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Chapter 1

Introduction to Profile Generation

1.1 The Problem Statement

The control of flexible structures has been extensively studied in recent years. Flexible

structures such as high-speed disk drive actuators require extremely precise positioning

under very tight time constraints. Whenever a fast motion is commanded, residual vibration

in the flexible structure is induced, which increases the settling time. One solution is to

design a closed-loop control to damp out vibrations caused by the command inputs and

disturbances to the plant. However, the resulting closed-loop response may still be too

slow to provide an acceptable settling time. Also, the closed-loop control is not able to

compensate for high frequency residual vibration which occurs beyond the closed-loop

bandwidth. An alternative approach is to develop an appropriate reference trajectory that

is able to minimize the excitation energy imparted to the system at its natural frequencies.

Acceleration

profile
Velocity PositionHigh frequency 1

s
Kv Kp

1
sstructure R(s)

Figure 1.1: A typical flexible mechanical system.

Figure 1.1 shows a typical mechanical flexible system, where 1
s

is an integrator, Kv is

a velocity constant gain, and Kp is a position constant gain. The high frequency modes

can be described as a transfer function R(s) in which an infinite number of lightly damped

1



resonance modes is possible,

R(s) = lim
n→∞

bns
n + bn−1s

n−1 + · · · + b1s+ 1

ansn + an−1sn−1 + · · · + a1s+ 1
. (1.1)

Figure 1.2 shows the Bode magnitude plot of a reduced order (28th order) transfer func-

tion R(s). This transfer function was derived from the flexible arm of an open disk drive as

shown in Figure 6.4 (Chapter 6) in the Advanced Controls Laboratory at Oklahoma State

University. The resonance modes change drastically due to variation of the mode param-

eters. On the Bode plot, the peaks of the frequency response may shift in both frequency

and amplitude.
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Figure 1.2: Bode magnitude plot of a reduced order transfer function R(s).

The objective of robust vibration suppression trajectory generation is to find a fast input

trajectory, under some physical constraint (such as motor voltage/current limit, velocity

limit), with minimum possible residual vibration.

A standard approach is to consider the movement of the rigid mode described by the

double integrator 1
s2 , from acceleration to position. Here, the constant gains Kv and Kp are

not considered. A typical trajectory for a double integrator system is shown in Figure 1.3.

Notice that, to guarantee zero velocity of the rigid mode, the area of A1 should be equal to
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the area of A2 in the acceleration profile (left plot). Physically, if the time duration of the

acceleration profile is finite, the flexible beam is accelerated at the first part of move and

then decelerated at the second part to move a flexible beam from one set point to another.

The velocity trajectory (middle plot) starts and ends at zero to realize a rigid body move

from one set point to another. Due to the possibly infinite number of resonant modes, it is

unlikely that the system will be stationary after the end of acceleration, because the residual

vibration settles after a long period of time. The work discussed in this report generates a

robust profile which suppresses the residual vibration of a flexible dynamic system.
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Figure 1.3: Typical trajectory for a double integrator system.

The phrase “move time” refers to the time duration of the feed forward control input,

such as acceleration, current, or voltage. Settle time means the time duration after the end

of move time to achieve the settle criterion, for example ±5% tracking error. Seek time is

the sum of the move time and the settle time. These are quite standard terms in hard disk

drive industry and can be easily applied to other systems without confusion. Figure 1.4

clearly shows the move time and the settle time for a hard disk drive arm movement with

open-loop control. The top plot is the current input signal, the middle plot is the resultant

position signal, and the bottom plot shows the position signal near the target track. In
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this instance, the move time is 2.5 msec. Because of the resonant structure in the flexible

system, the position signal reveals the residual vibration immediately after the move. In

Figure 1.4, the settle time is about 2.5 msec with ±1% tracking error criterion. Note that

the ±1% tracking error criterion means the response curve to reach and stay within 1% track

of the center of the target track. This definition is different from the allowable tolerance of

the transient-response specification analysis in the standard control textbooks (for example

Kuo [4] and Ogata [59]). The settling time in the standard control textbooks means the time

required for the response to reach and stay within a certain criterion (for example ±2%) of

the final value. The objective of the robust vibration suppression trajectory generation is to

minimize the seek time.
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Figure 1.4: Illustration of move time and settle time of an open-loop control.

The same concepts apply to closed-loop control. Figure 1.5 clearly shows the move

time and the settle time for a hard disk drive arm movement with closed-loop control. The

top two plots are the reference position movement profile and the bottom two plots show
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the real position signals. In this instance, the ideal reference position move time of the

flexible arm is 2.5 msec. Due to the resonant structure in the flexible system, the position

signal cannot settle down immediately after the move. In Figure 1.5, the settle time is about

2.5 msec with ±1% tracking error criterion.
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Figure 1.5: Illustration of move time and settle time of a closed-loop control.

The position reference input can be generated in two ways. First, it can be assumed as

the integral of a velocity profile, as shown in Figure 1.6. In this case, since the velocity

profile is a smooth trajectory starting and ending at zero, the resultant position reference is

a smooth trajectory.

integrator

Position
reference

Velocity
reference 1/s

Figure 1.6: Position reference generation from a velocity profile.

Secondly, it can be generated from a step movement command through a finite support
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filter, f(t), 0 ≤ t ≤ T , where T is the time duration of the finite support filter as shown in

Figure 1.7. This finite support filter which generates a position reference is called “shape

filter” in this report. From Figure 1.7, a position reference input from one set point to

another can always be generated from a step movement command convolving with a shape

filter. It is easy to know that the shape filter to generate the step movement command itself

is a unit impulse.

time

Step command Shape filter Position reference

Figure 1.7: Position reference generation from a step movement command and a finite

support filter.

To guarantee that the filtered command reaches the same set point as the step movement

command, the integral of f(t) must be imposed to 1, i.e.,

∫ T

0

f(t)dt = 1. (1.2)

This constraint can be simply derived: suppose that the original command signal is s(t), t ≥

0, and the filtered command is q(t), t ≥ 0, then by the filter operation

q(t) =

∫ t

0

s(t− τ)f(τ)dτ. (1.3)

That the filtered command q(t) reaches the same set point of original command s(t) means

q(∞) = s(∞) holds. From

q(∞) =

∫ ∞

0

s(∞− τ)f(τ)dτ, (1.4)

=

∫ T

0

s(∞− τ)f(τ)dτ, (1.5)

= s(∞)

∫ T

0

f(τ)dτ, (1.6)
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the constraint (1.2) is derived. If the original command s(t) is a step reference, say,

s(t) = S · 1(t), t ≥ 0, (1.7)

where S is step amplitude and 1(t) is unit step, then the filtered command q(t) reaches the

original command s(t) = S · 1(t), t ≥ 0, immediately at the time duration T of the shape

filter, i.e.,

q(t) = s(t), t ≥ T. (1.8)

This shape filter f(t), 0 ≤ t ≤ T , which generates a vibration suppression position

reference profile is called a “vibration suppression shape filter”, or simply a shape filter, in

this report.

In the discrete-time case, if the finite impulse response shape filter is f [k], 0 ≤ k ≤M ,

the constraint (1.2) reduces to
M∑

k=0

f [k] = 1. (1.9)

A normalized robust vibration suppression velocity profile can be used as the shape

filter function to generate the reference position profile. The normalization is to make the

velocity profile satisfy the constraint (1.2). So if there is a robust vibration suppression

velocity profile, v(t), 0 ≤ t ≤ T , a vibration suppression shape filter f(t) can be generated

by

f(t) =
v(t)

∫ T

0
v(t)dt

. (1.10)

The good property of this kind of shape filters is that the shape filter itself is a robust

vibration suppression velocity profile, so it can generate a smooth vibration suppression

position reference.

A shape filter does not necessarily start and end at zero. Figure 1.8 shows a step position

command, a typical shape filter that has non-zero values at the start and end, and the filtered

position reference. Although the shape filter smoothly changes from the start to the end,

the initial value at time zero and the final value at time T of the shape filter are not zero.

7



S
te

p 
  

co
m

m
an

d
S

ha
pe

 
fil

te
r

Time

P
os

iti
on

  
 r

ef
er

en
ce

Figure 1.8: A step position command, a non-zero start and end shape filter and the filtered

position reference.

Furthermore, a shape filter can also be a non-smooth function. Figure 1.9 shows a step

position command, a typical non-smooth shape filter, and the filtered position reference. It

shows that the shape filter function is not smooth from the start to the end.

It is easy to understand that the robust vibration suppression position reference gener-

ated from a step command s(t) = S · 1(t) through a shape filter, f(t), 0 ≤ t ≤ T , can also

be generated from the integral of a scaled shape filter S · f(t), 0 ≤ t ≤ T , since

s(t) ∗ f(t) =

∫ t

0

s(t− τ)f(τ)dτ, (1.11)

=

∫ t

0

S · 1(t− τ)f(τ)dτ, (1.12)

=

∫ t

0

S · f(τ)dτ. (1.13)

Here, “*” is the convolution operator. Similarly, the robust vibration suppression position

reference generated from a step command s(t) = S · 1(t) through a discrete-time shape

filter, f [k], 0 ≤ k ≤ M , can also be generated from the integral of a scaled shape filter

S · f [k], 0 ≤ k ≤M .

The vibration suppression shape filters can also shape other control profiles. The control
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Figure 1.9: A step position command, a non-smooth shape filter and the filtered position

reference.

profile here refers to the trajectories in the control system, such as acceleration, velocity, or

position signals.

1.2 Background and Literature Review

Motion control of flexible structures may be tracked to 1970’s when the motion control

of flexible manipulator arms was studied by many researchers. Maizza-Neto [50] stud-

ied the modal analysis and closed-loop feedback control of flexible manipulator arms.

Book [14, 16] studied feedback closed-loop control of flexible manipulator arms with dis-

tributed flexibility. Balas [5] developed a feedback controller for a finite number of modes

in a flexible mechanical system. This research has been further extensively studied since

1970’s. A full survey on this research prior to 1990’s was done by Book [15] in the paper

entitled “Controlled Motion in an Elastic World”. Book [15] stated in the survey paper

that “The technique for (space) manipulators was, and continuous to be, to move the joints

slowly and wait for the tip of the arm to settle to equilibrium.” With the requirement of

9



light weight and fast response, flexibility becomes a formidable problem in motion control

of flexible structures. Not only the closed-loop feedback control methods were studied, but

also the feedforward control methods (known as “input command shaping”) were devel-

oped. “Input command shaping and closed-loop feedback for vibration control are two dis-

tinct approaches toward vibration reduction of flexible systems (Singer and Seering [72]).”

Input command shaping involves the appropriately choosing the shape of the input com-

mand for either open-loop system or closed-loop system so that the system vibrations are

reduced. Generally, these techniques include shaped function synthesis, open-loop optimal

control, impulse shaping filters, and system-inversion-based motion planning.

One of the pioneering works of the shaped function synthesis was introduced by As-

pinwall [2], who used a finite Fourier series expansion to construct forcing functions to at-

tenuate the residual dynamic response for slewing a flexible beam. The response spectrum

envelope is made small only in a limited region. Also the forcing functions are sensitive

to the control system. Another pioneering work was introduced by Swigert [94], who used

a performance index which reflects the concern for the accuracy of the terminal boundary

conditions to the changes in mode eigen-frequencies. However, the control inputs are diffi-

cult to calculate, and only a few modes are considered. Junkins et al. [96] developed a near

minimum-time open-loop control input for single-axis maneuvers of a flexible structure by

shaping the control profiles with two independent parameters. Bhat and Miu [10, 11, 12]

have shown that control waveforms can be optimized using the Laplace domain synthesis

technique. But the control inputs need to be assumed through a judicious choice.

None of the previous methods consider all the resonance modes, which in reality may be

infinite in number. Also, the modes’ responses change drastically due to resonance model-

ing uncertainty. To overcome the resonance frequency variation, Yamamura and Ono [107]

have developed a robust vibrationless control solution derived for an enlarged multi-degree-

of-freedom system that has some virtual frequencies within the range of the varying natural

frequencies. Meckl and Roberto [53] followed the same approach and developed a forcing
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function using a series of ramped sinusoids for one nominal resonance model. The spec-

trum magnitude of the forcing function becomes small at the nominal resonance frequency

and the four additional frequencies surrounding the nominal frequency. But the spectrum

magnitude of the forcing function increases significantly at frequencies beyond these.

In the more recent work of Yamamura and Ono [104, 105, 106], the authors described

a frequency-shaped cost functional whose weighting function was represented by a first-

order and second-order high-pass filter in the design of vibrationless access control forces.

The control forces have small frequency components in the high frequency region. But the

decay rate in the frequency domain depends on the shape of the weighting function. Mi-

zoshita et al. [54] developed an access control called SMART (Structural Vibration Min-

imized Acceleration Trajectory) for hard disk drives. The access formula is derived from

the minimum-jerk cost function where the SMART state values (position, velocity, and ac-

celeration) are expressed using time polynomials. But the jerk cost function has no direct

relationship to the residual vibration.

Optimal control approaches have been studied to generate an input command for a

flexible dynamic system. Typically, an objective function is selected to be minimized.

For example, the famous Bang-Bang Principle was explained by Hermes [32] as: “It had

been an intuitive assumption for some time that if the control for a system is operating

from a limited source of power and if it is desired to have the system change from one

state to another in minimum time, then it is necessary at all times to utilize all the power

available; that is, to use bang-bang control.” With the Bang-Bang Principle, the time-

optimal commands must be piecewise constant functions of time and the constants are

solely determined by the actuator maximum and minimum input limits. That means the

time-optimal control must always saturate the actuators. Although the analytical results do

exist for systems with order greater than two in special cases [3, 37, 43, 70], it is not easy

to analytically derive the time-optimal command for a system in which the order is greater

than two. Workman [103] studied an adaptive proximate time-optimal servomechanisms
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for a second-order system. Pao [61] studied the proximate time-optimal control of third-

order servomechanisms. Tuttle and Seering [98, 100, 101, 102] developed a numerical

method to create time-optimal commands for linear systems. Other types of optimal control

select different objective functions, for example, integral squared error plus some control

penalty. Generally, these objective functions do not explicitly include a direct measure of

both the move time and the unwanted resonant dynamics. These profiles are therefore very

sensitive to unmodeled flexible dynamics.

The posicast control developed by Smith [91, 92, 95] uses a kind of set point shap-

ing. This method breaks a step input into two smaller steps, one of which is delayed in

time. The delayed input results in a vibration cancellation for a precisely known resonance,

therefore reducing the settling time for a point-to-point motion command. A method in-

corporating robustness was later developed and patented [71, 73, 79, 85] by Singer et al.

Instead of using two impulses to generate the delayed input, input shapers use three or more

impulses to generate a delayed input. Robustness is improved by increasing the number of

impulses. Input shaping technique has been extensively studied in both linear systems by

Singer [72, 69], Singhose [76, 78, 80, 81, 82, 83, 84], Jones [33], Tuttle [99] and some

special nonlinear systems by Gorinevsky [28], Magee [47], Kozak [38], Park [64], Keni-

son [34], Kinceler [36], Smith [90]. The relationship between input shaping technique and

time-optimal control has been studied by Pao and Singhose [63, 77], Lau and Pao [41, 42],

Baumgart and Pao [7]. One of the disadvantages of this technique is that the input shapers

induce delays that increase in number of pulses. Another disadvantage is that it is impossi-

ble to design an input shaper to accommodate all the resonant modes in a flexible structure.

Since the input shapers are generated from non-continuous impulse functions, they cannot

be used as the velocity profiles in open-loop control. Generally, the input shapers are used

to shape the step reference command into several small steps in closed-loop control.

Singh and Vadali [74, 75] developed two or three-impulse time-delay filter by canceling

the complex poles of a flexible system to attenuate the residual vibration. Magee and
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Book [46, 48, 49] also developed the two or three-impulse optimal arbitrary time-delay

filter technique by choosing a cost function involving both the error signal and the time rate

of change in the error signal. The cost function is expressed as an explicit function of the

unknown filter coefficients, and the function can be minimized with respect to the unknown

filter terms. Magee [46] showed that the two or three-impulse optimal arbitrary time-delay

filter reduced to input shaping technique by choosing the time-delay value to be a special

number.

Moulin and Bayo [55] addressed the problem of open-loop control of the end-point tra-

jectory of a single-link flexible arm by an inverse dynamic solution. Rastegar et al. [97]

used a number of basic sinusoidal time functions and their harmonics to trajectory syn-

thesis. Piazzi and Visioli [66] determined the command function of the system by means

of a non-causal system inversion with a continuous derivative of an arbitrary order. One

disadvantage of these techniques is that a precise model of the system is generally required.

Another disadvantage of these system-inversion-based motion planning techniques is that

the smooth motion and robustness is achieved at the expense of long move time.

1.3 Closed-Loop Control Schemes Using Robust

Vibration Suppression Profiles

In this section, closed-loop control schemes using the robust vibration suppression profiles

are described.

In general, there are two closed-loop control schemes in the motion control of a flexible

system. Figure 1.10 shows a standard closed-loop control scheme. The position reference

is the reference input to the closed-loop system. The robust position reference can be gen-

erated from the robust velocity reference or a step movement command through a vibration

suppression shape filter.

Another kind of closed-loop control scheme is the model reference control, as shown
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Position
 reference

Uncertain 
 PlantController

Figure 1.10: Standard closed-loop control scheme.

in Figure 1.11. In this control scheme, the forcing function signal is directly sent to both

the uncertain plant and a reference model of the plant. The controller takes as its input

the tracking error, which is the difference of the real position and the position reference

generated by the reference model. The robust forcing function can be generated from a

robust velocity profile through the physical system dynamics as shown in Figure 1.12.

Forcing
function

Reference
model

Uncertain 
 PlantController

Figure 1.11: Model reference closed-loop control scheme.

Robust
forcing

function

Robust
velocity

reference

Physical
plant

dynamics

Figure 1.12: Robust forcing function generation from velocity reference.

In practice, the position reference from the reference model may be saved in a table and

directly used as a reference input as shown in Figure 1.13.
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Figure 1.13: Implementation of model reference closed-loop control with robust vibration

suppression control profiles.

1.4 Development and Philosophy of the Design Method

In this section, the development and philosophy of the robust vibration suppression control

profile generation method studied in this thesis are outlined.

1.4.1 Robust Vibration Profile Generation from Filter Point of View

If the acceleration signal is denoted by u(t), the flexible system unit impulse response

denoted by h(t), and the position movement including residual vibrations denoted by y(t),

then the following relationship holds

y(t)
︸︷︷︸

residual vibration signal

= h(t)
︸︷︷︸

flexible system unit

impulse response

∗ u(t)
︸︷︷︸

acceleration profile

(1.14)

in the time domain, and the the following relationship holds

Y (ω)
︸ ︷︷ ︸

signal

= H(ω)
︸ ︷︷ ︸

filter

· U(ω)
︸ ︷︷ ︸

signal

(1.15)

in the frequency domain. Here U(ω) =
∫∞

0
u(t)e−jωtdt is the continuous-time Fourier

transform (see Appendix A) of the acceleration signal u(t). Similarly, Y (ω) is the Fourier

transform of the function f(t) and H(ω) is the Fourier transform of the function h(t).
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If residual vibrations occur, all the residual vibrations will appear in Y (ω) in the fre-

quency domain. Remember that H(ω) cannot be changed, but U(ω) is to be designed.

Now consider the relationship y(t) = h(t) ∗ u(t) again. Since h(t) which includes the

resonance modes cannot be changed, the relationship may be written in a different way as

y(t)
︸︷︷︸

residual vibration signal

= u(t)
︸︷︷︸

filter unit impulse

response to suppress

high frequency

resonance modes

∗ h(t)
︸︷︷︸

signal composing of

the unit impulse

response of the

flexible system

(1.16)

in the time domain, and the relationship

Y (ω)
︸ ︷︷ ︸

signal

= U(ω)
︸ ︷︷ ︸

filter

· H(ω)
︸ ︷︷ ︸

signal

(1.17)

in the frequency domain.

If u(t) is considered as a filter impulse response, the good properties filter u(t) should

possess are

1. The duration of filter u(t), say, T, should be as short as possible;

2. The filter u(t) should cut off all the high frequency components (greater than or

equal to the first resonance frequency) of h(t) as much as possible. However, since
∫ T

0
u(t)dt = 0 or U(0) = 0 is required for the rigid body movement, filter u(t) also

filters out the DC part of h(t). The resultant velocity v(t) =
∫ t

0
u(t)dt should behave

like a low pass filter.

First, the ideal case of property 1 is the time-optimal “bang-bang” command. The

“bang-bang” form control input has been studied extensively for pure rigid mode and a
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rigid mode plus one or two resonance modes. Since the energy of the “bang-bang” forcing

function almost spreads all over the frequency domain, it is not a good candidate for robust

residual vibration suppression. The detail of this concept is studied in Chapter 2.

Then property 2 is considered here. Can an ideal low-pass filter impulse response be

used as a velocity profile? The question sounds extremely exciting and a little silly. It

is exciting because, if it is possible then all the resonance modes of h(t) can be canceled

out. It is silly, because nobody has ever tried it before. What does the ideal low-pass filter

velocity profile look like? To answer this question, a typical ideal low-pass filter function

is shown in Figure 1.14.

0
Time

Figure 1.14: Ideal low-pass filter impulse function.

The ideal low-pass filter function spreads all over the time domain from −∞ to ∞.

From mathematical theory, it is known that the band-limited signal is an entire function

(that is further discussed in Chapter 3) in t. To use the ideal low-pass filter function as a

velocity profile, the signal needs to be shifted forward to make the start time be zero and

the end time be ∞. The price of infinite time duration is too expensive that it is impossible
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for it to be realized. This result is worse than the “bang-bang” forcing function. So the

idea is really impractical. How about the truncated versions of the ideal low-pass filter

function? Figure 1.15 shows two possible shifted truncated versions of the ideal low-pass

filter function corresponding different truncation intervals. The shifted truncated versions

of the ideal low-pass filter can be used as velocity profiles for a rigid body from one set

point to another set point.

Time0 T Time0 T 

Figure 1.15: Two possible shifted truncated ideal low-pass filter functions.

Unfortunately, the shifted truncated versions of the ideal low-pass filter loss too much

energy compared to the ideal low-pass filter. So the spectrum of truncated versions of the

ideal low-pass filter never behaves like the ideal low-pass filter. It is an unwise idea again.

Although it is unsuccessful in trying to find a perfect profile to satisfy both property 1

and property 2, it is understood that it is not easy to find a function that simultaneously con-

centrates its energy both at time domain and frequency domain. In Chapter 2 and Chapter 3,

some variables are defined to evaluate the concentration or localization of a signal both in

the time domain and the frequency domain. Functions in mathematics that achieve these

qualities are studied. The generation of robust vibration suppression control profile and

vibration suppression shape filter based on these functions are investigated.
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1.4.2 Robustness to Modeling Uncertainty

The robust vibration suppression control profiles in Chapter 2 and Chapter 3 that are orig-

inated from the thought in last subsection are robust to the variation of the resonance fre-

quencies since the energy components after a certain frequency Ω0 can be made negligibly

small. If a control profile has little energy after a certain frequency Ω0, i.e. to say that the

control profile behaves like a band-limited signal, the high frequency energy components

embedded in a flexible system will be definitely suppressed.

The Chapter 4 discusses the robust vibration suppression control profile generation for

a specific resonance mode. In this case, the robustness of the shape filter is examined with

respect to variation of the natural frequency and the damping ratio. Since all the shape

filters in this thesis are generated from continuous functions, the smoothness of the shape

filters simultaneously suppresses the high frequency resonance modes. The robustness of

the shape filter to suppress high frequence resonance modes is examined in Chapter 4.

1.5 Thesis Outline and Main Contributions

Chapter 2 presents the robust vibration suppression profile generation and the robust vi-

bration shape filter generation based on time-frequency uncertainty. Simulation results of

hard disk drive open-loop control and experimental results of flexible beam position control

show the effectiveness of the method. Chapter 3 presents the robust vibration suppression

profile generation and the robust vibration shape filter generation based on optimal energy

concentrated functions. Again, simulation results of hard disk drive open-loop control and

experimental results of flexible beam position control show the effectiveness of the method.

The robust vibration suppression profiles generated in Chapter 2 and Chapter 3 suppress

all the resonance modes whose resonance frequencies are located beyond a certain fre-

quency Ω0. Chapter 4 discusses the robust vibration suppression shape filter generation or

robust vibration suppression control profile generation for a specific resonance mode in a
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flexible system. Chapter 6 presents experimental results for the hard disk drive position

control using the techniques developed in this report. Finally, Chapter 7 presents the con-

cluding remarks. A number of conclusions and recommendations for future research are

highlighted.

This thesis makes several contributions to the field of robust vibration suppression con-

trol profile generation for flexible systems. The main contributions of this research are as

following:

• Generation of a control profile, such as velocity or acceleration, which can suppress

all the resonance modes whose resonance frequencies are located beyond a certain

frequency Ω0.

• Generation of a robust vibration suppression shape filter which can suppress all the

resonance modes whose resonance frequencies are located beyond a certain fre-

quency Ω0.

• Generation of a control profile, such as velocity or acceleration, which can suppress

a specific resonance mode in a flexible system.

• Generation of a robust vibration suppression shape filter which can suppress a spe-

cific resonance mode in a flexible system.

• Generation of a control profile, such as velocity or acceleration, which can suppress

all the resonance modes in a flexible system.

• Generation of a robust vibration suppression shape filter which can suppress all the

resonance modes in a flexible system.

• Generation of a robust vibration suppression control profile with multiple constraints,

such as velocity constraint, drive current constraint or drive voltage constraint.
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Chapter 2

Robust Vibration Suppression Profile

Generation Based on Time-Frequency

Uncertainty

2.1 Time-Frequency Localization

In theory, the most efficient way to reduce the move time is to use the time-optimal control

input which has the bang-bang form. In practice, to suppress the high frequency residual

vibration, the control input must have a small energy distribution at high frequencies (i.e.

the control input should behave like an ideal low-pass filter.) However a signal cannot be

found using existing techniques which simultaneously achieves the two properties. The

following analysis clearly shows this phenomenon.

Figure 2.1 shows the typical time-optimal command and its spectrum magnitude. The

time-optimal command has a sharp decay in the time domain but a very slow decay in the

frequency domain. From the top plot in Figure 2.1, the time-optimal command suddenly

changes from zero to maximum at time zero and suddenly changes from minimum to zero

at the end of the command. From the bottom plot in Figure 2.1, the magnitude spectrum of

the time-optimal command slowly changes its amplitudes from 0 rad/sec to the extremely
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high frequency. The total energy of the time-optimal command concentrates in the time

domain but spreads over all in the frequency domain. Figure 2.2 shows the typical ideal

low-pass filter function and its spectrum. Similarly, the ideal low-pass filter function has

a sharp decay in the frequency domain but a very slow decay in the time domain. So

both bang-bang form forcing function and ideal low-pass filter function are not suitable for

robust vibration suppression profile generation.
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Figure 2.1: Time-optimal command input and its spectrum magnitude.

In the communication field, it is known that one cannot simultaneously confine a func-

tion h(t) and its Fourier transform H(ω) too strictly. This phenomenon is clearly stated by

the Heisenberg Uncertainty Principle: if the time-spread ∆h(t) of h(t) is measured by

∆2
h(t) =

∫∞
−∞(t− t∗)2|h(t)|2dt
∫∞
−∞ |h(t)|2dt , (2.1)

and the frequency-spread ∆H(ω) of H(ω) is measured by

∆2
H(ω) =

∫∞
−∞(ω − ω∗)2|H(ω)|2dω
∫∞
−∞ |H(ω)|2dω , (2.2)

where t∗ is defined as center of h(t) and ω∗ is defined as center of H(ω) by

t∗ =

∫∞
−∞ t|h(t)|2dt
∫∞
−∞ |h(t)|2dt (2.3)
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Figure 2.2: Ideal low-pass filter function and its Fourier transform.

and

ω∗ =

∫∞
−∞ ω|H(ω)|2dω
∫∞
−∞ |H(ω)|2dω . (2.4)

Then the function h(t) must satisfy the inequality

∆h(t)∆H(ω) ≥
1

2
. (2.5)

Thus, both ∆h(t) and ∆H(ω) cannot, for any Fourier transform pair, be small. Furthermore,

the equality in (2.5) will hold if and only if h(t) (and hence H(ω)) are Gaussian [18, 19]

h(t) = cejate
−(t−b)2

4α (2.6)

for some real constants a, b, c, and α with a > 0 and c 6= 0.

In the engineering field, 2∆h(t) is called the root mean square (RMS) duration of h(t),

and 2∆H(ω) is called the RMS bandwidth of the function h(t). Let a = 0 make (2.6) a real

function and let c = 1, b = 0 and α = 1
2

reduce (2.6) to a simple form

h(t) = e
−t2

2 . (2.7)

The derivative of h(t) in (2.7) is given by

φ(t) = −te−t2

2 . (2.8)
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The derivative of φ(t) in (2.8) is given by

d

dt
φ(t) = −(1 − t2)e(− 1

2
t2), (2.9)

which is the equation for the so-called “Mexican hat” wavelet.

Figure 2.3 shows the waveform of φ(t). It is clear that φ(t) decays very quickly such

that the value of φ(t) at some t is negligible. It also demonstrates that the total energy

of φ(t) concentrates locally near zero. Figure 2.4 shows the waveform of the derivative

of φ(t). It shows that the derivative of φ(t) also has the same rapid decay and energy

concentration properties as those of φ(t). By computing the higher order derivatives of

φ(t), it can be known that all the derivatives of φ(t) have these two properties.
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Figure 2.3: Waveform of φ(t).

Now the waveform of φ(t) is considered from the spectrum point of view. The Fourier

transform Φ(ω) =
∫∞
−∞ φ(t)e−jωtdt is given as

Φ(ω) = j
√

2πωe(− 1
2
ω2). (2.10)

Figure 2.5 shows the spectrum of φ(t). It is clear that Φ(ω) decays very quickly such

that the value of Φ(ω) at some ω is negligible. It also demonstrates that the total energy of
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Figure 2.4: Waveform of the derivative of φ(t).

Φ(ω) concentrates locally near zero.

Since the value of φ(t) is negligibly small as |t| becomes large, φ(t) may be truncated

at the range of −D ≤ t ≤ D to obtain a time-limited version of φ(t), then shifted forward

to make the start time equal to zero and end time equal to 2D as in (2.11).

gφ(t) =







φ(t−D), if 0 ≤ t ≤ 2D;

0, otherwise.
(2.11)

Figure 2.6 shows the gφ(t) and φ(t) waveforms for D = 5. Referring to Figure 1.3,

gφ(t) can be used as an acceleration candidate for a double integrator system. To guarantee

the position constraint, a constant gain K must be multiplied by the waveform of gφ(t).

Since φ(t) decays rapidly as t increases, the energy distribution of gφ(t), which is the

shifted time-limited version of φ(t), approaches the energy distribution of φ(t). So, if the

resonance frequencies of the flexible structure are located at the region where the spectrum

of gφ(t) is negligibly small, gφ(t) can suppress residual vibrations of the flexible system.

In this case, most of the energy of gφ(t) concentrates before the first resonance frequency,

so it can suppress the residual vibration caused by all the resonance modes.
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Figure 2.5: Spectrum magnitude of φ(t).
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Figure 2.6: φ(t) and gφ(t) (shifted time-limited version of φ(t)).
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2.2 Robust Vibration Suppression Control Profile Design

Considering the similar waveforms of φ(t) but with a different time localization and fre-

quency localization, a scaled version of (2.8) may be introduced as

φn(t) = −te(− 1
2
2(2n)t2), (2.12)

where n is a real number. When n = 0, (2.12) reduces to (2.8).

Note the following properties of φn(t): the maximum of φn(t) is e−1/2

2n , which is achieved

at time − 1
2n ; the minimum of φn(t) is − e−1/2

2n , which is achieved at tm = 1
2n . So, as n in-

creases, the waveform of φn(t) narrows down to near zero, and the absolute value of φn(t)

decreases. As n decreases, the waveform of φn(t) becomes wide and the absolute value of

peak of φn(t) increases.

The Fourier transform Φn(ω) =
∫∞
−∞ φn(t)e−jωtdt is given as

Φn(ω) =
j
√

2πωe
(− 1

2
ω2

2(2n)
)

2(3n)
. (2.13)

Note the following properties of Φn(ω): the maximum of |Φn(ω)| is
√

2πe−1/2

2(2n) , which

is achieved at ωm = 2n. As n increases, the waveform of Φn(ω) becomes wide and the

maximum of |Φn(ω)| decreases. As n decreases, the waveform of Φn(ω) becomes narrow

and the maximum of |Φn(ω)| increases.

Since tmωm = 1 holds, tm and ωm cannot be decreased or increased simultaneously.

To demonstrate this characteristic and see how the waveforms of φn(t) and Φn(ω) change

with n, the waveforms of φ5(t) and |Φ5(ω)| are plotted in Figure 2.7, and the waveforms of

φ−5(t) and |Φ−5(ω)| are plotted in Figure 2.8.

Since the value of φn(t) become negligibly small as |t| becomes large, φn(t) may be

truncated at the range of −D ≤ t ≤ D to obtain a time-limited version of φn(t), then

shifted forward the waveform to make the start time equal to zero and end time equal to
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Figure 2.7: Waveforms of φ5(t) and its spectrum magnitude.

−200 −100 0 100 200
−20

−10

0

10

20

t (sec)

φ
−

5
(t

)

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

ω (rad/sec)

|Φ
−

5
(ω

)|
 

Figure 2.8: Waveforms of φ−5(t) and its spectrum magnitude.
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2D as in (2.14).

gφ,n(t) =







φn(t−D), if 0 ≤ t ≤ 2D;

0, otherwise.
(2.14)

So, gφ,n(t) can be used as an acceleration profile candidate for a double integrator sys-

tem. To guarantee the position constraint, a constant gain K must be multiplied by the

waveform gφ,n(t). Since φn(t) decays rapidly as t increases, the energy distribution of

gφ,n(t), which is the shifted, time-limited version of φn(t) nears the energy distribution of

φn(t). So, if the resonance frequencies of the flexible structure are located in the region

where the spectrum of gφ,n(t) is negligibly small, then gφ,n(t) cannot induce the residual

vibration of the flexible system. In this case, most of the energy of gφ,n(t) concentrates

before the first resonance frequency, so it can minimize the residual vibration caused by all

the resonance modes.

The Fourier transform of the truncated version of φn(t) is very hard to calculate even

though Φn(ω) is very easy to calculate. Continuous-time Fourier transform Gφ,n(ω) in-

volves the complex error function, which though is not elaborated on here. In the following

analysis, the discrete-time Fourier transform (see Appendix A) may be used instead of the

continuous-time Fourier transform.

Now the discrete-time version of (2.14) is derived. If the sampling period is Ts sec and

the total discrete-time sequence has M + 1 impulses,

gφ,n[k] =







φn((k − M
2

)Ts), if 0 ≤ k ≤M ;

0, otherwise.
(2.15)

So the discrete-time sequence gφ,n[k], 0 ≤ k ≤ M , is antisymmetric, and M
2

is the

center of symmetry. Figure 2.9 shows the waveform of gφ,0[k], 0 ≤ k ≤ M with Ts = 0.5

and M = 20. Figure 2.10 shows the waveform of gφ,0[k], 0 ≤ k ≤ M with Ts = 0.5 and

M = 21.

When M is even, the discrete-time Fourier transform Gφ,n(ω) =
∑∞

k=−∞ gφ,n[k]e−jωk
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Figure 2.9: Waveform of gφ,0[k] with Ts = 0.5 and M = 20.
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Figure 2.10: Waveform of gφ,0[k] with Ts = 0.5 and M = 21.
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=
∑M

k=0 gφ,n[k]e−jωk can be computed as [60]

Gφ,n(ω) = je−jωM/2

[
M/2
∑

k=1

2gφ,n[M/2 − k] sin (ωk)

]

, (2.16)

= je−jωM/2

[

2

M/2
∑

k=1

φn(−kTs) sin (ωk)

]

. (2.17)

The magnitude of Gφ,n(ω) for even M is

|Gφ,n(ω)| =

∣
∣
∣
∣
∣
∣

2

M/2
∑

k=1

φn(−kTs) sin (ωk)

∣
∣
∣
∣
∣
∣

. (2.18)

When M is odd, the discrete-time Fourier transform Gφ,n(ω) =
∑∞

k=−∞ gφ,n[k]e−jωk

=
∑M

k=0 gφ,n[k]e−jωk can be computed as [60]

Gφ,n(ω) = je−jωM/2

[
(M+1)/2
∑

k=1

2gφ,n[(M + 1)/2 − k] sin (ω(k − 1/2))

]

, (2.19)

= je−jωM/2

[

2

(M+1)/2
∑

k=1

φn((
1

2
− k)Ts) sin (ω(k − 1/2))

]

. (2.20)

The magnitude of Gφ,n(ω) for odd M is

|Gφ,n(ω)| =

∣
∣
∣
∣
∣
∣

2

(M+1)/2
∑

k=1

φn((
1

2
− k)Ts) sin (ω(k − 1/2))

∣
∣
∣
∣
∣
∣

. (2.21)

In contrast to the continuous-time Fourier transform of gφ,n(t), the discrete-time Fourier

transform of gφ,n[k] can be easily calculated.

Given a fixed move time, the acceleration profile can be determined after choosing

the scaling parameter n. The value of n can be optimized from the characteristics of the

uncertain resonance structure. From the Bode magnitude plot of the resonance structure,

the first resonance frequency can be located to be Ω0 rad/sec. The following objective can

be defined in terms of ω0 = Ω0Ts, where Ts is the sampling period in seconds.

J =

∫ ω0

0
|Gφ,n(ω)|2dω

∫ π

0
|Gφ,n(ω)|2dω (2.22)
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or

1 − J =

∫ π

0
|Gφ,n(ω)|2dω −

∫ ω0

0
|Gφ,n(ω)|2dω

∫ π

0
|Gφ,n(ω)|2dω . (2.23)

The following optimization problem can be used to determine the optimal value of n.

max
n

J or min
n

(1 − J) (2.24)

Physically, the objectives imply that the best waveform of gφ,n[k] maximizes the proportion

of its energy before the first resonance frequency, or minimizes the proportion of its energy

after the first resonance frequency, according to an arbitrary move time. For engineering

applications, the integral in (2.24) can be easily approximated by the cumulative summation

of the element |Gφ,n(ω)|2. So without any optimization algorithm, the optimal n can be

approximated from the plot of J or 1 − J (2.24) in terms of n.

Bayo [9, 8] and Singer [71] have studied Gaussian function to generate a continuous-

time open-loop driving function for a flexible manipulator. However, in their studies, the

Gaussian function profile or the derivative of the Gaussian function are simply made to

start at a small number in the time domain. The tradeoff between the move time and

energy concentration of the control profile in the frequency domain is not studied in their

work. Furthermore, robust vibration suppression shape filter and closed-loop control using

Gaussian functions are also studied in this chapter.

2.3 Simulation Results for Hard Disk Drive Seek Control

Consider the following flexible system which is embedded in a hard disk assembly, where

the input is the current signal in amps and the output is the position signal in tracks.

H(s) = Kc ·Kv ·Kp ·R(s)
1

s2
, (2.25)

here Kc = 1.3 tracks/sample2

amp is a constant gain from current to acceleration, Kv = 5 × 104

samples
sec is the velocity gain, Kp = 5×104 samples

sec is the position gain, andR(s) is a 28th order

resonance structure. The Bode magnitude plot of R(s) is shown in Figure 1.2.
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Figure 2.11 shows the change of the objective 1−J with n for Ω0 = 9.68×103 rad/sec,

Ts = 2 × 10−5 sec and the move time is 5 × 10−3 sec. It is observed that the objective is

very insensitive to the optimal n. Figure 2.12 shows the same information as Figure 2.11

with a log scale of the Y axis. In this case, optimal n was found to be about 10.93.
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Figure 2.11: The change of 1 − J (linear scale) with n.

With the optimal value of n computed, the current signal for a 100 tracks seek can then

be calculated. Figure 2.13 shows the current signal. Figure 2.14 shows the jerk signal which

is the derivative of the current signal. Figure 2.15 shows the position signal. Figure 2.16

shows the position signal near the target track. To see the residual vibration, the position

error signal, which is defined as the position output difference between H(s) in (5.26) and

the reference model Href (s) can be plotted, where Href (s) is defined as

Href (s) = Kc ·Kv ·Kp
1

s2
. (2.26)

Figure 2.17 shows that the position signal settles within ± 1
1000

track before the move

time of 5× 10−3 sec. So, the current signal suppresses the residual vibration induced by all

the resonance modes.

Next, the current signal will be analyzed from the filter point of view. Figure 2.18
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Figure 2.12: The change of 1 − J (log scale) with n.

shows the reference velocity signal which is the integral of the acceleration signal. This

signal is considered as the impulse response of a Finite Impulse Response (FIR) filter. The

magnitude of the frequency response of this FIR filter is shown in Figure 2.19. It is clear

that this FIR filter has a very good cutoff of high frequency signals.

Finally, the move time is reduced to 2.5 × 10−3 sec and the control input signal is

designed again. The optimal value of n is calculated approximately to be 11.41. Figure 2.20

shows the current signal. Figure 2.21 shows the jerk signal which is the derivative of the

current signal. Figure 2.22 shows the position signal. Figure 2.23 shows the position error

signal. Figure 2.24 shows the position signal near the target track. It shows that the position

signal settles within ± 5
100

track immediately after the move time which is 2.5 × 10−3 sec.

So, the current signal suppresses the residual vibration induced by all the resonance modes.

Figure 2.25 shows the reference velocity signal. As before this signal is considered as

the impulse response of an FIR filter. The magnitude of the frequency response of this

FIR filter is shown in Figure 2.26. Again this FIR filter has a very good cutoff of high

frequency signals, although the magnitudes at high frequencies are somewhat larger than

those of Figure 2.19.
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Figure 2.13: Current control input signal for 5 msec move.
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Figure 2.14: Jerk signal for 5 msec move.
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Figure 2.15: Position signal for 5 msec move.
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Figure 2.16: Position signal near the target for 5 msec move.
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Figure 2.17: Position error signal for 5 msec move.
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Figure 2.18: Reference velocity signal for 5 msec move.
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Figure 2.19: Frequency response of the FIR filter for 5 msec move.
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Figure 2.20: Current control input signal for 2.5 msec move.
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Figure 2.21: Jerk signal for 2.5 msec move.
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Figure 2.22: Position signal for 2.5 msec move.
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Figure 2.23: Position error signal for 2.5 msec move.

0 0.002 0.004 0.006 0.008 0.01
99.95

99.96

99.97

99.98

99.99

100

100.01

100.02

100.03

100.04

100.05

Time (sec)

P
os

iti
on

 (t
ra

ck
s)

Figure 2.24: Position signal near the target track for 2.5 msec move.
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Figure 2.25: Reference velocity signal for 2.5 msec move.
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Figure 2.26: Frequency response of the FIR filter for 2.5 msec move.
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It must be pointed out that the control input move time cannot be arbitrarily reduced if

a certain settling time is required. It depends on the resonance characteristics. As shown

before, a signal cannot arbitrarily achieve both time and frequency localization. Reducing

move time will result a poor frequency concentration. Figure 2.27 shows the concentration

1 − J defined in (2.23) with different move time for the same sampling period and first

resonance frequency given before. From Figure 2.27, if the move time of the control input

is chosen to be 0.5 msec, the minimal proportion of its energy after the first resonance is

about 0.45 which is very poor. There is a tradeoff between the move time of a control input

and its concentration in the frequency domain as shown in Figure 2.27.
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Figure 2.27: Concentration 1 − J with different move time.

2.4 Robust Vibration Suppression Shape Filter

Generation Based on Time-Frequency Uncertainty

From the previous section, a robust acceleration profile is generated. A robust velocity

profile with initial value of zero can be generated from the robust acceleration profile.
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The resultant velocity profile starts and ends at zero values. As shown in Chapter 1, the

normalized velocity profile function can be used as a shape filter. In this section, a vibration

suppression shape filter is directly generated from Gaussian functions that can optimally

achieve the time-frequency localization in the sense of Heisenberg uncertainty.

A scaled version of the simple Gaussian function in (2.7) may be introduced as

hn(t) = e−
1
2
22nt2 . (2.27)

Since the value of hn(t) is negligibly small as |t| becomes large, hn(t) may be truncated

at the range of −D ≤ t ≤ D to obtain a time-limited version of hn(t) then shifted forward

to make the start time equal to zero and the end time equal to 2D as in (2.28),

gh,n(t) =







hn(t−D), if 0 ≤ t ≤ 2D;

0, otherwise.
(2.28)

The discrete-time version of (2.28) is derived. If the sampling period is Ts sec and the

total discrete-time sequence has M + 1 impulses,

gh,n[k] =







hn((k − M
2

)Ts), if 0 ≤ k ≤M ;

0, otherwise.
(2.29)

So the discrete-time sequence gh,n[k], k = 0, 1, . . . ,M , is symmetric and M
2

is the

center of symmetry.

WhenM is an even integer, the discrete-time Fourier transformGh,n(ω) =
∑∞

k=−∞ gh,n[k]e−jωk

=
∑M

k=0 gh,n[k]e−jωk can be computed as [60]

Gh,n(ω) = e−jωM/2

[
M/2
∑

k=0

a[k] cos (ωk)

]

, (2.30)

where

a[0] = gh,n[M/2], (2.31)

a[k] = 2gh,n[M/2 − k], k = 1, 2, · · · ,M/2. (2.32)
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The magnitude of Gh,n(ω) for even M is

|Gh,n(ω)| =

∣
∣
∣
∣
∣
∣

M/2
∑

k=0

a[k] cos (ωk)

∣
∣
∣
∣
∣
∣

. (2.33)

When M is odd, the discrete-time Fourier transform Gh,n(ω) =
∑∞

k=−∞ gh,n[k]e−jωk

=
∑M

k=0 gh,n[k]e−jωk can be computed as [60]

Gh,n(ω) = e−jωM/2

[
(M+1)/2
∑

k=1

b[k] cos (ω(k − 1

2
))

]

, (2.34)

where

b[k] = 2gh,n[(M + 1)/2 − k], k = 1, 2, · · · , M + 1

2
. (2.35)

The magnitude of Gh,n(ω) for odd M is

|Gh,n(ω)| =

∣
∣
∣
∣
∣
∣

(M+1)/2
∑

k=1

b[k] cos (ω(k − 1

2
))

∣
∣
∣
∣
∣
∣

. (2.36)

Given a fixed time duration of the vibration suppression shape filter profile in (2.29),

the shape filter profile can be determined after choosing the scaling parameter n. The value

of n can be computed from the characteristics of the uncertain resonance structure. From

the Bode magnitude plot of the resonance structure, the first resonance frequency can be

located to be Ω0 rad/sec. The following objective can be defined in terms of ω0 = Ω0Ts,

where Ts is the sampling period in seconds.

J =

∫ ω0

0
|Gh,n(ω)|2dω

∫ π

0
|Gh,n(ω)|2dω (2.37)

or

1 − J =

∫ π

0
|Gh,n(ω)|2dω −

∫ ω0

0
|Gh,n(ω)|2dω

∫ π

0
|Gh,n(ω)|2dω . (2.38)

The following optimization problem can be used to determine the optimal value of n.

max
n

J or min
n

(1 − J) (2.39)
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Physically, the objectives imply that the best waveform of gh,n[k] maximizes the pro-

portion of its energy before the first resonance frequency Ω0, or minimizes the proportion

of its energy after the first resonance frequency Ω0, according to an arbitrary move time.

For engineering applications, the integral in (2.39) can be easily approximated by the cu-

mulative summation of the element |Gh,n(ω)|2. So without any optimization algorithm, the

optimal n can be approximated from the plot of J or 1 − J of (2.39) in terms of n. After

the optimal profile gh,n[k], 0 ≤ k ≤ M , is derived, the following normalization can be

processed to make the sum of the M + 1 impulses of a vibration suppression shape filter to

be 1.

f [k] =







gh,n[k]
PM

m=0 gh,n[m]
, if 0 ≤ k ≤M ;

0, otherwise.
(2.40)

Notice that the initial and final values of the sequence gh,n[k], 0 ≤ k ≤M , are not zero,

so it cannot be directly used as a robust vibration suppression velocity profile to realize

a rigid body movement from one set point to another. Since the sequence gh,n[k] decays

sharply at the start and end points, it can be vertically shifted down to make the start and

end values to be zero as in (2.41),

vel[k] = gh,n[k] − gh,n[0], 0 ≤ k ≤M. (2.41)

Notice that gh,n[0] = gh,n[M ] because the sequence is a symmetric function. The sequence

vel[k], 0 ≤ k ≤M , can be used as a velocity profile. Depending on the rigid body position

movement, the velocity must be multiplied with a constant. The discrete-time sequence

of the acceleration profile acc[k] can be generated from the discrete-time sequence of the

velocity profile vel[k] by

acc[k] =
vel[k + 1] − vel[k]

Ts

, (2.42)

where Ts is the sampling period. Depending on the rigid body position movement, the

acceleration profile must be multiplied with a constant.
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Remark 2.1 The method to generate the robust vibration suppression acceleration profile

in (2.42) is different from the method to generate the robust vibration suppression accel-

eration profile in Section 2.2. In Section 2.2, the acceleration profile is generated from

the shifted time-limited discrete-time sequence of the derivative of Gaussian function. In

this section, a shifted time-limited discrete-time sequence of the Gaussian function is firstly

generated. This discrete-time sequence gh,n[k] in (2.29) is used to generate a robust vibra-

tion suppression shape filter or a robust vibration suppression velocity profile. The time

differencing of the velocity profile in (2.41) is exactly a robust vibration suppression accel-

eration profile. From numerical computation, it is known that the two acceleration profiles

are almost the same because the optimal scale parameters are approximately the same in

both cases.

2.5 Optimal Scale Parameter n Computation from a

Scalar Bounded Nonlinear Function Miminization

Problem

The calculation of the optimal scale parameter n in Section 2.2 and Section 2.4 can also be

reduced to a scalar bounded nonlinear function minimization problem. So the Matlab rou-

tine fminbnd in the Optimization Toolbox can be used to find the optimal scale parameter

n very quickly.

Consider again the objective and the optimization problem in Section 2.2 and Sec-

tion 2.4,

J =

∫ ω0

0
|Gn(ω)|2dω

∫ π

0
|Gn(ω)|2dω (2.43)

and

min
n

(1 − J), (2.44)
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where Gn(ω) is the discrete-time Fourier transform of the sequence gn[k]. gn[k] = gφ,n[k]

is the shifted time-limited discrete-time sequence of the derivative of Gaussian function

in Section 2.2 or gn[k] = gh,n[k] is the shifted time-limited discrete-time sequence of the

Gaussian function in Section 2.4.

First, the energy of the discrete-time sequence gn[k], k = 0, 1, . . . ,M , in the frequency

interval [0, ω0], i.e. 1
2π

∫ ω0

0
|Gn(ω)|2dω, can be approximated from the cumulative sum-

mation of the element |Gn(ω)|2, where Gn(ω) is a continuous function of n and ω. The

interval [0, ω0] can be divided intom subintervals, [x0, x1], [x1, x2], . . . , [xm−1, xm], each of

length ∆ω = ω0/m. So xi = 0 + i∆ω, i = 0, 1, . . . ,m − 1. The energy of Gn(ω) in the

frequency interval [0, ω0] can be written as

1

2π

∫ ω0

0

|Gn(ω)|2dω ≈ 1

2π

[
|Gn(x∗1)|2∆ω + |Gn(x∗2)|2∆ω · · · + |Gn(x∗m)|2∆ω

]
, (2.45)

≈ 1

2π

m∑

i=1

|Gn(x∗i )|2∆ω, (2.46)

where x∗i is a sample point in the interval [xi, xi+1]. For example, x∗i can be chosen to be

xi, or xi+1, or the middle point of the interval xi+xi+1

2
.

The energy of the discrete-time sequence gn[k] in the frequency interval [0, π], i.e.

1
2π

∫ π

0
|Gn(ω)|2dω, can also be approximated in a similar way.

Another simple way to calculate 1
2π

∫ π

0
|Gn(ω)|2dω is discussed here. Since 1

2π

∫ π

−π
|Gn(ω)|2dω

is the total energy of the discrete-time sequence gn[k], from Parseval’s theorem

1

2π

∫ π

−π

|Gn(ω)|2dω =
M∑

k=0

|gn[k]|2, (2.47)

the following equation holds

1

2π

∫ π

0

|Gn(ω)|2dω =
1

2

M∑

k=0

|gn[k]|2. (2.48)

The above equation is derived from the fact that |Gn(ω)| is an even function of ω for the

real sequence gn[k].

So the energy concentration 1 − J is reduced to a function of one variable n. The

calculation of optimal n is to find a minimum of a function of one variable on a fixed
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interval

min
n

(1 − J(n)) such that n1 < n < n2, (2.49)

where n1 and n2 are scalars. The fixed numbers of n1 and n2 can be chosen from the plot

of (1−J) in terms of n. As n increases, (1−J) approaches to 1 since the exponential term

e−
1
2
22nt2 approaches to 0. As n decreases, (1 − J) approaches to a non zero constant since

the exponential term e−
1
2
22nt2 approaches to 1.

Remark 2.2 The algorithm fminbnd in Matlab is based on Golden Section search and

parabolic interpolation. The detail of the algorithm can be found in [26].

Remark 2.3 The objective function J in (2.43) is the energy concentration of the sequence

gn[k] in the frequency interval [0, ω0] with respect to the energy in the frequency interval

[0, π]. Since the Fourier transform of a real signal has conjugate symmetry, J can also be

written as

J =

∫ ω0

0
|Gn(ω)|2dω

∫ π

0
|Gn(ω)|2dω =

∫ ω0

−ω0
|Gn(ω)|2dω

∫ π

−π
|Gn(ω)|2dω , (2.50)

i.e. the fraction of the energy in the frequency interval [−ω0, ω0] with respect to the total

energy. The direct calculation of the objective function J rather than evaluating the Fourier

spectrum for arbitrary signal sequences is studied in Chapter 3.

2.6 Experimental Results on Flexible Link with Strain

Gauge

2.6.1 Description

The photo 1 in Figure 2.28 shows the modular flexible link apparatus manufactured by

Quanser Consulting, Inc. A strain gauge mounted at the base is calibrated to measure the

1The photo is adopted from Quanser Consulting, Inc.
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deflection of the tip. The purpose of the experiment is to design a feedback system which

reduces the oscillations of the tip while moving the tip to a desired position [68].

Figure 2.28: Quanser SRV02 plant with flexible link module.

2.6.2 Mathematical Model

The DC servo motor dynamics are shown in Figure 2.29. The input is the applied voltage

Va and the output is the link slew angle θ.

currentVc

Vb

θ
11

s
1
s

1

I.s+R

Kg

Kg1/JhubKm

Kb

1
Va

Figure 2.29: The DC servo motor dynamics.

The applied voltage is the sum of the control voltage Vc and the back-emf voltage Vb

Va = Vc + Vb. (2.51)
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The control voltage in terms of motor current i is

Vc = Ri+ I
di

dt
, (2.52)

where I is the armature inductance and R is the armature resistance. The back-emf voltage

in terms of the link slew angle velocity θ̇ is

Vb = KgKbθ̇, (2.53)

where Kg is the gear ratio, and Kb is the back-emf constant.

A simplified model of the flexible link including the deflection of the tip is shown in

Figure 2.30 [68]. A lumped parameter model for the system can be derived using the

following simple method:

L

d

θ

 J hub

θα

α

d

Figure 2.30: Simplified model of flexible link.

1) Obtain the natural frequency of the link with the base clamped. This is obtained

experimentally to be fn ≈ 3 − 4 Hz. Then, the angular deflection of the tip with respect to

the clamped frame is given by

α̈ = −ω2
nα, (2.54)

where ωn = 2πfn.
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2) Estimate the stiffness of the clamped joint since the following equation holds

ωn =

√

Kstiff

Jload

then Kstiff = (2πfn)2Jload, (2.55)

where Jload is the inertia of the link assuming a rigid body

Jload =
1

3
mLL

2. (2.56)

From Figure 2.30, the governing equation of the simplified model is given by

θ̈ =
Kstiff

Jhub

α−
K2

mK
2
g

RJhub

θ̇ +
KmKg

RJhub

Va. (2.57)

If the approximation θ̈ + α̈ = −Kstiff

Jload
α holds, then

α̈ = − Kstiff

JhubJload

(Jhub + Jload)α+
K2

mK
2
g

RJhub

θ̇ − KmKg

RJhub

Va. (2.58)

A feedback controller is designed based on the state space model of (2.57) and (2.58)

in [68]. The same feedback controller is used in the following different feed forward

schemes. The parameters in the governing equations are shown in Table 2.1.

Parameter Symbol Value Unit

Total hub inertia Jhub 0.0021 Kg-m2

Motor torque constant Km 0.00767 N-m/A

Gear ratio Kg 14.1 × 5

Back-emf constant Kb 0.804 × 10−3 volts/rpm

Link length L 0.6 m

Link mass mL 0.06 Kg

Motor terminal resistance R 2.6 Ohm

Motor armature inductance I 0.18 mH

Table 2.1: System parameters.
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2.6.3 Standard Closed-Loop Control

The standard closed-loop control scheme developed in Section 1.3 is used to reduce the

residual vibration of the flexible link. The discrete-time scaled Gaussian functions are used

to generate the robust vibration suppression position references.

Figure 2.31 shows the discrete Gaussian function profiles with Ω0 = 9 rad/sec, Ts =

0.002 sec, and the slew angle θ = 50 deg, where Ω0 is the approximate first resonance fre-

quency of the closed-loop system. Figure 2.32 shows the robust position reference profiles

during the move time. After the move time, the position reference holds its final value.

Figure 2.33 shows the proportion of the energy after the frequency Ω0, i.e. 1− J in (2.23).

Here, the discrete-time sequences to generate the discrete-time Fourier transform in (2.22)

and (2.23) are the discrete Gaussian function sequences as shown in Figure 2.31.
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Figure 2.31: Gaussian function profiles.

Figure 2.34 shows the experimental results with the robust position reference profile

with the move time of 1 sec. It shows the tip vibration (at the left bottom plot) almost

stops at the end of the move time. Figure 2.35 shows the experimental results with the step

reference input. Clearly the tip vibration (at the left bottom plot) is very large during the
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Figure 2.32: Position reference profiles.
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Figure 2.33: The proportion of the energy after Ω0.
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move time and decays very slowly after the move time. In testing, the vibration of the tip

of the flexible link was clearly visible.
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Figure 2.34: Experimental results of a flexible link closed-loop control with robust position

reference.

From Fig. 2.31, it is known the initial and final values of the discrete-time Gaussian

functions are not zero. The Gaussian function profiles gh,n[k] may be vertically shifted

down to force it to start and end at zero,

vel[k] = gh,n[k] − gh,n[0], k = 0, 1, · · · ,M. (2.59)

Notice that gh,n[0] = gh,n[M ] because the sequence gh,n[k] is a symmetric function. The

sequence vel[k], 0 ≤ k ≤ M , can be used as a velocity profile. The resultant vel[k] from

Fig. 2.31 is shown in Fig. 2.36. Although the energy concentration property is impaired

for short move time, the velocity reference becomes smooth at the start and the end of the

movement. Fig. 2.37 shows the robust position reference profiles with zero initial and final

velocities. Fig. 2.38 shows the experimental results with this robust position reference and

the move time of 1 sec. It shows the results are almost the same as the results of the nonzero

initial and final Gaussian profile.
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Figure 2.35: Experimental results of a flexible link closed-loop control with step reference.
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Figure 2.36: Vertically shifted Gaussian velocity profiles.
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Figure 2.37: Position reference profiles with zero initial and final velocities.
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Figure 2.38: Experimental results of a flexible link closed-loop control.
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2.6.4 Model Reference Closed-Loop Control

The model reference closed-loop control scheme developed in Section 1.3 is here to reduce

the residual vibration of the flexible link. Again, the Gaussian functions are used to generate

the robust velocity references. The robust forcing function can be derived as shown in

Figure 1.12. From the DC motor servo dynamic model in Figure 2.29, the applied motor

voltage is

Va = Vc + Vb

= Ri+ I
di

dt
+KgKbθ̇. (2.60)

The armature current i has a relationship with the acceleration signal θ̈ as

i =
Jhub

KgKm

θ̈. (2.61)

So both i and di
dt

can be derived from the velocity signal θ̇. Finally, the motor applied

voltage is a function of the velocity signal θ̇.

In the above derivations, all the signals are assumed to be continuous signals. The

discrete-time signal of the applied motor voltage can be approximated from the discrete-

time signal of the link velocity. In the model reference closed-loop control scheme, the

velocity reference can be designed from vel[k] in (2.59). If the discrete-time sequence of

the velocity signal is vel[k], 0 ≤ k ≤ M , the discrete-time signal of the acceleration,

acc[k], can be approximated as

acc[k] =
vel[k + 1] − vel[k]

Ts

, 0 ≤ k ≤M − 1, (2.62)

acc[M ] = 0, (2.63)

where Ts is the sampling period. The discrete-time signal of di/dt can be generated in a

similar way.

Figure 2.39 shows the model reference control profiles generated from the move time

of 1 sec and Ω0 = 9 rad/sec. Figure 2.40 shows the experimental results with the robust
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forcing function. It shows the tip vibration (at the left bottom plot) almost stops at the end

of the move time. In many industry applications, the plant is actuated by a current source

supply as shown in Section 2.3. In the current source power supply, the generation of the

current profile is the same as that of Section 2.3.

0 0.5 1
−0.02

−0.01

0

0.01

0.02

Time (sec)

C
ur

re
nt

 (a
m

p)

0 0.5 1
0

20

40

60

80

100

Time (sec)

V
el

oc
ity

 d
θ/

dt
 (d

eg
/s

ec
)

0 0.5 1
0

20

40

60

Time (sec)

S
le

w
 a

ng
le

 θ
 (d

eg
)

0 0.5 1
−0.5

0

0.5

1

1.5

Time (sec)

A
pp

lie
d 

vo
lta

ge
 (v

ol
ts

)

Figure 2.39: Model reference control profiles.
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Figure 2.40: Experimental results of a flexible link model reference control.
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Chapter 3

Robust Vibration Suppression Profile

Generation Based on Optimal Energy

Concentration Functions

In Chapter 2, the following objective functions are defined in terms of the ω0 = Ω0Ts to

compute the optimal scale parameter n ∈ R for the discrete-time scaled Gaussian function

gn[k],

J =

∫ ω0

0
|Gn(ω)|2dω

∫ π

0
|Gn(ω)|2dω (3.1)

or

1 − J =

∫ π

0
|Gn(ω)|2dω −

∫ ω0

0
|Gn(ω)|2dω

∫ π

0
|Gn(ω)|2dω , (3.2)

where Ts is the sampling period in second and Ω0 is a frequency in rad/sec so that all the

resonances occur beyond this Ω0. The following optimal problem can be used to determine

the value of n,

max
n

J or min
n

(1 − J). (3.3)

Physically, the objectives are to find the best waveform of the gn[k] such that the proportion

of its energy before the first resonance frequency is maximized, or the proportion of its
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energy after the first resonance frequency is minimized, according to an arbitrary fixed

move time.

Consider the objective (3.1) again and suppose a continuous-time filter f(t) is to have

a finite support impulse response defined only on 0 ≤ t ≤ T . Also, as much of the impulse

response energy as possible is contained in |ω| ≤ Ω, i.e.,

max
f(t)

∫ Ω

−Ω
|F (ω)|2dω

∫∞
−∞ |F (ω)|2dω , (3.4)

where F (ω) =
∫ T

0
f(t)e−iωtdt is the Fourier transform of f(t). Here, the detail on the

function f(t) is not known and it can be an arbitrary energy bounded signal.

The answer to this problem is the shifted prolate spheroidal wave functions. This prob-

lem was accidentally solved by Slepian and his colleagues at Bell Labs in 1961 when

studying communication theory [89, 39, 40, 86]. In this chapter, robust vibration suppres-

sion profile generation using prolate spheroidal wave functions will be examined.

Instead of using concentration in the sense of Heisenberg uncertainty, Slepian et al.

introduced a more meaningful measure of a signal for the communication engineer

α2(T ) :=

∫ T/2

−T/2
|f(t)|2dt

∫∞
−∞ |f(t)|2dt , (3.5)

i.e., the fraction of the signal’s energy that lies in the time interval [−T/2, T/2]. Similarly,

β2(Ω) :=

∫ Ω

−Ω
|F (ω)|2dω

∫∞
−∞ |F (ω)|2dω (3.6)

is a measure of concentration of the amplitude spectrum of f(t).

Slepian’s original question was to determine how large α2(T ) can be for f(t) in the

space of band-limited signals. The group accidentally found the prolate spheroidal wave

functions were exactly the solutions to the original problem. In short, given any T > 0 and

any Ω > 0, the original problem has a countably infinite set of functions ψ0(t), ψ1(t), ψ2(t), . . .

and a set of corresponding λi = α2(T ), i = 0, 1, 2, . . ., such that

λ0 > λ1 > λ2 > · · · . (3.7)
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The best choice of f(t) satisfying (3.4) is the first shifted spheroidal wave function

f(t) = ψ0(t+ T/2, c), (3.8)

where c = ΩT/2.

The unexpected quality of the waveform of ψ0 is that it can be used to generate a shape

filter or a reference velocity candidate to suppress all the high frequency resonance vibra-

tions with the energy concentration objective (3.3). The base functions in (3.3) in this chap-

ter are the prolate spheroidal wave functions. Since the waveform of the reference velocity

is known, the acceleration, jerk, position and other profiles can be derived to synthesize the

control input signals to suppress the residual vibration in a flexible system.

3.1 Band-Limited and Time-Limited Signals

L2(−∞,∞) is denoted as the class of all complex valued functions f(t) defined on the

whole real line (−∞,∞) and integrable in absolute square, such that

‖f(t)‖2
∞ :=

∫ ∞

−∞
|f(t)|2dt (3.9)

is referred to as the total energy of f(t). Similarly, L2(−A,A) is denoted the set of all

complex valued functions f(t) defined on the real line [−A,A] and integrable in absolute

square in the interval [−A,A], such that

‖f(t)‖2
A :=

∫ A

−A

|f(t)|2dt (3.10)

is referred to as the energy of f(t) in the interval [−A,A]. Df(t) is a time-limited version

of f(t) obtained by the following rule

Df(t) =







f(t), if |t| ≤ T/2,

0, otherwise,
(3.11)

where T is a positive number.
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The finite energy signal f(t) is said to be band-limited to the band [−Ω,Ω], if the

Fourier transform of f(t), i.e., F (ω) vanishes if ω > Ω. In this case, the signal has the

following finite Fourier integral representation

f(t) =
1

2π

∫ Ω

−Ω

F (ω)ejωtdω. (3.12)

Slepian et al. [89] notes that members of band-limited signals are entire functions of the

variable t. A complex function is said to be entire if it is analytic at all finite points of the

complex plane. Landau et al. [39] shows that the only L2(−∞,∞) signal f(t) with both

time-limited and band-limited properties is zero for all t, i.e., f(t) ≡ 0.

3.2 Energy Concentration Problem In Continuous-Time

Case

As shown, Slepian’s original problem was to determine how large α2(T ) can be for signals

f(t) that are band-limited to the band [−Ω,Ω]. The following steps are outlined to solve

this problem by following Slepian et al. [89, 39, 88].

First, f(t) in (3.5) is expressed in terms of its amplitude spectrum F (ω).

α2(T ) =

∫ T/2

−T/2
f(t)f(t)dt

1
2π

∫ Ω

−Ω
|F (ω)|2dω

, (3.13)

=

∫ T/2

−T/2
1
2π

∫ Ω

−Ω
ejωtF (ω)dω 1

2π

∫ Ω

−Ω
e−jω′tF (ω′)dω′dt

1
2π

∫ Ω

−Ω
|F (ω)|2dω

, (3.14)

=

1
2π

∫ Ω

−Ω

∫ Ω

−Ω

∫ T/2

−T/2
ejωte−jω′tF (ω)F (ω′)dtdωdω′

∫ Ω

−Ω
|F (ω)|2dω

, (3.15)

=

1
2π

∫ Ω

−Ω

∫ Ω

−Ω

∫ T/2

−T/2
ej(ω−ω′)tdtF (ω)F (ω′)dωdω′

∫ Ω

−Ω
|F (ω)|2dω

. (3.16)

Since

sin (T
2
(ω − ω′))

π(ω − ω′)
=

1

2π

∫ T/2

−T/2

ej(ω−ω′)tdt, (3.17)
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α2(T ) =

∫ Ω

−Ω

∫ Ω

−Ω

sin ( T
2

(ω−ω′))

π(ω−ω′)
F (ω)F (ω′)dωdω′

∫ Ω

−Ω
F (ω)F (ω)dω

. (3.18)

Here, F (ω) is an arbitrary function in L2(−Ω,Ω), and the problem of maximizing α2(T )

has been reduced to a homogeneous linear integral equation with a symmetric kernel in

Courant and Hilbert’s Methods of Mathematical Physics [20]. All functions F (ω) that

maximizes α2(T ) must satisfy the following integral equation
∫ Ω

−Ω

sin (T
2
(ω − ω′))

π(ω − ω′)
F (ω′)dω′ = α2(T )F (ω), |ω ≤ Ω|. (3.19)

An integral equation of the above form is known as a homogeneous Fredholm equation of

the second kind. To further simplify the equation, the following substitutions and defini-

tions are made

ω′ = Ωy, ω = Ωx, ψ(y) := F (Ωy), λ := α2(T ), c :=
TΩ

2
.

With the above substitutions and definitions, (3.19) is reduced to
∫ 1

−1

sin (c(x− y))

π(x− y)
ψ(y)dy = λψ(x), |x| ≤ 1. (3.20)

It can be shown that the symmetric kernel sin (c(x−y))
π(x−y)

is positive definite (see Appendix

B). From the Fredholm equation theory [20], (3.20) has solutions inL2(−1, 1) only for a set

of discrete real positive values of λ, such that λ0 ≥ λ1 ≥ λ2 ≥ . . . and that limn→∞ λn = 0.

The corresponding eigenfunctions, ψ0(x), ψ1(x), ψ2(x), . . . can be chosen to be real and

orthogonal on [−1, 1]. They are complete in L2(−1, 1). Here, eigenfunctions which differ

only by an arbitrary multiplicative constant is considered as a single solution.

Equation (3.20) only defines ψ(x) for |x| ≤ 1. The left side of (3.20), however, is

well defined for all x. The following definition, extends x in (3.20) to the whole real line

(−∞,∞).

ψn(x) =
1

λn

∫ 1

−1

sin (c(x− y))

π(x− y)
ψn(y)dy, |x| > 1. (3.21)

The eigenfunction ψn(x) are now defined on (−∞,∞) and it can be shown that they are

orthogonal on (−∞,∞) as well as on [−1, 1]. It is very hard to directly solve (3.20).
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Slepian et al. found that the solutions (eigenfunctions) of (3.20) are also solutions of the

following second-order differential equation eigenvalue problem (see Appendix C),

d

dx
(1 − x2)

dψ

dx
+ (χ− c2x2)ψ = 0. (3.22)

Equation (3.22) is known as the equation of prolate spheroidal wave functions. The detail

of prolate spheroidal wave functions can be found in [93, 24]. It is known that (3.22)

has solutions bounded everywhere only for discrete real positive values of χ, such that

0 < χ0 < χ1 < χ2 . . .. The corresponding solutions ψ0, ψ1, ψ2, . . . are called prolate

spheroidal wave functions (pswf’s).

Now the problem to maximize (3.6) in the space of time-limited functions is considered.

Let f(t) ∈ L2(−∞,∞) have total energy E = ‖f‖2
∞. The time-limited version of f(t)

has total energy ED = ‖Df‖2
∞ ≤ E. Since Df(t) cannot be a band-limited signal, the

energy ofDf(t) spreads over (−∞,∞) in frequency domain. Now an optimal time-limited

function Df(t) is to be determined to maximize β2(Ω) in (3.6). Slepian et al. notes that the

answer to this question is uniquely Dψ0(t) except for a multiplicative constant. To show

this, F (ω) in (3.6) is expressed in terms of its time domain function Df(t).

β2(Ω) =
1
2π

∫ Ω

−Ω
|DF (ω)|2dω

1
2π

∫∞
−∞ |DF (ω)|2dω , (3.23)

where DF (ω) is the Fourier transform of Df(t)

DF (ω) =

∫ T/2

−T/2

f(t)e−jωtdt. (3.24)
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β2(Ω) =
1
2π

∫ Ω

−Ω
DF (ω)DF (ω)dω

∫ T/2

−T/2
|f(t)|2dt

, (3.25)

=

1
2π

∫ Ω

−Ω

∫ T/2

−T/2
f(s)e−jωsds

∫ T/2

−T/2
f(t)ejωtdtdω

∫ T/2

−T/2
|f(t)|2dt

, (3.26)

=

∫ T/2

−T/2

∫ T/2

−T/2
1
2π

∫ Ω

−Ω
ejω(t−s)dωf(s)f(t)dsdt

∫ T/2

−T/2
|f(t)|2dt

, (3.27)

=

∫ T/2

−T/2

∫ T/2

−T/2
sin(Ω(t−s))

π(t−s)
f(s)f(t)dsdt

∫ T/2

−T/2
|f(t)|2dt

, (3.28)

=

∫ T/2

−T/2

∫ T/2

−T/2
sin(Ω(s−t))

π(s−t)
f(s)f(t)dsdt

∫ T/2

−T/2
|f(t)|2dt

(3.29)

It is known from [20] that the solution to this problem is β2(Ω) = λ0, where λ0 is the

largest eigenvalue of the integral equation

λf(s) =

∫ T/2

−T/2

sin(Ω(s− t))

π(s− t)
f(t)dt, |t| ≤ T

2
. (3.30)

Dψ0(t) is the corresponding eigenfunction in L2(−T/2, T/2) for which λ attains the max-

imum value λ0.

Although the general theory of prolate spheroidal wave functions has been known for

a long time [93, 24] in the field of physics and mathematics, the complexity of the theory

still makes them difficult to compute. Previous computation methods are generally based

on the extensive tables of numerical values [93, 24]. Recently, Falloon et al. [22, 23] have

developed a package, written in Mathematica computer algebra system to compute the

spheroidal wave functions to arbitrary precision.

Since the discrete-time version of the prolate spheroidal wave functions will be ex-

amined in the subsequent sections. The detail of the computation of the continuous-time

prolate spheroidal wave functions is not elaborated on here.
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3.3 Energy Concentration Problem In Discrete-Time

Case

In this section, the energy concentration problem in the discrete-time case is studied. The

results for this case were originally derived by Slepian [87]. Let {h[k]} = . . . , h[−1], h[0],

h[1], . . . be a real or complex valued sequence with finite energy and a unitless sampling

period Ts = 1. The discrete-time Fourier transform (see Appendix A) of h[k] is

H(f) =
∞∑

k=−∞

h[k]e−j2πfk, (3.31)

H(f) is a periodic function in f with period 1. The discrete-time sequence {h[k]} has the

following representation

h[k] =

∫ 1/2

−1/2

H(f)ej2πfkdf. (3.32)

The energy of the sequence {h[k]} in the index interval [n1, n2] is denoted as

E(n1, n2) :=

n2∑

k=n1

|h[k]|2, (3.33)

and the total energy is denoted as

E := E(−∞,∞) =
∞∑

k=−∞

|h[k]|2. (3.34)

As like the continuous-time case, it is natural to ask how large the fraction of the energy

in the index range from 0 to N − 1 can be for a band-limited sequence, i.e., to determine

the maximum value of

α2(N) :=
E(0, N − 1)

E(−∞,∞)
=

∑N−1
k=0 |h[k]|2

∑∞
k=−∞ |h[k]|2 (3.35)

for all band-limited sequences with bandwidth W < 1/2.

Similarly, an optimal sequence is to be determined to maximize the fraction of the

energy in the frequency range |f | ≤ W < 1/2, i.e., to determine the maximum value of

β2(W ) :=

∫W

−W
|H(f)|2df

∫ 1/2

−1/2
|H(f)|2df

(3.36)
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for all sequence {h[k]} index-limited to [0, N − 1]. A sequence is index-limited to the

interval [n1, n2] if h[k] = 0 for k < n1 and k > n2.

For the problem of (3.35), the concentration measure α2(N) can be written as

α2(N) =

∑N−1
k=0 |h[k]|2

∑∞
k=−∞ |h[k]|2 , (3.37)

=

∑N−1
k=0 h[k]h[k]∑∞
k=−∞ |h[k]|2 , (3.38)

=

∑N−1
k=0

∫W

−W
H(f)ej2πfkdf

∫W

−W
H(f ′)e−j2πf ′kdf ′

∫W

−W
|H(f)|2df

, (3.39)

=

∫W

−W
H(f)df

∫W

−W
H(f ′)df ′

∑N−1
k=0 e

j2π(f−f ′)k

∫W

−W
|H(f)|2df

. (3.40)

By defining

H(f) := G(f)e−jπf(N−1), (3.41)

α2(N) =

∫W

−W
G(f)e−jπf(N−1)df

∫W

−W
G(f ′)ejπf ′(N−1)df ′

∑N−1
k=0 e

j2π(f−f ′)k

∫W

−W
|G(f)|2df

, (3.42)

=

∫W

−W
G(f)df

∫W

−W
G(f ′)df ′e−jπ(f−f ′)(N−1)

∑N−1
k=0 e

j2π(f−f ′)k

∫W

−W
|G(f)|2df

. (3.43)

Since

e−jπ(f−f ′)(N−1)

N−1∑

k=0

ej2π(f−f ′)k = e−jπ(f−f ′)(N−1) 1 − ej2π(f−f ′)N

1 − ej2π(f−f ′)
, (3.44)

=
e−jπ(f−f ′)N

e−jπ(f−f ′)

1 − ei2π(f−f ′)N

1 − ei2π(f−f ′)
, (3.45)

=
e−jπ(f−f ′)N − ejπ(f−f ′)N

e−jπ(f−f ′) − ejπ(f−f ′)
, (3.46)

=
2 sin (πN(f − f ′))

2 sin (π(f − f ′))
, (3.47)

=
sin (πN(f − f ′))

sin (π(f − f ′))
, (3.48)

α2(N) is reduced to the following form

α2(N) =

∫W

−W

∫W

−W
sin (πN(f−f ′))
sin (π(f−f ′))

G(f)G(f ′)dfdf ′

∫W

−W
|G(f)|2df

. (3.49)
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Here, G(f) is an arbitrary function in L2(−W,W ), and all functions G(f) that maximizes

α2(N) must satisfy the following integral equation
∫ W

−W

sin (πN(f − f ′))

sin (π(f − f ′))
ψ(f ′)df ′ = λψ(f), |f | ≤ W. (3.50)

Since the kernel in the above homogeneous Fredholm equation of the second kind is de-

generate (see Appendix D). It has only N non-zero distinct, real and positive eigenvalues

and they can be ordered such that

1 > λ0(N,W ) > λ1(N,W ) > · · · > λN−1(N,W ) > 0. (3.51)

There are N linearly independent real eigenfunctions of (3.50) corresponding to these

eigenvalues and they are denoted asU0(N,W ; f), U1(N,W ; f), . . . , UN−1(N,W ; f). Again,

eigenfunctions that differ only by an arbitrary non-zero multiplicative constant is consid-

ered as one eigenfunction. They are called the discrete prolate spheroidal wave functions

(DPSWF’s). Uk(N,W ; f) can be extended to [−1/2, 1/2] from (3.50), so the DPSWF’s

Uk(N,W ; f) and their corresponding eigenvalues λk(N,W ) are defined by
∫ W

−W

sin (πN(f − f ′))

sin (π(f − f ′))
Uk(N,W ; f ′)df ′ = λk(N,W )Uk(N,W ; f)

k = 0, 1, · · · , N − 1.

(3.52)

The DPSWFUk(N,W ; f) has exactly k zeros in [−W,W ] andN−1 zeros in [−1/2, 1/2].

It is even function if k is even and odd function if k is odd. The band-limited sequence that

maximizes α2(N) in (3.35) is

h[k] =

∫ W

−W

U0(N,W ; f)ej2πfkejπf(N−1)df, k = · · · ,−1, 0, 1, · · · . (3.53)

With a normalization factor 1/λ0(N,W ), the following discrete sequence is generated

v0[k](N,W ) =
1

λ0(N,W )

∫ W

−W

U0(N,W ; f)ej2πfkejπf(N−1)df, k = · · · ,−1, 0, 1, · · · .

(3.54)

The normalization factor 1
λ0(N,W )

follows Slepian’s notation [87] and can be replaced by an

arbitrary constant. v0[k] is called zeroth order discrete prolate spheroidal sequence (DPSS).
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The nth order DPSS following Slepian’s notation [87] can be generated by

vn[k](N,W ) =
1

εnλn(N,W )

∫ W

−W

Un(N,W ; f)ej2πfkejπf(N−1)df,

n = 0, 1, · · · , N − 1,

(3.55)

where

εn =







1, n even;

√
−1, n odd.

(3.56)

Slepian [87] notes the DPSS’s also satisfy the following system of equations

N−1∑

k′=0

sin (2πW (k − k′))

π(k − k′)
vn[k′](N,W ) = λn(N,W )vn[k](N,W ),

n, k = 0, 1, · · · , N − 1.

(3.57)

This is to say that λn(N,W ), n = 0, 1, . . . , N − 1 are the eigenvalues of the N ×N matrix

A, where the (k, k′)th element of A matrix is given by

Ak,k′ :=
sin (2πW (k − k′))

π(k − k′)
, k, k′ = 0, 1, · · · , N − 1. (3.58)

The eigenvector of matrix A corresponding to the nth eigenvalue λn(N,W ) is exactly the

DPSS vn[k](N,W ) with indices from k = 0 to k = N − 1, namely

vn[0](N,W ), vn[1](N,W ), · · · , vn[N − 1](N,W ).

Now with the results of the first concentration problem (3.35) available, the concen-

tration problem (3.36) for index-limited sequences is studied. If a sequence h[k] is index-

limited to the interval [0, N − 1], the discrete-time Fourier transform of the index-limited

sequence is

H(f) =
∞∑

k=−∞

h[k]e−j2πfk =
N−1∑

k=0

h[k]e−j2πfk. (3.59)

70



The concentration measure in (3.36) can be computed as

β2(W ) =

∫W

−W
H(f)H(f)df

∑N−1
k=0 |h[k]|2

, (3.60)

=

∫W

−W

∑N−1
k=0 h[k]e

−j2πfk
∑N−1

k′=0 h[k
′]ej2πfk′

df
∑N−1

k=0 |h[k]|2
, (3.61)

=

∑N−1
k=0

∑N−1
k′=0 h[k]h[k

′]
∫W

−W
ej2πf(k′−k)df

∑N−1
k=0 |h[k]|2

, (3.62)

=

∑N−1
k=0

∑N−1
k′=0 h[k]h[k

′] sin (2πW (k′−k))
π(k′−k)

∑N−1
k=0 |h[k]|2

, (3.63)

=

∑N−1
k=0

∑N−1
k′=0 h[k]

sin (2πW (k−k′))
π(k−k′)

h[k′]
∑N−1

k=0 |h[k]|2
. (3.64)

For a real valued sequence h[k], β2(W ) can be written as (Percival [65], page 122)

β2(W ) =
h

TAh

hTh
, (3.65)

or

h
TAh = β2(W )hT

h, (3.66)

where h
T :=

[

h[0] h[1] · · · h[N − 1]

]

andA is aN×N matrix defined in (3.58). Dif-

ferentiate both sides of (3.66), and the sequence h[k], k = 0, 1, . . . , N − 1, that maximizes

β2(W ) must satisfy

Ah = λ(N,W )h (3.67)

or

N−1∑

k′=0

sin (2πW (k − k′))

π(k − k′)
h[k′] = λ(N,W )h[k]. (3.68)

The above equation is exactly equivalent to (3.57) that describes the zeroth order to

(N − 1)th order DPSS with indices from 0 to N − 1. The index-limited sequence that

maximizes β2(W ) is exactly the zeroth order DPSS, v0[k], k = 0, 1, . . . , N − 1.
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3.4 Computation of Discrete-Time Prolate Spheroidal

Sequences (DPSS’s)

3.4.1 Discrete-Time Prolate Spheroidal Sequences with Sampling Pe-

riod of 1

In the previous section, the sampling interval is assumed to be unit-less 1. So the Nyquist

frequency (defined as 1
2Ts

) is unit-less 1
2
. In this case, the signal bandwidth W in the energy

concentration problem must satisfy 0 ≤ W < 1
2
.

Since a DPSS that differs only by a non-zero multiplicative constant is considered as

one DPSS, normalization and parity conventions need to be imposed. Following Slepian’s

notation [87], first the energy of nth order DPSS, vn[k], k = 0, 1, . . . , N − 1 is normalized

to be 1.

N−1∑

k=0

(vn[k](N,W ))2 = 1. (3.69)

Secondly, the following constraints are imposed.

N−1∑

k=0

vn[k](N,W ) ≥ 0, (3.70)

N−1∑

k=0

(N − 1 − 2k)vn[k](N,W ) ≥ 0. (3.71)

Constraint (3.70) means the sum of each DPSS is made non-negative and constraint (3.71)

means that each DPSS is made to start with a positive lobe.

It is already known that DPSS and its concentration measure can be computed from the

eigenvectors and eigenvalues of a N ×N symmetric matrix whose element is described in

Equation (3.58).
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Slepian [87] showed that nth order DPSS also satisfies the following difference equation

1

2
k(N − k)vn[k − 1](N,W )+

[

cos (2πW )

(
N − 1

2
− n

)2

− θn(N,W )

]

vn[k](N,W )

+
1

2
(k + 1)[N − 1 − k]vn[k + 1](N,W ) = 0,

n, k = 0, 1, · · · , N − 1.

(3.72)

So the nth order DPSS can be generated from the following eigenvector problem

σ(N,W )vn(N,W ) = θn(N,W )vn(N,W ), (3.73)

where σ(N,W ) denotes the N × N tri-diagonal matrix whose element in the ith row and

jth column is given by

σ(N,W )i,j =







1
2
i(N − i), j = i− 1;

(
N−1

2
− i
)2

cos (2πW ), j = i;

1
2
(i+ 1)(N − 1 − i), j = i+ 1;

0, |j − i| > 1,

(3.74)

and vn(N,W ) =

[

vn[0](N,W ) vn[1](N,W ) · · · vn[N − 1](N,W )

]T

. The N eigen-

values of σ(N,W ) are real and distinct. They can be denoted such that

θ0(N,W ) > θ1(N,W ) > · · · > θN−1(N,W ). (3.75)

Since the DPSS vn[k](N,W ), k = 0, 1, . . . , N−1, can be generated from matrix σ(N,W ),

the concentration measure λn(N,W ) can be calculated from (3.65).

Percival and Walden [65] compared other computation methods of DPSS’s when study-

ing multi-taper spectra analysis. They proposed ([65], page 390, Exercise [8.1]) an efficient

way in (3.76) to compute the eigenvalue λn(N,W ) in (3.57) given the nth order DPSS

vn[k], k = 0, 1, . . . , N − 1, is given.

λn(N,W ) = 2

(

Wq0 + 2
N−1∑

τ=1

sin (2πWτ)

πτ
qτ

)

, (3.76)
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where

qτ :=
N−τ−1∑

k=0

vn[k](N,W )vn[k + τ ](N,W ). (3.77)

The above method to calculate eigenvalue λn(N,W ) can be easily derived from (3.57). Let

ρ(τ) :=
sin (2πWτ)

πτ
, (3.78)

(3.57) is reduced to

N−1∑

k′=0

ρ(k − k′)vn[k′] = λnvn[k], n, k = 0, 1, · · · , N − 1. (3.79)

Here, λn(N,W ) and vn[k](N,W ) are simply denoted as λn and vn[k] for derivation. For

each n, n = 0, 1, . . . , N−1, there areN equations corresponding to k, k = 0, 1, . . . , N−1.
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ρ(0 − 0)vn[0] + ρ(0 − 1)vn[1] + ρ(0 − 2)vn[2] + · · · + ρ(0 − (N − 1))vn[N − 1] = λnvn[0],

ρ(1 − 0)vn[0] + ρ(1 − 1)vn[1] + ρ(1 − 2)vn[2] + · · · + ρ(1 − (N − 1))vn[N − 1] = λnvn[1],

ρ(2 − 0)vn[0] + ρ(2 − 1)vn[1] + ρ(2 − 2)vn[2] + · · · + ρ(2 − (N − 1))vn[N − 1] = λnvn[2],

· · · = · · · ,

ρ(N − 1 − 0)vn[0] + ρ(N − 1 − 1)vn[1] + ρ(N − 1 − 2)vn[2] + · · · + ρ(N − 1 − (N − 1))vn[N − 1] = λnvn[N − 1]

(3.80)

For the system of aboveN equations, multiply the both sides of the ith equation with vn[i−1], i = 1, 2, . . . , N , and consider ρ(0) = 2W ,

another system of equations is obtained.

2Wvn[0]2 + ρ(−1)vn[1]vn[0] + ρ(−2)vn[2]vn[0] + · · · + ρ(−(N − 1))vn[N − 1]vn[0] = λnvn[0]2,

ρ(1)vn[0]vn[1] + 2Wvn[1]2 + ρ(−1)vn[2]vn[1] + · · · + ρ(1 − (N − 1))vn[N − 1]vn[1] = λnvn[1]2,

ρ(2)vn[0]vn[2] + ρ(1)vn[1]vn[2] + 2Wvn[2]2 + · · · + ρ(2 − (N − 1))vn[N − 1]vn[2] = λnvn[2]2,

· · · = · · · ,

ρ(N − 1)vn[0]vn[N − 1] + ρ(N − 2)vn[1]vn[N − 1] + ρ(N − 3)vn[2]vn[N − 1] + · · · + 2Wvn[N − 1]2 = λnvn[N − 1]2

(3.81)

Sum the above equations together along the diagonal directions, and consider ρ(τ) = ρ(−τ), obtain the following equation

2W
N−1∑

k=0

vn[k]2+4ρ1

N−1−1∑

k=0

vn[k]vn[k+1]+4ρ2

N−1−2∑

k=0

vn[k]vn[k+2]+· · ·+4ρN−1

N−1−(N−1)
∑

k=0

vn[k]vn[k+N−1] = λn

N−1∑

k=0

vn[k]2. (3.82)
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Consider the normalization constraint
∑N−1

k=0 vn[k]2 = 1,

λn = 2W
N−1∑

k=0

vn[k]vn[k] + 4
N−1∑

τ=1

ρ(τ)
N−τ−1∑

k=0

vn[k]vn[k + τ ], (3.83)

= 2

(

Wq0 + 2
N−1∑

τ=1

sin (2πWτ)

πτ
qτ

)

. (3.84)

Percival and Walden [65] note that (3.76) is an efficient way to compute the eigenvalues

since qτ , τ = 0, 1, . . . , N − 1, has the form of an auto-covariance sequence and can be

computed using fast algorithms, such as FFTs.

In the Matlab Signal Processing Toolbox [52], there is a Matlab routine [v, e] = dpss(n,

n * W) to generate the DPSS’s of length n in the columns of v, and their corresponding

concentrations in vector e, W is the normalized half-bandwidth, 0 ≤ W < 1/2. Although

the routine dpss is used for multi-taper spectral analysis in Matlab, it can be directly used

here to generate a robust vibration suppression profile based on the idea described in this

chapter.
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3.4.2 Discrete-Time Prolate Spheroidal Sequences with an Arbitrary

Sampling Period

If the sampling interval is Ts sec/sample, the resultant Nyquist frequency is 1
2Ts

Hz or

π
Ts

rad/sec. If the energy of DPSS’s is concentrated to the bandwidth at Ω rad/sec, the

normalized bandwidth W is

W =
ΩTs

2π
. (3.85)

So the Matlab routine [v, e] = dpss(n, n * W) can be used again to generate the DPSS’s.

3.5 Robust Vibration Suppression Shape Filter and

Control Profile Design

In this section, robust vibration suppression shape filter and control profile generation based

on discrete prolate spheroidal sequences are studied.

Assume that the frequency bandwidth to be Ω0 = 9.68× 103 rad/sec, the time duration

of the DPSS is chosen to be 1.5×10−3 sec, and the sampling period of the discrete sequence

is Ts = 5 × 10−5 sec. The first four discrete prolate spheroidal sequences are generated

and shown in Figure 3.1. Their corresponding energy concentration is λ0 = 0.999 995,

λ1 = 0.999 730, λ2 = 0.993 707, and λ3 = 0.926 472. So the zeroth order discrete prolate

spheroidal sequence v0[k] achieves the optimal energy concentration in the frequency band

[−Ω0,Ω0]. A robust vibration suppression shape filter can be generated from the zeroth

order discrete prolate spheroidal sequence v0[k] by

f [k] =
v0[k]

∑N−1
k=0 v0[k]

, k = 0, 1, · · · , N − 1, (3.86)

where N is the total data number of the sequence v0[k].

Since the initial and final values of the sequence v0[k] are not zero, the sequence v0[k]

cannot be directly used as a robust vibration velocity profile. From the waveform of v0[k],
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Figure 3.1: Discrete prolate spheroidal sequences for the time duration 1.5 × 10−3 sec.

it is clear that the v0[k] behaves like Gaussian functions such that the values decay sharply

at the start and end points. So the sequence v0[k] can be vertically shifted down to make

the start and end values to be zero,

vel[k] = v0[k] − v0[0], k = 0, 1, · · · , N − 1. (3.87)

Notice that v0[0] = v0[N − 1] because the sequence is a symmetric function. The sequence

vel[k], k = 0, 1, . . . , N −1, can be used as a velocity profile. The resultant robust vibration

suppression velocity profile is shown in Figure 3.2. Depending on the rigid body position

movement, the velocity profile must be multiplied with a constant.

The discrete-time sequence of the acceleration profile acc[k] can be generated from the

discrete-time sequence of the velocity profile vel[k] by

acc[k] =
vel[k + 1] − vel[k]

Ts
, (3.88)

where Ts is the sampling period. Depending on the rigid body position movement, the

acceleration profile must be multiplied with a constant.
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Figure 3.2: A robust vibration suppression velocity profile from discrete prolate spheroidal

sequence v0[k] with the move time 1.5 × 10−3 sec.

The vertically shifted discrete prolate spheroidal sequence vel[k] slightly impairs its

energy concentration. For the above example, the energy concentration measure β2(W )

of vel[k] is approximately 0.999 979. Compared with the optimal energy concentration

value λ0 = 0.999 995, the vertically shifted version of v0[k], i.e., vel[k] only loses a lit-

tle energy concentration. With the decrease of the move time, the difference of the en-

ergy concentration measure between v0[k] and vel[k] = v0[k] − v0[0] will increase. Fig-

ure 3.3 shows the difference of the energy concentration measure β2(W ) between v0[k] and

vel[k] = v0[k] − v0[0] from the move time 0.5 × 10−3 sec to move time 1.5 × 10−3 sec. It

shows that at the time duration of 0.5×10−3 sec, the difference of the energy concentration

measure between v0[k] and vel[k] = v0[k]− v0[0] is about 0.958− 0.888 = 0.070. The big

difference is caused because the initial and final values of the optimal energy concentrated

DPSS v0[k] are very large. For the time duration of 0.5× 10−3 sec, the resultant v0[k] with

the same frequency band Ω0 is shown in Figure 3.4. It clearly shows that the initial and final
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values of the discrete sequence v0[k] decay slowly, so the choose of time duration of the

discrete sequence as 0.5 × 10−3 sec is not suitable to suppress all the resonance frequency

(≥ Ω0 = 9.68 × 103 rad/sec) modes in a flexible system. The plot of energy concentration

measure with respect to the time duration gives a tradeoff between energy concentration

measure and time duration when the first resonance frequency Ω0 and the sampling period

Ts are determined.
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Figure 3.3: The difference of the energy concentration measure β2(W ) between v0[k] and

vel[k] = v0[k] − v0[0].

Notice the first order optimal energy concentrated discrete prolate spheroidal sequence

v1[k] in Figure 3.1 can be directly used as an acceleration profile. From computation, the

resultant velocity profile is almost the same as vel[k] in the sense of energy concentration

in the frequency band ω ≤ |Ω0|.
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Figure 3.4: DPSS v0[k] with the time duration 0.5 × 10−3 sec.

3.6 Simulation Results for Hard Disk Drive Seek Control

In this section, the discrete prolate spheroidal sequence is used to design a robust accel-

eration profile to suppress all the resonance modes in a hard disk model. Consider the

following flexible system which is embedded in a hard disk assembly, where the input is

the current signal in amps and the output is the position signal in tracks.

H(s) = Kc ·Kv ·Kp ·R(s)
1

s2
, (3.89)

whereKc = 8.125 tracks/sample2

amp is a constant gain from current to acceleration,Kv = 1/Ts =

2 × 104 samples
sec is the velocity gain, Kp = 1/Ts = 2 × 104 samples

sec is the position gain, and

R(s) is a 28th order resonance structure. The Bode magnitude plot of R(s) is shown in

Figure 1.2.

With parameters settings Ω0 = 9.68 × 103 rad/sec, a move time of 2.5 × 10−3 sec, and

a sampling period of Ts = 5× 10−5 sec, the first two discrete prolate spheroidal sequences

are shown in Figure 3.5. Their corresponding concentrations (3.1) in the frequency band

81



|ω| ≤ Ω0 are approximately 0.999 999 999 and 0.999 999 937. Here, the discrete-time

sequences to generate the discrete-time Fourier transform in (3.1) are the first two discrete

prolate spheroidal sequences as shown in Figure 3.5. So the waveform v0[k] gives the

best concentration to cut off the high frequency resonance components. The acceleration

profile acc[k] can be derived from v0[k] through (3.87) and (3.88). Alternatively, v1[k]

can be directly used as the acceleration profile candidate. From computation, the resultant

velocity profile is almost the same as vel[k] in the sense of energy concentration in the

frequency band ω ≤ |Ω0|.
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Figure 3.5: Discrete prolate spheroidal sequences for the move time 2.5 × 10−3 sec.

Next, v0[k] is used to design the control input signal. Figure 3.6 shows the current

signal. Figure 3.7 shows the jerk signal, which is the derivative of the current signal.

Figure 3.8 shows the position signal. Figure 3.9 shows the position signal near the target

track. It shows that the position signal settles within ± 5
100

track immediately after the move

time of 2.5 × 10−3 sec. So the current signal suppresses the residual vibration induced

by all the resonance modes. Now, the current signal is analyzed from the filter point of

view. Figure 3.10 shows the reference velocity signal. This signal is treated as the impulse

response of a Finite Response Filter. The magnitude of the frequency response of this Finite
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Response Filter is shown in Figure 3.11. It is clear that this Finite Response Filter has very

good cutoff of high frequency signals.
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Figure 3.6: Current control input signal.

It must be noted that the control input move time cannot be arbitrarily reduced if a cer-

tain seek time is required. It depends on the resonance characteristics. As shown in Chap-

ter 2, a signal cannot arbitrarily achieve both time and frequency localization. Reducing

move time will result a poor frequency concentration. Figure 3.12 shows the concentration

1 − J defined in (3.2) of the current control input with different move time for the same

sampling period and first resonance frequency given before. From Figure 3.12, if the move

time of the control input is chosen to be 0.5 msec, the minimal proportion of its energy

after the first resonance is about 0.4 which is very poor. There is a tradeoff between the

move time of a control input and its concentration in the frequency domain as shown in

Figure 3.12.
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Figure 3.7: Jerk signal.
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Figure 3.8: Position signal.
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Figure 3.9: Position signal near the target track.
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Figure 3.10: Reference velocity signal.
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Figure 3.11: Frequency response of the Finite Response Filter.
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Figure 3.12: Concentration 1 − β2(W ) of current control input with different move time.
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3.7 Experimental Results on Flexible Link with Strain

Gauge

3.7.1 Open-Loop Control

First, the time-optimal control algorithm will be implemented based on the simplified

model. The time-optimal command of 50 deg slew angle θ and experimental results of

the corresponding total angle are shown in Figure 3.13. Residual vibrations is clearly visi-

ble after the end of the time-optimal command. The maximal range of the deflection is over

20 deg. This is caused by the uncertainties of the plant. From the analysis of the Chapter 2,

the optimal-control is very sensitive to model uncertainty.
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Figure 3.13: Time-optimal command input and output total angle.

Next, the discrete prolate spheroidal sequence function is used to generate the robust

open-loop control input forcing function. The robust forcing function can be derived as

shown in Figure 1.12. Consider the DC motor servo dynamic model in Figure 2.29, the
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applied motor voltage is

Va = Vc + Vb

= Ri+ I
di

dt
+KgKbθ̇. (3.90)

The armature current i has a relationship with the acceleration signal θ̈ as

i =
Jhub

KgKm

θ̈. (3.91)

So both i and di
dt

can be derived from the velocity signal θ̇. Finally the motor applied voltage

is a function of the velocity signal θ̇.

In the above derivations, all the signals are assumed to be continuous signals. The

discrete-time signal of the applied motor voltage can be approximated from the discrete-

time signal of the link velocity. If the discrete-time sequence of the velocity signal is vel[k],

0 ≤ k ≤M , the discrete-time signal of the acceleration, acc[k], can be approximated as

acc[k] =
vel[k + 1] − vel[k]

Ts

, 0 ≤ k ≤M − 1, (3.92)

acc[M ] = 0, (3.93)

where Ts is the sampling period. The discrete-time signal of di/dt can be generated in a

similar way.

The link is slewed 50 deg using the prolate spheroidal wave function profile based

on Ω0 = 2π × 3 rad/sec (the natural frequency of the flexible link) and a move time of 1

sec. Figure 3.14 shows the current, slew velocity, slew angle, and the motor applied voltage

profiles. Figure 3.15 shows the experimental results with the derived motor applied voltage.

Compared with the time-optimal control, the tip deflection is greatly reduced.

From Figure 3.15, there is a very large oscillation which occurs during the move time.

This may be caused by the transient interaction between the flexible link and the connected

parts. It includes the nonlinearity of the high transmission ratio gear and the flexible cable

mounted at the clamped end of the link. This transient vibration has a frequency component
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Figure 3.14: Open-loop control profiles for Ω0 = 2π × 3 rad/sec and move time of 1 sec.
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Figure 3.15: Experimental results of a flexible link open-loop control with prolate

spheroidal wave-based control input (Ω0 = 2π × 3 rad/sec and move time of 1 sec).
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of about 1 Hz. To reduce the transient vibration, the prolate spheroidal wave function

is redesigned based on Ω0 = 2π × 1 rad/sec and the move time of 1 sec. Figure 3.16

shows the current, slew velocity, slew angle, and the motor applied voltage profiles for the

redesigned prolate spheroidal wave. Figure 3.17 shows the experimental results with the

derived motor applied voltage. Compared with Figure 3.15, both the transient vibration

and the tip deflection are reduced.
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Figure 3.16: Open-loop control profiles for Ω0 = 2π × 1 rad/sec and move time of 1 sec.

3.7.2 Standard Closed-Loop Control

The standard closed-loop control scheme developed in Section 1.3 is used to reduce the

residual vibration of the flexible link. The discrete prolate spheroidal sequences are used

to generate the robust vibration suppression position references.

Figure 3.18 shows the discrete prolate spheroidal sequence profiles with Ω0 = 9 rad/sec,

Ts = 0.002 sec, and the slew angle θ = 50 deg, where Ω0 is the approximate first resonance

frequency of the closed-loop system. Figure 3.19 shows the robust position reference pro-

files during the move time. After the move time, the position reference holds its final value.
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Figure 3.17: Experimental results of a flexible link open-loop control with prolate

spheroidal wave-based input (Ω0 = 2π × 1 rad/sec and move time of 1 sec).

Figure 3.20 shows the proportion of the energy after the frequency Ω0, i.e. 1 − J in (3.2).

Here the discrete-time sequences to generate the discrete-time Fourier transform in (3.2)

are the discrete prolate spheroidal sequences as shown in Figure 3.18. Figure 3.21 shows

the real energy distribution of each robust velocity reference signal sequence.

Figure 3.22 shows the experimental results with the robust position reference profile

with the move time of 1 sec. It shows the tip vibration (at the left bottom plot) almost

stops at the end of the move time. Figure 3.23 shows the experimental results with the step

reference input. Clearly the tip vibration (at the left bottom plot) is very large during the

move time and decays very slowly after the move time. In testing, the vibration of the tip

of the flexible link was clearly visible.

From Figure 3.18, it is known the initial and final values of the discrete prolate spheroidal

sequences are not zero. The discrete prolate spheroidal sequence may be vertically shifted

down to force it to start at zero and end at zero. The resultant sequence vel[k] = v0[k]−v0[0]

as shown in Figure 3.24 can be used as a velocity profile. Although the optimality of the

best concentration property is impaired for short move time, the velocity reference becomes
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Figure 3.18: Discrete prolate spheroidal sequences.
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Figure 3.19: Position reference profiles.
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Figure 3.20: The proportion of the energy after Ω0.

0.5 1 1.5 2
10

−2

10
0

10
2

10
4

10
6

10
8

Move time (sec)

E
ne

rg
y 

di
st

ri
bu

tio
n Total energy

Energy before Ω
0

Energy after Ω
0

Figure 3.21: The energy distribution of the robust velocity reference profiles.
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Figure 3.22: Experimental results of a flexible link closed-loop control with robust position

reference.
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Figure 3.23: Experimental results of a flexible link closed-loop control with step reference.
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smooth at the start and the end of the movement. Figure 3.25 shows the robust position ref-

erence profiles with zero initial and final velocities. Figure 3.26 shows the experimental

results with this robust position reference and the move time of 1 sec. It shows the results

are almost the same as the results of the nonzero initial and final DPSS profile.
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Figure 3.24: Vertically shifted prolate spheroidal waves.

3.7.3 Model Reference Closed-Loop Control

The model reference closed-loop control scheme developed in Section 1.3 is here to reduce

the residual vibration of the flexible link. Again, the prolate spheroidal wave functions are

used to generate the robust velocity references. The robust forcing function can be derived

as shown in Figure 1.12. From the DC motor servo dynamic model in Figure 2.29, the

applied motor voltage is

Va = Vc + Vb

= Ri+ I
di

dt
+KgKbθ̇. (3.94)
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Figure 3.25: Position reference profiles with zero initial and final velocities.
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Figure 3.26: Experimental results of a flexible link closed-loop control.
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The armature current i has a relationship with the acceleration signal θ̈ as

i =
Jhub

KgKm

θ̈. (3.95)

So both i and di
dt

can be derived from the velocity signal θ̇. Finally, the motor applied voltage

is a function of the velocity signal θ̇. In the model reference closed-loop control scheme,

the velocity reference should be designed to start and end at zero to move the flexible beam

from one set point to another. So in the flexible link model reference closed-loop control,

the forcing function of the motor is the applied voltage, and it is generated in the same way

as in open-loop control. The only difference is that Ω0 should be chosen corresponding to

the first resonance frequency of the closed-loop system.

In the above derivations, all the signals are assumed to be continuous signals. The

discrete-time signal of the applied motor voltage can be approximated from the discrete-

time signal of the link velocity. If the discrete-time sequence of the velocity signal is vel[k]

from (3.87), the discrete-time signal of the acceleration, acc[k], can be approximated from

(3.88). The discrete-time signal of di/dt can be generated in a similar way.

Figure 3.27 shows the model reference control profiles generated from the move time

of 1 sec and Ω0 = 9 rad/sec. Figure 3.28 shows the experimental results with the robust

forcing function. It shows the tip vibration (at the left bottom plot) almost stops at the end

of the move time. In many industry applications, the plant is actuated by a current source

supply as shown in Section 4.13. In the current source power supply, the generation of the

current profile is the same as that of Section 4.13.
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Figure 3.27: Model reference control profiles.
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Figure 3.28: Experimental results of a flexible link model reference control.
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Chapter 4

Robust Vibration Suppression Shape

Filter Generation for a Specific

Resonance Mode

4.1 Philosophy Development

In the previous chapters, a robust vibration suppression profile is generated based on the

time-frequency uncertainty and prolate spheroidal wave functions. The robust control pro-

file suppresses all the high frequency (≥ Ω0) resonance modes. In practical system, a

lower resonance frequency mode may exist which is located far from the high frequency

resonance modes as shown in Figure 4.1. The lower frequency resonant modes may come

from several factors. For example, the lower frequency resonant modes of the flexible

arm in a hard disk drive include the transient interaction between the flexible arm and the

connected parts, such as the flexible cable.

If the low frequency Ω1 in Figure 4.1 is chosen to be a bandwidth in the generation

of prolate spheroidal wave functions, the time duration of the shape filter is inefficiently

increased. The research discussed in this chapter generates a robust vibration suppression

profile for a given specific resonant mode.
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0
 Ω
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 0 (rad/sec) 

High frequence 
resonance modes 

Low frequency 
resonance mode 

Rigid mode 

Figure 4.1: Illustration of existence of a low resonance frequency mode located far from

the high frequency modes in a flexible system.

The key point here is to find the relationship between the finite control forcing function

and the amplitude spectrum of the residual vibration in the modal description of a flexible

system.

4.2 Relationship Between Control Input and Residual

Vibration

The relationship between the Fourier transform of the control forcing function and the

residual vibrations in time domain is derived.
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4.2.1 Undamped Case

Consider a unidirectional flexible mechanical system in the modal equation description

ẍ0(t) = z0u(t), (4.1)

ẍi(t) + ω2
i xi(t) = ziu(t), i = 1, 2, 3, · · · , (4.2)

where x0 is the rigid mode displacement and xi, i ≥ 1, are the resonant mode displace-

ments. The variable u(t) is a control forcing function, zi is coefficient corresponding to the

ith mode (0 ≤ ζi < 1) and ωi is the natural angular frequency of the ith mode.

Assume the mechanical system is stationary initially, the displacement and velocity of

the ith natural mode of vibration due to the forcing function u(t) are given as:

xi(t) =
zi

ωi

∫ t

0

sin (ωi(t− τ))u(τ)dτ, i ≥ 1, (4.3)

ẋi(t) = zi

∫ t

0

cos (ωi(t− τ))u(τ)dτ, i ≥ 1. (4.4)

If the time duration of the forcing function is T0, i.e., u(t) = 0, t > T0, the Fourier

transform of the forcing function is

U(ω) =

∫ ∞

0

u(t)e−jωtdt =

∫ T0

0

u(t)e−jωtdt. (4.5)

The displacement and velocity of a resonant mode at the end of the move time T0 are

given by:

xi(T0) =
zi

ωi

∫ T0

0

sin (ωi(T0 − τ))u(τ)dτ, i ≥ 1, (4.6)

ẋi(T0) = zi

∫ T0

0

cos (ωi(T0 − τ))u(τ)dτ, i ≥ 1. (4.7)

A relationship between the end conditions of the resonant modes at t = T0 and the

Fourier transform of the forcing function can be derived as

ẋi(T0)

ωi

+ jxi(T0) =
zi

ωi

∫ T0

0

u(τ)ejωi(T0−τ)dτ, (4.8)

=
zi

ωi

ejωiT0

∫ T0

0

u(τ)e−jωiτdτ, (4.9)

=
zi

ωi

ejωiT0U(ωi). (4.10)
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After the move time T0, the forcing function is zero, i.e., u(t) = 0, t > T0, so the

system becomes a free vibration. For each resonant mode, the displacement condition

xi(T0) and velocity condition ẋi(T0) determine the subsequent oscillation completely. And

the residual vibration amplitude is given by the following equation [30]:

Ci(T0) =

√

ẋ2
i (T0)

ω2
i

+ x2
i (T0). (4.11)

From (4.10), the residual vibration amplitude can be described in terms of the Fourier

transform of the forcing function as in (4.12)

Ci(T0) =

√

ẋ2
i (T0)

ω2
i

+ x2
i (T0) =

|zi|
ωi

|U(ωi)|. (4.12)

So a conclusion may be drawn on the relationship between the residual vibration and the

control input.

Conclusion 4.2.1 Given a forcing function u(t), 0 ≤ t ≤ T0, the residual vibration of the

ith mode immediately after the move time T0 is eliminated, i.e., Ci(T0) = 0, if and only if

the magnitude spectrum of the forcing function has zero value at the natural frequency ωi,

i.e., U(ωi) = 0.

Proof. Obviously, Ci(T0) = 0 ⇒ xi(T0) = ẋi(T0) = 0 ⇒ U(ωi) = 0. Similarly, U(ωi) =

0 ⇒ xi(T0) = ẋi(T0) = 0 ⇒ Ci(T0) = 0.

Robustness can be improved if higher order derivatives of U(ω) with respect to ω at

ω = ωi are set to zero, i.e.,

dkU(ω)

dωk

∣
∣
∣
∣
∣
ω=ωi

= 0, k = 1, · · · , n. (4.13)

In addition to U(ωi) = 0, the n (≥ 1) constraints in (4.13) flatten the spectrum of U(ω) at

ω = ωi. So the additional constraints in (4.13) make the values of |U(ω)| around ω = ωi

be close to the value of |U(ωi)| which is zero.

The relationship in (4.12) is also studied by Yamamura and Ono [107].
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4.2.2 Damped Case

Consider a unidirection flexible mechanical system with damping in the modal equation

description

ẍ0(t) = z0u(t), (4.14)

ẍi(t) + 2ζiωiẋi(t) + ω2
i xi(t) = ziu(t), i = 1, 2, 3, · · · , (4.15)

where x0 is the rigid mode displacement and xi, i ≥ 1, are the resonant mode displace-

ments. u(t) is a control forcing function, ζi is damping ratio of the ith mode, 0 ≤ ζi < 1,

and ωi is the natural angular frequency of the ith mode. The damped natural frequency is

ωdi =
√

1 − ζ2
i ωi. Here both ωi and ωdi have units of rad/sec.

Assume the mechanical system is stationary initially, the displacement and velocity of

the ith natural mode of vibration due to the forcing function u(t) are given as:

xi(t) =
zi

ωdi

∫ t

0

e−ζiωi(t−τ) sin (ωdi(t− τ))u(τ)dτ, i ≥ 1, (4.16)

ẋi(t) =
zi

√

1 − ζ2
i

∫ t

0

e−ζiωi(t−τ)
(√

1 − ζ2
i cos (ωdi(t− τ)) − ζi sin (ωdi(t− τ))

)

u(τ)dτ, i ≥ 1. (4.17)

If the time duration of the forcing function is T0, i.e., u(t) = 0, t > T0, the Fourier

transform of the forcing function is

U(ω) =

∫ ∞

0

u(t)e−jωtdt =

∫ T0

0

u(t)e−jωtdt. (4.18)

The displacement and velocity of a resonant mode at the end of the move time T0 are

given by:

xi(T0) =
zi

ωdi

∫ T0

0

e−ζiωi(T0−τ) sin (ωdi(T0 − τ))u(τ)dτ, i ≥ 1, (4.19)

ẋi(T0) =
zi

√

1 − ζ2
i

∫ T0

0

e−ζiωi(T0−τ)
(√

1 − ζ2
i cos (ωdi(T0 − τ)) − ζi sin (ωdi(T0 − τ))

)

u(τ)dτ, i ≥ 1. (4.20)
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To derive the relationship between the end condition of the resonant modes and the

Fourier transform of the forcing function, a manipulation is needed to handle (4.19) and (4.20).

From (4.20), the following equation holds

ẋi(T0)

ωi

=
zie

−ζiωiT0

√

1 − ζ2
i ωi

∫ T0

0

eζiωiτ
(√

1 − ζ2
i cos (ωdi(T0 − τ))−ζi sin (ωdi(T0 − τ))

)

u(τ)dτ.

(4.21)

From (4.19), the following equations hold

ζixi(T0) =
zie

−ζiωiT0

√

1 − ζ2
i ωi

∫ T0

0

eζiωiτζi sin (ωdi(T0 − τ))u(τ)dτ (4.22)

and

j
√

1 − ζ2
i xi(T0) =

zie
−ζiωiT0

√

1 − ζ2
i ωi

∫ T0

0

eζiωiτj
√

1 − ζ2
i sin (ωdi(T0 − τ))u(τ)dτ. (4.23)

Summation of (4.21), (4.22) and (4.23) results the following relationship between the

end condition of the resonant modes and the Fourier transform of the forcing function.

ẋi(T0)

ωi

+ ζixi(T0) + j
√

1 − ζ2
i xi(T0) =

zie
−ζiωiT0

√

1 − ζ2
i ωi

∫ T0

0

eζiωiτ
√

1 − ζ2
i e

jωdi(T0−τ)

u(τ)dτ (4.24)

=
zie

−ζiωiT0ejωdiT0

ωi

∫ T0

0

eζiωiτu(τ)e−jωdiτdτ

(4.25)

=
zie

−ζiωiT0ejωdiT0

ωi

Ue(ωdi), (4.26)

where Ue(ωdi) =
∫∞
0
ue(t)e

−jωditdt =
∫ T0

0
ue(t)e

−jωditdt and ue(t) := eζiωitu(t), 0 ≤ t ≤

T0.

A relationship between the end conditions of the resonant modes at t = T0 and the

Fourier transform of ue(t) = eζiωitu(t), 0 ≤ t ≤ T0, can be derived as
√
[
ẋi(T0)

ωi

+ ζixi(T0)

]2

+ (1 − ζ2
i )x2

i (T0) =
|zi|e−ζiωiT0

ωi

|Ue(ωdi)|. (4.27)

Consider the initial amplitude of the free vibration which starts at t = T0,

Ci(T0) =

√

ẋ2
i (T0)

ω2
i

+ x2
i (T0). (4.28)
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The conclusion may be drawn on the relationship between the residual vibration and the

control input.

Conclusion 4.2.2 Given a forcing function u(t), 0 ≤ t ≤ T0, the residual vibration of the

ith mode immediately after the move time T0 is eliminated, i.e., Ci(T0) = 0, if and only if

the magnitude spectrum of ue(t) = eζiωitu(t), 0 ≤ t ≤ T0, has zero value at the damped

natural frequency ωdi, i.e., Ue(ωdi) = Ue(
√

1 − ζ2
i ωi) = 0.

Proof. Obviously, Ci(T0) = 0 ⇒ xi(T0) = ẋi(T0) = 0 ⇒ Ue(ωdi) = 0. Similarly,

Ue(ωdi) = 0 ⇒ xi(T0) = ẋi(T0) = 0 ⇒ Ci(T0) = 0.

The important discovery of Conclusion (4.2.2) shows that the spectrum of the forcing

function u(t), has zero value at the damped natural frequency ω = ωdi =
√

1 − ζ2
i ωi,

i.e., U(ωdi) = 0, is not able to guarantee eliminating the residual vibration caused by the

undamped natural frequency ωi and damping ratio ζi.

Robustness can be improved if higher order derivatives of Ue(ω) with respect to ω at

ω = ωdi are set to zero, i.e.,

dkUe(ω)

dωk

∣
∣
∣
∣
∣
ω=ωdi

= 0, k = 1, · · · , n. (4.29)

In addition to Ue(ωdi) = 0, the n (≥ 1) constraints in (4.29) flatten the spectrum of Ue(ω) at

ω = ωdi. So the additional constraints in (4.29) make the values of |Ue(ω)| around ω = ωdi

be close to the value of |Ue(ωdi)| which is zero.

4.3 Philosophy Different from Previous Techniques

From the analysis of the relationship between control input and residual vibration of a

damped resonant mode, the following conclusions are drawn.

Conclusion 4.3.1 If there exists a finite support base function h(t), 0 ≤ t ≤ T0, such that

H(ωdi) = H(
√

1 − ζ2
i ωi) = 0, then, h(t) may have two possible properties such that
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1. Function h(t)

eζiωit is a robust control profile candidate to eliminate the residual vibration

caused by the resonant mode with the natural frequency ωi and the damping ratio ζi.

2. Function h(t)

eζiωit with a constraint
∫ T0

0
h(t)

eζiωitdt = 1, is a vibration suppression shape

filter that can be used to filter out an arbitrary control profile, and the shaped control

profile eliminates the residual vibration caused by the resonant mode with the natural

frequency ωi and the damping ratio ζi.

Proof. First property: Let u(t) = h(t)

eζiωit and H(ωdi) = 0. Obviously ue(t) = u(t)eζiωit =

h(t)

eζiωit e
ζiωit = h(t) and Ue(ωdi) = H(ωdi) = 0. From Conclusion 4.2.2, u(t) is a control

profile candidate that eliminates the residual vibration caused by the resonant mode with

the natural angular frequency ωi and the damping ratio ζi.

Second property: Assume the original control profile is given by g(t), then the output

shaped through a filter h(t)

eζiωit is u(t) =
∫ t

0
g(t − τ) h(τ)

eζiωiτ dτ . If the control profile u(t)

is to eliminate the residual vibration, the magnitude spectrum of ue(t) = u(t)eζiωit must

have zero value at ωdi. Since ue(t) = u(t)eζiωit =
∫ t

0
g(t − τ) h(τ)

eζiωiτ dτe
ζiωit =

∫ t

0
g(t −

τ)eζiωi(t−τ)h(τ)dτ , the Fourier spectrum of ue(t) is the multiplication of the spectrum of

g(t)eζiωit and the spectrum of h(t). Furthermore, H(ωdi) = 0 implies that Ue(ωdi) = 0 for

any arbitrary original control profile. The additional constraint
∫ T0

0
h(t)

eζiωitdt = 1 is imposed

to ensure that the integral of the shape filter is normalized to be 1. Physically, if the shaped

command is to reach the same set point as the un-shaped command, the integral of the

shape filter should be exactly 1.

Conclusion 4.3.2 If there exists a finite support base function h(t), 0 ≤ t ≤ T0, such that

H(ωdi) = 0, then robustness of the vibration suppression shape filter in Conclusion 4.3.1

can be improved by the following filter operation,

fn(t) =

∫ t

0

fn−1(t− τ)f1(τ)dτ, n ≥ 2, (4.30)
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where f1(t) = h(t)/eζiωit

R T0
0 h(t)/eζiωitdt

and the resultant spectrum of fn(t) is Fn(ω) = F n
1 (ω).

Proof. Without loss of generality,
∫ T0

0
h(t)/eζiωitdt = 1 is assumed, which means the func-

tion f1(t) = h(t)/eζiωit has been already normalized.

First, if f1(t) = h(t)

eζiωit is a robust vibration suppression shape filter, then f1e(t) =

f1(t)e
ζiωit = h(t) and F1e(ωdi) = H(ωdi) = 0. From the above operation, f2(t) =

∫ t

0
f1(t−τ)f1(τ)dτ , so f2e(t) = f2(t)e

ζiωit =
∫ t

0
f1(t−τ)f1(τ)dτ ·eζiωit =

∫ t

0
h(t−τ)

eζiωi(t−τ)

h(τ)

eζiωiτ dτ ·

eζiωit =
∫ t

0
h(t − τ)h(τ)dτ . Hence F2e(ω) = H(ω)H(ω) = H2(ω). So F2e(ωdi) =

H2(ωdi) = 0 and dF2e(ω)
dω

|ω=ωdi
= 2H(ωdi) = 0 hold. The case of n > 2 is obviously

proven in a similar way.

Secondly, the above proof procedure applies to the case that f1(t) = h(t)

eζiωit is a vibration

suppression velocity profile.

Here, the robust control profile or shape filter f1(t) in (4.30) is said to have the ro-

bustness order 1. The robust control profile or shape filter fn(t) generated from the filter

operation in (4.30) is said to have the robustness order n.

Conclusion 4.3.3 The shape filter fn(t) in (4.30) can also be generated from the following

operation

fn(t) =
hn(t)/eζiωit

∫∞
0
hn(t)/eζiωitdt

=
hn(t)/eζiωit

[∫ T0

0
h1(t)/eζiωitdt

]n , (4.31)

where h1(t) = h(t), 0 ≤ t ≤ T0, and hn(t) =
∫ t

0
hn−1(t− τ)h1(τ)dτ (n ≥ 2) is called the

base function with robustness order n.

Proof. For any finite support functions a(t) and b(t),

∫ ∞

−∞
a(t) ∗ b(t)dt =

∫ ∞

−∞

[∫ ∞

−∞
a(t− τ)b(τ)dτ

]

dt, (4.32)

=

∫ ∞

−∞
b(τ)

[∫ ∞

−∞
a(t− τ)dt

]

dτ, (4.33)

=

[∫ ∞

−∞
a(t)dt

] [∫ ∞

−∞
b(τ)dτ

]

. (4.34)
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So the area under a convolution of two finite support functions is the product of areas under

the factors. It is easy to show that the denominators of (4.31) hold since

∫ ∞

0

hn(t)/eζiωitdt =

∫ nT0

0

hn(t)/eζiωitdt, (4.35)

=

∫ nT0

0

∫ t

0

hn−1(t− τ)h1(τ)dτ/e
ζiωitdt, (4.36)

=

∫ nT0

0

∫ t

0

hn−1(t− τ)

eζiωi(t−τ)

h1(τ)

eζiωiτ
dτdt, (4.37)

=

∫ nT0

0

∫ nT0

0

hn−1(t− τ)

eζiωi(t−τ)

h1(τ)

eζiωiτ
dτdt, (4.38)

=

∫ (n−1)T0

0

hn−1(t)

eζiωit
dt

∫ T0

0

h1(τ)

eζiωiτ
dτ, (4.39)

= · · · · · · , (4.40)

=

[∫ T0

0

h1(t)/e
ζiωitdt

]n

(4.41)

To show (4.31) is true, mathematical induction is used. When n = 1, it is simply true.

It can be shown that (4.31) is true when n = 2 since

f2(t) =

∫ t

0

f1(t− τ)f1(τ)dτ, (4.42)

=

∫ t

0
h1(t−τ)

eζiωi(t−τ)

h1(τ)

eζiωiτ dτ
∫ T0

0
h1(t)

eζiωitdt
∫ T0

0
h1(τ)

eζiωiτ dτ
, (4.43)

=

∫ t

0
h1(t− τ)h1(τ)dτ/e

ζiωit

∫∞
0

h1(t−τ)

eζiωi(t−τ)dt
∫∞

0
h1(τ)

eζiωiτ dτ
, (4.44)

=
h2(t)/e

ζiωit

∫∞
0

∫∞
0

h1(t−τ)

eζiωi(t−τ)

h1(τ)

eζiωiτ dτdt
, (4.45)

=
h2(t)/e

ζiωit

∫∞
0
h2(t)/eζiωitdt

. (4.46)
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Assume (4.31) is true for n = 1, 2, . . . , k − 1, then when n = k,

fk(t) =

∫ t

0

fk−1(t− τ)f1(τ)dτ, (4.47)

=

∫ t

0

hk−1(t−τ)

eζiωi(t−τ)

h1(τ)

eζiωiτ dτ
∫ (k−1)T0

0

hk−1(t)

eζiωit dt
∫ T0

0
h1(τ)

eζiωiτ dτ
, (4.48)

=

∫ t

0
hk−1(t− τ)h1(τ)dτ/e

ζiωit

∫∞
0

hk−1(t−τ)

eζiωi(t−τ) dt
∫∞

0
h1(τ)

eζiωiτ dτ
, (4.49)

=
hn(t)/eζiωit

∫∞
0

∫∞
0

hk−1(t−τ)

eζiωi(t−τ)

h1(τ)

eζiωiτ dτdt
, (4.50)

=
hn(t)/eζiωit

∫∞
0
hn(t)/eζiωitdt

. (4.51)

So the statement of (4.31) is true for all n ≥ 2.

The following analysis shows that all the input shapers from the input shaping technique

are special vibration suppression shape filters possessing the second property of Conclusion

4.3.1. Some disadvantages of the input shaping technique are also demonstrated. The

robust profile generation technique described in this report simultaneously achieves the two

properties in Conclusion 4.3.1. Also the robust profile generation technique can suppress

all the high frequency unknown resonant vibrations. However, the input shaping technique

does not have this property, which means that the input shaping technique has potential

disadvantages if high frequency resonance modes exist in a flexible system. These potential

disadvantages are the price of non-smoothness of the input shaping functions.

4.4 A Special Case (Input Shaping Technique)

In this section, the input shaping technique is proved to be a special case of the functions

which only possesses the second property of Conclusion 4.3.1. Also, potential disadvan-

tages of using the input shaping technique are made clear.

The input shaping technique [71, 73, 79, 85] was derived using the response of a linear,

time-invariant second order system to a sequence of impulses. By setting the amplitude of
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vibration for a multi-impulse input to be zero, the impulse amplitudes and corresponding

impulse starting times can be solved. However, the input shaping technique can be derived

to be a special case of vibration suppression shape filter possessing the second property of

Conclusion 4.3.1. In Section 4.12, it is shown that input shaping technique constructs a

small portion of the impulse function based shape filter.

4.4.1 A Special Case of Property 2 of Conclusion 4.3.1

Let f(t) = h(t)

eζiωit and f(t) is assumed to be an impulse function. First, f(t) is assumed to

be a two-impulse function, i.e.,

f(t) =







A1 if t = t1,

A2 if t = t2,

0 otherwise.

(4.52)

Since h(t) = f(t)eζiωit, then to guaranteeH(ωdi) = H(
√

1 − ζ2
i ωi) = 0, the following

equations must hold.

A1 + A2e
ζiωit2 cos (ωdit2) = 0, (4.53)

A2e
ζiωit2 sin (ωdit2) = 0. (4.54)

Here t1 is always assumed to be zero to reduce the time duration of the shape filter.

With the additional constraint of a shape filter, A1 + A2 = 1, the resultant function f(t) is

given by

f(t) =







1
1+K

if t = 0,

K
1+K

if t = ∆T ,

0 otherwise,

(4.55)

where K = e
− ζiπ√

1−ζ2
i and ∆T = π

ωdi
= π

ωi

√
1−ζ2

i

. This derived vibration suppression shape

filter is exactly the input shaping Zero Vibration (ZV) impulse filter. The base function of
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this shape filter (4.55) is

h(t) =







1 if t = 0,

1 if t = ∆T ,

0 otherwise,

(4.56)

where ∆T = π
ωdi

= π

ωi

√
1−ζ2

i

.

To improve robustness, the filter operation of Conclusion 4.3.2 is performed. Let

f1(t) = f(t), then f2(t) =
∫ t

0
f1(t − τ)f1(τ)dτ , and the resultant shape filter with ro-

bustness order n = 2 is given by

f2(t) =







1
1+2K+K2 if t = 0,

2K
1+2K+K2 if t = ∆T ,

K2

1+2K+K2 if t = 2∆T ,

0 otherwise.

(4.57)

This derived shape filter is exactly the input shaping Zero Vibration Derivative (ZVD)

impulse filter. The base function of this shape filter (4.57) is

h(t) =







1 if t = 0,

2 if t = ∆T ,

1 if t = 2∆T ,

0 otherwise.

(4.58)

If n = 3, then f3(t) =
∫ t

0
f2(t−τ)f1(τ)dτ , and the resultant shape filter with robustness
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order n = 3 is given by

f3(t) =







1
1+3K+3K2+K3 if t = 0,

3K
1+3K+3K2+K3 if t = ∆T ,

3K2

1+3K+3K2+K3 if t = 2∆T ,

K3

1+3K+3K2+K3 if t = 3∆T ,

0 otherwise.

(4.59)

This derived shape filter is exactly the input shaping ZVDD impulse filter. The base func-

tion of this shape filter (4.59)is

h(t) =







1 if t = 0,

3 if t = ∆T ,

3 if t = 2∆T ,

1 if t = 3∆T ,

0 otherwise.

(4.60)

Robustness can also be further improved by the filter operation of Conclusion 4.3.2.

The price of the robustness improvement is that the time duration of the shape filter is

increased.

The above impulse filter derivation assumes all the impulses are positive. Negative

impulses can also be assumed. The resultant negative shape filter may be shorter than the

positive shape filter. However, Singhose [79] has pointed out that negative input shapers

can cause large unmodeled high frequency vibration.

Since the shape filter function in this section is assumed to be an impulse function, it is

not a smooth function. So the two-impulse or three-impulse functions cannot be used as a

velocity profile. The non-smooth shape filter is very sensitive to unmodeled high frequency

resonant modes. This detail will be analyzed in the next section.
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It must be noted that the input shaping technique is only a special case of the impulse

functions which possesses the second property of Conclusion 4.3.1. There are a num-

ber of impulse functions that possess the second property of Conclusion 4.3.1. Since a

smooth function will be generated to simultaneously achieve the two properties of Conclu-

sion 4.3.1, further investigation of the impulse shape filter is not described here.

4.4.2 Potential Disadvantages of Using Input Shaping Technique

Input shaping technique is shown to be a special case of the functions which only possess

the second property of Conclusion 4.3.1. In this section, potential disadvantages of using

the input shaping technique are demonstrated. Since the input shaping impulse filters are

not smooth, so it has a potential to amplify the unmodeled high frequency vibration in a

flexible system. The resultant high frequency residual vibration is extremely large.

For a second-order harmonic oscillator of the natural frequency ωi rad/sec and the

damping ratio ζi,
ω2

i

s2 + 2ζiωis+ ω2
i

, (4.61)

the magnitude of the total response immediately after the N th impulse is given by [71, 72]

Vamp(ωi, ζi) = e−ζiωitN
ωi

√

1 − ζ2
i

√

(AC(ωi, ζi))
2 + (AS(ωi, ζi))

2, (4.62)

where

AC(ωi, ζi) =
N∑

k=1

Ake
ζiωitk cos

(

ωi

√

1 − ζ2
i tk

)

, (4.63)

AS(ωi, ζi) =
N∑

k=1

Ake
ζiωitk sin

(

ωi

√

1 − ζ2
i tk

)

. (4.64)

Ak and tk are the amplitude and time location at which the impulse occurs, N is the total

number of impulses, tN is the time of the last impulse, and ωdi = ωi

√

1 − ζ2
i is the damped

natural frequency.

The sensitivity of the impulse shape filter can be displayed graphically by a sensitivity

curve: a plot of residual vibration amplitude versus frequency error. Let q = ωactual/ωmodel,
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(4.62) becomes

Vamp(qωi, ζi) = e−ζiqωitN
qωi

√

1 − ζ2
i

×
√

(AC(qωi, ζi))
2 + (AS(qωi, ζi))

2, (4.65)

where ωi = ωmodel, ωactual = qωi, and

AC(qωi, ζi) =
N∑

k=1

Ake
ζiqωitk cos

(

qωi

√

1 − ζ2
i tk

)

, (4.66)

AS(qωi, ζi) =
N∑

k=1

Ake
ζiqωitk sin

(

qωi

√

1 − ζ2
i tk

)

. (4.67)

Since for any finite impulse shape filter f(t), 0 ≤ t ≤ T0, the integral of f(t) is
∫ T0

0
f(t)dt =

1, the rigid body movement amplitude can be assumed as
∫ T0

0
f(t)dt = 1. So the residual

vibration level can be defined as a percentage of the rigid body motion amplitude as in

(4.68)
Vamp(qωi, ζi)
∫ T0

0
f(t)dt

. (4.68)

For the impulse shape filter case,
∫ T0

0
f(t)dt =

∑N
k=1Ak = 1. Figure 4.2 shows the

sensitivity curve of the input shaping ZVD impulse filter with ωmodel = 1 rad/sec and

different damping ζi = 0, 0.05, 0.2. The sensitivity curve shows that the residual vibration

is amplified at the unmodeled high frequency. For example, if ωactual = 2 rad/sec and

the damping ratio ζi = 0, then the ZVD input shaping impulse filter based on ωmodel = 1

rad/sec and ζi = 0 will result a residual vibration amplitude of 200% = 2 for the second-

order oscillator described by (4.61). The residual vibration amplitude is extremely large

compared with the rigid body motion amplitude of 1.

A sensitivity curve plot of residual vibration amplitude versus damping error can be

calculated in a similar way. Figure 4.3 shows the sensitivity curve of the input shaping

ZVD impulse filter with ωi = 1 rad/sec and actual damping ratio. The model damping ratio

is assumed to be 0.1. From Figure 4.3, a large variation in the damping ratio is tolerated.

Since the impulse shape filter is not smooth, it has the potential to amplify the unmod-

eled high frequency vibration in a flexible system. Moreover, it cannot be used as a velocity
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Figure 4.2: ZVD input shaping residual vibration level versus actual natural frequency.
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Figure 4.3: ZVD input shaping residual vibration level versus actual damping ratio.
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profile. In the following analysis, a smooth shape filter will be developed. The smoothness

of the shape filter suppresses the high frequency vibration.

Remark 4.1 The definition in (4.65) is different from the sensitivity concept of Singer [71,

72] and Singhose [79]. In their definition, the sensitivity curve is expressed as the magni-

tude of the total response immediately after the N th impulse divided by the magnitude of

the response with unit impulse occurring at time 0. Since the magnitude of the response

with unit impulse occurring at time 0 is given by

ωi
√

1 − ζ2
i

, (4.69)

their definition of residual vibration level is

Vamp(qωi, ζi)
ωi√
1−ζ2

i

∑N
k=1Ak

(4.70)

or simply

e−ζiqωitN

√
√
√
√

(

AC(qωi, ζi)

)2

+

(

AS(qωi, ζi)

)2

, (4.71)

because Vamp(qωi, ζi) exactly has the term ωi√
1−ζ2

i

and
∑N

k=1Ak = 1.

It is known from (4.69) that the magnitude of the response with unit impulse occurring

at time 0 linearly increases with respect to actual undamped natural frequency ωi if ζi is

assumed to be a constant. Therefore, their definition does not consider the true residual

vibration magnitude. For example, the definition (4.71) shows that the residual vibration

level is 100% when the actual undamped natural frequency is 0. However, the true mag-

nitude of the residual vibration given in (4.65) is 0 when the actual undamped natural

frequency is 0.
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4.5 Another Special Case (Optimal Arbitrary

Time-Delay Filter (OATF))

In this section, the optimal arbitrary time-delay filter (OATF) developed by Magee and

Book [46, 48, 49] is proved to be a special case of the functions which only possesses the

second property of Conclusion 4.3.1.

OATF technique chooses a cost function involving both the error signal and the time

rate of change in the error signal. The cost function is expressed as an explicit function

of the unknown filter coefficients, and the function can be minimized with respect to the

unknown filter terms. Magee and Book [46, 48] showed that the ZV and ZVD input shapers

can be derived from the OATF algorithm if an appropriate time-delay value was chosen. In

Section 4.12, it is shown that OATF technique, like input shaping technique, only constructs

a small portion of the impulse function based shape filter.

4.5.1 Another Special Case of Property 2 of Conclusion 4.3.1

The OATF that minimizes the elastic response of a single mode of vibration is given by [46,

48]

f(t) =







1 if t = 0,

−2 cos (ωdiT1)e
−ζiωiT1 if t = T1,

e−2ζiωiT1 if t = 2T1,

0 otherwise,

(4.72)

where T1 is an arbitrary time-delay value, ωi rad/sec is the undamped natural frequency and

ζi is the damping ratio, ωdi =
√

1 − ζ2
i ωi is the damped natural frequency.

It is very simple to know that the function h(t) = f(t)eζiωit from the three-impulse

function f(t) in (4.72) is a base function such that the Fourier transform of h(t), H(ω) is
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zero at ω = ωdi, i.e., H(ωdi) = 0. First, h(t) = f(t)eζiωit is given by

h(t) =







1 if t = 0,

−2 cos (ωdiT1) if t = T1,

1 if t = 2T1,

0 otherwise,

(4.73)

and the Fourier transform of three-impulse function h(t), H(ω) at ω = ωdi is given by

H(ωdi) = 1 − 2 cos (ωdiT1)e
−jωdiT1 + e−2jωdiT1 , (4.74)

= 1 − (ejωdiT1 + e−jωdiT1)e−jωdiT1 + e−2jωdiT1 , (4.75)

= 1 − (1 + e−2jωdiT1) + e−2jωdiT1 , (4.76)

= 0. (4.77)

So the OATF f(t) in (4.72) can be generated from the above three-impulse base function

h(t) in (4.73) by the following operation from the second property of Conclusion 4.3.1.

f(t) =
h(t)

eζiωit
. (4.78)

An interesting property of this shape filter is that the time duration T1 of two sequential

impulses can be chosen to be any positive number.

4.5.2 Relationship Between OATF and Input Shaping Technique

Magee [46] showed that the OATF f(t) reduced to ZV input shaper or ZVD input shaper

by choosing the time-delay value T1 to be a special number. For example, by choosing

T1 = π
2ωdi

, the OATF f(t) in (4.72) becomes a two-impulse function

f(t) =







1 if t = 0,

e

−ζiπ√
1−ζ2

i if t = π
ωdi
,

0 otherwise.

(4.79)
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The normalized f(t) is exactly the two-impulse ZV input shaper function as given by

f(t) =







1
1+K

if t = 0,

K
1+K

if t = π
ωdi
,

0 otherwise,

(4.80)

where K = e

−ζiπ√
1−ζ2

i .

By choosing T1 = π
ωdi

, the three-impulse function OATF f(t) in (4.72) becomes

f(t) =







1 if t = 0,

2e

−ζiπ√
1−ζ2

i if t = π
ωdi
,

e

−2ζiπ√
1−ζ2

i if t = 2π
ωdi
,

0 otherwise.

(4.81)

The normalized f(t) is exactly the three-impulse ZVD input shaper function as given by

f(t) =







1
1+K+K2 if t = 0,

2K
1+K+K2 if t = π

ωdi
,

K2

1+K+K2 if t = 2π
ωdi
,

0 otherwise,

(4.82)

where K = e

−ζiπ√
1−ζ2

i .

Like input shaping technique, OATF algorithm is based on non-continuous impulse

functions, so it is not a smooth function. Since the impulse shape filter is not smooth, it

has the potential to amplify the unmodeled high frequency vibration in a flexible system.

Moreover, the three-impulse function cannot be used as a velocity profile. In the follow-

ing analysis, a smooth shape filter will be developed. The smoothness of the shape filter

suppresses the high frequency vibration.
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4.6 Robust Shape Filter Generation Using Rectangle

Window

4.6.1 Continuous-Time Rectangle Based Shape Filter Generation

Assume the robust shape filter is generated from a rectangle window given by

h(t) =







1
T
, if 0 ≤ t ≤ T ,

0, otherwise.
(4.83)

The Fourier transform of h(t) is given by

H(ω) =

∫ T

0

1

T
e−jωtdt, (4.84)

=
1 − e−jωT

jωT
, (4.85)

and the magnitude spectrum is given by

|H(ω)| =

∣
∣
∣
∣
∣

1 − e−jωT

jωT

∣
∣
∣
∣
∣
, (4.86)

=

∣
∣
∣
∣
∣

sin (ωT/2)

(ωT )/2

∣
∣
∣
∣
∣
. (4.87)

If H(ωdi) = H(
√

1 − ζ2
i ωi) = 0, then T = 2π

ωdi
, which is the same time duration as the

input shaping ZVD impulse filter. So a smooth shape filter can be generated as

f(t) =
h(t)/eζiωit

∫∞
0
h(t)/eζiωitdt

, (4.88)

=
h(t)/eζiωit

(1 − e−ζiωiT )/(ζiωiT )
, (4.89)

=







ζiωi

1−e−ζiωiT e
−ζiωit if 0 ≤ t ≤ T ,

0 otherwise.
(4.90)

When ζi = 0, the shape filter f(t) is simply equal to h(t) in (4.83). To improve robustness,

the filter operation of Conclusion 4.3.2 is performed. Let f1(t) = f(t), then f2(t) =
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∫ t

0
f1(t− τ)f1(τ)dτ , and the resultant shape filter with robustness order n = 2 is given by

f2(t) =







(
ζiωi

1−e−ζiωiT

)2

e−ζiωitt if 0 ≤ t < T ,

(
ζiωi

1−e−ζiωiT

)2

e−ζiωit(2T − t) if T ≤ t ≤ 2T ,

0 otherwise.

(4.91)

When ζi = 0, the resultant shape filter with robustness order n = 2 is simply given by

f2(t) =







1
T 2 t if 0 ≤ t < T ,

1
T 2 (2T − t) if T ≤ t ≤ 2T ,

0 otherwise.

(4.92)

If n = 3, then f3(t) =
∫ t

0
f2(t − τ)f1(τ)dτ , and the resultant shape filter with robustness

order n = 3 is given by

f3(t) =







(
ζiωi

1−e−ζiωiT

)3

e−ζiωit( t2

2
) if 0 ≤ t < T ,

(
ζiωi

1−e−ζiωiT

)3

e−ζiωit(−t2 + 3Tt− 3
2
T 2) if T ≤ t < 2T ,

(
ζiωi

1−e−ζiωiT

)3

e−ζiωit (t−3T )2

2
if 2T ≤ t ≤ 3T ,

0 otherwise.

(4.93)

Robustness can also be further improved by the filter operation of Conclusion 4.3.2.

The price of the robustness improvement is that the time duration of the shape filter is

increased.

Figure 4.4 shows the resultant shape filter function f1(t) in the time domain and the

magnitude spectrum |F1(ω)| in the frequency domain, with ωi = 1 rad/sec and ζi = 0. Fig-

ure 4.5 shows the resultant shape filter function f2(t) and the magnitude spectrum |F2(ω)|,

with ωi = 1 rad/sec and ζi = 0. Figure 4.6 shows the resultant shape filter function f3(t)

and the magnitude spectrum |F3(ω)|, with ωi = 1 rad/sec and ζi = 0.

For the damped case, Figure 4.7 shows the resultant shape filter function f1(t) in the

time domain and the magnitude spectrum |F1(ω)| in the frequency domain, with ωi = 1
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Figure 4.4: Rectangle based shape filter with ωi = 1, ζi = 0, and the robustness order

n = 1.
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Figure 4.5: Rectangle based shape filter with ωi = 1, ζi = 0, and the robustness order

n = 2.
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Figure 4.6: Rectangle based shape filter with ωi = 1, ζi = 0, and the robustness order

n = 3.

rad/sec and ζi = 0.05. Figure 4.8 shows the resultant shape filter function f2(t) and the

magnitude spectrum |F2(ω)|, with ωi = 1 rad/sec and ζi = 0.05. Figure 4.9 shows the

resultant shape filter function f3(t) and the magnitude spectrum |F3(ω)|, with ωi = 1

rad/sec and ζi = 0.05.

4.6.2 Discrete-Time Rectangle Based Shape Filter Generation

Now the discrete-time rectangle based shape filter is derived. If the sampling period is Ts

sec and the total discrete-time sequence has M + 1 impulses, the rectangle function is

h[k] =







1, if 0 ≤ k ≤M,

0, otherwise.
(4.94)

The discrete-time Fourier transform of h[k] is given by

H(ω) =
M∑

k=0

h[k]e−jωk, (4.95)

= e−jωM sin [ω(M + 1)/2]

sin (ω/2)
, (4.96)
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Figure 4.7: Rectangle based shape filter with ωi = 1, ζi = 0.05, and the robustness order

n = 1.
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Figure 4.8: Rectangle based shape filter with ωi = 1, ζi = 0.05, and the robustness order

n = 2.
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Figure 4.9: Rectangle based shape filter with ωi = 1, ζi = 0.05, and the robustness order

n = 3.

and the magnitude spectrum of h[k] is given by

|H(ω)| =

∣
∣
∣
∣

sin [ω(M + 1)/2]

sin (ω/2)

∣
∣
∣
∣
. (4.97)

Here the unit of ω in the discrete-time Fourier transform is radians. If H(ωdiTs) =

H(
√

1 − ζ2
i ωiTs) = 0, then ωdiTs = 2π

M+1
and M = 2π

ωdiTs
− 1. If M is a positive integer,

a smooth shape filter can be generated as

f [k] =
h[k]/eζiωikTs

∑M
m=0 h[m]/eζiωimTs

, (4.98)

=
h[k]/eζiωikTs

(1 − e−ζiωi(M+1)Ts)/(1 − e−ζiωiTs)
, (4.99)

=







1−e−ζiωiTs

1−e−ζiωi(M+1)Ts
e−ζiωikTs if 0 ≤ k ≤M,

0 otherwise.
(4.100)

When ζi = 0, the shape filter f [k] is simply equal to h[k]/(M +1). To improve robustness,

the filter operation of Conclusion 4.3.2 is performed. Let f1[k] = f [k], then f2[k] =

∑k
m=0 f1[k −m]f1[m], and the resultant shape filter with robustness order n = 2 is given
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by

f2[k] =







(
1−e−ζiωiTs

1−e−ζiωi(M+1)Ts

)2

e−ζiωikTs(k + 1) if 0 ≤ k ≤M,

(
1−e−ζiωiTs

1−e−ζiωi(M+1)Ts

)2

e−ζiωikTs(2M + 1 − k) if M + 1 ≤ k ≤ 2M,

0 otherwise.

(4.101)

When ζi = 0, the resultant shape filter with robustness order n = 2 is simply given by

f2[k] =







1
(M+1)2

(k + 1) if 0 ≤ k ≤M,

1
(M+1)2

(2M + 1 − k) if M + 1 ≤ k ≤ 2M,

0 otherwise.

(4.102)

If n = 3, then f3[k] =
∑k

m=0 f2[k−m]f1[m], and the resultant shape filter with robustness

order n = 3 is given by

f3[k] =







(
1−e−ζiωiTs

1−e−ζiωi(M+1)Ts

)3

e−ζiωikTs(k + 1)(k
2

+ 1) if 0 ≤ k ≤M,

(
1−e−ζiωiTs

1−e−ζiωi(M+1)Ts

)3

e−ζiωikTs(−3
2
M2 + 3Mk + 3

2
M + 1 − k2) if M + 1 ≤ k ≤ 2M,

(
1−e−ζiωiTs

1−e−ζiωi(M+1)Ts

)3

e−ζiωikTs(3M + 1 − k) (3M+2−k)
2

if 2M + 1 ≤ k ≤ 3M,

0 otherwise.
(4.103)

Robustness can also be further improved by the filter operation of Conclusion 4.3.2.

The price of the robustness improvement is that the time duration of the shape filter is

increased.

4.6.3 Comparison of Rectangle Based Shape Filter and ZVD Input

Shaping Technique

In this section, a comparison between the discrete-time rectangle based shape filter f1[k]

and the ZVD input shaping is performed. The sampling period Ts is chosen to be π
100ωdi

.

First, the continuous-time rectangle based shape filter f1(t) in (4.90) has the same time
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duration as the ZVD input shaper which is 2π
ωdi

. In the discrete-time case, the time duration

of the rectangle based shape filter f1[k] = f [k] in (4.100) is

MTs =

(
2π

ωdiTs

− 1

)

Ts =
2π

ωdi

− Ts. (4.104)

This results that the time duration of discrete-time rectangle based shape filter f1[k] is al-

ways less one sample period Ts than the time duration of the ZVD input shaper. Figure 4.10

shows the ZVD input shaper (left) and the rectangle based shape filter (right) with ωi = 1

rad/sec and ζi = 0.05. It clearly shows the amplitude of the ZVD input shaper suddenly

changes. However, the rectangle based shape filter smoothly changes from the start to the

end.
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Figure 4.10: Left: ZVD input shaper with ωi = 1 and ζi = 0.05; Right: Rectangle based

shape filter f1[k] with ωi = 1 and ζi = 0.05

The residual vibration level (4.68) can be plotted for ZVD input shaping and rectangle

based shape filter f1[k]. In Figure 4.11, the left part shows the sensitivity curve of the

ZVD input shaper with ωmodel = 1 rad/sec and different damping ζi = 0, 0.05, 0.2, and

the right part shows the sensitivity curve of the rectangle based shape filter f1[k] with

ωmodel = 1 rad/sec and different damping ζi = 0, 0.05, 0.2. Although the sensitivity curve
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of the rectangle based shape filter at the model natural frequency ω = ωmodel = 1 rad/sec

is not as flat as that of the ZVD input shaper, the high frequency unmodeled dynamics are

suppressed by the smoothness of the rectangle based shape filter.

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

900

1000

Normalized frequency (ω
actual

/ω
model

)

R
e
s
id

u
a
l 
v
ib

ra
ti

o
n

 (
%

 o
f 

ri
g

id
 m

o
ti

o
n

 a
m

p
li
tu

d
e
)

ζ
i
 = 0

ζ
i
 = 0.05

ζ
i
 = 0.2

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

900

1000

Normalized frequency (ω
actual

/ω
model

)

R
e
s
id

u
a
l 
v
ib

ra
ti

o
n

 (
%

 o
f 

ri
g

id
 m

o
ti

o
n

 a
m

p
li
tu

d
e
)

ζ
i
 = 0

ζ
i
 = 0.05

ζ
i
 = 0.2

Figure 4.11: Left: ZVD input shaping sensitivity plot versus actual natural frequency;

Right: Rectangle based shape filter f1[k] sensitivity plot versus actual natural frequency.

A sensitivity of vibration amplitude versus damping error is also compared. In Fig-

ure 4.12, the left part shows the sensitivity curve of the ZVD input shaper with ωi = 1

rad/sec and the actual damping ratio, the right part shows the sensitivity curve of the rectan-

gle based shape filter ωi = 1 rad/sec and the actual damping ratio. Although the sensitivity

curve of the rectangle based shape filter at the expected model damping ratio is not as flat

as that of the ZVD input shaper, still a large variation in the damping ratio is tolerated.

The outputs of a step command through the ZVD input shaper and rectangle based

shape filter f1[k] are compared in Figure 4.13. The sudden change of the shaped com-

mand in the left plot is caused by the non-smoothness of the ZVD input shaper, however,

in the right plot, the shaped command smoothly changes from the start set point to the end

set point. Besides the potential disadvantages of inducing the high frequency unmodeled

dynamics, the non-smooth shaped command is difficult to be followed in the model refer-
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Figure 4.12: Left: ZVD input shaping sensitivity plot versus actual damping ratio; Right:

Rectangle based shape filter f1[k] sensitivity plot versus actual damping ratio.

ence closed-control scheme. The smoother command with more robustness of the rectangle

based shape filter can be generated through the filter operation in Conclusion 4.3.2.

Next, simulation results of the position outputs of a second-order harmonic oscillator

in (4.61) with a step reference input are compared. Figure 4.14 shows the simulation model

of using ZVD input shaper. Figure 4.15 shows the simulation model of using rectangle

based shape filter. In both cases, the step reference inputs are sent to ZVD input shaper or

rectangle based shape filter. Both ZVD input shaper and rectangle based shape filter are de-

signed by the model undamped natural frequency ωi = 1 rad/sec and model damping ratio

ζi = 0.05. Figure 4.16 shows the position outputs with the actual undamped natural fre-

quency ωactual = 1 rad/sec. In this case, residual vibrations are canceled immediately after

the time duration of the shape filter. Figure 4.17 shows the position outputs with the actual

undamped natural frequency ωactual = 1.5 rad/sec. In this case, ZVD input shaper induces

a bigger residual vibration than the rectangle based shape filter since the input shapers have

no property to suppress the high frequency unmodeled resonant dynamics. The situation

becomes more obvious when the actual undamped natural frequency increases. Figure 4.18
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Figure 4.13: Left: Output of a unit step through a ZVD input shaping; Right: Output of a

unit step through a rectangle based shape filter f1[k].

shows the position outputs with the actual undamped natural frequency ωactual = 2 rad/sec.

It clearly shows that the residual vibration amplitude caused by the ZVD input shaper is

larger than that of the rectangle based shape filter.

Unit step

time

positionZVD input
shaper

omega^2

s  +2*zeta*omegas+omega^22

Closed−loop
transfer function

Clock

Figure 4.14: A simulation block of regular closed-loop using ZVD input shaper.

Although the rectangle based shape filter function f1[k] is a velocity candidate, it is not

suitable to be used in practice since its initial and final values are too large. With the filter

operation in Conclusion 4.3.2, a smoother shape filter with more robustness can be gener-

ated. Meanwhile, if the initial and final values of the resultant shape filter function are zero,
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Figure 4.15: A simulation block of regular closed-loop control using rectangle based shape

filter.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

P
o

s
it

io
n

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

P
o

s
it

io
n

Figure 4.16: Position outputs with actual ωi = 1 rad/sec. Left: ZVD input shaper; Right:

rectangle based shape filter f1[k].
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Figure 4.17: Position outputs with actual ωi = 1.5 rad/sec. Left: ZVD input shaper; Right:

rectangle based shape filter f1[k].
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Figure 4.18: Position outputs with actual ωi = 2 rad/sec. Left: ZVD input shaper; Right:

rectangle based shape filter f1[k].
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it can be used as a robust velocity profile for the rigid mode. Figure 4.19 shows the robust

rigid body acceleration, velocity, and position profiles generated from the rectangle based

shape filter f2[k], with one resonant mode with parameters ωi = 1 rad/sec and ζi = 0.1.

Figure 4.20 shows the robust rigid body acceleration, velocity, and position profiles gener-

ated from the rectangle based shape filter f3[k], with one resonant mode with parameters

ωi = 1 rad/sec and ζi = 0.1. The price of more smoothness and robustness is the increase

of the move time.

0 2 4 6 8 10 12 14
−0.05

0

0.05

A
cc

el
er

at
io

n

0 2 4 6 8 10 12 14
0

0.1

0.2

V
el

oc
ity

0 2 4 6 8 10 12 14
0

0.5

1

P
os

iti
on

Time (sec)

Figure 4.19: Robust acceleration, velocity and position profiles with rectangle based shape

filter f2[k].

4.6.4 Discrete-Time Shape Filter Generation with an Arbitrary Sam-

pling Period

The previous analysis assumes the discrete-time sequence has an exact integer number of

impulses. In practice, the calculation result of M = 2π
ωdiTs

− 1 may not be an integer, but

a floating point number. The strategy here is to slightly change the sampling period and

make the new resultant M be an integer. So a new discrete-time sequence with a slightly
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Figure 4.20: Robust acceleration, velocity and position profiles with rectangle based shape

filter f3[k].

changed sampling period is generated. Then this new generated sequence will be replaced

by a sequence having the sampling period Ts.

In the case of the rectangle base function, when M = 2π
ωdiTs

− 1 is not an integer but

a floating point number, by choosing M1 = floor(M), and the resultant new sampling

period is Ts1 = 2π
(M1+1)ωdi

> Ts. So the new generated base function with the sampling

period Ts1 is

h1[k] =







1, if 0 ≤ k ≤M1,

0, otherwise.
(4.105)

Here the operator floor(x) rounds the elements of x to the nearest integer toward −∞

and the operator ceil(x) rounds the element of x to the nearest integer toward +∞ . If by

choosing M2 = ceil(M) the resultant new sampling period is Ts2 = 2π
(M2+1)ωdi

< Ts, the

new generated base function with the sampling period Ts2 is

h2[k] =







1, if 0 ≤ k ≤M2,

0, otherwise.
(4.106)
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To replace the base function h1[k] of the sampling period Ts1 with a base function h[k]

of the sampling period Ts, two consecutive impulses (B1 at nTs andB2 at (n+1)Ts) of h[k]

are calculated to replace the impulse B at kTs1 of h1[k]. Here, n is an integer satisfying the

relationship

nTs ≤ kTs1 < (n+ 1)Ts, (4.107)

or

n ≤ kTs1

Ts

= n+ α < n+ 1, (4.108)

where α = kTs1

Ts
− n and 0 ≤ α < 1. The discrete-time Fourier transform of the original

sequence should have the same value as the modified sequence, so

Be−jω(n+α) = B1e
−jωn +B2e

−jω(n+1). (4.109)

Solving the above equation and obtain

B1 =
sin (ω(1 − α))

sinω
B, (4.110)

B2 =
sin (ωα)

sinω
B. (4.111)

Notice the unit of discrete-time Fourier transform variable ω is rad, then the impulses

B1 and B2 in terms of ωdi rad/sec and sampling period Ts sec are

B1 =
sin (ωdiTs(1 − α))

sin (ωdiTs)
B, (4.112)

B2 =
sin (ωdiTsα)

sin (ωdiTs)
B. (4.113)

The whole impulses of the modified base function h[k] can be easily generated by the

following program routine.
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h[k] = 0, k = 0, 1, ... ceil(M_1 * T_s1 / T_s);

for k = 0; k = k + 1; k <= M1

n = floor(k * T_s1 / T_s);

alpha = k * T_s1 / T_s - n;

//h1[k] is the modified sequence with sampling period Ts1

B = h1[k];

B1 = sin(omega_di * T_s * (1 - alpha)) / sin(omega_di * T_s) * B;

B2 = sin(omega_di * T_s * (alpha)) / sin(omega_di * T_s) * B;

if alpha == 0

h[n] = h[n] + B1;

else

h[n] = h[n] + B1;

h[n+1] = h[n+1] + B2;

end

end
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Notice the impulse at kTs1 may also be replaced by two non-consecutive impulses or

more than two impulses, such as impulse at (n− 1)Ts and impulse at (n+ 1)Ts. Similarly,

the modified base function of the sampling period Ts can also be generated from the base

function h2[k] of the sampling period Ts2.

In the following sections, robust smooth shape filter generation based on other window

functions is studied. Instead of analyzing the continuous-time case, the discrete-time case is

directly generated. The algorithm described in this section applies to other base functions.

4.7 Robust Shape Filter Generation Using Hanning

Window

If the sampling period is Ts sec and the total discrete-time sequence has M + 1 impulses,

the Hanning window function is

h[k] =







0.5 − 0.5 cos (2πk/M), if 0 ≤ k ≤M,

0, otherwise.
(4.114)

By calculation, If H(ωdiTs) = H(
√

1 − ζ2
i ωiTs) = 0, then ωdiTs = 4π

M
and M = 4π

ωdiTs
.

137



If M is a positive integer, a smooth shape filter can be generated as

f [k] =
h[k]/eζiωikTs

∑M
m=0 h[m]/eζiωimTs

. (4.115)

To improve robustness, the filter operation of Conclusion 4.3.2 is performed. Let

f1[k] = f [k], then more robust shape filters f2[k], f3[k], . . . can be generated following

the filter operation of Conclusion 4.3.2. Notice in (4.115), it is not necessary to derive

the explicit form for f [k]. Since the sequence h[k] is known, the sequence f [k] can be

generated through a simple numerical calculation.

The residual vibration level (4.68) can be plotted for the Hanning based shape filter

f1[k] and rectangle based shape filter f1[k]. In Figure 4.21, the left part shows the sensitiv-

ity curve of the rectangle based shape filter with ωmodel = 1 rad/sec and different damping

ζi = 0, 0.05, 0.2, and the right part shows the sensitivity curve of the Hanning based shape

filter f1[k] with ωmodel = 1 rad/sec and different damping ζi = 0, 0.05, 0.2. Clearly, the ro-

bustness of the Hanning based shape filter is increased both at the model natural frequency

and the unmodeled high frequency.

The outputs of a step command through the ZVDDD input shaper and the Hanning

based shape filter f1[k] are compared in Figure 4.22. The sudden change of the shaped

command in the left plot is caused by the non-smoothness of the ZVDDD input shaper,

however, in the right plot, the shaped command smoothly changes from the start set point

to the end set point. Besides the potential disadvantages of inducing high frequency un-

modeled dynamics, the other disadvantage of the non-smooth shaped command is that it is

difficult to follow in the model reference closed-control scheme. The smoother command

with more robustness of the Hanning based shape filter can be generated through the filter

operation in Conclusion 4.3.2.

Since the Hanning function starts and ends at zero, the Hanning based shape filter f1[k]

can be used as a robust velocity candidate. Figure 4.23 shows the robust rigid body accel-

eration, velocity, and position profiles generated from the Hanning based shape filter f1[k],

with one resonant mode with parameters ωi = 1 rad/sec and different damping ratio (Left:
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Figure 4.21: Left: Rectangle based shape filter f1[k] sensitivity plot versus actual natural

frequency; Right: Hanning based shape filter f1[k] sensitivity plot versus actual natural

frequency.

0 5 10 15
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

O
u

tp
u

t 
o

f 
u

n
it

 s
te

p
 t

h
ro

u
g

h
 a

 Z
V

D
D

D
 i
n

p
u

t 
s
h

a
p

e
r

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

O
u

tp
u

t 
o

f 
u

n
it

 s
te

p
 t

h
ro

u
g

h
 a

 h
a

n
n

in
g

 s
h

a
p

e
 f

il
te

r 
f 1

[k
]

Figure 4.22: Left: Output of a unit step through a ZVDDD input shaping; Right: Output of

a unit step through a Hanning based shape filter f1[k].
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ζi = 0.2; Right: ζi = 0.5).

Hanning based shape filter generation for an arbitrary sampling period can be imple-

mented following the procedure in Section 4.6.4.
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Figure 4.23: Robust acceleration, velocity and position profiles with the Hanning based

shape filter f1[k] (Left: ωi = 1 rad/sec and ζi = 0.2; Right: ωi = 1 rad/sec and ζi = 0.5).

4.8 Robust Shape Filter Generation Using Blackman

Window

If the sampling period is Ts sec and the total discrete-time sequence has M + 1 impulses,

the Blackman window function is

h[k] =







0.42 − 0.5 cos (2πn/M) + 0.08 cos (4πk/M), if 0 ≤ k ≤M,

0, otherwise.
(4.116)

By calculation, If H(ωdiTs) = H(
√

1 − ζ2
i ωiTs) = 0, then ωdiTs = 6π

M
and M = 6π

ωdiTs
.
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If M is a positive integer, a smooth shape filter can be generated as

f [k] =
h[k]/eζiωikTs

∑M
m=0 h[m]/eζiωimTs

. (4.117)

Again, it is not necessary to derive the explicit form for f [k]. Since sequence h[k] is

known, the sequence f [k] can be generated through a simple numerical calculation. Let

f1[k] = f [k], then more robust shape filters f2[k], f3[k], . . . can be generated following the

filter operation of Conclusion 4.3.2.

Blackman window based shape filter generation for an arbitrary sampling period can be

implemented following the procedure in Section 4.6.4.

4.9 Can Hamming Window be Used to Robust Shape

Filter Generation?

If the sampling period is Ts sec and the total discrete-time sequence has M + 1 impulses,

the Hamming window function is

h[k] =







25
46

− 21
46

cos (2πk/M), if 0 ≤ k ≤M,

0, otherwise.
(4.118)

The numerator of the real part of the discrete-time Fourier transform is calculated as

NR(ω) = − 2 − 4
(

cos
( π

M

))2

cos (ωM) cos (ω) + 25
(

cos
( π

M

))2

sin (ωM) sin (ω)

+ 4
(

cos
( π

M

))2

cos (ωM) − 23 sin (ωM) sin (ω) − 2 sin (ω) sin (ωM) cos (ω)

+ 2 cos (ωM) (cos (ω))2 − 4 cos (ω)
(

cos
( π

M

))2

+ 4
(

cos
( π

M

))2

+ 2 (cos (ω))2 − 2 cos (ωM) .

(4.119)

And the numerator of the imaginary part of the discrete-time Fourier transform is calculated
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as

NI(ω) = − 25 − 50
(

cos
( π

M

))2

cos (ωM) cos (ω) + 50
(

cos
( π

M

))2

sin (ωM) sin (ω)

+ 50
(

cos
( π

M

))2

cos (ωM) − 25 sin (ωM) sin (ω) − 25 sin (ω) sin (ωM) cos (ω)

− 42 cos (ω) cos
( π

M

)

sin
( π

M

)

+ 25 cos (ωM) (cos (ω))2

− 50 cos (ω)
(

cos
( π

M

))2

+ 50
(

cos
( π

M

))2

+ 42 sin
( π

M

)

cos
( π

M

)

+ 25 (cos (ω))2 − 42 sin
( π

M

)

cos
( π

M

)

cos (ωM)

− 25 cos (ωM) + 42 sin
( π

M

)

cos
( π

M

)

cos (ωM) cos (ω)

(4.120)

No ω exists such that NR(ω) = NI(ω) = 0. So H(ω) = 0 has no solution and the

shape filter cannot be generated from Hamming window in theory by following Conclusion

4.3.1. However, approximately when ω ≈ 4π
M

, |H(ω)| approaches an extremely small

number [60]. If M = 4π
ωdiTs

and M is a positive integer, a smooth shape filter can be

generated as

f [k] =
h[k]/eζiωikTs

∑M
m=0 h[m]/eζiωimTs

. (4.121)

In this case, since |H(ωdiTs)| ≈ 0, the residual vibration cannot be eliminated in theoretical

sense. But an extremely small |H(ωdiTs)| implies the residual vibration is sufficiently sup-

pressed. Again, it is not necessary to derive the explicit form for f [k]. Since the sequence

h[k] is known, the sequence f [k] can be generated through a simple numerical calculation.

Let f1[k] = f [k], then more robust shape filters f2[k], f3[k], . . . can be generated following

the filter operation of Conclusion 4.3.2.

Hamming based shape filter generation for an arbitrary sampling period can be imple-

mented following the procedure in Section 4.6.4.
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4.10 Robust Shape Filter Generation Using Other

Continuous Functions

From Conclusion 4.3.1, a smooth robust shape filter can be generated from a finite support

smooth function h(t), such that H(ωdi) = 0. Some simple window functions have been

used as base functions to generate the robust shape filters in the previous sections. Numer-

ous smooth functions h(t) may have the property of H(ωdi) = 0 or H(ωdi) ≈ 0. So all of

them can be used as base functions to generate the robust shape filters. Here, some window

functions that possess the property are listed. These window functions were originally used

for harmonic analysis [31, 57, 29].

• cosα (X) window.

• Riesz window.

• Riemann window.

• de la Vallé-Poussin window.

• Tukey window.

• Bohman window.

• Poisson window.

• Hanning-Poisson window.

• Cauchy window.

• Gaussian window.

• Dolph-Chebeshev window.

• Kaiser-Bessel window.

• Barcilon-Temes window.

• Nuttall window.

• Modified Bartlett-Hanning window.

• Others.
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4.11 Robust Shape Filter Generation Using Several

Continuous Functions

A section of a base function h[k] can be constructed from other smooth functions through

products, sums, convolutions, integral, or other mathematical operations. If the constructed

base function has the property of H(ωdiTs) = 0, then it can be used to generate the robust

shape filters through Conclusion 4.3.1. Here, a simple example is given to show the basic

idea.

Here, a base function h[k] is generated from three Hanning window functions

h[k] = hs1[k] + hs2[k] + hs3[k], 0 ≤ k ≤ 2M, (4.122)

where

hs1[k] =







1
2
− 1

2
cos (πk/M), if 0 ≤ k ≤ 2M,

0, otherwise,
(4.123)

hs2[k] =







C
[

1
2
− 1

2
cos (2πk/M)

]
, if 0 ≤ k ≤M,

0, otherwise,
(4.124)

hs3[k] =







C
[

1
2
− 1

2
cos (2πk/M)

]
, if M ≤ k ≤ 2M,

0, otherwise,
(4.125)

where C is a constant number. Figure 4.24 shows a typical combination of functions hs1[k],

hs2[k], hs3[k], and the resultant base function h[k].

By calculation, If H(ωdiTs) = H(
√

1 − ζ2
i ωiTs) = 0, then

ωdiTs =
2 [cos (π/M)]2 (C + 1) + 2C cos (π/M) − 1

2C cos (π/M) + 2C + 1
. (4.126)
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Figure 4.24: A typical combination of functions hs1[k], hs2[k], hs3[k], and the resultant

base function h[k].

So M can be derived to be

M =
π

arccos
C cos (ωdiTs)−C+

√
C2[cos (ωdiTs)]2+2C2 cos (ωdiTs)+C2+2C+6C cos (ωdiTs)+2+2 cos (ωdiTs)

2C+2

.

(4.127)

If M is a positive integer, a smooth shape filter can be generated as

f [k] =
h[k]/eζiωikTs

∑2M
m=0 h[m]/eζiωimTs

0 ≤ k ≤ 2M. (4.128)

Normalized base functions h[k] and shape filters are generated based on the same nat-

ural frequency ωi = 1 rad/sec and the damping ratio ζi = 0.2 with different values of

parameter C. Figure 4.25 shows the normalized base function h[k] and the shape filter f [k]

with C = 0.25. Figure 4.26 shows the normalized base function h[k] and the shape filter

f [k] with C = 0.5. Figure 4.27 shows the normalized base function h[k] and the shape

filter f [k] with C = 1. Figure 4.28 shows the normalized base function h[k] and the shape

filter f [k] with C = 2. It clearly shows that the time duration of the shape filter decreases

with an increase in the parameter C.

The values of M from Figure 4.25 to Figure 4.28 are made to be positive integers by
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Figure 4.25: Normalized base function h[k] and the shape filter f [k] with C = 0.25.
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Figure 4.26: Normalized base function h[k] and the shape filter f [k] with C = 0.5.

146



0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
x 10

−3

Time (sec)

N
or

m
al

iz
ed

 b
as

e 
fu

nc
tio

n 
h[

k]
 a

nd
 s

ha
pe

 fi
lte

r 
f[

k] Base function h[k] (C=1)
Shape filter f[k] (C=1)

Figure 4.27: Normalized base function h[k] and the shape filter f [k] with C = 1.
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Figure 4.28: Normalized base function h[k] and the shape filter f [k] with C = 2.
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choosing an appropriate sampling period. The modification of the original base function

according to an arbitrary sampling period has already studied in the previous section. In the

derivation, the total impulses of the base function h[k] are assumed to be an odd number

2M + 1, however, the total impulses of the base function can also be an even number 2M .

4.12 Non-Symmetric Continuous Function Based Shape

Filter Generation

Figure 4.29 shows the architecture of the vibration suppression shape filter. From the pre-

vious study, all the input shaping technique in Section 4.4 and OATF in Section 4.5 belong

to the impulse function based shape filters.

In the previous robust vibration shape filter generation, all the base functions have a

symmetric waveform. In this section, non-symmetric function based shape filter generation

method is studied. Two methods to generate a non-symmetric base function are studied.

Non−symmetric function
based shape filter

Continuous function 
based shape filter

Symmetric function
based shape filter

Vibration suppression
shape filter

Non−continuous function 
based shape filter

Non−impulse function 
based shape filter

Impulse function 
based shape filter

Figure 4.29: The architecture of the vibration suppression shape filter.
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4.12.1 Non-Symmetric Base Function Generation from the Derivative

of a Base Function

If g(t) is a base function such that G(ωdi) = 0, a non-symmetric base function can be

generated by the linear combination of g(t) and the derivative of g(t), such that

h(t) = k1g(t) + k2
d

dt
g(t), (4.129)

where k1 and k2 are two constants. The Fourier transform of h(t) is given by

H(ω) =

∫ ∞

0

h(t)e−jωtdt, (4.130)

=

∫ ∞

0

[

k1g(t) + k2
d

dt
g(t)

]

e−jωtdt, (4.131)

= k1G(ω) + k2jωG(ω). (4.132)

So the new function h(t) can be used as a base function because the spectrum H(ω) at

ω = ωdi is exactly zero as given by

H(ωdi) = k1G(ωdi) + k2jωdiG(ωdi), (4.133)

= k1 · 0 + k2jωdi · 0, (4.134)

= 0. (4.135)

The above derivation applies to discrete-time signals. If a discrete-time signal g[k],

0 ≤ k ≤ M , is a base function such that G(ωdiTs) = 0, here Ts is the sampling period in

sec and ωdi is the damped natural frequency in rad/sec, the differencing in time of g[k] is

dg[k] =







g[k] − g[k − 1], if 0 ≤ k ≤M + 1,

0, otherwise.
(4.136)

A non-symmetric base function h[k] can be generated by the linear combination of g[k] and

the differencing signal dg[k] by

h[k] = k1 · g[k] + k2 · dg[k] 0 ≤ k ≤M + 1, (4.137)
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where k1 and k2 are two constants. The discrete-time Fourier transform of h[k] is given by

H(ω) = k1 ·G(ω) + k2 · (1 − e−jω)G(ω). (4.138)

So the new function h[k] can be used as a base function because the spectrum H(ω) at

ω = ωdiTs is exactly zero as given by

H(ωdiTs) = k1 ·G(ωdiTs) + k2 · (1 − e−jωdiTs)G(ωdiTs), (4.139)

= k1 · 0 + k2 · (1 − e−jωdiTs) · 0, (4.140)

= 0. (4.141)

A simple example generating a non-symmetric base function is demonstrated here. If

g[k] is a Hanning function

g[k] =







1
2
− 1

2
cos (2πk/M), if 0 ≤ k ≤M,

0, otherwise,
(4.142)

the new generated base function is h[k] = k1·g[k]+k2·dg[k]. IfH(ωdiTs) = H(
√

1 − ζ2
i ωiTs)

= 0, then ωdiTs = 4π
M

and M = 4π
ωdiTs

. If M is a positive integer, a shape filter can be gen-

erated as

f [k] =
h[k]/eζiωikTs

∑M
m=0 h[m]/eζiωimTs

. (4.143)

Figure 4.30 shows a construction of a non-symmetric base function h[k] with the un-

damped natural frequency ωi = 1 rad/sec and the damping ratio ζi = 0.1. The constants

k1 and k2 are chosen to be k1 = 1 and k2 = −25. Figure 4.31 shows the normalized base

function h[k] and the shape filter f [k].
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Figure 4.30: Construction of a non-symmetric base function h[k].
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Figure 4.31: Normalized base function h[k] and shape filter f [k].
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4.12.2 Non-Symmetric Base Function Generation from the Self Con-

volution of a Base Function

If g(t) is a base function such that G(ωdi) = 0, a non-symmetric base function can be

generated by the linear combination of g(t− t1) and g ∗ g(t), such that

h(t) = k1g(t− t1) + k2g ∗ g(t), (4.144)

where k1 and k2 are two constants and t1 is a positive number. The Fourier transform of

h(t) is given by

H(ω) =

∫ ∞

0

h(t)e−jωtdt, (4.145)

=

∫ ∞

0

[k1g(t− t1) + k2g ∗ g(t)] e−jωtdt, (4.146)

= k1e
−jωt1G(ω) + k2G(ω)2. (4.147)

So the new function h(t) can be used as a base function because the spectrum H(ω) at

ω = ωdi is exactly zero as given by

H(ωdi) = k1e
−jωdit1G(ωdi) + k2G(ωdi)

2, (4.148)

= k1e
−jωdit1 · 0 + k2 · 02, (4.149)

= 0. (4.150)

The above derivation applies to discrete-time signals. If a discrete-time signal g[k],

0 ≤ k ≤ M , is a base function such that G(ωdiTs) = 0, here Ts is the sampling period in

sec and ωdi is the damped natural frequency in rad/sec, the self convolution of g[k] is

g ∗ g[k] =







∑k
m=0 g[k −m]g[m], if 0 ≤ k ≤ 2M,

0, otherwise.
(4.151)

A non-symmetric base function can be generated by the linear combination of g[k] and the

self convolution signal g ∗ g[k] by

h[k] = k1 · g[k − k0] + k2 · g ∗ g[k], (4.152)
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where k0 is a non-negative integer. The discrete-time Fourier transform of h[k] is given by

H(ω) = k1 · e−jωk0G(ω) + k2 ·G(ω)2. (4.153)

So the new function h[k] can be used as a base function because the spectrum H(ω) at

ω = ωdiTs is exactly zero as given by

H(ωdiTs) = k1 · e−jωdiTsk0G(ωdiTs) + k2 ·G(ωdiTs)
2, (4.154)

= k1 · e−jωdiTsk0 · 0 + k2 · 0, (4.155)

= 0. (4.156)

A simple example generating a non-symmetric base function is demonstrated here. If

g[k] is a Hanning function

g[k] =







1
2
− 1

2
cos (2πk/M), if 0 ≤ k ≤M,

0, otherwise.
(4.157)

and k0 = M , the new generated base function is h[k] = k1 · g[k −M ] + k2 · g ∗ g[k]. If

H(ωdiTs) = H(
√

1 − ζ2
i ωiTs) = 0, then ωdiTs = 4π

M
and M = 4π

ωdiTs
. If M is a positive

integer, a shape filter can be generated as

f [k] =
h[k]/eζiωikTs

∑M
m=0 h[m]/eζiωimTs

. (4.158)

Figure 4.32 shows a construction of a non-symmetric base function h[k] with the un-

damped natural frequency ωi = 1 rad/sec and the damping ratio ζi = 0.1. The constants k1

and k2 are chosen to be k1 = 1 and k2 = 1/125. Figure 4.33 shows the normalized base

function h[k] and the shape filter f [k].

It must be noted that there are a number of methods to generate a non-symmetric base

function. The methods described in this section are only possible methods and not exhaus-

tive ones.
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Figure 4.32: Construction of a non-symmetric base function h[k].
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Figure 4.33: Normalized base function h[k] and shape filter f [k].
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4.13 Simulation Results for Hard Disk Drive Seek

Control

In this section, a robust vibration suppression shape filter is used to design a robust accel-

eration profile with the hard disk model in Chapter 3. In Chapter 3, the prolate spheroidal

wave is used to design a robust acceleration profile with parameter settings Ω0 = 9.68×103

rad/sec, a move time of 2.5 × 10−3 sec, and a sampling period of Ts = 5 × 10−5 sec. Fig-

ure 4.34 shows the position signal near the target track. It shows that all high frequency

(≥ 9.68 rad/sec) resonant dynamics are suppressed by the prolate spheroidal wave based

acceleration signal. However, a big vibration occurs immediately at the end of the move

time. This resonant mode has a natural frequency ωi = 6.12 × 103 rad/sec and damping

ratio ζi = 0.7.
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Figure 4.34: Position signal near the target track.

A rectangle based shape filter is designed based on the low frequency resonant mode

with parameters ωi = 6.12 × 103 rad/sec, ζi = 0.7, and the sampling period Ts = 5 ×

10−5 sec. Figure 4.35 shows the resultant rectangle based shape filter with the robustness

order n = 1.
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Figure 4.35: Rectangle based shape filter function f1[k] with resonance parameters ωi =

6.12 × 103 rad/sec and ζi = 0.7.

The robust velocity profile to suppress all the high frequency resonance modes is re-

designed with a shorter move time of 2.0 × 10−3 sec by using the prolate spheroidal wave

function. The final robust acceleration profile suppressing all the resonant modes is gen-

erated by a filter operation as shown in Figure 4.36. The acceleration profile suppressing

all the high frequency resonant modes is an input of the shape filter suppressing all the low

frequency resonant modes. The output of the shape filter is the robust acceleration profile

suppressing all the resonant modes. In this disk drive seek simulation, there is only one

low frequency resonant mode. In the case of several low frequency resonant modes, sev-

eral shape filters can be generated and combined together to form one smooth shape filter.

A smooth shape filter design which simultaneously suppresses several resonant modes is

also possible.

Filter operationAcceleration profile
 suppressing all the high

frequency resonant modes

Robust acceleration profile
suppressing

 all the resonant modes

Shape filter
 suppressing all the low

frequency resonant modes

Figure 4.36: Robust acceleration profile generation.
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Other control profiles can be generated from the robust acceleration profile. Figure 4.37

shows the current signal. Figure 4.38 shows the jerk signal, which is the derivative of the

current signal. Figure 4.39 shows the position signal. Figure 4.40 shows the position signal

near the target track. It shows that the position signal settles within ± 1
100

track before the

move time of 3.4×10−3 sec. So the current signal suppresses the residual vibration induced

by all the resonance modes. Figure 4.41 shows the reference velocity signal.
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Figure 4.37: Current control input signal.
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Figure 4.38: Jerk signal.
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Figure 4.39: Position signal.
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Figure 4.40: Position signal near the target track.
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Figure 4.41: Reference velocity signal.
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Chapter 5

Near Time-Optimal Robust Vibration

Suppression Control Profile Generation

with Multiple Constraints

5.1 Robust Vibration Suppression Control Profile

Generation with Both Acceleration and Velocity

Constraints

In this section, a robust vibration suppression control profile generation with both acceler-

ation and velocity constraints for a flexible system is induced by using the robust vibration

suppression shape filter technique.

5.1.1 Time-Optimal Control Profile with Velocity Constraint

The famous Bang-Bang Principle was explained by Hermes [32] as: “It had been an intu-

itive assumption for some time that if the control for a system is operating from a limited

source of power and if it is desired to have the system change from one state to another

in minimum time, then it is necessary at all times to utilize all the power available; that
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is, to use bang-bang control.” With the Bang-Bang Principle, the time-optimal commands

must be piecewise constant functions of time and the constants are solely determined by

the actuator maximum and minimum power limits. That means the time-optimal control

must always saturate the actuators.

For a pure rigid body, it can be inferred that the time-optimal acceleration profile is

composed by two parts. The first part is acceleration command which always reaches the

maximum limit and the second part is deceleration command which always reaches the

minimum limit. Figure 5.1 shows typical time-optimal control profiles with acceleration

constraint. At the end of the positive acceleration command, the rigid body reaches its

maximum velocity. Then the rigid body velocity decreases to zero with the minimum

negative deceleration limit. If there is also a velocity limit for the rigid body movement, it

can be inferred that the time-optimal acceleration profile is composed by three parts. The

first part is acceleration command which always reaches the maximum limit. When the

maximum velocity is reached, the acceleration command becomes zero. In this situation,

the rigid body is cruising with a constant velocity. The third part is deceleration command

which always reaches the minimum limit. Figure 5.2 shows typical time-optimal control

profiles with both acceleration and velocity constraints. From the previous study, the time-

optimal command has a poor energy concentration property so it is not suitable to suppress

all the resonant dynamics in a flexible system.

5.1.2 Calculating the Number of the Time-Optimal Positive Accelera-

tion Command Samples to Reach the Velocity Constraint

In this section, the number of the time-optimal positive acceleration command samples is

calculated. The constraint of the acceleration u[k] is assumed to be |u[k]| ≤ Amax. The

maximum velocity is assumed to be Vmax and the sampling period is assumed to be Ts. The
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Figure 5.1: Time-Optimal control profiles with acceleration constraint.
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Figure 5.2: Time-Optimal control profiles with both acceleration and velocity constraints.
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relationship between the acceleration command u[k] and the velocity v[k] is given as

V (z)

U(z)
= Ka

z−1

1 − z−1
, (5.1)

where Ka is a constant gain. The difference equation between acceleration u[k] at the

discrete-time instant kTs and velocity v[k] at the discrete-time instant kTs is given as

v[k] = Kau[k − 1] + v[k − 1]. (5.2)

If the initial velocity v[0] is zero, the velocity at the discrete-time instant kTs can be com-

puted as

v[0] = 0, (5.3)

v[1] = Kau[0] + 0, (5.4)

v[2] = Kau[1] + v[1] = Ka(u[1] + u[0]) = Ka

1∑

i=0

u[i], (5.5)

· · · = · · · · · · ,

v[k] = Ka

k−1∑

i=0

u[i]. (5.6)

Since the acceleration u[k] always saturates before reaching the maximum velocity, the

positive acceleration command u[k] is described as

u[k] = Amax, k = 0, · · · ,m− 1. (5.7)

So the following equation holds,

Vmax = Ka

m−1∑

i=0

u[i] = KamAmax. (5.8)

The number of the time-optimal positive acceleration command samples can be calcu-

lated as

m1 = floor

(
Vmax

KaAmax

)

(5.9)

and the maximum velocity Vrmax from (5.9) is

Vrmax = Kam1Amax ≤ Vmax. (5.10)
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5.1.3 Calculating the Number of the Time-Optimal Zero Acceleration

Command Samples

When the rigid body reaches the maximum velocity constraint described in (5.10), the rigid

body is cruising at the constant velocity Vrmax as shown in Figure 5.2. If the position move-

ment is assumed to be Pmax, the number of the time-optimal zero acceleration command

samples is calculated. The state-space model of the rigid body is described as





p[k + 1]

v[k + 1]




 = G






p[k]

v[k]




+KbHu[k], (5.11)

where G =






1 Ts

0 1




 and H =






T 2
s /2

Ts




. p[k] is the position at the discrete-time instant

kTs, v[k] is the velocity at the discrete-time instant kTs and Kb is a constant gain. The

acceleration command u has the following format

u = [Amax, · · · , Amax
︸ ︷︷ ︸

m1

, 0, 0, · · · , 0
︸ ︷︷ ︸

n

, −Amax, · · · ,−Amax
︸ ︷︷ ︸

m1

]. (5.12)

If the initial position p[0] and velocity v[0] are assumed to be zero, the position and

velocity at the discrete-time instant kTs can be computed as [58]





p[k]

v[k]




 = Gk






p[0]

v[0]




+

k−1∑

i=0

H iKb






T 2
s /2

Ts




 u[k − i− 1], (5.13)

=
k−1∑

i=0

H iKb






T 2
s /2

Ts




 u[k − i− 1], (5.14)

=
k−1∑

i=0






1 Ts

0 1






i

Kb






T 2
s /2

Ts




 u[k − i− 1]. (5.15)
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So at the discrete-time instant (2m1 + n)Ts,





p[2m1 + n]

v[2m1 + n]






=

2m1+n−1∑

i=0






1 Ts

0 1






i

Kb






T 2
s /2

Ts




 u[2m1 + n− i− 1], (5.16)

= −Amax

m1−1∑

i=0






1 Ts

0 1






i

Kb






T 2
s /2

Ts




+ Amax

2m1+n−1∑

i=m1+n






1 Ts

0 1






i

Kb






T 2
s /2

Ts




 , (5.17)

= KbAmax






2m1+n−1∑

i=m1+n






T 2
s /2 + iT 2

s

Ts




−

m1−1∑

i=0






T 2
s /2 + iT 2

s

Ts









 , (5.18)

= KbAmax






T 2
s ((2m1 + n− 1)(2m1 + n) − (m1 + n− 1)(m1 + n) − (m1 − 1)m1)

0




 ,

(5.19)

= KbAmax






T 2
sm1(m1 + n)

0




 . (5.20)

If the position at the discrete-time instant (2m1 + n)Ts is imposed to be Pmax,

KbAmaxT
2
sm1(m1 + n) = Pmax (5.21)

and

n =
Pmax

KbAmaxT 2
sm1

−m1. (5.22)

Generally the above n is not an integer. Let n = floor(n) + α, where α = n − floor(n)

and 0 ≤ α < 1. The number of zero acceleration command samples can be chosen to be

n1 = floor(n) + 1. (5.23)

In the above implementation, since the resultant number of zero acceleration command

n1 is generally greater than the required fractional number of samples n, the resultant posi-

tion at the end of the acceleration command is greater than the required position constraint
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which is Pmax. Figure 5.3 shows the fractional number of the maximum velocity profile.

The time interval between the final maximum velocity impulse Vrmax and the next veloc-

ity impulse b0 is αTs which is less than one sampling period Ts. Figure 5.4 shows the

modification of the integer number of the maximum velocity profile from (5.23). Com-

pared with Figure 5.3, the summation of velocity impulses in Figure 5.4 is increased by

(1−α)Vrmax per sample. The additional velocity impulse summation can be compensated

for by slightly modifying the velocity impulses. The acceleration command corresponding

the velocity profile in Figure 5.4 is

u = [Amax, · · · , Amax
︸ ︷︷ ︸

m1

, 0, 0, · · · , 0
︸ ︷︷ ︸

n1

, −Amax, · · · ,−Amax
︸ ︷︷ ︸

m1

]. (5.24)

The velocity profile from (5.24) can be described as

v[0] = 0,

v[1] = KaAmax,

v[k] = Ka

k−1∑

i=0

u[i], k = 2, · · · , 2m1 + n1 − 2

v[2m1 + n1 − 1] = KaAmax,

v[2m1 + n1] = 0.

The above velocity profile can be modified to

v1[0] = 0,

v1[k] = v[k] − (1 − α)Vrmax

2m1 + n1 − 1
, k = 1, · · · , 2m1 + n1 − 1,

v1[2m1 + n1] = 0.

The integral of the modified velocity impulses is exactly the same as the required inte-

gral of the velocity impulses in Figure 5.3. The resultant modified acceleration command
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corresponding to (5.24) is

u1[0] = Amax −
(1 − α)Vrmax

Ka(2m1 + n1 − 1)
,

u1[k] = u[k], k = 1, · · · , 2m1 + n1 − 1,

u1[2m1 + n1 − 1] = −
[

Amax −
(1 − α)Vrmax

Ka(2m1 + n1 − 1)

]

.

(5.25)

Ts

TsTsTs

α

b b1
2

b0

V rmax Vrmax

Figure 5.3: The calculated fractional number of the maximum velocity profile.
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Figure 5.4: The modification of the integer number of the maximum velocity profile.

Remark 5.1 In (5.23), if the resultant integer number n1 of the zero acceleration command

is less than 0, then the acceleration and the velocity limits are not required to achieve the

position constraint. In this situation, to guarantee the position constraint, either a reduced
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acceleration limit or a reduced velocity limit may be implemented. It is easy to understand

that the resultant maximum velocity from the modified acceleration command (5.25) is

slightly less than Vrmax in (5.10).

5.1.4 Robust Vibration Suppression Control Profile Generation with

Both Acceleration and Velocity Constraints

Since the time-optimal acceleration command is generated in the previous sections, a robust

vibration suppression command can be generated as shown in Figure 5.5. The vibration

suppression shape filter in Figure 5.5 is composed of low frequency vibration suppression

shape filters as discussed in Chapter 2 and 3, and high frequency vibration suppression

shape filter as discussed in Chapter 4.

Robust vibration
suppresion command

Time−Optimal
command

Vibration suppression
shape filter

Figure 5.5: Generation of a robust vibration suppression command.

5.1.5 Simulation Results for Hard Disk Drive Long Seek Control

Consider the following flexible system which is embedded in a hard disk assembly, where

the input is the current signal in amps and the output is the position signal in tracks.

H(s) = Kc ·Kv ·Kp ·R(s)
1

s2
, (5.26)

here Kc = 1.3 tracks/sample2

amp is a constant gain from current to acceleration, Kv = 5 × 104

samples
sec is the velocity gain, Kp = 5 × 104 samples

sec is the position gain, and R(s) is a 28th

order resonance structure. The Bode magnitude plot of R(s) is shown in Figure 1.2. The

current limit is assumed to be 1 amp, the maximum velocity constraint is assumed to be

100 tracks/sample, and the long seek position movement is assumed to be 2 × 104 tracks.

168



The sampling period Ts is assumed to be 2 × 10−5 sec. Figure 5.6 shows the time-optimal

current command with the velocity constraint. Figure 5.7 shows the resultant velocity

signal. Figure 5.8 shows the resultant position signal. Figure 5.9 shows the position signal

near the target track. The interval of Y axis in Figure 5.9 is scaled to exactly one track. It

shows that the residual vibration exists for a long period of time after the end of the current

command (5.6 msec).
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Figure 5.6: Time-Optimal current command with the velocity constraint.

To suppress the residual vibration, a rectangle based shaper filter is designed based on

the first resonance mode in the flexible system. The first resonance mode has the parameter

ω1 = 6.12 × 103 rad/sec and ζ1 = 0.7. Figure 5.10 shows the resultant vibration sup-

pression shape filter. Figure 5.11 shows the robust vibration suppression current command.

Figure 5.12 shows the resultant velocity signal. Figure 5.13 shows the resultant position

signal. Figure 5.14 shows the position signal near the target track. Although the residual

vibration due to the first resonance mode has been canceled, there still a large vibration ex-

ists after the end of the current command. This residual vibration is caused by the second

resonance mode in the flexible system.

To suppress the residual vibration of the second resonance mode, a rectangle based
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Figure 5.7: The velocity signal with the time-optimal current command.
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Figure 5.8: The position signal with the time-optimal current command.
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Figure 5.9: The position signal near the target track.
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Figure 5.10: Rectangle based shape filter based on resonance parameter ω1 = 6.12 × 103

rad/sec and ζ1 = 0.7.
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Figure 5.11: Robust vibration suppression current command.

0 0.002 0.004 0.006 0.008 0.01
−20

0

20

40

60

80

100

Time (sec)

V
el

oc
ity

 (T
ra

ck
s/

sa
m

pl
e)

Figure 5.12: Velocity signal with the robust vibration suppression current command.
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Figure 5.13: Position signal with the robust vibration suppression current command.
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Figure 5.14: Position signal near the target track.
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shaper filter is designed based on the second resonance mode in the flexible system. The

second resonance mode has the parameter ω1 = 1.02 × 104 rad/sec and ζ1 = 0.08. Fig-

ure 5.15 shows the resultant vibration suppression shape filter based on the second reso-

nance mode. Combining the shape filter in Figure 5.10 and the shape filter in Figure 5.15

results a new shape filter as shown in Figure 5.16. The resultant new vibration suppression

shape filter in Figure 5.16 cancels the residual vibration due to both the first resonance

mode and the second resonance mode. Figure 5.17 shows the robust vibration suppression

current command. Figure 5.18 shows the resultant velocity signal. Figure 5.19 shows the

resultant position signal. Figure 5.20 shows the position signal near the target track. It

shows that the residual vibration due to both the first resonance mode and the second res-

onance mode is canceled. Also the residual vibration due to the high frequency modes is

also suppressed. In this case, it is not necessary to design a robust high frequency vibration

suppression shape filter to suppress all the high frequency residual vibration because the

high frequency vibration is sufficiently suppressed by the two rectangle based shape filters.
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Figure 5.15: Rectangle based shape filter based on resonance parameter ω2 = 1.02 × 104

rad/sec and ζ1 = 0.08.
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Figure 5.16: Robust vibration suppression shape filter to cancel both the first resonance

mode and the second resonance mode.
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Figure 5.17: Robust vibration suppression current command.
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Figure 5.18: Velocity signal with the robust vibration suppression current command.
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Figure 5.19: Position signal with the robust vibration suppression current command.
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Figure 5.20: Position signal near the target track.

5.2 Long Seek Control Profile With Both Applied Voltage

And Velocity Constraints

In the previous section, a robust vibration suppression control profile generation with both

acceleration and velocity constraints is studied. The proposed method develops a robust

vibration suppression control profile for hard disk drive long seek control. The control

profile has both the drive current (or acceleration) and velocity constraints. In real applica-

tion, the drive current does no saturate. It is the applied drive voltage that saturates. This

section presents a robust vibration suppression control profile generation method with both

the drive applied voltage and velocity constraints.

For a pure rigid body, it can be inferred that the time-optimal acceleration profile with

velocity constraint is composed by three parts. The first part is acceleration command

which always reaches the maximum limit. When the maximum velocity is reached, the

acceleration command becomes zero. In this situation, the rigid body is cruising with a

constant velocity. The third part is deceleration command which always reaches the mini-

mum limit. Figure 5.21 shows typical time-optimal control profiles with both acceleration
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and velocity constraints.
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Figure 5.21: Time-Optimal control profiles with both acceleration and velocity constraints.

Figure 5.22 shows a simplified hard disk drive voice coil servo motor dynamics. The

applied voltage Va is the sum of the control voltage Vc and the back-emf voltage Vb. The

control voltage in terms of motor current command i is Vc = Ri + L di
dt

, where L is the

armature inductance and R is the armature resistance. The back-emf voltage in terms of

the arm velocity vel is Vb = Kevel, whereKe is the back-emf constant. Since the back-emf

voltage is proportional to the velocity, a sloped acceleration command can be designed to

overcome the effect of the back-emf voltage as shown in Figure 5.23. The slope needs to

be chosen such that the maximum allowable applied voltage is met for as long as possible

but not saturated.

currentVc
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velocity positionacceleration
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Figure 5.22: The voice coil servo motor dynamics.
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Figure 5.23: Sloped fast control profiles with both acceleration and velocity constraints.

A robust vibration suppression control profile generation with both applied voltage and

velocity constraints for a flexible system is induced by using the robust vibration suppres-

sion shape filter technique.

5.2.1 Calculating the Number of the Sloped Positive Acceleration Com-

mand Samples to Reach the Velocity Constraint

In this section, the number of the sloped positive acceleration command samples is cal-

culated. The constraint of the acceleration u[k] is assumed to be |u[k]| ≤ Amax. The

maximum velocity is assumed to be Vmax and the sampling period is assumed to be Ts.

The relationship between the acceleration command u[k] and the velocity v[k] is given as

V (z)
U(z)

= Ka
z−1

1−z−1 , where Ka is a constant gain. The difference equation between accelera-

tion u[k] at the discrete-time instant kTs and velocity v[k] at the discrete-time instant kTs

is given as

v[k] = Kau[k − 1] + v[k − 1]. (5.27)
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If the initial velocity v[0] is assumed to be zero, the velocity at the discrete-time instant kTs

can be computed as

v[k] = Ka

k−1∑

i=0

u[i]. (5.28)

The sloped positive acceleration command u[k] is described as

u[k] = Amax − k · S, k = 0, · · · ,m− 1, (5.29)

where S is the acceleration decrease per sample. So the following equation holds,

Vmax = Ka

m−1∑

i=0

u[i] = Kam
m−1∑

i=0

(Amax − i · S), (5.30)

= Ka(Amax + S/2)m−KaSm
2/2. (5.31)

Hence, m is the least positive solution of a second-order polynomial equation KaSm
2/2−

Ka(Amax + S/2)m+ Vmax = 0. The number of the sloped positive acceleration command

samples can be calculated as

m1 = floor (m) (5.32)

and the maximum velocity Vrmax from (5.32) is

Vrmax = Ka(Amax + S/2)m1 −KaSm
2
1/2 ≤ Vmax. (5.33)

5.2.2 Calculating the Number of the Zero Acceleration Command Sam-

ples

When the rigid body reaches the maximum velocity constraint described in (5.33), the

rigid body is cruising at the constant velocity Vrmax as shown in Figure 5.23. If the position

movement is assumed to be Pmax, the number of the zero acceleration command samples

is calculated. The state-space model of the rigid body is described as





p[k + 1]

v[k + 1]




 = G






p[k]

v[k]




+KbHu[k], (5.34)
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where G =






1 Ts

0 1




 and H =






T 2
s /2

Ts




. p[k] is the position at the discrete-time instant

kTs, v[k] is the velocity at the discrete-time instant kTs and Kb is a constant gain. The

acceleration command u has the following format

u =[Amax, Amax − S, · · · , Amax − (m1 − 1)S
︸ ︷︷ ︸

m1

,

0, 0, · · · , 0
︸ ︷︷ ︸

n

,

−Amax,−(Amax − S) · · · ,−(Amax − (m1 − 1)S)
︸ ︷︷ ︸

m1

].

If the initial position p[0] and velocity v[0] are assumed to be zero, the position and

velocity at the discrete-time instant kTs can be computed as [58]





p[k]

v[k]




 = Gk






p[0]

v[0]




+

k−1∑

i=0

GiKbHu[k − i− 1], (5.35)

=
k−1∑

i=0

GiKbHu[k − i− 1]. (5.36)

So at the discrete-time instant (2m1 + n)Ts,





p[2m1 + n]

v[2m1 + n]




 =

2m1+n−1∑

i=0

GiKbHu[2m1 + n− i− 1],

=






Kbm1T 2
s

2
(2Amax + S − Sm1)(m1 + n)

0




 .

If the position at the discrete-time instant (2m1 + n)Ts is imposed to be Pmax,

Kbm1T
2
s

2
(2Amax + S − Sm1)(m1 + n) = Pmax (5.37)

and

n =
2Pmax

Kbm1T 2
s (2Amax + S − Sm1)

−m1. (5.38)
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Generally the above n is not an integer. Let n = floor(n) + α, where α = n − floor(n)

and 0 ≤ α < 1. The number of zero acceleration command samples can be chosen to be

n1 = floor(n) + 1. (5.39)

In the above implementation, since the resultant number of zero acceleration command n1

is generally greater than the required fractional number of samples n, the resultant position

at the end of the acceleration command is greater than the required position constraint

which is Pmax. Figure 5.3 shows the calculated fractional number of the maximum velocity

profile. The time interval between the final maximum velocity impulse Vrmax and the

next velocity impulse b0 is αTs which is less than one sampling period Ts. Figure 5.4

shows the modification of the integer number of the maximum velocity profile from (5.39).

Compared with Figure 5.3, the summation of velocity impulses in Figure 5.4 is increased by

(1−α)Vrmax per sample. The additional velocity impulse summation can be compensated

for by slightly modifying the velocity impulses. The acceleration command corresponding

the velocity profile in Figure 5.4 is

u =[Amax, Amax − S, · · · , Amax − (m1 − 1)S
︸ ︷︷ ︸

m1

,

0, 0, · · · , 0
︸ ︷︷ ︸

n1

,

−Amax,−(Amax − S) · · · ,−(Amax − (m1 − 1)S)
︸ ︷︷ ︸

m1

].

(5.40)

The velocity profile from (5.40) can be described as

v[0] = 0,

v[k] = Ka

k−1∑

i=0

u[i], k = 1, · · · , 2m1 + n1 − 1,

v[2m1 + n1] = 0.
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The above velocity profile can be modified to

v1[0] = 0,

v1[k] = v[k] − (1 − α)Vrmax

2m1 + n1 − 1
, k = 1, · · · , 2m1 + n1 − 1,

v1[2m1 + n1] = 0.

The integral of the modified velocity impulses is exactly the same as the required inte-

gral of the velocity impulses in Figure 5.3. The resultant modified acceleration command

corresponding to (5.40) is

u1[0] = Amax −
(1 − α)Vrmax

Ka(2m1 + n1 − 1)
,

u1[k] = u[k], k = 1, · · · , 2m1 + n1 − 1,

u1[2m1 + n1 − 1] = −[Amax −
(1 − α)Vrmax

Ka(2m1 + n1 − 1)
].

(5.41)

In (5.39), if the resultant integer number n1 of the zero acceleration command is less

than 0, then the acceleration and the velocity limits are not required to achieve the position

constraint. In this situation, to guarantee the position constraint, either a reduced acceler-

ation limit or a reduced velocity limit may be implemented. It is easy to understand that

the resultant maximum velocity from the modified acceleration command (5.41) is slightly

less than Vrmax in (5.33).

5.2.3 Robust Vibration Suppression Control Profile Generation with

Both Acceleration and Velocity Constraints

Since the sloped fast acceleration command is generated in the previous section, a robust

vibration suppression command can be generated as shown in Figure 5.24. The vibration

suppression shape filter in Figure 5.5 is composed of low frequency vibration suppression

shape filters as discussed in Chapter 2 and 3, and high frequency vibration suppression

shape filter as discussed in Chapter 4.
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Figure 5.24: Generation of a robust vibration suppression command.

5.2.4 Simulation Results for Hard Disk Drive Long Seek Control

Consider the following flexible system which is embedded in a hard disk assembly,H(s) =

Kc · Kv · Kp · R(s) 1
s2 , where the input is the current signal in amps and the output is the

position signal in tracks. The variable Kc = 1.3 tracks/sample2

amp is a constant gain from current

to acceleration, Kv = 1/Ts = 5 × 104 samples
sec is the velocity gain, Kp = 1/Ts = 5 × 104

samples
sec is the position gain and R(s) is a resonance structure. The Bode magnitude plot of

a reduced order (28th) R(s) is shown in Figure 1.2. This resonance transfer function R(s)

was derived from the flexible arm of an open disk drive at the Oklahoma State University

Advanced Controls Laboratory. The resonance modes change drastically due to variation

of the mode parameters. On the Bode plot, the peaks of the frequency response may shift

both in frequency and in amplitude.

The maximum current is Aamx = 1.3 amp, the maximum velocity constraint is Vmax =

130 tracks/sample, the applied voltage constraint is Va = 12 volts, and the long seek posi-

tion movement is Pmax = 3 × 104 tracks. The sampling period is Ts = 2 × 10−5 sec. The

slope value is S = 0.0025 tracks/sample2

sample which is the acceleration decrease per sample. Fig-

ure 5.25 shows the sloped fast current command with the velocity constraint. Figure 5.26

shows the resultant velocity signal. Figure 5.27 shows the resultant position signal. Fig-

ure 5.28 shows the position signal near the target track. The interval of Y axis in Figure 5.28

is scaled to exactly 10 tracks. It shows that the residual vibration exists for a long period of

time after the end of the current command (6.3 msec).

To suppress the residual vibration, a rectangle based shaper filter is designed based on

the first resonance mode in the flexible system. The first resonance mode has the parameter
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Figure 5.25: Sloped fast current command with the velocity constraint.
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Figure 5.26: The velocity signal with the sloped fast current.
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Figure 5.27: The position signal with the sloped fast current command.
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Figure 5.28: The position signal near the target track.
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ω1 = 6.12 × 103 rad/sec and ζ1 = 0.7. Figure 5.29 shows the resultant vibration sup-

pression shape filter. Figure 5.30 shows the robust vibration suppression current command.

Figure 5.31 shows the resultant velocity signal. Figure 5.32 shows the resultant position

signal near the target track. The interval of Y axis in Figure 5.32 is scaled to exactly 10

tracks. Although the residual vibration due to both the first resonance mode has been can-

celed, there still a large vibration exists after the end of the current command. This residual

vibration is caused by the second resonance mode in the flexible system.
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Figure 5.29: Rectangle based shape filter based on resonance parameter ω1 = 6.12 × 103

rad/sec and ζ1 = 0.7.

To suppress the residual vibration of the second resonance mode, a rectangle based

shaper filter is designed based on the second resonance mode in the flexible system. The

second resonance mode has the parameter ω1 = 1.02 × 104 rad/sec and ζ1 = 0.08. Fig-

ure 5.33 shows the resultant vibration suppression shape filter based on the second reso-

nance mode. Combining the shape filter in Figure 5.29 and the shape filter in Figure 5.33

results a new shape filter as shown in Figure 5.34. The resultant new vibration suppression

shape filter in Figure 5.34 cancels the residual vibration due to both the first resonance

mode and the second resonance mode. Figure 5.35 shows the robust vibration suppression
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Figure 5.30: Robust vibration suppression current command.
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Figure 5.31: Velocity signal with the robust vibration suppression current command.

188



0 0.002 0.004 0.006 0.008 0.01
29995

30000

30005

Time (sec)

P
os

iti
on

 (T
ra

ck
s)

Figure 5.32: Position signal near the target track.

current command. Figure 5.36 shows the resultant velocity signal. Figure 5.37 shows the

resultant position signal near the target track. The interval of Y axis in Figure 5.37 is scaled

to exactly 1 track. It shows that the residual vibration due to both the first resonance mode

and the second resonance mode is canceled. Also the residual vibration due to the high

frequency modes is also suppressed. In this case, it is not necessary to design a robust high

frequency suppression shape filter to suppress all the high frequency residual vibration be-

cause the high frequency vibration is sufficiently suppressed by the two rectangle based

shape filters.

Based on the armature inductance L = 0.6 mH, the armature resistance R = 10 ohm,

and the back-emf constant Ke = 5
3
× 10−6 volts

tracks/sample as shown in Figure 5.22, the drive

applied voltage signal due to the drive current command can be derived. Figure 5.38 shows

the drive applied voltage signal due to the drive current command. It shows that the maxi-

mum allowable applied voltage is met but not saturated.
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Figure 5.33: Rectangle based shape filter based on resonance parameter ω2 = 1.02 × 104

rad/sec and ζ1 = 0.08.
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Figure 5.34: Robust vibration suppression shape filter to cancel both the first resonance

mode and the second resonance mode.
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Figure 5.35: Robust vibration suppression current command.
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Figure 5.36: Velocity signal with the robust vibration suppression current.
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Figure 5.37: Position signal near the target track.
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Figure 5.38: Applied drive voltage signal due to the drive current command.
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Chapter 6

Hard Disk Drive Experimental Results

6.1 Hard Disk Drive Flexible Arm Control Experimental

Setup - Hardware Components

This section gives a detailed description of the experimental setup on which the designed

robust vibration suppression method was tested. Most part of this section is from Chee [17].

The equipment used to set up the experiment is shown in Table 6.1. The disc drive used

for the setup was an old drive manufactured by Conner. The model is CP3000 and the

series is E59JKA. Since the focus of this research was to control the actuator arm, the

disc and the cover were removed for convenience. The Polytec laser Doppler vibrometer

(LDV) consists of controller OFV-3001 and sensor head OFV-303. The main purpose of

the LDV was to feedback the position and velocity signals of the actuator. A Kepco power

amplifier with a maximum output of 2 Amps was used to supply current to drive the disc

drive. DS1104 PPC controller board from dSPACE was used to interface between the real

system and computer. This controller board has a frequency range of 100 KHz. A Lecroy

1 GHz digital oscilloscope was used to take measurements. The software used for the real-

time control was MATLAB real-time workshop. The tests were performed on a Newport

vibration isolation table to minimize external disturbances. The computer used for this

experiment has a Pentium II 450 MHz processor.
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Equipments For Disk Drive Research

An Open Disk Drive

Kepco Power Supply/ Amplifier

Polytec Laser Doppler Vibrometer (LDV)

DS1104 PPC Controller Board (dSPACE)

1GHz Lecroy Oscilloscope

MATLAB Real-Time Workshop

Newport Vibration Isolation Table

Pentium II 450 MHz computer

Table 6.1: Equipment for the Disk Drive Experiment.

Figure 6.1 shows the block diagram of the hardware architecture of the experimental

setup. In standard operation, the servo feedback controller is designed in the host computer

using MATLAB and SIMULINK Real-Time Workshop. The controller algorithm is com-

piled and downloaded to the DS1104 PPC controller board. The DS1104 controller board

sends a signal to the Kepco power amplifier, which supplies the current to the voice coil

motor (VCM). The VCM controls the position of the actuator. The Polytec laser Doppler

vibrometer (LDV) measures the position and velocity of the actuator and provides feedback

to the DS1104 PPC controller board. The Lecroy digital oscilloscope is used to measure

the signals of interest.

6.1.1 Polytec Laser Doppler Vibrometer (LDV)

The Polytec vibrometer is an instrument for non-contact measurement of surface vibrations

based on laser interferometry [67]. The vibrometer consists of the controller OFV-3001 and

the sensor head OFV-512.

The beam of a helium neon laser is focused on the object under investigation, scattered
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Figure 6.1: Hardware Architecture of the Experimental Setup.
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back from there and coupled into the interferometer in the sensor head. The interferom-

eter in Figure 6.2 compares the phase, φmod, and the frequency, fmod, of the object beam

and with those of the internal reference beam, φo and fo. The frequency difference is

proportional to the instantaneous velocity and the phase difference is proportional to the

instantaneous position of the object.

The signal is decoded using the velocity decoder and the position decoder. Two volt-

age signals are generated which are proportional to the instantaneous velocity and to the

instantaneous position (displacement) of the object, respectively. Both signals are exter-

nally available for measurement. Figure 6.3 shows the Polytec LDV equipment used in the

experiment.

Figure 6.3: Polytec LDV in the Experimental Setup.

6.1.2 Kepco Power Amplifier

The Kepco power amplifier model BOP 50 − 2M amplifies the controller output to a level

which is capable of driving the voice coil motor. The amplifier has direct current (dc) range
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of ±50V and ±2A. The Kepco power amplifier is a bipolar operational power (BOP)

supply/amplifier, which can be used for in a great variety of applications. As a precision

voltage or current source, the BOP output can be controlled locally through the front panel

bipolar VOLTAGE or CURRENT controls or remotely by voltage and current signals. The

amplifier has independently adjustable or remotely programmable limit circuits for both

voltage and current output. The built-in preamplifiers for the voltage as well as the current

channel of the BOP permit amplification of the control signal to the required amplitude and

provide the interface with high and low impedance signal sources. A detailed description

on the Kepco power amplifier can be found in [35].

6.1.3 DSP Controller Board

The DSP board model DS1104 PPC controller board is from dSPACE. This type of board

is specifically designed for development of high-speed multivariable digital controllers and

real-time applications in various fields. It is a complete real-time system based on a 603

PowerPC processor running at 250 MHz. For advanced I/O purposes, the board includes a

slave-DSP subsystem based on the Texas Instruments TMS320F240 DSP micro-controller.

A detailed description about the board is available in [21].

Information on the DS1104 PPC controller board:

• 603 PowerPC at 250MHz

• 2 MB local SRAM

• 32 MB global DRAM

• 1 16-bit ADC with four multiplexed input signals

• 4 12-bit parallel ADC with one one input signal each

• 8 14-bit parallel DAC
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• Incremental encoder interface (2 inputs)

• 1 bit I/O unit with 20-bit I/O

• Serial interface

6.1.4 Vibration Isolation Table

The Newport vibration isolation table provides an ideal working platform for vibration sen-

sitive devices such as interferometers. The table surface is isolated from floor motion using

the Newport’s rigid, laminated honeycomb panel technology and pneumatic suspension

system. In the experimental setup, both the Polytec Laser Doppler Vibrometer and the hard

disk drive are put on the vibration isolation table. More detail about the vibration isolation

table can be found in [56].

6.1.5 Disc Drive

The disc drive used for the experiment is produced by Conner. The model of the disc drive

is CP3000 and the series number is E59JKA. For the purpose of this experiment, an open

disk drive with the disc and the cover removed is used. The object to be controlled is

the actuator arm. The Polytec LDV shines the laser at the tip of the actuator arm where

the read/write head is located. Figure 6.4 shows the open disc drive that is used for the

experiment. The function of the voice coil motor is to control the position of the actuator

arm. The read/write head which is located at the tip of the arm read and write information

onto the magnetic disc. Figure 6.5 shows the flexible printed circuit. The flexible printed

circuit creates a one directional force on the disc drive actuator. Figure 6.6 shows the whole

setup of the experiment.
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Figure 6.4: Open Disk Drive.

Figure 6.5: Flexible Printed Circuit.
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Figure 6.6: The Experimental Setup.

6.2 Hard Disk Drive Flexible Arm Control Experimental

Setup - Software Components

6.2.1 MATLAB Real-Time Workshop

MATLAB real-time workshop provided by MathWorks is the final piece in the design pro-

cess. MATLAB real-time workshop provides a real-time development environment. The

real-time workshop is the direct path from system design to hardware implementation. The

MATLAB real-time workshop supports the execution of dynamic system models on hard-

ware by automatically converting models to code and providing model-based debugging

support. It is well suited for accelerating the development of simulations and embedded

real-time applications [51].
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6.2.2 dSPACE Software

• Control Desk

Control desk is a graphical user interface software for managing the dSPACE board.

In addition, the control desk manages the registering of hardware and applications

via the Platform Manager.

• Real-Time Interface (RTI and RTI-MP)

The real-time Interface communicates between Simulink and the dSPACE board.

The real-time interface, RTI, is used to build real-time code, download and execute

this code on dSPACE real-time processor.

• Control Desk Standard

Control desk standard offers a variety of virtual instruments to build and configure

virtual instrument panels via instrumentation providing functions to perform param-

eter studies via the parameter editor and functions to automate control desk’s via

automation.

• MLIB/MTRACE

This is the MATLAB-dSPACE interface libraries. The functions of these libraries

allow direct access to dSPACE real-time hardware from the MATLAB workspace.

6.3 Open Disk Drive Mathematical Model Development

In this section, a mathematical model of the open disk drive is developed. The disk drive

used in the experiment is manufactured by Conner. A Simulink model is generated to

perform system identification of the disk drive actuator. The Simulink model is compiled

and downloaded to the DSPACE 1104 board. Figure 6.7 shows the input current signal and

the output velocity signal for the system identification.
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Figure 6.7: Input and output signals.

Figure 6.8 shows the empirical transfer function estimate [45, 44] from the current input

to the velocity output.

Figure 6.9 shows a 15th order mathematical model. Figure 6.10 is a reduced integrator

model. The first order mathematical model matching the current input to the velocity output

is

7.5 × 106 1

s
. (6.1)

The reduced second order model from the current input in amp to position in µm is

7.5 × 109 1

s2
. (6.2)

6.4 Standard Closed-Loop Control with Step Reference

Command

A position and velocity feedback control is used to control the position of the flexible arm.

Figure 6.11 shows the Simulink diagram of the position and velocity feedback closed-loop
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Figure 6.8: Empirical transfer function estimate from current input to velocity.
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Figure 6.10: Bode plot of reduced order transfer function from current input to velocity.

control structure. The position gain is chosen to be 3.162278 Amp/mm and the velocity

gain is chosen to be 0.000316 Amp/(mm/sec). The command reference is a step function

with amplitude 10 µm and frequency 20 Hz. The resultant position and the control signal

are shown in Figure 6.12. It shows that residual vibration exists after a long period of time.

6.5 Experimental Verification Between ZVD Input

Shaping Technique and Rectangle Based Shape Filter

In section 4.6.3, comparison of simulation results between the ZVD input shaper and rect-

angle based shape filter is performed. The ZVD input shaper amplifies the high frequency

vibrations, but the rectangle based shape filter reduces the high frequency vibrations. In

this section, both ZVD input shaper and rectangle based shape filter are used to suppress

the low frequency vibrations in the hard disk flexible arm control. The undamped natural

frequency and the damping ratio of the low frequency mode are ω1 = 3.64 × 103 rad/sec

and ζ1 = 0.425. Figure 6.13 shows the discrete-time ZVD input shaper with the sam-
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Figure 6.12: Experimental result for 20 µm move with the standard closed-loop control and

step reference.

pling period Ts = 10−5 sec. Figure 6.14 shows the discrete-time rectangle based shape

filter with the sampling period Ts = 10−5 sec. The step reference command is first sent to

the the ZVD input shaper or rectangle based shape filter, then the shaped reference com-

mand is sent to the closed-loop control. Figure 6.15 shows the experimental results with

the discrete-time ZVD input shaper. Figure 6.16 shows the experimental results with the

discrete-time rectangle based shape filter. In both cases, the low frequency vibration is can-

celed. The position reference generated from step reference and discrete-time ZVD input

shaper amplifies the high frequency vibrations as shown in Figure 6.15. However, the posi-

tion reference generated from step reference and discrete-time rectangle based shape filter

suppresses all the high frequency vibrations as shown in Figure 6.16. From comparison of

the control signals in Figure 6.15 and Figure 6.16, it is also clear that the ZVD input shaper

makes the control signal very aggressive since the high frequency vibrations are amplified.

A robust vibration suppression shape filter that can suppress all the resonant dynamics will

be generated and tested in the hard disk drive flexible arm control in the following sections.
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Figure 6.13: Discrete-time ZVD input shaper.
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Figure 6.14: Discrete-time rectangle based shape filter.
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Figure 6.15: Experimental results for 20 µm move with step reference and discrete-time

ZVD input shaper.
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Figure 6.16: Experimental results for 20 µm move with step reference and discrete-time

rectangle based shape filter.
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6.6 Standard Closed-Loop Control with Robust

Vibration Suppression Shape Filter

In this section, a robust vibration suppression shape filter is generated to shape the com-

mand reference. The high frequency resonant modes in the closed-loop control approxi-

mately occur beyond Ωh0 = 104 rad/sec. The move time duration of the high frequency

vibration suppression shape filter is chosen to be 1.5 msec. The prolate spheroidal wave

function based high frequency vibration suppression shape filter is shown in Figure 6.17.

Before the high frequency resonance modes, there is one low frequency resonance mode in

the closed-loop transfer function. The undamped natural frequency and the damping ratio

of this low frequency mode are ωl1 = 3.64 × 103 rad/sec and ζl1 = 0.425. The rectangle

window based low frequency vibration suppression shape filter is shown in Figure 6.18

which is the same as Figure 6.14. The high frequency vibration suppression shape filter

and low frequency vibration suppression shape filter can be combined together through the

filtering operation. The filtering operation is mathematical convolution in the time domain

and multiplication in the frequency domain. The resultant robust vibration suppression

shape filter is shown in Figure 6.19.

The robust vibration suppression shape filter is implemented as in Figure 6.20. The

reference command is first input to the robust vibration suppression shape filter, then the

shaped reference command is sent to the closed-loop control. Figure 6.21 shows experi-

mental results of the step reference command and the robust vibration suppression shape

filter. It shows both the low frequency and high frequency residual vibrations are sup-

pressed.

The movement of 20 µm is a representative of about 8 tracks in a 10000 tracks per

inch (TPI) disk drive. The position signal in Figure 6.21 is zoomed in both horizontal axis

and vertical axis. Figure 6.22 shows the position signal in the time interval from 0.026

sec to 0.036 sec. Figure 6.23 shows the position signal near the target track, where the
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Figure 6.17: Robust high frequency vibration suppression shape filter.
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Figure 6.18: Robust low frequency vibration suppression shape filter.

210



0 0.5 1 1.5 2 2.5 3 3.5
0

5

10
x 10

−3

Time (msec)

R
ob

us
t v

ib
ra

tio
n 

su
pp

re
ss

io
n 

sh
ap

e 
fil

te
r 

f[
k]

Figure 6.19: Robust vibration suppression shape filter.
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Figure 6.20: Implementation of a robust vibration suppression shape filter.
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Figure 6.21: Experimental result for 20 µm move with the standard closed-loop control and

shaped reference.

range of the vertical axis is exactly one track interval (2.54 µm). It shows that position

signal immediately settles at the move time of 3.4 msec with ±10% track error criterion.

In Figure 6.23, the distance between two dashed lines is 20% track.

6.7 Model Reference Closed-Loop Control with Robust

Vibration Suppression Control Profile

In this section, model reference closed-loop control is implemented as shown in Fig-

ure 6.24. Both feed forward control profile and position reference profile can be generated

from the robust velocity profile. The robust vibration suppression shape filter itself is a

normalized velocity profile. The real velocity reference to realize a certain position move-

ment can be generated by multiplying the velocity profile with a constant gain. Figure 6.25

shows the robust vibration suppression velocity profile for a 20 µm movement. From the

robust velocity profile, position reference and feed forward control input can be generated.
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Figure 6.22: Position signal zoomed in horizontal axis.
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Figure 6.23: Position signal zoomed in vertical axis.
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Figure 6.26 shows the resultant robust vibration suppression position profile for a 20 µm

movement. Figure 6.27 shows the robust vibration suppression feed forward control input

for a 20 µm movement.
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Figure 6.24: Implementation of model reference closed-loop control with robust vibration

suppression control profiles.
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Figure 6.25: Robust vibration suppression velocity profile.

Figure 6.28 shows experimental results of the model reference closed-loop control with

the robust vibration suppression control profiles. It shows both the low frequency and high

frequency residual vibrations are suppressed.

214



0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

16

18

20

Time (msec)

R
ob

us
t v

ib
ra

tio
n 

su
pp

re
ss

io
n 

po
si

tio
n 

re
fe

re
nc

e 
(µ

m
)

Figure 6.26: Robust vibration suppression position profile.
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Figure 6.27: Robust vibration suppression feedforward control input.
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Figure 6.28: Experimental result for 20 µm move with the model reference closed-loop

control and shaped reference.

The movement of 20 µm is a representative of about 8 tracks in a 10000 tracks per

inch (TPI) disk drive. The position signal in Figure 6.28 is zoomed in both horizontal axis

and vertical axis. Figure 6.29 shows the position signal in the time interval from 0.02 sec

to 0.03 sec. Figure 6.30 shows the position signal near the target track, where the range

of the vertical axis is exactly one track interval (2.54 µm). It shows that position signal

immediately settles at the move time of 3.4 msec with ±10% track error criterion. In

Figure 6.30, the distance between two dashed lines is 20% track.
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Figure 6.29: Position signal zoomed in horizontal axis.
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Figure 6.30: Position signal zoomed in vertical axis.
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Chapter 7

Concluding Remarks

7.1 Conclusions

A robust vibration suppression control profile is generated which suppresses all the res-

onant modes in a flexible system. This robust control profile is based on a continuous

function which can generate a robust velocity profile, or a robust shape filter to an arbitrary

control command.

The robust vibration suppression forcing function can be directly used in open-loop

control. For closed-loop control, two control schemes are studied. The first one is the

standard closed-loop control. In this control scheme, the tracking reference command is

generated from a step reference through a robust vibration suppression shape filter. The

vibration suppression shape filter is designed by considering the resonance modes in the

closed-loop system. The other closed-loop control scheme is the model reference control.

In this control scheme, the open-loop forcing function is directly sent to the real plant

and a reference model. The feedback controller compares and compensates for the output

difference of the real plant and the reference model. This control scheme is suitable for

the case that the real plant changes a lot at different working conditions. The feed forward

forcing function and position reference are designed by considering the resonance modes

in the closed-loop system.
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Experimental results from the flexible link position control with strain gauge and hard

disk drive position control verify the effectiveness of the methods.

7.2 Future Research

A number of directions are available for future research in both the theory and application

of this new technology. The following categories highlight some promising ones. Theory:

1. Non-Continuous Function Based Shape Filter. From the architecture of the vibra-

tion suppression shape filter as shown in Figure 4.29, all shape filters from the input

shaping technique [71, 73, 79, 85, 98] belong to the impulse function based shape

filters. However, the non-impulse function based shape filters, for example, a piece-

wise continuous function based shape filters, are not studied in this report. There are

a number of questions about the non-continuous function based shape filter, such as

time duration of the shape filter, robustness, etc. A systematic comparison of those

properties between non-continuous function based shape filters and continuous func-

tion based shape filters is greatly helpful to control engineers. The research done in

this report obviously assists the fruition of this research direction.

2. Time-Optimal Control. The relationship between non-continuous impulse shape fil-

ters (for example, the input shaping technique) and time-optimal control, has been

studied by a lot of researchers. Pao and Singhose [62, 63] investigated the equiv-

alence of minimum time input shaping with traditional time-optimal control and

they showed that several robust time-optimal shaper designs for flexible systems are

equivalent to the time-optimal controls for different systems. Singhose and Pao [77]

compared several types of input shapers and the time-optimal flexible body control

in terms of a number of engineering factors. Lau and Pao [41, 42] proved that some

input shapers are equivalent to traditional time-optimal control, possibly of differ-

ent systems basing on the Karush-Kuhn-Tucker conditions. Baumgart and Pao [7]
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showed that for MIMO systems, the input shaping problem for unknown inputs is

equivalent to a set of SISO optimal control problems. All the above investigations

generate bang-bang form forcing functions, which possibly potentially induces the

higher order unmodeled dynamics in a flexible system. The relationship between

continuous shape filters and time-optimal control (possibly sub-optimal control) is a

prominent research topic.

3. Input and State Constraints. Without increasing move time, the robust vibration sup-

pression control profiles in this report can be multiplied by an arbitrary constant if the

resultant forcing functions do not saturate. In real applications, not only the forcing

functions are limited, but also the state variables are constrained. For example, in

hard disk drive industry, the read/write flexible arm movement must have a velocity

constraint for safety reasons. Robust vibration suppression control profile generation

with the input and state constraints is a useful study.

4. Compensation for Non-Zero Initial State Values. The open-loop robust vibration

suppression control profiles in this report force a flexible system from one set point

to another set point. Although the experiments show satisfying results even if the

small initial state values are not considered, compensation for the non-zero initial

state values will definitely improve the position precision.

5. Nonlinear System Controls. The robust vibration suppression control profile and ro-

bust vibration suppression shape filter developed in this report are based on the linear

system theory. However, the research direction on this new technology to nonlinear

systems is possible. As a special case of shape filter, input shaping technique has

been studied and applied to some nonlinear systems. The initial study of those tech-

niques may bring about a good start. Banerjee and Singhose [6] used input shaping

for nonlinear control of a two-link flexible manipulator. Smith, Kozak, and Singhose

[90] designed effective zero-vibration input shapers for a class of nonlinear systems.

220



Park and Schrader [64] proved that an input shaper with two impulses can eliminate

the residual vibrations in a kind of nonlinear system completely if the impulses are

chosen properly. All these available results suggest that the new technology devel-

oped in this report has a promising extension to nonlinear system controls.

The methods developed in this report applies to most mechanical and electronic systems

to suppress unwanted residual vibration. It may also apply to chemical processes. Several

applications are discussed below.

Application:

1. Hard Disk Drive Long Seek Problem. Due to the limitation of the laser Doppler vi-

brometer, hard disk drive long seek experiment cannot be tested in the experimental

setup discussed in this thesis. In real hard disk drive product, the position error signal

(PES) [1, 27] is used to feedback control. The techniques in this thesis can be directly

implemented to the hard disk long seek control. Since at the long seek control, the

maximum allowable control voltage are desired but not saturated. The current com-

mand should be designed as large as possible as long as the voltage saturation is

avoided.

2. Manipulator Arm Motion Control in Robotics. “The technique for (space) manipu-

lators was, and continuous to be, to move the joints slowly and wait for the tip of the

arm to settle to equilibrium (Book [15]).” With the requirement of light weight and

fast response, flexibility becomes a formidable problem in manipulator arm motion

control in robotics. Generally, the robotic systems are multi-input multi-output, non-

linear systems. The flexible modes suppression technique in this thesis could be an

effective method to contribute to performance advances in future.

3. Human Operated Machines. Vibration in human operated machines is harmful to

both human and machines. “Millions of (U.S.) workers are also exposed to whole-

body vibrations through the operation of trucks, fork-lifts, buses, heavy equipment,
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farm vehicles, helicopters, aircraft, railroad and subway trains, hovercraft boats,

overhead cranes and other vibrating fixed plant equipment [25].” Since most hu-

man operated machines involve motion of physical flexible plants, the vibration sup-

pression command generation methods in this thesis may provide a smooth motion

trajectory for those kinds of machines to suppress unwanted vibrations.

4. Chemical Processes. It is hard to say now how this approach may be implemented to

chemical processes. However, the command reference generation methods may be

used to suppress oscillations in chemical processes.
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Appendix A

Continuous-Time and Discrete-Time
Fourier Transform

A.1 Continuous-Time Fourier Transform

Consider a measurable function g(t) ∈ L2(−∞,∞), the Fourier transform of g(t) is de-
fined as

G(ω) :=

∫ ∞

−∞
g(t)e−jωtdt, (A.1)

and the inverse Fourier transform is defined as

g(t) =
1

2π

∫ ∞

−∞
G(ω)ejωtdω. (A.2)

In this notation, Parseval’s theorem is
∫ ∞

−∞
g(t)h(t)dt =

1

2π

∫ ∞

−∞
G(ω)H(ω)dω. (A.3)

Equations (A.1) and (A.2) are referred to as the continuous-time Fourier transform pair.
In engineering field, t is generally referred to as time in sec, ω as angular frequency in
rad/sec, and ω

2π
as frequency in Hz. Here lower case and upper case versions of a letter

always denote a Fourier transform pair. If ω = 2πf , where f has the unit of Hz, the
following equations can be easily derived from the above definitions.

G(f) =

∫ ∞

−∞
g(t)e−j2πftdt, (A.4)

g(t) =

∫ ∞

−∞
G(f)ej2πftdf. (A.5)

In this notation, Parseval’s theorem is
∫ ∞

−∞
g(t)h(t)dt =

∫ ∞

−∞
G(f)H(f)df. (A.6)
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A.2 Discrete-Time Fourier Transform

Suppose a continuous-time signal g(t) ∈ L2(−∞,∞) is sampled at equally spaced time
intervals of duration Ts, a discrete-time sequence is generated as follows

g[k] := g(kTs), k = · · · ,−2,−1, 0, 1, 2, · · · . (A.7)

The discrete-time Fourier transform of f [k] is defined as

G(ω) :=
∞∑

k=−∞

g[k]e−jωk, (A.8)

and the inverse discrete-time Fourier transform is defined as

g[k] =
1

2π

∫ π

−π

G(ω)ejωkdω. (A.9)

In this notation, Parseval’s theorem is

∞∑

k=−∞

g[k]h[k] =
1

2π

∫ π

−π

G(ω)H(ω)dω. (A.10)

Equations (A.8) and (A.9) are the discrete-time counterparts of (A.1) and (A.2). G(ω)

in (A.8) is a periodic function in ω with period 2π. In engineering field, Ts is generally
referred to as sampling period. The unit of ω in the discrete-time Fourier transform is rad.
If the sampling period is Ts sec, ω

Ts
is generally referred to as angular frequency in rad/sec,

and ω
2πTs

as frequency in Hz. If Ts is assumed to be 1 and ω = 2πf , where f has the unit
of Hz, the following equations can be easily derived from the above definitions.

G(f) =
∞∑

k=−∞

g[k]e−j2πfk, (A.11)

g[k] =

∫ 1/2

−1/2

G(f)ej2πfkdf. (A.12)

In this notation, Parseval’s theorem is

∞∑

k=−∞

g[k]h[k] =

∫ 1/2

−1/2

G(f)H(f)df. (A.13)
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Appendix B

Positive Definite Functions

This section gives a basic knowledge on positive definite functions in Analysis. Most part
of this section is from Bochner [13].

B.1 The Function Class B

A distribution function V (α), is a function which is defined in (−∞,∞), is bounded and
monotonically increasing, and for which

V (α) =
1

2
[V (α+ 0) + V (α− 0)]

everywhere.
For each distribution function V (α), the integral 1

f(x) :=

∫

ejxαdV (α) (B.1)

exists for all x. The set of all the functions defined in (B.1) is denoted as function class B.

B.2 Positive Definite Functions

A function f(x) is called positive definite if 1) it is continuous in the finite region, and is
bounded in (−∞,∞), 2) it is “hermitian”, i.e.,

f(−x) = f(x), (B.2)

and it satisfies the following conditions: For any points x1, x2, . . . , xm, (m = 1, 2, 3, . . .),
and any numbers ρ1, ρ2, . . . , ρm

m∑

µ=1

m∑

ν=1

f(xµ − xν)ρµρν ≥ 0. (B.3)

1Limits of integration will be omitted if there is no misunderstanding.
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The relationship between positive definite functions and function class B is given in
the following theorem.

Theorem B.1 (Theorem 23 in Bochner [13]) In order that a function belong to class B,
it is necessary and sufficient that it is positive definite.

From Theorem B.1, it can be shown that the function

sin (W (t− s))

(t− s)
, W > 0, (B.4)

is a positive definite function. The conclusion can be deduced from that fact that func-
tion (B.4) belongs to the function class B. Let τ = t− s, since

sin (Wτ)

τ
=

1

2

∫ W

−W

ejωτdω, (B.5)

function sin (Wτ)
τ

belongs to the function class B. So the conclusion is drawn.
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Appendix C

The Relationship between Optimal
Energy Concentration Functions in the
Band-Limited Space and Prolate
Spheroidal Wave Functions

This section discusses the relationship between the optimal energy concentration functions
in the band-limited space and the prolate spheroidal wave functions. The relationship was
attacked by Slepian and his colleagues at Bell Labs in 1961 when they studied the commu-
nication theory. Their results seemed to hinge on a “lucky accident” they referred to [88].

Instead of using concentration in the sense of Heisenberg uncertainty, Slepian et al.
introduced a more meaningful measure of a signal for the communication engineer

α2(T ) :=

∫ T/2

−T/2
|f(t)|2dt

∫∞
−∞ |f(t)|2dt , (C.1)

i.e., the fraction of the signal’s energy that lies in the time interval [−T/2, T/2]. Similarly,

β2(W ) :=

∫W

−W
|F (ω)|2dω

∫∞
−∞ |F (ω)|2dω (C.2)

is a measure of concentration of the amplitude spectrum of f(t).
Slepian’s original question was to determine how large α2(T ) can be for f(t) in the

space of band-limited signals. They reduced the problem to the solution of the following
equation.

∫ 1

−1

sin (c(x− y))

π(x− y)
ψ(y)dy = λψ(x), |x| ≤ 1. (C.3)

From the Fredholm equation theory [20], (C.3) has solutions in L2(−1, 1) only for a set
of discrete real positive values of λ, such as λ0 ≥ λ1 ≥ λ2 ≥ . . . and that limn→∞ λn = 0.
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The corresponding solutions, ψ0(x), ψ1(x), ψ2(x), . . . can be chosen to be real and orthog-
onal on [−1, 1]. They are complete in L2(−1, 1).

Slepian et al. found that the solutions of (C.3) are also solutions to the following second-
order differential equation eigenvalue problem

d

dx
(1 − x2)

dψ

dx
+ (χ− c2x2)ψ = 0. (C.4)

Equation (C.4) is known as the equation of prolate spheroidal wave functions. The detail
of prolate spheroidal wave functions can be found in [93], [24]. It is known that (C.4) has
solutions bounded everywhere only for discrete real positive values of χ, such as, 0 < χ0 <

χ1 < χ2 < . . .. The corresponding solutions ψ0, ψ1, ψ2, . . . are known as prolate spheroidal
wave functions. Slepian pointed out that the solutions of (C.4) satisfy (C.3) because ψ’s
are complete in L2(−1, 1) and the differential operator

Px :=
d

dx
(1 − x2)

d

dx
− c2x2

commutes with the kernel of (C.3), i.e., for all signals r(y) and real x,

Px

∫ 1

−1

sin (c(x− y))

π(x− y)
r(y)dy =

∫ 1

−1

sin (c(x− y))

π(x− y)
Pyr(y)dy. (C.5)

Equation (C.5) is the “lucky accident” referred to by Slepian [88].
The equation of (C.5) can be proved in the following way. The left hand side (LHS) of

(C.5) can be reduced to the following form.

LHS = Px

∫ 1

−1

sin (c(x− y))

π(x− y)
r(y)dy,

=
d

dx
(1 − x2)

d

dx

∫ 1

−1

sin (c(x− y))

π(x− y)
r(y)dy − c2x2

∫ 1

−1

sin (c(x− y))

π(x− y)
r(y)dy,

=

∫ 1

−1

d

dx
(1 − x2)

d

dx

sin (c(x− y))

π(x− y)
r(y)dy −

∫ 1

−1

c2x2 sin (c(x− y))

π(x− y)
r(y)dy,

=

∫ 1

−1

{

−2x

(
cos (c (x− y)) c

π (x− y)
− sin (c (x− y))

π (x− y)2

)

+
(
1 − x2

)
(

−sin (c (x− y)) c2

π (x− y)
− 2

cos (c (x− y)) c

π (x− y)2 + 2
sin (c (x− y))

π (x− y)3

)}

r (y) dy

−
∫ 1

−1

c2x2 sin (c (x− y)) r (y)

π (x− y)
dy,

=

∫ 1

−1

(A1 + A2 + A3)r(y)dy,

(C.6)
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where

A1 = −c (2 cos (c (x− y))x+ sin (c (x− y)) c)

π (x− y)
, (C.7)

A2 = 2
x sin (c (x− y))

π (x− y)2 − 2
(1 − x2) cos (c (x− y)) c

π (x− y)2 , (C.8)

A3 = 2
(1 − x2) sin (c (x− y))

π (x− y)3 . (C.9)

The right hand side (RHS) of (C.5) can be reduced to the following form.

RHS =

∫ 1

−1

sin (c(x− y))

π(x− y)
Pyr(y)dy,

=

∫ 1

−1

sin (c(x− y))

π(x− y)

(
d

dy
(1 − y2)

d

dy
− c2y2

)

r(y)dy,

=

∫ 1

−1

−2
sin (c (x− y)) y

π (x− y)
dr (y) +

∫ 1

−1

sin (c (x− y)) (1 − y2)

π (x− y)
d

(
d

dy
r (y)

)

− c2y2

∫ 1

−1

sin (c (x− y)) r (y)

π (x− y)
dy,

= −
∫ 1

−1

r (y)
∂

∂y

(

−2
sin (c (x− y)) y

π (x− y)

)

dy

+

∫ 1

−1

r (y)
∂

∂y

(

−cos (c (x− y)) c (1 − y2)

π (x− y)
+

sin (c (x− y)) (1 − y2)

π (x− y)2

− 2
sin (c (x− y)) y

π (x− y)

)

dy −
∫ 1

−1

sin (c (x− y)) c2y2r (y)

π (x− y)
dy,

=

∫ 1

−1

r (y)
∂

∂y

(

−cos (c (x− y)) c (1 − y2)

π (x− y)
+

sin (c (x− y)) (1 − y2)

π (x− y)2

)

dy

−
∫ 1

−1

sin (c (x− y)) c2y2r (y)

π (x− y)
dy,

=

∫ 1

−1

r (y)

{

−sin (c (x− y)) c2 (1 − y2)

π (x− y)
− 2

cos (c (x− y)) c (1 − y2)

π (x− y)2

+ 2
cos (c (x− y)) cy

π (x− y)
+ 2

sin (c (x− y)) (1 − y2)

π (x− y)3 − 2
sin (c (x− y)) y

π (x− y)2

}

dy

−
∫ 1

−1

sin (c (x− y)) c2y2r (y)

π (x− y)
dy,

=

∫ 1

−1

(B1 +B2 +B3)r(y)dy,

(C.10)
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where

B1 = −c (sin (c (x− y)) c− 2 cos (c (x− y)) y)

π (x− y)
, (C.11)

B2 = −2
cos (c (x− y)) c (1 − y2)

π (x− y)2 − 2
sin (c (x− y)) y

π (x− y)2 , (C.12)

B3 = 2
sin (c (x− y)) (1 − y2)

π (x− y)3 . (C.13)

By calculation, the following equation holds

(A1 −B1) + (A2 −B2) + (A3 −B3) = 0. (C.14)

So Equation (C.5) is proved to hold for all signals r(y) and all real x.
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Appendix D

Eigenvalues and Eigenfunctions of a
Linear Integral Equation

This section gives a basic concept on the linear integral equations.

D.1 Kernels

Let K(s, t) be a function of the two variables s and t defined and continuous in the region
a ≤ s ≤ b, a ≤ t ≤ b, and let λ be a parameter. The functional equation

f(s) = ψ(s) − λ

∫

K(s, t)ψ(t)dt (D.1)

is called a linear integral equation of the second kind with the kernel K(s, t), where f(s)

and ψ(s) are two functions of variable s continuous in the interval a ≤ s ≤ b. A kernel is
called a degenerate kernel, if it can be written as a finite sum of products of functions of s
and functions of t

K(s, t) =

p
∑

i=1

αi(s)βi(t). (D.2)

It can be shown that kernel sin (πN(f−f ′))
sin (π(f−f ′))

, where N is a positive integer, is a degenerate
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kernel, since

sin (πN(f − f ′))

sin (π(f − f ′))
=
e−jπ(f−f ′)N − ejπ(f−f ′)N

e−jπ(f−f ′) − ejπ(f−f ′)
, (D.3)

=
e−jπ(f−f ′)N

e−jπ(f−f ′)

1 − ei2π(f−f ′)N

1 − ei2π(f−f ′)
, (D.4)

= e−jπ(f−f ′)(N−1) 1 − ej2π(f−f ′)N

1 − ej2π(f−f ′)
, (D.5)

= e−jπ(f−f ′)(N−1)

N−1∑

k=0

ej2π(f−f ′)k, (D.6)

=
N−1∑

k=0

eiπf(2k−N+1)eiπf ′(−2k+N−1). (D.7)

D.2 Eigenvalues and Eigenfunctions

If the function f(s) in (D.1) vanishes identically, (D.1) reduces to a homogeneous inte-
gral equation. A value λ for which the homogeneous equation possesses non-vanishing
solutions is called an eigenvalue of the kernel; the corresponding solutions ψ1, ψ2, . . . , ψh

(assumed normalized and mutually orthogonal) are called the eigenfunctions of the kernel
for the eigenvalue λ.
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Appendix E

Matlab Scripts

E.1 Energy Concentration 1 − J of a Discrete-Time
Acceleration Profile Based on Gaussian Function

function result = energy_fraction_acc_based_gaussian(n, M, T,

$omega_c) ENERGY_FRACTION_ACC_BASED_GAUSSIAN is to calculate

%the energy fraction of the acceleration profile based on

%derivative of Gaussian function.

% int_0ˆomega |Acc(w)|ˆ2 dw

% -----------------------, where acc[k] is a discrete

% int_0ˆpi |Acc(w)|ˆ2 dw

%sequence of the derivative of Gaussian function.

%The result is only a approximate value. For a precise result,

%use ENERGYFRACTION_IN_FREQINTERVAL. However, for a long

%discrete sequence, ENERGYFRACTION_IN_FREQINTERVAL is slow.

%Out:

%fraction - energy concentration after omega_c, i.e., 1-J

%Input:

%n - scale parameter n

%M - integer number, acc(0)...acc(M), move time is M*T

%T - sampling period in second

%omega_c - first resonant frequency in rad/sec,

%the unit of discrete-time Fourier transform variable omega

%is rad.

omega = omega_c*T;%[0 - pi]

%delta omega to calculate the energy of sequence.
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%Reduce the value if more accuracy is required

delt_omega = 1e-3;

if rem(M, 2) == 0 %M is even

k=[1:M/2];

%the energy before omega (rad)

result=0;

for i=[0:delt_omega:omega];

result = result + (2*T*sum(k.*exp(-2ˆ(2*n-1)*k.ˆ2*Tˆ2)...

.*sin(i.*k)))ˆ2;

end

num=result;

%the total energy in frequency band 0 - pi

omega=pi;

result=0;

for i=[0:delt_omega:omega];

result = result + (2*T*sum(k.*exp(-2ˆ(2*n-1)*k.ˆ2*Tˆ2)...

.*sin(i.*k)))ˆ2;

end

fraction = (result-num) / result;

else %M is odd

k=[1:(M+1)/2];

%the energy before omega (rad)

result=0;

for i=[0:delt_omega:omega];

result = result + (2*T*sum((k-.5).*exp(-2ˆ(2*n-1)*...

(k-.5).ˆ2*Tˆ2).*sin(i.*(k-.5))))ˆ2;

end

num=result;
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%the total energy in frequency band 0 - pi

omega=pi;

result=0;

for i=[0:delt_omega:omega];

result = result + (2*T*sum((k-.5).*exp(-2ˆ(2*n-1)*...

(k-.5).ˆ2*Tˆ2).*sin(i.*(k-.5))))ˆ2;

end

%fraction of the energy after omega

fraction = (result-num) / result;

end

E.2 Energy Concentration 1 − J of a Discrete-Time
Gaussian Sequence

function fraction = energy_fraction_gaussian(n, M, T, omega_c)

%ENERGY_FRACTION_GAUSSIAN is to calculate the energy fraction

%of the Gaussian function profile

% int_0ˆomega |G(w)|ˆ2 dw

% -----------------------,

% int_0ˆpi |G(w)|ˆ2 dw

% where g[k] is a discrete Gaussian sequence.

%The result is only a approximate value. For a precise result,

%use ENERGYFRACTION_IN_FREQINTERVAL. However, for a long

%discrete sequence, ENERGYFRACTION_IN_FREQINTERVAL is slow.

%Out:

%fraction - energy concentration after omega_c, i.e., 1-J

%Input:

%n - scale parameter n

%M - integer number, g(0)...g(M)

%T - sampling period in second

%omega_c - first resonant frequency in rad/sec,

%the unit of discrete-time Fourier transform variable omega

%is rad.
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omega=omega_c*T;%[0 - pi]

%delta omega to calculate the energy of sequence.

%Reduce the value if more accuracy is required

delt_omega=1e-3;

if rem(M, 2) == 0 %M is an even number

k=[1:M/2];

%the energy before omega (rad)

result=0;

for i = [0:delt_omega:omega];

result = result + (1 + 2*sum(exp(-2ˆ(2*n-1)*k.ˆ2*Tˆ2)...

.*cos(i.*k)))ˆ2;

end

num=result;

%the total energy in frequency band 0 - pi

omega=pi;

result=0;

for i=[0:delt_omega:omega];

result = result + (1 + 2*sum(exp(-2ˆ(2*n-1)*k.ˆ2*Tˆ2)...

.*cos(i.*k)))ˆ2;

end

%fraction of the energy after omega

fraction = (result-num) / result;

else %M is an odd number

k=[1:(M+1)/2];

%the energy before omega (rad)

result=0;

for i=[0:delt_omega:omega];
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result = result + (2*sum(exp(-2ˆ(2*n-1)*(k-.5).ˆ2*Tˆ2)...

.*cos(i.*(k-.5))))ˆ2;

end

num=result;

%the total energy in frequency band 0 - pi

omega=pi;

result=0;

for i=[0:delt_omega:omega];

result = result + (2*sum(exp(-2ˆ(2*n-1)*(k-.5).ˆ2*Tˆ2)...

.*cos(i.*(k-.5))))ˆ2;

end

%fraction of the energy after omega

fraction = (result-num) / result;

end

E.3 Energy Concentration β2(W ) of a Sequence

function beta2 = energyfraction_in_freqinterval(h, Ts, Omega)

%ENERGYFRACTION_IN_FREQINTERVAL is to compute the fraction of

%a signal’s energy that lies in the frequency interval [-Omega,

% Omega]

%Out:

%beta2 - The fraction of signal’s energy that lies in the

%frequency interval [-Omega, Omega]

%Input:

%h - A finite sequence with sampling period Ts sec

%Ts - Sampling period in sec

%Omega - Frequency bandwidth Omega in rad/sec

%Make h to be an N by 1 vector

if size(h, 1) == 1

h = h’;

end
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%Normalized frequency

W = Omega/(2*pi/Ts);

if W >= 0.5

W

disp(’Wrong parameter settings. Possibly Omega is too ...

large!’);

return;

end

%h[k], k=0,1, ... M

M = length(h)-1;

%Symmetric matrix A

for t1 = 0 : M

for t2 = 0 : M

if t1 == t2

A(t1+1,t2+1) = 2*W;

else

A(t1+1,t2+1) = sin(2*pi*W*(t1-t2))/(pi*(t1-t2));

end

end

end

%Compute the energy fraction

beta2 = h’*A*h/norm(h)ˆ2;

E.4 Robust Vibration Suppression Velocity Profile
Generation from the Discrete Prolate Spheroidal
Sequence

function [vel] = robust_dpss_velocity_profile(MoveTime, ...

omega0, Ts)

%ROBUST_DPSS_VELOCITY_PROFILE is to generate a robust vibration

%suppression profile from the first discrete prolate spheroidal
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%sequence v_0[k]. A velocity constant must be multiplied to

%realize certain position movement.

%Output:

%vel - Robust velocity profile

%Input:

%movetime - Move time in sec of the velocity profile

%omega0 - The resonance frequency in rad/sec

%Ts - Sampling period in sec

M = length([0:Ts:MoveTime])-1;%[0:M] total M+1 sequences

n = M + 1;%total data numbers of a sequence

%Normalized frequency bandwidth

W=omega0/(2*pi/Ts);

if W >= 0.5

W

disp(’Wrong parameter settings. Possibly omega0 is too ...

large!’);

return;

end

%Discrete prolate spheroidal sequence

[e,v]=dpss(n, n*W, [1]);

%Velocity profile with initial and final values zero from

%vertically shifted DPSS

vel = e(:,1) - e(1,1);

E.5 Generation of Rectangle Based Shape Filter with
Robustness Order 1

function [f] = rectbased_shapefilter(omega, zeta, Ts)

%RECTBASED_SHAPEFILTER is to generate the rectangle based

%vibration suppression shape filter with robust order 1.
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%Output:

%f - Rectangle based shape filter sequence

%Input:

%omega - The undamped natural frequency in rad/sec

%zeta - Damping ratio

%Ts - Sampling period in sec

%Damped natural frequency in rad/sec

omega_d = omega * sqrt(1 - zetaˆ2);

%Sequence total floating number for given Ts

M=(2*pi/Ts/omega_d-1);

%A slightly changed sampling period

M1 = floor(M);

Ts1 = 2*pi/(M1+1)/omega_d;

%Initialization of the base function

h(1:ceil(M1*Ts1/Ts)+1)=0;

%The modified base function

for k=0:M1

n = floor(k * Ts1 / Ts);

beta = k * Ts1/Ts - n;

B = 1;

B1 = sin(omega_d * Ts * (1 - beta)) / sin(omega_d * Ts) * B;

B2 = sin(omega_d * Ts * (beta)) / sin(omega_d * Ts) * B;

if beta == 0

h(n+1) = h(n+1) + B1;

else

h(n+1) = h(n+1) + B1;

h(n+2) = h(n+2) + B2;

end

end
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%Shape filter

f = h./exp(zeta*omega*[0:length(h)-1]*Ts);

%Normalization

f = f/sum(f);

E.6 Generation of Hanning Based Shape Filter with
Robustness Order 1

function [f] = hanningbased_shapefilter(omega, zeta, Ts)

%HANNINGBASED_SHAPEFILTER is to generate the hanning based

%vibration suppression shape filter with robust order 1.

%Output:

%f - Hanning based shape filter sequence

%Input:

%omega - The undamped natural frequency in rad/sec

%zeta - Damping ratio

%Ts - Sampling period in sec

%Damped natural frequency in rad/sec

omega_d = omega * sqrt(1 - zetaˆ2);

%Sequence total floating number for given Ts

M=(4*pi/Ts/omega_d);

%A slightly changed sampling period

M1 = floor(M);

Ts1 = 4*pi/(M1)/omega_d;

%Initialization of the base function

h(1:ceil(M1*Ts1/Ts)+1)=0;

%The modified base function

for k=0:M1

n = floor(k * Ts1 / Ts);

beta = k * Ts1/Ts - n;
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%Hanning window function

B = 0.5 * (1-cos(2*pi*k/M1));

B1 = sin(omega_d * Ts * (1 - beta)) / sin(omega_d * Ts) * B;

B2 = sin(omega_d * Ts * (beta)) / sin(omega_d * Ts) * B;

if beta == 0

h(n+1) = h(n+1) + B1;

else

h(n+1) = h(n+1) + B1;

h(n+2) = h(n+2) + B2;

end

end

%Shape filter

f = h./exp(zeta*omega*[0:length(h)-1]*Ts);

%Normalization

f = f/sum(f);

E.7 Generation of Blackman Based Shape Filter with
Robustness Order 1

function [f] = blackmanbased_shapefilter(omega, zeta, Ts)

%BLACKMANBASED_SHAPEFILTER is to generate the blackman based

%vibration suppression shape filter with robust order 1.

%Output:

%f - Blackman based shape filter sequence

%Input:

%omega - The undamped natural frequency in rad/sec

%zeta - Damping ratio

%Ts - Sampling period in sec

%Damped natural frequency in rad/sec

omega_d = omega * sqrt(1 - zetaˆ2);
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%Sequence total floating number for given Ts

M=(6*pi/Ts/omega_d);

%A slightly changed sampling period

M1 = floor(M);

Ts1 = 6*pi/(M1)/omega_d;

%Initialization of the base function

h(1:ceil(M1*Ts1/Ts)+1)=0;

%The modified base function

for k=0:M1

n = floor(k * Ts1 / Ts);

beta = k * Ts1/Ts - n;

%Blackman window function

B = 0.42 - 0.5 * cos(2*pi*k/M1) + 0.08 * cos(4*pi*k/M1);

B1 = sin(omega_d * Ts * (1 - beta)) / sin(omega_d * Ts) * B;

B2 = sin(omega_d * Ts * (beta)) / sin(omega_d * Ts) * B;

if beta == 0

h(n+1) = h(n+1) + B1;

else

h(n+1) = h(n+1) + B1;

h(n+2) = h(n+2) + B2;

end

end

%Shape filter

f = h./exp(zeta*omega*[0:length(h)-1]*Ts);

%Normalization

f = f/sum(f);
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E.8 Generation of Hamming Based Shape Filter with
Robustness Order 1

function [f] = hammingbased_shapefilter(omega, zeta, Ts)

%HAMMINGBASED_SHAPEFILTER is to generate the hamming based

%vibration suppression shape filter with robust order 1.

%Output:

%f - Hamming based shape filter sequence

%Input:

%omega - The undamped natural frequency in rad/sec

%zeta - Damping ratio

%Ts - Sampling period in sec

%Damped natural frequency in rad/sec

omega_d = omega * sqrt(1 - zetaˆ2);

%Sequence total floating number for given Ts

M=(4*pi/Ts/omega_d);

%A slightly changed sampling period

M1 = floor(M);

Ts1 = 4*pi/(M1)/omega_d;

%Initialization of the base function

h(1:ceil(M1*Ts1/Ts)+1)=0;

%The modified base function

for k=0:M1

n = floor(k * Ts1 / Ts);

beta = k * Ts1/Ts - n;

%Hamming window function

B = 25/46-21/46*cos(2*pi*k/M1);

B1 = sin(omega_d * Ts * (1 - beta)) / sin(omega_d * Ts) * B;

B2 = sin(omega_d * Ts * (beta)) / sin(omega_d * Ts) * B;

if beta == 0
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h(n+1) = h(n+1) + B1;

else

h(n+1) = h(n+1) + B1;

h(n+2) = h(n+2) + B2;

end

end

%Shape filter

f = h./exp(zeta*omega*[0:length(h)-1]*Ts);

%Normalization

f = f/sum(f);

E.9 Shape Filter Operation of Two Shape Filters

function [f] = shapefilter_operation(f1, f2)

%SHAPEFILTER_OPERATION is to generate a shape filter from two

%shape filters f1 and f2. f1 and f2 could be the same or

%different. f1 and f2 must have the same sampling period.

%Output:

%f - The shape filter sequence with sampling period Ts from a

% shape filter operation of two shape filters f1 and f2.

%Input:

%f1 - The first discrete shape filter sequence with sampling

% period Ts.

%f2 - The second discrete shape filter sequence with sampling

% period Ts.

%total number

num_f = length(f1)+length(f2)-1;

%Filter operation

f = filter(f1, 1, [f2 zeros(1,length(f1)-1)]);

%Normalization to make sum f[k] = 1

f = f / sum(f);
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Appendix F

Maple Scripts

F.1 Find the Minimum ω such that the Discrete-Time
Fourier Transform of a Hanning Window H(ω) = 0

> restart:

> M:=’M’:omega:=’omega’:assume(M>0,omega>0);

#Inert form discrete-time Fourier transform of Hanning window

> Sum(’(1/2-1/2*cos(2*Pi*n/M))*exp(-I*omega*n)’,’n’=0..M);

M˜

-----

\

) //1 1 /2 Pi n\\ \

/ ||- - - cos|------|| exp(-I omega n)|

----- \\2 2 \ M // /

n = 0

#Real and imaginary part of the discrete-time Fourier transform

of Hanning window

> WC:=simplify(sum(’(1/2-1/2*cos(2*Pi*n/M))*cos(omega*n)’,

’n’=0..M)):

> WS:=simplify(sum(’(1/2-1/2*cos(2*Pi*n/M))*sin(omega*n)’,

’n’=0..M)):

#Simplified numerators of the real and imaginary parts

> NC:=simplify(expand(numer(WC),’trig’));

> NS:=simplify(expand(numer(WS),’trig’));
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/ 2\

| /Pi\ |

NC := sin(omega˜ M˜) sin(omega˜) |-1 + cos|--| |

\ \M˜/ /

/ 2 2

| /Pi\ /Pi\

NS := -sin(omega˜) |-cos(omega˜ M˜) - cos|--| + cos|--|

\ \M˜/ \M˜/

\

|

cos(omega˜ M˜) + 1|

/

> DC:=simplify(expand(denom(WC),’trig’));

> DS:=simplify(expand(denom(WS),’trig’));

2 2

2 /Pi\ /Pi\

DC := 2 cos(omega˜) + 4 cos|--| - 4 cos(omega˜) cos|--| - 2

\M˜/ \M˜/

2 2

2 /Pi\ /Pi\

DS := 2 cos(omega˜) + 4 cos|--| - 4 cos(omega˜) cos|--| - 2

\M˜/ \M˜/

#Factorization of NC and NS

> factor(NC);factor(NS);

/ /Pi\ \ / /Pi\ \

sin(omega˜ M˜) sin(omega˜) |cos|--| - 1| |cos|--| + 1|

\ \M˜/ / \ \M˜/ /

/ /Pi\ \ / /Pi\ \

-sin(omega˜) |cos|--| - 1| |cos|--| + 1| (-1 + cos(omega˜ M˜))
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\ \M˜/ / \ \M˜/ /

#Factorization of DC and DS

> factor(DC);factor(DS);

/ 2 \

| /Pi\ |

2 (cos(omega˜) - 1) |cos(omega˜) - 2 cos|--| + 1|

\ \M˜/ /

/ 2 \

| /Pi\ |

2 (cos(omega˜) - 1) |cos(omega˜) - 2 cos|--| + 1|

\ \M˜/ /

> combine(subs(omega=2*Pi/M,NS));combine(subs(omega=2*Pi/M,DS));

0

0

#Obviously, omega=2*Pi*k/M, k=1,2,... are pssible solutions.

For k=1, omega=2*Pi/M, both NC and DC are zero. So minimum

solution omega = 4*Pi/M.
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