri-implantation, the MHC class II cells of the uterine 

epithelium appear to suppress the immune response [152]. 

The present communication describes the use of Real Time RT-PCR.  The target 

gene expression was evaluated using a dual-labeled probe on small pools of porcine 

conceptuses.  The relative abundance of mRNA encoding Oct-4 was calculated using the 

comparative CT method.   Ribosomal 18S rRNA was used to normalize for RNA loading 

variation. The messenger RNA expression profile of the Oct-4 gene was generated using 
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the ABI PRISM 7700 Sequence Detection System (PE/Applied Biosystems, Foster City, 

CA).  Following the amplification, CT, ∆CT and ∆∆CT values were calculated and 

recorded in Table 3.1.

The ∆CT measures the raw expression of the Oct-4 gene based upon 

normalization.  Based on normalization with 18S ribosomal RNA, day 12 to day 17 of 

conceptus development significantly affected (P< 0.001) Oct-4 mRNA expression. With 

a total of twenty-four observations, day 10, 12 and 13 of conceptus development varied 

significantly with day 15 and 17 of development (P<0.05).  Conceptus expression of Oct-

4 was approximately 2, 8, and 11-fold greater on day 10 and 12 of pregnancy compared 

to expression on day 13, 15, and 17, respectively.  Placental differentiation is associated 

with the down regulation of Oct-4 gene expression as described in Figure 3.1.
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Embryonic Stage Oct-4 Mean CT 18S rRNA Mean CT ∆CT ∆CT Mean ∆∆CT Fold Difference

Day 10 25.4 15.8 9.7
25.1 16.1 9.0
29.6 20.8 8.8
26.3 16.1 10.23 9.4 ± .66a 3.5 11.6

*******************************************************************************************************

Day 12 25.6 16.4 9.2
26.1 16.0 10.1
26.4 15.9 10.4
26.1 16.1 10.0
24.1 16.2 7.9
25.2 16.2 9.0 9.4 ±  .54a 3.5 11.6

*******************************************************************************************************
Day 13 25.0 16.4 8.9

24.9 15.9 9.0
28.8 15.9 12.9 10.2 ± .76a 2.8 6.8

********************************************************************************************************
Day 15 28.1 16.7 11.4

31.2 16.7 14.4
28.9 16.3 12.6
29.7 16.1 13.6
27.1 16.4 10.7
27.2 16.3 10.9
29.5 16.3 13.2 12.4 ± .50b 0.6 1.5

********************************************************************************************************
Day 17 28.3 16.3 12

28.2 16.0 12.2
29.2 16.2 13.0
31.3 16.7 14.6 13.0 ± .66b 0.0 1.0

Table 3.1  Quantitative RT-PCR Analysis of Gene Expression During Rapid 
Trophoblastic Elongation for Oct-4.

∆CT = Cycle threshold: cycle number in which amplification crosses the threshold set in 
the geometric portion of amplification curve.
‡∆C = Subtracted gene product of interest CT – 18S rRNA CT; normalization of PCR 
cycles for subtracted gene target with 18S rRNA.
∆∆CT = Mean ∆CT – highest mean ∆CT value: the mean value Day 17 Oct-4 expression 

(highest ∆CT; lowest expression of Oct-4 in study) was used as a calibrator to set the 
baseline for comparing mean differences in values across all other groups.
§a-b Values with different superscripts differ significantly in expression of Oct-4 (P < 
0.05).  
Day 12 and Day 17 values for the target gene differed significantly (P< 0.001).
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Fold Difference in
Oct-4 Gene Expression

Gene
Expression

Figure 3.1  Results of RT-PCR Quantitation Using Taqman Probe.  Based on 
normalization with 18S ribosomal RNA, Day 12 to Day 17 of conceptus development 
significantly affected (P< 0.001) Oct-4 mRNA expression.  Different superscripts (a, b) 
differ significantly in expression of Oct-4 (p<0.05).   
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Discussion

The expression of Oct-4 has not been characterized during this unique transitional 

stage of porcine development (days 10-17 of gestation).  As a classical marker of ES cells 

and in vivo embryonic blastocyst cells the transcription factor, Oct-4 is exclusively 

expressed by embryonic and germ cells and plays a critical role in the establishment 

and/or maintenance of pluripotent cells [1, 2].   

Caution must be exercised in analysis as presence of the transcript does not 

necessarily result in protein expression.  An interesting study would employ whole mount 

immunohistochemistry to detect the Oct-4 transcript in the TE and/or ICM of the porcine 

conceptuses.

Prudence is warranted as 18S rRNA has exhibited variability across 

developmental stages as a result of the dynamic nature of bovine embryonic cells.   

Preattachment embryos exhibit the dynamic nature of RNA populations [122].   While 

the comparative CT method allows for the determination of the relative differences in 

transcripts, a disadvantage is the dependence on a normalizer expressed in the dynamic 

state of embryogenesis.  However, the use of an absolute measurement would be difficult 

to interpret given the dynamic embryonic state [122].

It has been proposed that conceptus estrogen production stimulates the release of 

endometrial proteins and sequestration of histotroph.  Autocrine and paracrine secretion 

of polypeptides by the conceptus may influence integrin/ fibronectin connections during 
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trophoblastic elongation.  Clearly, the porcine uterine microenvironment must be 

analyzed during the critical stages of cellular differentiation.

During the period of porcine peri-implantation development when the length of 

the conceptus may grow 30-45 mm/hour, Oct-4 production is greatest.  Indicated within 

this observation is the parallel of Oct-4 pluripotency marker proteins being expressed 

during this rapid growth phase.  Porcine pregnancy days ten to twelve include rapid 

trophoblastic elongation and initiation of porcine production of estrogen.  This signal for 

maternal recognition of pregnancy prevents the decline of progesterone production 

through continued uterine and conceptus production of Prostaglandin E2 [119].  The 

critical maintenance of pluripotency through the Oct-4 transcription expression should 

coincide with conceptus estrogen production.  The maximal uterine release of insulin-like 

growth factor (IGF-1) into the uterine lumen temporally coincides with conceptus 

estrogen biosynthesis and increased amounts of P450arom mRNA in filamentous 

conceptuses [137].  The data seem to indicate that Oct-4 expression corresponds 

temporally with the establishment of pregnancy in the pig.   Leukemia inhibitory factor 

transcripts are maximal on days eleven to twelve [131, 134].  Similarly, the molecular 

players in the retinoid signaling pathway, retinol binding protein, RA, and the nuclear 

receptors are simultaneously expressed with the transition from tubular to filamentous 

morphology.  While, LIF is involved in cellular differentiation and growth, perhaps this 

increase, immediately prior to trophoblastic elongation signals the subsequent down-

regulation of Oct-4.  Uterine epithelium produced OPN begins on day 12 and increases to 

day 15; as Oct-4 transcripts begin a decline, the differentiation needed for attachment and 

placentation with the suggested conceptus increase in uterine and conceptus integrin 
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attachment through OPN [129].  Possibly, Oct-4 protein levels must decline for 

placentation to take place.  The 30-to 100-fold increase in the serine protease inhibitor 

light chain member, bikunin during days 10 to 18 indicates the need for protection of the 

porcine uterine lining when the pluripotency marker, Oct-4 is declining and apposition of 

the conceptus to the uterine lining is necessary [146].   Similar comparisons can be made 

with the serine protease, kallikrein increase from day 10 to day 15 [147, 148].    In 

summary, the present study showed a significant down-regulation of the Oct-4 transcript 

from day 12 to day 17.  Oct-4 expression in the developing conceptuses during the 

developmental period prior to and during early trophoblastic elongation (days 10 and 12) 

indicates active porcine embryonic pluripotent stem cells.  The down- regulation of the 

Oct-4 transcript (days 15 and 17) indicates differentiation inherent in transcripts which 

prepare the endometrium and conceptus for implantation.   
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CHAPTER IV

DETECTION OF Oct-4 GENE EXPRESSION IN MURINE EMBRYOS DURING 
PREIMPLANTATION DEVELOPMENT

Introduction

The objective of this study was to compare the mRNA expression patterns of the 

Oct-4 gene in early mouse embryos using Real Time polymerase chain reaction (PCR).  

Embryos at the four-cell, eight-cell and blastocyst stage were studied.  Murine Oct-4 is 

expressed in the murine ICM but not in the pretrophectodermal cells [4, 42].  Oct-4 

protein is found in the nuclei of two-cell embryos, and zygotic activation of Oct-4 

expression occurs prior to the eight-cell stage [4, 14].  Expression of the gene is uniform 

in all cells of the embryo through the morula stage, however, as the outer cells 

differentiate intoTE, Oct-4 expression becomes restricted to the cells of the ICM in the 

blastocyst [10, 14, 39].  Expression of Oct-4 has not been characterized using individual 

whole murine embryos.  Total RNA was extracted from whole individual embryos 

representing development from day two post coitus (2dpc) with four cell and eight cell 

embryos to day three post coitus (3dpc) with the developing blastocyst.  Employing 

quantitative PCR, we assayed Oct-4 cDNA using 18S rRNA gene expression as a 

normalization control.  Oct-4 expression differences between the embryonic stages were 

determined using the comparative CT method.  Embryonic stage significantly affected 
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(p<0.005) Oct-4 gene expression.  Embryonic expression was greatest in the blastocyst 

being approximately 85 and 12-fold greater than the four-cell and eight-cell embryonic 

stages, respectively. Four-cell, eight-cell and blastocyst embryos have four, eight and 

approximately twenty pluripotent cells [120]. While these embryos (four-cell, eight-cell 

and blastocysts) exhibit a 1X, 2X and 5X increase in pluripotent cell number, within this 

study, the same embryos demonstrated a 1X, 7X and 85X increase in Oct-4 gene 

expression, respectively. 

The murine embryo generates the first two cell lineages (the TE and the 

hypoblast) which form the basis of the placenta and the extraembryonic yolk sacs 

required for successful interaction with the mother.  The gestation period for the mouse is 

19-20 days [120].  The murine two-cell egg is present on the first day post coitus (dpc) 

with the 4-16 cell morula on the second dpc [120].  The blastocysts have hatched free of 

the zona by the fourth dpc with the implanting blastocyst and hypoblast on 4.5dpc [120].   

The blastocyst contains two extraembryonic lineages, TE and hypoblast, and the embryo 

itself comprises a pool of pluripotent cells located within the ICM [47].  The murine ICM 

forms a second pluipotent cell population, the primitive ectoderm between 4.75 and 5.25 

dpc.  The outer primitive ectoderm cells proliferate and by 6.0-6.5 dpc have formed a 

pseudo-stratified epithelial layer of pluripotent cells.  The germ cells arise from the 

primitive ectoderm and during gastrulation, the primitive ectoderm generates the primary 

germ layers of the embryo and the extra-embryonic mesoderm [47].  Pre-implantation 

development ends in the formation of a blastocyst with three layers: the trophoblast, the 

ICM or epiblast and the hypoblast that will form the embryo [170].
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Undifferentiated stem cells of the ICM give rise to the whole of the embryo 

proper as well as the mesenchymal components of the placenta.  The murine sixteen-cell 

stage with the radially oriented divisions of some of the blastomeres leads to segregation 

of the daughter blastomeres generating the outer TE layer of the blastocysts and the inner 

cohesive ICM.  This segregation establishes the placental and embryonic progenitors 

[118].  A major question is how cellular polarization results in differential gene 

expression.  The POU transcription factor, Oct –4 is required to maintain totipotent 

phenotype of ICM cells, while either loss of expression or over expression leads to 

differentiation [59]; deletion of Oct-4 leads to loss of ICM with all blastomeres forming 

TE [15, 118].  The three germ layers of the embryo, ectoderm, mesoderm and endoderm 

form during gastrulation [117].

Blastomeres of the four-cell morulae can each give rise to a mouse, while early 

eight-cell stage blastomeres cannot generate a mouse by themselves [120].  With 

cleavage to the 16-cell stage, a gradual restriction in the developmental potency of the 

cells exists due to the production of the TE and the ICM lineages [120].  The murine fully 

expanded blastocyst contains about 64 cells with approximately 20 in the ICM.  During 

the fifth day of development, the blastocyst hatches from the zona and is ready for 

implantation [120].
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Materials and Methods

Embryo Collection

Four week old CD1 female mice (Charles River Laboratory, Boston, MA) were 

injected with 0.1ml (7.5U) of PMSG (Sigma-Aldrich, St. Louis, MO) then 48 hours later 

with 0.1ml (7.5U) of hCG (Sigma-Aldrich, St. Louis, MO) and placed with males.  

Vaginal plugs were checked thirteen hours post-hCG and positive bred females were 

placed in the maternity area.  The in vivo-developed mouse embryos at the four-cell, 

eight-cell and blastocyst stages were flushed from either oviducts or uteri at 61, 69, and 

97.5 hours post-hCG, respectively.  Timings were derived empirically and through 

literature review [171, 172].  The flushing medium, BWW/Hepes (Irvine Scientific, Santa 

Ana, CA) with BSA (Irvine Scientific, Santa Ana, CA), was sterilized through a 0.2 

micron filter (ISC, BioExpress, Kaysville, Utah) and warmed to 37°C.  Zona pellucidae 

were removed by pipetting the embryos up and down through a fine bore pipet in acid 

tyrodes (Sigma-Aldrich, St. Louis, MO) medium (pH 2.5) [120].  The embryos were then 

washed with serum free BWW/Hepes.

Extraction of RNA

Complementary DNA (cDNA) from mouse embryos was extracted by the Cells-

to-cDNA Kit (Ambion, Inc., Austin, Texas) according to the manufacturer’s protocol.  

The kit contents have been previously described.  In brief, the cDNA from mammalian 

cells can be extracted without specifically isolating RNA.  A heat treatment in the Cell 

Lysis Buffer ruptures the cells, releasing the RNA and inactivating endogenous RNases.  
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The crude cell lysate is treated with DNase I to degrade the genomic DNA.  Since DNA 

contamination will result in inaccurate quantification [173], DNase I is added to rid the 

sample of genomic DNA.

Specifically, each zona pellucida free embryo was pipetted into 5 ul of cold cell 

lysis buffer in a 0.2 ml nuclease free microfuge tube (United Scientific Products, 

SanLeandro, CA).  The cells were gently centrifuged down into the lysis solution and the 

cell lysis/embryo mixture was covered with 1-2 drops of nuclease-free mineral oil to 

prevent evaporation (Sigma-Aldrich, St. Louis, MO).  The embryos were incubated 

immediately for ten minutes in a 75°C water bath to lyse the cells, release the RNA, and 

inactivate the RNases.  DNase I was then added at 0.8 ul/reaction tube (2U/ul) and 

incubated at 37°C for 30 minutes.  The DNase I was inactivated at 75°C for five minutes.

Reverse Transcription

Previously, the porcine reverse transcription and polymerase chain reaction were 

conducted in a one-step reaction.  The murine embryos were treated in two steps: reverse 

transcription and then polymerase chain reaction.  The separation of the RT and PCR 

steps has the advantage of generating a stable cDNA pool that can be stored virtually 

indefinitely [174].  Using the Cells-to-cDNA kit (Ambion, Inc., Austin, Texas) in a

nuclease free 0.2 ml microfuge tube (United Scientific Products, San Leandro, CA,) the 5 

ul of cell lysate (RNA) was mixed with 4 ul of dNTPs, 2 ul of random decamers and 5 ul 

of nuclease-free water.  The use of random primers maximizes the number of mRNA

molecules that can be analyzed from a small RNA sample [174].  After gentle vortexing 
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and a brief centrifugation, individual microfuge tubes were heated for 3 minutes at 70°C, 

placed on ice for 1 minute, followed by a second brief centrifugation and replaced on ice.  

The remaining reagents were added to each cell lysate sample: 2 ul of reverse 

transcriptase buffer, 1 ul of M-MLV Reverse Transcriptase and 1 ul of the Rnase 

Inhibitor (10U/ul).  Since the cell lysates may have contaminating genomic DNA, it is 

necessary to include a minus-reverse transcriptase control to demonstrate that the 

template for transcription was cDNA and not genomic DNA.  The 20 ul samples were 

mixed gently, centrifuged briefly and incubated at 42°C for an hour.  The reverse 

transcription was inactivated with a 10 minute, 95°C incubation. The samples can be 

stored at -20°C, or used immediately for amplification. 

PCR Amplification

To analyze the extraction of reverse transcription of the mRNA an aliquot of 

several samples was used in PCR amplification in a thermocycler Perkin Elmer 9600 (PE 

Biosystems, Foster City, CA) to verify mRNA extraction and cDNA production before 

the Real Time trials were conducted.  The primers sense 5’-GGC CCA GAG CAA GAG 

AGG TAT CC-3’ and antisense 5’-AGC CAC GAT TTC CCT CTC AGC-3’ for an 

endogenous 460 bp β-actin amplification was added as an internal control of the PCR 

reaction [3].  Also, primers sense 5’-CTC GAA CCA CAT CCT TCT CT-3’ and 

antisense 5’-GGC GTT CTC TTT GGA AAG GTG TTC-3’ were used to amplify Oct-4 

cDNA [3] for a 312 bp product.  Both sets of primers were synthesized by the Oklahoma 

State University Recombinant DNA/Protein Resource Facility.  The PCR reaction was 



94

performed using a 35-cycle program consisting of a 2 minute initial denaturation at 94°C, 

30 seconds at 94°C, 55°C and 72°C each, with a final extension of 72°C for 5 minutes.  

To check for nucleic acid contamination, a negative control (minus template) was also 

prepared to contain all of the reagents except the template.

The polymerase chain reaction was set up using the FailSafe PCR System 

(Epicentre, Madison, WI) with a 1uM final concentration of each primer.  Briefly, we 

prepared the FailSafe Master Mix by adding primers (final concentration of 1uM) and 

water to 9.5ul for each reaction tube.  12.5 ul of FailSafe PCR PreMix “D” was placed 

into individual microcentrifuge tubes and 2.5ul of template cDNA was added to the 

PreMix “D.”  1.25 units/reaction FailSafe polymerase was added to the master mix and 

10 ul of the final Master Mix was added to each tube for a total 25ul reaction.  Samples of 

cDNA were electrophoresed on a 1.5% agarose gel stained with ethidium bromide and 

visualized to verify the PCR had produced the appropriately sized amplification product.

Real Time PCR Amplification

The relative changes in quantity of mRNA transcripts were determined using Real 

Time Polymerase Chain Reaction in the MJResearch Opticon 2 (Bio-Rad Laboratories, 

Inc., South San Francisco, CA). In brief, 3 ul from four-cell, eight-cell and blastocyst 

stage extracted and reverse transcribed cDNA products were Real Time PCR amplified in 

a reaction containing 12.5 ul of DyNAmo HS SYBR Green master mix (New England 

Biolabs, Beverly, MA) with a final primer concentration of 10uM of forward and reverse 

primer with nuclease free water up to 25 ul final reaction.  Each sample was run with 
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primers (Invitrogen Corp., Carlsbad, CA) of Ribosomal 18S sense: 5’- TCA AGA ACG 

AAA GTC GGA GGT T-3’ and Ribosomal 18S antisense: 5’-GGA CAT CTA AGG 

GCA TCA CAG-3,’ and Oct-4 Real Time sense: 5’-

TGGAGGAAGCCGACAACAATGA-3’ and Oct-4 Real Time antisense: 5’-

ACTCCACCTCACACGGTTCTCAAT-3’.  The Oct-4 primer set produces a 110 bp 

product and was derived through the oligo analyzer on the IDT web site  

(http://www.idtdna.com/biotools/primer_quest/primer_quest.asp) and Primer Select 

Oligonucleotide Design and Analysis tool suite (DNASTAR, Inc., Madison, WI).  

Duplicate samples of reverse transcribed samples were run with each primer pair.  The 

PCR consumables were prepared as a mixture or master mix [175, 176].  

Specific conditions of the Real Time reaction for Ribosomal 18S were 95°C for 

15 minutes with 42 cycles of 94°C at 20 sec, 61°C at 45 sec and 72°C at 45 sec with 

fluorescence measured at 76°C and 78°C.  The melt curve was run at 54°C to 90°C in one 

second, 0.2°C intervals; products were annealed with a ten minute final annealing 

temperature of 72°C.  Products were held at 10°C.  Specific conditions of the Real Time 

reaction for the murine Oct-4 gene were 95°C for 15 minutes with 42 cycles of 94°C at 

20 sec, 56°C at 20 sec and 72°C at 20 sec with fluorescence measured at 76°C and 78°C.  

The melt curve was run at 50°C to 90°C in one second, 0.2°C intervals; products were 

annealed with a ten minute final annealing temperature of 72°C.
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Statistical Analysis

Quantitative PCR ∆CT values were analyzed using the analysis of differences in 

the means between the three embryonic populations with a one-way ANOVA.   The one-

way ANOVA was followed by multiple pairwise comparisons among the means using 

Tukey’s Multiple Comparison Test.  These tests were performed using GraphPad Prism 

version 4.00 for Windows, GraphPad Software, (SanDiego, CA).

Results

The amplification efficiencies of the target and reference must be approximately 

equal in order for the ∆∆CT calculation to be valid [166]. An assessment to determine if 

the two amplicons have the same efficiency is to look at the variation in the ∆CT with 

template dilution.  A 10x dilution series in sterile, nuclease-free water (Epicentre, 

Madison, WI) was performed and each dilution was amplified by RT-PCR.  The results 

of an experiment in which the cDNA preparation was diluted over a 100-fold range are 

found in Figure 4.1.  The log cDNA dilution versus the ∆CT were added as data points 

and a line plotted by linear regression analysis.  The efficiency of amplification of the 

target gene (Oct-4) and internal control (18S rRNA) was examined using Real Time PCR 

and SYBR green detection.  The serial dilutions of cDNA were amplified by Real Time 

PCR.  The absolute value of the slope of the line did not significantly deviate from zero.  

Thus, the efficiencies of the target (Oct-4) and the reference gene (18S rRNA) are similar 

and the ∆∆CT calculation for the relative quantification of the target could be used.
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When replicate PCRs are run on the same sample, it is appropriate to average the ∆CT

data of each target and internal control values.  Samples that did not amplify, did not 

show the exact melt curve peak, or did not demonstrate the appropriately sized 

amplification product after agarose gel electrophoresis and staining were not used during 

analysis.  Specificity and RT-PCR product verification were achieved by plotting 

fluorescence as a function of temperature to generate a melting curve of the amplicon.  

The temperature was slowly increased above the Tm (melting temperature) of the 

amplicon and fluorescence measured.  Since SYBR Green binds to the minor groove of 

the DNA double helix, a characteristic melting peak at the melting temperature of the 

amplicon will distinguish it from amplification artifacts.  The DNA sequence of the target 

amplicon contributes significantly to the melting profile [174, 177, 178].  Specificity of 

the desired product was also documented by staining and visualization after high-

resolution gel electrophoresis.  Data sets from four-cell, eight-cell and blastocyst embryos 

are presented in Tables 4.1, 4.2, and 4.3, respectively.  Table 4.4 demonstrates the 

calculations necessary to derive the ∆∆ CT of the Oct-4 gene, normalized with 18S rRNA 

in the various murine embryos.
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Figure 4.1: Validation of the 2∆∆∆∆∆∆∆∆CT method.  Amplification of the cDNA diluted over a 
100-fold range.
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Table 4.1:  Quantitative PCR Analysis of Gene Expression                                    
During Murine Embryonic Development

Four Cell Embryonic Analysis

  Murine Four 
Cell Murine Four Cell Murine Four Cell
Oct-4 Mean CT

† 18S Mean CT
† ∆CT

‡¶

29.705 21.3275 8.3775
30.0395 22.77 7.2695
29.526 21.512 8.014
34.1865 31.19 2.9965
28.902 22.1045 6.7975
29.322 20.3465 8.9755
30.9815 21.0155 9.966
29.285 22.1905 7.0945
33.6065 25.9625 7.644
31.222 26.392 4.83
33.1635 24.087 9.0765
31.0585 22.59 8.4685
31.122 23.706 7.416
31.0465 24.9245 6.122
31.9665 25.383 6.5835
33.926 26.946 6.98
34.748 23.2825 11.4655
31.0475 25.0475 6
32.526 24.153 8.373
30.75 22.507 8.243

35.4585 27.812 7.6465
31.232 30.3705 0.8615
32.9155 30.421 2.4945

CT
†  = Cycle threshold: cycle number in which amplification crosses the threshold set in 

the geometric portion of amplification curve
∆CT

‡¶ = Subtracted gene product of interest CT – 18S rRNA CT ; normalization of PCR 
cycles for subtracted gene target with 18S rRNA



100

Table 4.2:  Quantitative PCR Analysis of Gene Expression
During Murine Embryonic Development

Eight Cell Embryonic Analysis

Murine Eight Cell Murine Eight Cell Murine Eight Cell
Oct-4 Mean CT

† 18S Mean CT
† ∆CT

‡¶

28.6575 23.576 5.0815
29.2345 25.0975 4.137
27.2735 22.0165 5.257
28.2695 25.356 2.9135
27.632 26.7865 0.8455
29.9805 26.0155 3.965
28.1375 19.4555 8.682
25.695 26.085 -0.39
28.668 23.461 5.207
28.881 20.1205 8.7605
29.5355 21.753 7.7825
28.463 24.7115 3.7515
28.234 24.281 3.953
28.483 26.797 1.686
28.077 21.9295 6.1475
28.6955 21.7975 6.898
27.8835 22.339 5.5445
28.5525 30.7235 -2.171
27.62 22.701 4.919
28.636 25.918 2.718
28.3535 27.1475 1.206

CT
†  = Cycle threshold: cycle number in which amplification crosses the threshold set in 

the geometric portion of amplification curve
∆CT

‡¶ = Subtracted gene product of interest CT – 18S rRNA CT ; normalization of PCR 
cycles for subtracted gene target with 18S rRNA
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Table 4.3:  Quantitative PCR Analysis of Gene Expression  

During Murine Embryonic Development 

Blastocyst Embryonic Analysis

Murine Blastocyst Murine Blastocyst
Murine 

Blastocyst
Oct-4 Mean CT

† 18S Mean CT
† ∆CT

‡¶

27.4993 26.4057 1.0937
27.9827 26.7017 1.2810
29.1270 28.4063 0.7207
29.0667 28.1010 0.9657
31.7027 31.8110 -0.1083
31.3100 31.0827 0.2273
30.0650 29.3393 0.7257
30.6690 30.4423 0.2267
28.9510 27.9110 1.0400
27.9190 26.8240 1.0950
30.3793 30.4383 -0.0590
28.6897 27.7857 0.9040
32.4303 31.9757 0.4547
28.6773 27.6243 1.0530
32.4867 34.8563 -2.3697
29.5330 28.3607 1.1723
27.9650 27.0200 0.9450
28.7530 27.9297 0.8233
28.2823 27.6743 0.6080
28.4513 27.2463 1.2050
29.8863 28.7463 1.1400
31.6660 30.8383 0.8277
31.4213 31.7947 -0.3733
30.2557 29.5973 0.6583
29.2680 28.0287 1.2393
30.4363 29.5027 0.9337
31.6267 31.1667 0.4600
30.8577 30.1517 0.7060
30.3897 30.0197 0.3700
30.8393 30.1737 0.6657
31.2703 30.6757 0.5947
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Table 4.4:  Quantitative PCR Analysis of Gene Expression in Murine Embryos

Baseline 
Results

Mean ∆ CT Standard 
Deviation

∆∆ CT
§ Fold Difference

Blasts (n = 31) 0.620± 2.405a 0.693 6.410 85.039
8 cell (n = 21) 4.138± 2.849b 2.849 2.892 7.425
4 cell (n = 23) 7.030±.6932c 2.405 0.000 1.000

∆∆ CT
§ = Mean ∆ CT – highest mean Mean ∆ CT  value:  the mean value of 4 cell 

murine embryos Oct-4 expression (highest ∆ CT; lowest expression of Oct-4 in study) 
was used as a calibrator to set the baseline for comparing mean differences in values 
across all other groups. 
a-c Values with different superscripts differ significantly in expression of Oct-4 
(P<0.005).  Statistics were determined using GraphPad PRISM with a 1way ANOVA 
analysis of the ∆CT Mean.  4 cell, 8 cell and blastocyst embryonic values for the 
target gene differed significantly (P<0.005).   
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Figure 4.2: ∆CT Mean values of the 4-cell, 8-cell and blastocyst embryos.  
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Figure 4.4: Up-regulation of the murine Oct-4 transcript per pluripotent cell in 
embryonic stages with a comparison of the number of pluripotent cells found in 
each embryo and the comparison of expression fold increase in Oct-4 expression 
levels.  Four cell and eight cell embryonic pluripotent cells were identified through 
microscopy.  The ~20 pluripotent cells in expanded blastocysts was derived from 
Hogan and co-workers [120].
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Quantitative PCR ∆CT values were analyzed using analysis of differences in the 

means between the three embryonic populations with a one-way ANOVA.  The three 

murine populations, 4-cell (n = 23), 8-cell (n = 21), and blastocysts (n =31), demonstrated 

a median and standard error of the mean of 7.4 ± 0.5, 4.1± 0.6, and 0.7± 0.1, respectively, 

as shown in Figure 4.2.  Since the one-way ANOVA allowed us to reject our null 

hypothesis that no difference existed between the three populations of murine embryos in 

Oct-4 gene expression, we knew at least one of the means varied significantly.  When the 

ANOVA indicates that at least one of the means isn’t the same as the other means, the 

determination of where the differences exist is performed by a post test.  The one-way 

ANOVA with a significance of P<0.005 was followed by multiple pairwise comparisons 

among the means using Tukey’s Multiple Comparison Test.  This test showed pairwise 

comparisons with each P value <0.005.  The one-way ANOVA with Tukey’s post test 

was performed using GraphPad Prism version 4.00 for Windows, GraphPad Software, 

(SanDiego, CA).  

Embryonic development stage significantly affected Oct-4 mRNA expression.  

Blastocyst expression of Oct-4 was approximately 85 and 12-fold greater than the four-

cell and eight-cell embryonic stages, respectively, and is shown in Figure 4.3.  Four-cell, 

eight-cell and blastocyst embryos have 4, 8 and ~20 pluripotent cells [120].  The 1X, 2X 

and 5X increase in pluripotent cell number coincides with a 1X, 7X and 85X increase in 

Oct-4 gene expression, respectively and is illustrated in Figure 4.4.  The increase in Oct- 4 

mRNA is not due to the increase in cell number.
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Discussion

Oct-4 is a mammalian transcription factor exclusively expressed in embryonic and 

germ cells.  Expression of Oct-4 has not been characterized using individual murine 

embryos.  More than seventy embryos were compared for the mRNA expression pattern.  

The blastocysts and 8-cell embryos produced 85-fold and 7-fold more Oct- 4, respectively 

than the four cell embryos (Fig. 3).  A fully expanded blastocyst contains approximately 

20 cells in the ICM [120] compared to the four and eight totipotent cells found in the 

comparison embryos.   Certainly, the increase in cell number by approximately 5-fold 

more totipotent cells in the blastocyst and 2-fold more totipotent cells in an eight celled 

embryo cannot account for an 85 and 7-fold expression increase in Oct-4 expression, 

respectively (Fig. 4).  The present study not only showed a significant up-regulation of 

the Oct-4 transcript from the four-cell to eight-cell and blastocyst embryos, but it 

indicates an up-regulation of the Oct-4 transcript per totipotent cell.

With the amplification efficiencies of the target gene and the normalization gene 

verified, and this preliminary study comparing number of pluripotent cells found in each 

embryo with the expression fold increase in Oct-4 expression levels, the groundwork is 

prepared for technologies which influence transcription levels of individual murine 

embryos.  This study of Oct-4 transcription levels in individual murine embryos with the 

suggested up-regulation of the Oct-4 transcript is the basis for a protein transduction 

study of individual murine embryos.  
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CHAPTER V

PURIFICATION AND PROTEIN TRANSDUCTION OF
TAT-HA FUSION PROTEINS

The Proteins of Interest: Oct-4, GCNF, BMP8b

Oct-4 establishes the murine pluripotent condition. Oct-4 expression is equal in 

all cells until cavitation of the embryo, when Oct-4 is confined to the cells of the ICM; 

after implantation, Oct-4 is expressed in the epiblast and downregulated during 

gastrulation [4, 179].  Primordial germ cells are the only embryonic cells that continue to 

express Oct-4 after gastrulation [59].  It is of primary importance to understand how Oct-

4 creates pluripotency and to identify the signals upstream of the Oct-4 expression in this 

founder population of embryonic primary germ cells.  A brief study of the upstream gene 

regulators of Oct-4, GCNF and BMP8b, is necessary.

Germ cell nuclear factor (GCNF) functions as a repressor of gene transcription 

and is involved in murine preimplantation embryonic development [180].  GCNF was 

first designated in 1994 by Chen and co-workers and its function as regulator of gene 

expression in germ cell development suggested [181].   GCNF is an ophan nuclear 

receptor with an unidentified ligand.  Orphans are receptors for which the ligands and 

functions have not yet been identified [182].  GCNF has a well-defined DNA-binding 

domain (DBD) or hormone responsive element (TCAAGGTCA); this element contains 

one or more half-site sequences (such as AGGTCA) which can be arranged as direct 
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repeats, inverted or everted repeats [181, 182].  Described as an orphan member of the 

nuclear receptor superfamily [183], GCNF is a putative ligand-activated transcription 

factor and binds to DNA on a hexad sequence AGGTCA with zero-base pair spacing 

[183, 184]. While the direct repeat with zero base pair spacing suggests that GCNF binds 

the DNA as a homodimer, Cooney and co-workers raised the possibility that it could bind 

DNA as a monomer [185].  The residues, EGCKG, (glutamic acid, glycine, cysteine, 

lysine, and glycine) in the DBD sequence convey binding to the AGGTCA half-site by 

GCNF [186].  GCNF can repress transcription through competition for binding and 

through interactions with co-repressors [186]. 

While GCNF is expessed as early as the murine egg cylinder stage, its repression 

function is mediated by co-repressors that recruit histone deacetylases that deacetylate 

promoters and repress the gene expression [182].  One proposed model for GCNF is that 

it represses expression of genes in the absence of a signal and then activates the genes 

upon binding ligand [187, 188].  A “generic” mechanism of action was described by 

Cooney and co-workers [184] in which the absence of a ligand causes recruitment of 

corepressors which recruit histone deacetylase complexes and cause net deacetylation of 

the histones in the promoter region and the repression of the target gene expression.  With 

cognate ligand binding, the nuclear receptor undergoes a conformational change that 

displaces the corepressors and recruits coactivators and histone acetyltransferases.  The 

net histone acetylation of the promoter region causes expression of the target gene [184].  

The nuclear receptor superfamily of ligand-dependent transcription factors 

regulate gene expression involved in development, cellular proliferation and 

differentiation [189].   P19 cells that are stimulated to differentiate though exposure to 
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RA exhibit a transient upregulation of GCNF, then a down regulation and finally no 

GCNF detectable in fully differentiated cells; these results suggest a connection of GCNF 

with developmental stages during cellular differentiation [182].

Gene targeting used to generate a mouse model lacking GCNF showed that 

knockouts of the Gcnf gene were embryonically lethal [184].  Based upon relatedness in 

the DBD, GCNF is placed in a separate branch of the nuclear receptor superfamily [184].  

A unique description expression pattern is exhibited by GCNF with both embryonic and 

adult expression; GCNF is expressed in germs cells as well as neuronal cells [185].  

GCNF is named based upon its restricted expression pattern in the adult [186].  The 

GCNF message was detected in mouse embryos at E8.5 and was barely detectable at E10 

[185, 190].    

The first studies to suggest that GCNF repressed Oct-4 gene activity was 

presented by Fuhrmann in 2001 [191].  GCNF specifically binds to the Oct-4 proximal 

promoter and to extended half-sites of the AGGTCA core motif [187, 190, 191].  

Through transfected GCNF plasmids, the GCNF expression was shown to inversely 

correlate with the Oct-4 expression in mouse embryogenesis and the relationship 

appeared as a functional link [186, 191].  GCNF homozygous null mutant mice express 

Oct-4 more widely than just the primodial germ cells after gastrulation.  It was suggested 

that GCNF necessarily repressed Oct-4 in vivo [186, 191, 192].  

Bone morphogenetic proteins (BMPs) are members of the transforming growth 

factor type β superfamily of growth factors that function as heterodimers or homodimers 

[193].  Embryonic cells communicate with each other using just a few conserved families 

of signaling molecules and one of these families is that of the bone mophogenetic 
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proteins [194].  BMP as a name is misleading because much genetic and experimental 

evidence shows that these molecules regulate biological processes as diverse as 

apoptosis, cell proliferation, differentiation, cell-fate determination, and morphogenesis 

[194, 195].  BMP4 and BMP8B are often coexpressed in tissues or cell types during 

embryongenesis; while the two proteins have an overlapping expression in the 

extraembryonic ectoderm, both are required for primary germ cell generation.  BMP4 and 

BMP8B belong to different classes (Dpp and 60A, respectively) of the transforming 

growth factor type β superfamily and appear to function through a two-pathway model 

with synergistic signaling but separate receptor complexes to elicit the biological process 

[193, 196].  The Bmp4 and Bmp8b genes are expressed in the extraembryonic ectoderm 

and the suggested function is induction of primary germ cells [193].   Through 

transfections of COS cells with pIRES or pIRES with Bmp4/Bmp8b insertions, murine 

embryos with removed extraembryonic ectoderm and proximal epiblast (containing PGC 

precursors) were cultured on top of the COS cells.  A 54-fold increase in the number of 

PGCs with the Bmp4/Bmp8b COS cells of the murine embryonic portions over the 

control COS cells with the murine embryonic portions demonstrate a positive relationship 

between BMP8b and PGC production [193, 197].  Generation of the PGCs from the 

epiblast requires the expression of BMP8b in the extraembryonic ectoderm in the 

pregastrula and gastrula murine embryonic stages [198].  Proximity of the epiblast cells 

to the extraembryonic ectoderm is also required for generation of the PGCs suggesting 

that the signals from the epiblast are critical for PGC development [198-200].   Moreover, 

antisense RNA probes against murine Oct-4 exhibited clusters of Oct-4 positive cells in 

the epiblasts cocultured with the bone morphogenetic protein gene-containing COS cells 
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[193].  A signaling link has been suggested between the extraembryonic ectodermal 

production of BMP8B and the production of Oct-4 [201].

Our goal in this study was to construct plasmids within a prokaryotic expression 

system capable of expressing our particular genes, GCNF, Bmp8b, and Oct-4, fused to 

the TAT transduction domain and test the recombinant proteins on somatic and 

pluripotent cells.  Techniques involved in this study would include 5’ restriction site 

mutagenesis, cloning of PCR products, protein expression, purification through FPLC 

and verification of protein acquisition through SDS-PAGE and Western Blotting.  The 

production of these proteins will allow subsequent transduction studies. 

Materials and Methods

Traditional TAT-HA Fusion Protein Purification Method: An Overview

The expression vector into which a gene of interest has been cloned, is 

transformed into a bacterial strain, such as DH5α; individual clones are analyzed for the 

correct insert size by standard molecular biology techniques and then sequenced to 

confirm that the construct has been made through automated sequencing [91-93, 202].  

Next, the desired expression plasmid is transformed into a high-expressing bacterial 

strain such as Gold(DE3)LysS, and the fusion protein is expressed in a 200-ml overnight 

culture.  The bacteria are collected by centrifugation and the pellet is washed in a buffer.  

The fusion protein is then isolated by sonication of the bacterial pellet in 8M urea, as 

these hexahistidine-fused recombinant proteins are often found as inclusion bodies in the 

host bacteria.  The urea sonication helps to disaggregate the insoluble proteins [91-93].  
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These insoluble recombinant proteins, expressed as inclusion bodies, are dense 

aggregates that consist mainly of the desired product in the nonnative state [203].    The 

clarified sonicate is then applied at room temperature to an immobilized metal affinity 

column for purification.  A series of buffers of increasing imidazole concentrations 

(100mM, 250mM, 500mM and 1M) is applied to the column in subsequent steps, and 

start and flow-through fractions are saved.  The start, flow-through and all fractions are 

then analyzed by SDS-polyacrylamide gel electrophoresis [91-93].  

To treat culture cells and animal models with TAT-fusion proteins, the 

denaturant, 8M urea, must be rapidly removed.  The proteins are added to a desalting 

column for this purpose.  While this strategy to remove the urea produces purified protein 

and is more susceptible to precipitation and freeze-thaw problems; it is rapid and 

inexpensive.  A PD-10 column, which is a prepacked Sephadex G-25 M resin 

(Amersham Pharmacia, Piscataway, NJ), is often used.  One-milliliter fractions are 

collected in microcentrifuge tubes, and the pooled factions are analyzed by SDS-PAGE.  

The proteins are flash-frozen in 100 ul volumes in 10-20% glycerol and stored at –80 °C 

for further use [91-93].

Acquisition of the pTAT-HA plasmid

We were mailed the plasmid, pTAT-HA (gift from Dr. Steven F. Dowdy at 

Washington University, St. Louis, MO and Howard Hughes Medical Institute); using 

established methods we transformed the plasmids [204] into E. coli Top10 F’ cells 

(Invitrogen Corp., Carlsbad, CA).  We grew the transformed cells on Luria Bertani 

Medium with agarose [204] and with 50 ug/ml ampicillin.  The TAT-HA plasmid 
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encodes ampicillin resistance.  The TAT-HA expression vector encodes an N-terminal 6-

histidine leader sequence followed by the 11-amino-acid TAT PTD flanked by glycine 

residues (GYGRKKKRRQRRRG), a hemagglutinin tag (GYPYDVPDYAG) flanked by 

glycine residues, and a polylinker [30].  An isolate bacterial colony from this LB-

ampicillin selective plate was used to inoculate a starter culture of 5 ml LB medium 

containing ampicillin (50 ug/ml) and incubated for 8 hours at 37°C with vigorous shaking 

(~300 rpm).  The starter culture was diluted 1/500 into the LB medium (50 ug/ml 

ampicillin) and grown at 37°C for 14 hours with vigorous shaking (~300rpm).  Two ml of 

this culture were stored at –80°C.  Plasmid DNA was purified from the remainder of the 

culture on a Qiagen midiprep column according to manufacturers instructions (Qiagen, 

Valencia, CA).  The DNA was redissolved in 100 ul of TE, pH 8.0 and the plasmid DNA 

concentration was determined by UV spectrophotometry.  The purified plasmid DNA 

was stored at –20°C. 

5’ Restriction Site-Directed Mutagenesis of Oct-4 

The cDNA of the Oct-4 gene was supplied by Hans Scholer [6].  This cDNA was 

digested by a BamHI and XhoI digestion protocol by standard means [204].  This 

purified fragment was ligated into a BamHI-XhoI digested plasmid vector, 

pBluescriptSKII(+) (Stratagene, LaJolla, CA).  The ligation reaction was transformed 

into E. coli Top 10F’ cells and grown overnight on LB agar plates with 50 ug/ml of 

ampicillin.  White colonies were selected, and the individual clones of the construct were 

purified using established methods [204].  The clones were isolated and analyzed for the 

correct insert size by restriction enzyme digestion and gel electrophoresis.  The DNA was 
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sequenced to confirm the existence of the Oct-4 insert using pTAT-HA F: 5’-

CCCGCGAAATTAATACGAC-3’ and a Universal Forward Primer, (M13-20) and the 

resulting construct named pOct-4 (Applied Biosystems, Model 373A Automated 

Sequencer, Oklahoma State University Recombinant DNA/Protein Resource Facility).  

The 5’ untranslated region needed to be removed from the Oct-4 cDNA insert and 

an NcoI restriction site added in order to obtain a genetic N-terminal in-frame fusion with 

the TAT leader in the pTAT-HA vector [91]. This was performed through 5’restriction 

site-directed mutagenesis as shown in Figure 5.1 and Figure 5.2.  The pOct-4 was 

linearized by digestion with one unit of Sac I enzyme at 37°C in SuRE/Cut Buffer A 

(Boehringer Mannheim, Germany).  The enzyme was denatured at 65°C for 20 minutes 

and the DNA purified through phenol extraction, precipitation and washing [204].  Oct-4 

NcoI F: 5’-cataccatggATCCTCGAACCTGG-3’ was designed (Sigma Genosys, The 

Woodlands, TX).  The AUG is recognized efficiently as an initiation codon only when it 

is embedded in a suitable sequence with the optimum being: GCCPuCCAUGG with the 

most important determinants in the sequence including the G following the AUG codon 

and a purine, preferably adenine, preceding it by three nucleotides [205].  The linearized 

pOct-4 was amplified by a polymerase chain reaction using the 5’mutagenic primer and 

the universal forward primer. The thermocycler conditions (Perkin Elmer 9600) (PE 

Biosystems, Foster City, CA) include denaturation at 94 °C for 2 minutes followed by 

cycling conditions of 94°C, 55°C and 72°C at 30 seconds each for 35 cycles with a final 

extension of 72°C for 5 minutes. 
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A.

B.

Figure 5.3.  GCNF-TAT-HA:  Following FPLC and desalting, the GCNF-TAT-HA 
fusion purified protein as it appeared in two SDS-PAGE gels.  (A) One gel was stained 
with Coomassie Blue, and the other SDS-PAGE gel (B) was stained with Invision His-tag 
In-gel Stain that consists of Ni2+ that binds specifically to oligohistidine, or the domain of 
His-tagged fusion proteins.  60 kDa area of gels are shown.

60 kDa�

60 kDa�
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A.

B.

Figure 5.4.  BMP8b-TAT-HA:  Following FPLC and desalting, the BMP8b-TAT-HA 
fusion purified protein as it appeared in two SDS-PAGE gels.  (A) One gel was stained 
with Coomassie Blue, and the other SDS-PAGE gel (B) was stained with Invision His-tag 
In-gel Stain that consists of Ni2+ that binds specifically to oligohistidine the domain of 
His-tagged fusion proteins.  50 kDa area of gels are shown.

50 kDa�

50 kDa�
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A.

B.

Figure 5.5.  Oct-4-TAT-HA:  Following FPLC and desalting, the Oct-4-TAT-HA fusion 
purified protein as it appeared in two SDS-PAGE gels.  (A) One gel was stained with 
Coomassie Blue, and the other SDS-PAGE gel (B) was stained with Invision His-tag In-
gel Stain that consists of Ni2+ that binds specifically to oligohistidine the domain of His-
tagged fusion proteins.  40 kDa area of gels are shown.

40 kDa�

40 kDa�



120

A.

B.

Figure 5.6.  The three fusion proteins in (A) Coomassie Blue and (B) Invision His-tag In-
gel Stain.  The GCNF, BMP8b, and Oct-4 proteins were estimated at 60, 50 and 40 kDA, 
respectively, based upon the estimation that amino acids average 0.11kDA 
(http://www.promega.com/biomath).  

kDa
60
50

kDa
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50
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Figure 5.7.  FPLC isolation of the GCNF-TAT fusion protein.  Abcissa is ml of flow and 
fractional elutions; ordinate is absorbance.  The protein is evident through the peak A280

absorbance.
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Figure 5. 8.  FPLC isolation of the BMP8b-TAT fusion protein.  Abcissa is ml of flow 
and fractional elutions; ordinate is absorbance.  The protein is evident through the peak 
A280 absorbance.
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Figure 5.9.  FPLC isolation of the Oct-4-TAT fusion protein.  Abcissa is ml of flow and 
fractional elutions; ordinate is absorbance.  The protein is evident through the peak A280

absorbance.
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Figure 5.10.  FPLC isolation of the TAT-HA fusion protein.  Abcissa is ml of flow and 
fractional elutions; ordinate is absorbance.  The protein is evident through the peak A280

absorbance.
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5’ Restriction Site-Directed Mutagenesis of GCNF

Similar to manipulations with the Oct-4, the 5’untranslated region (UTR) of the 

GCNF had to be deleted and a proper restriction site cloned into the gene of interest in 

order to obtain a genetic N-terminal in-frame fusion with the TAT leader.  With the use 

of PCR site-directed mutagenesis, the complementary strands are separated in the 

denaturing step and then efficient polymerization of the PCR primers carrying specific 

restriction endonuclease sites are incorporated in the double-stranded plasmid. With the 

GCNF gene, we chose to ligate into the KpnI restriction site in the multiple cloning site 

as there were several NcoI sites within the coding region of the gene. The designed 

primers include: GCNF KpnI F: 5’-ggtaccatggCCTGTCTCATCTGTGGGG-3’ and 

GCNF XhoIR: 5’-ctcgagCATCTTGGTCTCTGGCTCTTTC-3’ (Sigma Genosys, The 

Woodlands, TX) with the KpnI and XhoI sites in bold and mutagenic bases in lower case.   

Mus musculus Germ Cell Nuclear Factor (accession U14666) was obtained from an insert 

of pBSSK(-)∆NGCNF and had been confirmed through sequencing [181].  The plasmid 

was a gift from the lab of Austin Cooney at Baylor College of Medicine.  In-frame 

cloning of the target GCNF insert was achieved through study of the deduced amino acid 

sequence from the Open Reading Frame (ORF) provided by Chen et al. [181] and 

verified through BioEdit translation of the nucleic acid sequence and through the 

description of Hummelke et al. [183].  Since the construct had a fragment with NcoI on 

both ends, a restriction site other than NcoI was required.  The primers amplify a region 

from 421 to 1776 bp (Accession U14666) of the complete coding sequence that encodes 

the DNA binding domain and the ligand binding domain of GCNF [181].  
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5’ Restriction Site-Directed Mutagenesis of Bmp8b

The designed primer for the Bmp8b gene include: Bmp8b NcoI F: 5’-

cataccATGGCTGCGCGTCCGGGACTCC-3’ and Bmp8b XhoI R: 

5’tacctcgagGGACTCAGTGGCAGCCACAGGCC-3’ (Sigma Genosys, The Woodlands, 

TX) with the NcoI and XhoI sites in bold and mutagenic bases in lower case.  Mus 

musculus bone morphogenetic protein 8b (Bmp8b) (accession U39545) was obtained 

from an insert of pIRESBmp8b.  The plasmid was a gift from the lab of Guang-Quan 

Zhao from the University of Texas Southwestern Medical Center [193].  The primers 

amplify a region from 187 to 1892 base pair (accession U39545) and with the mutated 

ends, generate an amplification product of 1218 base pair.

PCR products

Each PCR product was purified through a phenol/chloroform/isoamyl alcohol 

protocol [206].  The aqueous phase containing the DNA was removed following the 

addition of an equal volume of phenol/chloroform/isoamyl alchohol to the DNA solution.  

A 1/10 the volume of 7.5M ammonium acetate was added to the solution of DNA and 

mixed by vortexing briefly.  2.5 volumes of ice-cold 100% ethanol was added, vortexed 

and placed in a –70°C freezer for 15 minutes.  The contents were then spun in a fixed-

angle microcentrifuge for 5 minutes and the resultant supernatant aspirated with a 

pipetting device.  The DNA pellet was washed with 750 ul of 70% ethanol, gently mixed 

and microcentrifuged.  This supernatant was also removed, and the DNA pellet was 

dried.  The DNA pellet was resuspended in 15 ul TE buffer [206]. 
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Cloning of PCR Products Through the KKL Strategy

The cloning of the PCR products was achieved through a self-ligation of the 

linear PCR product which then generated multimeric DNA substrates for the complete 

cleavage of the restriction enzymes [207].  A concurrent incubation of the Klenow, T4 

polynucleotide kinase and T4 DNA ligase created concatemeric DNA substrates by 

polishing, then phosphorylating and then ligating the PCR termini in a single step.  

Described briefly, 2 ul of 10X ligase buffer was added to the 15 ul of the purified PCR 

product DNA.  dNTPS were added to 0.2 mM with 5 units of Klenow, 4 units of T4 

polynucleotide kinase, 2 units of T4 DNA ligase to achieve a 25 ul final volume.  The 

reaction was incubated at 25°C for 2 hours and the heat inactivated at 70°C for 10 min.  

These concatemeric ligated PCR products were then diluted to a double volume of 

restriction enzyme buffer and cut with 40 units of RE for 2 hours.  Specifically, the 

BMP8b and Oct-4 PCR insert products were restriction digested with  NcoI (10U/ul) and 

XhoI (20U/ul) with the appropriate restriction buffer (NEB Buffer 2 with BSA) for two 

hours at 37°C.  The GCNF PCR insert products were restriction digested with XhoI 

(10U/ul) and KpnI (10U/ul) in the appropriate restriction buffer (NEB Buffer 1 with 

BSA) for two hours at 37°C.   The individual digested PCR products were recovered and 

purified through the Microcon Centrifugal Filter Unit (Millipore, Billerica, MA). 

Vector Preparation  

On a 3% TAE agarose gel, we ran 15 ul of the pTAT-HA vector (.47ug/ul).  The 

DNA fragment was recovered using a spin column [208].  The column purified DNA was 
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then treated with a phenol: chloroform extraction and ammonium acetate alcohol 

precipitation as described previously [204].  The DNA was washed with 750 ul of 70% 

ETOH and centrifuged to a pellet, dried and resusupended in 15 ul TE.

Five microliters of the TAT-HA extracted and purified vector was restriction 

digested with 1 ul of NcoI (10U/ul) and 1 ul of XhoI (20U/ul) in the appropriate 

restriction enzyme buffer (NEB Buffer 2 with BSA) in a total volume of 25 ul.  After 

incubation overnight at 37°C, the DNA was electrophoresed on a 3% agarose gel for the 

BMP8b and Oct-4 PCR products.  A similar restriction digest was performed for the 

GCNF gene with KpnI (10U/ul) and XhoI (20U/ul) with NEB Buffer 1 with BSA.  The 

“cut” vector DNA was extracted, purified as described above and hydrated with 20ul DDI 

(distilled deionized) water.

Ligation and Transformation

Using the Promega BioMath Calculator 

(http://www.promega.com/biomath/default.htm), the dsDNA in micrograms was 

calculated to picomoles of both the vector and insert.  Using a 1:3 ratio of vector to insert 

for the ligation, T4DNA ligase (Invitrogen Corp., Carlsbad, CA) and the appropriate 

buffer with the cohesive ended vector and insert were incubated at 14°C for 20 hours.  

The reaction was inactivated with 1 ul of EDTA (ethylenediaminetetraacetic acid).  

BL21-Gold(DE3)LysS cells and BLR (Stragagene, La Jolla, CA) cells were made 

competent by treating the cells with RbCl2 and CaCl2 to modify the cell wall and 

membrane.  These particular E.coli strains were chosen due to their lack of particular 

proteases (such as Lon and OmpT) which degrade recombinant proteins [209].   Five ul 
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of the ligation reaction with 25 ul DDI water were added to 50 ul of the competent cells 

and placed on ice for 30 minutes with gentle agitation every 10 minutes.  The 

transformation mixture was placed in a 42°C waterbath for 2 minutes to heat shock the 

cells.  The transformation reaction was added to 400 ul of 2YT broth and incubated in a 

37°C waterbath for 30 minutes.  One hundred ul of the transformation reaction was 

grown on LB  (with 50 ug/ml ampicillin) plates and grown in a 37°C incubator overnight. 

Miniprep Purification and Selection of Plasmid DNA

Plasmid DNA was extracted from the bacterial DNA using a Qiagen Miniprep 

protocol or through a traditional alkaline extraction [204].  The purified miniprep DNA 

was then digested with restriction enzymes, electrophoresed on an agarose gel and 

visualized by ethidium bromide staining to confirm the identity of the appropriate sized 

inserts in the recombinant plasmids.  The purified plasmid DNA was subjected to 

dideoxy chain termination sequencing (Applied Biosystems, Model 373A Automated 

Sequencer, Oklahoma State University Recombinant DNA/Protein Resource Facility) to 

verify proper insert alignment in frame with the reading frame and containing no 

mutations in the constructs.  The oligonucleotide sequences for the primers used are 

pTAT-HA forward 5’-CCCGCGAAATTAATACGAC-3’ and the pTAT-HA reverse 5’-

GTCCCATTCGCCATTCAGG-3’ (Sigma Genosys, The Woodlands, TX).

Protocol for Protein Expression and Purification with FPLC

The pTAT-HA-GCNF, pTAT-HA-Bmp8b and pTAT-HA-Oct-4, were previously 

transformed into BLR, BL21-Gold(DE3)pLysS, and BLR (Stragagene, La Jolla, CA)
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cells respectively, and the recombinant protein products were expressed, purified and 

assayed as described below.  Two hundred ml of 2YT overnight culture of the isolates 

were grown with ampicillin at 50ug/ml.  The following morning, the entire volume was 

inoculated into 1 L of 2YT plus 400 uM IPTG and shaken (225 rpm) for 8 hours at 37°C.  

The cell pellet was harvested via centrifugation (6000g X 15 min, 4°C).  The pellets were 

frozen for 30 minutes @-20°C or overnight to maximize the cell breakage during the 

subsequent thaw.  The cells were then thawed at 37°C for 15-20 minutes and resuspended 

in 30 mls of Buffer 1 (20mM Tris-HCl, pH8.0).  The sample is highly viscous and 

requires repeated vortexing and pipetting until resuspended.  We sonicated the cells on 

ice (4 X 15 sec) with the Fisher Scientific 550 Sonic Dimembrator (Fisher Scientific, 

Pittsburgh, PA) and centrifuged at 6000 X G for 15 minutes at 4°C in a Beckman Avanti 

30 Centrifuge (Beckman Coulter, Inc., Fullerton, CA).  The pellet was resuspended with 

25 ml of 20 ml of Buffer 2 (20mM Tris-HCl, 0.5M NaCl, 2M urea and 2% Triton X-

100).  We continued washing with Buffer 2 by resuspending the pellet and centrifugation 

at 6000 X G for 15 minutes at 4°C in a Beckman Avanti 30 Centrifuge until the 

supernatant was clear.  A final wash with Buffer 1 removed the Triton X-100.  The pellet 

was resuspended in 5-20 ml of Buffer A1 (20 mM Tris-HCl, 0.5 M NaCl, 20 mM 

Imidazole, 6 M Guanidine-HCl, 5 mM Mercaptoethanol, pH 8.0).  The GCNF 

recombinant protein was resistant to clearing, and we added the sample to a sterile 

microcentrifuge tube and spun it at 13,500 rpm at 4°C for 30 minutes.  Then we filtered 

the GCNF protein through a 0.45 um filter to sterilize the solution (ISC, BioExpress, 

Kaysville, Utah).
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The TAT-HA recombinant proteins were produced in a fusion form to include the 

hemagluttinin tag for identification and the hexahistadine region to facilitate purification 

by affinity chromatography.  The chromatography was achieved by binding of the protein 

to an immobilized metal ion adsorbent with a subsequent specific elution chemistry 

[203].  The metal-chelate affinity chromatography is a highly selective method that relies 

on the binding affinity of the polyhistidine to nickel chelates tethered to the 

chromatographic matrix [203].  

In preparation of use of the AKTA FPLC (Amersham Pharmacia, Piscataway, 

NJ), we washed the HisTRAP (Amersham Pharmacia, Piscataway, NJ) column as 

described in the literature with autoclaved millipore water.  The column, packed with 

chelating Sepharose, allows for binding and elution of histidine-tagged fusion proteins.  

Since our proteins were expressed as inclusion bodies, the purification required the 6 M 

guanidine hydrochloride, or purification under denaturing conditions, with four elution 

steps of increasing imidazole concentrations.  The protein sample (5-10 ml) was loaded 

and the flow rate was 0.1-1 ml/minute.  The column was washed with Buffer A1

(described above) and then 10 ml of Buffer A2 (20mM Tris-HCL, 0.5M NaCl, 20 mM 

Imidazole, 6 M Urea, 5 mM Mercaptoethanol, pH 8.0).  Refolding of the bound protein is 

performed by the linear 6-0 M urea gradient, starting with Buffer A2 and finishing with 

100% Buffer B1 (20mM Tris-HCl, 0.5 M NaCl, 20 mM Imidazole, 5 mM 

Mercaptoethanol, pH 8.0).  Elution of the refolded recombinant protein begins with 

Buffer B1 and ends with Buffer B2 (Buffer B1 plus 500 mM Imidazole).  The flow rate 

for the elution was 1 ml/minute.  Following use of the FPLC apparatus, the desalting or 

PD-10 column removed the imidazole and continued the refolding of the (His)6-tagged 
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protein.  The GCNF, BMP8b, and Oct-4 proteins were estimated at 60, 50 and 40 kDA, 

respectively, based upon the estimation that amino acids average 0.11 kDA 

(http://www.promega.com/biomath).

Quantitation, SDS-PAGE and His-tag Staining 

Quantitation of the amount of the protein was accomplished using the BCA

Protein Assay Kit (Pierce Biotechnology, Inc. Rockford, IL).  The assay is based on the 

reduction of copper ions by protein coupled with the colorimetric detection of the 

cuprous cation using bicinchoninic acid, and then comparing the results to the binding of 

different amounts of a standard protein, usually BSA. The BCA protein assay with BSA 

standards was run to determine the concentrations of the three purified proteins.    The 

purple-colored reaction product of this assay is formed by the chelation of the two 

molecules of BCA by the cuprous ion.  Using the MultiImage Light Cabinet with the 

AlphaImager 2200 (Alpha Innotech, San Leandro, CA), BCA concentrations were 

determined.  With concentrations of proteins determined, we added glycerol to prepare a 

final 10% glycerol concentration.  The proteins were then flash frozen.

We used one-dimensional gel electrophorectic separation of the proteins under 

denaturing conditions, SDS-PAGE, to determine the size of each recombinant protein 

[210-212].  Following the FPLC, we ran two 10% SDS-PAGE gels of each study.  One 

gel was stained with Coomasie Blue  (EM Science, Germany) and the other gel was 

stained to detect the histadine tag through use of the Invision His-tag In-gel Stain and 

BenchMark His-tagged protein standard (Invitrogen Corp., Carlsbad, CA). 

.
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Immunocytochemistry of TAT Fusion Proteins

We grew Vero cells in a humidified CO2 incubator until confluent in a 24-well 

plate and washed the cells with 1 ml of cold PBS (pH~7.5).  We then added 0.5 ml of 

media with 2 ug of one of the TAT fusion proteins to each well.  We added 0.5 ml of 

3.7% Formaldehyde fixation solution and incubated for 30 minutes with a subsequent 

wash with PBS.  We then permeabilized the cells with 0.5 ml of 0.5% Triton X/PBS and 

incubated at room temperature for 30 minutes followed with a wash of PBS.  We added 

0.5 ml of blocking buffer (PBS with 1% final concentration of FBS and 0.1% final 

concentration of Tween-20) to each well tested.  We then added 0.5 ml of primary 

hemagglutinin antibody (HA) (1:1000 dilution in PBS) (Covance Research Products, 

Berkeley, CA) and incubated for 1 hour.  This antibody recognizes the influenza 

hemagglutinin epitope.  We then added 48 ul of the secondary FITC-labeled (fluorescein 

isothiocynate) antibody to 12 ml of 1X PBS.  This secondary antibody is goat, anti-mouse 

IgG (heavy and light chain reactive) from Covance Research Products.   Finally we 

washed the cells with 1 ml of PBS, and analyzed the cells for transduction using 

immunofluorescence microscopy.  

Results

FPLC isolation of the proteins are found in Figure 5.7 (GCNF-TAT-HA), Figure 

5.8 (BMP8b-TAT-HA), Figure 5.9 (Oct-4 TAT-HA) and Figure 5.10 (TAT-HA).  

Specific fractions were chosen from the chromatogram for further study on SDS-PAGE 
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gels.   Verification of protein size and oligohistidine tag were verified through Coomassie 

staining and His-tag In-gel staining.  Fractions containing the eluted proteins were pooled 

and subjected to buffer exchange using a Hi-Trap Desalting or PD-10 column before the 

flash freezing and storage of the protein.

 Fractions 13, 14, 15, 16, 17, 19, and 20 were selected from the GCNF-TAT-HA 

chromatogram (Figure 5.7) and electrophoresced on two SDS-PAGE gels.  GCNF-TAT-

HA Coomassie stained fractions of the 14, 15, 16, 17, 19 and 20 are found in Figure 

5.3A, and the same fractions stained with Invision His-tag In-gel Stain are found in 

Figure 5.3B.  The presence of the oligohistidine tag and the proper size (60 kDa) of the 

GCNF-TAT-HA protein were therefore, verified.  Fractions 19 and 20 were chosen for 

the desalting process and flash freezing. 

BMP8b-TAT-HA FPLC fractions 13, 14, 15, 16, 17, 18 and 19 (Figure 5.8) were 

selected from the chromatogram and electrophoresced on two SDS-PAGE gels.  The 

BMP8b-TAT-HA fractions (14-19) are found in Figure 5.4A with Coomassie stain and 

the His-tag In-gel Stain fractions are found in Figure 5.4B. The proper size (50 kDa) of 

the BMP8b-TAT-HA protein was verified.  Fractions of BMP8b-TAT-HA 14, 15 and 18 

were selected for the desalting process and flash freezing.  

Oct-4-TAT-HA fractions 14, 15, 16, 19 and 20 were selected from the Oct-4-

TAT-HA chromatogram (Figure 5.9). These fractions are found in Figure 5.5A with 

Coomassie stain on the SDS-PAGE gel, and the same fractions are shown in Figure 5.5B 

with the His tag In-gel Stain. The presence of the oligohistidine tag and the proper size 

(40 kDa) of the Oct-4 TAT-HA protein were verified. Fractions 14, 19 and 20 were 

selected for the desalting process and flash freezing.  Figure 5.10 is the TAT-HA control 
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chromatogram.  Figure 5.6 demonstrates the three TAT fusion proteins of interest in 

Coomassie Blue stain and Invision His-tag In-gel stain.

Following the immunocytochemistry protocol described, the fluorescence of 

GCNF-TA-HA, BMP8b-TAT-HA and Oct-4-TAT-HA was evident inside cells of the 

separate wells of Vero cells (Data not shown).  This data indicates protein transduction of 

the recombined proteins.  It also indicates that the influenza hemagglutinin epitope was 

present in the recombinant protein and it was bound to the secondary FITC-labeled 

(fluorescein isothiocynate) antibody.

Discussions

The goal of this project was to produce three TAT-HA fusion proteins, verify 

proper insertion of the target genes and verify protein transduction of those proteins.  The 

fusions proteins were purified through FPLC technology and verification of the proteins 

were conducted through Coomassie staining and His-tag staining of SDS-PAGE gels.  

Immunocytochemistry verified protein transduction into the Vero cells and the presence 

of the hemagglutinin epitope on the recombined protein. 

One of the original goals of the project was to use these fusion proteins for 

subsequent studies of pluripotency.  Separate trials were conducted on both murine 

embryos and Vero cells using both the GCNF-TAT-HA and the BMP8b-TAT-HA fusion 

proteins.  Results seem to indicate an up-regulation of the Oct-4 gene through the 

transduction of the BMP8b-TAT-HA fusion protein.  Results, however were inconsistent 

within the assay trials and between trials.
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While other TAT-HA fusion proteins in our lab have been successful in protein 

transduction trials, we must consider variables that cause the BMP8b-TAT-HA and 

GCNF-TAT-HA protein to not function consistently in cellular trials.  These proteins are 

in imidazole (approximate pH of 8) when eluted from the FPLC column.  When the salt 

is removed with cell culture media (approximate pH of 7-7.5) these proteins tend to 

precipitate due to their high hydrophobic residue content.  Even when these proteins were 

diluted and slowly dialyzed, we consistently got a precipitate.  The limiting factor of the 

protocol seems to be the desalting component of these specific proteins.  Another limiting 

factor could possibly be that the recombinant proteins are toxic to living cells; we’ve 

experienced that the higher concentrations of some of the proteins seem to have 

deleterious effects on the life span of the cells in culture or living murine embryos being 

tested.  While we were successful in achieving pure fusion proteins with transducible 

properties, we were not able to record a consistent TAT-mediated protein delivery of 

functional full-length proteins. 

The effort to exploit the therapeutic capabilities of a TAT-mediated protein 

delivery with these particular proteins (GCNF-, BMP8b-, Oct-4-TAT-HA) provide 

several interesting future goals.  The Oct-4-TAT-HA vector was produced for subsequent 

use in murine ES cells to increase the percent viability of the ICM cells; embryonic 

blastocyst ICM’s could be isolated and ES cell cultures established and treated with the 

Oct-4-TAT-HA protein.  GCNF-TAT-HA and BMP8b-TAT-HA vectors were produced 

to act as repressors and promoters, respectively, of the DE for Oct-4 production.  The 

BMP8b purified protein could be used to up-regulate Oct-4 in somatic cells such as 

murine fetal fibroblast (MFF) cells to move differentiated cells to a more pluripotent 
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state.  The GCNF vector and purified protein could be used to verify transduction and act 

as a negative control in this reprogramming of adult somatic differentiated cells.  GNCF-

TAT-HA protein could also positively regulate differentiation; several genes up-regulated 

during differentiation could be quantitatively measured.  In the future, scientists could use 

these constructs to produce the fusion proteins necessary to regulate pluripotency in 

somatic and stem cells.
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