
GLUCOSE TOLERANCE AS AFFECTED BY

PREGNANCY, LACTATION, AND

DIETARY CHROMIUM

By

CHARLES VINCENT PORTER

Bachelor of Science
University of New Mexico
Albuquerque, New Mexico

1972

Bachelor of Science
University of New Mexico
Albuquerque, New Mexico

1999

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 2001



GLUCOSE TOLERANCE AS AFFECTED BY

PREGNANCY, LACTATION, AND

DIETARY CHROMIUM

Thesis Approved:

----~-eg-e----

11



ACKNO~DGEMENTS

I would like to thank my major adviser Dr. Barbara J. Stoecker for her patience,

guidance, encouragement and friendship during my stay at Oklahoma State University. I

would also like to express my appreciation to my other committee members Dr. Bahram

Arjmandi and Dr. Elizabeth Droke for their support~

I would like to express gratitude to my late cousin Mary Wakeman. She entered

school and graduated and became a Registered Dietitian after raising a family. She has

since succumbed to cancer after a long battle. Her strength and determination was, in

large part, a motivation that kept me going when stopping would have easier.

I would also like to acknowledge; my Father, John D. Porter, and my aunts,

Virginia Hilsabeck and Ruth Wakeman who believed in me and were there to encourage

me when it was needed.

Finally, I would like to thank my friends and comrades for their support and

encouragement.

111



Ok/shoma State University Library

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

Statement of the Problem 2
Limitations..................... 6
Statement of the Hypotheses 7

II. LrrERATUR,E REVIEW........................................................... 9

Introduction..... 9
Chromium................................................................................................................ 9
Chromium, Glucose Tolerance Factor, Essentiality... 10
Chromium Metabolism............................................................................................ 12
Essentiality of Chromium for Hlfmans 15
Glucose and Insulin Metabolism during Pregnancy and Lactation 16
Gestational Diabetes........ 18
Fructosamine................... 22

III. METHOD............................................................................................................... 26

IV. RESULTS 31

Gestation. 31
Glucose and Insulin 31
Fructosamine, Total Serum Protein. 32
Non-esterified Fatty Acids, Triglycerides, Cholesterol.... 32

Lactation 32
Glucose and Insulin....... 32
Fructosamine, Total Serum, Protein.................................................................... 33
Non-esterified Fatty Acids, Triglycerides, Cholesterol....... 33
Number of Pups Delivered or Carried through Lactation 33

Anatomical Measures 34
Liver Weight, Kidney Weight, Spleen Weight 34
Percent Body Fat 34

IV



Chapter Page

V. DISCUSSION 35

Pregnancy.................. 35
Lactation................... 39

VI. SUMMARY, IMPLICATIONS, SUGGESTIONS 43

Hypothesis Testing Results. 45

TABLES....................................................................................................................... 47

LITERATURE CITED.. 56

VITA 61

v



LIST OF TABLES

Table Page

J. Gestational diabetes mellitus serum glucose cut-off concentrations used
for human diagnosis............. 3

2. Research diet components............................ 47

3. Pregnancy and fonn and concentration of chromium on glucose and insulin
parameters as detennined by an Oral Glucose Tolerance Test (OGTT) 48

4 Pregnancy and fonn and concentration of chromium effects on serum
fmctosamine and total protein.............................................................................. 49

5. Pregnancy and form and concentration of chromium effects on lipid
serum parameters.................................................................................................. 50

6. Lactation and fonn and concentration of chromium effects on glucose
and insulin serum parameters as detennined by OGTT 51

7. Lactation and fonn and concentration of chromium effects on fructosamine
and protein serum 52

8. Lactation and fonn and concentration of chromium effects on lipid
serum parameters 53

9. Mean number of pups in each litter.. 54

10. Pregnancy, lactation, and the form and concentration of chromium effects
on body and organ weights and body faL............................................................ 55

VI



CHAPTER I

INTRODUCTION

The relation that exists among chromium, insulin, and glucose has been

investigated through many research projects. Because of the involvement of insulin and

glucose it was natural that research expanded into the area examining diabetes mellitus.

Glucose intolerance is a major component of this pathology. Understanding the nature

and degree of the glucose intolerance in diabetes and pregnant mothers, in particular, has

very important health considerations.

In the mid-1950's a new dietary component was isolated. This substance had the

effect of improving glucose intolerance in rats. The active ingredient of this substance

was shown to be trivalent chromium. Later research demonstrated that chromium was

essential in rats (Mertz, et aI., 1961) and humans (Jeejeebhoy, et aI., 1977). Early

researchers experienced difficulty in determining how much of the chromium was to be

found in a biological system. It was not until the mid-1980's that the understanding of

chromium being a micronutrient was established. Because chromium in biological

systems is measured in parts per billion, it is easy to understand how contamination led to

spurious results prior to this understanding. Since then special techniques and procedures

for doing micro-mineral research have been developed.

Chromium deficiency could explain some diabetes-like symptoms in cases of

diabetes; it does not explain all the cases. The concentration of glucose in the blood was

shown to reflect the amount of glucose control a patient had. The inability to control the



serum glucose concentration is implicit in diabetes diagnosis. Human research has done

much to examine this condition. What is yet to be devised is a simple test for determining

the extent of glucose control and a way to administer such a test.

Statement ofthe Problem. A small but significant number of pregnancies

involve the diagnosis of gestational diabetes mellitus (GDM). The outcomes of GDM are

increased morbidity and mortality for both the mother and her offspring. Up to 40% of

mothers who experience GDM go on to develop Type 2 diabetes later in life (Kjos and

Buchanan, 1999; Coustan and Carpenter, 1998; CDC 1998, Mokdad, et aI., 2000).

The deterioration of glucose tolerance is normal during pregnancy. In its early

history GDM was only regarded as an indicator of increased risk of developing non­

gestational diabetes at some point later in life (Coustan and Carpenter, 1998). About 50

years ago, it was noted that there w.as an increase in infant mortality and morbidity

related to maternal diabetes. Unfortunately, the criteria then for a diagnosis of GDM did

not take into consideration the mother's physiological response to pregnancy (Coustan

and Carpenter, 1998). A problem still remaining today is that there is no one cut-off point

to determine those mothers at risk from those mothers not at particular risk of increased

morbidity and mortality (Coustan and Carpenter, 1998). In 1996 the US Preventative

Task Force published their "Guide to Clinical Preventati ve Services." They state there

was not enough evidence to "recommend for or against universal screening for

gestational diabetes" (US Preventative Service Task Force, 1996).

Screening women to determine those at increased risk for developing GDM and

administering an Oral Glucose Tolerance Test (OGTT) for those found to be at risk

seems to be a reasonable step to take (Kjos and Buchanan, 1999). Aside from the human
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costs of GDM, the financial cost is estimated to be $44 billion a year in direct cost and an

additional $54 billion in indirect expense of disability, work loss, and early death of the

mother (CDC, National Fact Sheet, 1998; Mokdad, et al., 2(00). Criteria for diagnosis of

GDM are listed in Table 1.

Table 11

Gestational diabetes mellitus serum glucose cut-off concentrations used for human
diagnosis. 2

Fasting 1 Hour 2 Hour 3 Hour
mg/dL 95 180 155 140
mmollL 5.3 10.0 8.6 7.8
I Based on a table by Metzger, Coustan. Summary and Recommendations of the Fourth
International Workshop-Conference on Gestational Diabetes Mellitus, 1998.
2 Values based on a 100 oral glucose load.

A cure for this state of glucose intolerance is not available; however, in humans,

treatment with a diet counseling plan, exercise, and even chromium supplementation

have been shown to lessen the degree of glucose intolerance in humans (Kjos and

Buchanan, 1999; Jeejeebhoy, et aI., 1977). Glucose intolerance has been shown to

improve in rats that use an exercise wheel and who recei ve chromium supplementation

( Schroeder, 1966; Wright, et aI., 1983;). Improving glucose tolerance has been shown to

lessen the degree of Type 2 di abetes' impact on the mother or her baby (Anderson, et a1..

1991; Hod, et aI., 1991). In order to diagnose this malady, a test needs to be established

which is easy to administer and effective. This test must be routinely administered in the

physician's office and be of relatively low cost and high predictive power. An OGTT can

be done with some success but this test takes 2 to 3 hours and involves consuming a very

concentrated sugar solution. Many pregnant mothers experience nausea and vomiting as a
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result of ingesting this solution (Coustan and Carpenter; 1998, Kjos and Buchanan,

1999).

The purpose of this research is to evaluate the use of chromium picolinate and

chromium chloride as a means of lessening glucose intolerance during pregnancy and

lactation using the rat as a model. Examining whether a relation exists between

fructosamine and serum glucose concentrations is another goal of this research.

Fructosarnine is formed by a non-enzymatic reaction between fructose and serum

proteins, primarily albumins. Fructosamine, as a marker, reflects the last 2 - 3 weeks of

serum glucose concentrations, whereas the OGTT gives an indication of serum glucose

concentrations at the time the test is preformed.

Diabetes mellitus has been defined as four separate but related physiological

manifestations of impaired glucose tolerance. The first group is made up of people with

Type 1 diabetes mellitus. This group makes up about 5% of diagnosed cases of diabetes

and results from a lack of insulin. When this deficiem.:y arises from surgeries, accidents,

infections and genetic syndromes, this makes up the second group that represents about

2% of diabetic (CDC, National Fact Sheet 1998; National Diabetes Data Group, 1979).

The third group is made up of people with Type 2 diabetes mellitus and is by far the

largest group. About ninety percent of individuals who have diabetes mellitus have this

form. Risk factors include older age, obesity, family history of diabetes, a diminished

glucose tolerance, certain races or ethnicity, little physical activity, and previous

diagnosis of gestational diabetes mellitus (GDM). The fourth group is GDM. This form

of diabetes includes 2 - 5 % of pregnancies and about 3% of the population. At the end of

4



pregnancy, glucose tolerance, for most mothers, returns to normal. (CDC, National Fact

Sheet, 1998; Mokdad, et a1.,2oo0).

Two problems arise when trying to test for GDM. First, the nausea problem with

some mothers undergoing an OGTI. Secondly, having to wait for 2 to 3 hours to finish

the test is often inconvenient and more time than the mother can spend. It would be

helpful to have a test that can be done in one step. One such test is to examine the serum

concentration of fructosamine (Kjos, 1999 and Buchanan; Hughes, 1995).

Chromium is involved in several aspects of metabolism including growth, glucose

tolerance, lipid metabolism, interactions with nucleic acids, and the immune response

(Schroeder, et aI., 1971; Schroeder, 1966). The dietary form of chromium and the form

which the body can best utilize have been points of major interest. For some people

chromium intake through dietary choices is below the Adequate Intake (AI) established

by the Food and Nutrition Board of the National Academy of Sciences (2001). Chromium

absorption is low and competes with other ions and compounds and so finding the most

utilizable form is desirable (Anderson et aI., 1985).

Serum chromium does not reflect the body's reserves (Hopkins, 1964; Onkelinx,

1977; Mertz, 1992) and serum chromium is too low to measure as a standard clinical test.

If analyses were more sensitive, measuring the serum concentration of chromium might

provide a simple screening tool to reveal an at-risk condition regarding glucose tolerance.

However, chromium deficiency is not the only cause of GDM. Without knowing the

relation between serum chromium concentration and glucose intolerance, there has been a

strong force for seeking a surrogate marker for quantifying glucose intolerance.
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In the search for the simple glucose control marker, glycated proteins have been

researched. Glycated hemoglobin and fructosamine are the most promising indicators.

Since each of these glycated proteins reflects the serum glucose levels over differing

lengths of time, each has been examined for its ability to identify diabetes.

Limitations. Limitations to this thesis include the general physical condition of

the rat and the exact amount of time each rat experienced fasting. Other limitations

include allowing the pups to remain with the mother while she was fasting before the

OGTT procedure. During the pregnancy and lactation the mother rat produces and

supports many pups and enough milk to support her litter for a period of three weeks.

This amounts to more product than the mother's weight. Therefore, a direct comparison

with humans is not realistic.



Statement of Hypothesis.

HO 1: Serum concentrations of glucose and insulin are not significantly different during

an oral glucose tolerance test on the 18th day of pregnancy between similarly aged non­

pregnant rats and groups of pregnant rats receiving diets deficient in chromium,

supplemented with chromium chloride, or supplemented with chromium picolinate.

H02: Serum concentrations of glucose and insulin are not significantly different during

an oral glucose tolerance test on the 19th day of lactation between similarly aged female

rats and groups of lactating rats receiving diets deficient in chromium. supplemented with

chromium chloride, or supplemented with chromium picolinate.

H03: Serum concentrations of fructosamine are not significantly different on the 18th

day of pregnancy between similarly aged non-pregnant rats and groups of pregnant rats

receiving diets deficient in chromium, supplemented with chromium chloride, or

supplemented with chromium picolinate.

H04: Serum concentrations of fructosamine are not significantly differenttwo hours after

an oral glucose load on the 19th day of lactation between similarly aged female rats and

groups of lactating rats receiving diets deficient in chromium, supplemented with

chromium chloride, or supplemented with chromium picolinate.

HOS: Serum concentrations of non-esterified fatty acids, triglycerides, cholesterol, and

total proteins are not significantly different on the 18th day of pregnancy between
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similarly aged non-pregnant rats and groups of pregnant rats receiving diets deficient in

chromium, supplemented with chromium chloride, or supplemented with chromium

picolinate.

H06: Serum concentrations of non-esterified fatty acids, triglycerides, cholesterol, and

total proteins are not significantly different two hours after an oral glucose load on the

19th day of lactation between similarly aged female rats and groups of lactating rats

receiving diets deficient in chromium, supplemented with chromium chloride, or

supplemented with chromium picolinate.
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CHAPTER II

LITERATURE REVIEW

Introduction. In this chapter a review of steps in the discovery of the essential

nature of chromium will be examined. Some important studies that demonstrate the

function of chromium and its effect on diabetes and glucose tolerance will be reviewed.

The importance of understanding gestational diabetes and how it is diagnosed will also be

reviewed briefly. Research examining the relation between chromium and glucose

tolerance has mainly used the rat model. The area of gestational diabetes mellitus has

largely been investigated with human subjects. Finally, a look at the utilization of

fructosamine as an indicator for diagnosing gestational diabetes will be covered.

Chromium. Chromium has been shown to be essential for normal glucose

tolerance in many studies (Schwartz and Mertz, 1959; Mertz, et ai., 1965; Schroederet

ai., 1968). All of these studies utilized rats because rats' glucose and insulin metabolism

is similar to humans (Flint, et ai, 1981; Leturque, et ai, 1984).

The quantification of chromium until the 1980's was problematic. Once the

problems of background and general contamination were overcome and the development

of the graphite furnace was achieved, conducting chromium research with atomic

absorption spectroscopy was able to quantify the small amounts of chromium present in

biological systems with reliable results (Mertz, 1992).

The form in which chromium is ingested has been demonstrated to be quite

variable in its effect on cell tissue. While chromium chloride is the most typical form
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used, chromium picolinate has been shown to increase the internalization of insulin and

subsequent uptake of glucose in rat skeletal muscle cells. Using tritiated glucose, cellular

uptake of glucose was measured relative to various chromium compounds. It was found

that the picolinate form of chromium resulted in nearly double the uptake of glucose

compared to the other tested compounds (chromium chloride and chromium nicotinate)

(Evans and Bowman, 1992).

Research in recent years has demonstrated not only the essentiality of chromium

for potentiating the function of insulin but also that chromium, in combination with

different anions like chloride and picolinate, can have different effects on insulin

sensitive tissues (Vincent, 2000).

More recently the actual role of chromium in glucose tolerance factor. a facilitator

of insulin, was identified and the compound was called low-molecular-weight chromium

binding substance (LMWCr). When the chromium was removed, the activity of this

substance, which was shown to enhance glucose oxidation and lipogenesis from glucose,

was nearly gone. The return of chromium reactivated the substance in its ability to

increase glucose metabolism (Yamamoto, et al.. 1989). This substance has also been

called chromodulin. Chromodulin contains four chromium atoms and binds to insulin

activated receptors and functions in an auto amplification reaction resulting in glucose

being metabolized to carbon dioxide or lipids (Vincent, 2000).

Chromium, GLucose ToLerance Factor, Essentiality. As the current

understanding of chromium evolved several important steps of discovery had to be made.

Some of these discoveries follow below.
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Research with rats was conducted in the mid 1950's to detennine what dietary

component would prevent necrotic liver degeneration (Mertz and Schwartz, 1955).They

detennined three components could independently retard this deterioration. Of the three

dietary components, cystine, vitamin E, and Factor 3, only Factor 3 had the additional

effect of reducing the circulating glucose of hyperglycemic rats to "glucose tolerance

equal to that of nonnal controls" (Mertz and Schwartz, 1955).

A later investigation showed that one component of Factor 3 was responsible for

the "nonnal glucose removal rates". This component was isolated and named Glucose

Tolerance Factor (GTF). It was found that chromium was an essential component of GTF

(Schwartz and Mertz, 1957; Schwartz and Mertz, 1959).

When rats were fed various diets, those rats consuming diets containing GTF had

higher serum glucose clearance rates than rats fed commercial pelletized feed (Schwartz

and Mertz, 1959). When sources of GTF, like pork kidney or hrewer's yeast, were added

to those diets with low clearance rates, the clearance of glucose from the animals' serum

was shown to increase. This was the first test used to detennine the presence of GTF

(Mertz, et aI., 1959). Many minerals were examined to determine which, if any of them,

gave GTF its ability to restore glucose tolerance to the rats being studied. Not only was

chromium discovered to be this mysterious element, but also the active form was

chromium with a positive three charge. Research also showed that a deficiency of GTF

left the rats with a level of glucose tolerance resembling diabetes (Schwartz and Mertz,

1959).

Once GTF was observed to affect glucose tolerance, other research was conducted

to identify the extent of GTF involvement. In another study, rats that consumed a diet that
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was chromium deficient developed symptoms that simulated diabetes and also retarded

growth, especially in the female rats. The conclusion was that chromium was necessary

for normal glucose tolerance (Schroeder, 1966).

Research was conducted with epididymal fat tissue investigating the effect of

GTF on insulin efficiency. A specific amount of insulin was combined with varying

amounts of the GTF, as found in brewer's yeast. Glucose was labeled with 14Carbon and

combined with GTF in epididymal fat tissues and the glucose uptake by the cells was

measured. When the chromium dose, as GTF, in the media increased from 0.001 f.Lg to

0.1 Ilg the cellular uptake of glucose more than tripled, but at greater concentrations of

chromium, glucose absorption fell off by nearly half. As the cellular uptake increased the

rats response changed too. The rats with the most severe glucose intolerance experienced

the greatest improvement; those rats with near normal glucose tolerance were less

affected. A number of other elements were tried but only chromium had this pronounced

ability to increase glucose clearance. However it was noted that manganese did exhibit a

similar but lesser effect than seen with chromium. This ability to improve glucose

clearance was seen only in the presence of insulin (Mertz, 1960, Mertz, et al.,1965:

Glinsmann, et aI., 1966).

Chromium Metabolism. In one study Schroeder (Schroeder, 1968) fed a low

chromium diet to 200 weanling rats to assess the effect of such a diet on serum

cholesterol and glucose. These rats were divided into two series. In both of these series,

rats were examined for growth and serum concentrations of glucose and cholesterol.

Series one was redivided into 3 different diet groups with equal numbers of each gender.

Each group of rats was fed a diet in which the sugar content was altered. The diets
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contained raw sugar, which was noted by the researcher to be slightly refined, refined

sugar without added chromium, or refined sugar with 5 ppm chromium added as

chromium acetate to the drinking water. The sera of these rats of series one were

examined at 5 and 10 months. It was found that the level of serum cholesterol increased

as the age of the rat increased in those rats fed refined sugar. Those rats receiving raw

sugar or chromium supplementation had lower levels of serum cholesterol. Serum

glucose was higher in those rats fed refined sugar with no added chromium and lower in

those receiving raw sugar. Serum glucose in the refined sugar supplemented with Cr

group was lower than the group receiving plain refined sugar. Fasting serum glucose was

relatively low in rats that received raw sugar and females that were fed refined sugar

supplemented with chromium had lower levels than males. Series two rats were divided

into two groups containing equal numbers of each gender. Group one of this series was

fed a diet containing refined sugar. Group two was fed a diet containing raw sugar. The

series two rats were examined at four months. Serum cholesterol and glucose

concentration were found to be lower in the group fed raw sugar. The series two rats fed

raw sugar were generally smaller than those of series one. Schroeder concluded was that

refined sugar without chromium allowed the serum cholesterol and glucose levels to rise.

Chromium supplementation lowered both cholesterol and glucose levels in the serum

(Schroeder, 1968).

A study examining the effect of chromium supplementation was conducted on

weanling male rats. The rats were fed a diet high in sucrose (55%) and low in chromium

(33 ± 14 ng Cr/g diet). The mineral mix for all rats was adjusted to try to exacerbate

chromium deficiency by elevating iron and copper concentrations. Iron may compete



with chromium for absorption and transport (Striftler, et aI., 1995). Copper was overtly

added to "compromise functioning of the endocrine pancreas" (Striffler, et a1., 1995). The

concentration of the copper was reduced to 6 mg/kg diet after the first six weeks of the

experiment. As an experimental treatment, five parts per million chromium was added as

chromium chloride to the water of one group. The second group of rats received

unsupplemented water. At the end of 12 weeks both groups were hyperinsulinemic (+Cr,

103 ± 13; -Cr, 59 ± 12 ~U/ml) (nonnal range 19 - 21 ~U/mL) and normoglycemic (+Cr,

127 ± 7; -Cr, 130 ± 4 mg/dl), which indicated a state of insulin resistance. After 24 weeks

the insulin levels were normal (+Cr, 19 ± 5; -Cr, 21 ± 3 /-lU/ml) and the glucose level was

also normal (+Cr, 124 ± 8; -Cr, 131 ± 6 mg/dl). After an intravenous glucose tolerance

test (lVGTT), glucose removal was measured and was found to be lower though not

significantly so in the chromium d~ficient group (3.58% vs 5.29%) than in the chromium

supplemented group. Chromium deficiency was seen by hypersecretion of insulin by ~­

cells as revealed by comparing the ratio of incremental insulin area, when graphed, to the

incremental area of glucose, when graphed (insulinogenic index) and also peripheral

tissue insulin resistance. The tissue insulin resistance was assessed by measuring the

decreased tissue levels of cyclical AMP phosphodiesterase (cAMP PDE) activity

(Striffler, et aI., 1995). In order for the ~-cells to manufacture insulin, it is necessary for

cyclic cAMP to be hydrolyzed by phosphodiesterase during the protein coding process. If

activity of this enzyme is reduced, cellular insulin resistance goes up.

The many experiments trying to alter insulin resistance and influence glucose

intolerance by supplementing with chromium make the question of toxicity an important

consideration. Most people consume less than 50 Jlg chromium per day from food
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(Anderson and Kozlovsky, 1985) however, both chromium chloride and chromium

picolinate were found to be non-toxic at levels of 100 mg of Crl kg diet in rats. Toxicity

was detennined by examining blood and histological measurements. This study was

conducted over a 20 week period (Anderson et al., 1997).

In a study conducted in 1988, findings were that trivalent chromium was not

significantly related to "the maintenance of glucose homeostasis in healthy animals". In

this research with two groups of weanling rats, one group was fed a chromium deficient

diet containing 0.03 mg/kg diet while the other group was fed 1 mg/kg diet chromium.

The chromium was in the fonn of chromium chloride. At the end of 53 days there was

not any difference between the groups when body weight, food intake, glycosylated

hemoglobin, and plasma concentrations of glucose and insulin were compared (Flatt et

aI., 1989).

Essentiality ofChromium for Humans. After receiving total parenteral nutrition

(TPN) for three and a half years, a white female patient developed a 15% weight loss

with peripheral neuropathy. An intravenous glucose tolerance test (IVGTT) was

administered and although her glucose c1.earance was very low her insulin response was

near normal. Even with glucose and insulin infusions she did not maintain her weight.

The insulin infusion was stopped and a 250 Ilg dose of chromium as chromium chloride

was added daily to her TPN for the next 2 weeks. Her response to the glucose tolerance

test improved. Subsequently, the patient received a maintenance addition of about 20

Ilg/day of chromium from her TPN. Over the next few months the insulin infusions were

stopped and the glucose infusion greatly reduced since the patient was beginning to put

on weight. Her nerve conduction was improved over this period. The conclusion was that
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chromium deficiency caused her glucose intolerance and other pathologies (Jeejeebhoy,

et aL, 1977). Since the Jeejeebhoy study, other studies have been conducted to affirm

[hose findings (Freund, et aL, 1979).

Glucose and Insulin Metabolism During Pregnancy and Lactation. Glucose

utilization during pregnancy is a complex. process. During gestation the dam has to make

physiological changes to accommodate the fetus and the feto-placental unit (PRJ) as well

as to prepare for lactation after parturition. In a study with rats (Herrera et aL, 1991),

dams were seen to put on weight during the first half of pregnancy while the conceptus

changed little in weight. The dams' weight increased rapidly due to the increase in liver

weight and especially the accumulating fat deposits. During this period, glucose is

converted to fatty acids that are primarily stored in the adipose tissue. The main portion

of the weight gain in the mother is due to increased fat deposits.

In the second half of pregnancy, the weight of the dams' livers declined as the

progeny grew but lipogenesis continued until day 19 of pregnancy. The dam accumulated

fat due to her increased food intake and an increase in lipoprotein lipase (LPL) activity.

Fatty acids accumulated through the conversion of glucose until the 20lh day. At this time

there was a decrease in lipogenesis and an increase in lipolytic activity. This activity is

accompanied by a reduced uptake of fatty acids by adipose tissue and a diversion of fatty

acids to the liver. The LPL activity in the liver leads to increased triglyceride production.

The mother's tissues shift their food needs from glucose to ketone bodies leaving the

glucose for conversion by the mammary glands to lactose and fats in the milk as well as

the glucose transported across the placenta for the fetus. These metabolic shifts lead to
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commonly seen hypertriglyceridemia. a condition that has adaptive advantages for the

progeny (Herrera. et al.. 1988; Herrera, et aI., 1991).

Research has shown that during pregnancy the PFU extracts large amounts of

chromium from the dam's circulation. This harvesting of chromium amounted to 9 - 16%

of an intravenously injected dose. The mother rats did not retain any more of the

chromium injection than non-pregnant rats despite this removal of chromium by the PFU.

In tissue examination, it was found that the PFU contained 25-30% of the retained

chromium from that injection. This finding was suggesti ve of the idea that postpartum

chromium deficiency for the mother rat might be common (Wallach and Verch, 1984).

Using an euglycemic hyperinsulinemia clamp it was discovered that insulin

resistance in the pregnant rat is characterized by decreased sensitivity of liver and

peripheral tissues (Leturque. et aI., 1984, Kuhl, 1991). Glucose production was

completely suppressed at insulin concentrations >1000 ~U/ml in pregnant and non­

pregnant rats (Leturque, et aI., 1984).

A study has been conducted to investigate the effect of different carbohydrates on

glucose tolerance. Pregnant rats were fed a diet containing 50% sucrose, 50% fructose or

a reference diet of rat chow. There was no significant difference between the glucose fed

and the reference diet fed dams when an OGrr was given on the 19th day of pregnancy.

The rats receiving the 50% fructose had significantly higher glucose concentrations then

either other group. However, after adjusting for the baseline glucose concentrations there

was no significant difference between the groups (len, et aI., 1991).

In a study examining the glucose tolerance of rats during gestation and lactation, it was

discovered that the fasting basal serum glucose levels were high during early pregnancy,
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and low during late pregnancy yet nonnal through lactation. The basal serum glucose

levels fluctuated throughout pregnancy between 7.5 and 8.5 mM early and 6.0 and 5.0

mM late pregnancy and just below 7.0 roM during lactation. During lactation, insulin

values varied from a high of 2.8 roM to a low of 1.0 mM at weaning. One change seen in

early pregnancy is a decrease in glucose tolerance. The insulin response was greatly

increased in late pregnancy. Glucose tolerance after an IVGIT was normal during

pregnancy and slightly decreased during lactation. The glucose did not rise due to

increased turnover of the glucose. The increased uptake of the mammary glands was

thought to be responsible for the absence of a rise in the serum glucose. Insulin responses

to the infusion were increased during pregnancy and decreased during lactation (Koiter,

et aI., 1989).

Gestational Diabetes. Glu.cose intolerance during pregnancy in humans has been

regarded as a prediabetic state since the 1940's. Initially, the morbidity and mortality

rates of the mothers was the only conc~m but as more statistics were accumulated it was

seen that gestational diabetes was more than a prediabetic state, but rather carried an

impact for the health of mother and child. An increase in risk to the fetus was noticed as

the maternal glycemia increased (Kjos and Buchanan, 1999). Reports documented "a

perinatal mortality rate of 8% in infants delivered to mothers who subsequently

developed diabetes in middle age, compared with 2% in control subjects" (Coustan and

Carpenter, 1998). A large study of 3,000 mothers with glucose intolerance, but not

diagnosed with gestational diabetes, was conducted. The outcomes of these women

showed that as the degree of glucose intolerance increased, the incidence of cesarean
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section, preeclampsia, macrosomia, and increased length of stay in the hospital following

birth increased significantly (Senner, et al., 1995).

Two to three percent of pregnant women demonstrate glucose intolerance

sufficient for a diagnosis of GDM. These women tend to be older and obese (Kuhl,

1991). While some deterioration of glucose tolerance is nonnal during pregnancy, those

women who develop GDM risk increased morbidity and mortality for themselves and

their babies.

In a recent study done with women diagnosed with GDM, supplementation with

chromium picolinate (CrPic) was determined to improve glucose intolerance and lower

hyperinsulinemia. This study initially looked at 20 women diagnosed with gestational

diabetes. This diagnosis was made by the criteria set down by the Third International

Gestational Diabetes Workshop (Jovanovic, et ai, 1999). All the women were at 20 - 24

weeks of pregnancy. These women were randomized into two groups. The diet of the first

group was supplemented with 4 ~g/kgfbody weight/d of CrPic. The second group was

matched for glucose intolerance and body mass index (BMI) and received an

unsupplemented diet. All the women were instructed on the "euglycemic" diet that they

consumed for a period of 8 weeks. After 8 weeks, three of the women in the chromium

supplemented group and four in the placebo group required insulin. Because of the

number of each group requiring insulin, a third group of 10 women was given twice the

original supplementation, 8 ~g Cr/kg body weight/d and matched against the placebo

group for weight, age, and gestational age. The same placebo group of women was

followed for an additional 8 weeks. This puts the gestational age near full tenn in both

groups.
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The serum HbA Ie, glucose, insulin, and C-peptide were measured at the beginning

and after 8 weeks. At the end of 8 weeks the group supplemented with 4 IJ.g Crlkg diet

had significantly (p<0.05) lower glycosylated hemoglobin levels (HbA 1e) compared to

their baseline values [5.6 ±0.4% vs. 5.2 ±0.6% (mean ±coefficient of variation)]. Those

on the 8 Ilg CrPiclkg body weight showed no change. However, at the end of the first 8

weeks, the 4 ~g: Cf/kg body weight group had both significantly lower postprandial

glucose and insulin levels when compared to the baseline and to the placebo group. This

was also true at the end of the second 8 week period with the 8 Ilg Crlkg group

(Jovanovic et al., 1999).

Different approaches to diagnosing GDM have been suggested but all include an

initial risk assessment. High risk factors include: obesity, diabetes in a first-degree

relative, history of glucose intolerance, previous infant with macrosomia, and current

glycosuria (Kjos and Buchanan. 1999). In 1964 O'Sullivan and Mahan established the

first standard for administering an oral glucose tolerance test (OOTT) during pregnancy

(O'Sullivan. et aI., 1964). From 986 women who registered at Boston City Hospital over

a period of 4 months, the 752 women who completed the OOTT were used to establish

the baseline glucose concentrations that were to become the criteria used to assess a

second group of 1,013 women. The women in the first group were screened using the

criteria: a family history of diabetes, the birth of a baby weighing nine pounds or more, a

history of fetal death or neonatal death, congenital anomaly, prematurity, toxemia in two

or more previous pregnancies, and a venous blood glucose concentration ~ 130 mg per

100 ml. They gave this group of women 100 g of glucose. Their blood glucose levels

were checked at hourly intervals for 3 hours. Of the women receiving the OOTT, 20 were
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in the first trimester, 339 were in the second trimester, and 393 were in the third

trimester. From the data obtained during the OOTI, categories were set up representing

increasing risk of subsequent development of diabetes mellitus.

The second group of 1,013 women was given a 100 g OOTI and from the

outcome of this test individuals were followed to see if the OOTI categories obtained

from the first group were accurate predictors of developing diabetes mellitus during the

next 8 years (O'Sullivan and Mahan, 1964). The problem with this approach was that

while it was predictive of 22% of future diabetes diagnoses, it did not take into account

the immediate consequence to the mother and her offspring (Kjos and Buchanan, 1999;

Coustan and Carpenter, 1998). This 100 g OOTI standard has persisted and was

endorsed by the American Diabetes Association in a 1986 position paper. The procedure

was used by more than 75% of obstetricians and gynecologists in 1990 (Coustan and

Carpenter, 1998).

The World Health Organization (WHO) criterion utilizes a 75g 2 hr OOlT. This

WHO test is used to diagnose diabetes outside of pregnancy. If a pregnant woman is

diagnosed with diabetes, this becomes a diagnosis of gestational diabetes. In some

centers, WHO diagnosis of diabetes is based on impaired glucose tolerance (lOT). In

these populations there is a high prevalence of lOT and so a test is used for the general

population and identifies a greater number of individuals not just pregnant women. This

criterion identifies a higher proportion of pregnancies as "abnormal" (Coustan and

Carpenter, 1998).

The need to make diagnosis simpler and cheaper is made especially clear by a

press release from the Centers for Disease Control and Prevention in August of 2000. The
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fact that diabetes mellitus represents a serious health risk for millions of Americans and

the rate of diagnosis has increased 33% during the 1990's is evidence of the importance

of being able to test appropriately screened women. Of those in the age group of 30 to 39,

the rate of increase in the 1990's through 1998 is 72%! (CDC, 2000). As the rate of

diagnosis continues to go up, that many more people will be putting an increased pressure

on the medical and healthcare industry to respond.

Carbohydrate intolerance without a diagnosis of GDM was associated with

increased cesarean section deliveries, preeclampsia, macrosomia, and increased hospital

stay (Senner, et aI., 1995). Those mothers diagnosed with GDM had further increases in

the previous maladies and additional problems for the infant, including hypoglycemia,

jaundice, respiratory distress syndrome, polycythemia, and hypocalcemia (Kjos and

Buchanan, et aI., 1999).

Fructosamine. The need for tests that are relatively inexpensive and easy to

conduct as well as representing a longer glycemic history than plasma glucose resulted in

tests such as glycosylated hemoglobin and fructosamine. The fructosamine test requires a

small amount of serum (O.lml) and reagents developed to take advantage of the reducing

capacity of ketoamines (fructosamines). This test demonstrated clear separation between

nonnal and diabetic populations (Johnson, et aI., 1982).

Parallel examination of an OGTT and serum fructosamine in 190 asymptomatic

women was conducted during their sixth week of pregnancy. The OGTT identified 10 of

the 1Sl0 as having GDM but the fructosamine test failed to identify these women.

Fructosamine was only effective in the most severe cases of glucose intolerance at the

sixth week of pregnancy (Huter, et aI., 1992).
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Plasma protein glycation using the fructosamine assay in 87 diabetic patients

(Type 1 and Type 2), tested the usefulness of the fructosamine assay compared to

glycated hemoglobin (HbA 1c) as an indication of glucose control. The findings showed

the predictive power of fructosamine was "consistent with a conservative diagnosis of

diabetes" (Mosca, et al., 1987).

To compare fructosamine, HbA 1c, and other glycated plasma proteins as a

measure of glycemic control, a study was conducted using 100 Type 1 diabetics and 104

Type 2 diabetics. The findings indicated fructosamine is a potential alternative to HbA1c

but there remained the need to understand the difference in what time frame each

represents (Smart et aI., 1988). HbA 1c is an indicator of glycemic control over a period of

2-3 months while fructosamine is an indicator of glycemic control over 2-3 weeks.

In 1988 a study to detennine whether to use fructosamine or HbA 1c as a glycemic control

indicator was conducted with 77 mixed Type 1 and Type 2 diabetics. Their conclusion was that

there was no correlation between fructosamine and HbA lc as indicators, and so using both may

give infonnation that using only one would miss (Dominiczak et aI., 1988).

A different study looked at the ratio between fructosamine and albumin as an indicator

for GDM. They looked at 96 pregnant women. All of these women screened positive (>140

mg/dL) after a 50 g glucose load. un-pregnant and pregnant women were given a 75 or 100 g,

respectively, glucose load after a 12 hour fast. These women were matched against the diagnostic

criteria set down by the National Diabetes Data Group in 1979. If a woman's serum glucose

equaled or exceeded 105 mg/dL after fasting, 190 mg/dL after one hour, 165 mg/dL after two

hours, and 105 mgldL after three hours she was diagnosed with GDM. They were compared

against a group of 54 non-diabetic healthy women. The fructosamine concentration and the
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fructosamine/albumin ratio for pregnant women with GDM were not significantly higher than for

normal pregnant women (2.05 ± 0.47 mrnollL vs 1.84 ± 0.29 mrnol/L and 67 ± 16 J..Lmol/g vs 62

± 15 J,.lmol/g, respectively). The conclusion was that "both fructosamine and the

fructosamine/albumin ratio have low sensitivity a predictors of GDM and can therefore not be

used as screening tests" (Bor, et al., 1999).

Fructosamine was tested against glycated albumins and HbA lc in order to evaluate

response to plasma glucose changes over time. Glycated albumin and fructosamine decay half­

times were shown to be 17.1 ± 2.8 and 12.2 ± 4.8 days while HbA 1c was 34.6 ± 10.1 days. The

finding was that the levels of plasma glucose detected were the "weighted mean of the preceding

plasma glucose level over a considerably longer period than was previously speculated". These

researchers hypothesized a step-wise change in serum glucose. What was seen was a ramping

change in serum glucose (Tahara and Shima., 1995).

With technical improvements, a second-generation fructosamine assay was developed.

This assay allowed for differentiation among non-diabetics, diabetics with "good control" and

diabetics with "poor control". This test has significant correlation (r=0.91, p <0.001) between the

assay results and the measured capi lIary blood glucose. This second generation assay wa also

compared against the "original" fructosamine test and found to have a high correlation at the

baseli ne but greatly decreased correlation at the end of the 10 week study (r=0.78, p<O.OO 1;

r=0.34, p<O.09). The researcher did not speculate about the decline in correlation between the

second fructosamine assay and the first fructsosamine assay (Cefalu, et al., 1991).

The evolution of utilizing fructosamine as a marker for determining "at risk" pregnant

women has changed over the years as technique and technology have improved. An
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understanding of the importance of being able to make a diagnosis of GDM has become much

wider spread, as witnessed by the wide geographical research being conducted.
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CHAPTER III

MATERIALS AND METHODS

This research using rats was a longitudinal experiment using four randomly

selected groups, one non-pregnant and three pregnant. The non-pregnant and one of the

pregnant groups received identical diets, containing chromium chloride, erCh. One

pregnant group received a chromium deficient diet. The last group received a diet

containing chromium picolinate. The diets not deficient in chromium contained 1 mg

Cr/kg diet of either Chromium Picolinate (CrPic) or chromium chloride (CrCI3) plus that

amount of chromium found contaminating the ingredients of the diets. The amount of

chromium contamination contribut~d by the diet was 22.53 Jlg Cr/ kg diet.

Forty-one female virgin Sprague-Dawley rats (215 - 250 g) were obtained from

Harlan (Indianapolis, IN) at three months of age. Eight adult Sprague-Dawley male rats

were obtained for breeding.

Rats were housed in individual plexiglass cages (25 X 25 X 30 em) at 22°C with

a 12-hour light/dark cycle (0700 to 1900 hr). Flooring consisted of PVC plastic square

mesh. The rats were given deionized water and a maintenance diet containing 22.53 )..lg

chromium/kg of diet from the day of their arrival until the day they became pregnant. All

diets were a modified AIN-93G (American Institute of Nutrition) (Reeves et aI., 1993)

rodent diet. The modifications are described in Table 2. This formulation provided 3.7

kcal/g of diet mix. The mineral mix in each diet was as described for the AIN-93G diet

except for the chromium. The chromium was either omitted creating a chromium
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deficient diet (Cr, 22.53 ppb) or was added as either chromium picolinate or chromium

chloride to give 1 mg chromium / kg diet.

Each of the minerals for the mineral mix was weighed and blended together ina

ball mill (US Stoneware, Mahwah, NJ) for a period of 10 hours. This initial mixing

excluded chromium to allow for a diet that had no added chrom.ium. The mineral mix

needed to prepare the chromium deficient diet was removed from the blended mineral

mix, as was the amount of mix needed to prepare the chromium picolinate diet. Then the

CrCh was added ta the remaining mineral mix and retumed to the ball mill and allowed

ta tum for 5 hours. The CrPic was added to the deficient m.ineral mix and incorporated in

a manner similar to that done far the CrCh.

The diet was mixed in t\\'O major steps. Step one included the blending of those

ingredients of relatively small weight and volume. An acid washed mixing bowl and

clean beaters were used. Some sucrose was used to aid mixing. Each ingredient was

added and hand mixed wearing vinyl, low mineral gloves, After all the ingredients were

blended by hand, a small portion (l - 2 tablespoons) of oil was added and the mixture

blended for 5 minutes.

The second step was the blending of the larger volume and weight ingredients,

Each ingredient was added to a large acid washed "low chromium" plastic mixing bowl.

Each newly added ingredient was hand mixed into the mixture. After the major volume

ingredients were blended, the mixed small volume components were added to the large

bowl and thoroughly blended into the other mixture by hand and then mechanically. Once

all the ingredients were mixed they were put into a labeled plastic bag, sealed and stored
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in a 4 Co refrigerator. All diets were mixed and stored in such quantity as to prevent

storage longer than 3 weeks.

Each diet was assigned an acid washed measuring cup, which was used for all the

feedings from that diet. Cross contamination was consistently avoided. The rats were fed

their powder diets in a clean glazed ceramic bowl. The bowls were emptied and wiped

clean, as needed, each day before being refilled. The ceramic bowls were replaced once a

week. Uneaten diet was discarded. Each rat was given 25 - 27 g of diet each day through

the pre-pregnancy.

For breeding, a male rat was placed into a cage with an individual female. Each

morning the cage floor was checked for a vaginal plug as an indicator that mating had

occurred. If a plug was seen, the female was randomly assigned to one of the three

experimental diets until thirty females were pregnant. Ten virgin females were randomly

selected for the non-pregnant control group as the experiment progressed and fed the

same CrCh diet as the pregnant group. Once a vaginal plug was discovered, the male was

moved to the next available female until all the pregnancies were accomplished.

Pregnant rats were fed one of three experimental diets beginning on the first day

of pregnancy. One diet contained no added chromium. one diet contained I mg of

chromium as chromium picolinate/ kg diet, and one diet contained I mg of chromium as

chromium chloride/ kg diet. The non-pregnant control rats were also fed the diet

supplemented with chromium chloride.

As each rat became pregnant and was randomly assigned to a diet, a clean diet

bowl was introduced to the cage. Through pregnancy and lactation as a dam began to eat

all the food, diet dispensed was increased by approximately 5 grams.
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Female rats were fed their assigned diets for the 3 weeks of gestation and through

19 days of lactation. On day 18 of pregnancy, each rat was food deprived for 4 hours but

deionized water was available ad libitum. A blood sample from the fasted rat was taken

from the tip of the tail before the rat was given a 2g/kg body weight dose of glucose as a

50% solution in water by gavage. A second sample of blood was taken 2 hours after the

glucose intubation. The collected blood was chilled on ice until they could all be

centrifuged. Serum was aliquoted and frozen. Food was returned to the cages after the

second blood sampling and the PVC flooring was removed from the cage in order to

allow the female to deliver her pups on the softer ground corncob bedding. Within 24

hours of delivery the litter was reduced to 10 when there were more than 10 pups.

On the 19th day of lactation or the equivalent number of days for the non-pregnant

rats, a blood sample from a 4-hour fasted rat taken from the tail before the 2g/kg body wt

OGrr was repeated as during pregnancy. The rat was given a 0.2 ml injection of 10 : 1

mixture of ketamine and xylazine approximately 20 minutes before the 2 hour blood

sampling. Next the anesthetized rat was placed on the DEXA table (Hologic QDR

4500A, Waltham, MA) and scanned using the small animal software available with this

instrument. After scanning, blood was taken from the abdominal aorta and organs and

tissues were collected. Blood was chilled on ice until all samples were collected. The

blood was then centrifuged and the serum aliquoted and frozen for later analysis.

When all the rats had been necropsized, the frozen blood samples were thawed

and selected clinical parameters were analyzed using the COSAS FARA (Roche

Diagnostic Systems, Montclaire, NJ) analyzer in accordance with the protocols found in

the package inserts accompanying each reagent kit (Roche Diagnostic Systems). Serum
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concentrations of glucose, fructosamine, total cholesterol, proteins, and non-esterified

fatty acids were examined. In order to analyze insulin, samples were diluted 1: 1 because

of small sample size and analyzed using the RIA protocol as provided by Linco Research

Inc., specific for rat insulin detenninations. This process utilizes radioactive iodine

labeling of insulin and an antigen/antiserum procedure. Samples were counted for 1251

using a gamma counter.

Data were entered in SAS (Version 8.0) software in order to run statistical

analysis on the variables. Means were detennined through the Proc Means routine of the

SAS software. This routine provided means. n, standard error, and minimum and

maximum details for each group. The Proc GLM procedure was used to evaluate

treatment effects and significant differences between individual means were detennined

by the LS Means procedure. The leyel of significance was set at p < 0.05.
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CHAPfERIV

RESULTS

Gestation

Glucose and Insulin. An oral glucose tolerance test (DGTI) of 2g1kg body

weight was administered on the 18th day of gestation. Mean serum glucose concentration

in the non-pregnant rats was significantly higher than in the pregnant rat groups at

baseline. These values remained significantly higher at the 2-hour blood sampling (Table

3). At baseline the mean serum insulin level of the non-pregnant rat group (NP+CrCh)

was significantly lower than the pregnant plus chromium chloride (P+CrCI 3) and the

pregnant without added chromium (P-Cr) group. The basal plus chromium picolinate

(P+CrPic) group was not significantly different from the NP+CrCI 3 or either of the other

pregnant groups.

The mean serum glucose of the rats fed the P+CrCI3 diet was not significantly

different from, and was almost identical to that of the rats fed the P-Cr diet at both the

beginning and the end of the OGTI. The mean serum insulin concentrations at baseline

and at the two hour blood sampling of the P+CrCI3 diet group were not significantly

different from the rats fed the P-Cr diet. However, the mean serum insulin concentration

declined in the pregnant P+CrCh group to a level below that of the baseline blood

sampling.

Fructosamine, Total Serum Proteins. There were no significant differences in

the mean serum fructosamine or protein concentrations among any of the groups.
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However. the amount of blood obtained from the tail was too smaIl to measure either

variable in most of the rats (Table 4).

Non-esterified Fatty Acids, Triclycerides, Cholesterol. The NP+CrC!)group had

significantly lower means of serum non-esterified fatty acid (NEFA) concentrations than

the P+CrCh or the P-Cr diets (Table 5). The serum NEFA concentrations of the non­

pregnant group were not significantly different from the pregnant rats consuming the

P+CrPic diet. The NEFA concentration of the P-Cr group was significantly higher than

the P+CrPic group.

The mean serum triglyceride concentration for the non-pregnant group was

significantly less than the concentrations in all the pregnant groups. The P-Cr group did

not show a significant difference from the P+CrCI3 group or the P+CrPic group. The

P+crCl) group showed a tendency ( p< .08 ) toward having a greater triglyceride

concentration than (he P+CrPic group. There was no significant difference in mean serum

concentration of cholesterol between any of the groups.

Lactation

Glucose & Insulin. On the 19lh day of lactation an OOTT of 2 g glucose/kg

body weight was given to each rat after a four hour fast. At the baseline of the OOTT the

mean serum glucose concentration for the non-pregnant group was significantly less (p <

0.02) than the P-Cr and the P+CrPic groups (Table 6). There were no significant

differences in glucose at 2 hr; however, the 2 hour serum concentration of glucose is very

high and perhaps reflects an anesthesia effect in the elevated glucose levels. There were
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no significant differences between the mean serum insulin concentrations among any of

the groups at either time period.

Fructosamine, Total Serum Proteins. Fructosamine is an indicator of serum

glucose levels over the past two to three weeks. Since the OGTT takes two hours, the

fructosamine concentration should be unchanged between the endpoints and so only the

fmal concentration has been recorded (Table 7). No significant difference is seen

between the P+CrCI3 and the P-Cr groups. There was no significant difference between

any of the pregnant groups due, at least in part, to the large standard error. There was no

significant difference between the mean serum protein concentrations of any of these

groups. There was no significant difference in the ratio of fructosamine to serum proteins

among the four groups.

Non-esterified Fatty Acids, Triglycerides, Cholesterol. There was no significant

difference between the mean serum non-esteri fied fatty acids (NEFA) of any of the

groups (Table 8). There was no significant difference among the mean serum

triglyceride concentration of any of the groups. There was no significant difference in the

mean serum cholesterol among the non-pregnant group and any of the lactating groups.

Number ofPups Delivered or Carried Through Lactation. No significant

difference was shown for the number of pups carried through lactation for the three

groups (Table 9). Seventeen of 30 litters were reduced to 10 pups. Litter sizes ranged

from 1 pup to 15 pups. No pups died more than 48 hours after birth.
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Anatomical Measures

Liver Weight, Kidney Weight, and Spleen Weight. The mean liver weight of the

groups that had been pregnant and were lactating was approximately double that of the

NP+CrCI3 group and this difference was highly significant (Table 10). The non-pregnant

group kidney weight was significantly lower than the pregnant/lactating groups. The

spleen weight among the groups was not significantly different. It could be speculated

that the increased organ weights were related to the increased insulin sensitivity in these

tissues that accompanies the decreased insulin tolerance seen in the peripheral tissues. As

the insulin sensitivity in the liver increases more glucose in absorbed and the hepatocytes

convert this surplus to fatty tissue, which is stored there in the liver.

Percent Body Fat. The no~-pregnantbody fat percentage was significantly

greater from the lactating groups (Table 10). Among these three groups there was no

significant difference. Although problems with the DEXA lessened some numbers of

samples for this analysis, it was readily seen during the autopsy that the NP+CrCJ 3 group

contained more adipose tissue than any of the pregnant groups. Among the

pregnant/lactating groups, the form and concentration of chromium appeared to not make

a significant difference.
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CHAPTER V

DISCUSSION

Pregnancy. AU the female rats in this study were given a diet high in simple

carbohydrates since it has been shown that diets high in simple sugar increase urinary

chromium loss (Wright, et aI., 1983, Kozlovsky, et aI., 1986). The loss of chromium may

impair the rats' glucose tolerance (Anderson, et aI., 1990, Striffler, et aI., 1995). This

glucose intolerance would then be physiologically similar to gestational diabetes mellitus

(GDM).

Glucose tolerance tests were administered to four male rats prior to applying this

test to any of the females. This was done for three reasons. First, to provide practical

experience in obtaining blood samples from the tail. Second, to provide ex.perience in

administering an oral dose of glucose to the rat. Third, to establish a likely time-frame for

the return of serum glucose concentrations to "normal" after being given a glucose load.

Taking repeated blood samples from the tail of a rat can result in increased hemolysis in

subsequent samples. Getting a quantity of blood from the tail of a rat is a procedure of

potentially limited utility after the first sample is taken. One sample was done per OGTT

at two hours. These male rats received a proportIOnal glucose dose to that administered to

females (g glucosel kg body weight) and two hours proved to be the approximate time for

their blood glucose to return to normal. Gender differences and pregnancy are reasons to

make using males suspect for determining how rapidly a pregnant female rat's blood

glucose takes to reach baseline values.
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On day 18 of pregnancy, at baseline, alJ three groups of pregnant rats appeared to

be nonnoglycemic (serum glucose < 127 mgldL). The NP+CrCh group were

hyperglycemic (> 126 mgldL). At the end of the 2 hour oral glucose tolerance test

(OGTT) the pregnant rats continued to exhibit normal glycemia while the NP+CrC13 were

even more hyperglycemic. In human pregnancy, one expects to see increasing glucose

intolerance and we thought it to be the case in the rat model. These nonnal glucose

concentrations in the rat can, in part, be explained by looking at the corresponding insulin

levels. The three pregnant rat groups were nonnal glycemic but their insulin levels were

elevated above the normal range (0.5 - 2.0 nglmL) (Morgan, et aI., 1963~ Linco

Research, St. Charles, MO), except the P+CrPic group. The amount of insulin in these

pregnant groups had increased at the end of the OGTT in all but the P+CrCh group. The

increased levels were maintaining a normal glycemic level.

The baseline insulin concentration of the P+CrCh and the P-Cr groups were

elevated above the normal range and in both cases were significantly greater than the

concentration found in the NP+CrCh group (Table 3). It would seem that chromium

supplementation had no effect on the measured serum values. The insulin levels in the P­

Cr and P+CrPic rats rose over the 2 hour period of the OOTT but this change was not

significant. And, there were no significant differences among any of the pregnant groups

at 2 hours.

Although not significant, the P+CrPic rats demonstrated the greatest glucose

tolerance based on the mean measurements of serum glucose. This same group required

less insulin to accomplish glucose clearance. It may be speculated that chromIUm

picolinate made insulin utilization more efficient.
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In the 1991 study by Jen, rats were fed a high sucrose diet (50% by weight). The

OGTT on the 19lh day of pregnancy, after an overnight fast, showed serum glucose

values of: baseline, 4 mmollL (about 72 mgldL); in 2 hours, back to baseline, 4 mrnollL

(Jen et aL, 1991). In the Jen study. the baseline glucose concentrations were below

normoglycemic levels (4.7 - 5.7 mmollL). The glucose levels in this study, at pregnancy,

are much higher than seen in the len study.

At day 19 of pregnancy the serum triglyceride levels of the Jen study were 150

mgldL compared with this study's pregnant groups between 181 and 278 mg/dL. In the

Jen study, the cholesterolleve1 was considerably less than that seen in this study: 65.7 vs.

group means ranging from 115 to 129 mg/dL. Normal cholesterol is in the 127 - 171

mgldL range. The triglyceride concentration is elevated, at least in part, as a result of the

increased lipolysis that accompanies late pregnancy (Herrera, et al., 1991). Cholesterol

concentrations found in this study are near normal values. This might indicate that the

reduction in cholesterol that might be expected from experiments with chromium

(Schroeder et aL, 1971) is offset by the increased cholesterol resulting from the increased

lipolysis (Herrera et al., 1991).

In Koiter's study at day 18 of pregnancy, serum glucose concentrations were near

5.8 mmol (104.5 mg/dL), a value very similar to those found in this study: 5.7 - 5.8

mrnollL (103 - 104 mgldL). The Koiter study used a 2-hour fast before conducting the

OOTI as opposed to the four hours in this study.

Serum proteins undergo a non-enzymatic reaction with fructose, a ketone sugar,

and one of the two components that make up sucrose. This reaction occurs in such a way

that the concentration of fructosamines (glycated proteins) reflects the faster removal of
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glycosylated proteins than red blood cells. This gives the glycosylated proteins a shorter

half life than other blood proteins, a period of 2 to 3 weeks (Day, et al., 1979; Johnson, et

aI., 1982; Mosca. et aI., 1987; Smart, et aI., 1988; Hughes, et aI., 1995). Comparing the

apparent glucose tolerance among the experimental groups, one expects the group with

the lowest glucose clearance to be the group with the highest fructosamine levels.

Baseline glucose concentrations were normoglycemic in all three pregnant groups.

The abundance of free fatty acids found in the serum at the 18th day of pregnancy

is apparently those fatty acids released as a result of lipolysis, which accompanies late

pregnancy (Herrera, et aI., 1991). As the mother is transitioning from nurturing the

fetuses to nurturing the litter, lipogenesis decreases and lipolysis increases. This process

makes fatty acids available to the fetuses during their greatest growth period. During this

time the dam also reserves glucose (or the fetuses by beginning to utilize ketones for her

own cellular food source. The liver, which usually exports triglycerides, begins to take up

triglycerides and makes ketonic substrates (Herrera, et aI., 1991).

The baseline non-esterified fatty acids (NEFA) found in the non-pregnant group

are in the normal range, 0.68 - 1.02 mmol/L (Young, 1998) (Table 5). The NEFA in the

pregnant groups are elevated as compared to that found in the non-pregnant group. Only

the "'+CrPic, whose serum concentrations are intermediate between the non-pregnant and

the other pregnant groups,. is not significantly different. The P-Cr group was significantly

greater than the P+CrPic group but not significantly different from the P+CrCI3 group.

Chromium seems to be involved in NEFA metabolism. The P+CrCh group is

significantly different from the non-pregnant group. What this could mean is that the p­

er group is less able to clear NEFA's either through conversion to glucose or across the
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placenta while the P+CrPic group is the most able to clear the NEFA' s, assuming that

both groups are releasing NEFA's at an equal rate. This points to the need for more

research that could examine this point.

The triglyceride concentrations are significantly lower in the NP+CrCh than in

any of the pregnant groups. The NP+CR::13 group exhibited near normal concentration of

triglycerides (1.09 - 1.10 mmollL) where the normal range is less than 1.8 mmolfL. The

pregnant groups demonstrate a wide range of concentrations that might be significantly

different from each other if it were not for their large variability.

Lactation. During lactation, the dams experience increasing physiological stress

as the progeny increase in size, consuming larger amounts of mi lk. On the 19th day of

lactation the P+CR::h group, alone, was not significantly different from the NP+CrCI3

group in terms of serum glucose. The remaining two pregnant groups are significantly

lower than the non-pregnant group. At baseline, the corresponding serum insulin

concentrations among the four groups demonstrated no significant differences. Of note is

the P+CrPic group. This group's glucose concentration is significantly less than the

NP+CrCI3 group. Among the pregnant groups, this group's mean glucose concentration is

the least and the insulin concentration is the highest. Surprisingly, the P-Cr group

measured a similar glucose level to the other lactating groups and yet had the lowest

insulin concentration. One might have thought that the decreased chromium in the diet

would result in less glucose tolerance as seen in a greater concentration of insulin to

control the glucose intolerance. There seems to be little difference between the different

forms of chromium. These last two groups point up the need for further study of the

interaction of lactation and chromi urn.
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At the end of the OGTT the glucose concentrations are nearly double the baseline

levels. This may be at least partly explained as a response to the anesthetic (Aynsley­

Green, et aI., 1973, Reyes Toso, et al., 1995). In the Aynsley-Green study ketamine was

found to have "no effect on blood glucose and plasma insulin" although some increase

was measured. This particular study looked at the effect of ketamine and other

anesthetics on male Wistar rats which had been starved for 48 hours and these differences

from Sprague-Dawley female rats, most of which were pregnant, hardly are comparable.

But these researchers go on to quote a study by Benke in 1971 looking at ketamine in

which the blood glucose showed a marked increase in alloxan diabetic rats.

In a further study that looked at the effect of anesthetics on blood glucose, Reyes

Toso used male Wistar rats that were given an intravenous glucose tolerance test after an

overnight fast. The findings were an increase in blood glucose and an inhibition of insulin

production (Reyes Toso, et aI., 1994).

Fructosamine concentrations have been measured in several studies. In 1979 Day

established that rats would make a good model for "glucosylation of rat albumins". Since

then, nearly all the studies dealing with fructosamme values have been conducted with

human subjects. It is for humans that the use of fructosamine as a marker is beginning to

be developed.

The 1991 study of Jen, using Sprague-Dawley rats, near the end of lactation (day

21), a glucose level of 104 mgldL. These rats had been fasted overnight and then

subjected to the surgical implantation of silastic cannula into their external jugular. The

cannula allowed blood to be drawn from the rat at baseline and during an OGTT. The rats

were allowed to recover from this surgery for 3 to 4 hours before blood samples were
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taken. The serum glucose in the present study at day 19 and baseline during lactation was

about 24% higher (128 - 135 mgldL) then in the len study. The diet in the len study was

50% sucrose by weight as in this study.

In the 1983 study by Burnol (Burnot, et a1., 1983) the serum glucose at day 19 of

lactation was 83 mgldL as compared with this study measurement of 128 - 135 mgldL. In

the present study the rats exhibited about a 35% higher concentration than seen in the

Burnol study. The reason for this difference is unclear. In the Burnol study, rats were fed

a rat chow containing 65% carbohydrates in unspecified fonn but presumably complex

carbohydrate. All three diets in this study for the three pregnant groups contained sucrose

at 50% by weight.

The 1989 study by Koiter demonstrated insulin levels of about 1.4 ngidL (about

30 mUlL) at day 19 of lactation after a 2 hour fast. The rats in the present study had an

OGTI perfonned on day 19 of lactation and the range from 1.5 - 2.3 ngidL. These values

are quite similar.

The abundant triglycerides are a ready source of fats and glycerol to make milk in

the mother's mammary glands. During late pregnancy and into lactation the mammary

glands and liver become insulin sensitive tissues while the peripheral tissues become

Insulin resistant (Herrera, et ai., 1991). As the pups grow and consume larger quantities

of milk, the demand on the dam to supply this resource increases. The demand during the

period of lactation is greater than during pregnancy. Lipolysis and diet supply the dam

with these resources unti I such time as the pups become weaned.

No significant differences were seen in the serum cholesterol levels although

some studies have shown that chromium supplementation can help lower serum
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cholesterol (Schroeder, 1968). At the 19lh day of lactation, the NEFA concentration was

not significantly different among groups and again the large variation probably prevents

significance among the pregnant groups.

The mean Ii ver weight of Dr. len's rats was less than that found in the groups that

had been pregnant in this study: [(9.7 vs 12.5 - 15.0 g) Table 10]. Some of the

differences may be due to this study's manipulation of chromium. During pregnancy and

lactation, the liver becomes increasingly insulin sensitive (Herrera, et aI., 1991). Since

chromium has been shown to facilitate the function of insulin, the liver takes in

increasing amounts of glucose that is stored or converted to glucagons. Increased stores

and processing cause this organ to become larger. Kidney weight like liver weight was

significantly lower in the NP+CrCh group compared to all three pregnant groups. During

this period of increased resource utilization, there is a concomitant increase in the waste

products produced. This is reflected in the increased size of the kidney. There was no

significant difference among the groups regarding spleen weight. Percent body fat was

significantly greater in the NP+CrCh compared to all three pregnant groups. The

utilization of body fat to mamtain sufficient levels of milk production during lactation is

seen in the much lower body fat of the lactating rats.
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CHAPTER VI

SUMMARY, IMPLICATIONS, AND SUGGESTIONS

In summary, whether pregnant rats consumed adequate concentrations of

chromium as chromium chloride (CrCI 3) or chromium picolinate (CrPic) or a chromium

deficient diet, they all appeared to maintain glucose tolerance better than non-pregnant

rats. This seems to be made possible by increased insulin production.

Serum non-esterified fatty acid (NEFA) levels were significantly lower in the

CrPic group compared with the deficient group during pregnancy. While insignificant,

the CrPic group had concentrations of NEFA that were intermediate between the lower

values of the non-pregnant group and the higher values of the CrCh group. The small

number of samples makes this impossible to interpret.

The triglyceride concentration was significantly higher in all three pregnant

groups as compared to the non-pregnant group. The CrPic group was not significantly

different from the other pregnant groups but mean levels were generally lower. This

could lead one to speculate that CrPic may have a place in lowering serum triglycerides.

During lactation, the glucose concentration of the CrPie and the P-Cr groups was

significantly lower than the non-pregnant group. While not significantly different, the

mean numerical values in the CrPic group measured the lowest at baseline of the OGIT

among the lactating groups. The insulin values on the 19th day of lactation showed no

significant differences among groups at baseline of the OGTT. It may be inferred that

during lactation (day 19) dietary fonn and concentration of chromIUm played little active
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part in controlling glucose tolerance or that anesthesia effects overwhelmed the

physiological response to lactation by raising the glucose concentration and lowering the

insulin concentration. Serum lipids were not significantly different among any of the four

groups for any parameters measured: NEFA, triglycerides, or cholesterol. Whether

glucose clearance is enhanced by the presence of chromium in either form cannot be

determined from this research.

The liver weight was significantly greater in all three lactating groups than in the

non-pregnant group. The mean liver weight of the CrPic group was the least of the

lactating groups, which may indicate greater glucose sensitivity. It may be that chromium

in the form of chromium picolinate can max.imize glucose clearance as compared to other

forms of chromium. Further investigation of the uptake of glucose in the peripheral tissue

during pregnancy and Iactation should be investigated. The kidney weight among the

lactating groups was significantly greater than seen in the non-pregnant group.

Significance due to form and concentration of chromium is not determinable from the

data. There was no significant difference among the spleen weight data.

The percent body fat differences between the non-pregnant group and the

lactating groups were significant. While not significant among the pregnant groups, the

percent body fat was lowest in the CrPic group.

The data from this research makes any conclusive statement regarding chromium

in form or concentration impossible to make. What can be said is that there seemed to be

general trend, though insignificant, for 1 mg Cr as CrPic/kg diet as a supplement to aid

glucose clearance and improve glucose metabolism.
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Judging by the glucose levels and contrary to the expected results seen in humans,

pregnancy in rats seems to be a time of greater glucose utilization and tolerance. This

may be due to the proportionally greater amount of biomass represented by the

developing litter and its needs and the physiological structures needed to grow and

support that litter.

Hypothesis testing results.

HO 1: This hypothesis is rejected since significant differences in the serum glucose and

insulin concentrations between non-pregnant and pregnant groups is seen. However, there

were not significant differences among the chromium deficient diet, chromium chloride

diet, and the chromium picolinate diet groups.

H02: This hypothesis is rejected. Since significant differences were seen in the serum

glucose concentration but not in the insulin concentrations between the non-pregnant and

pregnant groups. There were not significant differences among the chromium deficient

diet, chromium chloride diet. and the chromium picolinate diet groups.

H03: This hypothesis is accepted.

H04: This hypothesis is accepted.

H05: This hypothesis is partially since significant differences were seen in both the serum

non-esterified fatly acid and triglycende concentrations between non-pregnant and
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pregnant groups. However, no significant differences were seen in total cholesterol and

total proteins among the chromium deficient diet chromium chloride diet, and the

chromium picolinate diet groups.

H06: This hypothesis is accepted.
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TABLE 2

Research diet components

Ingredient Maintenance Diet Basal Research Diet
g/kg glkg

Sucrose 500.0 500.0

Casein 140.0 200.0

Soybean Oil 40.0 100.0

Fiber 50.0 50.0

Mineral Mix I 35.0 35.0

~
Vitamin Mix 10.0 10.0-.l

L-Cystine 1.8 3.U

Choline bitartrate 2.5 2.0

COl11starch 220.7 100.0

I No chromium was 2dded to the mineral mix for the basal research diet. Either chromium
chloride or chromium picolinate were later added to be a level of 1 mg Cr/ kg diet for the remaining diets



TABLE 3

Pregnancy and form and concentration of chromium effects on glucose and insulin parameters as determined
by an Oral Glucose Tolerance Test (OGTI).!

NP+CrCI)2 P+CrCl/ P_Cr4 P+CrPic5

Measures P

Glucose

(mg/dL)

Baselin~ 143 ± 63 109 ± Sb 105 ± i) 103± 3b <0.0001

(n) (II) (6) (10) (7)

+- 2 hour 158± lO3 lJ6 ± 4h 117 ± 5b 107 ± 6b <0.0001
00

(n) ( lO) (7) (10) (8)

Insulin

(ng/ml)

Baseline 1.067 ± 0.133b 2.168 ± 0.5833 2.276 ± 0.3043 1.452 ± 0.2633b 0.0361

(n) (9) (7) (10) (9)

2 hour 1.323 ± 0.232 1.949 ± 0.246 2.428 ± 0.357 1.866 ± 0.270 0.0610

(n) (10) (7) (10) (9)

I Mean ± SE. Blood sample was taken from the tail after a four-hour fast on the 18th day of pregnancy. OGTI used
2 g/kg body weight glucose load. Significant differences are indicated by differing letters in each row.

2 NP+CrC13 ::: Non-pregnant plus Chromium Chloride. 3 P+CrCh ::: Pregnant plus Chromium Chloride.
4 P-Cr ::: Pregnant plus Chromium deficient diet. 5 P+CrPic ::: Pregnant plus Chromium Picolinate.



TABLE 4

Pregnancy and fOIm and concentration of chromium effects on
serum fructosamine and total protein. )

?
P+CrCl/ P_Cr4 P+CrPic5NP+CrCI 3-

Measures P

Fructosami ne
(umol/L)

Baseline 152.3 ± 8.7 144.0 ± 29.0 119.06 117.5 ± 12.5 0.3474

(n)
(6) (2) (1) (2)

.+::-
\0

Serum Protein
(gIL)

Baseline 84 ± 2 796 756
69±4 0.0903

(n)
(6) (1) (1) (2)

I Mean ± SE. Blood sample is taken from the tail after a four-hour fast on the 18th day of pregnancy.
2 NP+CrCh = Non-pregnant plus Chromium Chloride. 3 P+CrCI3 = Pregnant plus Chromium Chloride.
4 P-Cr = Pregnant plus Chromium deficient diet.s P+CrPic =Pregnant plus Chromium Picolinate.
&rhese single entries are raw data and do not have standard errors.



TABLE 5

Pregnancy and fonn and concentration of chromium effects on lipid serum parameters. 1

NP+CrCl·/ P+CrC1 3
3 P_Cr4 P+CrPic5

Measures P

Non-estelifed Fatty Acius

(mmollL) 0.705 ± 0.077c 1.140 ± 0.12Sab 1.274 ± 0.0970a 0.907 ± O.llSbc 0.0013

(n) (11) (4) (3) (3)

Triglyceride

VI (mmollL) 1.06 ± 0.26b 3.13 ± 0.6Sa 2.45 ± 0.30a 2.04 ±0.28a 0.0027
0

(n) (9) (3) (10) (7)
Total Cholesterol

(mmol/L) 3.08 ± 0.10 3.33 ± 0.34 3.1S±0.13 2.98 ± 0.14 0.6186

(n) (9) (6) (10) (6)
1 Mean ± SE. Blood sample was taken from the tail after a four-hour fast on the 18lh day of pregnancy. Significant differences

are indicated by differing letters in each column.
1. NP+CrCh =Non-pregnant plus Chromium Chloride. 3 P+CrC13 =Pregnant plus Chromium Chloride.
4 P-Cr =Pregnant plus Chromium deficient diet. 5 P+CrPic =Pregnant plus Chromium PicoJinate.



TABLE 6

Lactation and form and concentration of chromium effects on
glucose amI insulin serum parameters as determined by OGn l

,
P+CrCl/ P_Cr4 P+CrPic5NP+CrCb-

Measures P

Glucose

(mg/dL)

Baseline 145 ± 4;\ 135 ± 4ab 132 ± 3b 128±4b 0.0220

(n) (9) (8) (10) (10)

2 hour 318 ± 27 322 ± 36 259 ± 18 277 ± 35 0.3664

VI (n) (9) (8) (10) (10)......

Insulin

(ng/ml)
Baseline 1.350 ± 0.205 1.135 ± 0.255 0.951 ± 0.107 1.185±0.184 0.5002

(n) (9) (8) (10) (9)

2 hour 0.723 ± 0.207 0.619 ± 0.115 0.621 ± 0.085 0.593 ± 0.175 0.9360

(n) (9) (8) (10) (10)

I Mean ± SE. Blood sample was taken from the tail after a four-hour fast on the 19th day of lactation. OGTI
used 2 glkg body weight glucose load. Significant differences are indicated by differing letters in each column.

2 NP+CrCh =Non-pregnant plus Chromium Chloride. 3 P+CrCh =Pregnant plus Chromium Chloride.
4 P-Cr =Pregnant plus Chromium deficient diet. 5 P+CrPic =Pregnant plus Chromium PicoJinate



TABLE 7

Lactation and fonn and concentration of chromium effects on fructosamine and protein serum. l

NP+CrCI 3
2 P+CrCl/ P_Cr4 5P+CrPic

Measures P

Fructosamine

(Ilmo l/L)

2 hour 193.3±48.1 128.5 ± lOA 119.2±6.1 124.1 ± 14.5 0.1510

(n) (9) (8) (10) (10)

Serum Protein
U\
tv

(gIL)

2 hour 73 ± 5 65 ±6 59 ± 2 62 ± 5 0.1590

(n) (9) (8) (10) (10)

Fructosamine/

Serum Protein 2.76 ± 8.0 2.00 ± 0.06 2.01 ± 0.06 1.97 ± 0.06 0.4307

(n) (9) (8) (10) (10)

1 Mean ± SE. Blood sample is taken from the tai I after a four-hour fast on the 19th day of lactation.
2 NP+CrCi) =Non-pregnant plus Chromium Chloride. 3 P+CrCI3 =Pregnant plus Chromium Chloride.
4 P-Cr =Pregnant plus Chromium deficient diet. 5 P+CrPic =Pregnant plus Chromium Picolinate.



TABLE 8

Lactation and form and concentration of chromium effects on lipid serum parameters.'

NP+CrCl/ P+CrC13
3 P-Cr4 P+CrPic5

Measures p

Non-esterifed Fatty Acids

(mmol/L)

2 hour 0.528 ± 0.062 0.81O±0.147 1.072 ± 0.338 0.695 ± 0.084 0.2795

(n) (9) (8) (10) (10)

Triglyceride (mmol/L)
U1
lJ.J

0.22702 hour 0.96 ± 0.13 0.58 ± 0.07 0.77 ± 0.09 0.90 ± 0.18

(n) (9) (6) (0) (10)

Total Cholesterol mmol/L)

2 hour 2.74 ± 0.16 3.00 ± 0.23 2.41 ± 0.28 2.57 ± 0.31 0.4595

(n) (9) (8) ( 10) (10)

1 Mean ± SE. Blood sample was taken from the tail after a four-hour fast on the 19th day of lactation. Only the 2hr blood s~ple was
analyzed. ,
2 NP+CrCh =Non-pregnant plus Chromium Chloride. P+CrC13 =Pregnant plus Chromium Chloride.
4 P-Cr =Pregnant plus Chromium deficient diet. 5 P+CrPic =Pregnant plus Chromium Picolinate.



TABLE 9

Mean number of pups in each litter

P+CrCIJ [ P+CrPicJ p

0.81838.9 ± 1.0

P+CrCh = Pregnant plus Chromium Chloride.
2 P-Cr =Pregnant plus Chromium deficient diet.
3 P+CrPic =Pregnant plus Chromium Picolinate.

Mean
number of 8.5 ± 1.2 8.0 ± 1.0
pups
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TABLE 10

Pregnancy, lactation, and the fOim and concentration of chromium effects on body and organ weights and body fat l

NP+CrCI 3
2

P+CrCh3 P-Cr4 P+CrPic5

Measures P

Liver weIght (g) 7.36 ± O.30b 14.97 ± 1.18a 14.64 ± 0.293 12.61 ±0.72a <0.0001

g/lOO g bw 2.72 ± 0.13 5.42 ± 0.44 5.39 ± 0.20 4.61 ± 0.30 <0.0001

(n) (9) (8) (10) (10)

Kidney weight (g) 1.48 ± 0.05b 1.79 ± 0.06a 1.78 ± 0.04a 1.82 ± 0.05a <0.0001

VI g/100 g bw 0.54 ± 0.02 0.65 ± 0.02 0.64 ± 0.01 0.66 ± 0.02 <0.0001
VI

(n) (9) (8) (10) (10)

Spleen weight (g) 0.70 ± 0.03 0.83 ±0.05 0.79 ± 0.02 0.79 ± 0.05 0.1066

g/IOO g bw 0.26 ± 0.01 0.30 ± 0.02 0.29 ± 0.01 0.29 ±0.02 0.2027

(n) (9) (8) (10) (10)

Percent Body Fat 10.43 ± 1.20a 3.30 ± 0.43b 3.48 ± 0.63b 2.64 ± 0.46b <0.0001

(n) (6) (7) (5) (7)

I Mean ± SE. Organs taken of the 19th day of lactation. Significant differences are indicated by differing letters in each column.
2 NP+CrCh =Non-pregnant plus Chromium Chloride. 3 P+CrCI3 =Pregnant plus Chromium Chloride.
4 P-Cr = Pregnant plus Chromium deficient diet. 5 P+CrPic =: Pregnant plus Chromium Picolinate.
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