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PETROGRAPHY, MINERALOGY, AND GEOCHEMISTRY OF THE 

CHAMOSITIC IRON ORES OF NORTH-CENTRAL LOUISIANA

INTRODUCTION

Purpose of Investigation 

In North-central Louisiana sideritic chamosite lentils within 

the Upper Cook Mountain-Lower Cockfield (Upper Claiborne) sequence. 

Middle Eocene, alter during weathering to brown ore consisting of 

goethite veins and ledges distributed in the altered parent lentils.

An investigation of the areal extent, volume, and potential economic 

quality of these Middle Eocene sedimentary iron ores was conducted 

by the Louisiana Geological Survey in cooperation with the Louisiana 

State University School of Geology during the period from 1959 to I962.

Because the initial investigation was primarily an economic 

survey of the secondary brown iron ores, only a knowledge of the bulk 

chemistry of these deposits was essential; therefore, the lack of 

detailed studies of the petrography, mineralogy, and geochemistry of 

the unweathered parent chamosite beds during the initial investigation 

prevented paragenesis and petrofabric interpretations as well as 

detailed mineralogical identification. As a result, the location of



the iron in relationship to the minerals of the assemblage constituting 

the parent bed was also incompletely known. That portion of the iron 

not structurally coordinated in siderite or iron-hearing clay minerals 

could he present in interlayer or other ion exchange positions and/or 

as free amorphous iron oxide. This lack of information prevented a 

clear understanding of the mechanism of transformation of the iron- 

hearing minerals of the unaltered parent hed to the hrown ore of the 

weathered heds.

An understanding of the relationships of all the minerals in 

these deposits is important, hut the relationship of the siderite 

to the minerals in the unaltered parent hed and to the hrown ore in 

the altered hed poses one of the most significant problems as far as 

possible future industrial development is concerned. Prior to deep 

drilling accompanying this study, siderite had been observed in 

surface or near surface exposures and in shallow drill holes. However, 

little was known about the mineralogy of the unaltered parent material 

below the present zone of oxidation. From such limited observations 

siderite could either be an intermediate phase in the transition from 

green to brown ore, contemporaneous with the enclosing glauconite, or 

formed during diagenesis. If the first hypothesis is correct, siderite 

should be formed only in the transition zone between the green and 

brown ore bodies; but if the mode of origin fits either of the latter 

cases, then siderite could feasibly occur throughout the entjre bed
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vith no relationship to the topographic position of the hed. "Eckles 

(1938, p. 46, 47) considered the siderite associated with the East 

Texas glauconite to be a secondary alteration and replacement of the 

glauconite occurring near and beneath the water table at the base of 

the brown ore," (3^ Durham, 1964, p. 28).

If siderite should persist throughout the parent bed in 

concentrations as great as those present in green ore samples from 

surface or near-surface exposures, it would add significantly to the 

economic potential of these deposits. Analyses of such material as 

reported by Durham (1964, p. 5 8) indicate that nearly half of the iron 

content in these green ores, averaging 34.84 percent, may be present 

as siderite. Removal of the carbon dioxide and water of hydration, 

averaging approximately 15 and 5 percent respectively, of these samples 

by roasting increased the iron content to approximately 45 percent by 

reducing the weight of the total sample. The presence of such a high 

available iron content in the enormous green ore reserves available 

(over 121 million long tons mapped) could add significantly to the 

economic potential of these iron ore deposits. Durham (1964) recog­

nized this and recommended that studies of the unaltered parent bed 

be made to resolve the question.

Therefore, the primary purpose of this investigation was to 

conduct a detailed study of the mineralogy, petrography and geochem­

istry of the green ore and to supplement similar studies of the brown



ores where necessary and to utilize these data to explain the petro- 

genesis. This information would shed much light on the environment of 

deposition of these deposits and allow speculation on the location, 

lithology, and climate of the source area for the iron and its mode of 

transportation and concentration.

Previous Investigations

The Louisiana Geological Survey in cooperation with the 

Louisiana State University School of Geology conducted an investiga­

tion of the areal extent, volume, and quality of these sedimentary 

ores of north-central Louisiana from 1959 to I962. The writer was 

a member of the investigating team and a detailed study of three of 

the major districts was prepared by him as a separate report (Jones, 

1962). Subsequently, the collective results of work by the writer and 

various individuals working on this project was compiled, supplemented, 

and published as Geological Bulletin No. 4l entitled "Iron Ore of 

Central North Louisiana," by Clarence 0. Durham, then Director of 

Research, Louisiana Geological Survey, and Professor of Geology, 

Louisiana State University (Durham, lS6k).

Several cursory surveys of strictly an economic and strati­

graphie nature were conducted prior to the Louisiana Survey's more 

detailed work, and these investigations are referenced in detail in 

both of the above-mentioned reports.



5

Location

The major iron ore deposits of north-central Louisiana are in 

an area approximately forty miles in length and twenty miles in width 

which trends northwest-southeast between the northeast portion of 

Webster Parish and the south-central part of Lincoln Parish. This 

includes most of central and southern Claiborne Parish, western and 

southern Lincoln Parish, and the northernmost part of Bienville Parish 

(Figure l). The development of present topography and/or facies changes 

within the parent ore bed result in isolated ore districts within this 

overall region, but these are normally quite extensive (Figure 2).

Ore deposits in areas other than those outlined above are 

known, but these were not studied in detail either because of their 

marginal quality or because of their remoteness from the major deposits. 

For example, deposits are known in northeastern Webster Parish, most 

of Claiborne and Lincoln Parishes, portions of Jackson and Union 

Parishes, and northern Bienville Parish.
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Figure 1. Map of Louisiana showing general location of the iron region.
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GEOLOGIC SETTING

The following resume of the geologic setting of the area of 

investigation is a modified version of that contained in the writer's 

master's thesis (Jones, 1962).

In the area of investigation, the nearly flat-lying surface 

heds of the Claihorne group (Middle Eocene) constitute a part of the 

extensive D'Arhonne structural platform* of only slight regional dip 

(Figure 3)* This platform is separated from the structurally higher 

Sabine platform to the southwest by a monocline of gentle northeasterly 

dip. The Sabine platform is a prominent surface feature of northwestern 

Louisiana and adjacent parts of Texas. It is underlain by older sedi­

ments of the Wilcox group (Paleocene-Eocene). "The Sabine and D'Arbonne 

platforms are bounded on the south by the Angelina-Caldwell flexure, 

which extends southwest-northeast through central Louisiana, and is 

the northern edge of southerly Gulfward-dipping beds" (Durham, 196 ,̂

*This area was originally called the Claiborne platform by Durham and 
'White (i960) but was subsequently redesignated the D'Arbonne platform 
for the largest watershed in its confines by Durham (1964J. "This 
substitution is done in order to avoid confusion of the term 'Claiborne' 
with the Claiborne sequence which actually forms the platform's terrain 
but is named from Claiborne Bluff in Alabama" (Durham, 1964, p. ll).
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p. ll) (Figure 3). .

The structural configuration changes with depth, and the 

southwestern edge of the D'Arbonne platfonri is underlain by the North 

Louisiana Syncline whereas the Monroe uplift underlies it to the east. 

The Monroe uplift does not exhibit a surface expression on the D'Arbonne 

platform even though it is a prominent North Louisiana subsurface 

structural feature. The surface position of the northeasterly dipping 

monocline separating the Sabine and D'Arbonne platforms overlies the 

axis of the subsurface North Louisiana syncline.

According to Durham p. 11-12):

The northwestward projection of the North Louisiana syncline 
axis into the area north of the Sabine platform is marked 
by a saddle, with surface expression, between the structurally 
lower D'Arbonne platform to the east and the northeastward 
extension of the East Texas embayment to the west in Texas 
(the Pittsburg syncline of Murray, 106l), and between the 
structurally higher Sabine platform to the south and the 
southward dipping inner margin of the Gulf Coastal Province 
in Arkansas to the North.

The distribution of salt dome structures, most of which have 

surface expression, is controlled by the subsurface portion of the 

North Louisiana syncline. For example in the southern portion of 

the area of study a large rim syncline peripheral to the Minden salt 

dome reflects the subsurface Minden basin, which is the most pronounced 

negative feature along the axis of the North Louisiana syncline.

Although local subsidiary structures, e.g., Homer, Haynesville, 

Athens, Sugar Creek, Hico-Knowles, Simsboro, and Ruston, exhibit surface



11

expressions on the D’Arbonne platform, the general absence of dip over 

the area results in exposures being limited to only a small portion of 

the Eocene sequence. As a result of the alternating marine and non­

marine cyclic pattern characteristic of North Louisiana Tertiary 

deposits, the middle Eocene Claiborne Group overlying the Wilcox 

deltaic complex (Paleocene-Lower Eocene) is subdivided into alternating 

marine and non-marine formations from the oldest, Carrizo (non-mar?ne), 

through Cane River (marine), Sparta (non-marine). Cook Mountain (marine) 

to the youngest, Cockfield (non-marine). In the general study area only 

the upper Sparta, Cook Mountain, and lower Cockfield are exposed.

Sparta is only exposed on local structural highs and formations younger 

than lower Cockfield do not exist in the area because it is structurally 

too high.

The lithology of the marine beds normally consists of glau­

conitic,* fossiliferous clay or marl, whereas the non-marine units are 

characterized by sands, silts, and clays which may be carbonaceous or 

interbedded with lignite, and are commonly crossbedded. A further 

characteristic of the lithology of the area is the transitional and 

intertonguing nature of the contacts between the marine and non-marine 

units in contrast with the sharper boundaries exhibited farther

*Glauconite as used in this report is strictly a field term applied to 
■small greenish pellets of iron-rich clay and is not to be misconstrued 
to represent the mineral glauconite. The actual clay mineral was found 
to be chamosite in samples tested.
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gulfward. Due to the area's inland position, contacts must he arbi­

trarily selected at key mapping horizons which may he present within 

the transitional sequence. In the study area this is especially true 

of the Cook Mountain-Cockfield contact. As a result, non-marine 

channel sands are placed within the Middle and Upper Cook Mountain, 

and glauconitic marginal marine heds are placed within the Lower 

Cockfield.



STRATIGRAPHY

General

Normally only "beds of the Cook Mountain and lower Cockfield 

Formations of the Claiborne Group (Middle Eocene) are exposed in the 

area of consideration. "However, lower Cook Mountain beds, as well as 

the underlying upper Sparta beds, are well exposed in the southwestern 

portion of the iron ore region where higher structural elevations 

occur along the foot of the northeastward dipping monocline which 

separates the Sabine from the D'Arbonne platform" (Durham, 1964, p. 17)< 

Beds of the Sparta Formation are also exposed on some of the local 

subsidiary structures on the platform (Jones, I962). For example, 

beds of the upper Sparta are exposed on the Sugar Creek structure 

(Jones, 1962). The Sparta and Cane River Formations come to the 

surface on the Arcadia piercement salt structure (Worley, 19^2), and 

practically the total thickness of the Sparta is exposed on the Homer 

dome (Durham, 1964). Very slight northeasterly regional dip of the 

Tertiary beds constituting the D'Arbonne platform results in progres­

sively younger sediments northeastward; consequently, in the north­

eastern part of the area only Cockfield and upper Cook Mountain beds

13



are exposed. Due to the structural attitude of this platform, the 

upper Cook Mountain and lower Cockfield Formations are the most 

extensively exposed stratigraphie units within the area of study.

In this study detailed stratigraphie descriptions are 

restricted to the siderite - chamosite facies within the upper Cook 

Mountain and lower Cockfield Formations because a detailed study of 

these facies is the prime interest of this report. The stratigraphy 

of the brown ore, formed by weathering of these facies, is discussed 

in two earlier reports on the north-central Louisiana iron ores (Jones, 

1962; Durham, l^Sk). The general stratigraphy and stratigraphie 

relationships of the area are comprehensively covered in two Louisiana 

State University theses. A thesis by the writer (Jones, 1962), 

produced as part of the Louisiana Survey's iron ore project, treats 

the Sugar Creek area in southeastern Claiborne, northern Bienville, 

and western Lincoln Parishes. A thesis by Worley (1962), produced in 

connection with this same project, covers the Arcadia dome area in 

northeastern Bienville, southeastern Claiborne and southwestern 

Lincoln Parishes. These reports are in the Louisiana State University 

Library and on open file in the Louisiana Geological Survey office.

Stratigraphie Subdivisions 

The leaf-bearing, lignitic, non-marine Sparta silts and clays 

are overlain directly by the fossiliferous, glauconitic, arenaceous
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Dodson raem'ber of the Cook Mountain transgressive marine phase. These 

strata are in turn overlain by the extremely fossiliferous calcareous 

clay beds of the Milams member of the inundative Cook Mountain marine 

phase. The transgressive â id inundative units of the Cook Mountain 

marine phase are overlain consecutively by four, unnamed, locally 

mappable, transitional marine units: a lower silt and clay member, a

middle sand member, an upper clay and silt member, and an uppermost 

sand member* (Figure 4). Collectively the beds above the non-marine 

Sparta represent the entire Cook Mountain marine phase and the early 

phase of the subsequent Cockfield regression (Durham, 1964). Subse­

quent to deposition of the marine Milams member, a gradual but fluc­

tuating retreat of the sea is interpreted from the transitional and 

intertonguing nature of the deposits of the upper Cook Mountain and 

lower Cockfield Formations. The regression is reflected in the 

increasing coarseness of the detrital material, and the fluctuating 

character of this regression is further attested to by the intermittent 

occurrence of several chamosite lentils within these marginal marine 

facies. Martin (ip43, 195^) postulated that these deposits formed 

along a fluctuating deltaic shoreline, and Durham (1964) agreed after 

pointing out the variability of the stratigraphy of these members.

^Utilization of the term "uppermost sand" means only that this sand 
■ is the youngest formation occurring in the area and should not be 
misinterpreted as representing its position as a member within any 
scheme of stratigraphie nomenclature (Durham, 1964).
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That gradual regression began after deposition of the Milams 

member is interpreted from the absence of abundant marine fossils and 

the presence of a few glauconitic beds in the overlying silt and clay 

member. The nature of these deposits implies a shallow, nearshore 

transitional environment of deposition, such as Durham’s (l$64) 

shallow, nearshore prodeltaic environment. The increased coarseness 

of the clastic sands of the overlying middle sand member reflects a 

further regression of the then existing environment of deposition.

The fact that these crossbedded sands partially replace the underlying 

clay and silt member and locally fill channels extending deeply into 

it help to substantiate this observation. The sand filling these 

channels is channel-bedded and commonly contains "clay balls" and 

other reworked material from the underlying clay and silt member.

These phenomena point to a stream origin for the channel and its 

deposits. The presence of abundant glauconite in the upper sands of 

the middle sand member is suggestive of nearshore and shoreline 

deposits (Durham, 196^). Return of conditions similar to those 

existing during deposition of the lower clay and silt member occurred 

during the deposition of the overlying upper clay and silt member, as 

suggested by sparingly fossiliferous clays and silts containing inter­

bedded glauconite beds. In this member the St. John's bentonite bed 

occurs discontinuously yet is widespread enough so that its upper 

surface forms a good mapping horizon.
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The lithology of the overlying sand member^ and youngest 

Tertiary unit present in the area, suggests a return to environmental 

conditions similar to those existing during deposition of the middle 

sand member. This sand member is composed of tvo facies. In the 

northern part of the area the sand facies is non-chamositic and locally 

channel-bedded. These channel-bedded sands are similar to those of the 

middle sand member and are also thought to be stream laid. Environ­

mental conditions change southward and in the Gulfward southern part 

of the area this facies in part overlies and in part intertongues with 

a nearshore transitional marine sand facies characterized by interbedded 

chamosite and infrequent fossils. "These two facies of upper most 

sand are so transitional and intimately interbedded in many places 

that it is impossible to map them separately, although locally, as 

where the non-marine facies occur in channels within the glauconitic 

deposits of the shoreline facies, they are readily distinguishable" 

(Durham, 1964-, p, 20). Durham (1964) included both facies in the 

uppermost sand member which he assigned to the lower Cockfield and 

designated the lower sand member.

The intertonguing and transitional nature of the upper Cook 

Mountain and lower Cockfield Formations greatly complicates selection 

of a formational boundary between the marine Cook Mountain and the 

overlying, supposedly non-marine Cockfield. In order to include all 

marine beds in the area in the Cook Mountain Formation, the boundary
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would have to be placed above the uppermost chamosite lentil in the 

uppermost sand member. This would mean placing the boundary above 

the Kilpatrick lentil which is more than 50 feet above the base of 

the uppermost sand. This is not a satisfactory boundary, however, 

because the chamosite lentils pinch out northward, and there the 

contact is conveniently drav?n at the base of the uppermost sand member 

just above the bentonite (Durham and White, I960). "Since separation 

of the glauconitic and non-glauconitic facies of the uppermost sand is 

impractical on a regional basis, assignment of the entire uppermost 

sand to the Cockfield appears to be a logical solution even though 

nearshore glauconite facies are thus grouped with the Cockfield" 

(Durham, 1$64, p. 2l). The arbitrary placement of the boundary just 

above the bentonite bed is convenient because this datum is easily 

recognized and is widely distributed over the area.

Within the upper three members, four chamosite lentils are 

the primary ore-formers in the area; the "crossroads" lentil at the 

top of the middle sand member, the "Mahon" lentil in the upper part of 

the upper clay and silt member, the "Sugar Creek" lentil near the base 

of the lower Cockfield sand member, and the "Kilpatrick" lentil near 

the top of the lower Cockfield sand member. A combination of slight 

northeasterly regional tilt of the D’Arbonne platform combined with 

the fluctuating character of these lentils result in the restriction 

of outcrop areas of certain of these lentils to specific geographic
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locations, from whence came the name of the lentils; however, outcrops 

of one or the other of these lentils occur extensively over the 

approximately 1000 square mile area considered.

Regional Correlations 

Although exact regional correlation of the north-central 

Louisiana iron ore deposits, on a lentil by lentil basis, with those 

of the East Texas iron ores is not possible, recent evidence based on 

regional correlation studies and ore similarities indicate that the 

Louisiana ores are equivalent in age to those of the East Texas North 

Basin. On the basis of a regional correlation study around the flanks 

of the Sabine platform. Smith (1957) concluded that the East Texas 

North Basin iron ores also belong to the Cook Mountain rather than to 

the Weches (Cane River) marine facies of the preceding cycle to which 

the East Texas South Basin ores belong (Durham, l$6k). This contradicts 

Eckles' (1938) interpretation of an equivalent Weches age for the East 

Texas North Basin and South Basin ores. The dissimilarity of charac­

teristics of South and North Basin ores emphasized in the geological 

report on the East Texas ores also makes age equivalency of these iron 

ore bodies questionable. Eckles recognized 17 differences which are 

tabulated in that publication (Eckles, 1938). According to Durham 

(1964, p. 25), "Characteristics of the ore of central North Louisiana 

match 15 of 17 characteristics of the East Texas Worth Basin type.
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This is an added indication that the North Basin ores are Cook Mountain 

as are those in Louisiana rather than Weches, as are those of the East 

Texas South Basin."

In the geological report on the Central North Louisiana ores, 

Durham regionally correlates on a memher basis the Cook Mountain-lower 

Cockfield stratigraphie pattern of Central North Louisiana to the 

Central Texas subdivisions described by Stenzel in 1939 (Durham, 196 ,̂ 

p. 22). Regional correlation of the Central North Louisiana Cook 

Mountain-lower Cockfield subdivisions on a member by member basis with 

those of the type section of Huner (l939) to the south in Winn Parish 

is also attempted in that report (Durham, 1964, p. 22).



METHODS OF INVESTIGATION

The geology of the brown ore deposits is determinable from 

surface or near surface exposures because once exposed to oxidizing 

and leaching conditions above the present ground water table the parent 

bed is converted to brown ore. In order to acquire unoxidized parent 

material, however, it was necessary to select drilling locations where 

the parent bed could be encountered deep below the present zone of 

oxidation. This was accomplished by interpretation of the position of 

the bed in relationship to topography from structural, isopachous, and 

topographic maps. Due to the size of the area of study, approximately 

1000 square miles, it was necessary to choose strategically located 

drilling sites that offered samples representative of the average 

lithology and thickness of the parent bed and to encounter the bed 

topographically as low as possible.

Deep-seated cores essential for this study were eventually 

obtained in the late Spring and Summer of 19^5 only after several 

abortive coring attempts during the early Spring of 1965. The diffi­

culty in coring these deposits results from the inconsistencies in 

physical.properties of the constituents of the parent bed in cross

22
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section. Sections of tightly cemented, indurated ore alternate with 

less tightly cemented, friable sand-size ore which is subject to loss 

by dispersion during coring operations involving drilling fluids. 

Drive-type coring was highly unsuccessful because of the extreme 

hardness of the indurated portions of the bed. It was only after a 

specialized rotary coring device, a ten-foot Dampco core barrel with 

a modified core catcher, was obtained and a knowledge of specific 

drilling mud concentrations and drilling pressures were acquired that 

good recovery operations were achieved. When these problems had finally 

been mastered, an average of greater than 85 percent recovery was 

achieved. A total of twenty-two three-inch diameter cores of the 

complete parent bed were taken from predetermined sites within the area. 

These cores are designated by the prefix "H", and the numbers run 

chronologically throughout the entire region (Figure 3)«

Once obtained, these cores were prepared for transport back 

to the lab by cutting them into five-foot sections which were placed 

in halves of plastic tubing, wrapped with aluminum foil, and sealed 

with wax. On arrival at the lab the cores were prepared for analytical 

work. First they were split in half longitudinally and a 3 /8 inch 

section was taken from the center for X-radiography studies. The 

remainder of the core was then examined under high magnification and 

40 representative samples were selected to be thin sectioned. Subse­

quently, the excess material from these 40 samples was utilized in
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qualitative and quantitative analysis by X-ray diffraction and fluores­

cence, emission spectroscopy, and differential thermal analysis.

Initially, a study of the optical properties of the constituent 

minerals in thin section was conducted by means of a pétrographie 

microscope to facilitate identification, mineralogical associations, 

and description. This technique proved to be the most effective method 

of determining changes in the original mineralogy and structure 

resulting from diagenesis. Identification of clay minerals, particu­

larly those showing poor crystallinity, is not always infallible in 

thin section; therefore. X-ray diffractograms and information from 

differential thermal analysis were utilized to compliment mineral 

identification.

The presence of amorphous iron oxide in untreated samples 

created extreme difficulty in obtaining diffractograms of either the 

random powder slides or preferentially-oriented slides of clay frac­

tions. This undesired iron was removed utilizing the dithionite- 

citrate technique proposed by 0. P. Mehra and M. L. Jackson (1960).

The theory and analytical procedures for this process are included in 

the clay mineralogy section and Appendix A. The total free iron oxide 

extracted from these samples by this technique was determined by atomic 

absorption spectrophotometry.

Further dispersion of the dithionite-citrate treated clays by 

boiling in a 2 percent NagCO^ solution for 5 minutes was attempted on
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oîie of the samples. The diffraction pattern of sedimented slides of 

this material showed some improvement in the intensity and definition 

of the clay peaks, hut the results obtained from samples treated hy 

the dithionite-citrate technique were in general so good that it was 

unnecessary to continue this procedure.

Large samples of the hulk material were crushed to pass 

through a 120 mesh screen. Amorphous iron coatings were then removed 

from these samples hy means of the dithionite-citrate technique. The 

treated samples were dispersed in distilled water and further disaggre­

gated and dispersed hy means of the ultrasonic transducer. Size 

fractionation of selected treated samples was performed hy a combina­

tion of décantation and high speed centrifugation methods in hopes of 

obtaining more nearly monomineralic samples of clay-sized particles.

The less-than-one micron equivalent spherical diameter particles were 

segregated from the suspended sample hy fluid withdrawal according to 

Stokes' Law settling graphs. The fraction less-than-one micron was 

further subdivided into I-1/2, l/2-lfh, l/4-l/8, and 1/8-I/1 6 micron 

fractions hy continuous flow centrifugation. The identity and nature 

of the size-fractioned clays was determined hy X-ray diffraction and 

thermal stability and phase transformation studies. A high temperature 

oven was utilized to conduct high-temperature structural stability 

studies, and differential thermal analysis, effluent gas analysis and 

gas chromatography analysis were utilized in determining the nature of
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the reactions detected. Differential thermal analyses were conducted 

using a Robert L. Stone model DTA-13 M furnace and recording assembly. 

Gas liberated by the samples during the reactions produced by the 

heating furnace was detected by EGA. It was then collected and 

analyzed by means of gas chromatography.

Magnetically susceptable siderite was selectively removed from 

the bulk sample by using the Frantz Magnetic separator and random 

powder diffraction patterns were obtained of this material.

Bruce Williams Laboratories in Joplin, Missouri performed 

quantitative wet chemical analyses on 33 samples randomly selected 

from cores of the parent chamosite bed. Subsequently, a complete 

silicate analysis of 17 samples, aliquots of core samples utilized in 

other tests, was achieved by quantitative X-ray fluorescence analysis 

utilizing the Siemens vacuum X-ray spectrometer. Seven of the samples 

analyzed by Bruce Williams were utilized as standards in fluorescence 

analysis. The 11̂ 0+, HgO-, and CO^ content of these samples was deter­

mined by Mr. John Schleicher, with the Illinois Geological Survey.

The Jarrel-Ash I.5 meter Wadsworth Mount Grating Spectrometer 

housed in the Oklahoma Geological Survey was utilized for quantitative 

trace element analysis. X-radiograms of 3 /8 inch sections of selected 

core material were obtained by placing 12 inch lengths of core material 

between a source of X-radiation and a twelve-inch section of emulsion 

film. The X-radiography unit in the Nuclear Science Building on the
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Louisiana State University Campus was utilized for this purpose.

The techniques and procedures employed in this study are 

discussed in detail in Appendix A.



PETROGRAPHY

Unaltered Chamosite Facies

Even though these deposits are of different ages and occur at 

different stratigraphie levels, they represent almost identical environ­

ments of deposition as suggested by the nature of the deposits in the 

lentils. The lithology and structure of these facies are identical in 

every respect, and even the character of the sediments immediately 

above and below these lentils are typically similar. This is not too 

unusual, however, because these deposits represent the alternating 

transgressive and regressive sequences of the same major regressive 

phase.

The thickness of the chamosite lentils exceeds 15 feet in the 

gulfward southern portion of some of these lentils but their thicknesses 

gradually decrease toward the landward flanks until they finally disap­

pear through facies changes. These facies consist predominantly of light 

to dark green sand-sized chamosite grains with varying amounts of detri­

tal quartz grains and other detrital minerals (e.g., muscovite, feldspar, 

etc.). Normally these grains are tightly cemented by a microcrystalline 

siderite cement which ranges in color from clear to reddish brown

28
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to dark brown depending on the degree of oxidation of the siderite.

The tightly cemented sections are resistant to mechanical disaggrega­

tion as evidenced by the extreme difficulty in drilling these sections. 

Some sections within the facies are less strongly cemented and are 

consequently more susceptible to disaggregation because they are more 

friable. The more tightly cemented grains are also normally less 

affected by chemical alteration. These deposits have been extensively 

bored and burrowed by worms and other small benthonic organisms. Tliese 

bore and burrow holes have been filled by lighter-colored siderite or 

sideritic muds and this contrast in color commonly gives the deposits 

a mottled appearance (Plate l). The concentration of these secondary 

structures ranges from extensive to sporadic, but they are invariably 

present. These features are commonly more indurated than the enclosing 

material and weathering or mechanical disaggregation of the exposed 

surface of these deposits commonly results in the protrusion of these 

structures as small tubules or nodular objects.

Locally within the chamosite bed the siderite content increases 

sufficiently to form beds from approximately two inches up to nearly 

six inches in thickness. These beds are rarely pure siderite and 

normally contain some chamosite and/or associated detrital mineral 

grains (e.g., quartz). Normally these siderite beds are composed of 

the same basic constituents as the bed above and below but with a much 

higher percentage of siderite cement. In places, however, the beds may



Plate I

SETjECTED x -radiographs

A, X-radiograph of a three-inch interval (37-00-37.25 feet) of core 
H-1 showing extensive worm borings (light areas) in general 
discordant to sedimentary bedding in clayey material from the 
upper transition zone to the overlying bed. Borings are filled 
with less compact silty material.

B. X-radiograph of a three-inch interval (37.75-38.00 feet) of core 
H-1 showing borings filled with secondary, compact siderite (dark 
lineations) in sideritic chamosite clay from the upper part of the 
main bed. Dark, elongated chamosite oolites are seen in the 
center of the radiograph whereas a rounded oolite (dark) is present 
near the right edge of the picture three-fourths of the distance 
from the bottom. Small, concentric oolite located left of center, 
in lighter area, near top of radiograph, exhibits alternating light 
and dark shells indicating areas of iron-richer and iron-poorer 
minerals or alternating zones of oxidized and non-oxidized chamosite.

C. X-radiograph of a seven-inch interval (50.00-50.60 feet) of core 
H-1 showing transition from extensively bored (light areas) 
chamositic clays of the lower part of the main bed to more compact 
clays of the underlying bed with less borings.
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te composed almost entirely of microgranular siderite, Siderite teds 

may occur at any stratigraphie position within the parent facies, tut 

they characteristically occur near the top and bottom of the unit.

The chamosite grains constituting the hulk of these glauconite 

lentils are all sand-sized tut have a variety of shapes. The smaller 

grains tend to te round whereas the larger grains are commonly elon­

gated. There may be no direct correlation between grain size and 

vertical position within the ted, tut larger grains commonly occur 

near the top and bottom of the ted whereas smaller grains are normally 

found near the central portion of the bed. The surfaces of unweathered 

chamosite grains are normally smooth and shiny in appearance, but the 

surfaces of weathered grains are chemically etched and pitted, and 

normally contain a coating of secondary alteration product, a light 

gray clayey material.

The siderite cement enclosing the constituent grains ranges 

in form from microgranular, microcrystalline to cryptocrystalline.

The grains are normally clear, ranging in color from a slight reddish 

brown tinge to darker shades of red, depending on the degree of 

oxidation. In places, the cementing material is white microgranular 

calcite cement indicating local changes to environmental conditions 

favorable to the precipitation of calcite.

In many places there are thin intervals of less tightly 

cemented chamosite which are friable and crumble readily. The
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constituents of such intervals are characteristically more altered 

than those of the tightly cemented material. Any siderite cement 

present is highly oxidized, and the constituent chamosite grains are 

highly altered, exhibiting dull gray clayey coatings and pitted 

surfaces. The presence of a variable, dark gray clayey matrix in 

portions of these intervals gives them a dull appearance. There seems 

to be a direct correlation between decreasing siderite cement and 

increasing clayey matrix material, suggesting that all of the clay is 

not an in situ alteration product. A white or yellowish, microgranular, 

clayey material is in places randomly distributed through these intervals 

giving them a speckled or "salt-and-pepper" appearance. A similar 

material in the Northampton Iron Ore deposits was identified by 

Bannister (in Taylor, 19^9; P* 3^) as consisting of allophane and 

halloysite together with hydrated aluminum sulphates.

Locally, the occurrence of high concentrations of light green 

chamositic mud matrix causes a marked change in the appearance of the 

parent bed. These intervals are characteristically extensively bored 

and burrowed and commonly contain random light gray sideritic clay 

stringers. The bore holes and burrows have subsequently been filled 

with light to dark gray siderite and this contrast in colors gives this 

interval a mottled appearance. The high siderite cement content 

normally present in tightly cemented zones decreases in these sections 

with a resulting increase in chamositic and sideritic muds and detrital
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quartz sand grains. These changes indicate a shallowing of the 

depositional environment. In these less tightly cemented zones, the 

siderite cement and chamosite grains are more oxidized and chemically 

altered, respectively, than similar constituents in more tightly 

cemented intervals indicating that this change in environmental 

conditions included an increase in oxidation potential and chemical 

reactivity. These intervals may occur anywhere in the bed, but they 

characteristically occur near the top and bottom when present.

The main body of the chamositic bed characteristically grades 

vertically in both directions through a thin interval of highly 

oxidized chamositic siderite into a fine-grained quartz sandstone with 

a high content of carbonaceous matter. Typically the sandstone is 

composed predominantly of clear, angular to sub-rounded detrital 

quartz grains containing variable quantities of muscovite mica, 

carbonaceous matter, chamosite grains, and light gray sideritic mud. 

Small- to medium-sized chert pebbles are randomly distributed through­

out this clayey sandstone sequence directly overlying the chamosite 

bed in a core (H-6 ) from the northern part of the area. The carbona­

ceous matter is present as fine- to large-sized fibrous particles 

resembling charcoal and in places as long rod-like bodies resembling 

carbonized plant twigs. The light gray sideritic mud occurs as 

randomly dispersed, indurated clay stringers and as a matrix or 

cementing material for the quartz sand. The lower portion of these
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zones, particularly where the chamosite and sideritic mud content is 

fairly high, is commonly extensively bored and burrowed. However, the 

chamosite and sideritic clay decrease in a direction away from the 

chamosite bed, resulting in less clayey, more friable sandstone which 

does not exhibit the borings and burrows. The presence of fine-grained, 

angular to sub-rounded quartz sand; fine, clayey mud matrix; and 

persistent, fragile carbonaceous matter in these sands point to a low 

energy reducing environment.

The gradation of siderite-chamosite deposits into similar 

clayey sandstone units above and below the main bed probably represents 

a gradual fluctuation in environmental conditions from a quiet, back- 

swamp or lagoonal environment to a near-shore, shallow marine environ­

ment followed by a return to conditions similar to those prior to the 

deposition of the chamosite.

Altered Chamosite Facies 

Once exposed to surface or near-surface conditions, chemically 

reactive waters attack the chamosite and siderite, oxidizing and 

leaching their iron content, and concentrating the iron as geothite in 

veins or ledges within an associated clayey matrix produced by decom­

position and leaching of the iron-bearing silicate minerals. The 

nature of the weathered parent material is dependent upon the extent 

of leaching of the iron-bearing minerals and the nature and percentage
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of other minerals originally present. In the case of incomplete 

leaching, the residue consists of limonite-stained silt or clay sized 

matrix material containing partially leached chamosite grains and 

detrital quartz grains. The leached chamosite grains commonly exhibit 

an outer thin rim of dark brown goethite, but the interior of these 

grains consists of a yellow, homogeneous, silt-sized material with a 

clayey consistency. Some of the detrital grains contain a thin coating 

of clear, glassy-looking silica, diagenetically produced by concentra­

tion of the silica released upon decomposition of the iron-bearing 

silicate minerals. Where leaching and segregation of the iron content 

have gone to completion, the end product is a light tan to gray clay 

or silt with some ghosts of relict chamosite grains and a variable 

content of detrital quartz grains. In places, oxidation proceeded 

without subsequent migration of the iron into veins or ledges. In such 

situations the end product is a dull brown, massive, homogeneous iron­

stone with only incipient vein development, if present at all.

Goethite veins and ledges assume horizontal, concentric or 

boxwork patterns, or a combination of these, depending on the control 

exerted on mineralizing surface waters by the permeability of the 

parent bed during weathering (Plates II and III). In most instances 

the concentration of goethite as horizontal ledges seems to be the 

result of higher permeability along bedding planes within the parent 

bed or along its upper or lower contacts (Plate IIA) allowing the



Plate II

SELECTED PHOTOGRAPHS

A. Road metal quarry near center sec. 9̂  T19H, RÔW,, 2 miles east of 
Athens showing a thick, continuous, horizontal limonite ledge near 
the top of the brown ore bed (Figure l4, Durham, 196 )̂. Artificial 
terraces controlling field erosion by forming breaks in slope 
similar to that formed by the limonite ledge can be seen on 
hillside behind quarry.

B. Remnant of once continuous brown ore bed in quarry in north part 
of area A, Kilpatrick district showing thin, horizontal veins and 
ledges in thick massive parent bed (Figure 9; Durham, lS6k).
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Plate III

SELECTED PHOTOGRAPHS

A. "Residual boulder of green ore, in area D, Kilpatrick district, 
showing gradational development of exfoliation 'shells' during 
process of alteration to brown ore. Only the non-layered core 
is still green," (Figure J, Durham, 1964, p. 34).

B. North quarry face in area D, Kilpatrick district showing boxwork 
and concentric patterns of iron ore development resulting from 
completion of the exfoliation process (Figure 8, Durham, 1964). 
Altered residual boulder is seen at upper right.

39



Plate III



4i
passage of mineralizing waters, lut thin horizontal ledges have also 

been observed in thick homogeneous parent material (Plate IIB).

However, ledges occurring at the top or bottom of parent beds are 

normally thicker and more persistent than horizontal beds within the 

parent bed itself. The structural form of such thick ledges is quite 

different from that of thinner ledges. They are normally continuous 

bodies with horizontal laminations or irregular bodies with crumbly 

interiors. Boxworks and concentric patterns occur in thick homogeneous 

parent beds. Concentration of goethite by downward percolating surface 

waters along fracture or joint patterns or other surface water circula­

tion routes within the parent bed accounts for the boxwork patterns. 

Concentric or spheroidal patterns (Plate IXIA) are the result of 

exfoliation weathering of residual blocks of green chamosite ore as 

discussed by Durham (1964, p. 31-32):

The veins and ledges frequently have a concentric or 
shell-like orientation although a smaller boxwork pattern 
may interupt or complement it. This is due to exfoliation 
weathering on the surface of residual blocks of green ore 
(figs. 5-8). Original dimensions of the individual blocks 
are apparently determined by vertical and horizontal joint 
systems and range from less than one foot to ten feet (fig.
11). Progressive development of the oxidation shells at 
the expense of the unaltered blocks produces the spheroidal 
weathering effect, so that the remaining unaltered green, 
ore may occur in rounded 'boulders' in some cases four or 
five feet in diameter. Several road metal pits in the 
region have exposed such boulders. They are particularly 
well developed within the northernmost quarry in the Kilpatrick 
district (area D, pi. 9) where quarrying operations have left 
several of them discarded on the floor of the pit or else 
still in place in the walls of the pit (figs. 6, 7, 10).
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In other areas, the hed is completely oxidized hut the 
concentric arrangement of the iron ore veins indicates 
that the oxidation process passed through a similar stage 
during development of the hrown ore (fig. 5)«

The veins and ledges constituting the boxworks (Plate IIIB) 

and concentric patterns and some horizontal ledges are typically thin 

(l/lO inch to 1-f inches in thickness) bodies which characteristically 

exhibit a smooth metallic surface. Close observation of these surfaces 

in many cases reveals the presence of tightly cemented detrital quartz 

grains and faint outlines of relict chamosite pellets replaced by 

goethite. Ledges may reach thicknesses in excess of one foot, and the 

surface form and texture are considerably different from that of the 

thinner veins and ledges. These ledges may exist as thin, platy 

subhorizontal layers or they may be more massive with mammillary and 

botryoidal shapes, "Infrequently, rounded concretions of ore with a 

cockscomb surface due to an internal radial pattern occur among the 

thicker ledges" (Durham, 1$64, p. 3l)*

All stages of weathering and segregation, from fresh unaltered 

green chamosite through oxidized brom glauconite in which only inci­

pient veining is apparent to complete development of goethite veins 

in a clay matrix, may be observed in present outcrops. Only in the 

latter instance, however, is high grade ore produced. The extent of 

oxidation of the parent bed depends on its position in relation to the 

permanent water table and the amount and type of overburden. Descending,
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oxidizing surface water must have free access to the parent hed in 

order to free the iron, allowing concentration in veins elsewhere. 

Overlying, permeable beds, like sand, allow free movement of oxidizing 

water whereas clay retards the movement of water due to its impermeable 

nature. The present water table normally marks the downward limit of 

weathering, because free oxygen available for oxidation normally does 

not extend below the water table. Thus, the weathering zone does not 

extend deeper than 15 or 20 feet, and closely conforms to the present 

topography which suggests that alteration occurred during or after 

establishment of the present topography.



MINERALOGY

General

Unweathered Parent Bed 

The fresh parent ore bed consists essentially of green or 

gray-green chamosite oolites and pellets in a matrix of clear or pale 

yellow microcrystalline siderite or less commonly in a matrix of green 

chamositic mud. In places oolites predominate and are separated only 

by thin siderite or chamosite cement and in other instances less abun­

dant oolites are scattered through a matrix of siderite or of chamositic 

mud. Averaged point counts of the constituent minerals in selected 

size fractions yield 53 percent siderite, h2 percent chamosite, with 

the remaining 5 percent composed of detrital quartz, feldspar, mica, 

and other minor accessory minerals. Typical chamosite oolites with 

the pronounced concentric or onion-ring structure are present in these 

deposits, but they are normally associated with pellet-like grains and 

rounded clay-like bodies which may or may not have been oolites prior 

to diagenesis. In general, variation in the nature of the oolites is 

irregular and sporadic, typically resulting in mixed assemblages of 

oolites. Kaolinite is widespread and occurs both as randomly distributed

44
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fine grains and as fine mosaic-like masses of crystals in chamositic 

oolites and mud matrix. Illite is rarely present in the main bed but 

it commonly occurs in the transition zones. Minor quantities of a 

l4 A clay mineral with an expandable structure occurs in some places 

in the main bed and more commonly in the transition zones.

Fine-grained clear or cloudy siderite with subordinate calcite 

forms the dominant matrix material for these rocks. Locally, chamositic 

mud. or calcite is the dominant matrix material. Siderite is also 

present as granular masses and secondary spherulites in chamositic 

muds. It is also an active replacement mineral and commonly replaces 

chamosite, detrital quartz, and organic matter.

Limonite and/or goethite is a common constituent of these

ores, occurring as rinds around oolites, as amorphous stains or■

coatings, or as finely divided crystals.

Detrital quartz is a prominent constituent of these deposits,

but it normally constitutes less than 5 percent by weight of the total

rock sample.

Microcline, orthoclase, and plagioclase (?) feldspar grains 

are characteristically present in subordinate quantities. Detrital 

muscovite mica is widespread in these rocks, but it is never abundantly 

present except in the transition zones. Minor accessory minerals in 

these deposits include detrital grains of rutile, zircon, tourmaline 

and garnet. The organic remains of plant material are present in
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places, "but for the most part they hava "been subsequently replaced by 

siderite which in turn has commonly been oxidized to a high biréfringent 

reddish brown material.

Pyrite is widely distributed, but it is normally not abundant. 

Mainly it occurs in granular aggregates widely distributed in the 

groundmass, but locally it partially or even completely replaces 

chamosite oolites, matrix, and organic material. Magnetite is rarely 

present in these rocks and when present it exists as small, randomly 

distributed granules in matrix.

Collophanite is present in limited quantities in these 

deposits and local increases in its abundance are normally associated 

with an increase in calcite. Some of the phosphorous occurring in 

these deposits may be present in allophane (?) which is widely distri­

buted.

The Weathered Rocks

Weathering processes associated with the present land surface 

have resulted in definite changes in the mineralogy of the original 

parent bed. Although weathering for the most part is related to 

present topography, evidence from deep-seated cores indicates that at 

least part of the weathering predates that associated with the present 

topography.

The mineral changes are similar to those described by Taylor
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(.19^9) from the Northampton Sand Ironstone Formation of England. In 

some instances alteration of the original iron-bearing minerals takes 

place without subsequent redistribution of secondary iron but in 

others the iron has been leached from the parent minerals and redistri­

buted within the altered parent bed.

Mineralogy of the Unweathered Parent Bed

Minerals of the Oolites 

The oolites occur in a variety of sizes and shapes. In size 

they range from 0.2 mm up to O .5 mm, averaging O .3 mm, and in shape 

they range from spheroidal, ellipsoidal, elongated to vermicular. A 

mixture of these morphological types is typical of these deposits 

(Plate IVA). In general, the different morphological types appear to 

reflect different modes of origin rather than subsequent changes in 

shape after genesis.

Spheroidal and ellipsoidal oolites normally have a pronounced 

concentric, or onion-ring structure resulting from the growth of fine­

grained chamosite or clay flakes around a detrital nucleus (e.g., quartz, 

feldspar, limonite) (Plate IVB). This arrangement of finely crystalline 

material tangentially to a succession of spheroidal or ellipsoidal 

growth surfaces results in the direction of the slow ray being tangent 

to the oolite. Many such oolites exhibit a well-marked extinction 

cross under crossed nichols (Plate IVC). The aggregate birefringence



Plate IV

SELECTED PHOTOMICROGRAPHS

A. Various forms of chamosite grains in fine-grained siderite cement. 
Shapes range from spheroidal, ellipsoidal, elongated, to vermicular. 
Thin section H-19-32. Plain light (X12|).

B. Chamosite oolite in center of picture showing concentric structure 
resulting from growth of fine-grained chamosite around a detrital 
quartz nucleus. Thin section H-21-37. Plain light (X5 0).

C. Chamosite oolite in center of picture exhibiting a well-marked 
extinction cross under crossed nichols. Thin section H-21-36. 
Crossed nichols (X12g).

D. Chamosite oolite just above center with concentric structure exhib­
iting alternating shells of lighter and darker chamosite, reflecting 
changes in physico-chemical conditions during growth. Concentric 
.chamosite oolite to right of center has round limonite core. Thin 
section H-I-9 . Plain light (X50).
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Plate V

SELECTED PHOTOMICROGRAPHS

A. Concentric chamosite oolite in center of picture with an oxidized, 
rounded portion of an older chamosite crystal. Siderite is 
replacing quartz grains randomly scattered in field of view. 
Chamosite replacing quartz grain to upper left of center. Thin 
section H-21-36. Plain light (X5 0).

B. Ellipsoidal pellet-like grains having no concentric structure.
Grains consist of chamosite (green), intimately mixed quartz (larger 
light-colored grains), kaolinite flakes (small light-colored flakes), 
and other mineral inclusions. In center of picture quartz grain is 
partially replaced by siderite releasing silica which migrated 
outward and recrystallized to form an outer rim of chalcedony. Thin 
section H-21-37* Crossed nichols (X$0).

C. Rounded bodies of yellowish green chamositic mud similar in size 
and form to true oolites but are thought to be rolled fragments of 
chamositic mud ("False oolites”). Grain in extreme right of center 
merges imperceptibly into mud matrix. Several "oolites" are 
replaced by siderite. Thin section H-1-6. ' Crossed nichols (X50).

D. Large vermicular chamosite grain in center of picture exhibiting 
.alternating light and dark green stringers of chamosite. Bent 
tabular crystal immediately below left boundary of vermicular 
^ains consists of colorless kaolinite plates alternating with 
thin, yellowish green chamositic mud. Oxidized siderite spherulites 
are randomly dispersed in chamositic mud matrix. Thin section 
H-1-1. Crossed nichols (X50).
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Plate VI

SELECTED PHOTOMICROGRAPHS

A, Slightly rounded microcline grain in center of photomicrograph is 
replaced along twinning and cleavage planes by chamosite. Thin 
section H-1-5. Crossed nichols (X^O).

B, Quartz grain to right of center is replaced around the outer
extremities and along fracture planes by chamosite. Ellipsoidal 
pellet-like chamosite oolite to extreme left of center containing 
quartz grains and kaolinite flakes. Thin section H-I-I5. Plain
light (X50).

C. Siderite spherulites in chamositic muds, in places coalescing, 
produced by recrystallization of siderite originally disseminated 
through the chamosite muds. Many spherulites have silt particles 
which were apparently in their path as they grew. Thin section 
H-1-2. Plain light (X$0).

D. Slightly oxidized and in places replaced chamosite oolites in
matrix of light yellow calcite. Secondary calcite growth perpen­
dicular to the exterior surfaces of the enclosed grains gives the 
groundmass a radial appearance. Many of the quartz grains were 
partially replaced by siderite before deposition of the calcite. 
Thin section H-11-30. Crossed nichols (X12|-).
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Plate VII

SELECTED PHOTOMICROGRAPHS

Quartz grain, partially enclosed by chamosite, to upper right of 
center contains barely visible, long tourmaline or rutile needles. 
Other quartz grains (light colored grains) contain small, rounded 
inclusions exhibiting third- or fourth-order green and red inter­
ference colors. Thin section H-1-15. Crossed nichols (X50).

B. Quartz grain in near center of photomicrograph is replaced by
coarsely crystalline siderite. Isolated remnants of the original 
intact quartz grain ("white color) are surrounded by light yellow 
siderite. Thin section H-21-37. Crossed nichols (X50).

C. Detrital chalcedony grain in center of field of view showing
distinct radial aggregate structure between crossed nichols. Thin 
section H-21-38. Crossed nichols (X5 0).

D, Fibrous organic matter replaced in part by pyrite (black) and 
siderite (dark brcwn). The siderite has been subsequently 
oxidized. Thin section H-11-27. Plain light (X12g).

5^



55

B

D

Plate VII



56

of most such oolites is normally lov.

Oolites with concentric structure commonly exhibit alternating 

shells of green and brown material, reflecting changes in physico­

chemical conditions during growth (Plate IVD). Sporadic increases in 

the oxidation potential of the depositional environment result in 

oxidation of the outer extremities of the growing chamosite grain. 

Subsequent return to reducing conditions proceed with growth of another 

green shell of chamosite. Some oolites show up to three or four stages 

of chamositization.

Oolites commonly have a central core of material showing no 

concentric structure. This core may be a portion of a chamosite 

crystal or structureless green chamositic mud (Plate VA). Taylor (l9^9) 

reported similar oolites from the Northampton Sand Ironstone Formation 

of Britain. The coarser crystalline material of the core is normally 

oxidized to a brovmish or yellowish color, reflecting two contrasting 

environments of formation. This core is surrounded by concentric 

growth rings of green chamosite indicating that the fragment suffered 

partial oxidation prior to its incorporation in the oolites. Some 

oolites contain either an angular or rounded core of limonite (Plate 

IVD). Other oolites contain oxidized cores of structureless chamositic 

mud. These cores may be rounded but some are also angular. Some 

detrital grains have only a thin outer rind of light green chamosite or 

chamositic mud. Other types of foreign bodies may also serve as nuclei
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for some oolites (e.g., coarsely crystalline siderite, zircon crystals, 

feldspar crystals, apatite crystals, or a portion of an earlier oolite).

Ellipsoidal pellet-like grains are commonly intimately mixed 

with the true oolites or may locally be the predominant oolite present 

(Plate VB). These are similar to mineralized faecal pellets described 

by Porrenga (1965) which are now being formed in recent sediments of 

the Niger and Orinoco deltas. These pellets do not have a concentric 

structure, and characteristically they consist of chamosite intimately 

mixed with quartz, kaolinite, and other mineral inclusions. According 

to Porrenga, animals feeding on bottom sediments consume detrital 

mineral fragments and produce faecal pellets composed of an intimate 

mixture of organic and inorganic material. He advocates that synsedi- 

mentary or early diagenetic mineralization of these faecal pellets 

produces poorly ordered authigenic chamosite. The iron content would 

increase during diagenesis, Kaolinite may be quite abundant in some 

of these pellets. Kaolinite may exist as small colorless flakes or as 

mosaic-like masses of grains forming good rouleaux (Plate VB).

Rounded bodies of yellowish green chamositic mud or light 

green cryptocrystalline clay similar in size and form to true oolites 

locally form the dominant oolite type or are intimately mixed with 

oolites and pellets (Plate VC). These are the "false oolites" of 

Cayeux (1922) referred to by Taylor (19^9) in his discussion of the 

Northampton Sand Ironstone Formation. This type is closely associated



58

with a chamositic mud matrix, and the "oolites" commonly merge imper­

ceptibly into the matrix (Plate VC). Many such occurrences appear to 

be associated with local reworked zones in which the oolites are 

preferentially oriented along the sides of many burrows. Extensive 

replacement of such "oolites" by siderite is commonly observed (Plate 

YC). Most of the "false oolites" are thought to be rolled fragments 

of chamositic mud, but those composed of light green cryptocrystalline 

clay commonly show a radial growth structure. A thin outer shell of 

light green mud may form around some grains of yellowish green 

chamosite. Some of the "rolled oolites" exhibit a flattened, distorted 

form.

Vermicular chamosite grains are in places associated with the 

other types (Plate ’7D). Alternating light and dark stringers of 

chamosite or chamositic mud, commonly crisscrossing, constitute these 

tabular grains. Many of these grains have discontinuous inclusions 

of colorless chamosite (?) alternating with light green cryptocrystalline 

chamosite. This effect gives the vermicular crystals a kind of "hour­

glass" structure. This particular type resembles in appearance vermi­

cular chlorotoid grains, but the optical properties are more similar 

to those of chamosite, and X-ray diffractograms of these samples do 

not reveal the presence of chlorotoid. Other grains exhibiting a 

vermicular form consist of bent, colorless kaolinite plates alternating 

with thin, yellowish green, chamositic mud (Plate VD).
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Chamosite occurs in colors from dark green, light green, 

yellowish green to reddish hrown, depending upon the degree of 

oxidation. Many oolites exhibit yellow, yellow brown, or even reddish 

brown tints, apparently due to partial oxidation of the chamosite.

The optical properties are variable for the different types discussed 

but optical properties also commonly vary within any one type. Some 

exhibit weak birefringence whereas others are almost isotropic. 

Pleochroisra in some of the oolites is similar to that described by 

Taylor (19^9) Tor oolites in the Northampton ores (i.e., green or 

yellow green for rays vibrating at right angles to the cleavage, deep 

olive green for rays vibrating parallel to it). The refractive index 

appears to increase with increase in depth of color as suggested by 

Taylor but normally ranges between I .61 and I.65. As with Taylor's 

Northampton ores (19^9^ P* I8 ), "It appears possible that the depth of 

colour and variation in optical properties of the material composing 

the ooliths are in part determined by the percentage of clay associated 

with the chamosite."

Chamosite is normally without doubt the dominant mineral 

present in "oolites", no matter what type, but, as pointed out before, 

kaolinite occurs both as fine grains and as mosaic-like masses of 

crystals in the pellets and "false oolites." Kaolinite is normally 

not readily discernible under a microscope in oolites with a marked 

concentric structure, but X-ray diffractograms of the clay residue
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left after removal of the chamosite with warm 10 percent HCl invariably 

reveal the presence of kaolinite. Chemical analysis of the clay-sized 

fraction separated from these samples yield compositions which are not 

typical for chamosite hut suggest a mixture of chamosite and kaolinite. 

The relative proportion of kaolinite in the oolites is variable, but in 

general it increases in oolites near the lower and upper transition 

zones. In the transition zones the oolites and matrix may be predomi­

nantly kaolinite.

Chamosite is an active replacement mineral and some of the 

chamosite grains are secondary. Orthoclase, microcline and perthite 

are readily etched and replaced by chamosite (Plate VIA). Replacement 

normally starts around the outer extremity of the grain but proceeds 

more rapidly along twinning and cleavage planes which form zones of 

weakness within the feldspar structure. All stages of alteration were 

observed. In some instances, only the outer surfaces had been altered, 

in others only along selected cleavage or twinning planes, and in others 

only isolated remnants suggest the original identity of the grain.

■When completely replaced by chamosite, the relict structure of the 

original feldspar crystal is commonly indicated by the retention of 

the wavey extinction characteristic of the original twinning. The 

feldspar crystals commonly have undergone some rounding prior to 

diagenetic alteration. The replacement of detrital quartz by chamosite 

is much more difficult to explain in terms of structural change, yet
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this phenomenon occurs extensively in these deposits (Plate VIB). 

Replacement occurs at abraded edges and proceeds readily along fracture 

zones and other planes of weakness (e.g., along planes of inclusions). 

Partially replaced grains commonly exhibit crisscrossing stringers of 

chamosite which isolate patches of quartz. All stages of replacement, 

from partial to nearly complete, have been observed.

In some oolites, the central detrital nucleus has been partially 

replaced by siderite prior to incorporation of the grain in the oolite. 

Others may include one or more concentric zones of siderite, either as 

a replacement phenomenon or as direct crystallization about the then 

existing surface. In either case, the presence of siderite marks a 

temporary change in physico-chemical conditions favorable to precipita­

tion of siderite rather than chamosite. As suggested by Taylor (l9^9)j 

this might be due to an increased supply of carbon dioxide which would 

either result in carbonation of the outer skin of the oolite or in 

direct precipitation of siderite in place of chamosite. Some oolites 

have a thin outer shell of siderite which commonly has been oxidized 

to form a reddish brown outer rim. Some oolites have been extensively 

or even completely replaced by siderite (Plate VC). Other oolites have 

irregular cores of coarsely granular siderite which is probably related 

to an earlier replacement phenomenon. It is difficult to determine how 

many oolites have been completely replaced by siderite because once 

replaced all trace of the concentric structure is lost. The siderite
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associated with the oolites is always more coarsely crystalline than 

that of the groundraass, and it is normally yellow whereas that of the 

groundraass is normally colorless or light gray.

Some oolites contain limonite cores and some oolites are 

partially oxidized, but no oolites consisting wholly of limonite like 

those described by Taylor for the Northampton ores were observed in 

these deposits. Some oolites have one or more concentric zones of 

limonite alternating with green chamosite.

Taylor (19^9) reported fine granules of magnetite in some 

chamosite oolites of the Northampton Sand Ironstone, but similar 

occurrences of magnetite were not observed in these ores. Fine granules 

of magnetite are, however, found in the groundmass in some places.

Minerals of the Groundmass

Siderite occurs extensively throughout these deposits and is 

the predominant mineral constituting the groundmass. It is also present 

as granular aggregates and spherulites in chamositic muds.

In general, the siderite of the groundmass is extremely fine­

grained and is either colorless or pale yellow in color. The textural 

relationships of the matrix to the constituent chamosite grains indicate 

that it is syndepositional. Primary siderite commonly displays prominent 

rhombohedral cleavage planes.

Secondary replacement siderite locally forms all or a major
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portion of the groundmass. It is more coarsely crystalline than 

primary siderite and it is normally pale yellow rather than colorless. 

Paritally replaced grains or relict outlines of completely replaced 

grains are distinguishable in much of the coarsely crystalline matrix. 

The secondary replacement siderite is commonly optically continuous 

with the colorless primary siderite in the groundmass and the secondary 

siderite of the partially replaced grains. Ihis probably means that 

the replacement siderite postdates the deposition of the groundmass 

because the secondary siderite would tend to crystallize in continuity 

with the primary siderite.

Where siderite occurs in the form, of spherulites in chamositic 

muds, they are normally small but they coalesce in places to form 

local siderite sheets (Plate VIC). The spherulites appear to be 

secondary minerals produced by recrystallization of siderite originally 

disseminated through the chamosite muds. Siderite in the spherulites 

is present either as finely fibrous crystals or sector-like crystals 

radially arranged. The siderite is commonly colorless or light yellow, 

but roughly concentric zones within the spherulites are commonly 

defined by being colored in various shades of brown. Other spherulites 

have been strongly oxidized and are now dark brown (Plate VD). As 

pointed out by Williams, Turner and Gilbert (195^), some have nuclei of 

silt particles which were apparently in their path as they grew, and 

the fine clay particles in the matrix appear to have been pushed aside
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and crudely oriented by growth of many of the spherulites.

X-ray diffractograms of siderite magnetically separated from

the deposits yield peaks characteristic of typical siderite (Figure 5)*

Differential thermal analysis curves of this material are also typical
»

of siderite (Figure 5)» They show a strong endothermie peak at approx­

imately 525°C followed by a strong exothermic peak around and a

minor exothermic peak at approximately 8lO°C. Although the endothermie 

peak and the first exothermic peak are due to the decomposition of the 

mineral and oxidation of the FeO produced, respectively, the minor 

exothermic reaction is most probably due to a change in iron types. 

Effluent gas analysis curves show a strong peak around 525°C correspond­

ing to the release of COg during decomposition of the mineral (Figure 5)* 

Analysis of the gas liberated at this temperature by gas chromatography 

yielded COg.

Chamosite mud is a common constituent of the groundmass, even 

though it is subordinate to siderite and its occurrence seems to be 

rather restricted in extent. In some instances, the mud matrix predom­

inates with only scant ooliths and minor quantities of siderite randomly 

dispersed throughout. In many places, however, these muds contain 

considerable quantities of recrystallized siderite in the form of 

spherulites. In some places, numerous light green, rounded clay oolites 

are set in a subordinate matrix of light green chamositic mud. These 

oolites appear flattened and commonly merge imperceptibly into the mud
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Figure 5. DTA diagram and randomly oriented X-ray diffractogram of siderite.
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matrix. The mud and its constituents commonly have been extensively 

reworked and replaced by siderite. Siderite stringers transverse many 

of these zones and replace everything in their path.

Kaolinite is invariably present in these muds. It may be 

present as mosaic-like masses of kaolinite crystals or as bent kaolinite 

flakes interlayered with chamosite. In some places it is too finely 

divided to be distinguished under a microscope, but analyses by X-ray 

diffraction reveal the presence of at least some kaolinite. The 

chamositic mud content increases considerably toward the transition 

zones, and the relative proportion of kaolinite in these muds increases.

A minor quantity of calcite is closely associated with the 

granular siderite in the groundmass of these deposits. It is normally 

finely granular like the siderite matrix; consequently, it is only 

distinguishable from the siderite in X-ray diffractograms and DTA 

patterns. Calcite of organic origin was not detected in these rocks. 

Locally and rarely, calcite enrichment results in calcite becoming the 

dominant matrix material (Plate VID). In such occurrences, oolites and 

partially replaced detrital quartz are set in a matrix of recrystallized 

calcite. Calcite crystal growth proceeds perpendicular to the exterior 

surfaces of enclosed constituent minerals giving the groundmass a 

radial appearance. Many of the quartz grains seem to have been partially 

replaced by siderite prior to deposition of the calcite, and many of 

the oolites appear to be more oxidized than usual. This type of
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occurrence is rare and then it is restricted to thin layers or to small 

rounded or nodular bodies.

X-ray diffractograms of samples containing such high quantities 

of calcite yield peaks typical ,of calcite (Figure 6). Differential 

thermal analysis curves are also typical for calcite. They show a 

strong endothermie peak at approximately 800°C which corresponds to 

decomposition of the mineral. Effluent gas analysis curves show a 

strong peak at approximately 800°C corresponding to release of COg 

during breakup of the calcite structure (Figure 6). Analysis of the 

gas liberated at this temperature yielded COg.

Other Constituents 

Of the remaining constituents, quartz is the most abundant.

The relative quantity of quartz grains varies in most of the thin 

sections examined, but it is invariably present, either as separate 

grains and/or as nuclei of chamosite grains, and constitutes an average 

of 5 percent of the total mineralogical assemblage. Quartz is commonly 

present in quantities less than one percent but may constitute as much 

as 25 percent of the total sample. The relative quartz content charact­

eristically increases toward the transition zones and the landward 

flanks of the lentils, but it may also increase locally. When present 

in abnormally high quantities, it drastically reduces the iron content 

by reducing the proportions of siderite and chamosite present.
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Characteristically, the quartz grains are suhangular to 

suhrounded particles ranging in size from very fine to medium sand. 

Practically all of the quartz grains contain idiomorphic crystalline 

inclusions in varying amounts. Rutile and tourmaline needles are 

rarely present (Plate VIIA), but the majority of the microlites are 

small, rounded inclusions exhibiting third- or fourth-order green and 

red interference colors, characteristic of carbonates. The latter 

inclusions may be randomly distributed, but they also form intersecting 

chains or planes of inclusions.

In these slides extinction types range from straight to 

"slightly undulose" to "strongly undulose", according to Folk’s 

classification of reworked sedimentary quartz (1959)* Some grains 

exhibit semi-composite extinction, but this is rare. Quartz grains 

with straight to slightly undulose extinction represent the majority 

of grains present.

Quartz overgrowths were not observed in these slides, but this 

does not preclude the possibility that they were at one time present 

because the outer rims of most grains have been severely etched and 

replaced by either siderite or chamosite.

The outer rlias of most quartz grains have been etched and 

replaced by siderite and all or a major portion of many grains have 

been replaced by this mineral. This process of replacement starts 

along the outer extremities of the grain and then proceeds along fracture
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planes or other zones of weakness in the mineral structure (Plate VIIB). 

The relict outline of many of the original grains is all that remains 

to suggest its former identity. Some silica released during replacement 

of quartz hy siderite migrates outward and precipitates to form an 

outer rim of chalcedony (Plate VIIB). Other quartz grains have larger 

outer rims of chalcedony with little or no associated replacement 

siderite.

A few detrital chalcedony grains were observed in these thin 

sections (Plate VIIC), but most of the chalcedony is present either as 

an authigenic and/or secondary diagenetic mineral. Between crossed 

nichols these detrital grains show a distinctive radial aggregate 

structure. In these radial groups the small crystals converge toward 

the center of the individual particle, and this radial uniformity of 

orientation produces, with crossed nichols, a dark cross parallel to 

the positions of extinction. The outer margins of such grains are 

normally embayed by chamosite or they may be etched and replaced by 

siderite.

Feldspar grains constitute less than one percent of the total 

mineralogical assemblage, but they are present in varying amounts in 

almost every thin section studied. Microcline and orthoclase are the 

most prominent feldspars present, but perthite is also present. 

Unweathered microcline has the so-called "gridiron" or "quadrille" 

structure, with two sets of lamellae at right angles. The twin
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lamellae are normally spindle shaped and the extinction wavy. It is 

extremely difficult to distinguish most orthoclase grains from quartz 

because the orthoclase grains are untwinned. Tabular feldspar grains 

exhibiting good cleavage are readily identifiable but identification 

of less distinctive grains must be made by comparison of the refractive 

indices, that for orthoclase being less than that of Canada balsam and 

quartz. Many of the orthoclase grains appear cloudy due to incipient
4alteration in contrast with quartz which is normally clear. Plagioclase 

is rare or absent in these thin sections.

No well-rounded feldspar grains were observed; most are sub- 

angular to subrounded. Some grains in a few samples are even subangular 

to angular. It is frequently difficult to determine the original shape 

and surface texture of the feldspar grains because the exteriors of 

most grains have been severely etched and frequently replaced by chamo­

site or siderite. Orthoclase forms the nucleus for some chamosite 

grains.

Muscovite was the only detrital mica observed in these deposits. 

It is widespread, but it is never abundantly present, except in the 

transition zones. There it may form a major part of the mineral 

assemblage. Normally it occurs in long, thin, tabular crystals, and it 

is colorless to pale green in thin section. It is readily recognizable 

due to its strong birefringence; it normally exhibits interference 

colors of the upper second order.



72

Collophanite is present in limited quantities in these deposits. 

A marked increase of phosphorous in samples containing an abnormally 

high calcite content is explained by an increase in collophanite in the 

form of rounded grains. These grains are commonly colorless but may 

he snow white. They are normally isotropic and exhibit moderate relief, 

refractive index greater than balsam. Preliminary pétrographie examina­

tion and chemical analysis of samples of surface or near-surface green 

ore by the U.S. Bureau of Mines also indicated that collophanite was 

the principal phosphorous-bearing mineral in the green ore (Durham,

1961»., p. 52).

Quantitatively the percentage of phosphate-bearing minerals in 

these rocks is relatively insignificant compared to the other constit­

uents, but the relative percentage of phosphorous in these deposits 

would be significant in terms of potential economic value. "The 

phosphorous content, and its possible use as a- byproduct, is a factor 

in the selection of a processing technique designed for this ore," 

(Durham, 196k-, p. $l).

Pyrite is widely distributed^ but it is normally not abundant. 

Mainly it occurs in granular aggregates widely distributed in the 

groundmass, but locally it partially or completely replaces chamosite 

oolites, matrix material, and organic matter (Plate VIID). All X-ray 

analyses of samples containing an unusually high sulfur content show 

pyrite to be present. Differential thermal analysis curves show a
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strong endothermie peak around 470°C which corresponds to decomposition 

of the pyrite crystal structure. Effluent gas analysis patterns also 

show a strong peak at this temperature, corresponding to the release 

of sulfur dioxide during collapse of the pyrite structure (Figure T). 

Analysis of the gas released at this temperature confirmed that it was 

BOg.

Mineralogy of the Weathered Rocks

Minerals of the Altered Oolites and Groundmass 

The resulting change in the mineralogy of hoth the oolites and 

the groundmass depends on whether the alteration of the iron-hearing 

minerals was accompanied hy subsequent migration of the iron to other 

areas, and it also depends on the extent of leaching of the original 

minerals. Infrequently, alteration of the iron-hearing minerals talces 

place without subsequent redistribution of the iron, hut normally the 

iron has been leached from these minerals and redistributed within the 

altered parent bed.

In the first case, the chamosite oolites have been altered to 

or replaced by high biréfringent limonite. The presence of high 

biréfringent limonite stain on the constituents of the groundmass makes 

it extremely difficult to distinguish individual minerals of the 

groundmass, but it appears that the original siderite cement has been 

altered directly to limonite retaining the original mineral form. The
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Figure 7. EGA and DTA diagrams and randomly oriented X-ray diffractogram depicting the presence of Pyrite,
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spatial relationships of the other constituent minerals to the altered 

iron minerals also remain essentially the same as those in the original 

rock, and the non-iron hearing minerals appear to he essentially 

unaltereci.

In the second case, the iron has heen either partially or 

completely leached from all iron-hearing minerals and concentrated along 

selected planes in the weathered parent hed in the form of veins, hox- 

works, or ledges. Where extensive leaching has occurred, only faint 

outlines of the original chamosite oolites remain. The residual material 

of the original oolite is a light tan to gra,y clayey material, appearing 

to consist predominantly of fine-grained kaolinite flakes. Less 

extensively altered oolites retain the original structure. The 

partially altered oolite may consist of an exterior shell of pale 

yellow to hrown scaly material surrounding an aggregate of unoriented 

fibers or granules. Others consist of outer rims of light-colored 

earthy material with a core of cryptocrystalline aggregates. Still 

others exhibit an outer, thin rim of dark hrown limonite or goethite 

with an interior consisting of yellow, homogeneous, silt or clay-sized 

material with a clayey consistency.

Where leaching and segregation of the leached iron have gone 

to completion, attempts to distinguish between matrix and oolites are 

no longer feasible. The residual material now consists of light tan 

to gray clay, or less commonly of yellow or yellow hrown biréfringent
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clayey material, containing relict outlines of chamosite grains and 

stable residual grains (e.g., quartz, feldspar, muscovite). Some of 

the detrital grains contain a thin coat of clear, glassy-looking 

silica resulting from concentration of silica released during decompo­

sition of iron-hearing silicate minerals. Identification of kaolinite 

and illite in the clayey matrix is not always possible under magnifi­

cation, but X-ray diffractograms of this material always reveal its 

presence.

Pyrite originally present in the groundmass is absent. It is 

readily oxidized and the sulfur released is thought to be redistributed 

elsewhere, possibly as gypsum because it is found in some parts of the 

transition zones between the altered and unaltered portion of the 

parent bed. The calcite normally present as matrix material was also 

not observed in altered sequences. It possibly went into solution and 

was redeposited in the transition zones because small stringers and 

concretions of calcite are commonly found there. Thin ledges of 

siderite are also found in many parts of the transition zone. This 

probably represents secondary deposition of iron as siderite in the 

presence of organic matter because distinct, solid ledges of siderite 

are not normally found in the unaltered parent bed.

A white, powdery material is commonly observed in the altered 

clayey matrix material. A similar material was observed by Taylor in 

the Northampton Sand Ironstone Formation. According to Taylor (19^9,
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p. 36), "X-ray examination of this hy Dr. F. A. Bannister has shovn 

that it is in part amorphous, in part finely crystalline and apparently 

consists of allophane and halloysite together with hydrated aluminum 

sulphates to which the names basaluminite and hy dr oha saluminit e have 

heen given (Bannister and Hollingsworth, 19̂ -8)." So far, the writer 

has not isolated enough of this material to analyze hy X-ray diffraction.

Minerals of the Secondary Iron Bodies 

These features normally consist of high hirefringent limonite 

or goethite with varying amounts of incorporated chamosite grains and 

detrital quartz and feldspar. Some of the chamosite oolites have heen 

severely leached of their iron content and others have heen altered to 

or replaced hy limonite. Some incorporated chamosite oolites have 

undergone little alteration.

X-ray analysis of the iron veins give diffractograms character­

istic of goethite (Figure 8). Differential, thermal analysis of this 

material shows one strong endothermie peak at approximately 325°C 

which corresponds to dehydration of the ferrous oxide (Figure 8).
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CLAY MINERALOGY

General

During this investigation studies of 48 samples were conducted 

■fay X-ray diffraction methods. Diffractograms were obtained of both the 

bulk sanç)].es and of the clay-sized fractions of size-fractioned samples. 

Identification of the clay minerals in these samples was based upon 

X-ray diffraction characteristics of oriented clay aggregates and 

their response to heat treatment, acid treatment, and solvation with 

ethylene glycol. Differential thermal analyses, effluent gas analyses, 

and gas chromatography analyses were also utilized as identification 

aids.

Three clay minerals, poorly-ordered chamosite, b-axis disordered 

kaolinite, and dioctahedral illite, were definitely identified in these 

deposits. Minor quantities of a l4 2 clay mineral with an expandable 

lattice, possibly nontronite, was also detected. Chamosite and 

kaolinite are normally the only two clay minerals found in the main 

body of the bed whereas illite and nontronite (?) are mostly restricted 

to the transition zones. Chamosite is by far the predominant clay 

mineral in the main portion of the bed, so much so that sedimented

79
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slides of the clay minerals reveal only the presence of chamosite.

Even though the presence of kaolinite is not revealed in such slides. 

X-ray analysis of the residue of the acid-treated samples nearly always 

reveals its presence. Powder patterns of samples not treated with acid 

also commonly show the presence of kaolinite.

Analytical Techniques 

Diffractograms of randomly-oriented powder slides and prefer­

entially-oriented slides of clay fractions were obtained by using the 

Siemens X-ray diffractometer and automatic recorder. Nickel-filtered 

Cu (E-alpha) and zirconium-filtered Mo (K-alpha) radiation generated 

at 35 KV and l8 ma was employed. The presence of amorphous iron oxide 

in untreated samples created extreme difficulty in obtaining diffracto­

grams of either the random powder slides or preferentially oriented 

slides of clay fractions. For example, when the untreated powder 

slides were bombarded with characteristic copper radiation, iron 

fluorescence masked the diffraction peaks of the weaker clay reflections.

Cu. K alpha radiation cannot be used with ferrous materials 

because it will cause fluorescent radiation from the iron in the 

specimen (Cullity, 1959? P* l66). The characteristic wavelength of 

Cu K alpha (l.5^2 X) is shorter than the K absorption edge of iron 

(1.743 a), thus exciting iron fluorescent radiation. In order to 

prevent this situation the characteristic wavelength used should be
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longer than the K absorption edge of the specimen. Characteristic

radiations of Co K alpha (1.790 Fe K alpha (1.937 A), and Cr K alpha

(2.291 %) are all sufficient for analysis of samples similar to these,

but the unit available was not equipped with either of these tubes.

This problem was somewhat overcome, however, by utilizing Mo K alpha 
/ o.(0.711 A) radiation. This characteristic wavelength is considerably

shorter than the K absorption edge of iron and naturally excites iron

fluorescent radiation, but the intensity of the hard, diffracted

molybdenum radiation is sufficiently greater than the iron fluorescent

radiation, after filtration, to give fairly well-defined diffraction

peaks. A zirconium filter (K edge = O .689 A) was utilized because it
/ 0 \has a greater absorption for the fluorescent Fe K alpha (1.937 A) 

radiation contributing to the background than for the Mo K alpha 

(0. 711 a) radiation forming the diffraction lines. This line of 

reasoning is in accordance with the general rule which states, "....if 

it is impossible to use a wavelength longer than the K absorption edge 

of the specimen, choose one which is considerably shorter and use a 

proper filter" (Cullity, 1959; P* l&T).

Preparation of oriented slides of the clay fractions for X-ray 

diffraction studies proved to be the most difficult and frustrating 

part of this study. Initially, the normal procedure of preparing 

sedimented slides was followed. Bulk samples ground to less than 250 

mesh were dispersed in distilled water and further disaggregated and
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dispersed by means of an ultrasonic transducer (Powerton Autosonic.

Model PA-3001). The less-than-four micron equivalent spherical diameter 

particles were acquired from the suspension by utilizing the differential 

settling velocities according to Stokes' law. This suspended material 

was sedimented on glass slides and then dried in an oven at approximately 

55°C. Normally this procedure preferentially aligns the clay fraction 

and enhances the basal diffraction maxima by orienting the c-crystal- 

lographic axis of the clay minerals normal to the slide. However, the 

presence of amorphous iron oxide coatings in these samples prevented 

complete dispersion of the layer silicate clays which prevented subse­

quent parallel orientation and sufficient concentration of these clays 

for strong diffraction peaks. One broad amorphous-like diffraction 

peak, covering the entire 20 span normally occupied by several clay 

peaks, was obtained from the first sedimented slides X-rayed. Informa­

tion from these diffractograms made it evident that these clay minerals 

were either extremely poorly crystalline or that the presence of amor­

phous iron oxide was causing this anomaly. One of the samples was 

size-fractioned into I-I/2, l/2-l/4, l/4-l/8, and 1/8-I/ 1 6 micron 

fractions by continuous flow centrifugation using a Lourdes (Model 

LCA-l) super-centrifuge, and each of these size fractions was X-rayed 

to see if this phenomenon was characteristic of all clay-size fractions. 

The same unsatisfactory results were obtained from sedimented slides of 

each of these size fractions.
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At this time it became necessary to determine if iron oxide 

coatings were responsible for this phenomenon. In the search for a 

satisfactory method of removing iron oxide coatings and crystals of 

iron oxides, the writer conducted numerous time-concentration experi­

ments with different weak acids (e.g., acidic, formic). Slight 

improvement in the random powder patterns was achieved using 10 percent 

HAc over different time ranges, but totally unsuccessful results were 

obtained in every case with the sedimented slides of samples so treated.

Subsequently, a search of the literature revealed that numerous 

techniques have been utilized in the past for removal of amorphous iron 

oxides with varying degrees of success and failure. In choosing a 

technique several factors had to be considered. The process should 

selectively remove oxide coatings without attacking the iron structurally 

coordinated in the iron-bearing clay minerals present. Further, it 

should not attack the layer silicate minerals with resulting increase 

or decrease in cation exchange capacity, and ideally the technique 

should be fast and free from analytical difficulties. Such a technique 

was proposed by 0. P. Mehra and M. L. Jackson (1960). Their dithionite- 

citrate-bicarbonate method employs sodium dithionite (NagS^O^^ as a 

reducing agent, sodium bicarbonate as a buffer, and sodium citrate as 

a chelating or complexing agent for iron. Operation at a neutral pH 

makes it possible to achieve the prerequisites mentioned above.

Sedimented samples treated by this technique gave well-defined diffraction
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patterns facilitating identification of the clay minerals. Marked 

improvement in random powder patterns and DTA curves was also achieved. 

X-ray diffraction patterns of samples of both the treated and untreated 

material were obtained for comparison purposes. The analytical 

procedures for this process are included in Appendix A.

Clay Minerals of the Unaltered Parent Bed

Chamosite

The term chamosite derives its origin from "chamoson, " the

type locality of the original clay mineral. The clay mineral to which

the name chamosite was first given has the l4 A chlorite structure

( Or cel et al, 19^9); but other minerals which have subsequently been
odescribed as chamosite have the J> A kaolin-type structure. Orcel,

Henin, and Caillere (1949) introduced the name "berthierine" for the

kaolin- or serpentine-type minerals to avoid using one name for two

distinct minerals. Nelson and Roy (1958) proposed the name "septachlo-

rite" for the four minerals amesite, chamosite, greenalite, and cronsted-

tite because they are structurally characterized by serpentine-like 
^  0layers with d = 7 A. The usage of the term chamosite for both001

forms will probably persist, however, because chamosites which occur in 

extensively widespread sedimentary ironstone deposits are of the 7 ^ 

type and the common usage of the term "chamosite-siderite mudstones" 

is deeply ingrained.
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X-ray diffractograms of oriented clay aggregates invariably 

yield only two distinguishable peaks, 7.12 A and 3.56 A (Figure 9).

These are characteristic of the first and second orders of ferrous 

chamosite. Poorly-ordered chamosites commonly exhibit only the first- 

and second-order diffraction peaks, and this phenomenon is character­

istic of all the chamosites in these deposits. Porrenga (1965) suggests 

that there is a direct correlation between depth of burial and the 

degree of ordering in chamosites. He contends that all chamosites of 

Miocene and younger age are poorly ordered and that chamosites of 

Mesozoic age and older are more ordered.

Diffraction peaks representing the first and second orders of 

ferrous chamosite are sharp and well defined for some samples while 

for others, the peaks are broader and less well defined. The degree 

of definition and sharpness is probably a function of the stacking 

arrangements of the layers making up the chamosite unit cell. Brindley 

(1951) showed that variation of powder diagrams of 7 A chamosites could 

be explained by the presence of both orthogonal (with no a-axis layer 

displacements) and monoclinic (with regular a/3 shifts between all 

layers) stacking of layers. According to Brown (1961, p. IO5), "The 

number, positions and intensities of the reflections depend on the 

proportions of the monoclinic and orthogonal forms, on the composition 

of the mineral, and on the state of oxidation." He suggests that the 

better ordered chamosites are rich in iron and the less well-ordered
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size and effects of glycolation on the micron size fraction



87
ones contain less iron and more aluminum and that the oxidation 

increases the disorder.

Two representative samples, one from the main body of the bed

(H-1-2) and the other from the transition zone (H-1-I) were size-

fractioned into 4-1, I-I/2, l/2-l/4, l/4-l/8, and 1/8-I/ 1 6 micron size

fractions to see if there was any variation in mineralogy with particle

size. Oriented X-ray diffractograras of selected size fractions of

sample H-1-2 are shown in Figure 9 . The two peaks characteristic of

ferrous chamosite are present in each size fraction. In addition,
0 ,there is a peak at 2.79 A in the 4-1 micron fraction. This peak is the 

most intense peak of siderite and shows that fine-grained siderite 

remains with the less-than-four micron fraction during size fractiona­

tion. The chemical determination of an abnormally high COg content in 

this size fraction confirms this conclusion.

In the 1/2-1 / 4 micron size fraction, a small peak at l4.3 A 

is most probably attributable to the presence of a small quantity of 

montmorillonite. Upon solvation of this size fraction with ethylene 

glycol, the peak disappeared. The expansion of montmor illonite upon 

solvation would ideally result in a peak around 2° 20, but its absence 

there is not too surprising because this is the low-angle, high- 

scattering region of molybdenum radiation where resolution is extremely 

low to non-existant. A similar l4 A clay mineral was also observed 

from samples of the transition zone, as evidenced in sample H-1-1
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(Figure 13). This mineral occurs in every size fraction of sample 

H-1-1 and upon solvation the peak disappeared as in sample H-1-2.

At first, this l4 A peak was thought to he a super order

representing mixed layering of kaolinite and chamosite. If this had 

been the case, however, the peak should have remained unchanged in its 

original position because the lattice of neither of these minerals is 

expandable.

The chamosite peaks representing the 1 /8 -I /1 6  micron size

fraction are less well defined and less sharp than those of the larger

size fractions. This can be attributed either to the effect of a 

decrease in crystallinity with extremely small particle size or to the 

effect of line broadening due to fine particle size (Cullity, 1959^

p. 97).

According to Brown (1961, p. I06):

Brindley and Youell (l953) showed that by heating a natural 
and essentially ferrous chamosite in air at 300-400°C, the 
colour changed from green, through yellow, to brown as the 
ferrous ions became oxidized to ferric, and at the same time 
the unit-cell parameters contract (see Table II.8 ), The 
results can be understood in relation to the positions 
occupied by the iron atoms in the octahedrally coordinated 
layer. Since this layer is only a small fraction, about I/3, 
of the entire layer thickness, c contracts less than a and b.
The contraction is the result of changing Fe^^ ions, of radius 
0.83 to Fe3^ ions of radius O.6 7 S.

The decreases from 7.11 S to 7.06 A (Table l).

Figure 10 shows the results of heat treatment on the same 

selected size fractions of sample H-1-2. The small percent contraction



TABLE 1

CHANGES IN THE STRUCTURE OF CHAMOSITE NHEN HEATED TO APPROXIMATELY 400°C IN THE PRESENCE OF OXYGEN 

(CORRESPONDING TO THE CONVERSION OF FERROUS TO FERRIC CHAMOSITE) FROM BROUN (196I, P. IO6 )

Ferrous Form Ferric Form Percent Contraction
on Oxidation

a 5.25A° 3.0

■b 9.38 9.10 3.0
d(OOl) T.ll^ 7 .0 6 0.8

In addition to structural changes^ chemical analysis and X-ray pattern intensities show that
—2some outer (0H)“ ions of the octahedral layer are converted to (0)~ and some are driven off conipletely. 

Oxidation and dehydration reactions corresponding to conversion of ferrous to ferric chamosite are 

represented (Brindley and Youell, 1953) «.s follows:

Fe*2 + (OH)" (Fe)^^ + (o)"^ + H*̂

(OH)" &HgO + &(o)-2
t

THEORETICAL FORMULA OF 7A-CHAMOSITE 
.+3 -a, +2(Al, Fe Fe^^, Mg)g (Si^Al) O^q (0H)q
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Effects of heat treatment on oriented X-ray diffractograms 
of selected size fractions of sample H-1-2,
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in the c-crystallographlc direction makes it difficult to distinguish 

between actual change due to oxidation and change due to experimental 

error, but in general there was a shift of the d^^^ peaks toward higher 

20 values, corresponding to a decrease in the unit cell parameter in 

the c direction. This helps confirm that this clay mineral is indeed 

ferrous chamosite. The absence or reduction of the chamosite peaks by 

525*^0 shows that the mineral structure has been completely or partially 

destroyed by the time this temperature is reached.

Figure 11 exhibits DTA and EGA curves of selected size fractions 

of sample H-1-2, In general, DTA curves show a strong endothermie peak 

at approximately 100°C, corresponding to loss of interlayer and adsorbed 

water. EGA curves show a peak in approximately the same area confirming 

the release of water vapor during low temperature dehydration. DTA 

curves exhibit a broad, strong exothermic peak between approximately 

250° and 400°C, normally peaking around 300°C. This peak corresponds 

to oxidation of ferrous to ferric chamosite on heating in the presence 

of oxygen. EGA curves show a broad peak over this same region, corre­

sponding to liberation of water during the oxidation process. Oxidation 

and dehydration reactions corresponding to conversion of ferrous to 

ferric chamosite are represented (Brindley and Youell, 1953) in Table I. 

According to Brown (19^1, p. IO6):

The mechanism of^the oxidation process can be described as 
follows; each Fe ion on 'oxidation' becomes an Fe ion 
and liberates an electron, which in turn reacts with an
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Figure 11. Differential thermal analysis and effluent gas analysis
of selected size fractions of sample H-1-2,
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(o h) ion which becomes 0^", The liberated proton, H^, 
is removed as water by aerial oxidation. The process 
does not take place in the absence of atmospheric oxygen.
At the same time, a partial dehydration occurs which 
appears to be confined to the external sheet of hydroxyl 
ions in the layer structure.

DTA curves show a strong endothermie peak around 500°C which corresponde

to the collapse of the chamosite structure. A corresponding EGA peak

in the same general area, corresponds to the release of water vapor

during collapse of the structure.

Figure 12 displays X-ray diffractograms of the randomly 

oriented 1-1/2 micron size fraction of sample H-1-2 showing the effects 

of utilizing differently prepared samples and the effects of acid 

treatment. As demonstrated earlier, diffractograms of sedimented 

slides only yield peaks characteristic of the first and second orders 

of ferrous chamosite, but diffractograms of powder patterns of the 

same sample yield additional peaks characteristic of b-axis disordered 

kaolinite. This is thought to result from preferential alignment of 

minor quantities of kaolinite flakes due to slight compaction of 

loosely consolidated sample during loading of the sample holder. An 

oriented layer will give enhanced basal reflections permitting rather 

small percentages of kaolinite to be recognized. The acid treated 

sample with the chamosite removed exhibits peaks characteristic of

b-axis disordered kaolinite. Also noted is a shift of the 001 peak
0 o(7.12 a) toward lower 29 values (7 .1 8 A), corresponding to an increase
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fraction of sample H-1-2 showing the effects of acid treatment 
and the effects of utilizing differently prepared samples and 
different radiation types.
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in the d-spacing of the (OOl) peak. The d-spacing of ferrous chamosite 

is approximately 7 .1 1 & and that for h-axis disordered kaolinite 

corresponds to approximately J.ld A,

Kaolinite

As pointed out earlier, kaolinite is invariably present in 

samples from these deposits, even though its presence may not he 

detectable under magnification. The relative proportion of kaolinite 

varies within the main part of the bed, but it invariably increases in 

abundance toward the transition zone.

Sample H-1-1 from the transition zone was chosen as a typical 

sample to illustrate the effects of an increase in kaolinite content 

in the clay-sized fraction of the transition zone. Figure 13 displays 

oriented X-ray diffractograms of selected size fractions of this 

sample, showing variation in mineralogy with particle size and effects 

of glycolation of the 1/8-I/1 6 micron size fraction. The difficulty 

of identifying kaolinite in the presence of chamosite, which gives 

reflections near to those of kaolinite, is once again clearly 

demonstrated in this sample. Peaks representing the basal reflection 

of kaolinite would normally lie on the high spacing, low 20, side of 

the dgg^ of chamosite, but the separation is insufficient for the 

reflections to be seen. For mixtures of the minerals, the 20 values 

of the resulting peaks are intermediate between those normally found
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Figure 13» X-ray diffractograms of oriented selected size fractions of
sample H-1-1 showing variation in mineralogy with particle size 
and effects of glycolation of the 1/8-I/1 6 micron size fraction.
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for each separate mineral, and the exact 20 value possibly depends on 

the relative proportions of the two minerals present. For example, in

this sample the composite basal reflection averages approximately
o , o.

7 .15 A which is not characteristic of that of either chamosite (7.11 A)

or of b-axis disordered kaolinite (7 .I8 A).

Identification of the particular kaolinite variety from 

diffractograms of oriented slides of mixtures of kaolinite and 

chamosite, is not possible, as evidenced from diffractograms of sample 

H-1-1. A slight shift of the basal reflections to a lower d-spacing 

(averaging 7.15 X) was detected when heating the selected size fractions 

of sample H-1-1 to hOO°C. ■ However, this shift was not as pronounced 

as that for sample H-1-2, where the proportion of chamosite was much 

greater (Figure lit). The composite peaks representing the first and 

second orders of mixed chamosite and kaolinite are greatly reduced or 

destroyed by heating to 500-525°C. If the lattice structure of 

kaolinite had persisted to a higher heating temperature than that of 

chamosite, then identification of the particular kaolinite variety 

would have been possible from the remaining peaks. But this was not 

the case because both structures were destroyed at about the same 

temperature.

In general DTA and EGA curves of selected size fractions of 

sample H-1-1 yielded peaks similar to those discussed for sample H-1-2, 

but curves for the I-I/ 2  micron size fraction treated with warm 10
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Figure Effects of heat treatment on X-ray diffractograms of

oriented selected size fractions of sample H-1-1.
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percent HCl gave quite a different pattern (Figure 15). The DTA curve

shows a strong endothermie peak around 100°C, corresponding to loss of
0HgO- and a strong endothermie peak at approximately 550 C, corresponding 

to dehydroxylization of kaolinite. The EGA curve for this size fraction 

shows two peaks at approximately the same temperatures as those of the 

DTA peaks. This confirms loss of water vapor during the dehydration 

and dehydroxylization of kaolinite, as suggested hy the two DTA 

endothermie peaks. Conspicuously absent in the DTA and EGA curves of 

this acid-treated sample is the strong exothermic peak normally occurring 

around 300°C, corresponding to oxidation of ferrous to ferric chamosite. 

Acid treatment has removed the chamosite hut kaolinite remains to yield 

DTA and EGA curves typical of kaolinite.

True identification of the kaolinite variety present in this 

sample is possible only from diffractograms of powder samples (Figure 

l6). In addition to the composite peaks representing the first and 

second orders of mixed chamosite and kaolinite, the diffractogram of 

the untreated specimen shows additional peaks characteristic of b-axis 

disordered kaolinite. As discussed previously, preferential alignment 

of kaolinite flakes during loading of the holder probably accounts for 

these additional peaks. The diffractogram of the acid-treated sample 

exhibits a succession of peaks characteristic of b-axis disordered 

kaolinite. The peak positions are located at the correct 20 values for 

this variety of kaolinite, but the relative intensities of the peaks
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Figure 15o Differential thermal analysis and effluent gas analysis

of selected size fractions of sample H-1-1.

DTA 
4-1 p
DTA
l-%p

EGA
l-%li

DTA
l/8-l/lép

DTA
l-ku
HCl

EGA
1 -&P
HCl

100°C 500°C



101
Mo Radiation

1-%U
Powder- 
Holder

l-k]i
Powder-
Holder
HCl

Ou Radi.ation

1-% ji
Powder-
Slide
HCl

Degrees 29

Figure l6. X-ray diffractograms of the randomly oriented l-l micron 
size fraction of sample H-1-1 showing the effects of acid 
‘treatment and the effects of utilizing differently prepared 
samples and different radiation types.
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vary from those listed for typical h-axis disordered kaolinite. This

phenomenon is thought to result from ahnormally enhanced reflections

due to preferential alignment of kaolinite flakes during loading of

the sample holder.

Some of the reflections in this diffractogram exhibit a

broadened or blurred appearance. As suggested by Brown (l$6 l, p. 64-6$);

When kaolin clays from different sources are examined by 
X-ray diffraction, considerable variations are found in 
the degree of structural regularity. Disorder in the 
lattice produces blurring and weakening of reflections, 
and usually of particular groups of reflections, depending 
on the disordering process.

The feature most commonly observed is that reflections 
with k index not a multiple of 3 (this can be abbreviated to 
the statement k / 3n) tend to be weak or missing, while 
reflections with k = 3n tend to be largely unaffected.

The results are readily interpreted in terms of 
random layer displacements parallel to the b axis of nb/3.
In the idealized layer structure, the OH ions in the wholly 
hydroxyl layer lie in lines parallel to the b axis and at 
intervals of b/3. Therefore the structural layers can be 
d.is]l :i.ced parallel to b by nb/3, without altering the 
OH-0 bonds between the adjacent layers. Such displacements 
can be expected to occur rather easily- because no marked energy 
changes are involved. The net result of these displacements 
is that the A1 and Si atoms occupy a number of positions 
statistically in the average unit cell.

Illite

Minor illite is characteristically found in the transition 

zones and its abundance increases progressively toward the overlying 

and underlying beds where it becomes a prominent constituent of these 

beds. Illite is a mica type clay mineral with a 10 £ c-axis spacing.
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Exe structure of illite is much the same as that of muscovite, but 

illite contains less potassium and more water than muscovite.

According to Brown and Worish (1952) this may be explained by the 

partial substitution of the hydronium ion (H^O*) for the k"*" ion. The 

(o6o) reflection of the illite in these deposits averages approximately 
1 .50 £ which is characteristic of the dioctahedral type.

Selected size fractions of sample H-1-1 reveal the presence 

of illite, and this sample is typical of the occurrence of illite in 

the transition zones (Figure I3 ). The presence of illite is not 

readily evident in the coarser size fractions of Figure 11, but the 

relative increase of illite with respect to chamosite in the finer 

size fractions results in more pronounced peaks representing the first, 

second, and third orders of illite, h,06̂  20 (l0.04 £), 8 .12° 20 

(5 .02 a), and 12.25° 20 (3.33 A) respectively. Peaks representing the 

first and second orders are small and poorly defined but the peak 

representing the third order is very intense and better defined.

In the coarser micron fractions, down to 1/2-l/4 micron size, 

the presence of the most intense third order is indicated only by a 

slight hump on the high 20 side of the more intense second-order 

chamosite peak, which occurs at 11.45° 20 (3-56 R). The one large 

peak occurring in this region actually consists of two peaks, but 

the illite peak is represented only as a hump on the larger peak 

because the more intense chamosite peak overlaps on the less intense
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illite peak. Starting with the l/4-l/8 micron fraction, the relative 

proportion of illite increases rapidly and the relative intensities 

of the chamosite and illite peaks essentially reverse so that in the 

1/8-1/16 micron fraction,the third-order illite peak becomes the main 

peak with the second order of chamosite represented as a hump on the 

low 26 side of the illite peak.

In this sample the presence of illite becomes more apparent 

as the sample is heated to temperatures sufficient to partially or 

completely destroy chamosite (Figure l4). Structurally, illite is 

stable at much higher temperatures than either chamosite or kaolinite; 

therefore, illite remains after destruction of both these minerals, 

as seen in Figure l4. The l/2-l/4 micron fraction exhibits this 

phenomenon very well. A double peak, consisting of the second and 

third orders of chamosite and illite respectively, persists up to 

400°C, but by 500°C the chamosite structure has been essentially 

destroyed and the illite peak becomes the prominent peak. The 1/8- 

l/lS micron fraction also shows this phenomenon well. By the time the 

sample is heated to 500°C illite is the prominent peak, and it is still 

distinctly present at 600°C.

The effect that varying amounts of illite in this sample has 

on the DTA and EGA curves is not readily evident in Figure 15, but the 

l/4-l/8 micron fraction has a slight endothermie peak at approximately 

600°C. This peak probably represents dehydroxylization of illite
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because both chamosite and kaolinite lose their structurally 

coordinated water at a much lower temperature. Curves for the other 

size fractions do not exhibit distinct peaks characteristic of reactions 

involving only illite, but many of the patterns show double peaks in 

the areas of the exothermic peak and second endothermie peak. Perhaps 

these double peaks indicate dehydroxylization at different temperatures 

of mixtures of chamosite, kaolinite, and illite because the structurally 

coordinated water would be held more tightly for illite than for the 

other two. Another clay mineral with an expandable l4 % lattice structure 

is also present in this sample. Perhaps this mineral is nontronite 

and the shoulders on some of the exothermic peaks at approximately 

400°C can be attributed to exothermic reactions by nontronite.

Nontronites commonly exhibit midrange endotherms from 300-500°C.

A greater number of illite peaks, which in general are better 

defined, appear in diffractograms of powdered samples held in aluminum 

holders. Determination of the illite type on the basis of the 20 value 

of the (060) reflection is possible from such diffractograms (Figure 16). 

The illite peak at 7° 20, corresponding to the third order, is sharper 

and better defined in powder patterns than in sedimented patterns.

Clay Minerals of the Weathered Bed 

Weathering associated with the present topography leached the 

iron from the chamosite structure resulting in disruption of the
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crystal structure. X-ray diffractograms of samples from the altered 

parent bed invariably reveal the presence of kaolinite and illite, but 

chamosite is absent from extensively leached samples.(Figure 17). 

Removal of chamosite increases the relative percentages of kaolinite 

and illite and this increase is seen in diffractograms by an increase 

in reflection intensities for these two minerals. Kaolinite is defi­

nitely present in larger quantities than is illite but the relative 

proportion of each mineral is not of great significance to this study.

In less extensively leached rocks, it is possible that some 

chamosite remains, but as pointed out earlier, it is extremely 

difficult to distinguish from kaolinite, especially when the kaolinite 

content is higher than chamosite.
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CHEMICAL ANALYSIS BY X-RAY FLUORESCENCE

General Statement

Chemical analyses of 17 "bulk samples and the less-than-one

and less-than-four micron fractions of two size-fractioned samples

were conducted quantitatively by means of X-ray fluorescence. For

the bulk samples and the less-than-four micron fraction of sample

H-1-2, analysis of the FeO, COg, organic H, and organic C were

performed by John A. Schleicher, Analytical Chemist for the Illinois

Geological Survey, utilizing wet chemical techniques. H^O- and HgO+

were determined by Schleicher by weight loss determinations, where the

former is the percentage of weight loss between room temperature and

110°C and the latter is that between 120° and 1000°C. The Fe^O^

values were calculated from FeO undifferentiated values, determined2 3
hy X-ray fluorescence, hy subtracting the Fe^O^ equivalent of FeO

determined by Schleicher. For the three remaining size-fractioned

samples, the H 0- and H 0+ contents were determined by the writer ^ 2 2
utilizing weight determinations as discussed above. The chemical 

analysis data of the bulk and size-fractioned samples are shown in 

Tables 2 and 3, respectively.
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TABLE 2
CHEMICAL ANALYSES BY X-RA.Y ÎLUORESCENCE SUPPLEMENTED WHERE INDICATED 

BY WET CHEMICAL AND WEIGHT LOSS ANALYSIS (LESS-THAN-250 MESH BULK SAMPLES)

No. SiOg AlgÔ ♦FeO ♦♦♦FegOg KgO MgO N a g O CaO MnO TiOg % s ♦Org.C ♦Org.H ♦COg ♦♦HgO+ ♦♦HgO- Total
H-1-1 35.56 13.92 11.44 19.22 0.80 1.20 0.l4 1.20 0.29 0.45 0.23 1.06 1.31 0.092 4.55 6.84 4.20 102.50
H-1-8 14.20 6.88 28.49 22.35 0.47 0.70 0.12 3.18 0.31 0.18 0.83 0.06 0.23 0.016 15.41 6.83 1.54 101.80
H-1-14 21.30 8.38 17.35 30.43 0.45 1.08 0.11 1.37 0.25 0.27 0.34 0.10 0.85 0.060 6.10 6.97 4.98 100.39
H-l-16 30.40 6.83 20.42 20.38 0.44 1.28 0.13 2.93 0.30 0.26 0.55 0.12 0.22 0.015 10.94 5.12 3.01 103.35
H-6-17 31.30 5.21 33.12 7.91 0.69 0.83 0.17 3.79 0.34 0.36 1.00 1.00 0.74 0.052 23.31 1.96 0.96 112.74
H-6-20 16.30 8,87 31.24 16.86 0.47 0.90 0.l4 2.50 0.27 0.22 0.54 0.08 1.42 0.099 16.74 4.70 2.81 104.l6
H-6-24 14.00 5.80 33.25 9.63 0.63 1.32 0.08 7.05 0.39 0.23 1.99 0.15 0.38 0.027 22.96 3.70 2.00 103.59
H-6-26 26.30 8.95 21.32 7.84 0.62 1.55 0.11 4.55 0.34 0.30 1.42 0.18 0.4 : Q.O3O 10.76 5.05 3.51 93.27
H-ll-27 26.64 4.32 28.88 9.70 0.64 1.62 0.15 4.72 0.48 0.22 1.18 0.17 0.37 0.026 20.11 2.78 1.69 103.70
H-U-28 21.52 6.38 23.56 20.35 0.70 1.85 0.11 3.47 0.29 0.26 0.60 0.10 0.26 0.018 13.78 4.71 4.38 102.34
H-H-30 17.51 4.33 12.21 5.93 1.82 1.15 0.09 +25.00 0.15 0.15 2.17 0.13 0.l4 0.010 20.98 3.71 2.25 +97.73
H-19-31 18.60 6.03 xxxx KX XX 0.51 0.96 0.05 2.13 0.16 0.49 0.51 0.05 xxxx xxxx X X XX X XX X x xx x x-x-x-x
H-19-33 19.75 6.67 22.53 24.15 0.57 1.08 o.i4 2.62 0.31 0.38 0.61 0.07 0.39 0.027 12.24 5.29 4.08 100.96
H-19-34 16.60 6.77 21.30 24.70 0.65 1.03 0.15 3.17 0.20 0.19 0.99 3.86 1.10 0.077 11.45 4.88 3.07 100.19
H-21-35 22.38 9.20 27.57 16.77 0.45 0.90 0.13 1.95 0.34 0.22 0.43 0.08 0.18 0.013 15.37 4.46 3.73 104.17
H-21-37 16.70 7.65 29.40 15.48 0.43 1.18 0.07 2.73 0.28 0.23 0.48 0.09 0.19 0.013 16.80 4.37 3.54 99.99
H-21-40 23.70 10.30 15.33 17.60 0.52 1.57 0.08 2.34 0.22 0.34 0.72 0.09 0.36 0.025 5.76 5.82 4.72 90.00

OVO

*Values by wet chemical analysis
**Valnes by weight loss determinations 
^«♦Calculated from PegOg undifferentiated (X-ray fluorescence) by subtracting the FsgO- equivalent of FeO 
♦♦♦♦Values not determined



TABLE 3
CHMECAL AHALYSIS OF SIZE-FEIACTIONED CLAYS BY X-RAY FLUORESCENCE 

SUPPLEMENTED VfflERE INDICATED BY WET CHEMICAL OR HEIGHT LOSS ANALYSIS

Particle
No. Size in SiOp A1 0- *FeO ***FegO_ K G MgO MnO TiO P 0 S *Org. *Org. *C0 **HpO- *-*HpO+ Total 

Microns  ̂ C H
H-1-2 < if 39.10 15.90 13.95 lif.yif 0.80 if.86 0.25 0.85 0.21 0.17 0.36 0.025 6.81 if.if3 'i.!f6 109.91

*Values by wet chemical analysis 
**Values by weight loss determinations 
***Calculated from FegO^ undifferentiated (wet chemical) by substracting the FegO^ equivalent of FeO

Particle
No. Size in 

Microns
SiOg AlgOg **FegOg KgO MgO MnO TiOg ^2°5 S *HgO- *HgO+ Total

H-1-2 < 1 fHHf *** 24.29 ■SHHf 4.42 *** fHHf *** *ff* 6.00 10.89 **ff

H-1-1 <if 46.30 16.10 22.43 1.08 4.24 0.15 2.36 0.85 0.77 5.65 10.30 103.50
H-1-1 < 1 41.30 16.60 22.14 1.02 3.99 0.08 2.01 0.97 0.58 5.13 11.08 98.26

*Values by weight loss determinations
**Values by X-ray fluorescence (FegOg undifferentiated)
***Values not determined
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Analyses of the main chemical components of 33 random hulk 

samples were performed by Bruce Williams Laboratories of Joplin,

Missouri (Appendix C). Seven of these samples were chosen as typical 

for these rocks and utilized as standards for X-ray fluorescence analysis. 

These standards were supplemented where necessary with U. S. Geological 

Survey silicate rock standards.

Amorphous iron oxide and finely-divided crystals of goethite 

were selectively removed from all these samples by the dithionite- 

citrate technique referred to earlier, and the extracted iron was 

quantitatively analyzed by atomic absorption spectrophotometry. These 

results are given in Table 4.

The analytical techniques for the different analyses are 

given in Appendix A.

Data and Interpretation

Calculated Percent Iron Possible for Each Iron-Bearing 
Mineral Present in a Typical Sample

One of the major objectives of this study was to determine 

where the iron in the deposits is located in relation to the consti­

tuent minerals. From thin section studies several potential iron- 

bearing minerals were recognized, including siderite, chamosite, 

goethite, and minor pyrite and magnetite. The presence of non- 

structurally coordinated amorphous iron oxide was also detected.
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TABLE 4

CHEMICAL MALYSIS BY ATOMIC ABSORPTION SPECTROPHOTOMETRY OF THE 

AMORPHOUS IRON SELECTIVELY REMOVED FROM THE BULK SAMPLES 

(IRON EXTRACTED BY THE DITHIONITE-CITRATE TECHNIQUE)

No. (Undifferentiated) No.
FegOg

(Undifferentiated)

H-1-1 8.25 H-6-23 2.15
H-1-2 9.38 H-6-24 1 .07
H-1-5 3.93 H-6-25 3 .76
H-1-6 9.86 H-6-26 3 .94
H-l-T 7.49 H-11-27 5.91
H-1-8 T.50 H-11-28 5 .90
H-1-10 11.34 H -ll-29 11.25
H-1-11 12.87 H -ll-30 8.43
H-1-12 11.26 H-19-31 8. 4l
H-1-13 13.95 H-19-32 8.44
H-1- 1À 11.19 H-19-33 8.42
H-1-15 8.58 H-19-34 13.97
H -l-16 5.93 H-21-35 5.89
H-6-17 2.57 H-21-36 11.29
H-6-18 11.28 H-21-37 8 .4o
H-6-19 13.96 H-21-38 8.4i
H-6-20 8.43 H-21-39 11.27
H-6-21 11.27 H-21-40 5.72
H-6-22 ' 5 .92
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Sample H-11-28 was chosen as an average sample to determine the relative

percentages of iron incorporated in these various forms. Sample

H-11-28 contains a total of 46.53 percent corresponding to

32.57 percent elemental iron, and 13*78 percent COg. The relative 

percent of the elemental iron (32 .57 percent) in each iron-bearing 

mineral type was determined after making the assumption that all the 

COg in the sample is combined with Fe and Ca. This assumption is 

possible only if we assume that all the Ca in the sample is in the

form of a carbonate and that all of the Mg and Mn in the sample is

present in the form of chamosite and siderite, respectively, rather 

than as carbonates (e.g., dolomite and rhodochrosite). After 

determining the amount of COg necessary to combine with calcium, that 

remaining is allocated to Fe.

Based on these assumptions, it was determined that an 

average of 12.12 percent of the total 32*57 percent elemental iron 

is structurally-coordinated as siderite, corresponding to approximately 

37*21 percent of the total iron content. The remaining 20,45 percent 

would then be present as chamosite, amorphous iron oxide, pyrite, 

ilmenite (?), and magnetite. Analyses of the amorphous iron selectively 

removed from this sample by atomic absorption spectrophotometry 

yielded a value of 4.13 percent iron which, incidently, differs from 

the elemental iron equivalent of the Fe^O^ content (l4.25 percent) 

listed for this sample in Table 2. This indicates that approximately
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30 percent of the ferric iron in these deposits is present as amorphous 

iron oxide or small finely-divided goethite crystals with the remaining 

70 percent most likely present in chamosite. If oxidation does increase 

the disorder in chamosites as suggested hy Brora (1961), then the high 

ferric iron content in these chamosites could he the reason why they 

are poorly ordered. Subtraction of the 4.13 percent amorphous iron 

content leaves 16 .32 percent iron which would then be present as cham­

osite, pyrite, ilmenite (?), and magnetite. If we assume that all the 

sulfur present in this sample, 0.10 percent, is present as pyrite 

(FeSg), then pyrite accounts for approximately 0.10 percent of the 

remaining 16.32 percent iron.

The titanium content increases in the clay-sized fractions 

of the size fractions. Therefore, it is suspected that a large part 

of the titanium present is in the form of ilmenite, even though it 

was not present in sufficient quantities to give peaks on diffracto- 

grams. Assuming that all the titanium in this sample is present in 

the form of ilmenite, this could account for approximately 0 .2 6  

percent of the remaining l6 .22 percent iron, leaving I5 .9 6 percent 

which would be present as magnetite and chamosite. The iron content 

of the chamosite is approximately l4.38 percent, calculated independ­

ently for the less-than-four micron size fraction of sample H-1-2 

after the iron present as fine-grained siderite was accounted for.

This would leave only I .58 percent iron present in the form of
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magnetite. The iron content would be readily available from all the 

iron-bearing minerals except chamosite. The total percent available 

on the basis of these calculations would be 18.19 percent elemental 

iron which corresponds to approximately 5^.79 percent of the total 

iron present in these samples.

Even though several assumptions had to be made to arrive at 

the above conclusion, it is felt that the values presented represent 

a pretty fair first approximation of the relative percentages of iron 

present in each possible iron-bearing mineral. Any error introduced 

by one assumption would probably be compensated for by offsetting

errors introduced by other assumptions. For example, the loss of
+2 +2 iron resulting from the substitution of the Mn ion for the Fe ion

in the siderite structure would be in part compensated for by not
+2assuming that the Mn is present as a carbonate (e.g., rhodochrosite) 

which would tie up part of the CO^ normally allocated to siderite. 

Analyses of siderite observed in various publications show Mn 

percentages up to 2h (e.g., those by Deer, Howie, and Zussman, 19Ô2, 

p. 273). So the assumption that all the Mn is present in the form 

of siderite is likely. Likewise, the loss of iron to siderite, which 

would result by assuming that all the Mg was present as a carbonate 

would be in part compensated for by substituting Mg^^ for Fe"*"̂  in the 

octahedral layer of the chamosite structure, decreasing the amount 

of non-available iron tied up as chamosite. The assumption that all
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the sulfur in the sample is present as pyrite is most probably in 

error because organic sulfur commonly occurs in association with 

organic material. In any event, the error introduced by this assump­

tion would not be great because the sulfur content is 0.10 percent for 

this sample. Likewise, the assumption that all titanium in this sample1
is present in ilmenite is certainly erronous because normally a certain 

amount of titanium would be expected to substitute for silica or alumi­

num in the silicate structures of clay minerals or feldspars. Again, 

the error introduced by assuming that it is all present as ilmenite 

would not be too great because the titanium content constitutes only 

0 .26 percent of the entire sample.

Changes in Mineralogy as Reflected by 
Changes in Chemical Composition

Bulk Samples. As can be seen from Table 2, the phosphorous 

content in general increases with a corresponding increase in CaO.

The increase in phosphorous is due in part to an increase in collo- 

phanite (hydrous calcium phosphate) which within itself helps to 

increase the relative percentage of calcium. The increase in phos­

phorous is also normally associated with an increase in calcite. The 

phosphorous content averages approximately 0 .3^ percent in the samples 

analyzed.

The calcium content in these samples is normally variable 

within a fairly narrow concentration range, but local enrichment in
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calcite, such as in nodules or thin layers, results in a major increase

in the calcium content (e.g., sample H-ll-30).

An increase in the quartz content of samples selected from

the transition zones is reflected in the increase in SiO^ content

of the sample (e.g., H-1-1, H-I-I6, and H-6-I7 ). Sudden increases

in the A1 0 content of bulk samples correspond in almost every case 2 3
to an increase in the clay content, normally associated with the 

transition zones. In the case of H-1-1, this is obvious from thin 

section studies. Subtle increases in the FegO^ content are altmys 

accompanied by a corresponding increase in the amorphous iron oxide 

content. This reflects an increase in the oxidation potential of the 

environment subsequent to deposition of the rocks but prior to their 

deep burial. Likewise, an abnormally high K^O content corresponds to 

an increase in the feldspar and/or illite content (e.g., for H-ll-30). 

The sulfur content normally increases in the transition zones, as 

reflected by samples H-1-1 and H-6-17, and locally it increases due 

to secondary replacement of other constituents by pyrite (e.g., H-19-3^)* 

An abrupt increase in COg reflects an increase in siderite and/or 

calcite, with a corresponding increase in iron and/or calcium.

Size-Fractioned Samples. Comparison of the SiO^ and AlgO^ in

the bulk samples to that in the clay-sized fractions shows an increase 

of both oxides in the latter, which results from a relative increase 

in the proportion of clay minerals in the finer size fractions.
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Chamosite, kaolinite, and illite, all of which are present in varying 

proportions hi these deposits, are rich in both of these components.

A decrease in iron in the finer size fractions reflects a decrease 

in siderite content. A higher iron content coupled with the presence 

of COg in the coarser clay-sized fractions show that fine-grained 

siderite remains with the chamosite during size fractionation. An 

increase in the K^O content in the clay size fractions probably 

represents a relative increase in the proportion of illite. An increase 

in MgO content suggests a relative increase in a fairly high Mg- 

chamosite. This is another justification for assuming that most of the 

Mg is present in chamosite. A substantial increase in TiO^ in the 

clay-sized material may be interpreted as a relative increase in fine­

grained ilmenite which would remain with the clays. A substantial 

increase of in the clays suggests that at least some of the

phosphorous in these deposits may be present as finely divided organic 

phosphorous or as minute collophanite crystals. A progressive decrease 

in sulfur content with decrease in size suggests that much of the 

sulfur is present as pyrite, A progressive decrease in CO^ content 

with decrease in particle size results from a decrease in siderite 

in the finer size fractions. An increase in H^O- and H^0+ in the 

clay-sized materials is very easily understood because many clays 

contain high quantities of interlayer and adsorbed water as well as 

structurally coordinated water.
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The chemical data of the clay-sized material in Table 3 is 

not typical for normal chamosites. It was impossible to obtain a 

pure sample of chamosite because even in the finer size fractions it 

is intimately mixed with kaolinite, as determined by X-ray analysis, 

and with some illite, siderite, and possibly ilmenite. The specific 

gravity of chamosites mixed with kaolinite would be lower than that 

for average chamosites, and this is normally the case for these clays. 

This phenomenon discouraged any attempts to derive a chemical formula 

for the chamosite in these deposits.



TRACE ELEMENT GEOCHEMISTRY

General Statement

Quantitative analysis -was performed on 40 bulk samples and 

5 size-fractioned samples from the Louisiana green ores (Table 5)* These 

samples were analyzed for boron, gallium, vanadium, copper, zirconium, 

nickel, manganese, and chromium. The less-than-230 mesh size fraction 

of the pulverized bulk samples was utilized for this study. The 

preparation and analytical techniques utilized are listed in Appendix A.

The purpose of the quantitative spectrochemical analyses was 

to predict the paleosalinity and thus the environment of deposition of 

these sedimentary deposits utilizing a discriminant function based 

upon the boron and vanadium contents, and hopefully to confirm this 

environment of deposition by utilizing the remaining trace elements as 

environmental indicators. The environment indicated from these studies 

will be compared to the postulated environment as determined from 

other observations.

Paleosalinity Based on the Boron and 
Vanadium Discriminant Function

Boron has long been recognized as a potential paleosalinity
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TÆBLE 5

TRACE ELEMENT CONCENTRATIONS IN PARTS PER MILLION

Sample B Ga V Cu Ni Mn Cr

H-1-1 185 2 180 <10 500 75 1080 31

H-1-2 75 < 1 22 < 10 < 10 150 545 12

H-1-3 265 3 265 < 10 960 105 1120 35

H-1-4 270 k 280 < 10 1600 120 1180 37

H-1-5 355 3 390 < 10 1900 i4o 1200 35

H-1-6 3)1-5 k 370 26 910 110 910 34

H-1-7 316 3 280 5 780 120 1010 31

H-1-8 500 k 390 < 10 1550 155 1290 35

H-1-9 370 3 120 <10 440 90 700 24

H-1-10 315 . ND 225 <10 1100 105 1050 3^

H-1-11 290 ND i4o 8 950 100 1210 27

H-1-12 285 ND 190 < 10 > 2000 134 1120 31



TABLE 5— Continued

Sample B Ga V Cu Zr Mn Cr

H-1-13 320 h 510 11 1800 155 1100 49

H-l-lij- 150 2 37 < 10 4oo 66 470 17

H-1-15 280 3 175 < 10 1160 120 1020 35

H-l-1 6 150 1 30 < 10 > 2000 150 i4oo 17

H-6-1T 170 3 <10 5 900 22 940 11

H-6-18 280 3 425 5 400 70 1800 38

H-6-19 190 2 80 < 10 120 110 880 19

H-6-20 190 2 55 33 105 60 620 16

H-6-21 200 2 85 < 10 120 80 650 22

H-6-22 165 2 60 < 10 125 85 725 19

H-6-23 210 3 180 < 10 1000 85 125 35

E-6-24 190 3 k2 8 . 200 . 45 930 15

H-6-25 290 3 310 19 1100 110 1500 35



TABLE 5— Continued

Sample B Ga V Cu Hi Cr

H-6-26 270 3 230 7 700 85 1200 31

H-11-27 300 3 45 12 620 65 1450 15

H-ll-28 285 2 90 6 560 95 725 16

H-ll-29 180 1 4o 1 135 80 630 13

H-ll-30 270 2 110 <2 365 105 950 17

H-19-31 320 3 75 < 2 580 60 435 16

H-19-32 150 1 12 < 2 ED 36 260 8

H-19-33 170 2 45 < 2 150 42 425 l4
H-19-34 180 2 37 < 2 120 50 500 12

H-21-35 255 3 220 7 710 135 1060 32

H-21-36 295 3 l4o 5 700 120 980 29

H-21-37 255 3 190 6 1000 110 900 31

H-21-38 265 3 TO 9 575 226 1170 27

M
IS



TAELE 5— Continued

Sample B Ga V Cu Mn Cr

H-21-39 310 3 2J0 7 1100 135 1010 35

H-21-40 160 2 110 k 220 95 580 25

&
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indicator. The utilization of horon content to differentiate marine

and fresh-water sediments was first reported hy Goldschmidt and Peters

(1932a, h in Potter et al, 1963). Subsequent studies hy Landergren

(1945, 1958), Frederickson and Reynolds (1960), Nichols and Loring

(1962), and others established a definite relationship between the

concentrations of boron in sediments and the environment of deposition.
*

Studies by Potter et al (1963) on the distribution of boron 

in recent and ancient argillaceous sediments indicate that B, Cr, Ga,

Ni, and V are significantly more abundant in marine than in fresh-water 

argillaceous sediments. Upon examining the accuracy and reproducibility 

of discriminant functions based upon the utilization of B, Cr, Cu, Ga, 

Pb, Ni and V and various combinations of these to distinguish marine 

and fresh-water sediments, Potter et al (1963) found that a discriminant 

function based upon B and V alone can more decisively separate marine 

and fresh-water sediments. The discriminant function for these two 

elements is

X = 5.3^15x + 5o6928y 

where x and y correspond to boron and vanadium respectively and the 

number prefixes correspond to weighted factors indicating the amount of 

each variable contributing to discrimination. Such a discriminant 

function derived from 33 modern sediments decisively separated the 

marine and fresh-water environments. Application of this discriminant 

function to ancient sediments whose environment of deposition had been
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independently established by geologic evidence resulted in correct 

classification of 28 out of 33 sediments (Potter et al, 19^3, p. 669).

From a plot of B and V for the modern control group an esti­

mated line of separation between the marine and fresh-water fields was 

determined by Potter et al (1963, p. 679) as follows:

The position of the separation line is established by 
first determining the direction of maximum slope of the 
discriminant function. This direction is such that 
projecting the modern control samples onto it provides 
the maximum possible separation between the two groups 
of modern sediments. The line normal to the direction of 
maximum slope of the discriminant function and through 
the midpoint between the logarithmic averages for the two 
groups is the estimated line of separation.

Figure I8 demonstrates how the estimated line of separation 

between marine and fresh-water fields for the Louisiana ore samples 

corresponds to the original separation line of Potter et al (1963).

Out of the 40 bulk samples, 35 fell well within the marine field and 

only 5 fell within the fresh-water field. This suggests a marine 

environment of deposition for these deposits with possible local 

fluctuations between marine and fresh-water conditions. Similar 

conditions are suggested by the nature of the ore deposits and also 

by the nature of the overlying and underlying deposits.
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Figure l8. Plot of B and V concentrations of bulk samples of the 
Louisiana sideritic chamosite ores and estimated line 
of separation between marine and fresh water fields 
(after Potter et al, I963).
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utilization of Individual Trace Elements 
as Possible Environmental Indicators

Boron

Goldschmidt and Peters reported that horon is enriched in 

marine hut not in the lacustrine iron sediments Landergren, 19^5  ̂

p. 2h)o After a study of the distribution of boron in the Liassic 

sediments in Southern Sweden, Palmquish concluded that the high boron 

content (O.01-0.1 percent BgO^) of these ores indicate that they must 

be considered marine sediments (in Landergren, 19^5)- Landergren 

(19^5 ) concluded from studies of Swedish Precambrian iron ores that 

boron is enriched in those ore types relating to an original marine 

environment of deposition. He implied that boron enrichment in the 

marine iron sediments is caused by boron adsorption from sea water.

The boron content in the Louisiana ore deposits ranges from 

75 to 500 ppm, averaging 269 ppm. These values are in general higher 

than those reported by Landergren (l9^5, p. 25) for typical marine 

sedimentary iron ores. Perhaps this is suggestive of a higher than 

normal salinity for these deposits.

Even though the validity of trace elements as environmental 

discriminators has been demonstrated, relationships between mineral 

composition, especially for argillaceous sediments, and trace element 

concentration have not been established. Landergren (1958) found from 

experimental data on deep sea sediments that approximately 90 percent
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by weight of the boron is bound to the clay and medium silt-sized 

material, Frederickson and Reynolds (i960) conducted studies on the 

distribution of boron in illite, kaolinite and chlorite, and they 

concluded that boron seems to be preferentially associated with illite. 

From geochemical considerations. Degens (1969) tras of the opinion that 

boron should substitute for aluminum in the tetrahedral position of 

layered silicate minerals.

Vanadium

As stated by Degens (1965, p, 2#-), "Iron and manganese oxides 

and hydroxides are known for their ability to scoop up trace elements 

such as vanadium and nickel in amounts up to 1000 ppm (Krauskopf, 1955  ̂

Keith and Degens, 1959)»" In his geochemical study of the Blaine 

Formation of Oklahoma, Everett (1962) proposed that vanadium, chromium, 

cobalt, and nickel are probably associated with the occurrence of iron. 

Supposedly, these elements would substitute in iron compounds, be ad­

sorbed on the clay mineral with iron, or substitute for iron in the 

clay structure (¥u, 1969, p. 64J, According to Goldschmidt (1958, 

p. 4 9 5), "The trivalent form of vanadium, which is probably a substan­

tial part of the vanadium in average marine hydrolysate sediments, may
/

be bound in clay minerals in the same way as aluminum," He also states 

that in oxidate sediments rich in iron the vanadate ion is commonly con­

centrated to a considerable extent, together with phosphate and commonly
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arsenate. In ordinary liraonite or hematite sediments of marine origin, 

the amount of vanadium is normally between 500 and 800 ppm, and rarely 

less than 100 ppm or more than 1,500 ppm (Goldschmidt, 1958, p. 495)»

He also points out that concentration of vanadium from sea water into 

sediments hy hottom-mud dwellers like holothurians has allegedly taken 

place, iPhere is a remarkable uniformity in the concentration of vana­

dium and boron in these green ore deposits. In some samples the concen­

trations are exactly the same whereas in others they differ somewhat, 

but in general, a relative increase or decrease in one corresponds to a 

similar increase or decrease in the other. Therefore, the factors con­

trolling the distribution functions of vanadium and boron in these de­

posits must be related. If vanadium is actually concentrated in sedi­

ments by bottom-mud dwellers like holothurians, then the presence of 

extensive worm burrows in these deposits could be construed to imply a 

similar mode of concentration of this trace element. Because vanadium 

and boron allegedly concentrate in sedimentary iron ore deposits, the 

concentration of these trace elements may be directly related to the 

presence of limonite or chamosite. Regardless of the mode of concentra­

tion, both elements are present in concentrations considered to indicate 

marine conditions.

Copper

The amount of copper in these samples is in general quite low. 

It ranges from 1 to 33 ppm hut averages less than 10 ppm. In general.
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these concentrations are lower than the values normally reported for 

typically marine sediments, hut a number of variables could account 

for this anomaly. Perhaps the concentration of copper in the sea water 

was lower than that associated with typically marine sediments, or 

perhaps the distribution functions of copper were not the same for 

these deposits. As pointed out by Goldschmidt (l9$8, p. I85), "The 

actual amount of copper in sea water, previously considered to be 

quite well known, has become a controversial matter since H. Wattenberg 

. . . found much less than previously reported." Perhaps there is some 

correlation between decreased copper concentrations and high vanadium 

concentrations similar to that which exists in marine animals (Goldschmidt, 

1958, p. 186). This fact is thought to corroborate the well established 

view that vanadium and copper serve closely analogous physiological 

functions in the conveyance of oxygen by the blood (Goldschmidt, 1958, 

p. 186)0 The general absence of marine animals, except for worms, may 

also help to explain the low concentration of copper in these deposits.

Prom studies of the relation of copper to various organic 

groups, Riley (1939, 22 Goldschmidt, 1958, p. I87) concluded that 

copper can be removed from sea water by organic matter, and that during 

periods of organic growth the copper content is slightly increased in 

the resulting organic matter. Perhaps locally higher concentrations of 

copper :ln these deposits may be related to higher concentrations of 

organic material.
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Gallium

The amount of gallium in sea water is low; therefore, the 

amount of gallium in marine sediments would he expected to he low.

This is actually the case for these sediments. The gallium content 

never exceeds k ppm and it commonly is 1 ppm or less. According to 

Goldschmidt and Peters (l932a, ^  Rankama and Bahama, I95O, p. 727); 

the Ga:Fe ratio in sedimentary iron ores is of the order of 1:100,000.

Gallium is prohahly associated with the clay content of these 

deposits. Several investigators have suggested that gallium is 

directly associated with clay minerals (Migdisov and Borisenok, 1963; 

Goldschmidt, 1958)•

Zirconium

According to Rankama and Bahama (l950, P» 586), "Very few 

determinations are available to show the content of zirconium in 

sediments. Degenhardt (l957, p. 279) reported that in general the 

sedimentary rocks contain about the same amount of zirconium as 

igneous rocks, averaging 156 g Zr/t. He also pointed out that alkalic 

rocks normally contain about twice as much zirconium as rocks of 

calcalkalic character with alkalic syenites containing up to 680 g Zr/t. 

Rankama and Bahama (199O, p. 267) also report that large quantities of 

zirconium exists in the form of the mineral eudiatite in nepheline 

syenites. The observations perhaps can help to explain the high
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concentration of zirconium in these chamosite ores, attaining over 

2000 ppm in some samples. Weathering of alkalic igneous rocks such as 

the nepheline syenites in Arkansas could supply large quantities of 

zirconium. In his study, Degenhardt (l957) found ZrSiOj^ to he 

slightly soluble in solutions of bicarbonate of calcium. Zirconium 

going into solution by such a weathering process would be precipitated 

in the hydrolyzate sediments by adsorption because zirconium is rather 

readily removed from solution by hydrolysis and does not form secondary 

minerals (Rankama and Bahama, 1950)» Ronov et al (1961, p. 35^) found 

that the percentages of Al, Ga, Ti, Zr, and Hf are considerably higher 

in the clays formed under humid conditions as a result of deep chemical 

weathering than in clays formed under arid conditions in the early 

stages of weathering of the parent rocks. They also discovered that 

kaolinitic clays are enriched in zirconium and hafnium and that 

zirconium is enriched relative to hafnium in the reducing humid 

environments of the sedimentation basin. According to them, zirconium 

and hafnium released by the hydrolysis of alumino-silicates and 

silicates form complexes with the organic acids. Zirconium forms 

complexes more intensely than hafnium owing to its more pronounced 

amphoteric properties. This would result in the more efficient 

removal of zirconium than hafnium and would thus increase its concen­

tration relative to hafnium.

Based on these premises, perhaps a portion of the zirconium
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in these ore deposits is adsorbed on the constituent clays, particularly 

the kaolinitic clays.

Zirconium is commonly contained in resistant minerals which 

are stable against mechanical and chemical weathering; therefore, 

zirconium is also concentrated in the résistâtes. According to 

Degenhardt (l957^ p. 279), zirconium is concentrated in rutile, sphene, 

magnetite, ilmenite, and apatite. As reported by Ronov et al (1961,

p. 354):

Zirconium and hafnium are concentrated in the clays princi­
pally in the silt-sand fraction (O.1-0.01 mm), and their 
main mass is bound in the accessory zircons and titanium 
minerals% The quantity of these minerals and the content 
of Zr and Hf in the clays increases towards the source area 
indicating the detrital origin of a considerable part of 
the Zr and Hf and the connection between these elements and 
deep weathering and accumulation of stable residual material.

The basin of deposition of the Louisiana ores is not far from the

original source area for such possible résistâtes, and as might be

expected, the Louisiana ores contain accessory quantities of certain

of these zirconium-bearing minerals (e.g., zircon, rutile and apatite).

Thus, at least a portion of the high zirconium content in these

deposits is present in these stable mineral forms.

Manganese

The fact that manganese in sedimentary rocks is parageneti- 

cally related to iron was pointed out by Ronov and Ermishkina (l959, 

p. 266). Goldschmidt (1958, in Etrerett, 1962) pointed out that
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sedimentary occurrences of manganese are normally associated with iron. 

According to Ronov and Ermishkina (1959) the ratio of manganese to iron 

remains approximately unchanged in the sands and clays, hut in carbonate 

rocks this ratio changes toward more manganese indicating that in areas 

of carbonate sediment accumulation takes place in the presence of 

geochemical processes which lead to some separation of manganese and 

iron. In reference to factors controlling the separation and concen­

tration of manganese and iron, Ronov and Ermishkina (l959, P* 266-267) 

state:

In accordance with the latest summary of K. B. Krauskopf 
and a number of earlier papers, the separation of iron 
and manganese and the concentration of the latter occurs 
under the influence of various factors, among which 
essential roles are played by the lower solubility of 
the trivalent and bivalent iron compounds (for certain 
values of pH and Eh), the activity of iron and manganese 
bacteria, and the loss of acid solutions of manganese 
into an alkaline medium such as usually are ocean waters, 
subsurface waters of arid regions and contacts with 
limestones.

Results of studies by Ronov and Ermishkina (1959) show that the 

maximum manganese content is associated with coastal facies deposits 

and gradually decreases in amount from the coastal zone in the direction 

of the open sea towards the pelagic facies deposits. Concentration of 

manganese primarily in the coastal facies deposits would thus occur 

when acid streams carrying manganese in the soluble divalent form 

encountered the alkaline ocean medium, oxidizing the manganese into 

immobile trivalent manganese, and depositing these along with other
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sediments. According to the writers, increased manganese contents in 

the sediments would shift in the direction of the open sea under 

weathering conditions in a humid climate whereas under the conditions 

of an arid climate the zone of maximum manganese concentration jrdgrates 

in the direction of the continent.

The high concentrations of manganese in these deposits, 

exceeding 1000 ppm for the most part, possibly suggests that they were 

deposited as coastal facies deposits near a landmass undergoing 

weathering in a humid climate. The discontinuous nature of the 

chamosite lentils which limits their occurrence to a long, narrow hand 

is also suggestive of coastal facies deposits. The laterites and 

bauxites in the postulated source area for the iron could only have 

resulted from intense leaching in a humid environment. The presence of 

enormous quantities of ferrous iron associated with these deposits 

either indicates that the streams transporting the iron to the basin 

of deposition had a pH of 7 or less (Krumbein and Garrels, 1952) or 

that ferric iron transported as colloidal ferric hydroxide in more 

basic waters was reduced in the environment of deposition by extremely 

large masses of organic material. Perhaps former large masses of 

organic material have been subsequently oxidized and consequently 

disappeared, but the present low organic content of these deposits 

suggests the first alternative for the presence of the ferrous iron.

The distribution of the manganese in these deposits is
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incompletely known, Taut a major portion of it is present in the form
+2 +2of siderite. Substitution of Mn for Fe in the siderite structure 

probably occurred during direct precipitation of siderite from sea 

water, Rhodochrosite or other primary manganese-bearing minerals were 

not identified in these deposits. Part of the manganese is associated 

with the clay content but‘the nature of this association is incompletely 

known.

Nickel and Chromium 

Control mechanisms for the concentration of nickel and 

chromium are in general less well known than for the other elements 

discuàsed. One of the important studies in the area of the geochem­

istry of these elements was done by Krauskopf (1956). While conducting 

experiments on factors controlling the concentration of 13 rare 

elements In sea water (including Ni and Cr), Krauskopf (1956) found 

normal sea water to be under saturated with these elements, even in 

places where the pH and temperature have extreme values. Therefore, 

he concluded that a mechanism (or mechanisms) of concentration other 

than direct precipitation of compounds from normal sea water with 

these ions present must be responsible. He experimented with several 

possible control mechanisms, including adsorption, organic reactions 

and local precipitation of sulfides, to determine how these elements 

were concentrated. From the results of such exper'iments, he concluded
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that the control of chromiim concentration is most reasonable ascribed 

to local reduction and precipitation of the element as insoluble 

Cr(OH)g. He further proposed that whereas reduction in sulfide-rich 

environments may be a possible control mechanism, sulphide is not 

required because any reducing environment capable of changing chromium 

to the trivaient form will result in its reduction and removal.

The mechanism of concentration of nickel was more difficult 

to explain due to negative or inconclusive experimental results, but 

based on the failure of alternative hypotheses and on indirect evidence 

of enrichment of these elements in organic sediments and marine organ­

isms, Krauskopf (1958) concluded that the most plausible mechanism of 

concentration of nickel is by organic reactions. Experimental data 

ruled out the possibility of adsorption and local sulphide precipita­

tion as possible mechanisms for nickel concentration. The strong 

adsorption of Co and Hi on the hydrated oxides of iron and manganese is 

a convenient explanation for the frequent presence of these elements in 

iron and manganese ores (Krauskopf, 1958).

Rankama and Bahama (1950, P- 823) proposed that because 

chromium closely resembles ferric iron and aluminum in its chemical 

properties, ionic size, and ionic charge, it follows these ions during 

its exogenic cycle. They pointed out that little chromium remains in 

solutions formed during weathering and as a result chromium becomes 

enriched in the hydrolyzates.
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As pointed out by Potter et al (1963), B, Or, Cu, Ga, Ni, and 

V are significantly more abundant in marine than in fresh-vater argil­

laceous sediments. The concentrations of Cr in these rocks, averaging 

25 .4 ppm, is in excess of that listed by Rankama and Sahama (195O, 

p. 623) for marine siderite ores (20 ppm). The control mechanism for 

the concentration of chromium in these deposits is not clearly under­

stood, but the mechanism proposed by Krauskopf (1956) could easily be 

applicable here because the very nature of the chamositic iron deposits 

necessitates a reducing environment. Nickel occurs in concentrations 

in the Louisiana ores, averaging 100 ppm, greater than those listed 

by Potter et al (1963, p. 685) for ancient marine argillaceous sediments. 

Perhaps strong adsorption of Ni on the hydrated oxides of iron and 

manganese as suggested by Krauskopf (1956) is the control mechanism 

for such high concentrations of Ni in these ores.



PROVENANCE AED ENVIRONMENT

Source

A search of the literature reveals several theories to

explain the abnormal concentrations of iron in sea water necessary

for deposition of iron, hut these theories fall into two general 

categories. The "from-above" theory assumes that the iron came with 

streams from eroded, iron-rich areas of adjacent continents whereas 

the "from-below" theory assumes that the iron comes from below the 

sea bottom, e.g., from submarine springs or exhalations of volcanic 

origin. A modification to the "from-helow" theory assumes that the

iron was derived by mobilization of iron in marine bottom sediments.

In his classical paper on sedimentary iron ores, which ties

the environmental characteristics to the observed facies, James (l95^,

p. 276) concluded that in order to explain deposition of iron-

formations it was necessary to have, ". . .the barred or restricted

basin of deposition coincident with deep chemical weathering of the

land surface." In defense of his proposed source for the iron, James

(1954, p. 276) states;

The factor that led Van Rise and Leith to the volcanic 
theory was the apparent inadequacy of "ordinary weathering"

l40
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to supply solutions of the proper type for precipitation 
of iron formations. However, as pointed, out hy Grwner,
Gill, and James, under certain tropical or subtropical 
conditions the iron and silica content of stream water 
may be very high and entirely adequate to account for 
iron-formation deposition.

And in conclusion James p. 277) postulates, "It seems to the

writer that volcanism, though not uncommon during the deposition of

the major iron-formations, does not have a close enough correlation in

space and time with the iron-rich sediments to be genetically related

to those sediments."

Oftedahl (1958, p. l) postulated that the only probable 

explanation for the sudden appearance of iron in the sea in quantities 

sufficient to form large sedimentary iron ore formations is to assume 

that the iron source is volcanic exhalations from chambers of granitic 

magma below the sea floor. Kautsky (1958) criticized Oftedahl's theory 

mainly on the basis that it strongly contradicts previous genetical 

interpretations of ores in areas where it was applied. In response 

to Oftedahl's work, Landergren (1958) proposed that geochemical data 

of the sedimentary iron ores of Central Sweden, to which the theory 

had been applied, did not support an exhalative-sedimentary theory for 

their origin. Marmo (1958, p. 277) agrees in general with Oftedahl's 

exhalative-sedimentary theory, but he ". . .does not fully share 

Oftedahl's opinions as to the generalization of this factor in ore 

formation, or concerning the origin of the gaseous exhalations." He
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believes that the exhalations may derive either from magmas or from 

sediments situated close to the hot magma reservoirs but not solely 

from granitic magma chambers. "Cissarz suggests that submarine springs 

or exhalations of volcanic origin may have contributed Fe, SiOg, and 

COg to the sea water during the deposition of some or all of the 

Western Macedonian deposits, but recognizes that local evidence is 

lacking at Tajmiste," Page, I958, p. l4).

Brochert (i960, p. 26) contends that, "Since trivalent iron

is practically insoluble in the presence of oxygen. . .the mobilization

of iron by weathering solutions in continental regions could not have

contributed significantly to the formation of marine iron ore deposits 

in pre-Devonian times." He further proposes (p. 261) that, "The 

mobilization and precipitation of iron ore deposits must then have been 

effected within the oceans themselves." He implies that the iron is 

mobilized from pre-existing sediments by separating Si-Al components 

from the iron in a COg zone under reducing conditions. Supposedly, 

most of the dissolved iron moves towards the oxygen-rich shallow sea 

where it is deposited as liraonite oolites whereas a considerable 

proportion of the dissolved iron is precipitated in the COg zone itself 

to form sideritic clay ironstone. Only very little iron reaches the 

HgS facies of the deeper zones to be deposited as pyrite.

Carrol suggested that in many deposits transportation of iron 

took place as a shell of iron oxide at the surface of clay minerals.
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and that removal and concentration of the iron might take place after 

initial sedimentation if the environment became one that permitted 

reduction and dissolution of ferric oxide. She demonstrated that 

bacterial activity could result in a change of Eh and pH conditions to 

those appropriate to the solution of iron oxide, and that solution 

actually was accomplished (to Garrels and Christ, I965, P* 384).

Due to the lack of associated volcanic material in the 

Louisiana deposits, it is assumed that these sedimentary ironstones 

formed near a fluctuating shoreline in close proximity to a landmass 

capable of supplying large quantities of iron. The ulttoate source 

of the iron is an interesting problem. Probably it was derived by 

intense leaching of iron-bearing rocks immediately to the north, 

e.g., that which produced the extensive laterites and bauxites in 

Arkansas. . This opinion is also shared by Dr. F. C. Loughnan (Personal 

Communication, 1968). A good example of the results of such an intensive 

leaching process can be seen in bauxites at Bauxite, Arkansas, where 

iron-rich nepheltoe syenites have been reduced to the end product of 

weathering, bauxite. The chemical alteration products of igneous rocks 

could also be a source for the necessary alumino-silicates as well as 

for the detrital quartz, clays, and feldspars intimately associated 

with the primary iron minerals.

If sufficient concentrations of this iron accumulated in 

restricted basins, along with an abnormally high silica content, the



combination of these elements along ’ ith other ions could, under the 

proper conditions of salinity, pH, Eh, and temperature, produce the 

different iron-bearing minerals present in these deposits. Normal sea 

water is under saturated in silica (Krauskopf, 1959) and. low in iron; 

therefore, it is imperative that concentrations of these ions increase 

markedly before crystallization starts.

The mode of transportation and concentration of the iron is

more difficult to speculate on than is the source of the iron. The pH

and Eh of the transporting medium are the most decisive factors in 

determining the mode of transportation and concentration of iron. The 

solubility of iron in the transporting medium is a function of the pH 

and Eh. Krumbein and Garrels (1952) concluded that for iron transported 

in true solution the transporting medium would presumably have to have 

a pH of 7 or less and an Eh in the range approximate!}'- -0.1 to +0.3»

They stressed that this set of conditions did not include iron carried

in colloidal suspension. After conducting experiments on transportation 

and deposition of iron, Castano and Garrels (1950) concluded that rivers 

of moderately low pH might well contain considerable quantities of 

ferrous iron and the resulting iron mineral precipitated when these 

streams entered ocean basins depended on the Eh, pH, and chemistry 

of the sea water. River water pH varies considerably, as does the 

concentrations of iron reported for different rivers, but some rivers 

have pH values of J.O or slightly lower. Average river waters contain
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less than one part per million of iron (Taylor, 194$), hut some with 

concentrations up to 6l parts per million have heen reported (Moore, 

1910, ^  Taylor, 1949, p. 80). "Experiments hy Gruner (1922) and 

Moore and Maynard (1929) have shown that the solubility of iron is 

appreciably increased in carbonated waters and solutions of organic 

acids," (Taylor, 1949, p. 80).

As pointed out by Taylor (1949, p. 80):

There is considerable divergence of opinion as to the 
chemical state in which iron is most likely commonly 
transported. Harder (1919) believes that it is carried 
mainly as ferrous bicarbonate and to some extent also 
as ferrous or ferric sulphate or as compounds of organic 
acids. Van Hise and Leith (19II) suggest it may be 
as a ferrous salt of silicic, carbonic, sulphuric, 
hydrochloric or other acids. Aschan (190%) believes 
it is carried as soluble ferrihumates or ferrohumates,
Hayes (l915) as salts of organic acids, as chlorides and 
sulphates and as ferrous bicarbonate. Gruner (1922) 
holds the view that iron is largely present in organic 
colloids or adsorbed by organic colloids. Moore and 
Maynard (1929) believe that most of the iron is 
transported as a ferric oxide hydrosol stabilized 
by the organic colloids in the water with smaller 
quantities carried as salts of organic and inorganic 
acids. Gill (l92?) suggests ';hat iron may also be 
transported as a ferrous silicate hydrosol.

The two states more frequently referred to are true solution and

colloidal suspension.

Environment

According to James (1954, p. 242), "A number of workers, 

notably Moore and Maynard and Gruner, have produced evidence to show
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that iron is transported most readily as a ferric hydrosol and that 

it prohahly is in this form that most iron reaches the sea." Regard­

less of the mode of transport, once introduced into the environment 

of deposition, precipitation of the iron as a specific mineral type is 

dependent specifically upon the Eh and pH of the resulting sea water 

(Krumbein and Garrels, 1952), As proposed by James (l95^, P* 24o):

The depositional environments of the iron-rich rocks 
clearly belong to their class of "restricted" environments, 
in which "physiographic, tectonic, or biologic features 
impose controls on circulation, oxygenation, or concentra­
tion of dissolved salts." In this type of environment, the 
oxidation-reduction potential. Eh, may range from positive 
(or oxidizing) at the surface to strongly negative (or 
reducing) at depth; the hydrogen-ion concentration, pH, 
may show a range that indicates mild alkalinity at the 
surface, changing to neutral or even slightly acid at depth. 
Concentration of dissolved salts may show wide variation, 
particularly when free circulation of water to the open 
ocean is inhibited.

Iron entering such a basin as ferric hydroxide would be 

precipitated by salt water, and iron entering the oxidizing surface 

waters of this basin in true solution would be converted to and 

precipitated as insoluble ferric hydroxide. As this colloidal ferric 

hydroxide settles into lower and more reducing waters of this basin, 

it is likely that the iron would be reduced and either go into 

solution or be replaced or reprecipitated as a ferrous mineral in 

equilibrium with the new environment. This line of reasoning is in 

agreement with James' (195%-, P* 244) conclusion that:

The solubility of iron in surface waters of the basin
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is almost negligible. Using values obtained from Krumbein 
and Garrels (57), we may assume a pH of about ̂ 8.0 and an 
Eh of about +0.2, at which the activity of Fe plus Fe*** 
ions is about 10" and ferric hydroxide is a stable
precipitate. But as the flocculent material slowly settles, 
it may, in a "restricted" basin, sink into an environment 
more acid and less oxygenated. In such an environment a 
typical value for pH would be 7-5 with an Eh of -0.1, at 
which the activity of Fe*'" plus Fe*** is about 10"*"', and 
the stable iron mineral is FeCO_. This tremendous increase 
in solubility would cause the flocculent hydroxide to 
either go into solution and thus greatly increase the 
Fe"^ content of the water, or, if the solubility product 
of FeCOg were exceeded, to be reacted with or to form a 
ferrous precipitate.

Krumbein and Garrels (1952) prepared diagrams showing the 

fields of chemical stability of certain groups of minerals as 

functions of pH and oxidation-reduction potentials. Since the 

precipitation of minerals under any given set of temperature and 

salinity conditions depends upon the activity and activity products 

of the ions involved, construction of the Eh-pH fields of stability 

for all species were based upon calculations involving these physico­

chemical constants (Krumbein and Garrels, 1952, p. 10). If the 

activities are known, the pH and Eh can be calculated from known 

equations. By substituting these calculated values in the Nernst

equation (e = Eo + 55 • in c ), the writers arrived at values of Eh
nF

and pH at which the various chemically precipitated minerals can 

exist in a stable state. They applied this method to the problem of 

the origin and classification of chemical sediments as a function of 

the Eh and pH. Figures l9, 20, and 21 show the stability zones of
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Figure 19. Fields of stability of hematite, siderite, and pyrite 
(From Krumbein and Garrels, 1952, p. 12).
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rhodochrosite, and alabandite (From Krumbein and Garrels, 
1952, p. l4).



lk 9

pH 7.0
I

8.0
I

♦0.1 'XX;,

HEMATITE 
LIM G NITE  
MN OXIDES
SILICA

CHAMOSITE'
Coleile
Phosphorite

CALCITE
Hematite
Limonite
Mn Oxides
Chomofite
Phosphorite
S tiico

SALfNfTY» 200%.
GYPSUM 
ANHYDRITE 
HAUTE
DOLOMITE 
ETC.

PENCE (E h  * 0 )

Eh PEAT

PEAT
p y r It e

-0.3

CHAMOSITE 
SIDERITE
GLAUCONITE
RHODOCHROSITE

ORGANIC
MATTER

SILICA
PHOSPHORITE
Colette
Pflm ory uronium 
_  concentfotlons

ORGANIC^ 
MATTER 

PHOSPHORITE 
PYRITE
SILICA
Rhodochrosite 
Alabandite (?)
Cotclfe
Primory uranium 

concentrotions 
Primory hccvy metal 

sulphides

CALCITE
ORGANIC

MATTER
Hemotite 
Lim onite 
Glouconite 
Mn Oxides 
Chomosite 
Phosphorite 

sS illco

SALINITY > 2 00 V ..

GYPSUM
ANHYDRITE
HAUTE
DOLOMITE 
ORGANIC MATTER 
ETC.

CALCITE
ORGANIC
MATTER

Siderite
Rhodochrosite
Phosphorite
Glauconite

Chomosite os used here is representotive o f 
the sedimenlory Iron siticotes.

SALIN ITY » 2 0 0 % .

GYPSUM 
ANHYDRITE 
HAUTE
ORGANIC MATT£R\Po/omite

CALCITE
ORGANIC
MATTER.

p y r ite
Ptiosptiwite 
Aloboi^dite (?)

5A LlN ITy;^200% ,
e/psum / ‘'E s  
AnhydriflH ) )
Hp//te ■r y'
ORGANlti'MATTER
PYRITfŷ
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iron and manganese minerals, calcite, and phosphorite which were 

constructed hy Krumbein and Garrels from values determined by 

computing the activity of ferrous and ferric ions, carbonate ions, 

sulfide ion, and the hydroxyl ion on the one hand, and by computing 

the concentrations of the trivalent and bivalent iron and the sulfide

ion on the other hand (in Sokolova, 19^2, p. 10).

Thus, in marine mediums of constant salinity and temperature

the precipitation of minerals such as hematite, siderite, and pyrite

depends on the activity of the ferrous and ferric ions and the con­

centration of carbonate, sulfide, and hydroxyl ions. From the diagrams 

referenced above, it is seen that siderite or pyrite and the manganese 

minerals alabandite or rhodochrosite are stable for negative Eh values 

and a pH of 7 and more while hematite or manganese oxides are stable 

for positive Eh values. Very broadly, then, the activity product 

of hematite is most likely to be exceeded in solutions of high Eh 

and high pH, for they would have a high Fe^^^/Fe^^ ratio (determined 

solely by Eh) and a high hydroxide concentration. Siderite would

be favored by solutions of low Eh and high pH, providing a high 
++, +++Fe /Fe ratio and high carbonate ion concentration. Pyrite would 

be favored by solutions of low Eh and high pH also, for they promote 

the formation of both Fe"*̂  ion and S" ion. Krumbein and Garrels (1952) 

found the stability fields to be essentially independent of temperature, 

pressure and composition of the sea water system from which the
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minerals precipitated. They further concluded that the solubility of 

carbonates and phosphates depends only on the pH (not affected by Eh), 

and they are only precipitated under alkaline conditions.

Krumbein and Garrels' (l952, p. 26) fenue-diagram showing the 

fields of occurrence of typical chemical end-meraber associations in 

terms of Eh and pH shows a mineral assemblage which corresponds very 

closely to the assemblage constituting the North Louisiana chamosite 

deposits (Figure 20). This assemblage, consisting of the primary 

constituents chamosite, siderite, organic matter, silica, and phos­

phorite and the accessory minerals rhodochrosite, glauconite and 

calcite would indicate an environment in which the pH was Y.O to 7.8-, 

and the Eh was 0.0 to -0o2-. The Louisiana ores are composed chiefly 

of chamosite and siderite with minor organic matter, calcite, pyrite, 

magnetite, iimenite (?), collophanite and variable quantities of 

limonite. Most of the limonite (or goethite) is probably a secondary 

alteration product resulting from late or post-depositional oxidation 

of primary siderite and chamosite due to an increase in the oxidational 

potential of the then existing environment. Slight upward or dovmward 

shifts of Eh reflecting temporary or local changes in Eh coifLd account 

for the presence of minerals such as ilmenite and pyrite. "Magnetite, 

although stable under approximately the same Eh conditions as siderite, 

will form in preference to siderite under alkaline pH conditions," 

(Huber, 1958, p. 137). Slight changes towards more alkaline conditions
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locally could therefore account for the irregular distribution of 

magnetite in these deposits.

Studies of equilibrium stability relations among iron

minerals under variable conditions of Eh, pH, P and P led Garrels
COg Og

and Christ (1965, p. 228) to conclude that;

In terms of the primary sedimentary iron ores, it is 
obvious that a siderite facies can be obtained by having 
a high dissolved COg and by removing sulfide sulfur from 
the system; a silicate facies, by removing sulfur and 
high COg content, while preserving enough silica to yield 
chert; a magnetite facies, by reducing sulfur, COg, and 
maintaining silica at a value undersaturated with respect 
to amorphous silica.

Castano and Garrels (l950) after conducting experiments on 

the deposition of iron, with special reference to the Clinton Iron 

Ore Deposits, concluded that iron-bearing solutions moving into 

aerated ocean waters containing calcium carbonate will precipitate 

ferric oxide and that with the addition of silt and perhaps a slight 

lowering of pH they may be expected to precipitate chamosite. The silt 

would presumably serve as nuclei for crystal growth during precipitation 

of chamosite. They further concluded that if streams discharge into 

an area of stagnant water where organic debris tends to accumulate, 

the minerals might well be chamosite (if silt is present) or siderite 

and pyrite.

A study of the literature reveals that the general consensus 

of opinion regarding the origin of bedded sedimentary iron deposits
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is that they are chemically precipitated sediments predominantly of 

marine origin, that they are in the main shallow water deposits, and 

that the iron was derived from continental sources by the normal 

processes of erosion.

Castano and Garrels (l950) concluded that the Clinton Iron 

Ore Deposits were shallow water deposits on the basis of the existence 

of extensive surface markings, cracks, and tracks of crustaceans and 

worms in the shales and sandstones of these deposits. The Wabana ores 

in Newfoundland show ripple marking and current bedding while erosion 

surfaces are indicated by the presence of abundant worm burrows (Hayes,

1915).

The occurrence of extensive worm borings in the Louisiana 

sedimentary ores.coupled with the occurrence in some places of current 

bedding in sections of some exposed lentils strongly suggest that they 

are also shallow water deposits. A shallow environment of deposition 

for these deposits is also suggested by their characteristic vertical 

gradation in both directions into sandstone beds consisting of poorly 

sorted detrital quartz, muscovite mica, clays, and abundant carbona­

ceous plant debris and fossil wood suggestive of backswamp or deltaic 

deposition. The restriction of these deposits to a narrow NW-SE 

trending belt by lateral facies changes is also suggestive of nearshore, 

shallow water deposits. Landward facies changes are marked by a 

progressive landward increase in clastic sandstones, shales and organic
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material while hasinward changes reflect increases in marine clays, 

sand and fossils. All evidence indicates that these deposits were 

laid down near a fluctuating shoreline as part of the major upper Cook 

Mountain-lower Cockfield regressive phase between the underlying marine 

lower Cook Mountain and the overlying non-marine Cockfield. The 

fluctuating shoreline may have been that of the open gulf as it exists 

today or that of a lagoon freely connected with the open gulf.

Most of the chamosite and siderite of these deposits is con­

sidered to be primary. In typical chamosite oolites the concentric 

growth rings of cryptocrystalline chamosite around quartz nuclei could 

only have formed by direct crystallization. Chamosite oolites intimately 

mixed with clays and other detrital material may represent reconstituted 

faecal pellets as suggested by Porrenga (1965). Taylor (19^9, p. 81) 

proposed that, "There is no evidence whatever in the Northampton Sand 

to suggest that chamosite is other than a primary precipitate . . . "

Most of the siderite groundmass is thought to have been 

precipitated directly from wters where the partial pressure of COg 

was low enough to exceed the solubility product of FeCO^ and the Eh 

of the environment was non-oxidizing. Precipitation would be 

encouraged in warm waters in which the degree of dissociation of the 

bicarbonate would be relatively high and/or in waters where the removal 

of carbon dioxide in the process of photosynthesis actively takes place 

(Taylor, 1959^ p. 81). The carbon dioxide must no longer be present in
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sufficient quantities to maintain all the iron as soluble ‘bicarbonate. 

Some primary siderite was also laid down as fine siderite muds and was 

later recrystallized to form siderite spherulites and granular aggre­

gates of siderite. Because the solubility of CO^ in water decreases 

with increasing temperature, it is likely that the conditions in the 

basin of deposition were quite warm. Neutral to slightly reducing 

conditions would have been essential. Reduced circulation due to local 

restrictions to water circulation and/or to depletion of the oxygen 

content by oxidizing large masses of organic material would produce 

this effect. Because increasing CO2 decreases the pH of the deposi­

tional media and lower pH values increase the solubility of siderite, 

it stands to reason that the partial pressure of COg was an extremely 

important factor in determining the deposition or non-deposition of 

siderite.

There is some diagenetic chamosite but quantitatively it 

is not significant. There is considerable secondary siderite. This 

results from recrystallization of finely-divided siderite originally 

widely disseminated in clay muds as granular siderite or siderite 

spherulites. This is a relatively simple chemical equilibrium process 

by which concentrated aggregates of material have lower free energy 

than the same material widely disseminated. Siderite is also a very 

prolific diagenetic replacement mineral, and it accounts for the 

major part of the secondary siderite. In discussing the diagenetic
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changes expected in mineral associations within certain stability

fields, Krumbein and Garrels (1952, p. l6 ) state:

The usual effect of diagenesis is to cause a decrease in Eh 
and relatively little change in pH. If an original deposit 
of hematite were subjected to such a change, so that the Eh 

■ dropped into the siderite field of stability, one might expect 
to find at least a little siderite replacing hematite. On 
the other hand, if the Eh change were drastic and caused a 
rapid drop all the way down into the pyrite field, one might 
find some pyrite replacing hematite.

This line of reasoning is relatively straight forward when 

considering replacements among chemically related iron minerals, 

but the replacement of quartz, chamosite, feldspars, etc., by siderite 

is somewhat more difficult to explain. In such situations, complete 

disruption of silicate structures are involved. The solubility of 

silica is little affected by pH values between 1 and 9 tut rises 

rapidly at values greater than 9 (Krauskopf, 1959)* The writer 

interprets this to mean that either the pH of the environment of 

deposition changed to much more alkaline conditions during late stages 

of deposition or that the pH of residual pore fluids after accumulation 

of the deposits was considerably higher. Either case would necessitate 

a restricted environment with abnormal concentrations of alkali metal 

ions because normal sea water seldom exceeds pH 8.5.

Sideritization in the North Louisiana ores is similar to that 

reported for the Northampton ores, and the statement by Taylor (l9^9, 

p. 8 2) that "While this extensive sideritization is evidently largely
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of post-accumulation date it seems probable that it was a penecon-

temporaneous reaction" seems to apply to the North Louisiana ores.

Perhaps some of the sideritization of these ores occurred in a manner

similar to that given by Hayes Taylor, 194$, p. 82):

In the case of the Wabana ore Hayes (1915) believes that 
replacement of chamosite and other minerals by siderite 
took place in the lower layers of the sea floor where 
ammonium carbonate resulting from the decomposition 
of organic matter reacted with iron salts in the sea 
water with formation of the corresponding ammoniuia 
salts and the precipitation of siderite. Thus, "while 
hematite and chamosite were forming at the surface of 
deposition, the siderite was contemporaneously formed 
in the immediately underlying sediments."

In summary, these ores are shallow marine, or possibly even 

brackish. Trace element studies indicate alternation between normal 

marine and brackish (but predominantly marine) environments of depo­

sition for these deposits. Basically, the ore deposits were formed 

in a reducing environment, but local sporadic changes to mildly 

oxidizing conditions is reflected in alternating brown and green 

growth rings of chamosite oolites. Mixed assemblages of oolites 

consisting of some more highly oxidized than others suggests that local 

oxidizing and reducing conditions alternated on the sea floor with 

currents mixing the different types.
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Sideritic chamosite lentils occur in at least four distinct 

stratigraphie levels within a I50 foot stratigraphie section of the 

upper Cook Mountain and lower Cockfield. On exposure to surface 

weathering conditions, they alter to brown ore which consists of 

goethite or limonite veins and ledges in the clayey matrix of the . 

altered parent lentils. The flat-lying nature of the beds of the 

D'Arbonne platform results in exposure of the parent lentils over wide 

areas of north-central Louisiana. The major ore deposits are located 

in an area approximately forty miles in length and twenty miles in 

width which trends northwest-southeast between the northeast portion 

of Webster Parish and the south-central part of Lincoln Parish. The 

development of present topography and/or facies changes within the 

parent ore lentils has resulted in isolated ore districts within the 

overall region, but these are normally quite extensive.

The fresh parent lentils consist predominantly of green or 

gray green chamosite oolites and pellets in a matrix of clear or pale 

yellow microcrystalline siderite or less commonly in a matrix of green 

chamosite. Averaged point counts of the constituent minerals in

158
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selected size fractions yield 53 percent siderite (with minor magnetite, 

ilmenite (?) and pyrite), k2 percent chamosite (with minor quantities 

of kaolinite, illite and nontronite (?) ), with the remaining 5 percent 

"being composed of detrital quartz, feldspar, mica, and other minor 

minerals. In general, the siderite persists throughout and tightly 

cements the parent lentils. The siderite is normally associated with 

only minor quantities of calcite hut locally calcite enrichment results 

in calcite becoming the dominant matrix material. This phenomenon 

occurs rarely, however, and then is restricted to small rounded or

nodular bodies of finely crystalline calcite. Siderite is also present

as granular masses and secondary spherulites in chamositic muds and is 

thought to he secondary, produced by recrystallization of siderite 

originally disseminated through the chamosite muds. Siderite is also 

an active replacement mineral and commonly replaces chamosite, detrital 

quartz, and organic matter.

In addition to these minerals, most samples examined contained 

amorphous limonite coatings and/or finely divided goethite grains. 

Quantitative analysis of this iron, extracted hy means of the dithionite- 

citrate technique, shows that such occurrences constitute an average 

of 6 .5 percent hy wèight of the total rock specimen.

Minor collophanite occurs in these deposits. Quantitatively,

the percent of this phosphorous-bearing mineral is insignificant 

compared to the other constituent minerals, but from an economic point
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of view, its relative percentage is very significant in terns of 

potential value of the iron. On selecting a processing technique for 

these ores, the high phosphorous content, averaging approximately 

0 .34 percent in the green ores and 0.39 percent (Durham, 1964) in the 

hrovn ores, must he considered.

Once exposed to surface or near-surface conditions, the 

sideritic chamosite heds are altered hy weathering processes. 

Chemically reactive surface waters charged with carhon dioxide attack 

the siderite, and to a lesser extent the chamosite, of the parent 

lentils, oxidizing and leaching their iron content. The liberated 

iron is concentrated as goethite and/or limonite veins or ledges 

within an associated clayey residue from which the iron has heen 

leached.

Chemical analyses of the unaltered parent lentils hy X-ray 

fluorescence yield an average iron content of approximately 4t percent 

Fe^Og. Utilizing a sample typical for these deposits, the relative 

percentages of iron tied up in the various potential iron-hearing 

minerals recognized in thin section, were determined after making 

certain assumptions hased on the proportion of certain elements to 

the COg content of this sample. Based on these assumptions, it was 

calculated that an average of 12.12 percent of the total 32.57 percent 

elemental iron in this sample is structurally coordinated in siderite. 

This"value corresponds to approximately 37 percent of the total iron
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content. Of the remaining 20.4$ percent it was calculated that 4.13 

is present as limonite coatings and/or finely divided crystals of 

goethite, 0.10 percent as pyrite, 0 .2 6 percent as ilmenite (?), I.58  

percent as magnetite, and l4.38 percent as chamosite. Based on the 

assumption that the iron is available from all the minerals except 

chamosite, the total iron available on the basis of these calculations 

would be 18.19 percent elemental iron, corresponding to approximately 

56 percent of the total iron present in this sample. Tlie presence of 

such a high available iron content in the enormous green ore reserves 

available (over 121 million long tons mapped) could add significantly 

to the economic potential of the brown iron ore deposits.

These sedimentary ironstones formed near a fluctuating shore­

line in close proximity to a landmass capable of supplying large 

quantities of iron. The iron necessary for these deposits was most 

probably derived from extensively leached igneous rocks in areas 

immediately to the north, e.g., Arkansas,

The iron was most probably transported either as colloidal 

ferric hydroxide in oxidizing river water or in true solution as 

ferrous ion and/or as ferrous bicarbonate in rivers presumably having 

a pH of 7 less and an Eh in the range -0.1 to +O.3. Most of the 

siderite and chamosite were precipitated directly from solution in 

warm, shallow marine to brackish waters with a pH ranging from 

approximately 7.0 to 7 .8 and an Eh ranging from approximately 0.0
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to -2.0. A reducing environment such as this might be expected to 

result in areas of reduced circulation due to restrictions of water 

circulation and/or in areas where depletion of the oxygen content 

resulted from oxidation of large masses of organic material.

The presence of minor limonite and/or goethite crystals sug­

gests sporadic changes to mildly oxidizing conditionsc The occurrence 

of alternating brown and green growth rings of chamosite in typical 

growth oolites also reflects such sporadic changes. Mixed assemblages 

of oolites, consisting of some more highly oxidized than others, 

possibly suggest that local oxidizing and reducing conditions alter­

nated on the sea floor with currents mixing the different types.

The chamosite and most of the siderite in these deposits is 

considered primary. In typical chamosite oolites the concentric 

growth rings of cryptocrystalline chamosite around quartz nuclei could 

have formed only by direct crystallization from solutions with a 

relatively low Eh and neutral or higher pH. Chamosite pellets 

consisting of chamosite intimately mixed with clay, quartz and other 

detrital material may represent reconstituted faecal pellets as 

suggested by Porrenga (1965). Chamosite present as "false" oolites 

and as chamositic muds is also thought to represent primary deposi- 

tional material.

The presence of directly precipitated siderite in these 

deposits places certain restrictions on the environment of deposition.
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The Eh and pH range and the COg content of the environment are certainly 

restricted to definable limits. Siderite becomes insoluble and precip­

itates directly from waters where the partial pressure of COg is 

relatively low, the Eh is 0.0 or less, and the pH is 7 or above. 

Precipitation would be encouraged in warm waters in which the degree 

of dissociation of the bicarbonate would be relatively high and/or in 

areas where the removal of carbon dioxide by the process of photo­

synthesis was active.

The presence of diagenetic replacement siderite in these 

deposits reflects changes in the environment either during late stages 

of deposition or in the microenvironment of the pore fluids after 

accumulation. The replacement of quartz, chamosite, and feldspars by 

siderite would presumably require a pH of at least 9 to disrupt the 

silicate structures before replacement could proceed, assuming that 

the solubility product of FeCO^ had already been exceeded. Such an 

abnormal environment would necessarily be a restricted type with 

abnormal concentrations of alkali metal ions because normal sea water 

seldom exceeds a pH of 8 .5 .

That the environment of deposition for these deposits was 

shallow is reflected in the occurrence of extensive worm borings and 

current bedding in some sections of some exposed lentils. A shallow 

environment is also suggested by the characteristic vertical gradation 

of these deposits in both directions into beds typical of backswamp
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deposition. The restriction of these deposits to a narrow KW-SE 

trending belt by lateral facies changes is also suggestive of near­

shore, shallow vjater deposits. Trace element studies indicate alter­

nation between normal marine and brackish, but predominantly marine, 

environments of deposition for these deposits.
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APPENDIX A 

ANALYTICAL PROCEDURES AND TECRNIQUES

Sample Preparation 

Large samples of the hulk material were prepared for selective 

iron extraction. They were crushed until they passed through a 120 
mesh screen, and after homogenization, exact quantities of each rock 

powder (less than five grams in every case) were weighed and placed in 

a 250 milliliter centrifuge tube. After the iron was removed from 

these samples hy means of the dithionite-citrate technique discussed in 

the next section, the treated samples were dispersed in distilled water 

in one-liter heakers and further disaggregated and dispersed hy means 

of the ultrasonic transducer. The less-than-four and less-than-one 

micron equivalent spherical diameter particles of each sample were 

segregated from the suspended sample hy fluid withdrawal according to 

Stokes' Law settling graphs. Further size fractionation of selected 

samples m s  performed hy the high speed centrifugation method in hopes 

of obtaining more nearly monomineralic samples of clay-sized particles. 

The less-than-one micron fraction was further subdivided into I-I/2,

172
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l/2-l/4; l/4-l/8, and 1/8-1/16 micron fractions by continuous flow 
centrifugation utilizing the flow rate and centrifuge revolutions per 

minute settings recommended hy Kerns (1967a) for collection of certain 

size fractions.

Preferred orientation slides of the selected size fractions 

were prepared by sedimenting the clay suspension on glass slides and 

then drying the slides in an oven at approximately 55°C. This 

procedure preferentially aligns the clay fraction and enhances the 

basal diffraction maxima by orienting the c-crystallographic axis of 

the clay minerals normal to the slide.

Randomly oriented powder slides of the dried size-fractioned 

material were made by sieving the material directly onto vaseline- 

coated slides or by packing the powder in an aluminum sample holder.

Selective Removal of Amorphous Iron Oxide

The presence of amorphous iron oxide in untreated samples 

created extreme difficulty in obtaining diffractograms of either the 

random powder slides or preferentially-oriented slides of clay fractions. 

In choosing a technique to remove amorphous iron oxides from samples 

several factors had to be considered. The process should selectively 

remove oxide coatings without attacking the iron structurally coordi­

nated in the iron-bearing clay minerals present. Further, it should 

not attack the layer silicate minerals with resulting increase or
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decrease in cation exchange capacity, and ideally the technique should 

he fast and free from analytical difficulties. Such a technique was 

■proposed hy 0. P. Mehra and M. L. Jackson ( l $6o) .  Their dithionite- 

citrate-hicarhonate method employs sodium dithionite (NagSgO^) as a 

reducing agent, sodium bicarbonate as a buffer, and sodium citrate as 

a chelating or complexing agent for iron. Operation at a neutral pH 

makes it possible to achieve the prerequisites mentioned above. The 

procedure for removal as listed by Mehra and Jackson (196O, p. 350) is 
as follows:

A suitable amount of the sample (4 g of many soils or 1 gm 
of clay per 100 ml tube) containing O.5 g of extractable 
FegO^ or less, is placed in a 100 ml. centrifuge tube and 
40 ml. of 0.3 M Na-citrate solution and 5 ml. of 1 M NaHCOg 
solution are added. The temperature is brought to 80°C in 
a water bath, then 1 g. of solid Nâ SgÔ ĵ  (g g. suffices for 
clays low in free iron oxides) is added by means of a spoon,

. and the mixture is stirred constantly for 1 min. and then 
oecassionally for a total of 15 min. At the end of the 15 
min. digestion period, 10 ml. of saturated NaCl solution 
(and 10 ml. of acetone, particularly needed for allophanic 
soils) is added to the tube to promote flocculation. The 
suspension is then mixed, warmed in a water bath, and 
centrifuged for 5 min. at 1600-2200 rev./min. The clear 
supernatant is decanted into a 500 ml. volumetric flask 
(or a 1000 ml. flask if the volume exceeds 5OO ml. ) and the 
solution is kept for Fe, A1 and Si determinations.

For samples which originally contained more than 5 percent 
of extractable Fe^Og, the treatment in the previous paragraph 
is repeated once or twice (sample combined into fewer tubes 
for the second treatment) with décantation into the same 500 
ml. volumetric flask as before. A final washing (two or more 
for samples of more than 1 g. of residue) is made with the 
Na-citrate solution (with NaCl and acetone if necessary for 
flocculation), which is combined with the previous decantâtes 
for Fe determination. If the colloid does not flocculate,
10 ml. of acetone is added (HCl and CaClg solutions are avoided).
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The solution is mixed and warmed in a water hath. Care is 
taken that solutions containing acetone do not boil.
Centrifugation for 5 min. is repeated. A pure white color
of the residue should not be expected, as some soils and
colloids contain cream or green colored colloids and,coarse, 
black mineral particles. The sample is kept in methanol, 
acetone or water, without drying. The sample, freed of
extractable but not dried at any time during the
procedure, is ready for cation exchange capacity determina­
tion or (Jackson, 195 ,̂ p. 72) boiling in 2 percent NagCO^ 
for dispersion and segregation for X-ray diffraction analysis, 
differential and integral thermal analysis, infrared analysis, 
elemental analysis, electron microscope examination, or other 
procedures.

This procedure was followed but with the following modifications. A 

250 ml. centrifuge tube was utilized instead of the recommended 100 ml. 

tube. An additional gram of NUgSgOĵ  was added at the end of 5 and 10 
minutes during the 15 minute digestion period (Jackson, 196^, p. 282).

Analysis of the Selectively-Removed Iron Oxide 
by Atomic Absorption Spectrophotometry

The iron selectively removed from the samples by the dithionite- 

citrate technique was analyzed by atomic absorption spectrophotometry. 

The Perkin Elmer 303 Spectrophotometer located in the Botany and 
Microbiology building and the Beckman Model Number DB spectrophotometer 

located in the Oiemistry building were utilized for this purpose. 

Standards with iron concentrations of 2, 5, 10, 20, 30, ^0, and 50 
parts per million were prepared by diluting aliquots of a standard iron 

solution containing 1000 parts per million iron to the correct propor­
tions. These samples were aspirated in the spectrophotometers, and the



176
percent transmission^ which is dependent on the concentration of the 

element analyzed for, was read directly from the percent transmission 

indicator. The percent absorption, the desired factor, may be read 

directly from available tables which have been calculated to give 

percent transmission values for corresponding percent absorption values. 

Or these values may be obtained from the following equation:

Percent Transmission = 2 - log percent Transmission 
A standard curve was prepared by plotting the percent absorbance against 

the parts per million for the particular standards representing these 

values.

The unknown samples were diluted until the concentration of 

the iron was low enough, less than $0 ppm, to give values detectable 

by the unit. The concentration of iron in the unknown samples was then 

read directly from the standard plot^ in parts per million, utilizing 

the converted percent absorbance values.

The parts per million of iron in each sample may be converted 

to weight percent of the total sample by taking into account the 

original weight of the sample and the dilution factor of each sample 

as follows:

Cone, of Fe (ppm) X Dilution factor (ml) Weight Percent Iron
Original wt. sample (gm) ~ in Sample

Analytical X-ray Techniques 

X-ray diffraction patterns were obtained with the Siemens
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X-ray diffractometer and automatic recorder with nickel-filtered 

copper (K-alpha) and zirconium-filtered molybdenum (K-alpha) radiations. 

The reason prompting utilization of molybdenum radiation in X-ray 

analysis of these unusual rocks is discussed in detail in the Clay 

Mineralogy section and will not be dealt with here. The goniometer 

was operated at one degree 29 per minute, and the diffracted radiation 
was detected by a scintillation counter.

Diffraction patterns of preferentially oriented slides of 

treated clay fractions, those with the amorphous iron selectively 

removed, were obtained before and after solvation of the samples in a 

saturated ethylene glycol atmosphere at 60 degrees centigrade overnight. 

Slides of oriented clays were examined before and after heat treatments 

in a high temperature oven to determine heating modifications. Sedi- 

mented slides of acid-treated clay fractions, samples from which the 

chamosite had been removed by treatments with warm 10 percent hydro­

chloric acid, were utilized to confirm the presence of kaolinite.

Randomly oriented powder slides of bulk samples were utilized 

to distinguish the different minerals present. Diffractograms of 

randomly-oriented powder slides were utilized to detect the presence 

of minor quantities of kaolinite and to distinguish between triocta- 

hedral and dioctahedral clay minerals, based upon d-spacing of the 

(060) reflection. A marked increase in the intensity and definition 

of the reflections present was detected for powder samples held in
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aluminm sample holders. .Diffractograms of randomly oriented powder 

slides of acid-treated clay size fractions were essential in 

distinguishing the variety of kaolinite present.

X-ray Fluorescence Analysis 

General Theory

Chemical analysis hy fluorescence is possible because each 

element emits characteristic radiation when bombarded with X-ray 

quanta of sufficient energy. The target is bombarded with primary 

radiation, causing emission of characteristic fluorescent radiation. 

Secondary characteristic radiation is then diffracted from the analyzing 

crystal into the counter. In accordance with the Bragg Law, radiation 

of only a single wavelength is reflected for each angular setting of 

the crystal and the intensity of this radiation can be measured with a 

suitable counter. Qualitative analysis is possible by identification 

of the diagnostic radiation emitted by the element utilizing tables of 

the K and L lines of all elements and a table of corresponding wave­

lengths and 20 values of the analyzing crystal. For quantitative 

analysis, it is necessary to measure the intensity of the character­

istic fluorescent radiation which is proportional to the concentration 

of the element detected. This relation is not linear, however, due to;

1. Matrix absorption - The absorption coefficient of the matrix 

varies as the concentration varies.
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2. Multiple excitation - If the wavelength of the fluorescent 

is smaller than the K absorption edge of another element in 

the sample, the latter will also emit fluorescent radiation 

due to this radiation in addition to excitation radiation 

due to the primary source.

Two other major problems exist in fluorescent analysis:

1. Intensity of the fluorescent radiation is much less than 

that of the incident beam bn the sample, and it is further 

reduced by diffraction on the analyzing crystal. If the 

diffracted beam entering the counter is very weak, a large 

counting time will be necessary to measure the intensity 

with acceptable accuracy. High intensity is desirable

to reduce the counting time, therefore in such situations 

a tungsten target tube with as high a power rating as 

possible is normally utilized. The exciting radiation is 

then that part of the continuous spectrum and such L lines 

of tungsten as have shorter wavelengths than the K absorption 

edge. Because the intensity of a particular line from the 

sample is usually compared with the intensity of the same 

line from a standard, the output of the X-ray tube must be 

stabilized or the tube must be monitored.

2. Resolution is difficult when the wavelength of fluorescent 

radiation for two elements present is very close. Reflecting
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flat and curved crystals of LiF and NaCl give greater 

reflected intensity lut less resolution than the curved 

transmitting crystals of mica.

In quantitative analysis the non-linear relationship between 

intensity and concentration require that the intensity of the sample 

be compared with a curve for a suitable sample. The sample is analyzed 

for one element at a time and preparation of standards for each given 

element analyzed is necessary. Uniform samples of known concentration 

of the elements in question are combined with a matrix similar to the 

matrix of the unknown. That the matrix should be similar to that of 

the unknown is necessary because different matrices have different 

absorption affects.

X-ray periodic charts are available that give the analyzing 

crystal best suited for a particular element. The 29 value corres­

ponding to the desired wavelength for the element concerned is set 

on the goniometer. The intensity of the known is measured at the 

prescribed angle by means of the counter. After measuring the peak 

intensity,the standard is then turned slightly off this peak angle 

and the background radiation is then measured. This difference in 

intensity is then plotted against the weight percent of the oxides 

in the standard. A curve is then derived from a set of standards 

of different weight percentages, and this information may be utilized 

to determine the weight percent of the oxides in the unknown. A
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plot of the intensity difference of the unknoT>/n oxide determines the 

position on the standard curve at which weight percent may he read 

directly.

Advantages of chemical analysis hy X-ray fluorescence

are;

1. Analyzing time is very short once standards and working 

curves are prepared.

2. Accuracy is superior to optical spectroscopy for elements 

ranging from 1 to 100 percent; optical spectroscopy is 

superior helow 1 percent,

3. Won-destructive method.

Disadvantages of chemical analysis hy X-ray fluorescence are:

1. Ordinarily, the method is limited to elements, with atomic 

numhers greater than around 22. Elements of atomic numbers 

between 5 and 22 have to he analyzed in a vacuum or in an 

atmosphere of light gasses using a gas flow proportional 

counter because of the low energy of the characteristic 

fluorescent radiation of these elements.

2. Higher light elements cannot he detected in a heavy matrix 

due to absorption.

3. IVhite radiation of the tube causes a background effect.

4. This method is not very sensitive to trace elements.

5o Characteristic radiation of the target material will normally
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appear in the emergent radiation.

Procedure

For quantitative X-ray fluorescence analyses, a Siemens X-ray 

spectrometer was used with a chromium tube and evacuated chamber for 

the lighter elements and a tungsten tube for the heavier elements.

Topaz, lithium fluoride, KAP and PET analyzing crystals were utilized. 

.Seven bulk samples of the parent bed which had been chemically analyzed 

by wet methods were utilized as standards and supplemented where 

necessary with U.S.G.S. standards. These known standards were utilized 

to construct a set of standard curves. Counts per minute were plotted 

against weight percent of the oxides, as reported for wet chemical 

analyses. The standard curve was then constructed by drawing a straight 

line through these points. The weight percent of the unknown oxide 

was read directly off the curve from the number of counts per minute 

determined for each unknown.

The samples were prepared for analyses by hand-grinding each 

sample until it passed through a 2$0 mesh screen. After the samples 

were thoroughly mixed, 3*2 grams of the powdered sample were added to

0.8 grams of Polyvinal Alcohol (20 percent PVA), remixed, and pressed 
under 30 tons pressure in a press to make brickettes. The brickettes 

are one inch in diameter and are surrounded by PVA rims.
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Emission Spectrographic Analysis 

Quantitative trace element analysis for boron, gallium, 

vanadium, copper, zirconium, nickel and chromium in 40 samples was 

performed utilizing a Jarrel-Ash, 1.5 meter, Elbert mount spectrograph. 
These spectrochemical analyses were performed with the assistance of 

Mr, Kenneth Sargent, former graduate student at the University of 

Oklahoma.

Standards with concentrations of 10, 25, 100, 250, 500, and

1,000 parts per million of these elements were prepared with spectro- 

graphically pure compounds diluted with a carbonate to approximate 

the matrix of the unknown samples as closely as possible. One part 

of the standard was thoroughly mixed with one part of analytical 

grade graphite and two parts of cobalt (added as an internal standard) 

and thoroughly mixed on an automatic shaker. Then the samples, ground 

to less than 250 mesh, were diluted 1:9 with spectrographic grade 

graphite and homogeneously mixed. Ten milligrams of each standard and 

each sample were then loaded into a spectrographic graphite electrode. 

These were then placed in the electrode holder opposite the counter 

electrode and burned to completion in a DC arc of 5 amperes with a 
constant 6 mm analytical gap maintained between the opposing electrodes. 

The burning time was preprogrammed for 45 seconds. Emission spectra 

were recorded on 35 mm Eastman Kodak SA-1 film and the percent trans­
mission of light through the spectral lines was read on a Jarrel-Ash
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Console microphotometer.

The intensity ratio of the spectral lines of-the unknown 

elements to the cohalt reference line was read directly from an emulsion 

curve prepared empirically by Kenneth Sargent for this particular type 

film. Empirical curves (straight lines) were then drawn on a Slidel 

calculating board by plotting the intensity ratio of the standards as 

the ordinate and the concentrations of the trace elements of the stand­

ards, in ppm, as the abscissa. The trace element content of the unknown 

samples was then read directly from the abscissa, corresponding to the 

intersection of the intensity ratio and the empirical line.

Because determination of the trace element content is based 

upon the ratio of the intensity of an element spectral line with that 

of a nearby cobalt line, errors are not introduced by variations in 

ignition time, ignition amperages, incomplete burning, or exposure 

time because these variations would not affect this ratio.

Differential Thermal Analyses 

DTA gives information concerning the nature of the reaction 

(endothermie or exothermic), the temperature range at which the reaction 

takes place, and the sequence and intensity of reactions taking place 

under specified conditions (particle size, pressure, heating rate, 

etc.). Characteristic endothermie reactions due to dehydration and 

to loss of crystal structure and exothermic reactions due to the formation
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of new phases at elevated temperatures are shown. This type of 

analysis measures energy changes "brought about by reactions involving 

weight losses and structural rearrangement. The area under the curves 

reflects the amount of energy involved in the thermal transformations 

but comparison from one pattern to another quantitatively is unfeasible. 

For comparison of like samples standard techniques must be followed,

i.e., heating rates must be uniform from sample to sample. Consequently, 

the peaks and troughs are not reflections of equilibrium reactions 

due to many such variable parameters. The temperature of the peaks is 

dependent upon particle size, perfection of stacking, interlayer cation, 

internal substitution, heating rate, pressure, etc.

Differential thermal analyses of both the bulk samples and the 

size-fractioned samples were conducted by means of a Robert L. Stone 

Model DTA-13M furnace and recording assembly. The system was constantly 

purged by nitrogen gas with a flow rate of approximately 25 millimeters 

per hour. The samples were loaded in the sample holder and heated to 

1020°C at a rate of 10°C per minute.

Effluent Gas and Gas Chromatography Analyses 

Gas liberated by samples during the reactions produced by 

heating was detected by the Effluent Gas Analyses Unit, and the gas 

was collected and analyzed by gas chromatography. Samples for analysis 

were prepared by grinding to less than 250 mesh and then small pellets
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were made by pressing small aliquots of the homogenized sample with a 

miniature die. These were loaded into platinum discs and placed in 

the sample holder attachment of the DTA unit. The heating program 

and rate was essentially the same as that for DTA runs. Gas liberated 

during heating reactions was detected by the DTA Effluent Gas Analysis 

attachment. DTA and EGA curves are printed simultaneously during this 

procedure.

The gas detected by EGA was identified by passing it directly 

from the EGA unit through solutions containing different indicators for 

different gases. The presence of COg released during decomposition of 

organic matter or carbonates was qualitatively analyzed for by passing 

liberated gas through a 10 percent solution of calcium hydroxide, with 
the resulting precipitation of calcium carbonate if the gas was COg. 

Sulfur dioxide released during decomposition of pyrite or oxidation 

of organic sulfur was analyzed for by passing the gas through a dilute 

solution of Kl using starch as an indicator. A change in color from 

light purple, produced by addition of the starch, to clear or colorless 

is the test for the presence of SO^.

A second technique developed for qualitative analysis of 

released gases consisted of bubbling gas produced by a home-made gas 

generator through solutions containing different indicators. The gas 

generator was constructed from fused silica tubing by the Physics Glass 

Blowing Shop. It is approxinately l8 inches long and consists of an
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inner -^-inch silica tube with a shorter, outer 3/^-inch silica tube 

closed at one end and fused to the inner tube at the other end. A 

portion of the smaller inner tube extends • outward from the point of 

fusion with the larger outer tube and acts as an outlet for gas produced. 

A third, -ç-inch fused glass tube was fused around a hole in the outer 

large tube just below the point of fusion with the inner small tube 

and acts as an inlet tube for the purging gas. The gas generator was 

fitted to the front of a high temperature furnace by drilling a formfit 

hole through a fiber glass plate cut to fit snuglj' in the furnace 

opening. The sample was poured through the intake tube into the gas 

generator, and the generator was then inserted into the oven by passing 

it through the hole in the fiber glass plate. Plastic tubing was then 

utilized to connect the intake tube to a gas flow gage, connected in 

turn to a nitrogen tank. The outlet tube to the gas generator was 

then connected to a glass container similar in design to the gas 

generator. This device, equipped with an inlet and outlet tube, con­

tained the indicator solutions. As the samples were heated, the whole 

system was purged with nitrogen gas with a slow flow rate. The lighter 

nitrogen carrier gas passed on through the outlet of the indicator 

tube but other gases became mixed with the indicator solutions and 

produced reactions peculiar to that particular gas and the indicator 

affected.



APPENDIX B

CORE DESCRIPTIONS 

Rock cores of the parent siderite-chamosite lentils consist 

of essentially the same mineral assemblage and variations in the cores 

are restricted to changes in the relative proportions of the constit­

uent minerals. Changes in the mineralogy and rock texture within any 

one core is repeated time and again in cores from other areas; there­

fore, core descriptions here will be restricted to one typical core, 

H-6. Even the rock types in the overlying and underlying beds, into 

which these lentils characteristically grade, are invariably similar

The cores were designated with the prefix "H" and are followed 

by numbers which run consecutively throughout the ore region. Thin 

sections taken from these cores, starting with core H-1 and proceeding 

from the top to the bottom of it and each succeeding core considered, 

are designated by attaching an additional number on the end of the 

core designation, e.g., H-1-1, representing thin section number one 

from the top of core H-1.

188
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Core H-6
SE^, SE-̂  Sec. 11, T22N, RTW, in the extreme north-

central portion of the Mahon District, Claiborne Parish, Louisiana.

Unit Thickness
No. (feet)

9 Quartz sand, very fine-grained, clear, angular to
suhangular, with large quantities of muscovite and 
organic matter, all in light to dark gray sideritic 
clay matrix with discontinuous, light gray, clayey 
siderite stringers. O.5O

8 Sideritic bed, reddish brown, extremely indurated,
consisting of predominantly fine-grained quartz sand
with muscovite, organic matter and a very high
percentage of siderite. O.5O

7 Sideritic chamosite, dark green chamosite, tightly
cemented by siderite, contains varying proportions of 
burrows and bore holes subsequently filled with light- 
colored, sideritic mud giving rock a mottled appearance, 
being more oxidized and leached of its iron content 
and containing a much higher clay content and more 
siderite-filled burrows near the upper and lower 
portions of the unit, less tightly-cemented, rotten- 
looking, 4-inch interval near center of core charac­
terized by light specks of granular allophane (?) 
giving the interval a speckled appearance. 7.00

6 Siderite stringer, reddish purple, strongly indurated,
with a sugary texture. 0.20

5 Sideritic chamosite, dark grains in dirty sideritic
clay matrix with progressively more quartz, clay and 
siderite-filled burrows near bottom of unit. 1.00

4 Sideritic stringer, consisting of dark chamosite grains
in dirty, clayey, oxidized sideritic cement, near top 
of unit, grading downward into more compact, reddish 
brown, granular siderite with a sugary texture. O.85
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Unit Thickness
No. (feet)

3 Sideritic chamosite, tightly cemented with slightly 
oxidized siderite, containing numerous, rounded 
siderite-filled burrows and borings and discontinuous 
sideritic stringers, being more oxidized and leached, 
less consolidated and containing more quartz and 
sideritic clay near lower portion of interval. 2.15

2 Quartz, fine-grained, with organic material, in clayey 
to granular sideritic cement. 0.50

Clay, dark gray, compact, waxey. 1.00

Measured Total 13.70
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Core Locations, Overburden Thickness, Green Ore 
Thickness, and Total Drilling Depths

Hole 
No. '

H-1

H-2

H-3

H-lj-

H-5

h -6

H-7

H-8

H-9

Location

SW^, SWi, SWi, SE^ Sec. 
27, T22N, R7W, Mahon Dis­
trict, Claiborne Parish.

SW-Ç, SE|, SE^, SW^, Sec. 
23, T22N, R7W, Mahon Dis­
trict, Claiborne Parish.

SW-Ç, SEç, SEç, m?. Sec. 
23, T22N, R7W, Mahon Dis­
trict, Claiborne Parish.

SWi, SE^, SE^, SŴ , Sec. 
13, T22N, R7W, Mahon Dis­
trict, Claiborne Parish.

SE^, SBç, NWï, m?. Sec. 
18, T22N, R6W, Mahon Dis­
trict, Claiborne Parish.

SE-Ç, NE^, NE^, SE-Ç, Sec. 
11, T22N, R7W, Mahon Dis­
trict, Claiborne Parish.

SEç, SEç, SWç, SE^, Sec. 
15, T22N, R7W, Mahon Dis­
trict, Claiborne Parish.

SW-Ç, SE^, SEï, SW-Ï, Sec. 
22, T22N, R7W, Mahon Dis­
trict, Claiborne Parish.

SW^, SE^, 8W&, SWç, Sec, 
35, T22N, R7W, Mahon Dis­
trict, Claiborne Parish.

Thickness
of

Overburden 
(in feet)

37.5

20.0

45.0

22.0

18.0

43.0

50.5

48.5

13.5

Thickness Total
of Green Drilling 

Ore Depth
(in feet) (in feet)

13.0

9.0

15.0

11.5

9.0

9.5

13.5

4.5

9.5

60.0

70.0

65.0

4o.o

30.0

60.0

100.0

■ 75.0

30.0
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Hole
Ho.

H-10

H-11

H-12

H-13

H-15

H-16

H-17

H-18

H-19

Location

mi, swi, mi, swi, sec.  
25, T22N, R7W, Mahon Dis­
trict, Claiborne Parish,

sw i, Nli, HEi, KEi, Sec. 
6, TI9H, R4w, Crossroads 
District, Lincoln Parish.

swi, EWi, mi, EWi, Sec. 
5, TI9H, R4w, Crossroads 
District, Lincoln Parish.

SEi, SEi, swi, swi. Sec. 
32, T20N, RW, Crossroads 
District, Lincoln Parish.

E-lk mi.mi, mi, mi, SEi, sec .
6, TI9W, R^W, Crossroads 
District, Lincoln Parish.

swi, SEi, mi, mi, sec .
7, TI9IÎ, R̂ lW, Crossroads 
District, Lincoln Parish.

mi, mi, mi, mi, sec. 
7, TI9E, r4w. Crossroads 
District, Lincoln Parish.

swi, mi, swi, swi, see.
6, TI9H, R4W, Crossroads 
District, Lincoln Parish.

swi, mi, mi, SEi, sec.  
12, TI9N, R5W, Crossroads 
District,- Lincoln Parish.

SEi, SEi, m i SMi

Thickness
of

Overburden 
(in feet)

37.0

h 2 . i

u-f '-’"u-f Sec.
34, TI9N, r6w , Mt. Mariah 
District, Claiborne Parish.

75.0

41.5

4o.o

55.0

32.5

15.5

37.0

22.0*

Thickness Total
of Green Drilling 

Ore Depth
(in feet) (in feet)

9.0

8.0

10.0

11.0

8.5

l4.0

7.0

7.5

13.8

19.0

60.0

60.0

90.0

60.0

60.0

80.0

50.0

35.0

53.0

^Overburden consists of brown ore derived by weathering of the parent 
green ore.



193

Hole
Ho.

H-20

H-21

H-22

H-23

Location

swi HEi SW; swi Sec.
34, TI9H, r6w, Mr.. Mariah 
District, Claiborne Parish.

Thiclme s s 
of

Overburden 
(in feet)

X-*

SEi, swi SEi, swi. Sec.
27, T22H, R8W, Ruple Church 
District, Claiborne Parish.

swi, m i ,  HEi, swi, Sec.
35, T22H, R8W, Ruple Church 
District, Claiborne Parish.

swi, HEi, SEi, SEi, Sec.
36, T22H, R8W, Ruple Church 
District, Claiborne Parish.

25.0

21.0

11.0

Thickness 
of Green 

Ore 
(in feet)

**

10.0

Total 
Drilling 
Depth 
(in feet)

50.0

44.0

9.0

8.0

4o.o

31.0

•x-x- Hot present.
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Thin Section Numbers, Depths Below Surface, 
and Distances from Top of Beds

Thin Section Depth Below Distance From
Number Surface Top of Bed

(in feet) (in feet)
H-1-1 37.17 2.17
H-1-2 38.25 3.25
H-1-3 38.83 3.83
h-1-4. 39.33 4.33
H-1-5 4o.o8 5.08
h-1-6 40.67 5.67
H-1-7 40.83 5.83
H-1-8 41.17 6.17
H-1-9 41.67 6.67
H-1-10 41.91 6.91
H-1-11 42.33 7.33
H-1-12 42.50 7.5
H-1-13 42.75 7.75
H-1-14 43.08 8.08
H-1-15 44.08 9.08
H-1-16 45.17 10.17
H-6-17 41.58 1.58
H-6-18 42.17 2.17
H-6-19 42.83 . 2.83
h-6-20 44.00 4.00
H-6-21 45.25 5.25
h-6-22 46.91 6.91
H-6-23 50.42 10.42
h-6-24 51.25 11.25
H-6-25 51.91 11.91
H-6-26 53.00 13.00
H-11-27 45.50 0.50
H-11-23 45.75 0.75
H-11-29 47.33 2.33
H-11-30 49.75 ^ .'5
H-19-31 26.67 •O,'
H-19-32 28.75
H-19-33 29.83 3.83
H-19-34 44.08 17.08
H-21-35 26,67 2.67
H-21-36 27,67 3.67
h-21-37 28,42 4.42
H-21-38 28.67 4.67
II-21-39 29.08 08
H-21-40 30,08 .. h



..•\PPEKDIX C

■TŒT CHEMICAL ANALYSES BY BRUCE WHLIA]yB LABORATORIES, JOPLIN, MISSOURI

•^Analysis Core Depth SiOg AlgOg Pe MgO C'aO p s COg Loss on Water Loss on
No. No. (feet) Drying of Ignition

(105°C) Hydration (lOOOOc)

33% E-0 00.00-00.25 18.4o 6.i4 22.50 0.53 16.25 0.08 0.06 20.20 1.68 2.92 22.92
335 . H-O 00.25-00.50 23.70 10.21 30.50 1.50 3.13 0.07 0.02 9.90 2.56 5.64 14.54
336 H-0 02.33-02.50 28.10 6.77 27.50 1.68 2.88 0.17 0.15 17.80 1.68 0.63 18.43
337 E-0 03.00-03.25 60.85 6.59 14.50 0.73 1.25 0.07 0.07 1.10 2.26 1.62 4.72
338 H-0 04.50-04.83 45.80 5.11 20.00 1.45 2.50 0.13 0.05 13.30 1.10 0.98 14.28
339 H-11 45.00-45.50 28.60 10.31 27.50 1.63 2.50 0.16 0.04 8.60 3.31 4.17 12.77

**3kO H-11 47.50-48.00 19.70 2.18 34.25 1.90 3.13 0.15 0.02 l4.4o 2.4l 2.89 17.29
3^1 H-11 49.00-49.50 21.35 9.14 21.25 1.96 3.13 0.29 0.06 12.20 2.46 3.65 15.85
3^2 H-11 49.50-50.00 17.50 7.06 20.00 0.29 19.75 0.15 0.02 21.40 1.42 2.73 24.13
3ie H-11 50.25-50.33 28.40 4.64 28.75 0.96 3.25 o.i4 0.03 17.60 1.4i 1.23 18.83
344 H-11 50.00-50.75 19.85 4.33 30.5c 3.44 3.38 0.24 0.03 22.20 0.95 0.40 22.60
345 H-13 36.50-36.83 26.50 4.62 27.50 2.00 4.38 0.24 0.18 21,24 0.68 0.19 21.43
3̂ 6 H-13 36.83-37.33 52.37 6.11 16.25 1.45 2.50 0.07 0.12 12.10 1,27 0.20 12.38
347 H-13 37.50-37.66 36.40 3.74 22.50 2.72 3.38 0.03 0.08 19.50 0.65 0.20 19.70

**348 H-13 38.00-38.33 28.58 8.31 27.50 1.61 1.50 0.16 o.o4 12.20 2.29 3.53 15.73
349 H-13 39.50-40.00 23.40 6.01 28.75 2.86 3.75 0.17 o.o4 20.85 1.52 0.05 20.90

**350 H-13 45.00-45.50 55.22 6.88 16.00 0.19 2.50 0.13 0.03 8.70 1.37 0.52 9.22
351 H-13 47.66-48.18 29.58' 5.03 25.00 2.51 4.00 0.42 0.06 20.40 0.67 0.53 20.93
352 . H-13 48.18-48.83 36.00 8.48 24.00 1.05 3.13 0.31 0.29 9.60 1.67 2.21 11.81
353 H-i4 35.33-35.50 42.36 2.73 20.00 3.68 3.75 0.07 0.08 18.20 0.20 0.30 18.50
354 h-i4 37.00-37.42 26.30 8.48 28.75 0.80 2.50 0.18 0.02 13.80 2.60 1.70 15.50
355 h-i4 39.66-40.00 22.60 8.76 29.25 2.52 3.13 0.18 0.06 13.20 2.60 3.30 16.50



APPEŒIDIX C— .'iontinued

*Analysis Core COg Loss on Water Loss on
Wo. Wo. (feet) Drying of Ignition

(105°C) Hydration (1000°C)

356 H-li4- 46.42-46.83 37.70 7.91 22.50 2.17 2.88 0.18 0.23 10.60 1.90 1.70 12.30
357 W-l4 46.83-48.00 29.80 3.98 25.00 1.72 4.38 0.38 0.20 18.70 1.00 2.21 20.91
358 H-l4 48.00-48.75 42.70 8.89 20.56 1.54 2.50 0.12 0.47 8.50 1.80 2.30 10.80

**359 H-18 35.18-35.66 32.20 6.60 21.50 2.90 3.75 0.07 0.29 20.70 1.90 WP 20.70
360 H-18 35.66-36.00 14.82 4.27 32.50 1,5^ 3.75 0.11 0.12 26.90 1.20 0.20 27.10
361 H-18 37.50-38.00 20.06 8.23 31.75 1.9^ 2.75 0.16 0.02 15.30 2.60 2.30 17.60
362 H-18 39.18-40.00 17.84 6.90 33.00 2.68 2.50 0.18 0.06 16.70 2.10 2.80 19.50

**363 H-18 46.00-46.66 24,00 28.24 29.00 1.76 3.13 0.12 0.03 13.60 2.20 2.60 16.20
**36ir H-18 47.25-47.83 19.84 7.02 32.00 2.39 3.13 0.l4 1.66 15.10 1.85 1.70 16.80
**365 H-18 49.00-49.18 32.47 10.34 25.00 1.01 2.50 0,18 0.07 10 .,10 2.30 2,70 12.80

366 H-16 49.18-50.00 31.08 4.27 25.00 0.91 4.38 0,32 0.05 21.10 0.90 0.10 21.20

Go\

■^Louisiana Geological Survey analyses number desig::iations 
**8amples utilized as standards for X-ray fluoresce::ice analyses 

ÎÎP Wot present


