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ABSTRACT

Intergranular pressure solution is believed by many sandstone 

petrologists to be the major source of silica for the cementation 

of orthoquartzites, although there is no quantitative supporting 

evidence from thin-section petrology. The white Tuscarora ortho- 

quartzite, often cited as a good example of cementation by pressure 

solution, has been studied using luminescence petrology to evaluate 

this hypothesis.

Point counts were made to determine the volumetric abundances 

of pressure solution phenomena and authigenic silica in 185 thin- 

sections from Pennsylvania, Virginia, and West Virginia. Luminoscope 

measurements show large amounts of pressure solution to be an uncommon 

phenomenon in the Tuscarora throughout the study area. It can account 

for only 30-35 percent of the pore-filling quartz cement.

Proximity to folding, grain size, sorting and caly content are 

factors that have been suggested as controls on the amount of pressure 

solution in orthoquartzites. Of these, only clay appears related to 

the occurrence of pressure solution in the Tuscarora. Furthermore, 

the well-cemented samples show less pressure solution than more fria­

ble samples, but contain more pore-filling cement.

It is concluded that the cementation by silica during diagenesis 

has prevented widespread development of intergranular pressure solution 

by equalizing the distribution of stress along grain boundaries. Of 

the many possible sources of silica other than pressure solution, stylo- 

litization, clay mineral diagenesis and transport of H^SiO^ in ground 

water seem the most likely sources of the majority of the cement found 

in the Tuscarora.
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Introduction

In orthoquartzites, cementation is a major porosity-reducing pro­

cess, filling up to forty percent of the rock volume. This quartz 

cement occurs as optically continuous overgrowths, and therefore, dif­

ferentiation of authigenic versus detrital components using normal 

pétrographie techniques is difficult and often impossible. This is 

the major problem in applying pétrographie techniques to the study of 

mechanisms of porosity reduction in orthoquartzites. Because authi­

genic and detrital quartz have different luminescence characteristics, 

cathodo-luminescence petrography allows detailed and precise differen­

tiation of these components (Smith and Stenstrom, 1965; Sippel, 1968) 

and, thus, the processes which result in porosity reduction can be 

studied in detail.

Many investigators (see Blatt et al., 1972, pp. 359-360 and 

Pettijohn et al., 1972, pp. 424-426, for recent reviews) have considered 

intergranular pressure solution to be a major mechanism of porosity 

reduction in quartz arenites. Consequently, a major target of this 

investigation has been a quantitative evaluation of the importance of 

this process. The results of this investigation indicate that inter­

granular pressure solution is not the major source of authigenic silica 

in the rocks studied and, therefore, other possible sources of silica 

are discussed. Other sources of authigenic silica which may be viable 

are the diagenetic alteration of smectite - illite + quartz, stylolitiza- 

tion and the precipitation of quartz overgrowths from ground water.

The Tuscarora orthoquartzite (Silurian) was chosen for this study 

because it has many characteristics which make it amenable to the 

study of porosity reduction in orthoquartzites and especially the role
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pressure solution may play in this process. Outcrops of the Tuscarora 

are easily accessible for detailed sampling over a large area and 

because the outcrops occur in a folded region, samples may be collected 

from structurally different positions. The stratigraphy of the Tuscarora 

has been worked out in considerable detail (Butts, 1940; Woodward,

1941) and an excellent description of the petrography is provided by 

Folk (1960). Most important in the choice of the Tuscarora was the 

fact that Tuscarora has been cited as showing extensive evidence of 

pressure solution (Folk, 1960) as well as some of the other mechanisms 

that are thought to be significant in changing porosity in ortho­

quartzites .
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Methods

Samples of the Tuscarora were collected from twenty outcrops in 

the Valley and Ridge Province of the Appalachians in Pennsylvania, 

Virginia and W. Virginia. Four samples were taken from cores of the 

Tuscarora in the Plateau province of West Virginia. The sample 

locations and the number of samples collected at each location are 

shown in Figure 1. Four locations were chosen for detailed sanq>ling 

to allow comparisons between outcrops. At two locations. Baker, West 

Virginia and North Fork Gap, West Virginia, samples from both limbs 

of anticlines were collected so that comparison between samples from 

different structural positions could be made. Most of the thirty-five 

samples from Mills Gap, West Virginia were collected by R.L. Folk.

At the other three locations Where more than thirty samples were 

collected, sampling was at evenly spaced intervals along a line normal 

to bedding. Twenty-eight additional samples of twenty other ortho­

quartzites were collected either from the author's own collections 

or other university collections. In total, two hundred and ninety-six 

samples were collected and examined petrographically.

The samples were examined with a luminoscope described by Sippel 

(1965, 1968). Luminescence petrography permits one to see many 

features which are otherwise invisible in many orthoquartzites 

(see Figures 5-12). It also permits quantitative determination of the 

amount of pressure solution in a thin section. Intergranular 

pressure solution is identified petrographically as an area of 

Interpenetrating detrital cores, therefore, "pressure solution" 

can be considered a component for modal analysis and treated in the
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same fashion as any other component (See Figure 2). The method 

has some limitation In that It demands a subjective reconstruction of 

original grain shapes In order that a point be ascribed to an area 

of Interpenetrating detrital cores. However, most detrital grains 

In orthoquartzites are well rounded and therefore, reconstruction 

of original grain shapes Is relatively straightforward. The modal 

analysis was performed by counting two hundred points on a thin section. 

Because some of the specimens examined showed several alternating 

bands of Intense and minimal pressure solution, precautions were taken 

to avoid unacceptable bias In the data due to the banding. The banding 

always appeared parallel to bedding; therefore, thin sections were 

cut normal to bedding to Insure that the slide was representative of 

the rock specimen. Also, since the areas of most Intense pressure 

solution showed maximum grain shortening parallel to bedding, sections 

cut normal to bedding should expose the true amount of pressure solution. 

The point counts were made along an orthogonal grid laid at 25° to bedding. 

The angle of Inclination was dictated by the construction of the 

luminoscope stage. As shown by Chayes (1956, Figure 8, p. 26), as long 

as the angle of Inclination between the banding and the grid Is 

greater than 20°, there can be, at most, approximately 2 percent analytical 

error associated with the measurement. For a large number of samples 

this error should be averaged out and thus, the fact that there Is 

some banding In the rocks sampled should not cause the data from the 

point counts to be biased.

Each point encountered on the grid was recorded as detrital quartz, 

authigenic quartz, an area of pressure solution (see Figure 2), clay, 

pore space or other. Points falling on fracture zones were not counted. 

The primary reason for making the point counts was to determine the



Sequence of stages In the development of sand grains 
cemented by pressure solution. In stage 1 the sand has 
not yet been compacted. In stage 2 pressure solution 
has begun, decreasing the volume of pore space A. In 
stage 3 some fluid from A escapes to B, reduces pressure 
and precipitates quartz. The shaded area in 2 shows areas 
which would be considered pressure solution points in a 
modal analysis. (Modified from Siever, 1962.)

Figure 2
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relative proportions of pressure solution and authigenic silica, 

for if local pressure solution is the major source of authigenic 

silica the relative proportions of the two should be about equal in 

the modal analysis. Grain size of the samples was determined by 

measuring the long diameter of thirty grains for each sample and 

sorting was determined by visual comparison with Figure 12-1 in 

Compton (1962).
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Initial Porosity

Before the processes of porosity reduction can be properly 

evaluated, it is necessary to make some assumptions about the initial 

porosity of the Tuscarora. Graton and Fraser (1935) examined the 

possible geometric packing arrays for spheres and found that the 

porosity could range from 26 percent for rhombohedral packing to 

48 percent for cubic. There is no evidence that natural sands are 

packed in geometric arrays (Kahn, 1956) and, therefore, most work on 

packing has been through the less direct approach of measuring porosity. 

There are a large amount of data which suggest that prior to lithification 

a well sorted, slightly compacted, medium sand size sediment such as 

the Tuscarora will have a porosity of 40+ 3 percent (King, 1898,

Tickel and Hiatt, 1938, Graton and Fraser, 1935; Gaither, 1953 

and Beard and Weyl, 1973).

Mechanisms of Porosity Reduction

There are four major processes, not necessarily mutaully exclusive, 

which may alter the depositional porosity of a pure quartz sand;
1) compaction, 2) fracturing which may allow grains to rotate to 

a closer packing, 3) solution and 4) cementation. Intergranular 

pressure solution involves both a reduction in porosity due to solution 

and repacking and a reduction in porosity due to precipitation of the 

silica derived from the dissolved grains. Therefore, pressure solution 

is just a special case of dissolution and precipitation but it is 

given particular attention here due to its suspected importance.

The most extensive tests on the compaction and fracturing of 

unconsolidated quartz sand (Borg, et al., 1960) showed that in
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simple compression tests, porosity may be reduced from 38.3 to 

33.6 percent with a maximum confining pressure of 500 bars on a 

dry sediment with a grain size of .2 to 3 millimeters. Only 23 

percent of the sand grains remained unbroken after the test. A 

similar sediment underwent triaxial compression with a confining 

pressure of 1,000 bars and a strain of 9.9 percent which resulted in 

a porosity change from 37.4 percent to 24.2 percent with only 8 percent 

of the grains remaining unbroken. Maxwell (1960) performed compaction 

tests on sands under conditions simulating burial between 16,000 and 

35,000 feet and compaction of the sediment occurred primarily by 

fracturing. Maxwell (1964) presented data showing linear decreases 

in porosity with depth for a large number of quartz sands and implied 

that much of the porosity reduction was due to fracturing.

Because intergranular pressure solution is a process which in­

volves both dissolution and cementation, pressure solution reduces 

porosity in two ways. As grains dissolve, points of contacts become 

planes of contact and the grains become more closely packed. This 

causes a "mechanical" reduction in porosity. The effects of mechanical 

reduction in porosity due to pressure solution have received very 

little attention, with the notable exception of Rittenhouse (1971) and 

Manus and Coogan (1974). They determined the effects of pressure 

solution on porosity by reference to simple geometric models. The 

use of geometric models to represent porosity and permeability in 

sands has been treated in great detail by Graton and Fraser (1935).

They considered four basic packing schemes which may be derived from 

the stable arrangement of four spheres in square and rhombic layers.

An orthorhombic array of spheres may be constructed by vertically
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Spheres In orthorhombic packing (a) and associate pore space (b) 
where each sphere is in contact with eight other spheres. The 
triangle ABC is referred to in the appendix.

Figure 3



11.

stacking rhombic layers or by stacking square layers off set 60 

degrees (see Figure 3a). In such an arrangement each sphere will 

be In contact with eight others (see Figure 3b) and the array will 

have a porosity of 39.5 percent. There are no data which show packing 

of natural sands Is non-random and therefore models based on a regular 

arrangement of particles must be viewed with caution. However, for 

lack of a better approach the author will follow the lead of 

Rittenhouse (1971) and Manus and Coogan (1974) who felt an ortho­

rhombic packing best represents the natural situation. There are 

two reasons for favoring this scheme. First, It results In a porosity 

of 39.3 percent which Is within the <IQ± 3 percent range expected for 

slightly compacted, well sorted, well rounded, medium sand size 

sediment. Secondly, a study of randomly packed lead spheres showed 

that at atmospheric pressure there were approximately 7.5 contacts 

per sphere (Marvin, 1939). The orthorhombic packing causes eight 

contacts per sphere. Rittenhouse Investigated shapes other than perfect 

spheres and with various degrees of sorting and found that no type 

of packing and no variations In grain sphericity, roundness, or sorting 

lead to higher pressure solutlon-to-poroslty loss ratios than found 

for equal sized spheres In orthorhombic packing. Therefore, the 

orthorhombic packing model is a good approximation for maximum 

pressure solution-to-porosity ratios.

Figure 4 shows two curves Illustrating the relationship between 

porosity and volume percent of the grains dissolved, assuming none 

of the dissolved material precipitates as cement. The dashed curve 

In Figure 4 Is from Rittenhouse (1971) and represents his approximation 

of the maximum percent pressure solution for a given remaining porosity
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Curves show the relationship between maximum percent pressure solution 
and porosity for orthorhombic packed spheres. The curve represented 
by a dashed line is from Rittenhouse (1971) and is based on the assump­
tion of all strain being in the verticle plane. The solid curve is 
based on the assumption that strain is equal in all directions. Point 
(a) is the mean pressure solution and porosity for all Tuscarora samples.

Figure 4
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based on an Initial orthorhombic packing and assuming all strain is 

verticle. The solid curve is based on the same assumptions as 

Rittenhouses curve except strain is assumed to be equal in all 

directions. [The method for calculating this curve is shown in 

Appendix 1 and Is essentially the same as that used by Rittenhouse.] 

Neither all verticle nor homogeous strain Is valid for natural sands 

and so a better estimate might be a curve falling somewhere between 

the two shown in Figure 4. Also, because true sands are not composed 

of uniformly sized perfect spheres the curve for a true sand should 

lie to the right of the curves In Figure 4. That Is, the pressure 

solution to porosity ratio should be somewhat less than depicted 

In the diagram.

The curves shown in Figure 4 may be used as follows. If one

determines that a sandstone is composed of 75 percent detrital grains

and 25 percent authigenic cement then the "mlnus-cement-poroslty" Is

25 percent. By reference to my curve one can determine the maximum

amount of dissolution at grain contacts which might have occurred. In

this Instance a "mlnus-cement-porosity" of 25 percent indicates a

maximum of 3.2 percent by volume of the grains has been dissolved. If

we assume that all of the material dissolved reprecipitated as cement

then 3.2 or approximately 13 percent of the cement found In the rock 
25

may have been derived from pressure solution at grain to grain contacts.

Precipitation of quartz cement without prior Intergranular pressure 

solution may also be an Important process in porosity reduction in 

orthoquartzites. The problem with understanding this mechanism has 

been finding the source of the authigenic silica. Dlagenesls of clay 

minerals, dissolution of biogenic silica and deslllcatlon of volcanic 

debris are some of the more commonly proposed sources.
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Pétrographie Observations

Overgrowths - One of the major advantages of luminescence petro­

graphy Is that It often allows reliable distinction between detrital 

grains and overgrowths In orthoquartzites. In almost every thin 

section of the Tuscarora some overgrowths are distinguishable by 

careful searching for the dust ring or cloudy center-clear rim criterion. 

Dust rings are most commonly formed from gas or fluid Inclusions and 

they mark the boundary between the authigenic and detrital parts of 

a grain. Fluid Inclusions may be abundant within detrital grains 

either due to fracturing or prevailing conditions at the time of 

crystallization where as authigenic overgrowths will generally have 

fewer Inclusions. This results from the fact that they have not been 

subjected to postdeposltlonal fracturing and because crystals which 

form at lower temperatures have fewer Inclusions than the same mineral 

formed at higher temperatures because the latter grow slower (Chernov 

and Khadzhl, 1968). Thus, In a grain with an Incluslon-rldden (cloudy) 

center and a clear rim the cloudy center Is Inferred to be detrital and 

the clear rim Is authigenic. Figures 5Â & B show two photomicrographs 

of quartz grains from the Tuscarora. In 5A a quartz grain with a dust 

ring and cloudy center Is shown. Figure SB Illustrates that within the 

dust ring the quartz luminesces but outside of the dust ring the quartz 

Is non-lumlnesclng. In all of the Instances where the dust ring or 

cloudy center-clear rim criterion can be applied to Tuscarora samples, 

the authigenic quartz luminesces dull red or Is non-lumlnesclng and 

the detrital quartz luminesces either red or blue. In the Tuscarora, 

the contrast between the luminescence of the detrital grains and 

authigenic overgrowths Is sufficient to allow the distinction
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'4

Figure 5 (A) Photomicrograph in plane polarized light with the grain
in the center showing an obvious "dust ring" which allows 
one to distinguish the detrital core (a) from the authigenic 
overgrowth (b). (B) The same field of view using the
luminoscope. With the luminoscope the detrital grains 
luminesce red (dark) or blue (light) (a) while authigenic 
overgrowths (b) and fracture fillings do not luminesce at 
all (black areas). Scale bar - .1 mm.
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between authigenic and detrital quartz. The degree of difference 

In luminescence between detrital and authigenic quartz Is variable 

and this variation Is greatest between outcrops. For Instance, over­

growths In samples from Baker, W. Virginia tend to be almost totally 

non-lumlnesclng on Initial Irradiation but become almost as red as 

the red luminescing detrital grains after approximately ten minutes 

of irradiation. Overgrowths on samples from North Fork Gap, W. Virginia 

(approximately 90 miles to the east) luminesce a very dull red on Initial 

Irradiation but do not Increase In lumlnosclty with prolonged exposure.

Multicycle overgrowth - the presence of detrital secondary quartz 

(non-luminescing) could conceivably represent a major source of error 

in this study since this would invalidate the luminescence criterion 

for distinguishing authigenic from detrital quartz. There are several 

lines of evidence indicating that the amount of detrital non-luminescing 

quartz Is insignificant.

The most direct evidence was obtained by point counting five samples 

of the lower Tuscarora in which the predominant cement is relatively 

impermeable clay and/or iron oxide. In these samples less than 2 percent 

of the quartz Is non-lumlnesclng and all of this non-lumlnesclng quartz 

Is attached to luminescing grains. Therefore, this quartz may be In 

situ cement or cement which has not been abraded off grains from a 

previous cycle. Since this quartz Is not necessarily from a previous 

cycle It represents a maximum percentage of detrital, non-lumlnesclng 

quartz.

A less direct line of evidence stems from Inspection of the 

data for all samples. If we assume that the total of the percent 

non-lumlnesclng quartz plus present pore space equals the Initial 

porosity then we find that none of the samples have an Initial
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porosity greater than about 40 percent, a reasonable figure for the 

Tuscarora. If there was a large amount of detrital, non-luminescing 

quartz, then it would be likely that some samples would show anomalously 

high minus-cement porosities. The fact that none of the samples have 

anomalously high values argues against significant amounts of detrital 

non-luminescing quartz.

Pressure Solution - In the early 1860's, Sorby noted the inter­

penetration of detrital polycrystalline grains in clastic carbonate 

rocks and inferred that the interprenetration was the result of 

solution of those grains at points of contact. Unfortunately, in 

quartz sandstones, cement forms optically continuous overgrowths 

because nearly all grains are monocrystalline. This makes it very 

difficult to distinguish cement from detrital grains and, therefore, 

it is very difficult if not impossible to reliably determine whether 

or not detrital grains are interpenetrating. In view of the inability 

to distinguish detrital grains, many investigators have looked for 

sutured boundaries as evidence of pressure solution. However,

Sipple (1968) showed that this criterion may not always be reliable.

With the luminoscope, unambiguous recognition of intergranular 

pressure solution can be based on interpenetrating detrital grains 

because, as pointed out above, the detrital and authigenic quartz 

can be differentiated on the basis of their luminescence. Figure 6 

illustrates the advantage of the luminoscope for recognizing pres­

sure solution. Figure 6A is a photomicrograph of a thin section 

of the Tuscarora in plane polarized light. The grain in the center
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Figure g (A) Photomicrograph taken in plane polarized light with 
the grain in the center having both smooth (a) and 
irregular (b) contacts with the surrounding grains. (B) 
With the luminoscope, it can be seen that the smooth 
boundary between the central grain and that in the upper 
right portion of the photomicrograph ie an area of probable 
interpenetration of detrital cores. Scale bar » .1 mm.
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joins most of the surrounding grains with a sutured contact which 

might be assumed to have resulted from intergranular pressure 

solution. The boundary between the central grain and the grain in 

the upper right of the photograph is smooth. Figure 6B is the same 

area viewed with the luminoscope. Because of the differential 

luminescence of the detrital and authigenic quartz, it is clear 

that the only area of interpenetrating detrital quartz is that marked 

by the smooth boundary. The sutured contacts appear to be the result 

of intergrown quartz overgrowths. Figure 7 shows an area of a 

photomicrograph which is typical of most samples of the Tuscarora. 

Without the luminoscope, it is impossible to determine how much, 

if any, pressure solution has occurred. With the luminoscope, 

it is obvious that most grains are "floating" in cement and therefore, 

very little pressure solution has occurred. Figure 8A is very 

similar in appearance to Figure 7A. Therefore, when viewed in plane 

polarized light (8A), one might conclude that there has not been any 

pressure solution in this area. When the same area is viewed with the 

luminoscope (8B), however, it is apparent that the smooth boundaries 

are interpenetrating and therefore, there has been pressure solution 

in this area. Figure 9 shows a portion of a thin section with several 

important features. The grain in the center of Figure 9A has a sutured 

boundary and the grain in the upper left appears to be a polycrystalline 

quartz grain. These relationships are clarified by viewing the same 

area with the luminoscope (9B). The sutured contact is shown to 

be another overgrowth phenomenon and the polycrystalline quartz grain
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Figure 7 (A) Photomicrograph taken in plane polarized light and
representing an area which is indicative of the Tuscarora. 
With the luminoscope (B) it is obvious that most of the 
grains are "floating" in cement and thus, this is not 
an area of pressure solution. Also, notice the fractures 
which are filled with non-luminescing quartz. These 
fractures are obvious only when the section is viewed 
with the luminoscope. Scale bar = .2 mm.
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Figure 8 (A) In the plane polarized light this area looks similar to
Figure 7 (A). (B) With the luminoscope it is obvious, 
however, that this is an area of intense pressure solution. 
Scale bar = .2 mm



22.

vr#3

Figure 9 (A) Plane polarized light view showing a number of unusual 
features. In the center is what appears to be a sutured 
contact and in the upper left is a polycrystalline quartz 
grain. The same area viewed with the luminoscope (B) indicates 
that the sutured boundary is the result of cementation not 
pressure solution and the polycrystalline quartz grain 
appears to be one grain which has been subjected to 
considerable fracturing. Scale bar = .2 mm.
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is the result of fracturing of a single uonocrystalllne grain and 

subsequent healing with authigenic quartz. Finally, Figure 10 

shows a plane polarized light view and a luminoscope view of the 

same area of a thin section in which sutured boundaries do Indicate 

an area of intense pressure solution. The luminoscope view demonstrates 

that the grains along the sutured boundaries are detrital and there­

fore, this is an example of interpenetrating detrital cores.

The preceding observations demonstrate that pressure solution 

boundaries may be either smooth or sutured. Smooth pressure solution 

boundaries are commonly observed between some grains in all samples 

and these grains appear to be scattered throughout the specimen 

with no apparent pattern. Reconstruction of the probable original 

grain shapes indicates that only one of the two grains in contact has 

been dissolved. Sutured pressure solution boundaries between grains 

usually occur concentrated in zones. These zones are quite distinct 

in some samples, particularly those from Susquehanna Gap where there 

are zones of intense pressure solution one to four millimeters wide 

and parallel to bedding. The top of the zone may be marked by a 

stylolltic-like surface while the bottom of the zone grades into a 

region of minimal pressure solution. This zonation is particularly 

obvious in uncrossed nichols because the zone of high pressure solution 

frequently contain a few percent clay and no authigenic overgrowths while 

the adjacent zones are well cemented by authigenic silica and contain 

very little clay. This zonation of pressure solution is shown in 

Figure 11, a sample from Susquehanna Gap. In IIB the area of minimal 

pressure solution is easily recognized due to the fact most of 

the luminescing grains appear to be floating in authigenic silica.
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Figure 10 (A) and (B) Plane polarized light and luminescence view
of an area where intense pressure solution has resulted in 
strikingly sutured boundaries. Scale bar = .1 mm.
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Figuré 11 (A) Plane light view of an area showing the effects of
differential cementation. (B) With the luminoscope, the 
area with little cement and Intense pressure solution 
(a) Is easily distinguished from those areas above and 
below It which show grains surrounded by cement (b). Notice 
also, the extension fractures (dark lines) which are very 
obvious with the luminoscope. Scale bar = .2 mm.
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In the area of Intense pressure solution, luminescing grains are more 

tightly packed and the dark material separating the grains Is pre­

dominantly illlte.

Approximately thirteen percent of the samples show a zonatlpn 

between areas of high pressure solution but the zonation usually Is 

not as distinct as that shown In some of the samples from Susquehanna 

Gap. It is more common to find vaguely defined zones In which there 

is very little authigenic silica and considerable amounts (>10%) of 

intergranular pressure solution. These zones may be anywhere between 

a few millimeters to more than 2.5 cm (the width of a thin section) in 

width. Frequently, there are clay flakes between grains having 

undergone pressure solution. There are also striking examples of 

intense pressure solution with no associated clay. Pressure solution 

boundaries may be smooth or sutured In these zones with one of the two 

types being the dominant for any given zone. The one common feature 

to all zones of intense pressure solution is the distinct lack of 

authigenic silica, even though there frequently Is a remaining 

intergranular porosity within the zones.

Fracturing - Most situ fractures in quartz sandstones are healed 

and can sometimes be recognized by the presence of bubble trains 

which are fluid inclusions trapped In the fractures when they are 

healed by secondary quartz. However, In many Instances bubble trains 

do not form and in these cases there is no pétrographie evidence of 

the fracturing. These fractures may be made visible with the 

luminoscope because the authigenic silica which fills the fracture 

does not luminesce although the detrital fractured grains luminesce 

red or blue.
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Both pre- and post-cementation fractures are apparent when thin 

sections are viewed with the luminoscope. Pre-cementation fracturing 

is evidenced by fractures in single grains that are filled with non­

luminescing quartz. • These fractures were formed iii situ as demon­

strated by the fact that the fractures often nucleate at points of 

contact. The fracturing is not common and they apparently healed 

rapidly because the fractured grains are always in tact. Therefore, 

it is doubtful that the fracturing significantly effected the porosity 

of the sand. The fracturing indicates the cementation process was 

not completed until the sediment was deeply buried and/or subjected 

to tectonic overpressures. Post-cementation fractures cross cut many 

grains and may be filled with non-luminescing quartz (Figure 11b) or 

may be marked by areas of intense granulation and polygonization with 

little or no non-luminescing quartz.
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Point Count Data

Of two hundred and sixty-four samples of Tuscarora collected, 

one hundred and eighty-five were chosen for point counting. These 

Include one hundred and forty-nine samples from four outcrops and 

thirty-six spot samples from sixteen outcrops. The spot samples 

were a part of an initial sample group which was used to determine 

what type of regional variation might be present. Samples which 

are not included in the point count data are those from either (a) 

the four outcrops which were later sampled systematically; (b) from 

highly fractured zones; (c) from rocks too fine grained to allow 

reproducible analysis with the luminoscope; or (d) matrix cemented.

The results of the point count are summarized in Table 1. The most 

important information in the table is the percent authigenic quartz 

and pressure solution. The percent pressure solution is simply 

the volume percent of luminescing quartz that appears to be inter­

penetrating with other luminescing quartz. The mean percent of 

pressure solution for all samples is 7 percent. The amount of authigenic 

silica which may have been derived from pressure solution is equal 

to the percent pressure solution. Therefore, of the 21 percent authi­

genic quartz, only 7 percent or one-third might have been derived from 

intergranular pressure solution and two-thirds must have been derived 

from some other source.

Table 2 gives the correlation coefficients between the amount of 

pressure solution and the other variables counted. The strongest 

correlation is a negative correlation between pressure solution and 

authigenic quartz. The correlation coefficients between clay, size, 

and sorting for all samples are .19, .12, and .20 respectively.
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Detrital
Quartz

Authigenic
Quartz

Clay Pore Other Size
(mm)

Sorting Pressure
Solutiot

All
Samples 74 21 2 2 1 .3 2 7

Susquehanna
Gap

74 20 4 1 1 .4 2 8

Mills
Gap

75 20 2 2 1 .4 2 8

North Fork 
Gap

75 21 1 3 0 .3 1 7

Baker 74 23 1 2 0 .3 2 6

Table 1

Mean values from point count data for 185 Tuscarora Samples

Sorting was calculated by 1 = very well sorted, 2 = well sorted, 3 = moderately

n = 185 

n = 25

n = 26

n = 36

n « 62
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■ Detrital
Quartz

Authigenic
Quartz

Clay Size Sorting

All
Samples .48 -.69 .19 .12 .20

Susquehanna
Gap .73 -.79 .05 -.14 .21

Mills
Gap .46 -.82 .25 .22 .14

North Fork 
Gap .38 -.60 .18 .21 .38

Baker .49 — .66 .20 .02 .19

Table 2

Simple correlation coefficients between variables in Table 1 and pressure solution.
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These data do not suggest any relationship between these three 

variables and pressure solution.

In a number of studies on pressure solution, it has been suggested 

that a small amount of clay along grain boundaries may tend to enhance 

pressure solution (Thomson, 1959; Weyl, 1959; Heald, 1965; Elliott, 

1973). Therefore, I felt that a more definitive test of the relation­

ship between clay and pressure solution was necessary. The point 

count data for the samples are based on two hundred points per 

sample and thus, are not sensitive enough to detect a small variation 

in a minor component. Therefore, to better test the relationship 

between clay and pressure solution, forty samples, twenty with at 

least ten percent pressure solution and twenty with four percent or 

less pressure solution, were recounted by counting one thousand 

points. The group of samples with high percentages of pressure 

solution were chosen at random from all samples having at least ten 

percent pressure solution. For each of these samples a counterpart 

showing a small percentage of pressure solution was chosen by finding 

the stratigraphically closest sample with four percent or less pressure 

solution. The limits of four and ten percent were chosen arbitrarily. 

The clay content of the group with a high percentage of pressure 

solution varies from 16.7 to .2 percent with a mean of 4.2 percent 

and the range for the group with minimal pressure solution is 7.2 

to 0 percent with a mean of 1.7 percent (see Table 3). By t-test, 

these means are significantly different at the .05 probability level.

The point count data fail to demonstrate any relationship 

between pressure solution and structural position. Many of the 

anticlines sampled are asymétrie and samples were collected from



Nm
Sample

A
% Pressure 
Solution % Clay Sample

3
% Pressure 
Solution % Clay

53 3 .2 63 10 1.4
303 0 1.2 313 15 5.2
423 2 0 403 22 3.6
443 2 0 463 12 3.5
673 2 1.0 653 21 .2
3SG 2 3.5 2SG 13 10.2

11S6 4 3.5 15SG 16 15.4
13SG 4 6.5 17SG 22 2.0
21SG 2 3.6 26SG 13 .2
27SG 3 .5 28SG 12 4.8
4NG 4 .4 ING 20 6.1
6NG 2 .7 2NG 12 .9

20NG 2 0 9NG 14 1.0
34NG 1 0 21NG 21 6.0
43NG 0 0 24NG 12 .8
45NG 3 0 46NG 29 .3
48NG 2 0 47NG 20 .3
20MG 3 4.8 22MG 12 2.7
27MG 4 7.2 28MG 30 2.2
32MG 2 1.1 33MG 18 16.7

X = 2.4 X = 1.7 X = 17.2 X = 4.2

Table 3

Percent clay for groups of samples with ^ 4% pressure solution (A) and > 10% pressure
solution (B).
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both limbs of the anticlines. There is no difference between the 

amounts of pressure solution in samples from the near-vertical limbs 

of the anticlines and those from the more gently dipping limbs 

(25-40°).

Table 4 shows the results of point counts of orthoquartzites 

other than the Tuscarora and means from the Tuscarora. It is 

significant that the data are consistent with that for the Tuscarora 

and do not indicate the Tuscarora contains unusually low amounts 

of pressure solution.

Some samples have distinctive zones of intense pressure solution. 

This observation raises the question of whether or not the samples 

examined can be considered to be a random sample of the outcrops 

from which they were collected. That is, did the sampling scheme 

used result in an over or under representation of the amount of 

pressure solution in the parent population. An over representation 

would occur if the distance between successive zones of intense 

pressure solution coincided with the sampling interval and the 

first sample collected was taken from a zone of intense pressure 

solution. In fact any regular interval between zones of intense 

pressure solution could result in bias in the data by causing 

either and over or under representation of samples with large amounts 

of pressure solution. A test for this possibility is the Runs test 

for randomness. This test does not demand any prior knowledge of 

the distribution of a variable in the parent population. It simply 

examines the order of occurrence of events and asks, what is the 

probability of a given order being the result of chance. Twenty- 

five samples were collected at Susquehanna Gap. If the samples, one
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through twelve had high amounts pressure solution and samples 

thirteen through twenty-five had low amounts of pressure solution, 

one would immediately suspect a non-random sample. Also, if every 

other sample had high percentages of pressure solution, the chances 

are that the sample is non-random. The Runs test enables one to 

quantify the probability of a given distribution being due to chance.

To use the Runs test, the observations must be in two classes.

A sample which consists of measurements or percentile data can be 

divided into two classes by splitting the measurements into those 

above and below the median. Having the observations in two classes 

and knowing the order in which the samples were collected, one can 

test for the amount of clustering of observations of a similar kind 

(i.e., the percent pressure solution above the median). These data 

may then be represented as less than or equal to the median (-) or 

greater than the median (+). Each group of pluses or minuses is 

called a run. Thus for ten samples one might get a series as follows:

C++) (-) (+) (-----) (+) (---)

This series has six runs.

Runs tests were performed on each of the groups of samples col­

lected at Baker, Mills Gap, North Fork Gap, and Susquehanna Gap. In 

each case the series failed to show non-randomness at the 5 percent 

level. For instance, at North Fork Gap, thirty-six samples were collected. 

The number of runs for this group of samples was 16. Non-randomness at 

the 5 percent level whould have been indicated by r (number of runs) 

equal to or greater than twenty-four or equal to or less than eleven.

The Runs test indicates that we may assume that the samples with large 

amounts of pressure solution are randomly distributed. Therefore,
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the fact that there are some zones of Intense pressure solution 

has probably not introduced bias into the data.

An operational difficulty associated with zones of intense 

pressure solution is the reconstruction of original grain shapes. 

When this problem arose, benefit of the doubt was always given to 

pressure solution with the feeling that it would be better to over 

estimate rather than underestimate the amount of pressure solution. 

However, the possibility remains that some of the original grains 

within these zones have been completely dissolved and as a result 

more silica may have been lost than has been accounted for by the 

point counting technique.



Detrital
Quartz

Authigenic
Quartz

Clay Pore Other

36.

Pressure
Solution

Age Unk 
Alberta, Can. 75 23 0 2 0 3

Abe Ss, Pm, 
N.M. 73 22 2 3 0 0

Raymond Boulder 
Bed, C? XX 79 18 3 0 0 10

Ecca Ss 
Pm, S. Africa 87 5 0 8 0 21

Eureka Ss 
Ord; VT 78 20 2 0 0 6

Roubldoux Ss. 
Ord., MD 67 31 2 0 0 2

Keefer Ss. 
Sll., W. VA 80 16 3 0 1 10

Lyons Ss 
Pm., CO 69 25 3 3 0 8

Homewood Ss. 
Penn., W. VA 75 22 0 1 2

Aver, of 2 
5

Price River Fm. 
Creta., VT 71 28 1 0 0 3

Juniata Pm. 
Ord., PA 76 24 0 0 0 4

Unk. Fm. 
Ord., MO 76 11 2 11 0 4

Orlskany Ss. 
Dev. W. VA 68 23 1 7 1

Aver, of 5 
4

All Tuscarora 
Samples 74 21 2 2 1 7

Table 4

Mean values from modal analysis of selected orthoquartzites
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Interpretation

The point count data presented in Table 1 demonstrate that 

pressure solution is an important but not the major source of cement 

in the Tuscarora. Assuming that all the silica dissolved during 

pressure solution was reprecipitated as cemenc then approximately 

one third of the cement may have been derived from this source. The 

other two thirds of the silica (14% of the rock volume) must be 

derived from other sources and these are discussed in the next 

section.

The data and observations also allow some important inferences 

to be drawn concerning some of the variables which effect pressure 

solution. The two most meaningful variables seem to be the amount 

of cement and the presence of clay between grains. The correlation 

coefficient between percent pressure solution and the percent authigenic 

silica for all samples is - .69 indicating an increase in pressure 

solution with decreasing cement. One might argue that the correlation 

is an artifact of decreasing available pore space with increasing 

pressure solution. To some extent this must be true. However, if 

this were the only reason for the negative correlation coefficient 

between pressure solution and authigenic quartz, there should be 

an equally strong coefficient between detrital quartz and pressure 

solution because as the pore space decreases the detrital fraction 

must increase. The fact that the r value for detrital quartz is much 

less than that for authigenic quartz and the fact that the two r 

values are significantly different at P = .01 indicates that the 

two correlation coefficients are not from a common correlation 

population. Furthermore, there are qualitative observations which
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support the relationship between cement and pressure solution.

In many samples with intense pressure solution, there is a remaining 

porosity and a few authigenic quartz often terminate within these 

pores, indicating a lack of available silica. Thomson (1959) noted 

a similar lack of cement in zones of intense pressure solution in 

the Green Pond Conglomerate. He pressumed the lack of cement was 

the result of increased solubility of the quartz in solution due 

to interstitial clay. An alternative explanation is that the most 

intense pressure solution occurs in zones of the rock which were 

not lithified during earlier diagenesis. Those areas which were 

cemented earlier in the diagenetic history would undergo less pressure 

solution because as cementation occurs stresses become more homogeneously 

distributed throughout the rock rather than being concentrated 

at grain boundaries.

The point count data from the two groups of sample shown in 

Table 3 demonstrates that samples with intense pressure solution 

(>10%) tend to contain more clay than samples with minor pressure 

solution (<4%). The fact that the relationship is not apparent 

from the correlation coefficient is probably due to the high variance 

associated with that data. By excluding samples with intermediate 

amounts of pressure solution (5 - 10 percent) and increasing the 

number of points counted per sample, the variation within the popu­

lations was minimized.

Various explanations have been proposed to explain the association 

of clay with zones of intense pressure solution. Thomson (1959) 

proposed that intergranular illite may enhance pressure solution 

by altering the pH of the pore fluids adjacent to the quartz crystals.
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He suggested that exchange of Ca for K in the Illlte releases 

potassium to the pore fluid which forms potassium carbonate, a 

strong base. The presence of the base increases the pH, increasing 

the solubility of the quartz. The clay in the Tuscarora is illite, 

however, it is well crystallized and therefore, would have limited 

exchange capacity. Also, less than one percent of the total dissolved 

potassium Is likely to be present as potassium carbonate.

Weyl (1959) suggested that clay along grain boundaries promotes 

pressure solution by enhancing diffusion of the dissolved silica 

from the grain boundaries to the pore fluids. The data from the 

Tuscarora is consistent with this hypothesis.

Clay coatings on grains may also promote pressure solution by 

impeding overgrowth formation. Pittman and Lumsden (1968) showed 

that chlorite coatings inhibit overgrowth formation in the Spiro 

Sand. Heald and Larese (1974) have suggested that the illite 

in the Tuscarora may inhibit overgrowth formation. This is consistent 

with the correlation found between pressure solution and cementation.

It has been suggested that there should be an inverse relation­

ship between pressure solution and grain size (Renton, et al., 1969; 

Wely, 1960 and many others). The relationship could be due to either 

an increase in solubility with size or a decrease in the length of 

the diffusion path along grain boundaries with decreasing size. The 

former explanation can not be true since quartz solubility does not 

change appreciably with size until the size is reduced to approximately

O.ly (Blatt, Middleton and Murray, 1972, pp. 532). The latter 

explanation is reasonable but my data does not support it. Perhaps 

the variation in grain shape is more important than grain size in
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the sand size fraction such that there may not be a strong correlation 

between grain size and length of the diffusion path.

There were no apparent differences In the amount of pressure 

solution among the four outcrops which were sampled in detail and 

there was no apparent difference between the amount of pressure 

solution In samples collected from steep versus gentle limbs of the 

anticlines. Where there were distinct zones of pressure solution, 

these zones parallel bedding. These observations Indicate that 

pressure solution probably occurred Independently of folding.

However, It must be remembered that the samples are biased In that 

they came only from limbs of anticlines.
There Is no apparent correlation between fracturing and the 

amount of pressure solution. The samples from Susquehanna Gap 

have been subjected for far more fracturing than any of the other 

suites of samples yet they have not undergone any more pressure solution. 

Furthermore, there are many examples of zones of Intense pressure 

solution and no associated fracturing. In one Instance, a fracture 

which Intersected a zone of Intense pressure solution at about 60° 

was observed. The fracture was not displaced across the zone as 

It would have been had the fracturing preceded or been contemporaneous 

with the pressure solution. Thus, the fracturing occurred after 

pressure solution. Some Individual grains were fractured and In a 

few cases these grains have also been partially dissolved by pressure 

solution. In these Instances fracturing may Inhibit further pressure 

solution by releasing the stress on the grains. However, the number 

of Instances In which the association between fracturing and pressure 

solution exists Is too small to consider the stress release by 

Intergranular fracturing Important.
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There Is one obvious difference between samples taken from 

different outcrops. At North Fork Gap and Susquehanna Gap there is 

a tendency for zones of intense pressure solution to be a few milli­

meters thick and parallel to bedding. At Baker, West Virginia and 

Mills Gap the zonation is much less marked and the zones of intense 

pressure solution tend to be greater than the width of a thin section. 

The reason for the apparent difference in zonation is not known.

The value for the means of pressure solution versus porosity 

(authigenic quartz plus pore space) is plotted on Figure 4. As 

predicted, the point falls between the curve calculated with the 

assumption that there are equal amounts of pressure solution in all 

directions and Rittenhouse's curve which assume that all pressure 

solution occurs normal to the direction of maximum pressure. The 

data for the Tuscarora plot closer to the curve which assumes 

homogeneous strain. This is quite important because the two curves 

imply major differences the role pressure solution may play in the 

mechanical porosity reduction of sands. Rittenhouse's curve implies 

that it would be very unlikely for intergranular pressure solution 

to mechanically decrease porosity to less than 20 percent. My curve 

predicts that only about 6 percent pressure solution is necessary 

to reduce the porosity to half its original value. If my curve is 

a reasonable approximation to porosity - pressure solution trends 

in real sands, then it is consistent with the contention that inter­

granular pressure solution can account for most of the mechanical 

porosity reduction which has occurred in the Tuscarora.
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Other Sources of Silica

Since Intergranular pressure solution can not account for the 

majority of the authlgenlc silica In the Tuscarora, other sources 

must have contributed. The sources most commonly suggested are 

stylolltlzatlon, clay mineral dlagenesls, dissolution of biogenic 

silica, deslllcatlon of volcanic debris, and normal subsurface 

water. In the following, each of these Is evaluated as a source 

of silica for the Tuscarora within the limits of the presently 

available data. Unfortunately, none of these proposed sources can 

be tested In a straightforward manner as was possible with Inter­

granular pressure solution.

Stylolltes - Stylolltes are best known In carbonate rocks where 

they frequently form columns tens of centimeters high. They probably 

form by pressure solution along planes of Increased permeability, 

frequently clay seams, which follow bedding planes. They occur 

most commonly In nearly monomineralIc rocks and they are usually 

quite obvious due to the clay and "Insoluble" residue which mark 

their surfaces. Most stylolltes parallel bedding, even In folded 

strata and, therefore, they formed prior to folding. There are 

examples, however, of stylolltes at a high angle to bedding.

Stylolltes are common In quartz arenltes although they are less 

spectacular than those forming In carbonate rocks. Presumably, 

the lower solubility of quartz prevents the development of tall 

columns. Thus, in sandstones they usually have only a few millimeters 

of relief and are relatively Inconspicuous. Heald (1959) noted that 

stylolltes form in sandstones with up to 26 percent remaining porosity
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and, therefore, they may be a significant source of authlgenlc silica.

Approximately eight percent of the samples from the Tuscarora 

had possible stylolltes. Many of these stylolltes are of doubtful 

origin because they have only a few tenths of a millimeter of relief 

and cut individual quartz grains. Even the most obvious stylolltes 

have relief less than a millimeter and lateral extent parallel to 

bedding of a few centimeters. At Baker, W. Virginia there are 

surfaces which parallel bedding along which the rock has separated. 

These surfaces may extend for several feet then die into massive, 

coherent rocks. The surfaces have a hummocky topography with up 

to a few centimeters of relief. These are not marked by an Insoluble 

residue or clay seam and are not seen in thin section leading me 

to believe they are probably not stylolltes. It seems likely that 

they are joints along which there has been solution unaided by 

pressure and may have foirmed very recently.

The stylolltes in the Tuscarora formed after cementation had 

begun because they truncate authlgenlc silica: however, whether

or not the sediment was completely lithlfied Is impossible to determine. 

Similarly, one can only roughly estimate the amount of material 

which may have been dissolved by stylolltlzatlon. Heald (1955) 

estimates fifteen percent loss of original volume In the Tuscarora 

due to stylolltlzatlon. The estimate Is based on the length of 

the columns and concentration of heavy minerals along the seams. If 

this is correct the stylolltlzatlon along with Intergranular pressure 

solution could account for the authlgenlc silica In the Tuscarora.
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Silica cement derived from dissolution of bf,genlc debris and 

deslllcatlon of volcanic materials may be locally Important as 

sources of authlgenlc silica. Deslllcatlon of volcanic debris has 

been proposed as an Important source of opal cement In the Ogallala 

Formation (Swlneford and Franks, 1959) and for quartz cement In 

Duschesne River Formation (Warner, 1965). Dissolution of biogenic 

silica has often been cited as a source of silica for the formation 

of chert and may be important In local cementation of some sands.

The Kirkwood Formation (Miocene) Is locally cemented by opal and 

chalcedony (Friedman, 1954) which may have been derived from the 

dissolution of biogenic silica. However, it is unusual to find 

thick, areally extensive deposits of either biogenic silica or 

volcanic debris associated with orthoquartzltes and there is no 

evidence of such an association in the Tuscarora. Therefore, 

dissolution of biogenic and volcanic sediment are unlikely as 

major sources of authlgenlc silica In the Tuscarora.

The Idea that clay mineral dlagenesls might be an Important 

source of authlgenlc silica was suggested by Slever (1962) and Towe 

(1962). The transformation of smectite to llllte may be written such 

that for every two grams of llllte formed, one gram of quartz Is 

formed (Slever, 1962). Confirmation that the smectite to llllte 

transformation occurs Is given by Keller (1963), Dunoyer De Segonzac, 

et al., (1968), Burst (1969), Perry and Hower (1970) and Schmidt 

(1973). Hower and Esllnger (1973) found that In the O.lp size 

fraction of Gulf Coast sediments taken from 4,000 - 19,000 feet the 

changes in the atomic proportions of K20,AlgOg and SlOg "closely 

approximate the reactions: smectite + Al^^+ K^ ->■ llllte + SI
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Yeh and Savin (1973) found Isotcpic fractionations between fine­

grained quartz and llllte/wmectlte consistent with the same reaction. 

Pétrographie evidence that this process may be effective In quartz 

cementation is given by Fuchtbauer (1967) who found that quartz 

cementation In the Dogger sandstone Increases toward the shaley 

margin of the bed.

To apply this model to the Tuscarora, It Is necessary for It

to be associated with a shaley sequence. The Tuscarora Is over-

lain by approximately five hundred feet of shales and slltstones 

which make up the Rose Hill Shale (Folk, 1960). Underlying the 

Tuscarora Is either the Juniata Formation or an unconformity, both 

of which are, In turn, underlain by the Martlnsburg Shale (approximately 

3,000 feet thick). The predominant clay mineral in both of the 

Martlnsburg and the Rose Hill Is llllte (McBride, 1962 and Folk,

1960). This represents a potentially massive source of silica.

A gross calculation of the maximum amount of quartz which may

be derived from a montmorlllonlte to llllte transformation may 

be made as follows. Assuming the Martlnsburg to be 60 percent clay 

[the average shale Is 60 percent clay (Shaw and Weaver, 1965)], then 

the total clay thickness Is .60 x 3,000 ft. or 1,800 feet. Assuming 

thirty percent of the original clay In the Martlnsburg was montmorlllonlte 

[the average abundance of clays for the world ocean basins is 38 percent 

montmorlllonlte and 37 percent llllte (Blatt, Middleton and Murray, 1973, 

p. 318)], then .30 x 1,800 feet equals 540 feet, which Is the thick­

ness of llllte which was originally montmorlllonlte. According 

to Slever (1962) for every two grams of llllte, one gram of silica 

is produced, so that assuming the density of llllte and quartz are
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about equal, 540 feet of llllte should yield half that thickness 

or approximately 270 feet of quartz. Since we need sufficient silica 

to account for fourteen percent of the twenty-one percent authlgenlc 

silica In the Tuscarora, a thickness of approximately forty-two 

feet of silica is necessary. Applying the same arguments to the 

Rose Hill shale as we applied to the Martlnsburg, 62 feet of quartz 

can be derived. Clearly, this type of clay mineral dlagenesls is 

capable of supplying a massive amount of silica.

Unfortunately, a number of problems still remain in the above 

model. First, Slever (1962) assumed that the alteration of mont- 

morillonlte to llllte Involves a dissolution of montmorlllonlte 

and a precipitation of illite and the mass balance of materials 

appears to have been based on an assumption of constant aluminum 

in the clays (a slight arithmatic error in the equations makes it 

difficult to be sure). Towe (1962 and 1974 personal communication) 

assumed that the montmonillonite to illite transformation occurs by 

Mg and Fe addition to the octahedral layer where they substitute 

for aluminum which then displaces SI to produce SiOg. This model 

presupposes that the structural state of the starting material 

is conserved and Towe (1962) estimates 3 grams of silicon (6.5 grams 

of silica) derived per hundred grams of illite formed. This is only 

twelve percent of the amount proposed by Siever and indicates a 

maximum of approximately 34 feet (12% of 270 feet) of silica which 

might be derived from a montmorillonite - illite transformation 

in the Martinsburg.

A second problem with the model involves the migration of the 

silica after any smectite to illite conversion has occurred. The
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isotopic data of Yeh and Savin (1973) show fine grained quartz in 

isotopic equilibrium with deeply buried Gulf coast clays. This 

can be interpreted as indicating that at least some of the silica 

from the smectite to Illite transformation remains within the 

mudstones as authlgenlc quartz or chert and therefore, can not be 

a source of silica for cementation in adjacent sandstones.

The stratigraphie associations of orthoquartzltes and shales 

also pose a problem. If shales are the major source of authlgenlc 

silica in orthoquartzltes, one would expect a close association 

between shales and silica-cemented sandstones. A literature recon­

naissance of the stratigraphie position of a number of well known 

orthoquartzite sequences does not reveal such an association. For 

example, the Baraboo quartzite (PC) and Drake (PC) quartzltes are 

overlain by slate but the thickness of the slate overlying the 

Baraboo is much less than the thickness of the Baraboo and therefore, 

could not be a major source of authlgenlc silica. The Berea Sandstone 

(Mississippian) is overlain by a thick shale sequence but the Berea 

contains very little authlgenlc silica and is only locally an 

orthoquartzite. The Dakota sandstone is locally an orthoquartzite 

and overlain by thick marine shales which may be a major source of 

silica. In contrast, the Mesnard Quartzite (PC), Lamotte Sandstone 

(Pé-é), Antietam Formation (Pé-C), Potsdam Formation (Pf-£), Penrith 

Sandstone (Permian), Darwin Sandstone (Permian), the Ordovician 

quartzltes in the Cordilleran miogeosyncline, and the Precambrian 

quartzltes associated with the Road Antelope ore bodies of Zambia are 

not associated with thick shales. The most common association Is 

with shallow water carbonate-evaporite sequences.



48.

There are also tectonic questions to be raised in considering 

the possibility of the Martinsburg Formation being the major source 

of authigenic silica for cementation of the Tuscarora. If significant 

dewatering and diagenesis occurred in the Martinsburg during the 

Taconic orogeny then it is unlikely that it could represent a 

major source of silica for cementation of the Tuscarora. Alternatively, 

if the major diagenesis and dewatering occurred during the Appalachian 

Orogeny, then the Martinsburg may have supplied large quantities 

of silica and compaction during deformation may have caused explasion 

of silica-rich pore fluids from the Martinsburg into the Tuscarora. 

Unfortunately, the evidence for the Taconic orogeny becomes Increasingly 

equivocal toward the southern part of the Appalachians. The major 

arguments of twenty-six investigators are summarized by Epstein and 

Epstein (1969) who conclude that the Taconic orogeny in east central 

Pennsylvania was of only minor importance and that the major deformation 

of the Martinsburg Formation occurred during the Appalachian orogeny. 

Therefore, although the smectite-illite transformation potentially 

represents a major source of authigenic silica, we can't assume with 

any degree of certainty that it is the source of the authigenic silica 

in the Tuscarora.

Subsurface water - Analyses of subsurface waters show that 

90 percent of ground waters are supersaturated with respect to quartz 

(Davis, 1964). Whatever the source of this silica, common ground 

waters can play a significant role in cementation if enough water 

can be moved through the rock.

To calculate the amount of water which must flow through a 

sandstone in order to cement it, it is only necessary to know the
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concentration of silica in solution and the amount precipitated.

In the case of the Tuscarora only the latter is known. The 

amount of silica in solution may be estimated from the data of 

Davis (1964). For arithmetic convenience, we assume an initial 

concentration of 32.5 ppm SiOg in solution from which 26.5 ppm is 

precipitated. The volume of quartz precipitated per pore volume 

of water will be the grams of quartz per cubic centimeter of water 

divided by the density of quartz or;

26.5 X 10“^gm SiOg  ̂ 2.65gm SiOg = 10“\ m ^  SiOg

cm^ H^O cm^ SiOg cm^ H^O

Assuming the rock is always water saturated, this becomes equal to 

10 ^ pore volumes of quartz per pore volume of water. This is 

equivalent to saying the porosity of the rock will decrease by 

one 10 ^th for each pore volume of water which passes through the 

rock. Then the number of pore volumes of water necessary to reduce 

the porosity to half its original volume will be expressed by:

V*g = p  111 2 “ -LÉ22 = 7 X 10^ pore volumes of water.
^  10~^

In the Tuscarora, there is approximately 21% authigenic quartz,

7% of which may have been derived from intergranular pressure solution. 

If the other 14% was derived from subsurface waters with an initial 

concentration of 32.5 ppm and a final concentration of 6 ppm, the 

number of pore volumes necessary to reduce the porosity from 14% 

to 1.85% would be three half volumes or approximately 2 x 10^ pore 

volumes of water. This value demonstrates the vast number of times a 

fluid must circulate through a sand body in order to cement it.
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An Increase in the amount of silica precipitated to 265 ppm

(the solubility of amorphous silica is only about 120 ppm at

25° C) causes only a small reduction in the number of pore volumes
4of water required, to 2 x 10 .

To determine how long it will take to move a given volume of 

water through a rock will depend on the flow velocity and distance. 

The velocity will, of course be a function of the permeability of 

the rock and the hydraulic gradient. The distance traveled will 

be determined by the relationship of bed to flow geometry. The 

thickness of the Tuscarora is approximately 100 meters while its 

width from east to west is approximately 5 x 10^ meters. Therefore, 

a unit volume of water must travel three and a half orders of 

magnitude further if flow is parallel to the deposit than if it is 

normal to the deposit. The average flow rate of ground waters in 

aquifers is about 10 meters per year (Blatt, Middleton, and Murray, 

1972, p. 353), while diffusion rates in stagnant basins may be as 

low as about 10 ^ m/yr (Orcharenko, 1974). Therefore, flow rates may 

vary by about six orders of magnitude and the flow distance may 

vary within about three orders of magnitude but the concentration of 

silica in solution is not likely to vary by more than one or two 

orders of magnitude. In a system where the silica is derived from 

outside of the volume of rock being lithified, the key to cementation 

will be the flow velocity and direction. The concentration of 

silica only needs to be high enough to initiate precipitation.

Assuming the cementing waters entered the Tuscarora in its 

eastern reaches and flowed to its western extent at a rate of 10 

meters per year, one pore volume of water would pass through the
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formation every fifty thousand years (5 x 10 m/10 m/yr) and 

2 X 10^ pore volumes would pass through in 10^^ years. Since no 

effects of reduced permeability are accounted for in this 

calculation, the ten billion years should be regarded as a minimum 

estimate for cementation. Verticle flow at a rate as low as 

10 cm/yr is temporally realistic as a mode of cementation. The 

distance in this case is only 100 meters, allowing one pore volume 

of water to pass through the formation every thousand years 

(100 m/.l m/yr). Therefore, 2 x 10^ pore volumes would pass through 

the Tuscarora in two hundred million years. If cementation occurred 

soon after deposition it could have been completed by the end of 

the Paleozoic.
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Summary and Conclusions

Pétrographie investigation of the Tuscarora Orthoquartzite 

has shown it to contain an average of twenty one percent cement and 

two percent pore space. Assuming an initial porosity of 40 percent, 

this indicates a seventeen percent mechanical decrease in porosity 

and a twenty one percent chemical decrease in porosity. The investi­

gation has also shown an average of seven percent pressure solution. 

Comparison with a simple geometric model indicates that seven percent 

pressure solution could cause more than a twenty percent decrease in 

pressure solution. Therefore, the data and observations are consistent 

with the conclusion that pressure solution is the cause of most 

of the mechanical porosity reduction which probably occurred in 

the Tuscarora. The data also shown that pressure solution is a 

significant source of authigenic silica; accounting for nearly one 

third of the authigenic quartz found in the Tuscarora.

The amount of authigenic quartz and the amount of clay are the 

only variables which were found to show any statistically significant 

relationship to the amount of pressure solution observed in a given 

specimen. The relationship between authigenic quartz and pressure 

solution is an inverse one possibly because cement equalizes stress 

throughout the rock volume and thus reduces stress concentration 

at the grain boundaries. The effect of clay may be to enhance 

diffusion rates or to impede cementation. Grain size, sorting or 

position relative to fold axes show no apparent relationship to 

the amount of pressure solution.

Sources of silica other than intergranular pressure solution 

must have provided the majority of the authlgenlc silica found in
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the Tuscarora. The sources most commonly suggested are stylo­

lltlzatlon, clay mineral dlagenesls, dissolution of biogenic silica, 

deslllcatlon of volcanic debris and normal subsurface water.

According to Heald (1955) stylolltlzatlon may be a major source of 

silica. Clay mineral dlagenesls may represent a vast potential 

source of silica depending upon nature of the smectite to llllte 

transformation. However, even assuming the maximum amount of silica 

that might be generated during this transformation, problems still 

exist In determining the amount of silica which will leave a shale 

and the rate at which it may enter a sandstone. Dissolution of 

biogenic silica or volcanic debris may be important sources of silica 

In special circumstances but there Is no evidence that they were 

Important In the cementation of the Tuscarora. Many analyses of 

normal subsurface waters contain sufficient silica to cement a sand­

stone If sufficient volumes of that water can be moved through the 

rock. Flow rates and geometry are likely to have a much greater 

effect on the efficiency of cementation than the concentration of 

silica In solution. Therefore, clay minerals dlagenesls and/or 

normal ground water are likely sources of silica In the Tuscarora, 

but we do not have any means of rigorously testing the efficiency 

of either possibility.
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Appendix

Sample Calculation of Pore-Space Reduction, Orthorhomblc Packing

I. Calculation of original porosity (this Is the same as shown by 

Rittenhouse (1971) p. 90). Each sphere in Figure 3a may be 

considered to be the solid part of a unit cell that has the hexagonal 

cross section shown by shaded area and a length equal to the diameter. 

The pore space is the difference between the volume of this hexagonal 

prism and the volume of the sphere. Then,

Original porosity (%)

The volume of the sphere

If the radius (r) Is 1, 
the volume of the sphere

The volume of the hexagonal 
prism

The hexagon area

vol. of hexagonal prims - vol. of sphere ^

vol. of hexagonal prism

= 4/3 TT r'

= 4/3 (3.1416) (l)J = 4.1888

= area of the hexagon x 2 r 

= 12 X area of triangle ABC

The area of triangle ABC = BC X AC

AC = r = 1 

BC = AC tan 30° 

BC = 1 (0.57735)

Area of triangle ABC = 0.57735 X 1 = 0.288675

Area of hexagon

Vol. of hexagonal prism

= 12 X 0.288675 = 3.4641 

= 2 X 3.4641 = 6.9282

Original porosity (%) = 6.9382 - 4.1888 x 100 = 39.54 
6.9282
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II. Calculation of porosity after solution at grain contacts.

After solution has reduced the spheres by 1/10 of the sphere 

radius in Figure A1 then ÂE * 0.9 r. Each unit cell will be a 

regular polygon and if the dissolved material is not redeposited.

a. Porosity (%) = vol. of hexagonal prism - vol. of solid
-------------------------------------------  X 100

vol. of hexagonal prism

b. Vol. dissolved = Vol of 8 spherical segments

c. Vol. of solid = Vol. of original sphere minus vol. of eight
spherical segments.

1. volume of hexagonal prism

= area of hexagon x 2 r 

area = 12 x area of triangle ABC 

area of ABC = BC x AC

2

AC = r = .9

BC = AC tan 30°

= .9 (0.5774) 

ABC = .5197 X .9

2

= .2338

area of hexagon = 12 x .22,o = 2.8062 

Vol. hexagon = 2.8062 x 2 (.9) * 5.0512

2. Vol. dissolved = vol. spherical seg. x 8

= 1/3 TT h^ (3r-h) x 8 where h is height 

= .33 (3.1416) (.1)2 (3 - .1) X 8 

= .2405
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3. Vol. solid = 4.1888 - .2405

= 3.9483

4. Vol. porosity (%) = 5.0512 - 3.9483 ^

5.0512 

=  21.8

5. Vol. dissolved (%)

= -2405 X 100
5.0512 

= 4.8%
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Spheres and associated pore space in orthorhombic 

packing after equal amounts of solution at all 

points of contact

Figure Al


