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PREFACE

The purpose of this thesis is to develop some of the important
aspects of the  theory of maxima and minima including background, key
concepts and applications. These concepts are presented in such a
manner that a capable and mature undergraduate mathematics major should
be able to comprehend them. This paper, if it can be classified as
research, falls in the category of descriptive research. It involves
an expository discussion of the stated topic with motivation, examples
and proofs of propositions when appropriate. An effort has been made
to present a unified and understandable treatment of the theory of
maxima and minima, This effort includes a survey and review of many
references, books and journals, touching upon each of the topics and
subtopics. - The material has been logically organized.
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preparation of this thesis.,. I also wish to thank Dr. -W. Ware Marsden
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addition, I wish to extend my thanks to Dr. Roy Deal for his help and
to Dr. Richard H. Leftwich for his suggestions.
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CHAPTER I
INTRODUCTION

-In every human activity, man seeks the most efficient way of
performing a given task, i.e., executing the task with the least amount
of effort or &efermining the amount of effort necessary to achieve the
greatest result in a given situation. Whenever, a man goes from one
place to another, he seeks the shortest distance between those places.
When he operates a business, he looks for ways and means of making the
most profit and of accruing the least expense or cost. The wise con-
gumer seeks to get the most for his money in quantity and quality of
economic goods,

The problems expressed above can be discussed in relation.to the
theory of maximum and minimum. One might say that the theory of maxi-
mumvand minimum concerns itself with the determination of optimal
situations, i.e., choices for which functions have their greatest or
leagt values. In some cases, we may be determining a curve or a sur-
face for which a given quantity is greatest or least., Nature, as well
as man, seems to follow the tendency of economizing éertéin magnitudes,
of obtaining'maximum effects with given means, Or Qf spending minimal
means for given effects.

Problems that seek to maximize or minimize a numerical function of
a number of variables, with these variables subject 1o certain con-

straints, form a general class which may be called optimization




problems. Many optimization problems were first encountered in the
physical scilences and geometry. The quest for solutions led to the
applicatfon of differential calculus and to the development of the
calculus of variations. Optimization techniques for dealing with these
problems have been known for some time. However, in the last fifteen
or twenty years, many new and important optimizatioh problems have

emerged in the field of economics and have received a great deal of

attention. As a class, these problems may be referred to as program-
ming problems. They are of much interest because of their applica-
bility to practical problems in government, military and industrial
operations, as well as to problems in economic theory. Although the
concepts involved are still part of the theory of maximum and minimum,

classical optimization technigues have been found to be of little

assistance in some of these programming problems. Therefore, new
methods had to be developed.

Linear programming deals with that class of programming problenms
for which all relations among the variables are linear. The relations
must be linear both in the constraints and in the function to be
optimized, The essential difference between the opfimization problem
and the programming problem lies in the nature ofvthe constraints. In
the optimization problem; the constraints must be equalities, and in
the programming problem, the constraints are inequalities,

- In this chapter, the nature and significance of the problem of
maximum and minimum, the need for this study, and its scope and

limitations are discussed,

Nature and Significance of the Problem

A variety of natural phenomena exhibit what is called the minimum



principle. The principle is displayed where the amount of energy
expended in performing 2 given action is the least required for its
execution, where the path of a particle or wave in moving from one point
to another is the shortest possible, where a motion is completed in the
shortest possible time, and so on. A Tamous example of this eccnomy of
physical behavior was discovered by Heron of Alexandria. He found that
the egquality of the angles of incidence and reflection formed by a
light ray meeting a plane mirror assures the shortest possible path of
a ray in moving from its source to a reflected point by way of the
mirror [1]. Sixteen hundred years later, Fermat showed that the mini-
mum principle also defined the law of the refraction~of light [2]. One
Tinds many other instences of this minimum principle in mechanics,
electrodynamics, relativity and quantum theory.

The minimum property and its inverse twin, the maximum property,
find expression in certain simple statements of geometry; for example,
"a straight line is the shortest distance between two points in the
plane," or, of all closed curves of equal length the circle encloses
the largest area. Many of these "self-evident" truths were also known
to the ancients. The Phoenician Princess Dido obtained from a native
North African chief a grant of as much land as she could enclose with
an ox-hide. A clever girl, she cut the ox-hide into long thin strips,
tied the ends together, and staked out a large and valuable territory
on which she built Carthage [3]. Horatio, who made his reputation
defending the bridge, was rewarded by a gift of as much land as he

could plough around in a day, another illustration of an isoperimetric

problem, - The second law of thermodynamics provides a mere modern (and

a more discouraging) example of the maximum principle: the entropy



(disorder) of the universe tendé toward a maximum,

The search for maximum and minimum properties played an important
vrart in the developmentiof modern ééience. Fermat's discoveries in
optics, James Bernoulli's work on the path of gquickest descent were
among the labors that led to the conviction that physical laws "are:
most adeguately expressed in terms of a minimum principle that provides
a natural access to a more or less complete solution of particular
problems™ [17].

Frequently it is found that nature acts in such a way as to mini-
mize certain magnitudes. For example, socap film takes the shape of a
surface of smallest area. Light always fcllows the shortest path,

that is, the straight line, and, even when reflected or broken, follows

.a path which takes a minimum time. In mechanical systems one finds
that the movements actually take place in a form which requires less

effort in a certain sense than any other possible movement would use.
There was a period, about 160 years ago, when physicists believed that
the whole of physics might be deduced from certain minimizing princi-
ples, subject to calculus of variations, and these principles were
interpreted as tendencies——economical tendencies, so to speak.

In this century Einstein's general theory of relativity has as one
of its basic hypotheses such a minimal principle: +that in the space-
time world, however complicated its geometry be, light rays and bodies
upcn which no force acts move along shortest lines.

If one speaks of tendencies in nature or of economic principles of
nature, then he does so in analogy to human tendencies and economic
principles., A producer of any type of goods usually will wish to adopt

a way of production which will require a minimum of cost, compared with



other ways of equal results, or which, compared with other methods of
equal cost, will promise a maximum return. .For this reason the mathe-
matical theory of economics involves to a large extent applications of
calculus of variations. Such applications have been considered by

G. C. Evans (University of California) and in particular by Charles F.
Roos (New York City). A simple but interesting example, due to the
economist H. Hotelling (Columbia University), concerns determining the
most econbmical way of production in a mine. One méy $tart with a
great output and decrease the output later or he may increase the out~
put in time or he may produce with a constant rate of output. Each way
of producticn can be represented by a curve. If he has conjectures con-
cerning the development of the price of the produced metal, then he may

assoclate a number with each of those curves--possible profit. The

problem is to find the way of production which will probably yield the

reatest profit.
Need For The Study

Some problems concerning maxima and minima are studied in
differential calculus, taught in the college undergraduate curriculum.
Some, for example, may be formulated in the following way: Given a
single curve, where 1s its lowest and where is the highest point? Or
given a single surface, there is associated a certain number, namely,
the height of the point on this surface above a horizontal plane. One
is looking for those points at which this height is greatest or least.
In elementary differential calculus one deals thus with maxima and
minima of so-called functions of points, i.e., of numbers associated

with points. In the calculus of variations, however, the problems are



much more complicated. Here, for example, one deals with maxima and
minima of so-called functions of curves, that is, of numbers associated
with curves or of numbers associated with still more complicated geo-
metric entities, like surfaces.

Since the treatment of the theory of maxima and minima is very
limited in the undergraduate mathematics curriculum and since it has a
high interest ags a topic of pure analysis and finds immediate applica-
tion to almost every branch of mathematics, there is certainly a need
for an elementary, yet complete presentation of the theory of maxima»
and minima. With the mathematics programs being revised and upgraded
gradually in nearly all of the independent undergraduate colleges, as
well ag in the universities, a course in. this theory following the
elementary course in calculus may well be in order in the near future.
One might consider this possible change as part of the widespread cur-
rent revolution in the mathematics curriculum. The Committee on the
Undergraduate ‘Program in Mathematics (CUPM) of the Mathemautical Associ-
atlion of America has made many recommendations for appropriate and
Justifisble changes in the undergraduate program of mathematicé° There
is a ghifting of emphasis in mathematics courses as well as in topics
of a given course., For example, logarithms are no longer emphasized as
a tool for computing because this is now done by desk calculators or
gigantic electronic computers. Instead, the lecgarithmic function is
used to describe certain physical and social phenomena. Another
illustration would be the trigonometric functions which were used
chiefly in meaguring distances and angles in surveying and navigation.
Now these functions serve an even more important purpose in describing

physical phenomena sguch asg wave motions. On glancing through any



modern day mathematics textbook on any level, but especially the college
level, one who has been out of the undergraduate program during the
last decade can see not only a great deal of new subject matter but a
new point of view expressed in the traditional mathematics that still
remainé° Although the physical sciences, such as chemistry, physics,
and astronomy have more or less always been mathematical in character,
the modern biological science courses and even some of the social
science courses, particularly, economics, are becoming more and more
mathematical, demanding the use of higher mathematics--calculus and
above. It has already been pointed out that the mathematical theory
of economics depends largely upon the calculus of variations.

With the increasing enrcllment in colleges accompanied by
increased cost, there is an urgent need to maximize in some way the use
of classrooms, facilities, and personnel owing to ﬁhe pending shortage
of funds. Perhaps, the theory of maxima and minima can be applied to

this pressing problem.
Scope and Limitations

This thesis consists of two parts. Part I deals with the theory
from the viewpoint of differential calculus: Functions of one varia-
ble, functions of several variables, and extremum problems with

constraints (side conditions),

Part II deals with the theory of maxima and minima from the view-
point of the calculus of variations relating to the simplest variation-
al problem with fixed endpoints. For the most part, functionals
depending on functions of one independent variable are considered in

this report. However, a section is devoted to functionals depending on



functions of two independent variables. Also, the isoperimetric pro-
blem and the functional depending on two functions of one variable with

one finite subsidiary condition are considered briefly and illustrated.



CHAPTER II

FUNCTIONS OF ONE VARIABLE

In this. chapter some basic definitions and theorems characterizing
the function of one variable will be introduced and explained in
detail. Also, some necessary and sufficient conditions for a function

of one variable to have a maximum or minimum value will be treated.
Review of Some Basic Properties of a Function

A function may be thought of as a mapping from one nonempty set
into another nonempty set. Every element of the first set is always
mapped into some element of the second set. However, it is not always
true that every element of the second set is used or is the corres-
pondent of some element of the first set. In some functioﬁs two or
more elements may be mapped into the same element of the second set,
i.e., elements of the first set may not have distinct correspondents in
the second set. A function may be represented by an algebraic expres-
sion, a table of data, a graph, or a general rule. If the graph of the
function is a smooth curve without any breaks in it, then it is called
a continuous function. Furthermore, if one considers a fixed element

X in the first set and another element x cloge to X and forms

C O)
the difference quotient,

f(x) - f(xo)

X - X

0]
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where f(x) and f(xo) are correspondents of x and x. respective-

0

ly, and if he assumes as X approaches X,

£(x) - £(xy)

X-XO

approaches some finite value, then he encounters another property,
called the derivative of the function f at Xqe Not all functions
possess derivatives at all points., In the remainder of this section,

the general ideas expressed in this paragraph are stated precisely and

are clarified.

Definition 2-1, A function (mapping) f from S to T is a

correspondence which assigns to each element s in the set S a
unigue element t from the set T, &héiset S 1is called the domain
of the function, and the image set, f(S5), of S under the mapping f
is called the range of the function. N

Note that there are three sets connected with the function: the
first set, the domain; the second set T of which the range £(S) is
a subset; and the set of ordered pairs (s,f(s)) in which no two
different pairs have Fhe same first components., If f(S) = T, then
the function f 1is said to be an onto function or a surjection. This
means that every element t of the set T 1s the image of at least
ore element s In the set S under the mapping f. The definition of
a function does not require this latter condition. In other words, a
function may or may not be a surjection. Likewise, a function may or
may not be one~to-one or an injection, that is, distinct elements in S
have distinct images in T under the mapping. In other words, a
function f 1is an injection if and only if f(sl) # f(sg) implies

51 # S5
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~3

Illustrative Example 2-1., TLet S be the set of integers and

the set of real numbers. Define the function f as follows: f(s) 2s,
This function is an injection but not a surjection because there exists

an element in T which is not the image of some element s in 83,

namely 1/2.

Illustrative Example 2-2, Let 3 be the set of real numbers and

T the set of real numbers. Define the function g as folibws:
gs) = 82 = t, This function is neither an injection nor a surjection.
Because g(-2) = g(2) does not imply -2 = 2, g is not an injectionm.

On the other hand, no negative real number is the image of some real

number under this mapping. Consequently, g 1s not a surjection.

‘Definition 2-2, The function f 1is continuous at the number a if

(1) a is an accumulation point [See Definition 2-8] in the
domain of I,

(2) the limit f(x) exists, and
% - & .

(3) limit f£(x) = £(a) [5].

X - a
This definition can be restated utilizing the concept of a neigh-
borhoecd of a point which will be useful later on in this paper. Con-
sider a point x and s positive real number B. Then the open interval
{x -8, x +®) about x is said to be a neighborhcod of x. Another
notation for (x - 8, x + B) isv~N8(x), called a ®-neighborhood of
%, If the radius is unimportant, NS(X) is written simply as N(x).
A function £ 1is continuous at g if  a 1is in the domain of f and
if for every neighborhood Ne[f(a)] of f(a) there exists a neighbor-

hood Na(a) of a such that f(x) is in Ne[f(a)] for every x in



Na(a). See Figure 2-1,

"N

Figure 2-1,

If the function £ 1is continuous at every point in some set A,

then f d1s said to be continuous on the set A.

Illustrative Example 2-3. The function f defined by f(x) = 1/x
is continuous on the set of all nonzero real numbers. The function £
is not continuous at O gince f£(0) 1is undefined or all the conditions

of the definition are not satisfied.

Intuitively speaking, a continuous function f 1s one whose
graph, the set of points (x,f(x)), has no breaks in it. -

In mathematical analysis, it is proved that the sum, the differ-
ence, or the product of two continuous functions is continuous. Also,
if f(x) and g(x) are continuous functions and g(x) # O for all x,
then f£(x)/g(x) is continuous. |

Another concept of extreme importance. in the development of the



theory of maxima and minima is the derivative.

Definition 2-3., Let f be defined on the open interval (a,b)

and assume that c¢ belongs to (a,b). Then f 1is said to have a
derivative at ¢ whenever the limit

limit f£(x) - £(c)
X = C X - C

exists., This limit, denoted by f’(c), is called the derivative of ¢
at c [6].

The function £’ 1is called the first derivative of f, £" 1is the
second derivative of f and first derivative of £/, agd go on. A
function f which has a derivative at a point c¢ (or at each point of
an interval) is said to be differentiable at c¢ (or on the interval).
Also of interest is the fact that the differentiability of a function
f at a point x implies the continuity of f at the same point x.
However, the converse of the previous statement is not necessarily true,

i.e., continuity of f does not imply the differentiability of f.

For example, f(x) = IXI is continuous at 0, but it is not differ-
entiable at O since the limit [(|x| - |0])/(x - 0)] does not exist.
X -0 .

Extrema of a Function

Consider a function f whose domain is the set S. If the range
of f (the set of all values f(x) such that x € S) has a smallest

or a largest value, then f has an extremum in S.

Definition 2-4, Iet f be a real-valued function defined on a

set 5 in E, (the real line). Then, f 1is said to have an absolute

maximum on the set S 1f there exists a point a in S such that



1k

f(x) < f(a), for all x in S. If a is in S and if there is a

neighborhood N(a) such that f(x) < f(a), for all x in N(a) n S,
then f 1is said to have a relative maximum at the point a. Absolute
minimum and relative minimum are similarly defined, using f(x) = f(a)

[6].

For example, if f(x) = 3x2 +1 and S

[-1,5], then £(5) = 76
is the meximum value of f in S and f(0) = 1 is the minimum value

of f in S, A function need not have a maximum or minimum Vaiue in a
set S. For example, let f(x) = 1/x and S = (0,1], then f does

not have a maximum value in (0,1]. However, it does have a minimum

value f(1) =1 in (0,1]. See Figure 2-2,

Figure 2-2,

The question as to whether or not a given function f has an

extremum (maximum or minimum) can be answered by certain fundamental



1D

existence theorems. One such basic sufficient condition is that the
fgnction £ be continuous on a closed and bounded set S. If a func-
tion is known to have an extremum f(c) in S and its derivative
exists at each interior point of S, then f’(c) necessarily vanishes.
This result has great practical value in finding the extremum. A func-
tion f 1s increasing in an interval if for every pair of numbers Xq5

x, in the interval with x, <x,, f(xl) < f(xg). If x, <X

o ‘ 1 1 o implies
f(xl) > f(xg)j f is decreasing in the interval. If a function f is
defined on [a,b] such that f(a) = f(b) and if f’(x)' exists at
every point x in (a,b), then there exists a number c in the
domain of- f’ such that f‘(c) = 0. Again suppose that f is defined
on [a,b] and f‘(x) exists at each interior point of (a,b), then
there exists a point x, in (a,b) such that f(b) - f(a)

= f’(xo)(b - a). 'These ideas and theorems can be discussed more easily

1f some of the vocabulary of elementary topology is used. For this

reason, a number of definitions follows:

:Definition 2-5., Iet S be a set in El and assume x 1is din 5.

Then x is called an interior point of 8 if there is some neighbor-

hood N(x) all of whose points belong to S [6].

Definition 2-6. . Let S be a set in El' Then S8 1s called an

open set if every point of S 1is an interior point of S (6],

Definition 2-7. A set of points in E is said to be bounded if

L

it is a subset of some finite interval [6].

Definition 2-8. Iet S be a set in. E. and x a point in E

1 1’

X not necessarily in S. Then x 1is called an accumulation point of
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S, provided every neighborhood of x contains at least one point of

S distinct from x t|:6:|.

Definition 2~9. A set is called closed if it containg all its

accunulation point [6].

Definition 2-10. A set S in El is said to be compact, if and

only if, every open covering [6] of S contains a finite subcollection

which also covers S [6].
In a Buclidean space compactness is closely connected closure and
boundedness. It can be proved that a set S 1is compact if and only if

it is closed and bounded.

Definition 2-11. Let A be a set of real numbers, If there is a

real number x such that a belongs to A dmplies a < x; then x
is called an upper bound for the gset A, and the set A 1is said to be

bounded above. Lower bound is similarly defined [6].

Definition 2-12. Let A bYe a set of real numbers bounded above,

Suprose there is a real number x satisfying the following twoe
conditions:

(i) x 1is an upper bound forb A, and

(i1) 4if y 1is any upper hound for A, then x < y.
Such a number x vis called a least upper bound (lub) or a supremum
(sup) of the set A. The concept of greatest lower bound (glb), or
infimum (inf) is similarly defined if A is bounded below [é6].

t is proved that if a function f 1is continuocus on a compact set

S in B, with f(S) in E then f(S) is a compact set. With

L 1’

these basic definitions and propositions from analysis one is now in a
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position to state and prove the fundamental theorem concerniné the
existence of an absolute maximum and an absolute minimum of a function

which satisfies certain conditions.

Theorem 2~L, If a real-valued function f 1is continuous on a

compact (closed and bounded) set S8 in B then f has an absolute

l)
maximum and an absolute minimum on S,

This theorem requires f +to be continuous at every point of S
and S to be both closed and:bounded. An example in which 8 1is
bounded but not closed is given by £:(-2,2) » E, with f(x) = .
Here { has neither an abgolute maximum nor an absolute minimum on
S = (-2,2). See Figure 2-3, On the other hand, an example in which S
is closed but not-bounded is given by g:[0,w) - E, with g(x) = 1.

The function g does not have an abgolute maximum on S = [O,@). It

does have a minimum g{0) = 1 on S. See Figure 2-h,

G o e cmey it e [\) e B s U e GEp GaNOR MR CEep S R,

Figure 2-3.



Also, suppose S is a closed and bounded set but f is not continu-
ous, then f might fail to have an absolute maximum or an absolute
minimum. For example, let S = [-1,1] and f(x) = 1/x, x # 0, and

f£(0) = 0. See Figure 2-5.

Figure 2-5.
At this point the proof of Theorem 2-1 is given.

Proof: Since S 1is a compact set and f 1s continuous on 35,
then f(8) is a compact set. By definition of inf[f(S)] and by
definition of sup[f(S)], inf[f(S)] < f(x) < sup[f(3)] for all x in
S. It needs to be shown that the compact set f(S) of real numbers
contains its inf and its sup. In accordance with Definition 2-4 they
would be the minimum value and the maximum value. For finite sets this
follows immediately.

let A = f(S) be a closed and bounded infinite set in El and
let a = sup(A). Then, if a does not belong to A, for every € > O,
there exists a point x in A such that a - € < x < a, This means

that every neighborhood of a contains points of A distinct from a.

Hence, a 1is an accumulation point of A. Since A 1is closed, this
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contradicts the assumption that a does not belong to A. Therefore,

A contains its sup [6].

Let b= inf(A). Then, if b does not belong to A, for every
€ > 0, there exists a point y in A such that h <y <b + €. This
implies that every neighborhood of b contains points of A distinct
from b. Consequently, b 1is also an accumulation point of A, Again,
since A 1s closed, this contradicts the assumption that b does not
belong to A, Therefore, A contains its inf. This completes the
proof.

Although theorem 2-1 is the fundamental theorem concerning the
existence of maxima and minima, it by no means includes all cases that
may be needed in applications. The reader might notice numerous varia-

tions that may be useful. One illustration is the following theorem:

Theorem 2-2, Let f(x) be continuous in the interval O < x < =, -
and suppose f(x) approaches +o both as x approaches 0 and as x
approaches +w, then f(x) has a minimum in that interval {T7].

The reader may refer to Figure 2-6 for a further clarification of

this theorem.
Y
%

7

L]

§

Figure 2-6,
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The condition f(x) approaches +wo as x approaches O implies
by definition that if any number M 1is given, there exists a one-sided

neighborhood 0 < x < x, of x =0 within vhich f(x) > M holds.

The condition f(x) approaches +» as x approaches +o implies that

if M is given, there exists x, such that whenever x, € x € +», one

2 2

has f£(x) > M.

Proof of Theorem 2-2. To prove this theorem, one may choose any

0 <%, < +o0, for instance, =x. = 1 1is a convenient choice.

number X9 0 o

Then, one chooses X, 80 that he has

(1) f(x) > f(xo) whenever 0 < x < x,,

and he chooses X, SO that

(2) f(x) > f(xo) whenever X, € X < +o.

2

It follows from (1) and (2) that X] < Xy < X,. By Theorem 2-1 the

function f(x) has a minimum in the interval x, £ x <X, say, f(X),

whers x, <X € x

1 5» oOne has then f(xo) 2 f(X) as well as the more

general inequality
(3) f(x) = £f(X), X € X <%,

Consequently, f(X) is the minimum of f(x) in the original interval

0 < x +o, by (1), (2), and (3), so Theorem 2-2 is established [7].

Definition 2-13. A function f 1is said to be increasing at ¢ if

there exists a neighborhood N of ¢ contained in the domain of f
such that
(i} f(x) < f{c) if x <c, and
(i1) f(x) > f(ec) if x> ¢
Tor every x 1n N, If there exists a neighborhood N of ¢ such

that



(i) f(x) > f(c) if x <c, and
(i1) £(x) < £(c) if x>c
for every x in N, then f is said to be decreasing [5].

The reader may refer to Figures 2-7 and 2-8.

Y Y
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Figure 2-7. . Figure 2-8.

Surely, if a function f 1s increasing or decreasing at the point ¢
in its domain, then f(c) is not an extremum of f in any neighbor-
hood A of c¢. Let f Dbe increasing at ¢ and N a neighborhood of
¢ such that

(1) f(x) < £(c) if x<c and f£(x) > f(c) if x>c¢c, for
every x in N, then (4) also holds for every x 'in A n N. There-
fore, f(c) is“not an extremum of f ‘in A, since f(c) 1is not
extremum of £ in A N N. |

The next theorem gives a technique of determining whethei' a
differentiable function is increasing or decreasing at a given point c.

This theorem is now stated without proof [(5]. The proof is easy.

Theorem 2-3. If f is a function and c¢ is a polnt in the .



domain of f then:
(1) f is increasing at c¢ if f£’(c) > 0, and
. (2) f 1is decreasing at c¢ if f’(c) <O,
A few comments on this theorem are now in order. Recall that the
derivative f’/(x) represents the slbpe of the tangent line to the

curve y = f(x) at the point (x,f(x)).

(a,f(a))

@ oo

Figure 2-9.

In Figure 2-9, the tangent line T at (a,;f(a)) has negative slope,

and, since a line with negative slope is falling (as one traverses it

from left tQ right), it is intuitively clear that the curve, which is

closely approximated by T +in the neighborhood of (a,f(a)), also is

falling at (a,f(a)). Similarly, T’ is rising and therefore the

graph of f 1is rising at (b,f(b)). Consider the equation of the graph
2

in Figure 2-9, f(x) =x, £f'(x) = 2x < 0 if x < 0. Therefore, f is

decreasing if x < 0. Since f’(x) >0 if x > 0, f is increasing if



Illustrative Example 2-4, If f(x) = % + 3x2, find where the

function f 1is increasing and where it is decreasing.

Solution: The first derivative is f'(x) = 3x2 + 6x = 3x(x + 2).
Thus f(x) =0 if x =0 or if x = -2, and f£/(x) £ O otherwise.
If x>0, then f’(x) > 0. Thus, f is increasing if x > 0. If
2 <x<0, then 3x <0 and x + 2 >0, hence f'(x) = 3x(x +2) <Q
and f is decreasing if -2 < x < O. ‘if x < -2, then both 3x <0
and x + 2 < 0, therefore, f‘(x) >0 and f 1is increasing if
X < «2, The graph of f 1is sketched in Figure 2-10 from this

information.

(1,5)

(
V'
2]

Figure 2-10.
A necessary condition for the existence of an extremum of a

differentiable function f is expressed by the following theorem:



2k

Theorem 2-4, If f(c) 1is an extremum of a function f in some
neighborhood of ¢ contained in the domain of f and f’(c) exists,
then f’(c) = 0.

This number c¢ 1is called a critical number of the function f.

The proof of this theorem is based on the Law of Trichotomy for
the real number system, i.e., only one of the following relations can
hold: f’(c) >0, £’(c) «0, or f’(c) = 0. By Theorem 2-3, if
f/(c) > 0 1in some neighborhood N of ¢, then f 1is increasing in
N. Also, if f‘(c) <0 1in some neighborhood N of ¢, then f is
decreasing in N. Both of these latter two statements contradict the
fact that f(c) is an extremum of f in N. Thereforé, f/(c) must
be zero. This proves the theoren.

This fY{c) may not exist. In other words f(c) can be an
extremum of f in sbme neighborhood N of c¢ - without the existence
of f'(c). A function for which this is true is f(x) = |x| + 1 in
the neighborhood of 0. Since this function f 'is not differentiable
at 0, £(0) does not exiét but f(0) = 1 is a minimum value of this
function. It is important to see that the converse of Theorem 2-4 is
not true. That is, one cannot conclude from f‘(a) = O that f(a) is
an extremum of f. For example, if f(x) = x3, then f/(x) = 3X2.
Hence f/(0) = 0. However, f(0) is neither a maximum nor a minimum
value of £, since f(x) <0 if x <0 and f(x) >0 if x > 0. The
graph of f 1is sketched in Figure 2-11 which shows that f is increas-

0.

ing at x
let y = f(x) be a function of x, continuous throughout the
interval [a,b] and f(a) = f(b) = 0. Suppose also that f(x) has a

derivative f’(x) at each interior point a < x <b of the interval.



Figure 2-11.

The function will then be represented graphically by a continuous curve
as in Figure 2-12, Geometric intuition shows at once that for at least
one value of x between a and b the tangent isbparallel to the
x-axis (as at P), _that is, the slope is zero. This illustrates

Rolle's Theorem:which is now stated and proved.

>

Figure 2-12,
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Theorem 2;2.(ROLLE'S THEOREM)°

(1) If f 1is a continuous function in the closed interval
(a,v],

(2) if f(a) = £(b) = 0, and

(3) if f has a derivative at every interior point of (a,b),
then £’/ must vanish for at least one value of x between a and b,

ie., f'(x.)=0 for a< Xy <D (57.

o)
Proof: If f(x) = f(a) for every x in [a,b], then f is g

constant function and f‘(x) = O. This implies that every x in (a;b)

is a critical point., Suppose f(x) # f(a) for some x in (a,b),

then either the maximum value if f(x) > f(a) or the minimum value if

f(x) < f(a) of f occurs at a number ¢ in (a,b). This number c

is, by Theorem 2-4, a critical number of f.

Illustrative Example 25, Let f(x) = 9 - x2 (Figure 2-13).

Since f(-3) =0 and f(3) = 0, f has a critical number between -3
and 3. One sees that O 1s the critical number in this case.

Suppose that in Rolle's Theorem one changes the condition that

f(a) = £(b) and let the other conditions remain in tact. Then, perhaps
there exists a number c¢ in (a,b) guch that the tangent line T to
the graph of £ at (c,f(c)) 1is parallel to the secant line S on the
points (a,f(a)) and (b,f(b)). See Figure 2-14, Since the tangent
line T and the secant line 'S are parallel they must have equal
slopes, l.e.,
£/(c) = [£(b) - £(a)]/fo - al.
The -i1deas expressed above are embodied“in the fdllowing basic

theorem, called the MEAN VALUE THEOREM.
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Figure 2-13,

Theorem.g:éf If f is a continuous function in a closed intervél
[a,b] and if the open interval (a,b) 1is in.the domain of ' £, then
there exists a number c¢ in (a,b) -such that |

£f(o) -~ £(a) = (b - a)f’(c) [5].
The proof of the gbove theorem given in the reference cited ﬁill be

omitted here. However, this proof is based upon Rolle's Theorem.

ke

[ "YU T TR NrRpipey

" . X

Figure 2-14,
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Monotonic Functions

A function f 1is said to be increasing in an interval I contained
in the domain of f if
f(x

< f(x whenever x, < x, for all numbers x,, ¥, in I.

l) 2) 1 2

If f(xl) < f(x whenever x., < x, for all numbers x., X, in I,

2) 1 2 17 TR

then f 1is said to be strictly increasing in the interval I. Decreas-
ing and strictly decreasing functions are similarly defined [5]. A
function is said to be monotonic on I if it is increasing (or non-

decreasing) or decreasing (or non-increasing) on I.

In connection with monotonic functions several theorems [5] which

will be wseful 1in later proofs are quoted now,

Theorem 2-7. If f is a function and I is an interval contained
in the domain of f‘, then:
(1) £ is strictly increasing in I if f’/(x) > 0 for all x in
I, and

(2) f 1is strictly decreasing in I if f/(x) < 0 for all x in

“Theorem %:@: If a function f 1s continuous in a closed interval
(a,b] and if the open interval (a,b) is contained in the domain of
f’, then:

,(l) f is strictly increasing in [a,b] if f%(x) > 0 for all

. x in (a,b), and

(2) £ 1is strictly decreasing in [a,b] if f£%(x) <0 for all

x in (a,b).

Theorem 2-9, If a function f 1is continuous in [a,b] and if
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f’(a) >0 and £(b) <0 [or f’(a) <O and f’(b) > 0], then £

has a critical number c¢ in (a,b).

Theorem 2-10. If a function f 1is continuous and has no critical

number in an interval I contained in the domain £/, then either
f'(x) >0 or f’(x) <0 for all x in I. Therefore, f is strictly

monotonic in I.
Testes for Relative Extrema of a Function

The tests discussed below apply to functions which are smooth
enough to possess one or more derivatives. The graph of a function may
have many "relative® maximum and minimum points. For example, Figure

2~15 displays a graph with several such points.

Figure 2-15.

Recall from definition 2-4% that the number f(c) is called a

relative extremum of a function f (Figure 2-15) if there exists a
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neighborhood N(c) in the domain of f such that f(c) is a maximum
or minimum in N(c). At this point, the First Derivative Test is now

stated and proved.

Theorem 2-11 (FIRST DERIVATIVE TEST). Let f %be a function and ¢

a critical number of f, If a and b are numbers such that
a<c<b, f’ exists in [a,b], and c is the only critical number of
f in [a,b], then:
(1) f£(c) 1is a relative maximum value of f if ?f’(a) > 0 and
£/(v) < 0.
(2) f(c) 1is a relative minimum value of f if f’(a) < 0 and
£/(b) > 0.

(3) f(c) 1is not a relative extremum otherwise [5].

{1) Consider the interval [a,c) in which there is no critical
number., Then according to theorems 2-10 and 2-8(1) with f%(a) > O; f
is strictlylincreasing in [a,c]. Also since f’(b) <0 and f has no
critical number in (c,b] by theorems 2-10 and 2-8(2), f is strictly
decreasing in [c,b]. Hence, f(c) is a relative maximum.

(2) Since f has no critical number in [a,c) and ff(a) <0
for every x in (a,c), f is strictly decreasing in [a,c] by
theorems 2-10 and 2-8(2). On the other hand, since f has no critical
number in (c,b] and f/(b) > 0 for every x in (p,b), f is
gtrictly increasing in [c,b] by theorems 2-10 aﬁd 2—8(1)7 Therefore,
f(c) is a relative minimum in [a,b].

(3) If f’(a) > 0 for every x in (a,c) and f has no criti-

cal point in [a,c), then f 1is strictly increasing in [a,c].
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Similarly, if f£‘(b) > O for every x in (c,b) and f has no
critical number in (c,b], then f is strictly increasing in [c,b].
Therefore, f has neither a maximum value nor a minimum value at ¢,
Similarly, it can be shown that f 1is decreasing in [a,b] if both

f’(a) <0 and f’(b) € 0. This completes the proof.

Tllustrative Example 2-6, Let f(x) = x3 - 3x whose graph is

given in Figure 2-16. Since f(x) = x(x2 3) = x(x + 3)(x ~Nf3), the

x-intercepts of the graph are JJé, O,Nf3 (See Figure 2-16).

2

Figure 2-16.

Further information about the graph of f may be obtained from the
derivative of f.

£ {x) = 3x2 ; 3 = 3(x2 - 1) = 3(x + 1)(x - 1), so f’(x) = 6 for x=-L L °
It can be shown that f’ is positive to the right of +1 and to the

left of -1 and 18 negative between -1 and 1. If x> 1, then



(x +1)>0 and (x -1)>0, so f£'(x)>0. If -1<x<1, then
x+1>0 and x -1<0, so f’(x)<0. If x<-1, then x - 1<0
and x +1<0, so f’(x)>0. Soby theorem 2-3, the function f is
increasing to the right of 1, increasing to the left of -1, and
decreasing between these as indicated in the graph of f (Figure 2-16).
By theorem 2-11, f has a relative minimum at x = 1 and a relative
maximum at x = -1,

It must be observed that the First Derivative Test works only if
the function is differentiable on the interval a‘s ¢ < b.

The sign of the second derivative f" reveals the concavity of the
graph of a function £ in somewhat the same manner that the sign of the

first derivative reveals where the graph of f 1is rising and falling.

Definition 2-14%, The graph of a function f is said to be con-

cave upward at the point (c,f(c)) if f£’(c) exists and if there
exists a deleted neighborhood D(c) such that the graph of f in D(c)
is above the tangent line at (c,f(c)). The graph of a function f is
said to be concave downward at the point (c,f(c)) if ff(c) exists
and there exists a deleted neighborhood D(c) such that the graph of

f in D(c) is below the tangent line at the point (c,f(c)) [5].

In Figure 2-17, the graph of a function f which is concave
upward and concave downward at the points (a,f(a)) and (b,f(b))
respectively ié displayed. -

Cpnsider the equation of the'tangent line to the curve at
(a,f(a)), i.e., y = f£(a) + £’(a)(x - a). Let v

g(x) = £(x) - [£(a) + £/(a) (x - a)]
be the vertical directed distance from the curve y = f(x) to the

tangent line y = f(a) + f’(a)(x - a). Then, the sign of g(x) will
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Figure 2-~17.

determine if the tangent line is above 5r below the curve for every x
in gsome deleted neighborhood of a. Thus the graph of f at (a,f(a))
is concave upward if g(x) > O for every x in some deleted neighbor-
hoed of a, and concave downward if g(x) < 0 for every x 1in some
deleted neighborhood of a.

A test theorem for concévity based on the ideas“expressed in the

previous paragraph is now stated and proved.

Theorem 2-12 (TEST FOR CONCAVITY). If f is a function and ¢ is

a number such that the derivatives £, f" are defined in some deleted
neighborhood of &, then:
(1) The graph of f is concave upward at (a,f(a)) if
£(a) > 0. |
(2) The graph of f is concave downward at (a,f(a)) if

f"(a) <0 [5].



(1) If f"(a) >0, then f’ is increasing at a by theorem 2-3.
By definition 2-13 there exists a neighborhood N of a such that
£(x) < f'(a) if x<a and f'(x)>f’(a) if x >a for every x

in N. Applying the mean value theorem to

1t

g(x)
g(x) = [£°(a) - £'(a)l(x - a)

for some number d Dbetween x and a. If x is in N and x < a,

[f(x) - f(a)] - £(a)(x - a), g(x) can be written as

x<d<a, £f/(d) <f’(a), and g(x)>0. If x is in N and x> a,
then a <d <x, f'(a) < £’(d), and once again g(x) > O. Therefore,
g(x) >0 for évery x in N(x f a), and the graph is concave upward
at (z,f(a)).

(2) Ir f"(a) <0, then £’ 1is decreasing at a. By the defi-
nition of a decreasing function there exists a neighborhood N of &
such that f(x) > f’(a) if x<a and f/(x) <f’(a) if x > a.
Since » : ~n,

£{x) - f(a) = £7(d)(x - a), g(x) = [f(x) - £(a)] - £ (a)(x - 2)
can be written as

g(x) = [£/(a) - £'(a)1(x - a)
for some d between x and a., If x is in N and x <a, then
x<d<a, /(@) > f'(a), g(x) <0. If x is in N and x > a, then
a<d<x, £/(d) < f’(a), and once again g(x) < 0. Therefore,
g(x) <0 for every x in N(x # a), and the graph is concave down-
ward. This completes the proof.

The relationship between the direction of concavity and the nature
of relative extrema is investigated next. Note that in Figure 2-18 at

those points a, b where the tangent is horizontal, a relative maximum
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occurs where the curve is concave downward and a relative minimum where
the curve is concave upward. Since the sign of the second derivative of
a function determines the direction of its concavity, one should expect
that there would be a test for relative extrema involving the second
derivative. By Qirtue of this relationship, one gets the following

useful corollary of theorem 2-12 called the SECOND DERIVATIVE TEST,

<

Figure 2-18,

Theorem 2-13 (SECOND DERIVATIVE TEST). If f is a function and c

iz a critical number of f such that f ig twice differentiable in

gome neighborhcod of ¢, then:

(1) f(c) is a relative maximum value of f if f’(c) = 0 and
' (c) < 0,
(2) f(c) is a relative minimum value of f if f’(c) = 0 and

f(c) >0 [5].
These results follow readily from theorem 2-12 since the tangent
line is now horizontal and the graph of f 1is below the tangent line

in (1) and above the tangent line in (2) for some neighborhood of c.

Note that if ¢ i critical number of f for which either



f"(c) = 0 or f"(c) does not exist, then the second derivative test
cannot be used. In this case, one should resort to the first derivative

test. When applicable, the second derivative test is simpler to use,

Definition 2-15, The point (c,f(c)) is a point of INFLECTION of

the graph of f if there exists a neighborhood (a,b) of ¢ such that
f"(x) > 0 for every x in (a,c) and f"(x) < 0 for every x in
(c,b), or vice versa [5].

Intuitively, the point of inflection is the point P (See Figure
19) at which the curve éhanges from being concave upward to being con-
cave downward (or vice versa) or the point at which the tangent line to
the curve'intersects the curve. This point can be quite helpful in

plotting the graph of the curve.

Figure 2-19,

If {c,f(c)) 1is a point of inflection of the graph of f and if
f"(c) exists, then necessarily f"(¢) = 0. The points of inflection
occur at the critical numbers of f’. However, it cannot be assumed-

that every critical number of f’ will give a point of inflection of £
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)
The function f(x) = x' is a counter-example for f/(x) = Lx

3

and

“pe 2
£"(%) = 12x". Since f£4(0) = 0 and f"(x) >0 for every x # 0, 0 1is
a critical number of f’, whereas (0,0) is not a point of inflection

of the graph of f. See Figure 2-20,

Figure 2-20.

A theorem which follows from the first derivative test will now be

stated without proof.

Theorem 2-1%, If f ig a function and ¢ 1is a nuymber such that

f"{c) = 0, then (c,f(c)) 1is a point of inflection of the graph of f
provided there exists a neighborhood (a,b) of c¢ such that

(1) f"(x) exists and is nonzero for every x in [a,b], (x £ c),



and

(2 £"(a) and f"(b) differ in sign [5].

This theorem is very useful in plotting the graph of a twice
differentiable function of one variable.

The second derivative test is a sufficient condition for the
existence of an extremum of a function £, This theorem can be general-
ized by means of Taylor's Theorem which may 5e thought of as an
extension of the Mean Value Theorem since it reducés to that in the

case n = 1, Taylor's Theorem is now stated without proof.

Theorem 2-15 (TAYLOR).

(L) Let f be a function and 1 be a‘nonnegative integer such
that the nth derivative f(n) exists everywhere in the open interval
(a,b).

(2) Assume f(n_l) is continuous on the closed interval [a,b],

(3) Assume c belongs to la,b].

Then, for every x in [a,b], x f c, there exists a point =z in
(x,c) such that

f(x) = £(c) + £7(c)(x - ¢) + £7(c)(x - ¢)°/2 + 3V (e)(x - ¢)3/6 +
f(h)(c)(x - c)u/Qh F el + f(n_l)(cj(x - c)n-l/(n - l)§‘+
f(n)(z)(x - c)n/ni (6]. ‘

The next theorem is a generalization of the SECOND DERIVATIVE TEST,

Theorem 2-16. For some n =z 1, let f have a continuous nth

derivative in the open interval (a,b). Suppose also that for some
interior point ¢ in (a,b) one has
£r(e) = #(c) = £Ble) = . =Py 20, bus £ (e) £ 0.

Then for n even, f has a local (relative) minimum at c¢ if
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f(n)(c) > 0, and a local maximum at c¢ if f(n)(c) <0. If n is

odd, there is neither a local meximum nor a local minimum [6].

Proof: By the definition of a derivative and since f(n)(c) % 0,
there exists a neighborhood N(c) such that for every x -in N(cj,
the f(n)(x) will have the same sign as f(n)(c). Using Taylor's
formula (Theorem 2-15), one can write for every x in N(c) the
following e@uation:

f(x) - f(c) = f(n)(z)(x - c)n/nl where =z Tbelongs to N(c).
If n is even, this equation implies f(x) = f(c) whenever
f(n)(c) >0 and f(x) g f(c) Whenéver f(n)(c) < 0 since f(n)(z)
has the same sign as f(n)(c) in N(c). Any even power of (x - c)
will be nonnegative. Consequently, the sign of f(x) - f(c) will
depend on the sign of f(n)(c) deciding whether f(c) 1is a local
maximum or a local minimum value of I at c.

If n is odd and f(p)(c) > 0, then f(x) > f(c) when x > c
but f(x) < f(c) whenever x < c¢ implying f 1is increasing at c by
definition. On the other hand if n is odd and f(n)(c) < 0, then
f(x) > f(c) when x <c but f(x) < f(c) when x > c implying f is
decreasing at c¢ by definition. Therefore, f can have no extremum
if n is odd. Any odd power of (x - c) 1is either positive or nega-

tive depending on whether x > c¢ or x < ¢ respectively,

X -X

Illustrative Example 2-7, Examine f(x) =" + 2 cos (x) + e

for maximum and minimum values.

Solution: f(x) = e* + 2 cos (x) + e 7,

X -0 for x

It
O
-

f(l)(x) = et - 2 sin (x) - e

O for x =0,

1l

f(g)(x) =¥ -2 cos (x) + e



f(3)(x) -

Therefore, by Theorem 2-16,

value of T,

il

e + 2 sin (x) - ¥

Lo

0 for =z =0,

+2cos (x) +eF =4 for x =0,

£(0) = 4 is a minimum

There are many interesting problems in geometry, the physical

sciences, engineering, industry, business, economics and the other

social scienceg which are related to the theory of extrema. The remain-

der of this chapter will be devoted to the solution of a few problems of

the types mentioned above.

Problem 2-1, A ladder is to reach over a fence 8 ft. high to a

wall 1 £t. behind the fence.

that can be used [57?

B
y £t
8
Dyl It
B x Tt
Figure 2-21,
¥ = 8 cot A

L/(x + 1) = sec A

What is the length of the shortest ladder

Solution: In Figure 2-21,
let L represent the length
of the ladder, x  the
distance of the foot of the
ladder from the fence, ¥
the height of the top of the
ladder, and A the angle of
incliﬁ;tion of the ladder

above the ground. Then

(1)
(2)
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L=2xsechA + secA (3)
L(A) = 8 cot A sec A + sec &, 0° <A < 90° ()
o]

Note that if A = 07, then the ladder would have to be of infinite
length, and if A = 900, then the ladder would be parallel to the wall
or it would be of infinite length touching the wall at the ideal point
in the sense of projegtive geometry. ©So the angle A must be between
0° ana 90°.

L(A) = 8 csc A + sec A, 0° < A < 90°. | (5)
Since L(A) is continuous in the interval 0° <A < 90° and L(A)
approaches infinity both as A approaches 0° and as A approaches
900, then, by Theorem 2-2, L(A) has a minimum value in that interval.

The derivative of L(A) exists at every interior point of

o}

(0°, 90°). This fact along with the fact that L(A) has a minimum

value in (0%, 90°) implies L(A) has a critical number A, in
(0%, 90°) such that L'(ay) = 0.
L’(A) = (-8 csc A)(cot A) + (sec A)(tan A) (6)
(8 csc A)(cot A) = sec A tan A (7)
[(csc A)(cot A)]/[(sec A)(tan A)] = .125 (8)
cotS A = .125 (9)
cot A = .5
A = Arc cot (.5)
A = 63° 26
1(63° 267) = 8 csc 63° 26° + sec 63° 267

8 (1.1180) + 2.2359
8.94h0 + 2.2359

il

It

11,1799 f£t., the shortest ladder.

Problem 2, A man in a motorboat U4 miles from the nearest point
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P on the shore wishes to go to a point Q 10 miles from P along the
straight shoreline. The motorboat can travel 18 miles per hour and a
car, which can pick up the man at any point between P and Q, can
travel 30 miles per hour. At what point should the man land so as to

reach Q in the least amount of time [5]?

Q
Figure 2-22,
Solution: In Figure 2-22,
y2 - % 416 : (1)
2
y =\ (x~ + 16) (2)

T(x) =[q(x2 + 16)/18]+[ (10 - x)/30], 0 < x < 10 (3)
represents the total time equation. The function T 1is continuous in
the élosed and bounded interval [0,10] and therefore has a maximum and
g minimum value on [0,10].

The derivative of the function T is

1(x) = k18 + 16)] - [1/30] (n)

and T’ exists at every interior point in [0,10]. Therefore, T has

It

a critical number c¢ such that T/(c)

1/(x) = [x/18V G2 + 16)] - [1/30]

x/18 (x2 + 16) = 1/30

0 and T(c) is an extremum.

o)

1



x = (3/5)Q?§§"1—15;

x% = (9/25) (<" + 16)
(16/25)x" = (9/25)(16)
x =9

x = 3 mi. from P

T(3) = 23/45

]

T(3) = .51 hr. is the minimum time since T(0) = .55 > T(3) and

T(10) = .59 > T(3).

Problem 3. A Boston lodge has asked the rallroad company to run a
special train to New York for its members. The railroad agrees to run
the train if at least 200 people will go. The fare is to be 8 dollars
per person if 200 go, and will decrease by 1 cent for everybody for each
person over 200 that goes. What number of passengers will give the
railroad maximum revenue [5]?

Solution: Let x be the number of persons over 200 to go. Then
(200 + x) = the total number of passengers,

(800 - x) = the reduced fare per person, and

(200

+

x)(800 - x) = the total revenue.

il

Set f(x) = 160000 + 600x - x2, 0 < x < 800.
The function £ is known to‘be continuous on the whole real line and to

have a maximum value in some interval of the real line, The derivative
of f is f’(x) = 600 - 2x for all x.

Since' f has a maximum value and f‘ exists éverywhere, then f
has a critical numbef, i.e., f£'(x) % 600 - 2x = 0 and x = 300. The
second derivative test verifies the fact that f has a maximum value
in that f"(x) = -2 and f£"(300) = -2 < 0 which implies f(300) is a

maximum value of f.
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Therefore, 500 passengers will give the railroad the maximum

revenue,

Problem 4. A farmer erected a straight fence 100 feet long. In
addition, he has 200 feet of fencing. He desires to use part or all of
the fence already erected and the additional 200 feet of fencing to
enclose a rectangular field. “What should be the dimensions if the area
is to be maximized? |

~ Solution: Let x(in. feet) %be the part of fence already standing
that is needed. Then the side opposite this part will also be x feet,
Thus (200 - x) feet of fencing is left to be divided between the
remaining two opposite sides of the field; (roo - x/2) feet to each

side., See Figure 2-23.

100 feet "
x feéet
(100 - x/2) feet
x feet
Figure 2-23.

Therefore, the area of the field is given by the function
A(x)'= 100x - x2/2.

The first derivative set equal to zero gives
DXA(X) = 100 - x = O.

The soclution of this equation is x = 100. The second derivative
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test, i.e.,
2 \
DXA(x) = -1 <0,
for all 'x,‘ reveals that A(100) = 5,000 1is the maximum value of the

function. ©So the dimensions should be 50 feet x 100 feet.

Problem 5. A circular cylinder is to be made by rotating about
the y-axis a rectangle two of whose sides lie along the x- and y-axes
and which has one vertex at the origin and another on the curve

y =1 -x in the first quadrant. Find the cylinder of greatest volume
[7].

Solution: The volume of this cylinder is V = nxzy where

X =1 -y, See Figure 2-24, Eliminate x by substitution.

Figure 2-24.

Hence,

V(y) = nly - 2y° + yo).
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Take the first derivative of V(y) and set it equal to zero, i.e.,
3y2 - hy‘+rl = 0.
The solution set consists of y = 1/3, 1. By the second derivative
test (Theorem 2-13), the function V(y) has a maximum value at
y = 1/3, i.e., V"(1/3) = -2m < 0. Therefore, the cylinder of maximum

volume has height y = 1/3 and radius 2/3.

Problem 6 [15]. Suppose that the Airow and Zande Companieé, with
advertising budgets of a dollars and b dollars, respectively, are
selling in a market having a total sales potential of Q wunits, and
that there are no other firms competing in the market.

The Airow Company's expected sales volume has been found to be
aQ/(a +b). That is, the proportion of total possiblé sales which are
obtained by the Airow Company is the ratio of the company's advertising
expenditure to the total advertising expenditures by both firms.

The cogt to the Airow Company of producing and selling N units
(exclusive of advertising costs) is Cl + CQN’ where Cl represents
fixed costs, and C2 represents variable costs per unit. Therefore, if
an expenditure of a dollars on advertising results in sales of
aQ/(a + b), the Airow Company's total costé are

C, + Cefag/(a + )] + a.

(L) Let P be the selling price pér unit, which is assumed fixed
and equal for both companies. Develop the expression for the profit of
Airow as a function of its advertising expenditures.

(2) Determine the optimum level of advertising by

(a) Maximizing earnings
(b) Equating marginal revenue to marginal cost.

Are the two values equal? Explain.
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(3) How does Airow's optimum action depend on-Zande's decisions?
(4) Fina a, when b = 1,000,000 dollars, Q = 40,000 units,
P = 200 dollars, 02 = 100 dollars, and Cl = 500,000 dollars.

Solution:

(1) Let m represent the profit function. Then

where R(a) = P[aQ/(a + b)] is the revenue function and
c(a) = C, + Ce[aQ/(a +b)] + a is the cost function., Therefore,
m(a) = PlaQ/(a + b)] - ¢, - Cg[aQ/(a +1b)] - a.
(2a) To determine the optimum level of ad&ertising by maximizing
earnings one proceeds as follows:
p_(a) = [Bab/(a + 1)7] - [C @0/ (a + )] - 1.
Set Daﬂ(a) = 0 and solve for a.
[Pab/(a + )71 - [C,a0/(a + 1)7] - 1 = 0,
PQo - C,@b - (a + 1@)'2 = 0,
2% + Zba - (PQv - CQb - b2) = 0,
ay = -b + [Qb(P - cg)],
where one chooses the positive sign since a > 0., To verify that this

value of a maximizes the function m(a), one uses the second deriva-

tive test (Theorem 2-13), i.e.,

i

Diﬂ(a) [2Pab/(a + b)3] + [2c,Q0/ (a + v)3]

Diﬂ(a) [2PQb + 2C2Qb][l/(a + b-)3-]°
Since P, Q, b, a are all positive quantities and P > Q,
[-2PQb + 2C,Qp] < 0 and [1/(a + b)3] for all a. Therefore,
Diﬂ(a) < 0.
Thus m has a meximum value at aj = -b + Qb (P - C2)°
(2b) To determine the optimum level of advertising by equating
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marginal revenue to marginal cost one proceeds as Tollows:

DR = PQb/(a + b)2 + 1 1is the marginal revenue

a

and

i

D C C2Qb/(a + b)2 + 1 is the marginal cost [15].
Therefore,
, 2 2
Pab/(a + 1) = c@b/(a + b) + 1,
Pab/(a + b)2 - CeQb/(a + b)2 -1=0,

a° + 2ab - (PQb - C,Qb - b2)

1
O
o

which is the same quadratic equation in a obtained in (2a). Conse-
quently, one gets the same value for a. An axiom of marginalism states
that the optimum level of activity (i.e., that level where net profits
are maximized) is where the marginal profit = 0. But this means, since
marginal profit = marginal revenue - marginal cost, that marginal
revenue = marginal cost [15].

(3) Airow's optimum action depends on Zande's advertising budget,
i.e., a=-b+ Qb(P - 02).

(L) Find a when b = 1,000,000 dollars, Q = 40,000 units,

0

P = 200 dollars, C, = 100 dollars, C, = 500,000 dollars.

2
~1,000,000 + 40,000(1,000,000)(100)

11

20

il

a, = 1,000,000.

0
The next problem has to do with finding the minimum cost lot size
[16]. 1Inventory control is important for an efficiently functioning
business firm. .Although there is a growing variety of inventory control
models, the centrgl question in a typical inventory control problem is

how to minimize the costs which are associated with obtaining and hold-

.ing inventory. Such inventory optimization involves two kinds of costs:

setup and inventory carrying costs. .Setup cost represents the expense
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for setting up the machinery to produce a lot of units bf a certain
commodity., Setup cost is called reorder cost if the case involves
ordering a lot from a supplier rather than producing it. Carrying cost
is incurred because the produced lot of goods must be carried in stock
until sold. Inventory carrying cost includes charges such as insurance,
storage, interest, depreciation, obsolescence, and property taxes.

The inventory optimization problem arises from the fact that when
setup cost is low, carrying cost tends to be high and vice versa. For
instance, suppose the monthly demand for a commodity is uniform and
fixed at 300 units. Then all 300 wunits could be produced by
setting up the equipment once., In such a case the 300 units will be
stocked at the beginning of each month and sold during the month., Since
demand is uniform, the average monthly inventory will be 150 units.

This inventory could be reduced by producing smaller than 300-unit

lots each setup. . For instance, producing a 150-unit lot every 15‘
 days will reduce the monthly inventory to 75 units, a 100-unit lot
every 10 days to 50 wunits, and so on. As inventory goes down,
carrying cost-will tend to fall, however, since smaller inventory
requires more frequent production setups, these costs will tend to rise.
In other words, large inventories are assoclated with low setup and high
carrying costs, while small inventories tend to have the opposite
effect. The problem is to find the minimum cost (setup plus carrying)
lot size.

Minimum cost or optimum lot size formulae differ depending on the
underlying assumptions of each Inventory problem. The problem which
follows is a case where the demand for the commodity is uniform and

fixed each period with price predetermined.
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Problem 7 {16]. A menufacturer needs 160 motors each of the 250
business days of the year for assembling an equivalent number of clothes
dryers. He purchases these motors from another manufacturer at 20

&
dollars apiece. 1In order to finance this expense, he borrows from a
bank on short-term basis at g simple interest rate of 5 per cent per
annum, In addition, he has other inventory charges which amount to 1
dollar per motor per year. The 20-dollar price the manufacturer pays
for each motor includes all shipping expenses except a fixed charge of
100 dollars ﬁer shipment.

(a) How many motors should the manufacturer order each time in
order to minimize his annual inventory cost? What is this cost? How

many orders does he have to place each year?

(b) Suppose that the demand for the manufacturer's clothes dryers
has increased to the point that he plans to expand production to 1600

clothes dryers a business day., .Although other costs remain the same,

he has to provide now for special storage space for the entire shipment.
He figures warehousing cost will be 1 dollar per motor, Under these
new conditions, answer the guestions in (a),

{c) With the demand of 1600 motors a business day, the supplier
informs him that because of rising labor costs he can no longer absorb
shipping costs. Such costs amount to 2 dollars per motor, but the
fixed shipping charge per shipping has been reduced to 40 dollars per
order. Answer the questions in (a) if other conditions remain as in
(b).

Solutions

() Let x be the lot size. Then x/2 1is the average inventory

in stock throughout a period between reorders. On a short-term basis,
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the interest cost for each motor per year is .O5(2CD= 1.00., Therefore,
the total inventory carrying cost is 2 dollars per motor per year or
% dollars, For an annual demsnd of 40,000 motors the number of
reorders per year 1is (h0,000/X). Since the cost per reorder is
(20x + 100), +the total annual reorder cost is

(40,000/x) (20x + 100) = 800,000 + (4,000,000/x).
The total annual inventory cost is the sum of the carryiﬁg cost plus the
reorder cost, i.e.,

¢{x) = = + (800,000 + 4,000,000/x)

or

i

C(x)

(4,000,000/x) + 800,000 + x.
The first derivative is

D.C(x) = 1 - h,ooo,ooo/xe.
When DXC(X) = 0, one has

%= = 4,000,000 = O

x = 2,000, the optimum lot size.
The second derivative of C(x) is

DiC(x) = 8,ooo,ooo/x3

and

i

)
D_€(2,000) = 8,000,000/8,000,000,000

(1/1,000) > 0
implying that C(2,000) is a minimum value of C(x) by the second
derivative test (Theorem 2-13),

Hence the manufacturer should order 2,000 motors each time in
order to minimize his annual inventory ccst. The cost is
€(2,000) = 804,000 dollars. He will have to place 20 orders each

year.



(b) ILet x be the lot size. Then x/2 is the average inventory
in stock throughout a period between reorders. The carrying cost is now
(x/2)(L + 1 + 1) = (3/2)x. For an annual demand of 400,000 motors,
the number of reorders is (400,000/x). The total annual reorder cost
is

(400,000/x) (20x + 100) = 8,000,000 + (40,000,000/x).
Therefore, the total annual inventory cost is given by the'function

C(x)

li

(3/2)x + (8,000,000 + 40,000,000/x)

C(x)

Taking the firsgt derivative and setting the same equal to O, one gets

i

L0,000,000/x + 8,000,000 + (3/2)x.

DXC(X) =3/2 - (4 x 107)/x2 = 0.
Solving this eguation, one gets

% = (80/3)(106), or x = 5164,
Therefore, the manufacturer should order 5,164 motors each time,
except the last time when he will only need to order 2,372 motors,

The annual inventory cost will be

c(5,164) = (3/2)(5,16%4) + 8,000,000 + (40,000,000/5,164)

7646 + 8,000,000 + 7T745,93

il

= 8,015,391.,93 dollars.
He will need to place 77 orders of 5,16k motors each and 1 short
order of 2,372 motors.
(c) Let x be the lot size. The inventory carrying cost is
(3/2)x. The total annual reorder cost now is
(400,000/x) (22x + 40) = 8,800,000 + (16,000,000/x).
Hence the cost function is now |

c(x) = (3/2)x + 8,800,000 + (16,000,000/x)



or
C(x) = (16,000,000/x) + 8,800,000 + (3/2)x.

The first derivative is |
DXC(x) = -(16,ooo,ooo/x2) + 3/2,

Set DXC(X) = 0 and solve for x, i,e.; solve
(3/2)x2 - 16,000,000 = 0.

The solution is
x = 9796/30r 3265, the optimum lot size.

The cost is

16,000,000 3

c(9796/3) = bsers— + 8,800,000 + 3 (9796/3)
8,809,797.96 dollars.

i

The manufacturer will have to place 122.5 orders or 122 complete

orders and 1 short order.

The next problem relates to price, demand, and supply. A brief
discussion on market equilibrium and monopoly is needed in order to
clarify the terms and concepts which will be used.

A demand function shows the relationship between the guantity
demanded X and the price p charged on a given market. In general,
the higher the price the lower the demand, though there may be excep-
tions to this rule [17]. Collective or market-demand functions can be
constructed by adding the individual-demand functions for all individu-
als in a market. The quantities demanded at a given price by all
individuals are added. An approximation to a demand function, which

may be linear, quadratic, and so on, can be derived, by statistical
methods, from actual market data, that is, by using the prices and

guantities recorded at various times on the market.
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The individual-supply function of a firm, or of a private individu-
al, shows the amount of a commodity that will be offered on the market
at a given price. The collective or market-supply function is the sum
of the amounts supplied by various individuals or firms at a given
price [17]. Supply functions, which may be linear, quadratic, and so
on, are derived from production theory and can also be obtained
statistically from market data, that is, from the record of prices and
quantities sold on a market at various dates., The statistically

derived supply function is an approximation.

Under free competition no individual or firm can by itself
influence the market price., There is free movement in and out of
various industries. Market equilibrium exists undér free competition if
the quantity of a commodity demanded is equal to the quantity supplied.
This fact determines the equilibrium price and the quantity exchanged
[17].

The profit of the monopolist is m = R - C, where the total
revenue R = pX. The function pX 1s the demand function and C 1is
the total«cost function. A monopolist tries to maximize his profit by
producing the amount and chargﬂg;the price that will make his profit as
vlarge as possible,

The necessary condition for a maximum is m’' =R’ -C’ =0 or
R? = C’, thét'isj marginal revenue equals marginal cost. For maximum
profit, m" <0 or R" - C" <0, from which we obtain R" < C". The
last condition assures the stability of the situation. There is no
incentive to the monopolist to produce more or less or charge a

different price. One has a maximum rather than a minimum [17].

Problem 8 [17]. The demand for steel in the United States is



estimated to be p = 250 - 50X (Whitmann). The estimated average cost
of making steel is A = 182/X + 56 (Yntema).

(a) Find R, C, C‘, R’.

(b) Find the necessary condition for a maximum of steel profits
assuming a monopoly in steel,

(c) Find the sufficient condition for maximum profits.

() Establish the quantity produced, price, total revenue, total
cost, and profits under monopoly.

(e) Assume the same demand curve and g competitive supply curve
(marginal-cost curve) for steel, p = 56, assuming the same cost curve
under free competition and monpoly. Find the quantity produced and the
price established under conditions of free competition.

(f) Plot the demand curve, average-cost curve, marginal-cost curve
(ssme as supply curve), marginal-revenue curve. Demonstrate the price

formation under monopoly and under free competition.

Solution:
(a) R = pX = 250X - 5OX2, total-revenue
C = AX = 182 + 56X, total-cost curve

C’ = 56, marginal-cost curve

d
~
il

250 - 100X, marginal-revenue curve
(b) The profit function assuming a monopoly in steel 1is

R - C,

3
[}

or
m = —5OX2 + 194X - 182,

| A necessary condition for m to have a maximum is that m’ =‘O by

Theorem 2-4, .Since

m = pX - AX,
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then
m*=p -A=0 or p=A,
(c) The sufficient condition for m to be maximized is that

m™(X) = -50 + 182/x2 < 0.

(d) -100X + 194 = 0,

X = 1.94, quantity produced,

p = 250 - 50(1.9%) = 153, oprice,

R = 153(1.94) = 296.82, total revenue,

C =182 + 56(1.94) = 290.64, +total cost,

T=R -C =296.82 - 290,64 = 6,18, profits.

]

(e) p =250 - 50X, demand curve,
p = 56, competitive-supply curve,
To establish price under free competition, set demand fﬁnction equal to

supply function, solve for X, and then substitute the result in the

demand equation to obtain the equilibrium price, p, 1.e.,

250 - 50X = 56
X = 3.88
p = 250 - 50(3.88)

p = 56

(f) See Figure 2-25,

Problem 9 [8], A man can walk 200 yards per minute and can swim
100 yards per minute. To get from a point A on the edge of a
circular pool U400 yards in diameter to a point B diametrically
opposite he may walk around the edge, swim straight across, or walk
part way around and swim the rest of the way in a straight line. How
shall he proceed if he is to make the trip in the least time? greatest

time?
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X X_ A
A 1 328
2 147
3 116.6
4 101.5
5 92,2
6 86.3
i 8o
\(L: 9, 56 N T3 B ac/ax
20 dR/dx ™ , oy
0 1 ‘\E 3 L 6 7 8 9 10 =

Figure 2-25,

-

Solution: In figure 2-26, AOB = 40O yards is the diameter.

arc(AP) = 4006, PB = 40O cos{8). Therefore, the total time function is

_ Loos . LOO cos(8)
~ 200 - 100

T7(9)

T(6) = 20 + 4 cos (8), 0 <6 < nf2,

Differentiating with respect to 6, one gets

i

D T(6) =2 - 4 sin (8)

6

and the gecond derivative is

DgT(G) -4 cos (8).

i

When DGT(G) = 0, one obtains 6 = m/6 and DgT(n/6) < 0 which

implies T{(n/6) 4is a maximum value at an interior ﬁoint in [o,n/2],
by Theorem 2-13, The Second Derivative Test does not reveal that the
function T(6) has a minimum value at an interior point of [O,n/2]?

However, since this function is continuous on a closed and bounded
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Figure 2-26,

interval [O, TT/2] of E it has both an absolute maximum and an

1°
absolute minimum in this interval by Theorem 2-1, Therefore, the
function must have a minimum at one of its end points. If one evaluastes
the function T at the endpoints, he gets T(0) = 4,00 and

T(m/2) = 3.14. So the minimum of T is T(m/2) = 3.14. See Figure

227,

T B O g nn SN imay v, n

:1—':;...«..‘-.\ e B G ew

]
RN
n/12 n/6 n/h m/3 on

Figure 2-27.
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Hence, the man should walk in order to make the trip in the least
amount of time. To make the trip in the greatest amount of time, he
should walk hOOﬂ/6 yards around the edge of the pool and then swim

346.4 yards in a straight line from point P +to point B,



CHAPTER III
FUNCTIONS OF SEVERAL VARIABLES

Most of what was said about functions, continuity, neighborhood of
points, derivatives, etc., in connection with the extrema of functions
of one variable can be generalized or extended fo functions of several
variables. .For instance, a neighberhcod of a point Xq in El was
defined to be an open interval of the form (xo - h, Xq * h). However,
such an interval can also be describhed by the inequality ‘x - XOI < h.
If X = (p,q) and 'XO = (po,qo) are points in the plane, this inequal-
ity, with TX - Xol appropriately defined, still makes sense and, in
fact, describes the interior of a circle with center at Xo and
radius h. Such a circle is called a two~dimensional neighborhood of a
point in the plane, This concept may also be expressed as

2 o o
(@ - py) +(q-qo) <n

3 (three-dimensional space) is

definéd as an ordered triple of real numbers (po,qo,ro) and a neigh-

for points in Eg. A poing XO in E

borhood of XO in E, can be expressed as

3
X'-Xy| <h or (pl - po)2 + (ql - qo)2 + (rl - ro)2 < .
In this manner, one can just as easily consider an ordered set of n
real numbers (pl, pg,...,pn) and refer to this as a point in a
n-dimensional space. The distance between the points P and Q can be

defined to be

60
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Q.- pl = [(q - 1@1)2 + (g, - 1@2)2 SERTT N C -pn)g]l/2

and a neighborhood of P can be defined as IQ -.Pl < h. This discus-
sion of the definition of neighborhood illustrates the way in which many
concepts in one dimension can be readily extended to n dimensions. In
this chapter some basic definitions and theorems characterizing func-
tions of two, three, and n wvariables will be treated as they apply to
the extrema of such functions. Necessary and sufficient conditions for
a function of several variables to have an extremum will be developed.
Illustrative examples and figures where possible will be used to clarify
the theory. Some of the definitions and theorems will be stated for the
two-dimensional case in such a way that they can 5e readily extendedto
three or more dimensions. Finally, Lagrange's method will be explained

and illustrated.
Review of Some Basic Properties

A real-valued function f of n variables may be thought of as a
mapping haviﬁg its domain in En and its range in El(reals), The
concepts-of neighborhood, interval, interior point, accumulation point,
limit, and continuity in En are stated as extensions of their one-
dimensional analogues. Differentiation of a real-valued function of
several variables, in one sense, is achieved by treating it as a func-
tion of one variable at a time. This leads to the concept of a partial
derivative. The existence of a differential is a basic property in-
volved in extending the principal theorems of one-dimensional derivative
theory to functions of several variables. The Mean Value Theorem is
extended to»a function of several variables, Higher order partial

derivatives and differentials are used to extend Taylor's formula to a
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function of several variables.

Definition 3-1. A real-valued function in E2 is the set f of

ordered pairs (é;b) such that no two different pairs have the same
first components and where a itself is an ordered pair, i.e.,
a = (x,y), and b is a real number. The set D, of all a (first
components) is called the domain of f, and the set Rf of all
b = f(a) [second components] is called the range of f.

If each number-pair (x,y) in the domain Df of the function f

is associated with a point in the rectangular coordinate plane, then the

domain Df of £ may be represented as a region in the plane.

2

Illustrative Example 3-1, Let f(x,y) = (1 -x" - yg). Then the

domain Df of f 1is the set of all number-pairs (x,y) such that

X2 + y2 £ 1 and Df in this case is a circle and its interior, a

region of the rectangular coordinate plane. The reader may refer to

Figure 3-~1.
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Definition 3-1 for E3 can be stated in similar manner simply by
redefining a as (x,y,z). In E3, the domain D, of f may be
represented as region in a rectangular coordinate space.

As a matter of notation, the letter x with the bar over it will

represent a vector or a point in E_ , i.e., X = (xl,xe,...,xn), in

the definitions which follow,.

Definition 3-2. An open sphere of radius r > O having its

center at the point Xq in En is the set of all X in En such that

X - Eb < r., An open sphere with center at X

hood of §6 and is denoted by N(Eb) or by N(Eb;r), if r is its

is called a neighbor-

radius. The open sphere with its center removed is called a deleted

neighborhood of §6 and is denoted by N’(Eb) [6].

In E this open sphere turns out to be an open circle. Instead

23

of using circles in E2, spheres in E3 and n-dimensional spheres in

En’ we could use rectangles in E rectangular parallelepipeds in E

27 3

and n-dimensional parallelepipeds in En as neighborhoods of points,
The next definition generalizes the concept of a one~dimensional

interval,

Definition 3-3. Let a = (al,ae,...,an) and b = (bl,bg,,o.,bn)

be two distinct points in En such that ay < bk for each

k = 1,2,,..,n. The n-dimensional closed interval [a,b] is defined to

“be the set of points (xl,xg,...,xn) such that a, < x_<b,

k= 1,2,.00.,n., If ak<tk for every k,'mendﬁmmﬁmmldmn

interval (a,b) is the set of points (xl,xg,.o.jxn) such that

a_ < x <b

k k K’ k=1,2,...,n [6],

" The open interval (a,b) can be interpreted as the cartesian
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product (a,b) = (al,bl)x(ag,be)x.;.x(an,bn) of the n one-dimensional
open intervals Kak’bk)‘ In a similar manner, [a,b] can be expressed
as a cartesian product of n one-dimensionai closed intervals [ak,bk].
| With the concept of a neighborhood of a point Eb in En clari-
fied, one can now generalize the definitions of interior and accumula-
tign points in El with little or no change in the wording of these

definitions, except for dimension,

Definition 3-4. Let S %be a set of points in En and assume X

is in S. Them x is called an interior point of 8 1f there exists a
neighborhood N(x) contained in 8. The set S 1is said to be open if
each of its points is an interior point [67.

Every open sphere or open interval is an example of an open set.

Definition 3-5. Assume S is contained in E, x is in E .

Then x is called an accumulation point of S if every neighborhood
N(x) contains at least one point of S distinct from X, i.e. the
intersection of N’ (x) and  S is not empty. A set S in En is said
to be closed if it contains all of its accumulation points [6].

A closed sphere or a closed interval is a closed set.

Definition 3-6. A set §S. iﬁ Enb is said to be bounded if S
lies entirely within some spheré or interval [6]. : |

Conéider a'reél-valged function defined on a sef S . in En; Let
a be an accumulation point of S and let b belong to Ei' :Then the
limit f(x) =b as 7 approaches a if and only if: for evéfy
neighborhood N(b) in E , there existé a neighborhood N(E)v in E/

such that

X belongs to N’ (a) NS implies f(x) is in N(b).
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It can easily be proved that if the limits of two functions f and g
exist as x approaches 5; then the 1limits of their sum, difference,
and product exist as x approaches a. Furthermore, if g(i) f 0 in
some neighborhood of N(a) then the limit of (f/g)(x) exists.as X
approaches a.

In the definition of the symbol 1im f(X) =b, it is not required
~ X = a » '

that the function be defined at X = a. Moreover, if f 1s defined at
X = a, the value of f(a) need not be equal to b. In the event f(a)

is equal to b, then the function f 1is said to be continuous at a.

Definition 3~7. Let f be defined on a set 8 in En with func-

tion values in E and let a be an accumulation point of S. Then

l}
f is continuous at the point a if and only if
(i) f 1is defined at a,

(ii) 1lim f(x) = f(a) as x — a.

If a 1is not an accumulation point of S, f 'is continuous at '5
if only (i) holds. If f 1is continuous at every point of S, then f
is continuous on the set S ([6]. It follows readily from the défini-
tions that the sum, difference, or product of two continuous functidns
f and g 1s continuous. Ir g(x) # 0 for all x in‘the intersection
of D, and Dg’ then (f/g) is continuous in the intersection of Dy
and Dg'

Two other concepts of extreme importance in the develoﬁmentvof the

theory of maxima and minima are the partial derivative and the

differential of a function.

. Definition 3-8. ILet x = (xl’XE""’Xn) be a point in E , and

let y = (yl,yg,..,,yh) be another ppint all of whose coordiﬁates,



66

except the kth coordinate, are the same as those of x. Consider the
limit

limit £(y) - £(x) as Ve = K
e = %k

When.fhis limit exists, it is called the partial derivative of f with
respect to the kth coordinate and is denoted by Dkf(i) or fk(§) 7[6].
‘Although the concept éf the partial derivative plays an important
role in the theory of extrema, it is not a satisfactory extension of the
one-dimensional concept of a derivative., For example, the mere exist-
ence of the partial derivatives of a function of several variasbles at a
given point (al,az,...,an) does not imply continuity at that ﬁOint.
One 1g thus led to define the differential of a function, This concept
permits us to extend the principal theofems of one-dimensional derive-

tive theory to functions of several varisbles.

Definition 3-9. Let f be a real-valued function defined on an

open set S5 in En, and assume x is in S. Then f has a differ-
ential at x if there exists another function g which satisfies the
following conditions:

(a)‘ g 1s a real-valued function of two n-dimensional variables,

and the function values, denoted by g(x;t), are defined for

the given point X in 8§ and for every point t in E .

(b) g is linear in the second variable, that is, for every pair

of points ‘%i and t2 in En and for every pair of real

numbers a and a

1 oy WE have

g(x;altl + a2t2) = alg(x;tl) + azg(x;tg).

(c) For every € > 0, there exists a neighborhood N(X) such



that y is in N’ (x) dimplies
l£(y) - £(x) -e(x; ¥ - x)| <ely - x| [6].
Frequently the symbol d4f is used instead of g and the symbols

dxl, SYRREEY dxn instead of tl’ t2, cees tn for the components of

. In this notation one would write

df(x;gx) = le(x)dxl + e +‘an(x)dxn
= vf(x)-dx
where vVf(x) = (le(i), cees an(ij), a vector-valued function, is

called the gradient of f. It is assumed that the n partial deriva-
tives of 'f exist at the point X in En. A sufficient condition for
the existence of the differential of f at a point X 1is that the n
partial derivatives of f exist and be continuous at Xx. Also, if a

function f has a differential at x, then f is continuous ‘at X.

Definition 3-10. If x and y are two distinct points in E,

then by the line segment L(i;;) joining _i- and §3 is meant the set
L(xX,y) = {z:2 = 6% + (1L - 8)y, 0 <8 < 1}.
L(x,y) 1is called an open line segment, and L[X,y] is called a closed

line segment [6].

Theorem 3-1 (MEAN VALUE THEOREM IN E_). Assume that f has a
differential at each point of an open set S in En' Let x and §
be two points of S5 such that the line segment L(i;;) — 5. Then there
exists a point z of L(X,y) such that

£(y) - £(x) = v (z)-(y - x) [6].

In connection with differentials of higher order one ﬁeeds to use

partial derivatives of higher order., So at this point, these two con-

cepts are defined and Taylor's formula for functions of several
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variables is stated.

Definition 3-11, Let f %be defined on an open set in En’ and

assume that the partial derivative Dkf exists in S, Then Dr kf
) 2

will denote the partial derivative of D, f with respect to the rth

k

varisble, that is, D f = Dr(Dkf) whenever this derivative exists.
2

Higher -order partial derivatives are similarly defined [6].

Definition 3-12, Let f ©be a real-valued function defined on a

subset of En' The second-order differential d2f is a function of two

n-dimensional variables defined for those points X in 'En where f

has second-order partial derivatives and for every t 1in En by the

equation

t t ).

n
2 ,— — ‘ - o T
a“f(x;t) = ) Z Di,jf(x)tjti, if t = (¢ preeesty

l)

The third-order differential d3f is defined by the equation

n

>~

3 - _ —
& f(x,t) = Di’j,kf(x)tktjti,

>
1>~z

izl j=1 k=1
and the mth order differential d™f is similarly defined when all mth
order partials exist [6].

It should be noted that the higher-order differentials are not

linear in the second variable. Also, d2f is a quadratic form, d3f

a form of the third degree, and dmf a form of the mth degree.

Theorem 3-2 (TAYLOR'S FORMULA ZE_En), Let f have continuous

partial derivatives of order m at each point of an open set S in En'

If a isin S, b is in S, a # b, and if L(a,b) e« S, then there

exists a point z on the line segment L(a,b) such that
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m.—
£(5) - 2(2) = ) (/x)E@EE - D) + (fnt)a (@5 - B (6],
k=1

Illustrative Example 3-2. Write out Taylor's Formula for

£(x,y) = e* gin (y) about the point (0,m/2) where m = 3.
Solution:
£(x,y) = e’sin(y), f(o,m/2) = 1,
fx(x,y) =,¢X sin(y), fX(O,ﬂ/E) =1,
fxx(x,y) = et sin(y), fxx(O,ﬂ/E) = 1,
f XX(x,y) = e sin(y), fXXX(O,n/E) =1,

£ (x,y) = & cos(y), fy(O,ﬂ/E) = 0,

y
fyy(xyy) = _eX Sin(y)s f (O,'n'/2) = -
'fyyy(x,y) = -e* cos(y), (O n/2) =

X
foy(xoy) = e cos(y), £ O;ﬂ/E) =

pe
fxxy(x’y) = e cos(y), fxxy(O,ﬂ/E) = 0,

£ (x,y) = -e" sin(y), £__(0,m/2) = -1,

Xyy xyy

f(x;y) - £(0,m/2) = fX(O,ﬂ/E)x + fy(O,n/E y - n/2) +
(1/2)[fxx(o,n/2)x2 +ef, (o, n/z x(y - n/2) +
fyy(O,ﬂ/E)(y - w/2)7] + 1/3 £ (X l,yl)x
3fxxy(xl,yl)x2(y - mf2) + 3fxyy( Xy, )% -n/2 )°
+;wy&lﬂixy-Tym3L 0 <x, <x,

n/2 < vy <Y.
By substitution, one gets
fx,y) - 1=x+ (1/2) x2 - (y - TT/Q)E:I + (1/6)(f

(x),y, )% (y - mf2) + Bnyy( LYy - mf2)F

3
XXX (Xl’ I x? +

xxy

yy(xl’yl) y - ﬂ/2 ], 0 < X, <%, /2 < vy, <V
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Functions of Two Variables

The definition of the extrema of a function of two or more vari-
ables can be given as an extension of the definition of the one-
dimensional case (Definition 2-4), In this section attention is
centered on functions of two variables. A necessary condition for a
differentiable function f +to have an extremum is established. Some
theorems giving sufficient conditions for a function f +to have
extrema are stated and proved. A saddle point of a function is defined
and a condition for the same is stated without proof. The principle of
least squares is demonstrated. Following each basic theorem is an

illutrative example.

Definition 3-13. Let f be a real-valued function defined on a
set S in En. Then f 1is said to have an absolute maximuﬁ on the
set S if there exists a point a in S such that

f(x) < f(a), for all x in 8.
If a belongs to S and if there is a neighborhood N(a) such that
f(x) < £f(a), for all x in N(a) n S,
then f 1is said to have a relative maximum at the point a.
Absolute minimum and relative minimum are similarly defined, -using
£(x) = £(2) [6].

In E the definition can be simply stated as follows:

2’

Definition 3-14, A function f(x,y) has an absolute maximum at a

point (a,b) of a region R if and only if
f(a,b) 2 £(x,y)
for all (x,y) in R. A function f(x,y) has a relative maximum at a

point (a,b) of a region R if and only if there exists a positive
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number ©® such that
f(a,b) p-3 f(x,y)
for all (x,y) of R at which

2 r81.

In a similar manner, the definitions for absolute or relative mini-

0< (x - a)2 + (y - b)2 <

mum of f(x,y) can be stated using the inequality f(a,b) < f(x,y).

Illustrative Example 3-3. Let the function f(x,y) = X2 + y2 be

defined on the region S as shown in Figure 3-2 in EE' Then
f£(s) = [0,8] implying f(2,2) = f(2,-2) = 8 is the absolute maximum

value of f and f£(0,0) = O is the absolute minimum value of f.

1

////’

(1,2)

.

OO

N
—
no
-

O
~

Figure 3-2,

Abfundamental theorem for the existence of both absolute maximum
and absolute minimum values of a function of several variables,
analogous to the theorem for the one-dimensional case (Theorem 2-1) is

now stated.
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Theorem 3-3. Let f %be a real-valued function which is continuous
on a closed and bounded set S in E2. Then f has an absolute maxi-
mum and an absolute minimum on S [6].

The proof of this theorem is identical to the proof of Theorem 2-1,

Therefore, it is omitted here,

Definition 3-15. A point ib is a critical point in E2 if

af(x,) = 0 [9].
If f 1is a differentiable function on S, one need look only

among the critical points for relative extrema.

Theorem 3~4, If the function f has a relative extremum at Eb

and f is differentiable at x then x. is a critical point [9].

0’ 0

Proof: Given a direction v, let F(t) = f(;?o + tv) for every t
in some open subset of El containing O. Then -F has a relative

extremum at O, and consequently by Theorem 2-4 F’/(0) = 0, But

F’(0) = df(ib)-v is the derivative at x, in the direction v. Hence,

df(;?o)-x7= 0 for every v, which implies that df(;?o) = 0.

Theorem 3-5 (Necessary Condition). ILet f have finite partial

derivatives Dkf(i), k = 1,2,...,n, at each point X of an open set
S in En. If f has a relative maximum or a relative minimum at the

point x, in 8§, then Dkf(ib) =0 for each k =1,...,n [6].

Proof: Assume that the partial derivatives Dkf(i) where
k = 1,2,...,n, are continuous at each point x of the open set S.
Then f has a differential at x [6], and the gradient vector Vf(x)
exists. This implies

af(x3%) = ve(x)-E, if T is in e [6].
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Therefore, if f has a relative extremum at an interior point X of an
open set 8 in E , and if Vf(x) exists, then ¥vf(x) = 0. Since
v (x) = [le(:?),...,an(x)] = 0, then

le(x) = Dgf(x) = L., = an(x) = 0.

This completes the proof.

Note that the formula af(x;t) = Vf(x)'t bears a strong resem-
blance to the equation af(x;t) = £°(x)t, which holds in the one-
dimensional case. This suggests that the gradient vector Vvf plays the
same role in E  as the derivative f/ in E,.
The writer now gives some definitions which will simplify the

statement of several other important theorems.

Definition 3-16. A domain is an open set, of which any two of its

points can be joined by a broken line having a finite number of segments
all of which the points belong to the set. A region is either a domain
or a domain plus some or all of its boundary. If it contains all of .its

boundary, it is a closed region [9].

Definition 3—17. If £ I a continuous function, then f 1is said

to be a function.of class CO° If the partial derivatives fl(i),

f are

fg(:?), cees fn({c‘) exist for all X in D and £, foy vns £

" continuous, then f is a function of class Cl. If all of the gth

order derivatives of f exist at every X in D and each f, 5
17 1g

is a continuous function, then f is a function of class cd [9l.
Theorem 3-6. Let
1. f(x,y) belongs to Cl in a bounded region R counsisting of

a domain D and boundary curve T, and
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2. f(a,b) > f(x,y) for some (a,b) in D and all (x,y) in T.
Then there exists a point (xo,yo) in D such that
£ f(x,y) s f(xo,yo) for all (x,y) in R, and

B. £ (x,¥,) = f,(x5,55) =0 [8].

Proof: Since f(x,y) is continuous in the closed region R, it
haes a meximum there, by Theorem 3-1, This occurs at some (xo,yo) in
D by virtue of hypothesis 2. Conclusion B follows from Theorem 3-5,
This ends the proof of the theorem.

By reversing the inequality sign in hypothesis 2, one gets a mini-

mum value of f in conclusion A.

Illustrative Example 3-4, Show that the function

f(x,y) = xu + Yy - Exg TR x2 + yg <

has an ebsolute minimum and find the same [8].
Solution: To establish hypothesis 2 of Theorem 3-6, polar

coordinates are introduced as follows:

flrcos(0),rsin(0)] = fh(coshe + sinhe) - 2r°c0s°0 + 8rosino + k.

On the circle r =7 the first term is at least rou/h, the second

O)i
term is greater than —2r02 and the third term is greater than zero.

Thus f(x,y) on a circle r = r, 1is always greater than

(roh/h) - 2ro2 + 4, In particular if r, = L, f(x,y) is greater than
36 for all (x,y) on this circle. Since f£(0,0) = 4 Theorem 3-6
shows that an absolute minimum exists in the region bounded by the
circle Ty = b,

To find it, the first partial derivatives are set equal to zero as

follows:
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fl(x,y) I =0 or 2 - x = 0, and

3

My3 + 16y =0 or y° + Ly-=

£, (x,y)

The solution set of this system consists of (0,0), (0,21), (0,-2i),
(1,0), (1,21), (1,-2i), (-1,0), (-1, 2i), and (-1,-2i). Since (0,21)
(0,~-21), (1,21), (1,-21), (-1,2i), and (-1,-2i) are imaginary solu-
tions or points one only needs to try the points (0,0), (1,0), and
(-1,0) 1in E,. There exists a minimum £(-1,0) = £(1,0) = 3 at the
points (-1,0) and (1,0).

The writer will now establish gufficient copnditions for relative
maxima and minima., To make this discussion easier the appropriate

theory of definite quadratic forms in two variables is introduced and

used,

Definition 3-18. A real-valued function defined on EE by an
equation of the type
2 2
Flxp,%y) = Ei EZ 81570155
i=l j=1 '
where a;y = a,; are real ‘numbers, is called a quadratic form [6].

ji
This form ~F(xl,x2) can also be expressed as follows:

o o
1¥p) = B X +apX Xy 4 a21x2xl t AKXy,

F(x
A guadratic form F 1s called positive definite if, for every
vector (xl,xg) # (0,0),
F(xl,xg) > 0.
It is called negative definite if, for every vector
(x;,%5,) # (0,0),
F(xl,xg) < 0.

Now the question as to when F 1s positive definite or negative
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definite is considered. First (1) is Tewritten as

2 2
F(xl,xe) = a %] + 2a12x1x2 T oay %,

Complete the square in X, as follows:

2 o
Flxy,%y) = 8 [x) + (2a ) pxp/ay 1 )%y + (a22X2/all)]

2
“all[Xl + (2a )x +

12 E/all a12x2/all

12 2/311) + (s xe/all)]
= el +ap 2/511) + (agpx e/a ) - 12 2/311
= all[(l/ail 2%y + Rp,) (l/ail)(allaEE - aie)xgl-
= l/a allxl + 8%, 24 (alla22 - aig)xe]. (2)
In (2), it is observed that F 1is the product of (l/all) and the sum

(or difference) of two squares. Therefore, 1if a., > O,

11
2 . . : s
81,805 - 8/p > 0, and (xl,xg) # (0,0), i.e., F 1is positive defi-
. . 2
nite, F(Xl’XE) > 0. Also, if a,, <0, a;.8,, - a;, >0, and

(xl,xe) £ (0,0), F(xl,xe) <0, i.e., .F is negative definite. The

2 , .
statement alla22 - alE > 0  is now written as

The foregoing discussion establishes the following lemmas:

Lemma 3-1.

2 2
1. F(Xl’x2) 8, %] + 28X X, + a,,%,

1 12712 .
is a quadratic form in Xy, X5, and
2. a;9 > 0, 8,7 845
>0
a a

21 22
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imply -F(xl,x2) is positive definite.

Lemma 3-2,

AN

2 2
1. bF(xl,xz) = a, X] + 2a12x1x2_+ 8,0%,

is a quadratic form in X5 Xp» and

2, a ., <0, Ja a

11 11 712

>0

a a

21 T2z
imply ’F(xl,xg) is negative definite.

Definition 3-18 of a quadratic form in two variables X apd X,
as well as lemmas (3-1) and (3-2) can readily be extended to quadratic
forms in three‘or more variables. Such extensions will be considered in
the next section.

Sufficient conditions for a relative maximum at a point are now

given.

Theorem 3-7 (SUFFICIENT CONDITIONS).

1. f(x,y) belongs to 02,
2. f; =f, =0 at (xo,yo),

2 .
3. £ f, - f], >0 at (xo,yo),

b, £, <0 at (xoyo)

imply f(x,y) has a relative maximum at (xo,yo) [8].

Proof: The plan of this proof is to show that Af 1is a negative
definitevquadratic_form in some neighborhood of (xo,yo).v By Theorem
3-2 (Taylor's formula- with remainder) the foliowing eqﬁatibn can be
written: | i

Af = 'f(xo + h, yo + k) - f(xoyyo)



= (1/2) . fij(xo + 6h, y, + ok )
i=l j=1
where: 0 € 8 <1, Or

. » 2
Af = (1/2)[f,,(x, + 6h, y, + 6k)(x - x.) +
2f12(xo + 6h, ¥, + ok ) (x - xo)(y - yo) +

2
fo0(xg + 61, ¥, + 0k) (¥ - ¥,)7]

clearly shows that dzf, a function of (x - xo) and (y - yo) with

(xo + 6h, Yo + 6k) fixed, is & quadratic form in two variables. By
hypothesis 1 it is clear that inequalities 3 and 4 also hold in some
neighborhood of (xo, yo). If the point (xo +h, ¥, ; k) is in this
neighborhood, the coefficients of the quadratic form Af will satisfy
the conditions of Lemma 3-2, so that Af < 0 throughout the neighbor-
hood, except at h =k = 0, where Af = 0, Hence, f has a relative
maximum at (xo, yo). This completes the proof.

To apply this theorem for a minimum, one has only to reverse the
inequality in hypothesis k. This would make Af positive giving

f(x,y) a minimum at (xo,yo) by Definition 3-1k.

2

Ir f£..f - le =

11500 0O, there may be a relative maximum, a rela-

tive minimum, or neither at &Wy&, i.e.,

Af = (l/2fll)[(fllh + flzk)gj <0 if f., <0,

Af = (1/2fll)[(f11h + f12k)2] >0 if f,, >0, and

AF = (1/2f11)[(f11h + flgk)g] =0 if f;h+ f k=0,
In other words,~ fllf22 - f§2‘= O is inconclusive because the sign of
1500 --fiz at (xO + h,¥, + k) 1is not known.

Illustrative Example 3-5. Classify and find the extreme values
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(if any) of the function
2 2
f(x,y) =x +y +x+y+xy [6].
Solution: The first partial derivatives are

2x + 1 +~§

1

fl(xfy)

1

fe(x,y) 2y + 1 + X.
BSolving the system of equations
2x +y = -1
X + 26 = -1,
the solution set consisting of (-1/3,-1/3) is obtained. The second

partial derivatives are

#ll(X)Y) = 2; flg(XQY) = l) fgz(x;y) = 2,
£4f5 = £, =3>0 at (-1/3,-1/3) and £, =2>0 at
(-1/3,-1/3).

Therefore, if(—l/3,—l/3) = -1/3 is an absolute minimum.

Illustrative Example 3-6, Classify and find the extreme values of

the fgnction

f(x,y) = y2 + xey + xu.
Solution: Take the first partial derivatives and set them equal

to zero, i.e.,

2xy + Uxo = 0

£, (x,¥)

It

fg(x,y) 2y + X = 0.
The solution of the system of equations above is (0,0). Now one needs

to determine the second order partial derivatives and apply Theorem 3-7.

2
fll(x,y) 2y + 12x°, | feg(x,y) =2

flé(x,y) 2x, fgl(X,Y) = 2X.
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2
At (x,y) = (0,0), £,,(x,y) = 0 and £, (x,¥)f,,(x,¥) - £1,(x,¥) = 0.
Therefore, the test is inconclusive,
The increment of f can be written as follows:

Af = £(x,y) ~ £(0,0)

I

2 2

Yy + XYy + X

y2 + xgy + (xu/h) - (xu/l\t) + X
[y + (F/2)F + [3x7/u0,

This is the sum of two positive terms and therefore is positive definite

L

it

i}

which implies that f has a relative minimum et (0,0).

A function f(x,y) hes a saddle point at (xo,yo) if

f.

L (%0s¥g) = £5(%4,7) = O snd if the difference

Af = f(xo + b,y + k) - f(xo,yo)
hes both positive and negative values in every neighborhood of

(xo,yo,). See Figure 3.3,

Figure 3-3 .

One way to think of a saﬂdle point is to picture f as a function of x
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alone with a maximum at x =X and then picture f as a function of

0’
y alone with a-minimum at y = yo. The surface z = xy (the familiar
hyperbolic paraboloid) has a saddle point at the origin as shown in
Figure 3-3.

The- theorem to follow gives conditions for a function f to have
a saddle point.

- Theorem 3-8.
l; f(x,y) belongs to @

2, £, =1, = Q at (xo,yo)

2
3. fl, - f,f,, >0 at (xo,yo)

imply f(x,y) has a saddle-point at (xo,yo) [81.
The proof of this theorem which is similar to that of Theorem 3-7
will be omitted here. The same may be found in the reference listed

above,

Illustrative Example 3-7. Test the function for relative maxima,

relative minima, and saddle-points

£(x,y) = © -y + 3% + 3y° - 9x £al.

Solution: Solving the system of equations

3x2 + 6x - 9=0

il

£, (x,7)

2
£,(x,5) = 35" + 6y = 0
the solution set {(1,0), (1,2), (-3,0), (-3,2)} is obtained. Now the
second partial derivatives of f(x,yj' are as follows:

fll(xjy) = 6x + 6, flg(x:Y) = 0, fEE(X’y) = -6y + 6.

See Table 3-1 for rest of problem,
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TABLE I

TABULAR SOLUTION OF ILLUSTRATIVE EXAMPLE 3-7

Point , 5 Extrema or

in E2 fll f12 f22 fllf22 - f12 Saddle~points
| ,. of £(x,y)
(1,0) 12 >0 0 6 72 > 0 Min., -5

(1,2) 12> 0 0 -6 72 <0 s.P.,(1,2,-1)
(-3,0) + 212 <0 0 6 -T2 < 0 S.P.,(-3,0,27)
(-3,2) 212 <0 0 -6 72 >0 Max.; 31

Another interesting application of this theory is the Principle -of

Least Squares. Let it be required to fit a straight line y =ax + D

to the data consisting of the points (xl,yl),...,(xn,yn)--a line which
comes nearest to fitting the linear distribution of the points. That
is, determine constants a and b so that

n
2
f(a,b) = E:(axi +b - yi)
i=1

will be a minimum. .See Figure 3-4,

Figure 3-4.
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Set the first partial derivatives equal to 0O and find the second order

partial derivatives as follows:

n
£ (a,b) =2 z (ax;, +b - y,)x; =0 (3)
n
fg(a,b) =2 E: (ax, +b -y,) =0
i=1
n
Vo2
£, (a,b) =2 ) %y
i=1
n
fle(a,b) = 2 z Xy
i=1
e
f22(a,b) =2 z ‘1 = 2n
i=1

Since

u E\/]s

n n n n
2 X 2

() DY D) () x (1/2 2 L-x)P>0 0 ()
i=1 i=1 i=1 J=1

[8], f has a relative minimum value by Theorem 3-7. By Theorem 3-6,

this relative minimum is unique which makes it absolute [8].

Solve equations (3) and (4) simultaneously, i.e.,

(zx)a+(Zx)D=Z_x.y‘i

i= l

n

(Z x)a+(z l)b:—z»

i=1

getting
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b = E: yi/n) - (a.m xi/n)
1=1 i=1
b = §'- ax (7)
Xy, - (Z xl)g/n
L o=l i=l
) - () x)m (8)
i=1 i=l

Substituting these values for a and b in the equation

y=ax +b
one obtains what is called the regression equation, the estimating
equation, or the prediction equation. These labels.are used inter-
changeably. The process of passing a straight line or curve through a
set of points (data) in an effort to describe the trend of events is
called curve>fitting. Determinants may be used to advantage in writing
down the equation for the line or curve. For a straight line the

determinantal equation [8] is

X Yy 1
n n - n
) %5 Z Y3 Z 1 =0, (9)
i=1 i=1 i=1
n n n
zi x2 }; X }; X
L% L %Y 4%
i=Y i=1 i=1

Illustrative Example 3-8. Pass a line through the following

points by least squares: (-2,0), (-1,0), (0,1), (1,3), (2,2). Plot

the line and the given points [8].



Solution: n

I
N
'_l
1 D~Tw
Y
'_l
W
o
'_l
T e )]
]
'_l
i
o
>~
5
T
il
'_l
o
>~
Y
'_l
o]
'_l
I
N

X =0, y = 1.2
Substituting in formulas (7) and (8), one gets
a=[7 - (0)(1.2)]/[10 -0] = .7, b=1.2 -0.7(0) = L.2
Therefore, y = .T7x + l.2. Equation (9), the determinantal form of the

equation of a line, gives the same result,

x vy 1
0O 6 51=0
10 7 O

which expands into

y = .7x + L.2.

For the graph of the points and line, see Figure 3-5.

Figure 3-5.
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Functions of Three or More Variables

A theorem analogous to Theorem 3-6 for functions of three variables
can be easily developed and proved as an extension of the two-dimension-
al analogue, To extend Theorem 3-7, a corresponding extension of -the
theory of definite quadratic forms in two variables is needed. This is
done and then the corresponding theorems for the n-dimensional case
are stated,

The definition which follows is an extension of Definition 3-18,

Definition 3-19. A real-valued function defined on E3 by an

equation of the type

3 3
F(Xl’xe’xg) = E: EZ 815%1% 57
i=1l j=1
where aij = aji are real numbers, is called a quadratic form [6].
F(Xl’XQ’X3) can also be expressed as follows:

2 .
F(Xl’XQ’x3) = a)pX) FoappX Xy AKX, +

2
85X %) + 8%, + a23x2x3 + (10)

3

XX, +a . x X + a_ X

a .
3131 32732 33°3
It is positive definite if F(xl’XE’x3) > 0, except when

X) =Xy = X3 = 0. F(0,0,0) = 0. It is positive semidefinite if F =z O,

the equality holding for certain values of Xy ,%p,%3, not all zero [8].

If F(xl,xg,x3) <0 for X # 0, then F is negative definite.

Illustrative Example 3-9., Let F = xi + xg + xg. Then F 1is

positive definite. Let G = xi + xg. Then G(xl,xz,x3) is positive

semidefinite. For instance, G(0,1,0) 1is a case in which equality




holds.

Let a = A, a

11. =B, and a,, = C, then the quadratic form

12 22

2 2
Axl +_‘2Bxlx2 + ng

is positive definite if

by Lemma 3-1.
At this point, 'an analogous result for quadratic forms in three
variables is developed. Of course, these quadratic forms can be

extended to n(>3) variables [6].

Theorem 3-9. The quadratic form in three variables 1s positive

definite, if and only if,

21779 B %o 811 %12 %13
> 0, : , ‘
85, 85 851 8gp  8p3 >0 [8]. (12)
ai a a
31?32 33

Proof: Only the sufficiency of condition (12) is proved here.
ILet A represent the three-rowed determiﬁént in (12) and Aij the co-
factor of its element aij' By use of the formula for the product of

two determinants, one has

10 o0 |y, ap a | |t o 0 

A0 Ay Bosi=lany 85 8pg| O Bpp Ang (13)
O B3 A3 P31 232 233 [0 432833
811 8ypfon * By3fas Aghag + 8 ghgg
851 a22A22 + a23A32 a22A23 + a23A33 (1)
a31 _a32A22 + a33A32 a32A23 + a33A33
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Interchanging the rows and columns [11] this determinant may be written

as
%11 801 #31
=la A, + al3A32 a22A22 + a23A32 45132A22 + a33A32 . (15)
a A, + a A a - A,, +a,.A a, A, + A
{%12%23 T 13733 %2223 T %23733 %327e3 T #33733
Now
A=a b+ 8iohin + ai3Al3 f11].
Therefore,
A =ay B, +ay0h, + a23A32 or ayh,, + a23A32 =4 -a,,A,, (L6a)
A=a A _ +a A, +a A or A+ A_=A-3a A .. (1B
31731 T f32723 T 33733 %3723 * %33733 31tq1e 06)
The sum of the products of the elements of one row of a determinant by

the cofactors of the correspdnding elements of a different row of the

determinant is zero [12]. Consequently,
allAEI + a12A22 + al3A32 =0 or a12A22 + al3A32 =
allA3l + a12A23 + al3A33 =0 or a12A23 + al3A33 =
a21A31 + a23A23 + a23A33 =0 or a22A23 + a23A33 =
=0 or

a3IA3l + a32A22 + a33A32

a32A22 + a33A32 =

Substituting (1l6a), (l6b),‘(17a), (170), (l7c), and
one gets
11 %21 431
2ypfoy & - 8nhy ~83185,
81185 Borhay A - ?3IA31

A

811801
-allA3l'
8n1hay

‘a3IA3l'

(17d)

(172)
(170)
(17c)
(174)

in (15)

(18)

The value of a determinant is unchanged if one adds to some fixed row

(or column) a fixed multiple of another row (or column) [11].

may write (18) as

Thus one
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811 %1 %31
0 A 0 = a A (19)
11"
0 0o A
1 0 0
Hence, A O A A = a A?
) 22 o3 |T 81~
0O A, A
32 "33
A, Aog .
. . = a,.A. : (20)
32 733

Now-the terms in xi and in Xy of the quadratic form (10) are

collected as follows:

2 .
xT 4+ (8 X, + a,. X, + a8 -X, + a8, X_ )X, +

Fo=a,% 10%p T F13%3 T Forfp T 831%3/%
(a Xo A XX +8 XX +a . x 2) or
22”2 237273 327372 33°3
F=oa x4 2(a, %, + a . x. )x. + (a X 4 2a. %% + & xg), (21)
1171 1272 137371 2272 237273 3373
2 2
t = = = ; i
Let A =a,,, B=a X + 81 3%3, C = a,x, + 2a23x2x3 +taga¥y in (21).
Thus (21) can be written as
-2
= 22
F = Ax] + 2Bx, +C (22)
It will be shown that AC - B2 > 0 unless X, = x3 = 0, and this will
: : _ 2 s e s
prove F >0 by (11). If Xy = %3 = 0, F =a, %, gnd this is posi-
tive unless X is also zero since a;q > 0, so that F is positive
definite,
2 . 2 . . 2
In AC - B collect the terms in X5 in x2x3, and in x3 as
follows:
2 _ 2 2 2 2 :
AC - B = 8y1855%, + 2alla23x2x3 + alla33x3 - 8%y - 2aleal3x2x3 -

a2 x°
1373’
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2

AC - B = 2 ) e

(a..a,, - 2’ )x2 +2(a,.a,.. -a .a _)x.x_ + (a,.a. . =-a  )x
11%2 "~ #12/% 11823 7 #12%137/%%;5 11%33 ~ #13/%3
(23)

Since Aij is the cofactor of the element aij in the determinant

& a2 (2h4)

Ri3 = 81180 - B1py Bpg 7 811853 - 8198100 App = Bp3835 - By

Therefore, substituting equations (24) in (23), one gets

2 2 2
AC - B™ = A33x2 - 2A23x2x3 + A22x3. / (25)

To show that this is always positive, unless Xy = x3 = 0, (11) is
used again, One needs

o a A a 811 %12 %13

_ 11 712 22 Tes|
Aiz = N e o, A s || %22 %3 > 0.
21 %22 32 733 s & a
31 732 733

But these facts follow at once by hypothesis. This completes thB~proof.
A distinction needs to be made between quadratic forms in two
variables and forms in more than two variables. The former is positive

semidefinite if, and only if, the sign > 1is replaced Dy = 1in (11)
(not both >). If a corresponding change is made in inequalities ilE),

a necessary but not a sufficient condition for (10) to be positive

semidefinite is o¢btained. For, suppose all aij =1, -except 333 = 0.
Then
117 % Pu %2 P %12 fi3
- )
all 8o 851 8pp a23 = 0.
31 %32 f33
F = (xl + %, + x3)2 - xg

F(1,1,2) = -h <0 [8].

Quadratic forms enter into the theory of functions of several
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variables by way of the second-order differential

[}

n
P (GE) = ) za D, ()%,
LDy
1 j=1

i
which is a quadratic form in T when X is held fixed. If all the
derivatives D s are continuous at X, then the mixed partials
Di,jf(i) and Dj,if(i) are equal and a°f  is a symmetric form [6].
With this theory of definite quadratic forms in three variables,

a sufficient condition for a function f of three variables to have an

extremum can now be established,

Theorem 3-10.

1. f(x,y;z) belongs to 02,

2. f, =1f, = f3 =0 at (xo,yo,zo)

1
3- 11170, Jfy Tpp S o f11 Tio Ty
£y fop ’ £ fop f23 >0 at (xo,yo,zo),
f31 T3 133

imply that f(x,y,z) has a relative minimum at (xo,yo,zo) [81.

Proof: By Taylor's theorem,

Af = f(xO + hy, o hy, Zg + h3) - f(xo,yo,zo)
33 *
= (1/2) L }i fij(xo + 6hy, ¥, + Ohy, 7o+ 6h3)hihj
i=1 j=1

where 0 <8 <1, Or

, 2
Af = (l/2)[fll(xo + 6hy, ¥y + Ohy, zy 6h3)(x - xo) +

» 2
fop(Xg + 00y, 3o + Oy, 25+ Oh) (¥ - ¥,)" +

2
+ 6h,, z, + 6h Yz - zo) +

f__(x. + 6h o 3

33'%0 1’ Yo



92

Eflg(x

N

o * Ohy, ¥+ Ohy, zy o+ 9h3)(x - xo)(y —»yo) +

N
3

2f _(x. + 6h +8h,, z, 6h3)(x - xo)(z - zo) +

13 %0 17 Yo

4

2f23(xo + 6h,, ¥, + 6hy, zg 6h3)(y - yo)(z - zo)]

clearly shows that def, a function of (x - xo), (y - yo), and
12 yo + 6h2, zO

form in three variables. By hypothesis 1 it 1s clear that inequalities

(z —'Zb) “with (xo + 6h + 9h3) fixed, is a quadratic
3 also hold in some neighborhood of (xo,yo,zo). If the point
(xo + N, Yo + Dy, Zg + h3) is in this neighborhood, the coefficients
of the quadratic form Af will satisfy the conditions of Theorem 3-9,
so that Af > 0 throughout the neighborhood, except at hl = h2 = h3 =
0, where Af = 0. Hence, f has a relative minimum at (xo,yo,zo).
This completes the proof,

A set of sufficient conditions for a relative maximum of a function

T is obtained by reversing the first and third inequalities in

Theorem 3-10 (Hypothesis 3).

Tllustrative Example 3-10, Let

f(x,y,2) = %= - 2y2 + 322 - Xy + 5%z 4+ yz + X - 2y + 3z.
Test the function for extreme values,
Solution: Take the first partial derivatives and set them equal

to zero, i.e.,

: fl =2Xx -y + 52 +1=0
£, = by -x 4+ 2 -2=0
- f3 =6z +5x +y+3 =0,

The solution of this system is (-5/17,-8/17,-3/17).. The second
partial derivatives of f at (-5/17,-8/17,-3/17) are as follows:

£, =2, £,,(-5/17, -8/17, -3/17) = 2

s



£, = -1, £,,(-5/11, -8/17, -3/17) = -1

13
f21 = -1, f2l('5/l7)

Top = s £pp(-5/17,
23
31
32

T35 = 6, T35(-5/17, -8/117,

33

. =5, f13(-5/17, -8/17,
-8/11,
-8/17,
f. =1, f23(-5/17, -8/17,
f31 = 55 f31(-5/17, -8/17,
foo=1, f32(-5/17, -8/17,

3/17) =5
-3/17)
-3/17)

-3/17) = 1

-3/17) = 5

3/17) = 1

-3/17)

-1

1l

b

6.

Conditions 3 become for (-5/17, -8/17, -3/17)

f,=2>0, |2 -1

-1 -k

Since the signs in conditions 3 are alternately pogsitive and negative,

then f has a relative méximum at

Theorem 3-10.

Illustrative Example 3-11.

f(x,y,2) = x2 + y2 + 322

Let

2 -1 5

-9 < 0,

-1 -4 1

5 1 .6

(-5/17, -8/17, -3/17)

.Classify and find the extreme values of f.

Solution:
fl f 2% -y + 2z
f2 f X + 2y + =
f3‘= 2% + y + 62

This system of linear equations

©)

0

o

has only one solutien,

its coefficient determinant is not zero., At  (0,0,0)

become

= 34 > 0,

- Xy + 2XZ + yZ.

93

according to

0,0,0 since
()J)J

conditions 3
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f.=2>0, |2 -1 o 11 2
1 ’ :
L =3 >0,
1 2 -1 2 1l=4>o0.
2 1 6

Therefore, f(x,y,z) has a relative minimum at (0,0,0), namely,
£(0,0,0) = 0.

Finally, in this section the definition of a quadratic form. in n
varigbles is stated as well as the conditions for positive and negative
'definiteness, and the extension of Theorem 3-10 to n variables. The
proofs of these theorems are essentially the same as those of theorems

3-9 and 3-10. For this reason, they will be omitted here.

Definition 3-20, A real-valued function F defined on En by an

equation of the type

n n
F(x) = z Z aijxix,j’
i=l J=1
where x = (xl,...,xn) in En and the aij are real numbers, is
called a quadratic form. The form F is called symmetric if aij = aji
for all i and J, positive definite if )?;é 0 implies F(J?) >0

and negative definite if x # O implies F(x) <0 {[6].

Theorem 3-11. Let A = det[aij] and let A , denote the
determinant with n-k rows, obtained by deleting the last k rows and
columns of A. Also, put AO = 1, A necessary and sufficient condi--
tion for a symmetric form F +to be positive definite is that thé n+l

numbers AO, A An be positive. The form is negative definite

15 e
if, and only if, the same n+l numbers are alternately positive and
negative [13].

The extension of Theorem 3-10 is now stated as follows:
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Theorem 3-12,

1., T belongs to 02 on an open set S 1in En

2. fl = f2 = .. = fn =0 at XO in S

3. A= det[fij(xo)] #£0
L, By =1>0,8 >0, .00 >0 8% X,
implies f has a relative minimum at Eb. If in hypothesis L4 the

numbers AO’ Al, ey Ah are alternately positive and negative, then f

has a relative maximum at Eb [el.

Illustrative Example 3-12., Let

f(w,x,y,z) = w2 + 2x2 - y2 + 322 + WX + 5wy + Twz - Xy + 2Xz - yzZ.
Examine f for relative extrema.
Solution: Take the first partial derivatives and set them equal to

zero, il.e.,

fl =2W + X + 5y + T2 = O
£, =W+ hx -y +2z2 =0

' (26)
f3 =5 ~-x -2y -2 =0

fh = Tw +‘2x -y + 6z=0
The system (26) has the unique solution (0,0,0,0) since its coeffi-
cient determinant is nonzero. Conditions 4 in Theorem 3-12 become for
(wo,xo,yo,zo) = (0,0,0,0)

=2>0, o1 2 1 5

A =1,A =7
0 1 11 A, - =750,
1k A3=1h-1=-126<o,
5 -1 -2
2 1 5 7
1 L -1 2
A = = -388 < 0.
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Theorem 3-12 is inconclusive in this case. To decide whether this func-
tion has'relative extrema, it is necessary to express f(x,y,z,w) -
£(0,0,0,0) as the sum or difference of squares. This is done as
follows:

f(x,y,z,w) - £(0,0,0,0)

1]

w2+2x2—y2+3z2+wx+5wy+7wz-
Xy + 2xz2 - yz |

[v + (x/2) + (59/2) + (12/2)F°
(29y°/4) - (372°/4) - xy + exz
v + (x/2) + (59/2) + (72/2)F°
(2y/7) + (42/T)T° - (207y°/28)
(2752°/28) - vz |

(v + (x/2) + (5v/2) + (12/2)F
(7/M)0x - (y/7) + /DT -
(207/28)(y + (1hz/201) T - (567292°/5796)

—+

[l

(765/1) -
vz |

(7/W)x -

+

0

—+

i

which can assume both positive and negative values in any neighborhood
of (0,0,0,0), Consequently, this quadratic form is indefinite. This
implies that the function f(x,y,z,w) has neither a relative maximum

nor a relative minimum,

Illustrative Example 3-13. Let

2
f(x,y,z) = X+ EyLL + Xz + 7,
Examine f for relative extrema.
Solution: The first partial derivatives set eQual to zero give

fl(x,y,z) =2x +2z =0

i

£, (x,¥,2) 8y° = 0
f3(x,y,z) =X +2z =0
The solution of this system is (0,0,0). The Second partial derivatives

are as follows:
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fll(x)Y;Z) =,2 fel(x)Y)Z) =0 f3l(x)Y)Z) =1
2

flg(x,y,z) =0 f22(x,y,z) = 2Ly f32(x,y,z) =0

fl3(X)Y)Z) =1 f23(x)Y)Z) =0 f33(X)Y)Z) = 2,

At (0,0,0),

£ =220, 2 0 2 0 1

11
20,
0 0 0 0 of=20
1 0 2

imply that the matrix

et 2

11 "12 713

fo1 Top fog

f
L3l 32 "33
. .
is semi-definite., Therefore, the test is inconclusive in this case [21].
If Taylor's formula with remainder is applied directly to the

function f about the origin, an increment of f can be written as

follows:

R

f(X)Y;Z) - f(0,0,0)

::-:—L-[f

5 (6h,, 6h

2
17 Ohys 9h3)x + 2f12(9h 6h

1’ 0 9h3)xy +

11

' 2
2f13(9hl, én,,, 9h3)xz + fee(ehl, éh,, 9h3)y +

: 2
2f (ehl, oh,,, 9h3)yz + f__(6h ehe,-9h3)z ].

3 33

l)
Or

Af

%-[exe + 2xz + eheehgye + 2z2],

2,22 2

Af x2 + xz + 126 hey + z .

i

If the square in x 1s completed, one gets

2,2 2

AF = (x + z/2)2 + (l/h)(3z2 + 486 h y ), or

(/)0 (2x + 2)° + 486°n5y° + 3271,
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Therefore, for all (x,y,z) # (0,0,0) ‘in some neighborhood of (0,0,0),
Af  is positive definite. This implies that f has a relative minimum

at (0,0,0) by definition.
Lagrange's Multipliers

Consider a function f(x cen xn) where the variables are not

17
independent but are connected by one or more relations. These relations
are called subsidiary conditionms, restrictions, or constraints., To find
the extrema of such a function no new theory is needed. However, the

formal procedure can be freed of any consideration of which variables

are to be regarded as independent by the introduction of extraneous

parameters, known as lagrange's Multipliers. In this section, the
method in the case of one relation bhetween two variables is illustrated
and then the results are summerized in a basic theorem. The cases of.
one‘relation among three variables and of two relations among three
‘variables will be discussed. Finally, it will be indicated how the ;
technique can be generalized to m relations among n variables with
m<n,
First the case of one relation between.two variables is considered.

Suppose it is desired to maximize a functiQn

u = £(x,7) (1)
where x and y are connected by an equatioﬁ

g(x,y) = O. (2)
Let f,g Dbelong: to Cl, gi + gg > 0 1in a region of the xy plane,
Ir g5 _is not zero, equation (2) may be solyed for y by the implicit
function theorem [6] and substituted in equation (1), thus regarding x

as the independent variable. A necessary condition for a maximum (or
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minimum) is thus seen to be

du
e fz(gl/g2) =0

This is obtained as follows:

| - 28
. i 2
u = f(ny)) g(x;y) = 0, a%‘ gg -(gl/g2)
i .
du | df , 3 &y _ du _ o,
el el el 0 or =— =1 - fg(gl/ge) = 0.
Now
il £
rg -fg = | L 2. 238
1°2 2=1 azx,yi )
& &

Therefore, the points desired will be included among the simultaneous
solutions of the equations

g%%f%%-= 0, g(x,y) = 0. - (3)

One could also assume gy # O and take y as the independent variable,
This will lead to the same pair of equations (3).
To solve this problem by the method of Lagrange, the lagrange
multiplier X 1s introduced, forming the function
V= f(x,y) + M(x,Y).
Now one treats x and 7y as though they were indeﬁendent variables
and set

AV (k)

x fl + xgl =0
dV B
Sy = To tMp =0 (5)

Using the method of substitution, one can solve one of these equations
for AN and subsfitute in the other equation. Combining the result with

equation (2) one arrives anew at equations (3). Thus, instead of
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-solving the ‘two equations (1), (2) for x and 7y, one must now solve
the three equations (2), (&), (5) for x, y, and A. This gives the

same pairs (x,y). This result is - embodied in the following theorem:

Theorem 3-13.

1. f(x,v);g(x,y) belong: to ¢' in a domain D
2 2 .
2. gl + g2 >0 in D
then the set of points (x,y) on the curve g(x,y) = 0, where f(x,y)

has maxima or minima, is included in the set of simultaneous solutions

(x,¥,A\) of the equations

£,(x,5) + 2y (x,¥) = 0
£5(x,5) + Mgy (x,y) = 0
g(x,y) =

0 [81.

Illustrative Example 3-12, Find the shortest distance from the

point (1,0) to the parabola y2 = bx., One must minimize the function
| u= (x - 1)2’+ y2
with the constraint
y = hx.
See Figure 3-6.
Consider the domain D as the entire xy-ﬁlane. Then
V= (x - 1)2 + y2 + x(y2 - hx).

Differentiating one gets

ov _ =
é——g(x -l) - =0
oV = =

3 =2y + 2Ny = O

v 2 _
—a-i-—y—hx—o

[

From the second equation either y =0 or ¥y ~1. The latter must be



rejected since it would lead to x = -1

only real solution is

from (1,0) to the curve
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(See Figure 3-6). Hence, the

-1/2, and the minimum distance

= hx is unity.

> <

Pigure 3-6

The case of one relation among three variables is now considered.

Let

u = f(x,y,2

)

g(x;Y)Z) =0

2 2 2
gl + g2 + g3 > 0.

It is seen by elimination that the desired exfrema will lie among the

simultaneous solutions of one of the three systems:

g =20
d(f,e) _
a(x,y)
a(f)g) = 0

azx,z5

according as it is gl, 8, Or g

g=20
d(f,g)
_T_Lq7.= 0
a(y,x
a(f,e) _ 4

a(YJZ)

3

[}

which is different from zero [8].
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Looking for extrema of the function of three variables x, y, z,
i.e.,
V= f(x)Y;Z) + %.g(x,y,z)

leads to the system

g=0
fl + kgl =0
f2 + kgg =0
f.o+Ng, =0
3 7 Mg

Consequently, one can solve at least one of the eguations for A and

thus arrive at one of the above systems.

Illustrative Example 3-13. Find the rectangular parallelepiped of

maximum volume inscribed in a sphere,
X 4 y2 +_z2 -1=0,

Solution: Bince the inscribed parallelepiped will have 1ts center
at the center of the sphere, x,y,z will be the half lengths of the
three sides. Then ohe needs to maiimize the function u = xyz subject
to the constraint x2 + y2 + z2 -1l=0.

JForm the function

V= xyz + x(x2 + y2 rz° - 1)

“ Differentiating, one gets

yZ + 2xx = O
Xz + 2 \y = 0
Xy + 2\z = (6)
x2 + y2 + z2 -1=1.
From the first three equations in system (6) one gets
e LA . SN - '(7)
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Dividing ‘the first equation by the second equation, the first by the

third, and the second by the third in (7) one gets

1= yg/xe, 1= zg/xe, 1= zg/y2
which implies x =y, x =z, and y=12 or X =Yy = Z, The numbers
x,y,z must be determined so that the fourth equation'of system (6) is
also satisfied. Using x %o represent x,y,z and substituting in the

last equation of (6), one gets

52 -1-0 or x =73

since x,y,z must all be positive. Now A = wiéf-. Therefore,
Qﬁ"

U = xyz has a maximum at (1/{?, 1/[5] 1/{3), i.e., u-= 1/3\3.

Hence, the rectangular parallelepiped 1s a cube with edge 2¥W§i

The case of two relations among three variables is now considered

where
u = f(x,'y,z)
g(x,y,2) = 0
h(x;Y;Z) =0
[g_((%%)ﬂ { (y,2 5] [a(ii’x) 0. (8)

There is now a single independent variable which must be chosen in
accordance with the Jacobian which is not zero. All three cases lead
toc the system

d(f,8,n)

g=n"h-= SY§7§TET'= 0. (9)
In this case the lagrange method introduces twoc parameters A and
g glving the function
F = u(x,y,z) + aelx,y,2) + Eh(x,y,z).

By differentiating, this function leads to five equations in five
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unknowns

£, + Mg + by =0

1 1
f2 + ng + phg =0
.o+ N + pyh, =0

3 T 83 T HEg
g=0

Under conditions (8) this system reduces to system (9) when A and u
are eliminated,

Another way to illustrate lagrange's method is as follows:
Consider the problem of meximizing w = f£(X,y,z), where g(x,y,z) =0
and h(x,y,z) = 0 are given. The equations g =0 and h=0
describe two surfaces In space and the problem is thus one of maximizing
f(x,y,2) es (x,y,z) varies on the curve of intersection of these
surfeces, At s meximum point the derivative of f along the curve,
i.e.,, the directional derivatlve along the tangent to the curve, must
be 0. This directional derivative is the component of the vector Vf
along the tangent. It follows that Vf must lie in a plane normal to
the curve at the point. This plane also contains the vectors - Vg and
Vh, i.e., the vectors Vf, Vg, and Vh are coplanar at the point.
Hence there must exist scalars Xl and xe such that

VE + A Vg + A, Th = 0 (10)

at the critical pbint. This is equivalent to three scalar equations:

fl + xlgl + xehl =0

f2 + xlgg + xghg

Il
(@)

f.o + + Ah., = 0.
3 T MB3 T ARy =0

These three equations, together with the equations g(x,y,z) = 0,
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h(x,y,z)'= 0 serve as five equations in five unknowns x,y,z,kl,Kgp By
solving them for x,y,z, one locates the critical points on the curve.
The critical points can be tested by using the second directional
derivative [143. Of course, it has been assumed here that the surfaces
g =0, h= 0 do actually intersect in a curve and that Vg and ¥h
are linearly independent.

The method described here can be applied to functions of =n
‘ variables with ‘m(m < n) constraints by introducing m multipliers.
That is, if the function u = f(xl,,.,,xn) is subject to the following
constraints gl(xl,,,.,xn) =0, ..., gm(xl,,,,,xn) = 0, then a new
function is formed as follows:

Fo=fx),.000,%) + xlgl(xl,...,xn) +oue. F xmgm(xl,...,xn)

Then one proceeds as in the simpler cases above, Of course, the same
basic assumptions regarding the actual intersection of Byreees8 and
the linear independence of Ve, where 1 =1, 2, ..., m are made,

The method of lagrange gives the critical points but these must be
tested to determine whether they are maximum points, minimum points, or

neither,
Problems

There 1s a variety of problems which relate to the theory discussed
in this chapter. In this section we shall select samples from the
fields of number theory, business (profits, joint—production), and

economics (utility function).

Problem 3-1 [8]. The sum of three positive numbers is unity. What

is the maximum value of their product?
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Solution: Let x, y, 2 be the three positive (real) numbers.

Then one-must meximize the function xyz subject to the condition
X+y+z=1 (1)
Eliminate 2z and consider the function
f(x,y) = xy(1L -x -y), x>0, y>0, 0<x +y <1,
Let R Dbe chosen as the region in the first quadrant bounded by the
following three curves
x=0, y=0, x+y=1.

Choose a =b = 5/36, f(a,b) = 25/1944, Then, f(x,y) = O on the whole
boundary-of R and f(x,y) > 0 for all (x,y) not on the boundary of

R. BSee Figure 3-7.

g~ -7

-2 -1

Figure 3-7.

. 1 .
Since f(x,y) belongs to C~ in R and f(é%-, :%J > f(x,y) for

(é%-, é%) in- D and all (x,y) in T, there exists a point (xo,yo)

in D such that
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A, f(x,y) s'f(xo,yo) for all (x,y) in R, and
B. fl(xo,yo) = f2(xo,y0) = 0, by Theorem 3-5.
To find this absolute maximum in R, set the first partial derivatives

equal to zero as follows:

i
o

2
y -2xy -y

'fl(x)Y)

i
o

fg(x,y) X - x° - 2xy

Solving this system of eguations

y - 2xy - y2 0

X - 2xy - x2 =0
one gets x = (1 - y)/2 from the first equation in the system, substi-
tuting this result in the second equation of the system, one gets a
quadratic equation in y of which the solution set is {1/3,1}, and x
is 0 or 1/3. .Since the absolute maximum of f£(x,y) océurs at a

point in the domain and is a positive number, Xq = 1/3 and Yo = 1/3.

Hence, the maximum value of f is f£(1/3,1/3) = 1/27.

Problem i:@_[lS]. The total profit per acre on a wheat ranch has
been found to be related to the expenditure per acre for (a) labor, and
(b) soil conditioners and fertilizers. If x represents the dollars
per acre spent on labor, and y represents the dollars per acre spent

on soll improvement, the following relationship holds:

2 2

Profit, P = U8x + 60y + 1lOxy - 10x~ - 6y .
Determine the optimum expenditure levels.

Solution: Take the first partial derivatives getting

Px = U8 + 10y - 20x
Py = 60 + 10x - 12y,

Solve the system Px = 0 and Py = 0., The solution is found to be
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x =84 and y = 12. The second derivatives are

P_ =20, P =-12, P =10.
xx vy xy

The second derivative test, i.e.,

2
[ny(8.u, 12)]° - PXX(8.h, 12) x Pyy(8.h, 12) = 100 - 240 < 0O

and

PXX (

8.k, 12) <0
implies that P has relative maximum at (8.%, 12), by Theorem 3-7.

Thus the maximum profit is P(8.%, 12) = 561.60 dollars.

Problem 3-3 [15]. Refer to Problem 3-2. Suppose that, due to
financial constraints, it had been decided that a maximum of 15
dollars per acre would be spent on labor and soil improvement combined,
What would be the optimum allocation of expenditure? Interpret the
significance of the sign of the lagrange multiplier.

Solution: Form the function

F(x,y,\) = 48x + 60y + 10xy - 10%° - 6y2 + Az +y - 15).

The first partial derivatives are as follows:

Fl = 48 + 10y - 20x + A
F, = 60 + 10x - 12y + A
F.o=x + - 15,
3 y >
The solution of the system of equations Fl = O,,F2 = 0, F3 = 0, 1s the

set {(159/26, 231/26, -189/13)}, i.e., x = 159/26, y = 231/26,
= -189/13. '
As was done in the previous prbblem, it can be shown that

P(159/26, 231/26) = 522,30 dollars is a maximum value by Theorem 3-7.

The function F(x,y,\) consists of two parts:



109

Unrestricted earnings
+ Decrease in earnings due to combined labor and soil improvement
restriction,
Since A o= —lh;5 is negative, the combined restriction on labor and
soll Improvement limits the earnings to 522.30 dollars as compared

with the unrestricted earnings of 561,60 dollars.

Problem i:&_[l?]. The demand curves for 2 commodities are

Py =2 - bXA and Py =c¢ - dXB. The joint-cost function is
C = mxi + nX% + qXAXB,

where a, b, ¢, d, m, n, and q are constants.

(a) Find the necessary and sufficient conditions for maximum
profits.

(b) What are the prices?

Solution:

(a) The profit function is

2 2 2
T = - - - -
‘aXA bXA + cXB dXA mXB QXAXB°
Take the first partial derivatives and set the same

equal to zero getting the necessary condition for meximum profits, i.e.,

™

TT2 C -ZGJ(B—ZDXB—qXA 0

by Theorem 3-5, The second partial derivatives are

il

a - 2bXA - 2nXA - qXB =0

T = -2b - 2m, T

1 = 24 -2n,7__ = -q

22 12
By Theorem 3-7, the sufficient conditions for maximum profits are that
1) -2b - 2m < 0, and

2) (—q)2 - (-2b - 2m)(-2d -2n) < 0, or
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qg-lt(bd+bn+d.m+m.n)<o

(b) Solve the system

(b + 2m)xA + Xy =a
aX, + (24 + 2n)XB =c
by Cramer's rule getting
a a 2b+2m g
XA = , and
c 2d+2n a 2d+2n
2b+2m a 2b+2m g
XB a c / q 2d+2n

Substitute these values in the respective demand equations and solve for

the prices.

Problem 3-5 [17]. The demand curves for 3 commodities are
Py = 10 - 3X,, pp =20 - 5X;, and p, = 60 - TX,. The joint-cost
function is
C =10 + 5X, = 2X, + 6xC.
(a) Find the necessary conditions for maximum profits.
(b) Determine the prices, total cost, and profits.
Solution:

(a) The profit function is

2 2 , 2
m= 10X, - 3X, + 20Ky - 5X; + 6oxC - X - 10 - 5X, - 2% - 6xC
or
2 2 ’ 2
™= 5, - 3%, + 18xB - 5Xg + 5uxC - X, - 10.

The necessary conditions for maximum profits are that

Il

™

1=95 - 6xA =0

o

18 - lOXB =0
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My = 54 - thC =0

(o) To find the prices, one solves the above system of equations

and substitutes in the corresponding demand equations, i.e.,

X, = 5/6, Xy = 9/5, Xy = 21/1
p, = 10 - 3(5/6) = 15/2

Py = 20 - 5(9/5) = 11

po = 60 - 7(27/7) = 33

The total cost is

C =10 + 5(5/6) + 2(9/5) + 6(27/7) = 8591/210 = L0.91.

The profit is
5(5/6) - 3(5/6)% + 18(9/5) - 5(9/5)% + 54(27/7) - T(7/7)° - 19

11.2k4,

i

It

T

A brief discussion on utility theory is now given before introduc-
ing the next problem. There is a function U = f(x,y), which (in a
sense) indicates the satisfaction derived by the individual from varying
combinations of the amounts of the commodities X and Y. The amounts
of these commodities are X and y and their prices are pX and pyo
Assume that the individual spends all his money on just these two
commodities X and Y and that his income I 1is also given. Then the
so-called budget equation is

PX + Py = 1T,

where Pys py, and I are constants,

The individual will try to maximize U by choosing appropriate
amounts of X and Y while taking the budget constraint into account.

This is a problem in restricted maxima [17].
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Problem 3-6 [17]. A utility index is U = e, Let p, =1,
p, =5, and I = 10. Find the demand for X and Y.
Solution: Form the function |
F(x,y,\) = e 4 a(x + 5y - 10).

Take the first partial derivatives and set the same equal to zero, that

1s,
F,o=ye'l +A=0
F2 = xeXy + 5N = 0
F,=x+ 5y -« 10 = 0, by Theorem 3-5,

From the third equation, x = 10 - 5y. Substitute for x 1in the first
two equations getting

yeloy - 5y2 +AN=0
(10 - 59)e! - 52+ 5 =0

Divide the first equation by the second equation. One gets

y/(@ -y) =1,

y=2 -y
y =1

x =95

A= -e5.

The second partial derivatives are

_ = oLXY _ 2D
Fii=U,=ve", Ull(5,l) =e

- - L2 XY _ 5
Fop = Upy =X €77, U22(5,l) = 25e

[ o _ =5
Fip =U, = xye™, U12(5,l) = 5e”.

Now U ,(5,1) >0 and [U,(5,1)][U,5(5,1)] - [U,(5,1)]2
= 25elO - 5e5 > 0.

Therefore, U has a maximum value at (5,1), by Theorem 3-7,.



CHAPTER IV

FUNDAMENTAL THEORY OF CALCULUS OF VARIATIONS
SIMPLEST VARIATIONAL PROBLEMS

WITH FPIXED ENDPOINTS

Thus far in this report the writer has dealt with the problem of
finding points at which differentiable functions of one or more vari~-
ables possess maximum or minimum values. In the calculus of variations,
one deals with the far more extensive problem of finding functional
forms for which given integrals assume maximum or minimum values, Or,

in the language of geometry, one may say that this calculus deals with

the problem of finding paths of integration for which integrals admit
extrema. In elementary calculus, the student learns how to find the
length of a given curve, 7y = f(x), between two fixed points, A and
B, by means of the formula

s = Ib (1L + y’e)l/edx.

‘a

In analysis, the length of a curve is defined as the limiting length of
a polygonal line inscribed in the curve (i.e., with vertices lying on
the curve) as the maximum length of the chords forming the polygonal
line goes to zero. If this limit exists.and.is finite, the curve is
said to be rectifiable [19]. Suppose one generalizes this problem so
that, instead of being given a curve, y = f(x), and two fixed points

on it, one is given only the two fixed points and is required to find

113
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the curve which minimizes the integral

X

sly] =_I F(XJYJyI)dX-
*a

There are many curves connecting the two points A and B. BSee Figure

L-1,

B (le yl)

A(onyo)

Figure k-1,

The generalized problem is now one in the calculus of variations which
reveals the answer as curves of the form y = mx + b, 1i.e., straight
lines. There are other problems in elementary calculus which can be .
generalized in a similar fashion so as to become problems in the calcu-
lus of variations. For example, which curve revolved about the x-axis
between two fixed points will generate a solid‘of revolution‘with the
minimum surface area? The integrals mentioned above are called func-
tionals, that is, functions from.a function space to the reals. The
domain of the functional is the set of all y, where y = y(x) 1is a

function defined on some closed interval ([a,b]. Likewise, the set of
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all v, “where v =s[y] is a real number, comprises the range of the
functional, The domain of a functional J is a function space, and the
study of functionals J on various spaces Y is the material of
courses in functional analysis. Variational theory is that section of
functional analysis concerned with the existence and determination of

Yo €Y such that J[yO] is eifher an extremum of J[y] or a station-
ary value, A stationary value requires solely the vanishing of the
first differential, without any restriction bn the second differential.
.In this chapter, the writer will discuss the basic properties of the
functional such as the norm, continuity, first variation, second varia-

tion, and other properties which are needed to develop necessary and

sufficient conditions for a functional to have an extremum. This treat-
ment includes Euler's equation‘(a necessary condition), Legendre's

necessary condition, Jacobi's necessary condition, and a set of suffi-

cient conditions for a functional to have an extremum. A brief look is
taken at the case of several independent variables. For the most part,
though, our attention is directed to the simplest variational problem
with fixed endpoints. Illustrative examples are included wherever

they seem appropriate to clarify.concepts.
Functionals and Function Spaces

In this section, the writer gives formal definitions of a func-
tional and of a linear space whose elements may be functions and is
then called a function space. The concept of a norm is introduced to
explain the notion of closeness between two elements in the space,.
neighborhood of an element in the space, and the cbntinuity of a

functional in the space. Several examples of a normed linear space,  in
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which tﬁe elements are f@nctions, are given.

Iet Y denote a gi&en-class of functiéns y:la,b] - E, and let
J:X ﬂ-El be a given function on Y to‘the reals, Such a function J
is called a functional to distinguish it from the more familiar func-
tions, f:El - El' The latter are called point-functions‘because their
values f(x) depend on the choice of a point x in El' The value
Jly] depends on the choice of y €Y.

The formal definition of a particular type of functional, i.e€.,

Jly] is now given.

Definition 4-1. If [a,b] is a fixed interval, F a continuous

function of three variables x,y,y’, and Y the class of all continu-
ously differentiable functions on [a,b], then the statement that
. .
Iyl = | ey, ())ax
‘a
defines a funqtional J:Y - El’ i.e., a functional of a curve with
fixed end points [18].

Since the domain Y of a functional J is usually a subset of
some function space, it can be assumed that in some way or the other
neighborhogds U(yO,B) of ¥, € Y can be defined which make it possi-
ble for us to deal ﬁith such concepts as convergence and continuity
[18]. The concept of continuity plays an important.role for functionals,
Just as it does for the ordinary functions considered in classical
analysis. In order to formulate this concept for functionals, one must

introduce a concept of "closeness" for elements in a function space,

This is most conveniéntly done by introducing the concept of the norm of

a function, analogous to the concept of the distance between a point in

Euclidean space and the origin of coordinates. Although in what
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follows this paper will always be concerned with function spaces, it
will be most convenient to introduce the concept of a norm in a more
general and abstract form, by introducing the concept of a normed

linear space [197.

Definition 4-2, A linear space is a set R of elements x, y, z,

... ©Of any kind, for which the operations of addition and multiplica-
tion by real numbers a, b, ... are defined and obey the following
axioms:

(1) x+y=y+x

(2) (x+y)+z=x+ (y+2),

(3) There exists an element O (the zero element) such that

x+ 0=x for any x €R,
(k) For each x € R, there exists an element, -x, such

that x + (=) = 0,

(6) a(bx) = (ab)x,
(7) (a2 + b)x = ax + bx,

(8) a(x +y) =ax +ay [19].

il

Definition 4-3. A linear space R 1is said to be normed, if each
element x € R is assigned a nonnegative number [|x||, called the norm
of x, such that |

(1) ||x]| = 0 if and only if x = O,
@) laxl = lal {lll,
(3) e+ 3l = [l«l| + fivll, C291.

On the basis of this concept of a normed linear space, one can talk

about distances between elements, defining the distance between x and
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y to be the quantity Hx - yl. The elements of a normed linear space

can be objects of any kind, e.g., numbers, vectors, matrices, functions,
ete, The writer now examines several normed linear spaces which are
useful in our subseguent work.

(1) The space C, or more precisely C(a,b), consists of all
continuous functions y(x) defined on the closed interval {a,b]. By
addition of elements of C and multiplication of elements of C by
numbers, oﬁe'means ordinary addition of functions and multiplication of
functions by numbers, while the norm is defined as the maximum of the

absolute value, i.e,,

ollp = max ly )|

Thus, in the space C, the distance between the functions yl(x) and
yg(x) does not exceed e if the graph of the function yg(x) lies
inside a strip of width 2e¢ (in the vertical direction) "bordering” the

graph of the function yl(x), as shown in Figure k-2 [19].

N
o

Figure L4-2,
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(2) The space D or more precisely Dl(a,b), consists of all

l)
functions y(x) defined on an interval [a,b], which are continuous
and have continuous first derivatives. The operations of addition and
multiplication by numbers are the same as in the space C, but the norm

is defined by the formule

], = max |y(x)| + max |y (x)].
a €$X€b a £x €D

Thus, two functions in D are regarded as close together if both the

1
functions themselves and their first derivatives are close together,
“since
[y - zll < e
implies
ly(x) - 2(x)]| <€, |y*(x) - 2/(x)| <«
for all a £x €£b [19].

(3) The space Dn’ or more precisely Dn(a,b), consists of all
functions y(x) defined on the interval [a,b] which are continuous
and have continuous derivatives up to order n inclusive, where n is
a fixed integer. Addition of elements of Dn and multiplication of
elements of Dﬁ by numbers are defined just as they are in the spaces
C and D, of the preceding cases, but the norm is now defined by the

1

formula

Ioll, = ) max Iy @)1,

where v (x) = (a/ax)*y(x) and y(o)(x) denotes the function y(x)
itself. Thus, two functions in Dn are regarded as close tbgether if
the values of the functions themselves and of all their derivatives up

to order n inclusive are close together. It is easily verified that
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all the axioms of a normed linear space are actuslly satisfied for each
of the spaces C, D, and D_ (19].

In a similar manner, one can introduce spaces of functions of
several variébles, e.g., the space of continuous functions of n vari-
ables, the space of functions of n variables with continuous first
partial derivatives, etc. After a norm has been introduced in the
linear space R (which may be a function space), it is natural to talk

about continuity of functionals defined on R.

Definition 4-L4, The functional J[y] is said to be continuous at

the point Yy € R 1if for any € > O, there is a ® > 0 such that

|90y] - 9ly ]| <«

provided that ||y - yOH <% [19].

So far, the writer has talked about linear spaces and functionals
defined on them. However, in many vafiational problems, one has to deal
with functionals defined on sets of functions which do not form linear
spaces., In fact, the set of functions (or curves) satisfying the con-
straints of a given variational problem, called the admissible functions
(or admissible curves), is in general not a linear space., For example,
the admissible curves for the "simplest" variational problem are the
smooth plane curves passing through two fixed points, and the sum of two
such curves does not pass through the two points. Nevertheless, the
concept of a normed linear space and the related concepts of the dis-
tance between functions, continuity of functionals, etc., play an

important role in the calculus of variations.
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The First Variation of a Functional
A Necessary Condition

For an Extremum

In this section, the concept of the variation (or differential) of
a functional, analogous to the‘concept of the differential of a function
of n variables is introduced. The concept will then be used to find
extrema of functionals. First, some preliminary facts and definitions

are given.

Definition 4.5, Given a normed linear space R, let each element

h € R be assigned a number v[h], i.e., let v[h] be a functional
defined on R. Then v[h] is said to be a (continuous) linear func-
tional if

(1) v[ah] = av[h] for any h € R and any real number a,

(2) v[hl + h2:| = v[hl] +v[h2] for any hy, h, €R,

(3) v[h] is continuous for all h € R.

Illustrative Example L4-1, If one associates with each function

h(x) € C(a,b) its value at a fixed point x. in [a,b], i.e., if one

0
defines the functional vfh] by the formula
v{h] = h(xo)

then v[h] is a linear functional on C(a,b).

Illustrative Example 4-2, The integral

b
vih] ='I h(x)dx

defines a linear functional on C(a,b).

The writer now considers a linear functional defined on Dn(a,b)



122

of the form
b .
vn] = [ [agGnG) + A GORG) + ...+ A GOn ) () Jax,
a
where the Ai(x) are fixed functions in C(a,b). Suppose v[h]
vanishes for all h(x) Ibelonging to some class. Then what can be said
about the functions Ai(x)? Sbme typical results in this direction are

given by the next four lemmas. The reader is referred to [19] for

proofs.

Lemma 4-1, If A(x) is continuous in [a,b], and if
b

I A(x)n(x)dx = 0

for every function h(x) € C(a,b) such that h(a) = h(b) = O, then

A(x) = 0 for all x € [a,b].

Lemma 4-2, If A(x) 1is continuous in ([a,b], and if

b
I A(x)h’(x)ax = 0
a

for every function h(x) € Dl(a,b) such that h(a) = h(b) = 0, then

A(x) =c¢ for all x in [a,b], where c is a constant.

Lemma 4-3. If A(x) is continuous in [a,b], and if

b
[ AGn"(x)ax = 0

v

a
for every function h(x) € De(a,b) such that h(a) = h(p) = 0 and

h’(a) = h’(b) = 0, then A(x) = ¢y + ¢;x for all x in [a,b], where

c and c¢

0 are constants.

L

Lemma L4-4., If A(x) and B(x) are continuous in [a,b], and if
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b
f [A(x)h(x) + B(x)n’(x)Jax = 0

for every function h(x) € Dl(a,b) such that h(a) = h(b) = 0, then
B(x) is differentiable, and B’(x) = A(x) for all x in [a,b].
The concept of the variation of a functional is now introduced.
Let J[y] be a functional defined on some normed linear space, and let
Aj(n] = Jly + h] - Jly]
be its increment, corresponding to the increment h = h(x) of the
"independent variable" y = y(x). If y is fixed, AJ[h] is a func~-
tional of h, 1in general a nonlinear functional. Sﬁppose that
AJ[h] = v[h] + € |n]
where v[h] is a linear functional and e - 0 as ||| - 0. Then the
functional J[y] is said to be differentiable, and the principal
linear part of the increment AJ[h], 1i.e., the linear functional v[h]
which differs from AJ[h] by an infinitesimal of order higher than 1

relative to |fh||, is called the variation of J[h] and is denoted by

8J(n], (191

Illustrative Example 4-3. PFind the first variation of the

functional
| Y2 o o
iyl = " -y)ax, y0) = 0, yn/2) = 1.
0

Solution: Assume that y 1s fixed and let h De an increment
such that h(0) = h(m/2) = 0. The increment of J[y] is determined
as follows:

ﬂ/g

: /2
T A R Nt
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m/2

= f [y'2 + 2y‘h’ + n' . y2
0]

-~ 2yh - h2 - y'2 + yEde

/2 m/2
[-yh + y'h']ax + J [-h2 + h'2]dx.
0 0

]
n
e

The principal linear part of the increment AJ[h] is
/2 7
2] [-yh + y'nh’]ax.
o)
By definition, this is the first variation of J[y], i.e.,

/2.
5J[h] = ef [-yh + y'n”')ax.
0

Theorem 4-1. The differential of a differentiable functional is

unique [19].

Proof: Suppose that v[h] is a linear functional and that

T - 0

as |||l = 0, Then v[h] =0, i.e., v[h] =0 for all h. In fact,

suppose v[ho] # 0 for some hy # 0. Then, setting

by = Bg/n, &= vingl/linglls

it is seen that thH - 0 as n- o, but

hO 1
tim o VIR ooy vigd oo 5 VIR
n - e ]h n- o Iho” n-— o ‘ij“hon
n 2 C g
L-v[h ] nv(h,]
= 1lim 1 0~ = lim 0
s A
n
=N¢0

contrary to hypothesis.
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Now, suppose the differential of the functional J[y] is not

uniquely defined, so that

Il

a3(n] = vi[n] + e |l

AJ[h]

Il

vg[h] o+ €2Hh“:
where vl[h] and VEEh] are linear functionals, and e, € = 0 as
Ilnl] - 0. This implies

vy[h] - vy[h] + efffnf] - ellnl} = o,
or

ny 8] - wln] = el - < Ju],
and hence vl[h] - vg[h] is an infinitesimal of order higher than 1
relative to |[|hf|. But v,[h], ve[h] being linear functionals imply
vl[h] - vg[h] is a linear functional, and it follows from the fifst
part of the proof that vl[h] - vg[h] vanishes identically, as asserted
Therefore, vl[h] = vg[h], [19].

It is now shown how the concept of variafion can be used to

establish a necessary condition for a functional J[y] fo have an
extremum., To begin with, the corresponding concepts from differential

..,xn) be a differentiable function

calculus are reviewed. Let F(xl,.

of n variables. Then F(xl,...,x ) 1is said to have a (relative)
n

extremm at the point (al,...,an) if

AF = F(xl,...,xn) - F(al,...,an)

has the same sign for all points (x ...,xn) belonging to some

l)
neighborhood of (al,...,an). The extremum F(al,...,an) is a minimum
if AF 2 0 and a maximum if AF £ O,

In the same manner, the functional J[y] has a relative extremum

A
for y=y if Jly] - J[§] does not change its sign in some
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neighborhood of the curve 7y = g(x). Subsequently, this paper shall be
concerned with functionals defined on some set of continuouély differ-
entiable functions, and the functions themselves can be regarded eilther
as elements of the space C or elements of the space Dl' In connec-~
tion with these two spaces, two kinds of extrema are defined:

A
The functional J[y] has a weak extremum for y =7y if there

: A
“exists an € > 0 ‘such that J[y] - J[y] has the same sign for all y
in the domain of definition of the functional which satisfy the

N\
condition “y - yHi < € where H Hl denctes the norm in the space Dl'

On the other hand, the functional J[y] has a strong extremum for

y = 9 if there exists an e > 0 such that J{y] - J[?] has the same
sign for all y 1n the domain of definition of the functional which
satisfy the condition Hy - 9“0 < €, where H ”O denotes the norm in
the space C. It is clear that every strong extremum is at the same
time a weak extremum, since if {ly - 9”1 <e, then |y - 9“0 < e, and
hénce, if J[?] is an extremum with respect to all y such'that

Hy - §Ho < €, then J[?] is certainly an extremum with respect to all
y such that -Hy - 9“1 < ¢. However, a weak extremum may not be =
strong extremum, and as a rule the weak extremum is easier to find than
the strong extremum. The reason for this is that the functionals
usually considered in thé calculus of‘variations are continuous in the

norm of the space D and this continuity can bhe exploited in the

l)
theory of weak extrema. In general, however, functionals will not be

continuous in the norm the space C.

Illustrative Example L-4, ‘A functional continuous in the norm of

Dl but not continuous in the morm of C 1is now constructed. Consider

the linear mapping F:C - R (reals). If F is bounded on
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{f:f € Dl’ el + {|£‘]l s 1}, then F 1is continuous in the norm of D,.
On the other hand if F is unbounded on {f:f € C, [[f|| £ 1}, then F

is not continuous in the norm of C.- Let Fl

:f -~ £/(0) for f€ Dy
and let 'F be an extension of Fl to C, If f €D, and Hf“l <1,

“-then
”f&ﬂ&ﬂmx |£(x)| + max |£/(x)| =1,
Osxs<1"° 0sxs<1l

or ‘F(f)\ $1 if f{ff|; s 1.

Hence, F is continuous in Dl' If £€ {pn} ‘where pn(x) = e ™ for
n=0,1, 2, ..., then [f]| = max e™ = 1. Consequently,

‘ ' 0sxg1l
lF(pn)l = lpé(o)l = |-n| = n which implies F is unbounded on

{f:]||f]| £ 1}. Therefore, F is discontinuous in C.

The following theorem 1s a necessary condition for a functional

A
Jly] to have an extremum at y = y.

Theorem E:g: A necessary condition for the differentiable
functional J[y] to have an extremum for y = 9 is that its variation
vanish for y = 9, i.e.,

83{yl =0

for y = 9 and all admissible h {19].

A
Proof: Suppose Jly] has a minimum for y = y. By the definition

of the variation ®J[h],

AJ[n] = 83(n] + e[n||,
where €-— 0 as "hH = 0. Thus, for sufficiently small ”h“, the
sign of AJ[h] Wiil be the same as the sign of B8J[h].  Now suppose

that BJ[hO] # 0 for some admissible h Then for any A > 0, no

0

matter how small,.
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8J[-An,] = -80lAn ],

since 8J{y] is linear. Hence, AJ[h] = &[h] + ¢ljuff can be made to
have either sign for arbitrarily small |[|h||. But this is impossible,

since by hypothesis J[y] has a minimum for vy ='9; i.e.,

v A A
AJ{h] = Jly + 0] - [yl =20
for all sufficiently small Hh“. This contradiction proves the

theorem [19].
The Simplest Variational Problem

The simplest variational problem can be formulated as follows:

Let F(x,y,z) be a function with continuous first and second
partial derivatives with respect to all its arguments., Then, among all
functions yv(x) which are continuously differentiable for as$xshb
and satisfy the boundary conditions

y(a) = A, y(p) = B, (1)

find the function for which the functional

b .
iyl =] Floyyiax (2)
a :
hés a weak extremum. To restate the problem simply, it is required to
find a weak extremum of a functional of the form (2) where the class of
admissible curves consists of all smooth curves joining two points (a
smooth curve or function f(x) being one continuous in [a,b] and
having a continuous derivative in [a,b])., To apply the necessary con-
dition for an extremum (Theorem 4-2) to the problem just formulated,

one needs to be able to calculate the variation of the functional of

the type (2). The task now is to derive an appropriate formula for
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this variation.,

.Suppose y(x) 1is given an increment h(x), where, in order for
' the function y{x) + n(x) to continue to satisfy the boundary condi-
tions, -h(a) and h{b) must vanish. Then the corresponding increment

of the functional (2) equals

Y b
AT = I3[y + h] - I[y) =f F(x,y + h,y’ + h')ax - J‘ F(x,y,y’)ax
a a
D
AT = f (F(%,y + h,y’ +h') - F(x,y,y’)ldx,
a

but by Taylor's theorem (Theorem 3-2) it follows that

ke
J = f (F_(x,y,y)h + F_,(x,y,y")h")ax +
I ¥

b
2 2
(1/2)ja [Fyy(x,y,y’)h + 2Fyy,(x,y,y’)hh’ +»Fy,y,bg35y’)h’ Jax

.+ v N (3)
where the subscripts denote partial derivatives with respect to the
corresponding arguments, and the dots denote terms of order higher than
2 relative to h and h', Thus the first integral in the right hand mermber
of (3) is the principal linear part of AJ, and is by definition, the

variation of Jly], i.e.,

b
3J = f (F _(z,y,y)h + F_,(x,y,y")h’Jax.
a J y

According to Theorem 4-2, a necessary condition for J[y] to have an

extremum for y = y(x) 1is that

‘b .
57 = ’ = L
J fa(Fyh + Fy,h Jax = O | ()

for all admissible h. "But by Lemma 4-4, (4) implies that
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d
Y (5)
a result known as Euler's equation. Thus, the following theorem is

proved:

‘Theorem 4-3 [19]. Tet J[y] be a functional of the form

b
| PG,y ax,
a
defined on the set of functions y(x) which have continuous first
derivatives in [a,b] and satisfy the boundary conditions y(a) = 4,

y(b) = B. Then a necessary condition for J[y] to have an extremum for

a given function y(x) is that y(x) satisfy Euler's equation

The integral curves of Euler's equation are called extremals.
Since Buler's equation is a second-order differential equation, its
solution will in general depend on two arbitrary constants, which are
determined from the boundary conditions y(a) = A, y(b) = B. The
problem usually considered in the theory of differential equations is
that of finding a solution which is défined in the neighborhood of some
point and satisfies ‘given initial conditions (Cauchy's problem). How-
ever, in solving Fuler's equation, a solution which is defined over all
of some fixed region and satisfied given boundary conditions is sought.
Therefore, the question of whether or not a certain variational problem
has a solution does not just reduce to the usual existence theorems for
differential equations., In connection with this, a theorem due to
Bernstein 1is stated concerning the existence and uniqueness of

solutions "in the large" of an equation of the form

= F(,y,y). | (6
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Theorem 4-4 [19]. If the functions F, Fs and F , are continu-
ous at every finite point (x,y) for any finite y’, and if a constant
k>0 and'fﬁnctions

A =A(x,y) 20, B=B(x,y) 20
(which are bounded in every finite region of the plane) can be found

such that

2
Fy(x,y,y’) >k, |F(x,7,7%)| £ Ay’” + B,

then one and only one integral curve of equation (6) passes through any
two points (a,A) and (b,B) with different abscissas (a # D).

For a proof of this theorem the reader is referred to réference
[22].

For a functional of the form

b
j F(x,y,y’)dx
a
Euler's equation is in general a second-order differential equation, but
it may turn out that the curve for which the functional has its extremum
is not twice differentiable. The following theorem gives conditions

which guarantee that a solution of Euler's equation has a second

derivative:

Theorem 4-5 [19]. Suppose y = y(x) has a continuous first
derivative and satisfies Euler's equation

a
F - = = 0.
y d&x Ty’

Then, if the function F(x,y,y’) has continuous first and second
derivatives with respect to all its arguments, y(x) has a continuous

second derivative at all points (x,y) where
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Fyly/[x:Y(X):yl(x)] % 0.
The proof of this theorem is omitted.
d X
y - az-Fy, = 0, plays a fundamental role in

the calculus of variations, and is in general a second-order differen-

_Buler's equation, F

tial equatioh. In some speclal cases, Euler's equation can be reduced
to a first-order differential equation or its solution can be obtained
entirely in terms of quadratures, i.e., by evaluating integrals. Now
several such cases are examined.

Case 1. Suppose the integrand does not depend on y, 1.e., let
the functional under consideration have the form

D
j F(X)yl)dx
a
where F  does not contain y explicitly. In this case, Euler's

equation becomes

a
EE-Fy' =0

which obviously has the first integral

F I=C) (7)

where C 1is a constant, This is a first-order differential equation
which does not contain y. Solving (7) for y’, one obtains an
equation of the form'

y' = £(x,C),
from which y can be found by a quadrature.

Case 2. 1If the integrand does not depend on X, i,e., if

-

Iyl = Jp F(y,y')ax,

then
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F --—=—F ,=F -F ‘t_F " 8
y.r v y/yy y/y/y ()

by the chain rule. Multiplying (8) by y',b one obtains

d 2
I‘F - o F - F I'4 - F 7 - F 7 H'
y v y ax yl yy v /.yy vy Y

<

Here the right hand side is %

(F - y‘Fy,) since

d ’ ’ " /
= (F - F ¥ + F - F
ax ( J y’) Ned y'y J y

/yy, - y’Fy,y,y" - quy/

2
Fy'-F = . F .
yy ylyy ylyly y

I

Thus Euler's equation becomes é%-(F - y’Fy,) = 0 and has the first
integral
F - y’Fy, = C,
where C 1is a constant.
Case 3. If F does not depend on v/, FEuler's equation tekes the
form

Fy(XJY) = 0,

and hence is not a differential equation, but a "finite" equation,
whose solution consists of one or more curves y = y(x).
Case 4, In a variety of problems, one encounters functionals of

the form

b 2
[ e v yHax,
a
representing the integral of a function f£(x,y) with respect to the

arc length s, i.e., ds =%(1 + y’g)dxn In this case, Euler's equa-

tion can te transformed into

Fp- = 1 boyN T v ®) - S ey Ny DT
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IR e e PN T L B RN O
[fy"/(l + .')’02)3/2]

- Ny, -y - e/ sy = o

or

foo-fy! - fy"/(1 + y’2) = 0,

y X
This section is closed by giving several examples illustrating

several of the cases explained in the previous paragraph.

Illustrative Example 4-5. The functional

tly] = Jj N y*#)/xlax, y(1) = 0, y(2) = 1

1s the time that passes when a particle is moving from one point to sonme

other point along the curve y = y(x) with the velocity v = x. PFind
the curve y(x) which minimizes the time +t [20].
Solution: Since the integrand does not contain y, case 1 is

illustrated here, where Euler's equation assumes the form Fy’ = C,
»*m"-aﬁ_,s‘
Hence F-=\S(l +y7)/x and

Fy, = y’//x (1 + y'e) = Q.

The above equation cleared of fractions becomes

gt = el v v). (9)

Further simplifications of (9) gives

yle(l . C2X2) = C2x2’ or

y = 0x/\§(1 - %), - | (10)

Equation (10) when solved and simplified becomes

2 2
x + (y - Cl)e = 1/C°.



This equation represents a two-parameter family of extremal curves

(circles). The boundary conditions

y(1) =0, y(2) =1
are used to find the curve passing through the points (l,O) and (2,1)
From these conditions, Cl =2 and C=1/ 5.

Therefore, the solution is

2 2
)

(y -2)" +x° = 5.

Illustrative Example L-6 (The problem of minimum surface of

revolution). Among all the curves Joining two given points (xo,yo)
and (Xl’yl)’ find the one which generates the surface of minimum area
when rotatéd agbout the x-axis [19].

Solution:

From elementary calculus, it is known that the area of a surface of

revolution is
Xl -
sly(x)] = enf y\X(l + y’7)ax.
)xo

The integrand depends only on y and y’ illustrating case 2. Thus

Euler'®s equation has the first integral

1°

Sinee F =y (1 + y7) ana Foo= yy’m, then
AT - T -,
y(1+y®) - gy = e (1 + ')
vy’ -y = Ci\!(l S
y = Cf& (1 + y?25

F —y’Fy,:C
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Let y’'= sinh(t). Then y = Cfi (1 + sin h2(%)) implying
Clsinh(t)dt

sinh(t)

4

y = C,cosh(t). Now %%-5‘y implying dx = dy/y’ =

1

or

dx = C,dt, x = C;t + Cy.

Hence, the desired surface is obtained by revolving a curve with the
parametric equationsg

X = Clt + 02’ y = C.cosh(%).

1
The parameter t 1is eliminated by substitution. Hence,

X - 02
y = C,cosh ——,
1 Cl

a family of catenaries.. A surface that is generated by rotating
catenary about %he x-2xis 1is called a catenold. The constants Cl and

C., can be determined from the boundary conditions, i.e., y(xo) = A,

y(x,) = B.

Illustrative Example 4-7. Find the general solution of the Euler's

equation corresponding to the functional

Iyl = fb.f(X)\J(l + y'%)ax,

a

and investigate the special cases f(x) =x and f(x) = x.
2
(2)  Fly,y’) = FEINI(L + ¥77)
,g‘_. I = _@__ 4 : /2
Fo-m By = - g EEYANEL v

= (£ 7y A1 + v - [ey"/ (L + Y'2)3/21 =0

a%-[fy’ﬁ&(l + y’e)] = 0, FEuler's equation

fyl'g(l + y'g) = C, first integral to Euler's equation.
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This equation is simplified as follows:

ey = o v,

2 (x)y "% = (L + yP),

[£8(x) - Pl = 5,
# = PP ) - ),

v’ = AR ) - ),

ay Cdx/[fg(x)ln 02].

The general solution of the above differential equation is
y = cf taxp =) - ¢®1 4 o).

(b) ILet f(x) =\§§T' Then

y = ClaxAd(x - cg)]+ c,
y = 20\;(x S c®) 4 ¢,
y -C =2C (x - ce)
(y - cl)2 = uc?(x - ¢,

Therefore, the extremal curve is a family of parabolas each member with
its vertex at (Cg,cl) and having its axis of symmetry parallel to the
Xx-axis.

(c) Let f(x) = x. Then

y = of [axmie” - ¢+ ¢
y = Cln |x +\£(x2 w'cg)l +Cy.
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Case of Several Variables

ﬁu
\\\\\\\‘

5o far,; only functionals depending on functions of one variable,
i.e., on curves, have been considered. In many problems, however, one
encounters functionals depending on functions of several independent
variables, i.e., on surfaces, The case of two variables is utilized to
illustrate how the formulation and solution of the simplest variational
problem discussed in a previous section carries over to the case of
functionals depending on surfaces. Let F(x,y,z,p,q) be a function
with continuous first and second partial derivatives with respect to

all its arguments, and consider a functional of the form

a=1 =] fR F(x,7,2,2,,2,)dxdy, (11)

where 2z 1s defined ag a function from a closed region R in EE to
the reals, and Zys zy are the partial derivatives of gz = Z(x,y).
Suppose that a function with the following properties is desired:

1. z(x,y) and its first and second derivatives are continuous in

2. z(x,y) takes given values on the bpoundary T of R, and

3. the functional (11) has an extremum for =z = z(x,y).
Just as in the case of one variable, a necessary condition for the
functional (11) to have an extremum is that its variation (i.e., the
principal linear part of its increment) vanish. The proof of this
statement is the same as it is for the case of one variable. But, in
order, to find Euler's equation for the functional (11), the following

lemma, analogous to Lemma 4-1, is needed.

Lemma 4-5 [19]. If A(x,y) is a fixed function which is



139

continuous in a closed region R, and if the integral

| [ At nteyaxay (12)

vanigshes-for every fTunction h(x,y) which has continuous first and
gecond derivatives in R and equals zero on the boundary T of R,

then A(x,y) = O everywhere in R.

Proof: Suppose A(x,y) > 0 at some point in R. Then A > 0 in

some circle (neighborhood)
2 2 2
(X - Xo) + (.'Y = yo) € c (13)

contained in R, with center (xo,yo) and radius e, Let h(x,y) =0

outside the circle (13)‘and
2 2 2
n(e,y) = [l - x )% + (y - 5g)° - €
inside the circle. Then h(x,y) satisfies the conditions of the lemma.
However, in this case (12) reduces to an integral over the circle (13)
and is obviously positive. This contradicts the fact that the integral

vanishes for every function h(x,y)o Therefore, A(X,y) must be zero

everywhere in R.

Iﬁ order to apply the necessary condition for an extremum of the
 functional (11), i.e., ©®J = 0, there is a need to calculate the
variation 8J. Let h(x,y) be an arbitrary function which has continu-
ous first and second partial derivatives in the region R ‘and vanishes
on the boundary T of R. Then if z(x,y) belongs to the domain of
definition of the functional (11), so does z(x,y) + h(x,y). By
definition

AT = Jlz + h] - J[z]
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= JJ;[F(x,y,z +h, 7+ hx’zy + hy) —-F(x,y,z,zx,zy)dxdy.

It follows from Taylor's Formula (Theorem 3-2) that

2
AJ=IJ1[Fh+F h +F h]dxdy+(1/2)ﬁ (F W2 L F h__ +
. z Z_ X z_ vy ¢ zZ Z_Z XX
R X y R X X
h2 +2F hh +2F hh + 2F h h_Jaxdy + ...,
z2. Yy zZz_ X ZZ y ZZ XYy

yy X Yy Xy
where the dots denote terms of order higher than 2 relative to h, hx’
hy’ The first integral on the right represents the principal linear

part of AJ and is therefore the variation of J, 1i.e.,

3] = ﬁR(FZh + szhx + Fzyhy)dxdy. (14)

Consider the double integral of the second and third terms of the right

member of the egquation above, i.e,,

H (FZ h +F, hy)dxdy.
X y

The integration by parts formula gives

ﬁ F_ b dxdy = ﬁ 'a% (FZ h)dxdy —H h S%FZ dxdy (15)

‘R *x R X ‘R pe
and
_ 9 : d
F h Jaxay = 2 (F_ h)axdy -I n P axdy. (16)
a g x 3y "z
y R

The sum of (15) and (16) is

H (F h_ + F_ h )dxdy
YR ?x X zy y

- ” Eé%? (Fz h) + _a—i— (FZ H)]dxdy - ”R[-a% FZX + a—a};FZX]hqxdy

d
f (F thy -F, hdx H [ax YZ a—}?FZy]hdxdy,
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where in the last step Green's Theorem [8] is applied, i.e.,
jf (& - Eyaxay = f (Pax + Qdy).
IR % oy T

The line integral along T 1is zero, since h(x,y) vanishes on T.

Therefore,

Of

J

dx

3 .
F_ +s=F_ )hdxdy.
X y

f (F h +F h)dxdy=-J
‘[R z, X 2y Y ) oy

The substitution of the above result for F_ h +F, hy in (14) gives

X y

B d d
BJ —IIR(FZ - &—FZX - 3y F, Yh(x,y)dxdy. (17)

' y
Thus, the condition that &J = O 1implies that the double integral (17)
vanishes for any h(x,y) satisfying the stipulated conditions. There-

fore, by Lemma 4-5,

F -2Fr _ 27 = 0, : (18)

which, again is known as Euler's equatiog. Consequently, y 1is Tound

by solving the second-order partial differential equation (18).

Illustrative Example;h-8 [19]. Find the swrface of least area
spanned by a giveniéontéhr (the boundary curve (in space) through which
every admissible surface must pass). |

Solution: The formula for finding the surface area is given by the

functional

J[z] =JJ ‘,?1_+ z 2 + z 2)dxdy
R
where R 1is the area enclosed in the xy%plane by the projection of

the given contour onto. the xy-plane. Inx%his case, Euler's equation is

determined as follows:



Hence, from

one gets

9 l 2 2 d , 2 o
o [zx/ (1 + Zy * 2y )]+ 55'[Zy/ (1 + 2z Y1=0
or
\\[21 + 2" + oz 2)z -z (1L +z 2y g 2)_l/e(z z
¥ Cxx X y xx " "y'xy
2 2
1+ 2z + Z
+}J(l + 2+ z 2)z -z (L + 2z 2tz 2)-1/2(z z 4 )
yy y y X Xy I Iy _
1+ z 2 + Z 2
X y
-5 o
(L+2 " + z, ) wx " zx(zxzxx v Xy) + (1 + 2, * 2y )zyy
-7z (z 2 + = 0,.
y(xxy yyy) ’
2 2 2 2
Z + Z + Z - Z Z + z Z 2 Z Z - Z
yy Xy Xy y

z. (1 + = 2) -2z z 2z +2z_ (L+z
XX y xyxy " “yy X

which can be written as

r(l + qa) - 2spg + t(1 + pg) = 0,

where

The equation

142
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r(l + qe) - 2spq + t(1 + pg) =0
has a simple geometric meaning, which can be explained by using the
formula

Bg - oFf + Ge

M= 5
2(EG - F°)

for the mean curvature of the surface, where E, F, G, e,f, g are the
coefficients of the first and second fundamental quadratic forms of the
surface [8]. If the surface is given by an explicit equation 6f the

 form =z = z(x,y), then

E=1+ pE, F=pg G=1+q, e-= r/\k1 + P+ a),
= oL+ 2"+ ®), g = oA+ 2% s )

and hence

(L + pe)t - 2spg + (1 + qe)r
(L+p" +4q°)

M=

Here, the numerator coincides with the left-hand side of Euler's

equation. Thus, the equation

r(l + q2) ~ 2spq + t(1 + p2) =0
implies that the mean curvature of the required surface equals zero.

Surfaces with zero mean curvature are called minimal surfaces.

Second Variation., Sufficient Conditions

v

For A Weak Extremum

Until now, in studying extrema of functionals, only one necessary
condition for a functional to have a weak (relative) extremum for a
given curve f(x) has been considered, i.e., the condition that'tﬁe

variation of the functional vanish for the curve f(x). In this

section, sufficient conditions for a functional to have a weak extremum



are derived., In order to find some of these sufficient conditions, a
new concept is needed, namely, the second variation of a functional., In
studying the propertigs of the second variation, some new necessary
conditions for an extremum are also derived.
A functional BEX?mJ depending on two elements x and y, belong-
ing to some normed liﬁééf space R, 1is said to be bilinear if it is a
linear functional of y for any'fixed x and & linear functional of x
for any fixed y. Thus,
B{x + y,z] = Blx,z] + Bly,z],
B[Ax,y] = AB[x,v],
and
O Blx,y + 2] = BEX:YJ + Blx,z],
Blx,Ay] = AB[x,y]
for any X,y,z € R and any real number A,
If y=x 1in a bilinear functional, the expression is called a
quadratic funetional. |
A bilineaf functional defined on a finite-dimensional space is
called a bilinear form., Symbolically, every bilinear form can be

expressed as follows:

‘ n
Blx,y] = Z Pix¥ix
i k=1
where X;, ..., x, and ¥, ..., y, are the components of the "“vectors"

x and y relative to some basis. Of course, if y = x 1in this

expression, i1t becomes a quadratic form, i.e.,

n
Alx] = B[x,x] = };'bikxixk'
i,k=1
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A quadratic-functional A{x] = B[x,x] is said to be positive

definite if A[x] > O for every nonzero element x.

Illustrative Example 4-9 [19]. The expression

b
Blx,5] = [ x(t)y(t)a -
‘a
is a bilinear functional defined on the space C of functions which are

continuous in the interval a £ t € b. The corresponding quadratic

functional is

b
Alx] = j x2(t)dt.

- a

Tllustrative Example 4-10 [19]. A more general bilinear functional

defined on C 1is

b
Blx,5] = | a(t)x(t)y(t)at,

where a(t) is a fixed function. If o(t) > 0 for all t in [a,b],

then the corresponding quadratic functional

Alx] ="[Da,(t)x2(£)dt

a

is positive definite.

Illustrative Example 4-11 [19]. The expression

Alx] = [ La(6)x®(6) + B(E)x(e)x/(8) +w()x ' (x) Dot

is a quadratic functional defined on the space Dl of ‘all functions

which are continuously differentiable in the interval [a,b].
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Let J[y] %be a functional defined on some normed linear space R.
Then J[y] is differentiable if its increment

A3[n]

it

3ly + n] - J0y]

can be written in the form

il

a3(h] = ¢; (b) + effnfl,

where ¢l(h) is 'a linear functional and € — 0 as ||| = 0. The
quantity ¢[h] is'the principal linear part of the increment AJ[h],
and is called the (first) variation (or first differential) of J[y],
denoted by ®J[h].

Similarly, fhe functional J[h] is said to be twice differentiable

if its increment can be written in the form
a3(h] = ¢;[n] + ¢,[n] + €[fnfl%,

where ¢l[h] is a linear functional, ¢2[h] is a quadratic functional,
and € - 0 ‘as ‘HhH - 0. The quadratic functional ¢2th] is called the
second variation (or second differential) of +the functional J[y], and
is denoted by SEJ[h]. The uniqueness of the second variation of a

functional can.ﬁe proved in the same way as it was proved for the first

- variation, see Theorem 4-1., For an example of the second variation of a

functional, see the solution of Illustrative Example L4-3.

Theorem 4-6 [19]. A necessary condition for the functional J[y]

to have a minimum for y = 9 is that

5%3y] = 0 | (19)
for y = 9 and all admissible h., For a maximum, the sign = in (19)
is replaced by <.

The proof is given in the same reference and is omitted here,
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A gquadratic functional ¢2[h] defineéd on some normed linear space

R is strongly positive if there exists a constant k > 0 'such that

boLn] = x {fulf®

for all h [19].

In a finite-dimensional space, strong positivity of a quadratic
form is equivalentvto pasitive definiteness of the quadratic form,
Thefefore, a function of a finite number of varlebles has a minimum at a
roint P where its first differential vaenishes, if its second differ- 4,
; ential is positive at P, The latter statement is related to Theorem
.3-12 (sufficient conditions for a function of n variables to have

extrems),

Theorem 4-7 [19]. A sufficient condition for a functional J[y]
to have a minimum for vy = 9, given that the first variation &J[h]

vanishes for y = 9 is that its second variation 52J[h] be strongly
N i
y.

positive for 7y

Proof: For y = 9, 8J[(h] = 0 for all admissible h by Theorem

L.2, and hence

. AJ[h] 52J[h] + eHhHg,

T

where € - O as Hh“ - 0. Moreover, for y = 9,

8°3(n] = x|n|°,
where k 1is a constant greater than 0. This follows from the defini-
tion of strong positivity. Thus, fo; sufficiently small ei,
lel < (1/2)x if |nfl < e;. It follows that
s3ln] = 8°3[n + e|nl| > (1/2)k[n||® > o

it ||y < €, i.e., J{y] has a minimum for y = 9, as asserted [19].
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The Formula for the Second Variation

Legendre's Condition

Let F(x;y,z) be a function with continuous partial ‘derivatives up
to order three with respect to all its arguments. Smoothness require-
ments will be assumed to hold whenever needed., What is needed now is an
expression for the second variation in the case of the simplest varia-

tional problem, i.e., for functionals of the form

b
Jly] =I F(x,y,y’)ax (20)
a
defined for curves y = y(x) with‘fixed endpoints
y(a) = A, y(v) = B.
To begin with, let the function ¥(x) take on an increment h(x) satis-
fying the boundary conditions
n(a) = 0, h(b) = 0. (21)
Then by Taylor's theorem (Theorem 3-2) with remainder, the increment of
the functional J[y] can be written as

AJ[h] = Jly + n] - Jly]

b b
=J(Fh+F,h')dx+f(F h
J 0y y Ly

2 — — 2
+ 2F ;hh’ + F h'7)ax 20
P L )ax,  (22)

. where the overbar indicates that the corresponding derivatives are
evaluated along certain intermediate curves, i.e.,

fyy = Fyy(x,y + 6h,y’ +6n’) (0<6<1),

and similarly for F and F. .
Y yy/ y_/y/

F F and F are replaced by the derivatives F
yy’ y.yl: y’y' i ¥ y-y:
Fyy" and Fy,y/ evaluated at the point (x,y(x),y’(x)) then (22)

becomes
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]

b H ‘
AJ[n] = f (F.h+F_ ,h%dx + (hé)j (7 h2 + 2Fyy’hh’ +F , ,h’g)dx +e (23)
g ¥ yh b, VY vy

where € can be written as

5 ,
f (elh + eghh' + €
a

2
3h )dx. (24)

The continuity of the derivatives F_ , F _,, and F_, , implies

‘ yy© oy vy
€15 €py €37 0 as ||h]| » 0 from which is apparent that e 1is an
infinitesimal of order higher than 2 relative to Hh“g. Hence, the
first term in the right-hand side of (23) is ®J[h], eand the second

term, which is gquadratic in h, is the second variation 52J[h].

Consequently, for the functional (20),

2

Y _
2 2

8°J(n] = (1/2)| (F_ 1" + 2F /b’ +F_, ' )dx. (25)

, I; e yy! vy’

Integration by parts and the boundary conditions imposed on h, 1i.,e.,

h(a) = h(b) = 0, are used to transform (25) into a more convenient

The procedure is as follows:

Let u=7F_,, dv = 2hh‘dx.
Yy :

Then
d e
du = a;—(Fyy,)dx, Y = h.
Therefore, by the formula Judv = uv -Jﬁvdu,
o 2 D b.2d4d
2F. _,hh’'dx = [h°F 17 = | h = (F dx. 26
| 2y Wy L, - Pra By (26)

By the boundary conditions in (21), (26) reduces to
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[o] b .
tew 2 4
J;EFyy,hh dx = -I;h e (Fyyax. (27)
Substituting (27) in (25)‘gives
2o P2 4 2 2
v%0tn] = (/)] [r - it e PR (20)
and (28) can be written as
2 b 0 2
8<J[h] = [ (Pn’ + qn°)ax, (29)
v a
where
P=P(x) = (1/2)F 100 @ =Qx) = (1/2)F - a*;Fyy DR (30)

It wae proved in Theorem L-6 that a necessary condition for a
functional J[y] to have a minimum is that its second variation SEJ[h]
be nonnegative. In the case of a functional of the form (20), forﬁula
(29) can be used to establish a necessary condition for the second
variation to be nonnegative. The argument runs as follows: Consider
the quadratic functional (29) for functions h(x) satisfying.the
condition h(a) = 0. With this condition, the function h(x) will be
small in the interval [a,b] if its derivative h’(x) 1is small in
[(a,b]. The proof of this statement is as follows:

Assume h(a) = 0 and let |n’(x)| < e in [a,b] where € repre-

sents an arbitrarily small positive real number. Then

h(x) = jx h'(t)dt

a

and

ln(x)| = fx |n/(t)]at

a
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1
=

€ e(x - a)
el - a).

However, the converse of the above statement is not true, i.e., a
function h(x) which is itself small but has a large derivative h'(x)
in [a,b] can be consﬁructed. For example, let a = O,lb ='ﬂ/2, and
h(x) =‘e sin(nx), Then |n(x)| €€, h/(x) = n € cos(nx), and
h’(0) = ne. It is seen here that the derivative h'(x) can be made
larger than any preassigned value K by choosing n sufficiently large

This implies that the term Ph’2 plays the dominant role in the
quadratic functional (29), in the sense that Ph’° can be much larger
than the second term Qh2 (assuming that P f O). Therefore, one might
expect that the coefficient P(x) determines whether the functional
(29) takes values with just one sign or values with both signs. The

result of this argument is now stated as a lemma.

Lemma h_6’[l9]. A necessary condition for the gquadratic functional

523[n] = fb(Ph'E + Qnt)ax, (30)
a
(?efined for all functions h(x) € Dl(a,b) such that h(a) = h(b) = 0
to be nonnegative is that
P(x) O (a £ x £D). (31)
For the proof of this lemma, see [19].

Using this lemma and the necessary condition for a minimum proved

in Theorem 4-6, one immediately gets Legendre's Condition.

Theorem k-7 [LEGENDRE]. A necessary condition for the functional

-

D

3yl = jF(x,y,y'mx, y(a) = A, y(b) = B
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to have a minimum for the curve 7y = y(x) 1is that the inequality

¥ 1 20

vy
(Legendre's condition) be satisfied at every point of the curve [19].

Illustrative Example 4-12, Is the Legendre condition satisfied by

the extremal curve of the functional

Lo
Iyl = f (y'" + lexy)ax,
0

which passes through the points (0,0) and (1,1)7

Solution: Let F = y'2 + 12xy. .Fy = 12x, Fy' = 2y’. (Therefore,
the Buler equation which is obtained from Fy - é%-?y, = 0 ig

_ A g )
D% - e (2y!) =
12x% E (2y’) = 0, or

y" = 6x.
The solution of this differential equation is

_ 3
y = X + ClX + CQ.

It follows from the boundary conditions that Cl = C2 = 0. Hence,

Legendre condition (Theorem 4-7) is satisfied, i.e., Fy ¥ =2 >0, at
every point on the extremal y = x3. In fact, the strengthened

Legendre condition is satisfied here,

Analysis of the Quadratic Functional
ko]
f (Ph'2 + th)dx
a
In the previous section, it is indicated the condition

P(x) 20 (a £ x €£D)

is necessary but not sufficient for the gquadratic functional
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o 2 2
J" (Ph’" + Qnh”)dx (32)
‘Ya
to be =0 for all admissible h(x). In this section, it is assumed
that the condition
P(x) > 0 (strengthened Legendre's condition), (a £ x D)
holds. Conditions are stated which are both necessary and sufficient

for the functional (32) to be greater than zero for all admissible

h(x) # 0, i.e., for the functional (32) to be positive definite.

These results will be used later to establish both necessary and
sufficient conditions for a functional to have an extremum. To begin

with, Buler's equation is written

& (Bn/)e Qo = 0 (33)
corresponding to the funetional (32), This is a linear differential
equation of the second order, which is satisfied, together with the
boundary conditions

n(a) = 0, h(p) =0 (33)
or more’ generally, the boundary conditions

h(a) = 0, h(c) =0, (a <c £1b),

by the function h(x) = 0. However, in general, (33) can have other
non-trivial solutions satisfying the same boundary conditions. In this

regard, the following new concept is introduced:

Definition 4-6. The point a(fa) 1is said to be conjugate to the

point a if the equation (33) has a solution which vanishes for x = a
and x = a but is not identically zero fl9]u
Using this concept of a conjugate point and the fact P(x) >0, a

sufficient condition for (32) to be positive definite is now stated.
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Theorem 4-8, If
P(x) > 0O (a £x$D)
and if the interval [a,b] contains no points conjugate to a, “then

the quadratic functional

b
E (Ph'2 + Qh2)dx (34)
“a
is positive definite for all h(x) such that h(a) = h(b) = 0 [19].
The proof of this theorem is found in the same reference. The

bagic idea of the proof that (34) is positive definite hinges upon

whether (34) can be reduced to the form

N
j ()97 (... )ax

where ¢2(0,o) is some expression which cannot be identically zero
unless h(x) = O,

In the sbsence of points conjugate to a 1in the interval {a,b],
it can be shown that this condition is not only sufficient but also
necessary for the functional (34) to be positive definite. This result

is summarized in the theorem - which follows:

Theorem 4-9, If the quadratic functional

L ’
[ en® v @n®)ax (35)
a
where
P(x) >0 (a £ x 1),
is positive definite for all h(x) such that h(a) = h(b) = 0, then

the interval [a,b] contains no points conjugate to a, [19].

If the condition that the functional (35) be positive definite is
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replaced by the condition that it be nonnegative for all admissible

n(x), then the following result is obtained:

Theorem 4-10. If the quadratic functional

b ‘
| Er (Pn’® + qn°)ax (36)

where
P(x) >0 | (a £ x €D)
is nonnegative for all h(x) such that h(a) = h(b) = 0, +then the
intervai [a,b] contains no interior points conjugate to a, [19].
The combination of Theorems 8 and 9 gives a necessary and
sufficient condition for the quadratic functional (36) to be positive

definite.

Theorem 4-11 (Necessary and Sufficient Condition). The gquadratic

functional

-

6]
I (Ph’2 + th)dx
a

where
P(x) >0 (a £x=b),
is positive definite for all h(x) such that h(a) = h(b) = 0 if and

only if the interval {a,b] contains no points conjugate to a [19].

Jacobi's Necessary Condition

The results of the previous section are now applied to the simplest

variational problem, i.e., to the functional

jDF(x,y,y’)dx | (37)

a
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with boundary conditions
Y(a) = A, Y(?D) = B.
In a previdus section, the second variation of the functional (37) in

the neighborhood of some extremal y = y(x) was expressed by

b
I-(thg + Qn)ax (38)

a

where

- _ 4
P= (/2 10 Q= (1/2)F - 5 F )

Definition 4-7 [19]. The Buler equation

- a‘—if (Ph’) + Qh = 0 (39)

of the quadratic functional (38) is called the Jacobi equation of the

original functional (37).

Definition 4-8 [19]. The point a 1s gald to be conjugate to the

point & with respect to the functional (37) if it is conjugate to a
with respect to the quadratic functional (38) which is the second
variation of (37), i.e., if it is conjugate to a .in the sense of the

definition L-6, )

Theorem L4-12 (Jacobi's Necessary Condition). If the extremal

y = Q(X) corresponds to a minimum of the functional

D
IF(XyY;Y')dX
a

and if

F > 0
viy!

along this extremal, then the open interval (a,b) contains no points
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conjugate to a. This theorem remains true if the word "minimum" is

replaced by "maximuym" and the coﬁdition Fy’y' >0 by F_, ,<0 [19].

¥y

Proof: By Theorem 4-6, the fact that J[y] has a minimm at

A . . § 2 s s
y = y(x) implies Jly]) 2 0 for all admissible h., - Moreover, accord-
¥ ing to Theorem 4-10, if the quadratic functional (38) is nomnegative,
the interval (a,b) can contain no points conjugate to a. The theorem

follows atvonce from these two facts taken together.

Illustrative Example 4-13, Is the Jacobi condition satisfied by

the extremal curve of the functional,

, -
Ily] =Jo(y’2 - yg}dx,

which passes through the points A(0,0) and B(a,0)?
42 2
Solution: Let F =y -y"., Then F_= -2y, F = -2, F , =2y’
ion e v y e ¥ Vs vy s yf Vs
Fy’y’= 2, Fyy’ = 0, Hence,

1
I
xj

P = (l/E)Fy, ;= 1, Q= (1/2)(Fyy d F_,) = -1,

y dx “yy

and

a
ja(Ph’E + th)dx =Jﬁ (h’2 - he)dx.
o) 0
Now the Jacobl equation is defined by
a ; B
- I= (Ph’) +Qh =0
and in this case is
- E--h' -h=0, or h" +h =0
dx - B

Hence,

h = Clsin(x - 02),
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Since h(0) = 0, it follows that C. =0, and h = Clsin(x). The func-

2
tion h ~vanishes at the points x ="km, where k -runs through all the
integers. Theréfore, if 0<a <, there is only one point x =0 1in
the interval O £ x € a  at which the function h wvanishes, and so the
Jacobl condition holds., If a =2 n; then there is at least one point

more, X =1, 1in the interval O £ x € a, at which the function h

vanishes, so that the Jacobi condition does not hold.

The necessary conditions for an extremum discussed in this paper

are now summarized: If the functional

b
[ Feyyax, y(@) = 4, y(o) = B
a
has a weak extremum for the curve y = y(x), then

1. The curve vy = y(x) is an extremal, i.e., sétisfies Euler's

equation

d
Fo- g P =0,

2. Along the curve y = y(x), Fy'y' 2 0 for a minimum and

F_, , 20 for amaximum,

AN
3. The interval (a,b) contains no points conjugate to a.
Sufficient Conditions for a Weak Extremum
Finally, a set of conditions which is sufficient for a functional
of the form
D
Iyl = [ Flxy,37)8x, y(a) = &, y(o) = B (x0)
a .

to have a weak extremum for the curve y = y(x) is formulated. It will

be noted that the sufficient conditions given below are very similar to



159

the necessary conditions given at the end of the preceding section. The
essential difference 1s that each necessary condition considered above
1s necessary by itself whereas the sufficient conditions have to be
considered asva set, l.e., the existence of an extremum is assured only

if all the conditions are satisifed simultaneously.

Theorem 4-13 (SUFFICIENT CONDITIONS).

1. The curve y = y(x) is an extremal, i.e., satisfies Euler's

equation

d

2. Along the curve y = y(x),
P(x) = (1/2)F s lx,7(x),y(x)] > ©

(the strengthened Legendre condition),

3. The interval [a,b] contains no points conjugate to the point
a (the strengthened Jacobi condition).

Then the functional (40) has a weak minimum for y = y(x), [19].

The proof of this theorem, given in the same reference, establishes
sufficient conditlions for a weak extremum in the case of the simplest

variational problem,

Illustrative Example 4-14., Examine the extrema of the functional

Iyl = [ Gty Bhax, y(0) = 3, v(@) - o

Solution:

Here F = xy’ + y'2 which implies that the Euler equation is

da "N
- &"Fy/(xyy ) = 0.

This has integral curves FyAng)=C, i.e.,
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x + 2y’ =C.

The solution of this equation -is

y = -(l/h)x2 - Cx + C,

a family of parabolas., .From the boundary conditions, C = 0 and

Cl = 1, Hence

y(x) = (l/h)x2 + 1.

Also, Fy’ : = 2. Therefore, along the curve y(x) (l/h)x2 + 1,

il

P(x) ,(1/2>Fy,y,[x,y_(x>,y'(x)] = (1/2)(2) > o.

Hence, .Legendre (strengthened) condition is satisfied.
Finally, the following second-order partial derivatives are needed
to determine the functions P and Q:

F =2, F. =0 and F = 0,
vy’ ’ Tyy a vy’

d

P(x) = (Y/2)F 00 Qlx) = (1/’2>(Fyy &Py
P(x) =1>0, Q(x) = 0,
Therefore, |
2 2
I P(x)hPax = [ n/2ax.
Yo Y0

Now, it needs to be shown that ,j-h'edx > 0.
: 0 :

Suppose thét fgh’e(x)dx = 0, Then h'/(x) = 0 implying
hix) = ¢ (a constantg. The condition that h(0) = h(2) = 0 and the
fact that h is continuous and constant imply that h( ) =0 for all
‘k in [0,2].

Hence,
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"2
r n*ax > 0
AN
which implies
2 X .
J‘ (Ph’e + Qhe)dx
0

.Vis.positive definite. Therefore, [0,2] contains no points conjugate
to 0, by Theorem 4-9.
. -
Consequently, J[y] has a weak minimum for y(x) = (L/4)x~ + 1,

by Theorem 4-13.

Constrained Variational Problems.

- ' Subsidiary Conditions

In conéluding this chapter, a bfief look is taken at two varia-
tional problems with subsidiary conditipﬁs and then basic techniques
for handling such problems are stated.

In the simplest variational problem, the qlass ofiadmissible curves
was specified by conditions imposed on the)endpoints of the curves.
Howéver, many_applicétions of the calculus of variationsAlead fo
problems in which not only boundary conditions, but also conditions of
quite a different type known as subsidiaryvcondiﬁions (side conditions
or éonstraints) are impésed oﬁ the admissible curves..

In Chapter .I, a brief’history of the isoperimetfic problem is
given. Basically, the préblem is one of finding the geometric figure
with maximal area and given perimeter. The next example ipcludes a

technical statement of the isoperimetric problem.

‘Illustrative Example 4-16 (Isoperimetric Problem). Find the
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curve y = y(x) ‘for which the functional

b
Iyl = f F(x,y,y’)ax (%1)
a _ .

has an extremum, where the admissible curves satisfy the boundary

conditions

and are such that another functional

. b 5 A ‘
K[y] = f G(x,y,y’)ax o (k2)
a : : ,
ﬁakes on a fixed value L.
To solve this probiem, it is assumed that the functions F, G
" défining the functionals (41) and (he) have continuous first and second

partial derivatives in [é,b] for arbitrary values of y and y’.

From these assumptions,'the'foilowing result can be established:

Z ,
Theorem 4-14 [19]. Given the functional

P

b
Iyl = f F(x,y,y’)dx,

a

let the admissible curves satisfy conditions

o : b
y(a) = &, y(o) ='B, K[y] = [ clo,yyax =0 (43)
o | , _
where K[y] is another functional, and let J{y] have an extremum for
y = y(x). Then, if y = y(x) 4is not an extremal of K[y], there

“exists a constant A such that y = y(x) is an extremal of the

functional
1

J

(F + AG)dx,
a .
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i.e., y=y(x) satisfies the differential equation

N

4
; dxFy,+>\,(G - =G ,) =0. (bh)

y dx 7y
The reader can easily recognize the analogy between the theorem

and the familiar method of Lagrange Multipliers for finding extrema of

functions of several variables, subject to subsidiary conditions. [See
last part of Chapter III.]

To use Theorem 4-14 to solve a given isoperimetric problem, first
the general solution of (44) which will contain two arbitrary constants
in addition to the parameter A 1is written. Then these arbitrary
constants and parameter are determined Trom the boundary conditions
y(a) = A, y(b) = B and the subsidiary condition K[y] = L.

The results of Theorem 4-14 can be immediately extended to
functionals depending on several functions Yo oves ¥y and subject to
several subsidiary conditions of the form (42). For ingtance, suppose

an extremum of the functional below is sought, 1l.e.,

'b .
J[ylf . -wyn] = I F(nyl)”-yyn.’y:[) '-')yl;>dx) (Ll'5>
a
subject to the conditions
yi(a) = AiJ yi(b) = Bi (j- = lJ"'Jn) (Ll'6)
and
b
J‘an(x,yl,,..,yn,yl,...,yn)dx = f/j (J = lJ“")k)) ‘ (Ll'7)

where k < n. In this case a necessary condition for an extremum is
that

k k
2 (54 ZKJGJ) ) %[53—1 F + ijej)] -0 (48)

QY.
* j=1 j=1
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The 2n arbitrary constants appearing in the solution of the system (L8),
and the values of the 'k parameters Kl,...,Kk, sometimes called
Lagrange multipliers, are determined from the boundary conditions (46)
and the subsidiary conditions (47).

In the isoperimetric problem, the subsidiary conditions which must
be satisfied by the functions Jiseeey, 8are specified by functionals.
At this point, a different type of problem is stated as follows: .Find
the functions yi(x) for which the functional (L45) has an extremum,

where the admissible functions satisfy the boundary conditions

yi(a) = Aiy yi(b) = Bi (1= lJ“")n)

and k "finite" subsidiary conditions (k < n)

85 (%,7y500059,) = O (3= 1,...,K). (49)

In other words, the functional (L45) is not considered for all
curves satisfying the boundary conditions (h6), but only for those
which lie:in the (n - k)-dimensional manifold defined by the system
(49).

In the case where n =2 and k = 1, the following theorem is

stated:

Theorem 4-15 [19]. Given the functional

-

e
I[y,z] =J F(x,y,2z,y’,2")dx, (50)
a
let the admissible curves lie on the surface
g(XJ.YJZ) =0 (51)

and satisfy the boundary conditions

y(a) = A}, y(b) = B
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z(a) = Ay, z(b) = B, (52)
and moreover, let J[y] have an extremum for the curve

y =y(x), z = z(x). (53)
Then, if -gy and g, do not vanish simultaneously at any point of the

surface (51), there exists a function A(x) such that (53) is an

extremal of the functional

"

[Tt + reedax,

a

i,e,, satisfies the differential equations

a
Fy + gy - a;-Fy, =0 (5h4)

FZ+gZ~£{-FZ,=O
To use this theorem to solve a given variational problem of the
type (50), first the general solution of the system (54), which will
contain several arbitrary constants and a Lagrange multiplier, is

obtained. These quantities can be determined by meking use of the

boundary conditions and the subsidiary condition.

Illustrative Example U4-17. Let P be the collection of all non-
self-intersecting plane arcs in the upper half plane for which the total
length has the given value L and whose endpoints lie on the x-axis.
Among these arcs, find the one for which the area enclosed by it and
the x-axis is a maximum [19].

Solution: The area enclosed by any member of P and the x-axis

is glven by

ALyl = | yax, (55)



and the total length, equal to the fixed value L for every member of

P, is given by

91 - [N+ e (56)

The equation of the particular arc for which (55) is a maximum with
respect to arcs y = y(x) ‘whose 1eff-hand endpoints coincide at (-a,0),
' whose right-hand endpoints coincide at (a,0) and which give to (56)
the préscribed value L 1s sought.

The function with lagrange's multipliers is written as follows:

F*=F+xG=y-+x~§l+y’2)

of which the corresponding Euler equation is obtained from
F -—(-1—? + NG - dg ) = 0, [Theorem 4-1k4]
y dx "y’ y T ax y! ’ ’
that is,
2
)

L-n S IyN + 7)1 = 0.

By direct integration, the following result is obtained:

Ay’
(L+y7)

= X - Cl'

From this it follows that

&y = [a(x - caARE - (5 - ¢)P)]

and therefore that

(xg - (x - 01)2) + C

S
I

2
or

o 2 2 2
(x -c)? + (y - c)7 =25,

a family of circles with center (Cl,Cg) and radius A. The constants
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Cl,Cg, N are determined from the boundary conditions y(-a) = O,

y(a) = 0 and the subsidiary condition J[y] = L.

The solution of the system

: 2 2 2
(-a -.cl), +Cgo= N

2 2 2
(a - cl) +Ch =N

Il

m = L.

consists of C; =0, C, = - (L2 - agne)/n, and N = L/m.

2

Illustrative Example 4-18, [Find the shortest distance between two

points vA(xO,yO,zO) an@ B(xl,yl,zl)‘ lying on the surface of a sphere

2 2 2 2
X +y +z =a.,

Solution: The length of the curve y = ¥(x), z = z(x)  is given

by the functional

.
1
Ily,z] = j \jkl + 3y 4 2)ax.
J ‘
0 . .

Using theorem 4-15, the auxiliary functional is

X
1
P2l = [ W0+ P 2®) a0 6f « 42 e,
_ o |

and the corresponding Eulef equations are

ey (x) - é% [y’/J(l‘+ yZ+ 2?20

2zn(x) - é%—[z’/l(l + y’2 + 2'2)] =

|
O

The solutions of these equations would be a family of curves depending
on four constants, whose values would be determined by the boundary

conditions:

v(x5) = vy v(x) =¥
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z(xo) = 7., z(xl) = 7.
An Economic Model

This chapter is concluded with the discussion of an economic model
which is related to the theory of the calculus of variations. The
problem is concerned.with determiping the most profitable schedule of
production of a commodity over a given period of time so as to meet
certain fequirements. Although the solution suggested by this model is
a very profiteble one, its realization involves what may appear to be a
practical inconvenience (rate of output changing everyday). However,
the objective here is to show how the calculus of Variations can be
applied to a problem in economics. Some new concepts are introduced and
explained in the solution of the problém. A statement of the problem

with solution now follows:

An Inventory Proﬁlem [23]. Find the most profitable schedule of
production of =a commodity.over a given period of time [0,T] so as to
meet the following requirements:

a, -The initial inventory, h is given.

OJ
b. The sales function, S(t) being the cumulative sales‘from 0
to t, 1is any piece-wise continuous fundtion. |
c. Inventory is nénnegatiVe.
d. The terﬁinal'inventory is 0.
e. The cost of production‘is given: let f(x) be the cost, per
unit time, of producing x units of product per unit time, f(x)/x is

then the average cost and f’(x) is the marginal cost.

f. Marginal cost is increasing (f" > 0).



g. The cost of storage is o per unit of product and per unit
time.
The production schedule X(t), which is unknown, is defined as

X(t) = h, + cumulative output up to time t.

0
This definition insures that X is continuous. However, it is not
assumed here that the rate of production X 1is continuous.

Solution: The function X(t) is subject to the following
restrictions:

1. X(0) =h

fl

o)
s(1),

|

2, X(T)

3. X(t) =28(t), forany O €t €T,

L. X(t) is continuous and nondecreasing and has a piecewise
continuous derivative.

The cost of storage per unit time at timé t is o(X - 8), and
the cost of production per unit time t+ is f(X').

Therefore, the total cost for the period is

T
clx] = J‘o[a(x - 8) + £(x*)]at.
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It is required to find the function X which minimizes the functional

above and is subject to conditions 1-L.

Step 1. Let F(t,X,X’) = a(X -8) + £f(X’). Then Fy = a,

Fyr = £/(X7), c_quFX = f"(X’)X" which implies

F,, = X"f"(X’) =0, or X"f"(X’) = a.

a
X at
The general solution of this differential equation gives a family of

curveg from which the desired one can be selected by means of the

boundary conditions, i.e., X = X(t).



170

To decide if the strengthened Legendre condition is satisfied, one

has to find F and show that

x’x!
() = (1/2)Fy g Lt,X(2),x7(£)] > O,

But Fysys =f"(X’) which implies P(t) = (1/2)f"(X’) > 0 by réquire-
ment f in the problem. Therefore, the strengthened Legendre
condition is satisfied by Theorem L-7.

Lastly, it has to be shown that the closed interval [0,T] con-
tains no points conjugate to 0, i.e., 1f the strengthened Jacobi's
condition is satisfied. But FXX = 0, 'FXX' = 0 which implies
Q = (l/E)EFXX -'FXX,] = 0, Therefore,

P2 + qnt = (1/2)f" (x*)n*

and

T T
I (Ph'2 + th)dt = (1/2)I f“(X’)hgdt >0
0 , 0

since f"(X’) > 0 and

T
2
f f"(X/)h’"dt = O if and only if h’ = 0.
0

The reasoning here is the same as that used in Illustrative Example
L-14, Consequently, [0,T] contains no points conjugate to the point
0, by Theorem L-9, |

Hence, Step 1 implies that fhe functional, C[X], ‘has a weak
minimum for X = X(t), by Theorem L4-13.

Step 2. .At-any corner point (tO,X [that is, a point at which

o)
the left-hand derivative is not equal to the right-hand derivative] of
the solution curve, the following relation must hold between the two

slopes »X’_O and X’+O [(25]:
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2 7/ — é & 7/
F(tg,Xg,X +O) - Ft,X,,X" o) = (X w0 ¥ _O)FX,(to,xo,x o)

In this problem the corner condition is satisfied as follows:
I I N S & 1yt
.f(X+O) - f(X_O) = (x+O X’ )f (x_o)

where X: and Xi designate the derivatives at the left and at the

0

right of XO, i.e., rates of production before and after to. This

0

condition expresses that. there is no advantage in changing the position
of this boundary point [24].

Step 3. If the minimizing curve has an arc in common with a
boundary S(t) (above which it is bound to lie), then the arc of the

boundary must satisfy [26]:

d

FX(t,S,S') - EE'Fx'(t’S’S') 2 0,

In this problem there is a boundary solution if 8"f"(S’) 2 a.

The general equation of the extremals contains two arbitrary con-
stants since it ig the solution of a differential equation of the second
order. A particular extremal has, thérefore, to be determined hy two
conditions,

Two examples are now given.

First, let o =0 (i.e., no storage cost). Then X" = O and the
solutions are formed of straight liﬁes°

Secondly, let o # 0, £(X') = aX’® + vX’ + ¢ (marginal cost =
2aX’ + b is a linear function of output). Then the equation of the
extremals becomes

2aX" = a,
whose solution is:

= o 2
X -X-= Ea-(t - 1)

Cwith two arbitrary constants.
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In econclusion, the optimal rates of production for inventcry,
given demand - during a period of length T, are determined as a func-

tion of {continuous) time.



CHAPTER V
SUMMARY AND EDUCATIONAL IMPLICATTONS

In this paper the theory of extrema of differentiable functions is
discussed and illustrated. This presentation clarifies the theory,
making it more readable and more readily available to the beginning
student of analysis. It also provides the necessary background material
required to understand the procedures used in testing functions and

functionals for extrema.
Summary

In Chapter I the nature and significance of the problem, the need
for the study, and the scope and limitations of the paper are given.
Chapter II includes the development of the theory of extrema of func-
tions of one variable and applications to problems in business,
economics, geometry and the physical sciences. In Chapter III the
theory of extrema of functions of several variables is developed and
illustrated. Also, applications to number theory, geometry, business,

and economics are included. Chapter IV includes a presentation and dis-

cussion of some of the elementary concepts of the calculus of variations
with illustrations. Except for a few basic theorems, most of the
theorems are stated without proof. This chapter is concluded with an

economic model which is related to the calculus of variatiomns.

173



L7k
Educational Implications

A great deal of the theory of extrema of differentiable functions
can be understood by the secondary school students and the beginning
analysis students in college, It is important that some of these con-
cepts be presented to these groups in a more systematic and rigorous
manner, The usuel textbook treatment of this subject is rather limited,
.For the most part, the student is left with the impression that he can
always find the extrema of a function by taking the first derivative of
the function and setting the same equal to zero. An analytic treatment
of the subject such as this presents the necessary background needed for
a thorough understanding of the problem.

As a result of reading this thesis, the student should gain a
deeper insight into the theory of functions, as well as, deepen his
understanding of the theory of extrema. It is also significant that
the reader, who is a potential teacher of mathematics at the secondary
or college level, may find motivation material for his class as well as
material for the gifted student.

Certainly, the material discussed in this paper may serve as
supplementary reading material and potential subject matter in the
future undergraduate mathematics curriculum.

Undoubtedly the most important effect of this paper lies in the

experience that the writer gained in its preparation.
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in 1957; attended Indiana University during the summer of 1958
for further study and the University of Illinois during the
summer of 1962; completed regquirements for the Doctor of
Education Degree with an emphasis on Mathematics in July, 1967.

Professional Experience: Served in the United States Army as
supply clerk and supply sergeant from 1950 to 1953; taught
mathematics and served as school photographer at Utica Junior
College (Utica, Mississippi) from 195% to 1957; taught mathe-
matics and sponsored the school yearbook at Jim Hill High
School (Jackson, Mississippi) from 1957 to 1958; was assistant
professor of mathematics at Grambling College (Grambling,
Louisiana) from 1958 to 1960; was assistant professor of
Mathematics at Tougaloo College (Tougaloo, Mississippi) from
1960 to 1963; was part-time instructor in Mathematics at

Langston University (Langston, Oklahoma) from 1965 to 1967;
has written several papers in religion.

Organizations: Member of the National Council of Teachers of
Mathematics and the Mathematical Association of America.



