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PREFACE

Practical digital control systems often include a variety of undesirabl efE cts

including sampling time issues, parameter variations and exogenous disturbance.

There exist many powerful modern control theories and. subsequent tools for con

troller development which address these and other issues by guarantying stability by

design in some sense based on tunable parameters. Seemingly, one inherent quality

of these techniques is the tuning procedure becomes tedious and time consuming to

obtain a desired level of performance. This paper presents a method of combining

the ideas of loop transfer recovery (LTR) with observer based discrete variable struc.

ture control (OBDVSC) in an effort to retain design freedoms of LTR and robustness

properties of OBDVSC ultimately yielding an easily tuned practical compensator.
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OMENCLATURE

Notations used in this thesis include:

. 2/11J:=y-l.,

s := Laplacian variable,

z := complex number, (z = a +}b for a,b E lR),

.IR := field of real numbers,

C := field of complex numbers,

c- := open left half complex plane, (z E qRe[z] < 0),

CO := unit disk of the complex plane,

C® := complement set of CO,

lRnxm := set of real matrices with n rows, m columns,

Re[z] := real component of complex number z,

fm[z] := complex component of complex number z,

rank(A) := the rank of matrix A,

det(A) := the determinant of matrix A,

AT := the transpose of matrix A,

A* := the complex conjugate transpose of matrix A,

>.(A) := set of eigenvalues of matrix A, where A E JRTlxn,

ker[G] := the kernel or null space of matrix G,

q>(s) := (sf - A)-I,

q>(z) := (zf - A)-I,

~c := quadruple ~(A, B, C, D) constrained by (x = Ax + Bu, y = Cx + Du),

~d := quadruple ~d(A, B, C, D) for (x(k + 1) = Ax(k) + Bu(k), y = Cx(k) +Du(k)),

xii



Chapter 1

Introduction

Loop transfer recovery (LTR) theory has provided a powerful modern compensator

design technique and at nearly the same time, variable structure control (VSC)

theory has also emerged in its own right. Both theories offer desirable

characteristics attractive to practical control engineering problems. For instance,

the LTR technique allows for a control system to counteract disturbances at the

plant input or output for either single-input single-output (SISO) or multi-input

multi-output (MIMO) systems often yielding designs retaining properties associated

with optimal control theory. Similarly, the VSC technique has also shown value

through application to practical control problems often yielding enhanced

performance and disturbance rejection.

LTR theory is generally based on three main steps; (1) formulate all design

specifications (i.e., robustness requirements and performance criteria) as restrictions

on singular values of an open loop transfer function matrix obtained by breaking the

control loop at either the input or output of the plant (2) design a target loop using

optimal control theory to meet the design specifications of step (1), and (3) solve a

linear quadratic regulator (LQR) problem for small control weighting to recover the

loop shape of the target loop designed in step (2). The result of the aforementioned

design procedure is a compensator (i.e., controller/observer pair) which meets
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specific design requirements across a desired range of frequencies. An attractive

feature of LTR theory is a single design process which combines observer and

controller design.

Variable structure control (VSC) is a nonlinear, Lyapunov based technique which

describes a class of control systems that allow control law structure to be changed

during a given control process for enhanced system performance. For VSC system ,

a switching function is generally included in the control structure, hence the name

variable structure. By design, state space trajectories are attracted to a predescribed

hyperplane, or switching surface. Invariance of the surface constrains trajectories to

remain upon the surface once encountered. Motion along the hyperplane surface is

commonly refered to as sliding mode. Often switching functions for variable

structure control exhibit an undesirable chattering behavior around the switching

surface. To avoid this phenomena, a boundary layer is placed around the switching

surface so that motion near the boundary layer exhibits a pseudo sliding mode. For

practical applications using variable structure control, a sampling process is applied

and an observer is implemented to estimate unmeasurable states. Design of both th

observer and sliding surface for observer based discrete variable structure control

(OBDVSC) schemes becomes a separate process unlike the LTR design process.

This thesis presents a hyperplane design technique for a practical variable structure

compensator. The new frequency based design methodology considers an observer

based discrete variable structure control system operating under a regulation control

objective within the boundary layer. The novel design technique parallels ideas from

loop transfer recovery which ultimately combines the observer/controller design for

discrete variable structure systems within a single process.

2



1.1 Objectives and Motivations

The objective of this research is to develop a compensator design technique

combining observer based discrete variable structure control (OBDVSC) and the

ideas behind the LTR mechanism in an effort to yield a more structured approach

for tuning an OBDVSC compensator sch.eme. This research originally began as an

attempt to enhance the disturbance rejection properties of OBDVSC while inside

the boundary layer by implementing augmented predi~tion observer structures (i.e.,

including a disturbance observer for extended disturbance compensation), which

lead to the emphasis of one significant shortcoming of the OBDVSC technique

stemming from a separate observer and sliding hyperplane design procedure.

Performance of the overall OBDVSC system is sensitive to both observer and sliding

surface design. One key assumption in the OBDVSC theory presented is that the

error between the observer state estimate relative to the actual state vanishes

sufficiently fast, so that the observer estimates are sufficiently accurate,

(Misawa, [1]). Mathematically this ia a valid assumption, but in practice the task of

simultaneously designing an accurate state!disturbance estimator and sliding

hyperplane ultimately equates to vast amounts of tuning time. This research seeks

to reduce tuning time for an OBnVSC scheme by developing a novel loop transfer

recovery hyperplane design technique.

1.2 Contributions

Design examples for each individual technique are detailed in illustrative example

problems. The combination of OBDVSC with LTR hyperplane design is proposed.

Conditions for the exact recovery of a target loop in discrete time based on breaking

the control loop at the plant output are derived for the OBDVSC system using the

new hyperplane design technique. Discrete hyperplane design using loop transfer

3
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recovery is illustrated via simulation results for an OBDVSC system yielding a

frequency based hyperplane design.

1.3 Limitations

Limitations of this research stem directly from the restrictions related to discrete

time LTR and the LQR hyperplane design technique (see Section 2.4) used for

recovery. Due to the sampling process, discrete LTR offers the choice of using either

a prediction or current estimator. For the new hyperplane design technique a

prediction estimator is used. Further, discrete LTR is well suited for minimum

phase design plants, (see Chapter 4). Several limitations related to hyperplane

design for ODDVSC using LTR include satisfying; (1) operation inside the

boundary layer (2) a regulation control objective (3) solving a cheap control

problem using a LQR hyperplane design technique, (see Section 4.3).

1.4 Thesis Outline

This thesis is arranged in the following order: Chapter 1 briefly describes issues

related to the problem and solution formulated within this thesis through an

introduction, objective, contributions and limitations sections. Background

information essential for the OBDVSC hyperplane design via LTR is discussed in

Chapters 2 and 3 including design examples. Chapter 2 begins with essential ideas

for variable structure control theory. Continuous time and discrete time systems are

discussed, with emphasis being placed on an observer based discrete variable

structure compensation scheme with disturbance observer for extended disturbance

compensation. Chapter 3 reviews the LTR methodology including a special model

based compensator (MBC) technique known as LQG/LTR in both continuous and

discrete time. A recovery error matrix useful for showing exact recovery for the

4



OBDVSC hyperplane design is developed in detail for recovery at the plant output.

Chapter 4 investigates theoretical aspects of OBDVSC with LTR hyperplane design

under a strict operating condition inside the boundary layer. Chapter 5 shows

OBDVSC with LTR hyperplane design technique via simulation examples for a

voice coil motor (VCM) model of a disk drive. Chapter 6 gives conclusions and

ideas for future research. MATLAB codes used to simulate the design examples are

given in an appendix.

5
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Chapter 2

Variable Structure Control

Overview

Variable structure control (VSC) system theory was originally developed in Russia

and did not surface elsewhere until the 1970's when a book and survey paper by

Itkis and Utkin, [2, 3], appeared transcribed in English. Since that time, the original

ideas within variable structure control have matured and successfully extended into

many fields and applications including nonlinear state estimation, adaptive systems,

tracking systems, regulating systems, robot manipulators, underwater vehicles,

automotive technology, disk drives and more [4, 5]. The purpose of this chapter is to

briefly overview some of the fundamental ideas behind variable structure control for

a practical OBDVSC compensation scheme. This chapter begins with a description

of sliding mode control from a continuous-time framework leading ultimately to an

application of observer based discrete-time variable structure control.

2.1 Sliding Mode Control Essentials

VSC systems possess the unique feature of a changing control structure, hence the

name variable structure. The process contained within a VSC system can most

6



Figure 2.1: Fishbone of Trajectories.

generally be broken into two main mechanisms: (1) By design, a hyperplane or

sliding surface in the state space attracts system trajectories, as illustrated in

Figure 2.1. During this phase, commonly refered to as the reaching phase, all

trajectories point towards a sliding surface. (2) Once on the sliding surface an

invariance condition is maintained such that trajectories remain on or slide along a

switching surface. This motion is known as the sliding mode.

For example, consider the explanation of variable structure control theory applied to

a double integrator system (Spurgeon and Edwards, [51),

jj(t) = u(t) (2.1)

To illustrate fundamental concepts of VSC theory, suppose trajectories are to be

driven to the origin using the control law to be given by

,,(tl = {
-1,

+1,

7

B(y, iJ) < 0

B(y, iJ) > 0
(2.2)



where the surface 8 is defined by

8(y, y) = my + y

and where m is a positive design scalar1 . The variable structure of the control law

u(t) is clearly seen depending on the sign of 8. The control law u(t) can be replaced

with the sgn(·) or signum function which is equivalently stated as,

u(t) = -sgn(8(t))

where the sgn(-) function is defined as

(2.3)

sgn(·) = {
+1, sgn(·) > 0

-I, sgn(·) < 0

One fundamental property of the sign function is that

8. sgn(S) = 181 (2.4)

Using the above definitions and considering the case for m!yl < I, if V = ~S2 is

taken as a candidate Lyapunov function, stability of the sliding surface in the sense

of Lyapunov2 requires that it = S8 to be negative definite. Calculating it yields,

S8 S(my + y) (2.5)

S(my - sgn(S)) (2.6)

< 181(mlyl - 1) < 0 (2.7)

which means the sliding surface is locally attractive. Mathematically, this behavior

near the sliding surface, i.e., S ~ 0, can be expressed as Equation (2.8), (Spurgeon

and Edwards, [5]),

(2.8)

1In general, for the state space JRn, a surface can be chosen as S (y, if, ii, ... ) =

(~ + m)n-l y, (Slotine and Li, [4]).
2For a general discussion of Lyapunov theory and stability definitions see [4]' [12].
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Figure 2.2: Reaching and Sliding Motion in Phase Plane.

9

time and that S = 0 is an invariant subspace, (Slotine and Li, [4]).

ensures that any arbitrary initial conditions will reach the surface S = 0 in finite

(2.9)

(2.10)

sf; = -17ISI

f; = -1] . sgn(S), \I 1] > 0

or,

Graphically thinking of the second order system in a state space placing position and

velocity on the abscissa and ordinate axis respectively yields Figure 2.2. Recall that

the sliding surface was chosen as S = my + y, for m being a design parameter. Now

suppose a control objective is to move the system from point 1 labeled in Figure 2.2

to the origin, or point 2. Using the control law proposed above, u(t) = -sgn(S),

system trajectories exhibit two behaviors, namely reaching and sliding. The

reaching phase shows local system trajectories being attracted to the sliding surface.

Once on the surface, the trajectories remain and slide to the desired set point.

Alternatively, letting the reaching condition sf; < 0 be satisfied by



y

...
...

reaching
phase

CD

chattering

y
...

...
...

...
...

... ...

L ...
slope -m ...... S

...
...

Figure 2.3: Reaching and Sliding Motion in Phase Plane with Chattering.

Figure 2.2 represents what is commonly refered to in the literature as ideal sliding

motion. Practically speaking, ideal sliding motion is not possible because of the

high frequency switching necessary to maintain system trajectories on S = o.

Intuitively, motion around S = 0 would be more accurately illustrated by

Figure 2.3. Instead of smoothly riding the sliding surface, trajectories oscillate

about S = O. This chattering motion is an undesirable effect, especially when plants

may include unmodeled dynamics at high frequencies. Allowing chattering around

the sliding surface may possibly excite unwanted resonant vibration modes in

mechanical structures. To combat the chattering effect the sgn(·) function can be

exchanged with a sat(·) function and a boundary layer 4> surrounding and parallel

to S = 0, where the sat(~) is defined as

+1, SO > 4>
S

sat( 4» = s lSI:::; 4>~,

-1, SO < 4>

(2.11)

10



s

-I

Figure 2.4: Saturation Function, sat( ~).

A graphical interpretation of Equation (2.11) is shown in Figure 2.4. A possible

system trajectory using a variable structure control with sat( ~) may be similar to

Figure 2.5.

2.1.1 A Note on Model-Based Tracking and VSC

The previous example considered a regulation control objective which corresponded

to driving the system trajectory to the origin of the phase plane for a double

integrator system. Representing ii = u(t) in a state space representation, ~(A, B, C)

yields,

(2.12)

11



For the SISO second order system we have, A E jR2X2, B E jR2Xl, C E R1X2 ,

X E jR2xl and U E lR. Suppose the control objective is changed from regulation to

tracking and that the dynamics to track are given by quadruple

Etrack(Ad, Bd , Cd, Dd ) such that Xd is the desired state to track and Ud is a

convenient control input. Let x = x - Xd, and define a sliding surface as,

y

Figure 2.5: Sliding Surface with Boundary Layer.

y = ~[:]
c _____

x

S=G·x

12

(2.13)

(2.14)

G



where G E R1X2
• As before, let V = ~S2 be a Lyapunov candidate function so that

showing 11 negative definite yields stability. Calculating SS yields

SS s·Gi

S· G(x - Xd)

S· G(Ax + Bu - AXd - BUd)

S(GAx + GB(u - Ud))

(2.15)

(2.16)

(2.17)

(2.18)

Noting that GB E lR for SISO and choosing U as

u = - GlB (GAX + Ksat(~)) + Ud (2.19)

where K > 0 is an arbitrary design constant yields

(2.20)

which is of the form S5 < - ~S2. To track Xd we desire x -t Xd as t -t 00. By

defining an error, the tracking objective is transformed into a regulation problem in

x. This transformation of a tracking problem into a regulation regulation problem is

a common result, but within a sliding mode control context serves to show the need

for generating the desired trajectories, Xd. 'frajectory shaping and generation can be

accomplished via a xd-generator (Richter, [6]).

2.1.2 Observer Based Variable Structure Control (OBVSC)

The tracking problem shown previously assumes full state feedback. Practically

speaking, all of the states are generally not available for feedback, and thus an

observer must be implemented. The effect of an observer used in VSC can be

argued to be negligible if the convergence of state estimates is fast enough

(Misawa, [1]). An OBVSC compensator, observer-controller pair, is illustrated in

block diagram form in Figure 2.6. The control law U in Equation (2.23) for the

13



xd

xd ..
xd....

ud .... ud lJ
.....

U y~.... ....
-generator ~ xhat

VSC Plant

u.
- xhat

y~

Observer

Figure 2.6: Observer Based VSC Block Diagram.

observer based compensator is taken from Equation (2.19) using two modifications

given by Equation (2.21) and sliding surface given in Equation (2.22).

behaves like the variable structure control system assuming full state feedback.

Variable structure control in a discrete context is conceptually different from the

(2.22)

(2.23)

(2.21)

14

Assuming that the error between the state estimate x and the actual state x

2.2 Discrete Variable Structure Control (DVSC)

x= x- Xd

where K > 0 is an arbitrary design constant and x is the estimate of the state

vector x generated by a suitable observer, such as Luenberger observer3 .

vanishes fast enough, the observer based variable structure control essentially

continuous time VSC counterpart strictly because of the sampling process. It is well

3For a general discussion of Luenberger observer theory in discrete-time see

Franklin et.al., [10].



known that the achievable sliding motion for DVSC systems can be graphically

represented as Figure 2.7. A discrete time counterpart of the continuous time

sliding condition, (i.e., 58 < 0) is given by, (Sira-Ramirez, [9])

(2.24)

AB opposed to the ideal sliding mode in continuous time, for discrete sliding mode,

trajectories are allowed to lie within a boundary of the surface 5 = O. Although this

boundary layer is necessary to counteract chattering as noted in Section 2.1, true

sliding mode in discrete time systems is unobtainable. The motion inside the

boundary layer for discrete time systems is refered to as quasi-sliding mode because

trajectories never lie exactly on 5 = O. This quasi-sliding motion of discrete time

sliding mode control can be directly attributed to the discrete time interpretation of

continuous time Lyapunov stability theory.

Milosavljevic, [13] first commented on the limitations of true sliding mode in

discrete time. Since that time several researchers have investigated many aspects of

DVSC, (Su [14], Pieper [15], Paden [16], Furuta [17]). Research on the stability of

DVSC systems is given by Sarpturk, [19], Kotta, [20]. Recently, more practical

applications of DVSC have been proposed including DVSC schemes using state

estimators (Misawa, [1]).

2.3 OBDVSC with Disturbance Observer

An extension of the observer based discrete variable structure control work of

Misawa, [1] is given by Tang, [7]. Tang covers necessary OBDVSC theory to include

an extra disturbance compensation ability for disturbances at the plant input under

a matching condition. Two main components, (i.e., a prediction observer and a

discrete variable structure controller (DVSC)), make up the OBDVSC compensation

scheme illustrated by Figure 2.8. The DVSC portion of the compensator is assigned

15



s=o

trajectory

Figure 2.7: Quasi Sliding Mode in Discrete Time, [11].

the task of tracking or regulation depending on the desired control objective. The

functionality of the observer is two fold. First, the observer provides necessary state

estimates, x(k), to the DVSC and secondly, the observer also provides a disturbance

estimate for feedforward disturbance compensation. To accomplish the tasks of

supplying both state and disturbance estimates, the observer in Figure 2.8 is based

on augmented dynamics including both mechanical and disturbance models.

Tang [7] gives a thorough description this disturbance observer, or so called

prediction observer with uncertainty estimation, implemented within an OBDVSC

framework.

The disturbance observer of Figure 2.8 is implemented hy defining an augmented

state vector as Equation (2.25), where the plant states are x(k) and the disturbance

state d(k) is taken as an external disturbance at the plant input (Franklin

16



et.al., [10]).

e(k) = [ x(k) ]
d(k)

(2.25)

From augmented dynamics of Equation (2.25), it is straightforward to compute an

observer design assuming a priori knowledge of a disturbance model. The following

section describes two types of disturbance observers that may fit into the augmented

dynamics approach of Equation (2.25).

2.3.1 Bias Estimator

Given a discrete plant state space quadruple Ed(A, B, C) and assuming

d(k + 1) = d(k), using the augmented state vector of Equation (2.25) the augmented

dynamics become Equation (2.26)4,

[:~:::; ]
, .I

v

~(k+l)

with the output equation,

[
A B] [X(k)] + [B] u(k)
o 1 I d(k) 0

~'-...--' ""'"--'"
Aaug e(k) Baug

y(k) = [c 0 ] {(k)

~
Caug

(2.26)

(2.27)

Using the augmented state dynamics in Equation (~.26), traditional linear

Luenberger observer techniques of the standard form given by Equation (2.28),

~(k + 1) = (Aaug - H Caug)~(k) + B u(k) + H y(k) (2.28)

can estimate the plant's states and disturbance for a suitable augmented observer

gain matrix H.

4Forming augmented observer dynamics with an augmented state vector such as

Equation (2.25) with d(k + 1) = d(k) is a special form of disturbance observer called

a bias estimator.
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2.3.2 Disturbance State Modelling

Describing an external disturbance with an appropriate set of differential equations,

or difference equations in the discrete sense, leads to a slightly different augmented

structure. For instance, a disturbance state modelling approach allows a disturbance

model based on experimental data with some measurable spectrum to be

implemented within the augmented state vector ~(k), (i,e" using a priori knowledge

of a disturbance model taken as some appropriate ~(Ads, Bds , Cds, Dds) stochastic

shaping filter). Suppose the disturbance is modeled by Equation (2.29),

(2.29)

where the disturbance output equation is given by Equation (2.30).

(2.30)

Taking an augmented state vector as xaug(k) = [x(k) xds(k)]T and combining

quadruple ~d(A, B, C) with Equations (2.29) and (2.30) yields augmented dynamics

of Equation (2.31).

[ X:~~k++l:) j [: B~:d' j[ X:~~) j + [: B~:M j[ ~~ ]
\"'V'..I'v,.l~""'V'..J~

~aug (k+l) A aug {aug(k) Baug Uaug

(2.31)

y (2.32)

The input to the disturbance difference equation, Wds is unknown, thus observers for

systems with unknown inputs should be applied. Observers for linear systems with

18



unknown inputs have been investigated by several researchers inchlding Kudva [23] I

Hou [24], Meditch [25], Wang [26], Yang [27] and Hostetter [29j. A key point of

using observers for systems with unknown inputs is that the observability matrix5

remains full rank. For Equation (2.31), the observability requirement is equival nt

to the observability matrix made up of matrices Aau9 and Caug of

Equations (2.31, 2.32) being full rank.

Designing an observer for augmented dynamics given in Equation (2.31) relies on a

priori knowledge of a set of differential equations describing the disturbance.

Obtaining the disturbance model may be left for the designer via experimental

results or statistical approximation. Guidelines for choosing an appropriate model

to fit experimental data so all significant waveform modes observed in disturbance

data are correctly represented see Johnson, [30].

2.3.3 OBDVSC with Feedforward Disturbance

Compensation

For the OBDVSC compensator system of Figure 2.8 the disturbance input is

assumed under a matching condition such that x(k + 1) = Ax(k) +B(u(k) +d(k)),

where x E lRn , u and d E lR, A E lRnxn and B E lRnx1
. The total control effort from

the compensation system, U is comprised of Uc from the controller and Ud, the

disturbance estimate from the augmented observer, such that U = U c - Ud. Given a

linear time-invariant plant quadruple, namely L:d(A, B, C, D), the DVSC control

effort U c is given as Equation (2.33), (Misawa, [1]),

(2.33)

5Recall for linear systems, the observability matrix for L:(A, B, C, D) is defined as
0= [C CA CA2 .•. CAn-l]T.
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where matrix G is of appropriate dimension, xd(k + 1) and xd(k) are desired states

and x(k) is the estimate of the actual state. Misawa [1] suggests the boundary layer

thickness, </> is generally chosen as ¢ 2: 'Y + fltc, V'Y> 0, where flt i the sampling

period, 'Y represents a bound on additive uncertainty and e is an arbitrary positive

design constant. 8 is the sliding manifold defined by 8=G [xd(k) - x(k)]. The

sat(~) function is defined by Equation (2.34), llxd(k) is defined by Equation (2.35)

and the sliding gain K, is defined by Equation (2.36).

+1, 8>¢
s s 181 ~¢ (2.34)sat(¢) = ¢'

-1, S<¢

K = '"Y + 211te

(2.35)

(2.36)

Obtaining acceptable performance from the OBDVSC compensator scheme is

strongly dependent upon the design of sliding surface S(k) = Gi and augmented

observer gain, H. For an arbitrary choice of 8 and H, typically a trial and error

process is necessary to obtain satisfactory performance.

2.4 Hyperplane Design via LQR

This section is intended to give background information on a DVSC design

technique following a LQR hyperplane approach given by Tang [7, 8]. This

hyperplane design technique is intended for discrete variable structure control

systems as described in Chapter 2.
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Figure 2.8: OBDVSC Disturbance Compensation Scheme

2.4.1 Eigenvalue Constraint

For single input systems it can be shown that tracking error dynamics inside the

sliding boundary layer are given by,

BG
Aeq = A - GB (A - aI) (2.37)

where a = 1 - ~ is one real eigenvalue of Aeq , (Richter, [6] and Misawa, [21]).

It is specifically shown by Tang [7] through an illustrative example that inside the

boundary layer cP, for systems controlled by Equation (2.33) a necessary condition

for desirable behavior on or inside the boundary layer is that one eigenvalue of Aeq

must be real. This fact essentially constrains a to lie on the Real axis in the

complex plane inside the unit disk (i.e., a = Re[z] E (-1,1). For a more formal

description of the eigenvalue constraint for variable structure systems see

Richter [6]. Allowing Aeq to strictly have complex valued eigenvalues causes

trajectories near the sliding surface to slide along the boundary layer before

approaching the origin. If eigenvalues of Aeq are strictly complex, then an optimal

sliding surface S cannot be obtained, (FUruta, [18]). Thus, a must correspond to a

real eigenvalue of Aeq, (Richter [6] and FUruta [18]). Restricting Aeq to have at least
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index J for

(2.39)

(2.38)

(2.40)

(2.41)

(2.42)

22

K
a = (1-~)

¢

x(k + 1) = Ax(k) + Bu(k)

00

J = L xT(k)Qx(k) + Ru2 (k)
k=k.

where taking u(k) = - c?B (A - aI)x(k) allows the problem to be cast into a

traditional optimal control form where a performance index J given by

Letting the Aeq matrix describe tracking error dynamics yields

2.4.2 LQR Hyperplane Design Procedure

one real eigenvalue is common practice. This requirement is called eigenvalue

constraint for variable structure systems.

(DARE) given as

for k" being the instant a trajectory enters the boundary layer, Q = QT ~ a and

R> O,(Tang, [7]). It is well known that u(k) = Fx(k) minimizes the performance

where P = pT > 0 is the solution to the discrete time algebraic Ricatti equation

Equations (2.42, 2.43, 2.44, 2.45, 2.46, 2.47) must also be satisfied.

method, a designer must prespecify a real eigenvalue a based on K, Dot, c, ¢ and

also supply a desired weighting matrix Qd' Several constraint equations given by

To satisfy the eigenvalue constraint and force Equation (2.38) to behave like a LQR

regulator, Tang [7] proposes to solve the so called inverse optimal problem. In this

--



(2.43)

(2.47)

(2.45)

(2.44)

(2.48)

(2.46)

(2.49)

(2.50)

,>0

K =,+ 2b.t€

(¥ E (-1,1), a =1= 0

23

Fixing the control weighting matrix as R = 1, an optimization problem must be

solved using MATLAB to find a Q closest to Qd using either a least squares or a

convex programming approach. Then using the Q closest to Qdl the optimal

feedback matrix F is found using the dlqr.m MATLAB command and the sliding

gain matrix G is calculated using G =ker«A - BF - aI)Tf.

A key point of the inverse optimal problem given by Tang [7] is that Qd and an a

mayor may not be compatible. That is to say, the Q returned via the MATLAB

or,

Fundamental to the procedure is leveraging use of the symmetric root locus, which

stems from the LQR closed loop characteristic equation, given by

where G(z) = C(zI - A)-IB using C as a fictitious output depending on Q.

Simplifying Equation (2.48) by substituting CI>(z) = C(zI - A)-l B, G(z) yields

-



solution for the inverse optimal problem is guaranteed to produce on real eigenvalue

of Aeq at a. However, fixing R = 1 and solving the LQR problem u ing Qd does not

necessarily guarantee Ai(A - BF) will satisfy the real eigenvalue constraint. Equally

important is the scalar relationship between output and control weighting matrices,

Q and R respectively, that can clearly be seen in Equation (2.50).

The scalar relationship between Q and R is necessary for the combination of LTR6

ideas with LQR hyperplane design method of Tang [71. Because Tang [7] fixes the

control weight as R = 1, the recovery mechanism must be placed on Qd. This issue

is further discussed in Chapter 4.

2.5 Design Example: OBDVSC with Disturbance

Observer

The following section covers a design example implementing background OBDVSC

material covered in Chapter 2. Key points for the example include (1) hard disk

drive model, (Goh et. al., [50]) (2) discrete variable structure control with

feedforward disturbance compensation, (Section 2.3) (3) Compensator based on

separate iteratively tuned observer and controller designs.

2.5.1 Disk Drive Model

An ideal mechanical model for a disk drive which maps the voice coil motor voltage

input into output position is Gplant(S) = :b-, where J is the actuator inertia. This

double integrator model is simplistic because of the neglected higher frequency

resonance modes of the actuator arm and low frequency bearing and pivot frictional

effects. A more realistic model for the VCM actuator which accounts for high

frequency information is given in Equation (2.51), (Goh et. al., [50]). A similar

6Loop transfer recovery (LTR) methodology is discussed in detail in Chapter 3.
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-1.596· 103 -9.763· 107 0 0

Discretizing the continuous state space matrices assuming an arbitrary sampling

(2.53)

(2.52)

(2.51)

(2.54)

(2.55)

3.774.10-5

7.731.10-10

B (2.57)
1.042 . 10-14

1.047. 10-19

1 0 0 0

0 1 0 0

0 0 1 0

Bp [100 or
[ 0 0 4.382 . 1010 4.325· 1015 ]

Dp = [0]

8.6.10- 1 -3.6.103 0 0

3.7.10-5 9.2.10-1 a 0
A (2.56)

7.7.10-10 3.8.10-5 1 0

1.0 . 10-14 7.8.10-10 4.10-5 1

Equations (2.52, 2.53, 2.54, 2.55).

model in frequency domain for a VCM actuator is given by Lee et. al. [51].

4.3817 x 1010S +4.3247 X 1015

Gplant = S2(s2 + 1.5962 X 1038 + 9.7631 X 107)

The state space representation of Equation (2.51) in controller canonical from is

given by ::i; = Apx + Bpu, y = CpX + Dpu for the state space matrices given as

rate of t s = 40.10-6 seconds, yields Equations (2.56, 2.57).

-
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a transfer function mapping a random white noise input into disturbance at the

(2.58)

(2.59)

Example 2.1 DBDVSe and Disturbance Observer: Given the discrete disk drive

design plant ~d(A,B, C, D) from Section 2.5.1 and the disturbance model outlined in

Section 2.5.2 compare the bias estimator to the state modelling disturbance observer

within the DBDVSe compensation scheme of Section 2.8.

Designing an observer for augmented dynamics given in Equation (2.31) relies on a

priori knowledge of a set of differential equations describing the disturbance.

Obtaining the disturbance model may be left for the designer via experimental

results or statistical approximation, (Johnson [30]). A disturbance model is taken as

2.5.2 Disturbance Model

where gain K a given by Equation (2.59) guarantees 0 dB magnitude at low

plant input. Figure 2.9 illustrates generation of the model-based disturbance using

this idea. The magnitude and phase response of the model-based disturbance

transfer function, H(s) = ~~:~, are illustrated in Figure 2.10. The transfer function

is designed with appropriately placed poles and zeros in the form of Equation (2.58).

frequencies.

Equation (2.58) may be found. Finding equivalent state space matrices and using a

The frequencies (Wp1 ,2' wzJ and damping ratios ((Pl,2 1 (Z\) are given in Table 2.1 for

a disturbance model emphasizing frequencies near 600 and 1200 Hz. Assuming a

spindle angular velocity of 7200 RPM, the fundamental spindle frequency is located

at 120 Hz, hence the emphasis of frequencies near 600 and 1200 Hz, which are

multiples of 120 Hz. Substituting in values for damping ratios and natural

frequencies in units of roo from Table 2.1, a numerical representation ofsec



White Noise

~I__~_~:_~_ -----t·~1 disturbance I

Figure 2.9: Disturbance Generation using Random Input.

sampling rate of Ts = 40e-6 seconds yields discrete matrices (Ads, Bds ,Cds) with

Dds = [0] for the disturbance difference Equation (2.29):

9.2. 10-1 -3.3 .103 -8.2.105 -2.9.1010

3.9. 10-5 9.3.10- 1 -1.3. 101 -5.8.105

Ads = (2.60)
7.9.10- 10 3.9.10-5 9.9.10-1 -7.9.100

1.1.10-15 7.9. 10-10 4.0.10-5 9.9.10- 1

Bds = [ 3.9. 10-5 7.9.10-10 1.1 . 10-14 1.1 . 10-[9 r (2.61)
~
;",
•I

Cds = [ 0 5.2.107 9.5.1010 7.5. 1014 ] (2.62)

Assuming a perfect disturbance model raises a robustness question related to the

disturbance modelling augmentation structure. For simulations, a disturbance model

mismatch is assumed. Figure 2.10 illustrates the mismatch in disturbance model in

frequency domain. The curves labeled actual represent the transfer function used to

input the actual disturbance into the system, while the curves labeled disturbance

state represent the transfer function used to design the augmented observer.

Table 2.1: Frequency and Damping Ratios of Disturbance Model Transfer FUnction.

Poles I Zeros I
W p l (Hz) W p2 (Hz) (pI (p2 W z 1 (Hz) (zl

600 1200 0.008 0.006 750 0.2
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Bode Diagrams
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Figure 2.10: Magnitude & Phase of the Disturbance Model Transfer Function.

2.5.3 OBDVSC with Disturbance Observer Simulations

Two main sets of simulations7 were ran to test the augmented observer structures

within the OBDVSC scheme. Both sets of simulations considered track following

performance with a disturbance at the plant input. The first set of simulations

considered the disturbance to be made up a fictitious bias and vibration, while the

second set of simulations considered the input disturbance as discussed in

Section (2.5.2). The two augmented observers were simulated under conditions

given in Table (2.2).

Under the bias and vibration disturbance condition, both the bias estimator and

disturbance state augmentation structures responses are illustrated in Figure 2.11.

The bias estimator augmented observer has the best regulation performance, less

than 1% error, and almost an exact disturbance estimate. Although the bias

7Simulations are in discrete time, although discrete samples are not specifically
shown.
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Table 2.2: Simulation Conditions.

Freq. of Vibration (Periodic) 120 Hz

240 Hz

Freq. Emphasis of Vib. (Random) 600 Hz

1200 Hz

Magnitude of Vibrations 109

Magnitude of Bias (volts) ± 0.04

Sampling time 40 f..lSec

Track follow criteria, (track width) ±5%

estimator is based on a constant model, (i.e., xbias(k + 1) = Xbias(k)), a time varying

disturbance can be estimated. The disturbance state augmented observer also

captures the disturbance and is able to keep off track performance within 2.8% of

the regulation objective. Allowing the OBDVSC to solely counteract the input bias

and vibration disturbance results in nearly 5% tracking error.

Simulating the OBDVSC scheme with a disturbance given by Section (2.5.2) for

both the bias estimator and disturbance state augmentation structures produces

responses illustrated in Figure 2.12 and Figure 2.13. The regulation task is most

accurately accomplished using the disturbance modeling augmented structure

combined with OBDVSC, within 0.7% of a track width, even with mismatched

disturbance models. From Figure 2.12, the bias estimator augmented structure

produces a position response that is worse than not supplying a feedforward

compensation term, 3% compared to 1.5% off track performance. The degradation

in performance for the bias augmented observer OBDVSC scheme can be attributed

to the disturbance estimate illustrated in Figure 2.13. Like the disturbance

modeling augmented observer, the bias observer is again capable of capturing the

input disturbance's general shape. However, the bias estimator fails to closely
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Figure 2.11: Position Response and Disturbance Estimation for Bias plus Vibration

maintain the phase information of the disturbance signal which adds extra delay to

the feedforward compensation ultimately resulting in poorer tracking performance.

errors in Figure 2.14, where Errort = total disturbance - bias disturbance

estimate, and Error2 = total disturbance - disturbance modeling estimate.

Error2 is approximately 50% of that of ErrOTt.

Simulating the system with a combined disturbance of both bias and vibration as

well as the disturbance described in Section (2.5.2) produces disturbance estimation

2.6 Summary

Chapter 2 gives a review of variable structure control systems for both continuous

and discrete time. Important points from Chapter 2 to remember include:

• Variable structure systems are Lyapunov based techniques which possess the
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Figure 2.13: Disturbance Estimates for Model Based Disturbance Input.
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server.

ability to change control structure.

• Lyapunov theory for continuous and discrete time is different ultimately

negating a true sliding mode in discrete time. Implementing a boundary layer

about the sliding manifold to address chattering and using the discrete time

sliding condition yields quasi sliding motion inside the boundary layer.

• A DVSC hyperplane design technique via LQR exists, (Tang, [7]) which allows

a designer to satisfy mild system constraints ultimately yielding a sliding

surface, S.

• Observer based discrete time variable structure control can be implemented

for practical applications, (Section 2.5).
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Chapter 3

Loop Transfer Recovery Overview

Practically speaking no matter how powerful a specific control methodology is,

several iterations are generally necessary to tune parameters for an acceptable level

of performance. Providing a systematic means to minimize trial and error iterations

would be beneficial for any practical control applications that require an iterative

tuning process. Loop transfer recovery (LTR) methodologies are such tools which

offer means for control engineers to tweak design parameters in an educated way

effectively reducing the number of iterative steps.

This chapter covers basic concepts of the LTR methodology, specifically highlighting

a technique called Linear Quadratic Gaussian Loop Transfer Recovery (LQG/LTR).

First an overview of the basic ideas and properties of LTR is p;iven in a continuous

time setting. Also, loop shaping ideas for the target loop are discussed. Next the

LTR methodology is covered in a broader sense encompassing discrete time systems

using full order observers. Chapter 3 ends with a discussion of the recovery error

matrix, a measuring tool for loop transfer recovery for both continuous and discrete

time systems which will be useful for measuring the success of LTR hyperplane

design theory in Chapters 5 and 6.
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3.1 LQG/LTR

The fundamental idea for recovery driving the LTR mechanism is accredited to

Doyle and Stein [42], although a prior work also by Doyle and Stein [41] alludes to

the LTR concept. Since that time, LTR ideas have become a popular modern design

technique for MIMO continuous and discrete time systems with some modest

restrictions on design plant characteristics.

One pictorial interpretation of the LTR design procedure is cast graphically

beginning with the servo control block diagram depicted in Figure 3.1. Suppose a

continuous time linear time-invariant, either MIMO or SISO, system exists such

that ~(A,B, C) is a state space representation of a minimum phase1 design plant to

be controlled. Let G(s) in Figure 3.1 define the transfer function given by

Equation (3.1), I~
,.

G(s) = C 1>(s) B (3.1)

34

pair), such that desired stability, robustness and performance specifications are met

(Athans [43]).

(3.2)1>(s) 6 (sl - At1

Assuming that (A, B) is stabilizable and (A, C) is detectable2 , the LTR

methodology seeks to define the MIMO compensator K(s), (i.e., controller/observer

such that cll(s) is taken as Equation (3.2).

Typically for the LTR methodology in continuous time, a linear state feedback

controller of the form u(t) = -F x(t) is used in tandem with a Luenberger state

J A design plant G(z) = C(zl - A)-l B is said to be minimum phase for

~d(A, B, C, D) if all zeros of G(z) are contained in C0. Similarly, a continuous

time design plant G(s), for ~(A,B,C,D), is said to be minimum phase if all the

zeros of G(s) are in C-
2See Zhou, [33] for definitions for stabilizable and detectable



estimator, where x(t) is an estimated state vector and F defines a controller gain

matrix. Implementing this procedure requires the design of an observer gain matrix,

H, and a state feedback gain matrix, F. Suppose the observer and state feedback

control design are handled separately, one may design an observer using Kalman

filtering techniques and then separately design a controller using linear quadratic

regulator (LQR) techniques. Each individual design of Hand F could be thought of

as optimal, however when implemented together as a compensator, the two optimal

parts may function in a sub-optimal manner. An arbitrary combination of observer

and controller designs can be "arbitrarily bad", (Doyle and Stein (41]). The LTR

method seeks to alleviate the arbitrary combination of observer and controller pairs

in a way to find gains, H and F, that when collectively used give good stability

margins, performance characteristics and robustness properties.

There are three major steps in the LTR methodology:

1. Given a design plant, first characterize design requirements as restrictions on

the singular values3 of an open loop transfer function matrix formed by

breaking the control loop in Figure 3.1 at the input or output of the plant

G(s).

2. Next design a target loop to meet specifications outlined by step (1) with the

intention of implementing a compensator composed of state feedback control

and a state estimator. For example, breaking the control loop at the plant

output neglecting disturbances di and do of Figure 3.1, the target loop would

then be given as the open loop equivalent of Figure 3.2. Matrix H of

appropriate dimension would be called the filter gain matrix4 . The target loop

in this situation is refered to as the target filter loop because it consists

designing an observer matrix H.

3. Staying consistent with the case of breaking the control loop at the plant

output, the last step is to hold H found in step (2) constant and to recover

3See Zhou, [33] for a general discussion of singular values and singular value de

composition.
4A dual procedure also exists for breaking the control loop at the plant input where

the target loop is designed using a state feedback control.
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Figure 3.1: Typical Feedback Control System.

the target filter loop characteristics in the control loop using compensator

K(s) of Figure 3.1 in a special way such that the performance of control loop

approximates that of the target loop.

One key flexibility in the LTR method is that any technique which yields a target

loop in step (2) satisfying properties desired in step (1) is valid. Fulfilling step (2) of

the above procedure essentially becomes that of observer design, or the selection of

gain matrix H. The design of the target filter loop is an arbitrary choice for the

designer. Because of the stability margins and robustness properties intrinsic to

optimal control, often a Kalman-Buey filtering technique is used to design H. When

a Kalman-Bucy filter is used for the design of H along with the recovery technique

of step (3), the composite technique is commonly refered to as linear quadratic

Gaussian loop transfer recovery, or LQG/LTR. The LQG/LTR compensator

technique belongs to a broader class of compensators known as model based

compensators, described by Figure 3.3.

One fundamental question remains: How does the LTR recovery mechanism in step

(3) work? The answer lies in the following, given a SISa continuous system,

~(A, B, C, D), the Linear Quadratic Regulator (LQR) problem seeks to minimize a
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Figure 3.3: Model Based Compensator, K (s).

performance index,

t=oo

J = LxTQx + Ru2

t=O

(3.3)

for weighting terms Q = QT > a and R > O.

A special case of the LQR problem known as cheap control exists when the control

weight R approaches zero. The is equivalent performance index is given by

Equation (3.4).

k=oo

Jcheap = L xT(k)Qx(k) + pRu2

k=O

(3.4)

For step (3) of the major steps in LTR methodology to be valid, the following

condition must hold.

limp-+o vpF = W C, WTW = I

Lemma 3.1 For recovery at the plant output, given ~(A, B, C) and the

continuous-time model based compensator of Figure 3. [] as
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K(s) = F(sI - A + BF + HC)-l H where G(s) = C(sI - A)-lB is minimum phase,

if conditions 1 -+ 3 are valid, where

1. Re[Ai(A - BF)] < 0

2. Re[Ai(A - HC)] < a and

3. limp~o y'PF = WC, wrw = I (cheap control)

then

(3.5)

point wise in s.

Proof. See discussion in Doyle and Stein [42].

For recovery at the plant output, Lemma 3.1 and solving the cheap control LQR

problem suggest as p -+ 0 for minimum phase systems, the LTR mechanism

replaces the design plant dynamics with the dynamics of the target loop. The main

LTR result for recovery at the output of the design plant is given by the following

Lemma, (Doyle and Stein [42]):

Lemma 3.2 If conditions 1 -+ 3 of Lemma 9.1 are valid for the given

continuous-time LTI system ~(A, B, C), then it follows that:

limp~o G(s)K(s) = C(sI - A)-lB· [C(sI - A)-lB]-lC(sI - At l H (3.6)
" ,.., " JY v

G(s) limp-+oK(s)

so that

(3.7)

Proof. Simple substitution of result taken from Lemma 9.1into G(s)K(s).

3.1.1 Target Filter Design

For this thesis, recovery at the plant output is assumed to be the design objective.

In that light, following steps (1) and (2) of the procedure outlined in Section 3.1

coincides mainly with the design of a target filter loop, or observer design. For the
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continuous time MIMO case, Athans [43] gives several useful hints for designing the

target feedback loop for recovery at the plant output based upon Kalman's

frequency domain equality [42, 44]. For MIMO systems, the target loop design

consists of suitably shaping the singular values to fit design specifications. For 8180

systems, shaping the singular value plots is equivalent to shaping the Bode

magnitude plot. The target filter loop design is an important part of the LTR

procedure that will be necessary for hyperplane design of Chapters 4 5.

3.1.2 Target Filter Loop Design Methods

A common design requirement is for a system to have zero steady state error to step

changes in set point reference. This requirement is satified by type 1 systems5 .

Thus, it is a common practice to augment state dynamics with free integrators

°Type 1 systems exhibit an integral action synonymous with containing a free integrator per

input channel.

during the loop shaping phase of the LQG/LTR procedure. Suppose plant dynamics

are given by I;(A, B, C, D), augmenting each channel of a MIMO system with a free

integrator is achieved by redefining the state vector as xaug = [up xjT, where

up(t) = u(t) or up(s) = ~u(s). Defining the state in this way allows the augmented

dynamics to be rewritten as

\

(3.8)

(3.9)
[ 0 C] [ up (t) ]
"--v-' x(t)

Cd "--""
X au9

y(t)

[
up(t)] [0 0] [up(t)] + [1] u(t)
x(t) B A x(t) 0

'"'-,..-'" ------"--"" ~
xaug(t) Ad Xau9 Bd
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Starting with the target filter loop using the augmented dynamics ~(Aa, Bd, Cd)

given as,

(3.10)

it is suggested by Athans [43] following the original procedure by Doyle and

Stein [42]' that solving a fictitious continuous time Kalman filter problem often

leads to suitable solution for observer gain matrix H. Let ((t) be process noise

characterized as white, zero mean with an identity (I) noise intensity matrix, and at

the same time let O(t) be white, zero mean with noise intensity matrix J-lI. Given

the stochastic system using augmented dynamics from Equations (3.8, 3.9),

x(t) = Adx(t) + L((t)

y(t) = Cdx(t) + (}(t)

(3.ll)

(3.] 2)

it is well known that the solution of the Kalman filtering problem is given by all

observer matrix selected as

1
H = (-)~cr

J-l
(3.13)

where ~ is the symmetric positive definite solution of the filter algebraic Ricatti

equation (FARE)

(3.14)

where J-l> 0 and L can be used as design parameters to "shape" Cd(sI - Adt1H,

which is guaranteed to be nominally stable due to Kalman filtering theory assuming

that [Ad, LJ is stabilizable and [Ad, OJ is detectable.

Selection of L can be arbitrary or may be chosen from the frequency domain

equality (FDE), which may be derived using the FARE and Cd(sI - Ad)-l H. Define

L 6. [L1ow Lhi9h]T, where L10w and Lhigh correspond to low and high frequency. From
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the frequency domain equality given as,

(3.15)

looking at the matrix Cd(sI - Ad)-lL reveals conditions sufficient to match singular

values at low and high frequencies. Athans [43] suggests selecting L ,ow and Lhigh as

Equations (3.16, 3.17), given that A-l exists and using J.L to govern the crossover

frequency (wcof) as Equation (3.18).

(3.16)

(3.17)

(3.18)

The choice of L from Equations (3.16, 3.17) matches singular values only at low and

high frequencies, however an enhanced MBC/LTR target loop design suggested by

O'Dell [46] matches singular values across all frequencies by choosing L as

Equation (3.19).

L (3.19)

If A is non-invertible, then a practical solution is to artificially place fast poles

within A making a numerical inverse.

3.2 Discrete Time LQG/LTR

Many authors have extended the seminal work of Doyle and Stein [41, 42] for loop

transfer recovery in both continuous and discrete time. Similar to the extension of

sliding mode control into discrete time, the sampling process defeats a direct
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comparison between continuous and discrete time LQG/LTR methodology. Despite

any limitations brought about by sampling, many authors have shown discrete time

LTR theory to be a viable design technique. For discrete time LTR,

Maciejowski [31] shows recovery is possible for systems that are minimum phase if

cheap control is applied using a current observer. Maciejowski also states that exact

recovery is generally not possible for systems using a predicting observer or for

non-minimum phase systems although generally a useful degree of recovery (i.e.,

generally surpassing system bandwidth) is usually obtained. Zhang et. al. [32]

discusses discrete time LTR for non-minimum phase systems using prediction and

filtering (current) observers. Tadjine et. al. [34] addresses discrete time loop transfer

recovery at the plant input and output using the so called delta operator

formulation. Ishihara et. ai. [35] investigates the role of current and prediction

estimators in discrete LTR. Direct applications of discrete time LTR have also been

reported in the literature. Lopez et. at. [36] uses discrete LQG/LTR for control of a

ship steering autopilot. Microactuator technology in the disk drive industry has

sparked research and application of discrete LTR, [37, 38, 39].

3.2.1 LTR: Continuous vs. Discrete

The general procedure for the LTR mechanism of discrete time systems is similar to

continuous time procedure given in Section 3.1 with a few modifications. One major

difference between continuous and discrete time LTR theory lies in observer selection

described in Section 3.2.2. Another fundamental difference between continuous and

discrete time LTR theory lies in the definitions for stability. For continuous time

systems, conditions 1~ 3 of Lemma 3.1 requires Re[Ai(A - BF)] < 0,

Re[Ai(A - HC)] < a and limp--+o.jPF = we, vwTw = I. A discrete equivalent

for conditions 1 ~ 2 would be Ai(A - BF) < C0 and Ai(A - HC) < C0 as

stability requirements for discrete-time linear systems suggests.
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For example, suppose it is desired to perform recovery at the plant output for a

discrete system I:d(A, B, C, D). The procedure for LTR in discrete time parallels

that given in Section 3.1 in that the procedure would follow three basic steps; (1)

formulate design specifications into restrictions on singular value plots by breaking

the control loop at the plant output, (2) design target filter loop. (3) holding the

observer gain matrix found in step (2) constant, perform recovery using LQR with

cheap control.

For continuous time systems, solving the LQR problem guarantees infinite gain

margin and a minimum of 60 degrees of phase margin. Because the return difference

equality6 differs between continuous and discrete time systems, robustness results

(i.e., gain and phase margin bounds) for discrete LQR are less attractive than their

continuous counterparts.

3.2.2 Observer Selection for Discrete LTR

As in continuous time systems, using state feedback control in discrete time requires

the use of a state estimator to make up for unmeasured states. For discrete time

systems, there are two versions of full order state estimators which allow the option

to account for the necessary computational time. The discrete observers include: (1)

A prediction observer which is based on measurements up to and including y(k - 1),

which accounts for computational time, and (2) A filtering (or current) observer

which is based on measurements up to and including the current measurement y(k),

which neglects computational time. Both observers use the output measurements

y(l) for l ~ k where k is the current sample time.

6For a discussion of the return difference equality for both continuous and discrete time systems

see Anderson, [45].
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3.2.3 Prediction Observer

Given a discrete system Ed(A, B, C) the prediction observer is described by

(3.20)

where the observer gain Hp is chosen such that the eigenvalues of (A - KpC) are

designed stable in the discrete sense. The observer based state feedback control law

using the prediction observer is given by

(3.21)

3.2.4 Current Observer

On the other hand, the current observer, given Ld(A, B, C) is described by

(3.22)

(3.23)

where the observer gain Hf is chosen such that the eigenvalues of (A - AKfC) are

designed stable in the discrete sense. Similarly, the observer based state feedback

control law using the current observer is given by

(3.24)

When Equation (3.22) is used alone, it is called the predicting version of the current

observer because it is essentially the prediction observer with a special form of gain

matrix, namely Hp = AHf .
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3.3 A Tool for Measuring Loop Transfer

Recovery

A tool for measuring the level of recovery is given by Goodman [40] as the error

recovery matrix based on achieving exact recovery at the plant input or output.

Assuming recovery at the plant output, to be consistent with this thesis, starting

with the fundamental idea of LTR being the approximation of the target loop by

the compensator loop of Figure 3.1 as the overall goal (i.e., LTR desires

G(jw)K(jw) f'V C<1>(jw)H), an error matrix, Eo(S)7 is developed. Showing LTR for

systems that achieve exact recovery is equivalent to rendering Eo(s) zero for all

frequency. Lemma 3.3 states the main result derived from the output error recovery

matrix.

Lemma 3.3 Let Eo (s) be defined as

Eo(s) 6 Ccf!(s)H - G(s)K(s)

Then

where

(3.25)

(3.26)

(3.27)

Proof, [40} Substitute K(s) = F(sl - A + BF + HG)-l H in definition of Eo(s)

Eo(s) 6 G<1>(s)H - G(s)K(s) (3.28)

C<I?(s)H - Gcf!(s)BF(sl - A + BF + HG)-l H (3.29)

G<1>(s) [I - BF(sl - A + BF + HG)-l]H (3.30)

C<1>(s)(sl - A + HG)(s1 - A + BF + HC)-lH (3.31)

r(s)G(sl - A + BF + HG)-l H (3.32)

r(s)C[1 + (sl - A + BF)-L HCt L(sl - A + BFtLH (3.33)

r(s)C[1 + C(s1 - A + BF)-L Ht LC(s1- A + BFtLH (3.34)

r(s)[1 + Mo(s)t 1Mo(s) (3.35)

7The subscript "0" denotes recovery at the plant output. A subscript "i" denotes

recovery at the plant input.
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-

I

where r(s) ~ [1 + C~(s)H] and the matrix identities

and

were used from Equation (3.32) to Equation (3.33) and from Equation (9.99) to

Equation (3.34), respectively.

Three equivalent conditions for exact recovery using Equation (3.35) that are

synonymous to the recovery error matrix being rendered zero (i.e., exact recovery)

are given by Theorem 3.1, (Goodman [40]).

Theorem 3.1 Given a non-defectiveB matrix A-BF with right eigenvectors 7.Li,

1 :::; i :::; n and left eigenvectors Vi, 1 :::; i :::; n, from Eo(s) and M(s) of Lemma 3.9,

the following conditions are equivalent:

1. Eo(s) = 0

2. Mo(s) = 0

3. CUi = 0 or viH = 0, Ii 1 :::; i :::; n

Proof Goodman !40}, For conditions 1 ¢:} 2 see Goodman !40j. For Condition 2 ¢:} 3,

Goodman !40} suggests letting '\ 1 :::; i :::; n be the eigenvalues of (A-BF). Define

Al a a

A ~
0 A2 a

0 0

n 0 An

and

U A
Ul I 7.L2 I ... Un ]

V ~

[ VI I I I Vn ]V2 ...

(3.36)

(3.37)

(3.38)

8A non-defective matrix is defined as a square matrix having a complete set of

independent eigenvectors.
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so that U and V are scaled UV· = V· U = I. It follows that

(A - BF) = UAV·

From the definition of Mo.(s) using Equations (9.96, 9.37, 9.38)

(3.39)

M(s) 0(s1 - A + BF)-lH

G(sUV* - UAV*)-lH

GU(sI - A)-lV· H

(3.40)

(3.41)

(3.42)

which can be written in matrix residue form as

From Equation 3.42 it is trivial to see Condition 2 # 3.

(3.43)

Theorem 3.1 is useful for showing exact recovery of the hyperplane design technique

using LTR of Chapters 5 and 6.

3.4 Design Example: LQG/LTR

The following section applies the background information covered in Chapter 3

applied to a remotely pivoted vehicle (RPV). The purpose of the following example

is to show the loop transfer recovery design technique in both continuous and

discrete time. MATLAB scripts for the design example in discrete time can be

found in Appendix B.

3.4.1 Remotely Piloted Vehicle Model

To illustrate the LQG/LTR design methodology, consider the following example

based upon an MIMO remotely piloted vehicle (RPV), (Maciejowski et. aI. [48]). A

linear model for the RPV given as a two input, two output, six state representation
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o 0

o 0

o 0

o 0

30 0

o 30

[

0 1 0 0 0

o 0 100 :]

Checking the eigenvalues of Ap reveals an unstable plant with pole locations given

in Table 3.1.

Example 3.1 LQG/LTR: Given the design plant :E(Apl BpI CPl Dp ) and design

specification,s which include a closed loop system bandwidth of 10 ::~ with no steady

state error for step commands and good rejection of constant disturbances at the

plant output. Design a suitable observer/controller pair using LQG/LTR utilizing

target filter loop shaping ideas of Section 3.1.1 and Lemma 3.1.
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Table 3.1: Plant Pole Locations for RPV Model.

IL--_3_O --l.I_-_3_0 --'--'_-_5_.6_7 I_-_O_.2_6__--,-1_o_.6_9_±_o_.2_5J_"_

Continuous LQGILTR Example

To begin the continuous time LQG/LTR design procedure for recovery at the plant

output, first the target loop is designed based on a crossover frequency of

Wcoj = 10 ::~, which yields f.l = C~)2 = 0.01. To satisfy the zero steady state error

condition, the design plant is augmented with integrators as suggested in

Section 3.1.1 by Equations (3.8, 3.9) yielding augmented dynamics

E(Ad, Ed, Cd, Dd). To match singular values at low and high frequency,

Equations (3.16,3.17) are used in the MATLAB command

» [H,P,E] = lqe(Ad,eye(size(Ad)),Cd,Qlqe,Rlqe);

where Q/qe = LLT for L l:J. [L1ow LhighV and R1qe = f.lI are used to produce a Kalman

filter gain H. Similarly, using O'Dell's method of obtaining uniform singular values

given by Equation (3.19), the Kalman filter gain Ho is obtained. Plotting the

singular value of both target filter loop designs, using Hand Ho produces Figure 3.4

Performing recovery of the target loop using cheap control is next performed using a

linear quadratic regulator implemented using the MATLAB command

» [F]=lqr(Ad,Bd,Qlqr,Rlqr);

where state and control weighting matrices are defined as Qlqr 6. crCd and

R1qr 6. pI respectively. To perform recovery step of LQG/LTR method, let p ---t 0 as

suggested by Lemma 3.1. The recovery of the target filter loop using filter gains H

and Ho are illustrated in Figures 3.5 and Figure 3.6.
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Figure 3.6: Loop Transfer Recovery of Target Filter Loop Using Ho.

Discrete LQG/LTR Example

Modifying the diagram of Figure 3.7 is to include a sampling time, t s , produces the

discrete time system of Figure 3.8. As mentioned in Section 3.2, the discrete

LQG/LTR design procedure is essentially the same as the continuous time version.

Two MATLAB commands, lqed. m and lqrd. m, are useful for extending the

continuous time LQG/LTR method into discrete time. The lqed. m command

calculates the discrete Kalman estimator from the desired continuous cost function,

which essentially allows the loop shaping ideas presented in Section 3.1.1 to be

extended directly into discrete time. Further, lqed. m assumes the predicting version

of the filtering observer for implementation. Similarly, the lqrd. m command

calculates the optimal discrete time LQR gain minimizing the corresponding

continuous time cost function, which allows the notion of cheap control to be

translated into discrete time counterpart.
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MBC RPV Plant

yt--.......--.t}----t~e u f----t'" u y

output

Figure 3.7: Model Based Compensator Block Diagram.

MBC RPV Plant

y

output

Figure 3.8: Discrete Model Based Compensator Block Diagram.

3.4.2 LTR Simulations

Continuous Time Simulation Results

A block diagram for the model based compensator system is given by Figure 3.7.

For simulation, "lqr" gains F and Fa corresponding to Hand Ho respectively for

p = 10-10 were chosen. Simulating the model based compensator designs for

command reference signal ref=[-O.l o.lf using both target filter designs based on

observer gain matrices H and Ho yields the step responses given in Figure 3.9. The

responses for both systems to step commands are well damped with a settling time

near 0.5 seconds for both channels, which approximately corresponds to a natural

frequency of 1O::~. The responses are also exhibiting a zero steady state error

characteristic as desired.
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Figure 3.9: Step Response of MBC using H and Ho TFL Designs.

Discrete Time Simulation Results

Using the lqed.m and lqrd.m MATLAB commands along with the continuous time

weighting matrices previously described, example 3.1 was solved using discrete

LQG/LTR. A sampling time of 1 . 10-4 was arbitrarily chosen to discretize the RPV

model. Singular value plots for the discrete time target filter loop design are shown

in Figure 3.10. Similar to the continuous time version, recovery is shown for two

target filter designs in Figures 3.11 and 3.12. Simulating the compensator of

Figure 3.7 for step change in command input given as ref = [-0.1 O.lV, yields the

response in Figure 3.13.

3.5 Summary

Chapter 3 gives a review of loop transfer recovery for both continuous and discrete

time systems. Important points from Chapter 3 to remember include:
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• Three basic steps encompass the LTR technique which include:

1. Define restrictions on the singular values of an open loop transfer

function matrix formed by breaking the control loop at the input or

output of the plant.

2. Design of a target loop. For recovery at the plant output, this step

corresponds to observer design. Several method for designing the target

filter loop exist which are based on optimal control techniques.

3. While holding the matrix found in step (2) constant, recover the target

loop by applying cheap control.

• Designing the target filter loop may be accomplished by any design technique.

• Continuous time Loop transfer recovery can be extended into discrete time.

• Discrete time loop transfer recovery is essential equivalent to continuous time

loop transfer recovery except for key differences in stability criteria and

observer selection.

• Discrete loop transfer recovery can be implemented for practical applications,

(Section 3.4).
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Chapter 4

Discrete Variable Structure

Control with LTR Hyperplane

Design

This section address the possible pitfalls of arbitrarily combining sliding surface and

observer design by developing a Ilew sliding hyperplane design technique tailored

after loop transfer recovery. Several assumptions are necessary to make a fair

comparison between the traditional LTR loop structures and those comm n to

discrete variable structure control. Following a brief description of necessary

assumptions is a fundamental outline for a hyperplane based LTR design technique

including theoretical considerations of the extension of a LQR type hyperplane

design previously reported by Tang [7].
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4.1 OBDVSC, Regulation Inside the Boundary

Layer

Consider a discrete sliding surface given by 8 = G [xd(k) - x(k)]. Given a boundary

layer thickness of cP, for the discrete variable structure control law given in

Equation (2.33) the sat(i) term reduces to ~ considering the case when 181 < cP,

(Richter [6] and Tang [7]). Thus, Equation (2.33) can be rewritten as Equation (4.1).

u(k) = G1B [C(I - A)x(k) + G~xd(k) + ~8] (4.1)

(4.2)

l<luther restricting Equation (4.1) by supposing a regulation control objective, (i.e.,

xd(k + 1) = xd(k) = 0 => LlXd = 0), and substituting in for 8 yields,

u(k) = - ~ [A - (1- K)I] x(k)
GB cP, ~

V'

F

Thus, inside the boundary layer under a regulation control objective the OBDVSC

essentially reduces to a linear state feedback control of the traditional form

u = -Fx(k). Recall, the equivalent dynamics described by Aeq outlined in by

Equation (2.37).

4.2 Fitting OBDVSC Into a LTR Framework for

Recovery

Both OBDVSC and LTR schemes are similar in that both use a state estimator and

state feedback for control. The major difference between DVSC and LTR based

systems lies in the trajectory generation and nonlinear hyperplane contributions of

the DVSC law, explicitly seen in the control law of Equation (2.33). However, as

previously seen, if the DVSC controller is given the task of regulation inside the

boundary layer, then the DVSC scheme reduces to a traditional linear state
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Figure 4.1: DVSC Recovery at the Plant Output.

feedback control with a special structure on control matrix F. The question now

becomes where to break the DVSC servo control loop in order to make a reasonable

comparison?

Following the discussion of LTR for recovery at the plant output, the DVSC control

loop is broken at the plant output as shown in Figure 4.1 at the point labeled "X",

which is equivalent to performing recovery at the plant output in the traditional

LTR procedure. For a regulation task inside the boundary layer, Figure 4.1 can be

reduced to Figure 4.2. To further mimic the standard LTR control loop shown in

Figure 3.1, feedback can be placed around the compensator and plant as shown in

Figure 4.3. Note the sign change in the summation block of Figure 4.3, which is an

artifact of the S(k) term of Equation (2.33).

4.3 Recovering the Target Filter Loop

Fundamental to the LTR process for recovery at the plant output is the

combination of two key components, namely the optimal control solution of the LQ

regulator and cheap control problem as mentioned in Lemma 3.1. For discrete
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Figure 4.3: DVSC Mimicking the LTR Standard Control Loop.
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variable structure control hyperplane design using quasi-LTR (qLTR) to be possible,

similar key components must exist.

First addressing the component necessary for the recovery step leads to an extension

of previously mentioned LQR hyperplane procedure of Tang [7]. The symmetric

root locus of Equation (2.50) is vital to solving the so called inverse optimal control

problem as well as incorporating the LQR hyperplane design technique into a new

LTR hyperplane design methodology. In order to reproduce the traditional cheap

control problem using Tang's [7] methodology, emphasis must be place on the state

weighting matrix because a control weighting of R = J.11 is not possible due to the

hard coded assumption that R = 1 within Tang's MATLAB scripts dvsclqrl.m

and dvsclqr2.m. Instead, a scalar weighting of p is placed on the state weighting

matrix Qd. Further, for the LTR hyperplane design procedure to parallel that of the

traditional LTR procedure, the state weighting matrix is taken as Qd = CTC, so

that the symmetric root locus for the LTR hyperplane design is given by

Equation (4.3).

<I>T(Z-I)~cf?(Z) =-R

Qd

(4.3)

It is important to note that because of the scalar relationship of Equation (2.50) the

weighing scheme or Equation (4.3) is possible. Running Tang's scripts dvsclqrl.m

and dvsc1qr2.m for a discrete system Ed(A, B, C, D) first requires inputs A, B, Qd

and a then outputs G and state feedback matrix F.

The last key component which is most fundamental to the qLTR hyperplane design

is a behavior similar to that exhibited in Lemma 3.2. The following conjecture

outlines the LTR recovery using the weighting scheme synonymous to

Equation (4.3).

Conjecture 4.1 For recovery at the plant output given a discrete system

Ed(A, B, C, D) using the discrete time model based compensator K(z) of Figure 4.3

taken as K (z) = F (zI - A + B F + H C) -lH where H is a prediction filtering
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observer matrix of the form in Equation (9.22) and feedback matrix F has the special

form F = fB [A - (1 - ~)I] for a discrete variable structure control system using

the sliding manifold S(k) = G[xd(k) - x(k)] if conditions 1 -t 3 are valid where

1. Ai(A - HC) < c0 for 1 ~ i ~ n

2. Ai (A - B F) < c0 for 1 ~ i ~ n

3. The discrete variable structure control constraint Equations (2.42-2.41) are

satisfied

and the traditional LTR procedure for recovery at the plant output is performed

assuming the symmetric root lucus Equation (4.3) and state weighting matrix

Qd = pCTC using Tang's LQR hyperplane design technique, then

limp~'XJK(z) = [C(zI - A)-lB]-l[C(zI - A)-l H].

point wise in z.

Conjecture 4.1 is left unproven, however simulation results shown in Section 5

suggest the validity of the argument. The significance of the argument can be

directly seen in Conjecture 4.2.

(4.4)

Conjecture 4.2 If conditions 1 -t 3 and Equation (4.4) of Conjecture 4.1 are

valid for the given discrete time LTl system ~(A, B, C, D), then it follows that:

limp~oo G(z)K(z) = C(zI - A)-tB· [C(zI - A)-lBt1C(zI - A)-LH (4.5)
, v ,., , ..... '"

G(z) limp-+oo K(z)

so that

limp-too G(z)K(z) = C(zI - A)-lH

Proof Simple substitution of result taken from Conjecture 4.1 into G(z)K(z).

(4.6)

This result is similar to the traditional LTR result by Doyle and Stein [41], in that

as p is increased, the compensator begins to behave or recover the properties of the

target filter loop.
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4.4 Obtaining Exact Recovery

Consider an observer based discrete sliding mode system operating inside the

boundary layer 181 < ¢ such that the reduced control is given by Equation (4.2).

Formulating the error recovery matrix in discrete time for recovery at the plant

output paralleling Goodman [40] given a discrete state space quadruple

~d(A, B, C, D), an observer gain matrix H and state feedback control matrix F

with the special form of Equation (4.2) yields

Eo(z) c. C~(z)H - G(z)K(z)

where G(z) = C~(z)B and the compensator K(z) is given by

K(z) = F(zl - A + BF + HC)-l H

Lemma 4.1 For discrete recovery at the plant output, Eo (z) may be written as

(4.7)

(4.8)

Eo(z) D. C~(z)H - G(z)K(z)

- r(z)[1 + Mo(z)t 1Mo(z)

where r(z) c. [I + C~(z)H] and Mo(z) c. C(zl - A + BF)-lH

Proof, See Goodman !40}, it essentially follows fmm the proof of Lemma B.3.

(4.9)

(4.10)

Recall, the output recovery error matrix Eo(z) measures the level of recovery and

that rendering Eo(z) zero for all frequency is equivalent to exact recovery of the

target filter loop. Theorem 4.1 outlines conditions yielding exact recovery of the

target filter loop using the structure of state feedback gain matrix F in

Equation (4.2).

Theorem 4.1 Given Eo(z) of Equation (4.7) constructed from an observer gain

matrix H, state feedback gain matrix F of the form F = fB [A - (1 - ~)1], the

discrete plant quadruple ~d(A, B, C, D), and the non-defective! matrix Aeq of

1A non-defective matrix is defined as a square matrix having a complete set of

independent eigenvectors.
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Equation (2.97) with eigenvalues Ai, 1 ::; i :::; n and corresponding right eigenvectors

Ui, 1 ::; i ::; n and left eigenvectors Vi, 1 ::; i ::; n, the three following conditions are

equivalent:

1. Eo(z) = O.

2. Mo(z) = O.

3. CUi = 0 or viH = 0, VI::; i ::; n

Proof, For Conditions 1 {::> 2 it follows from the discussion in Lemma 9.3 extended

into discrete time. For conditions 2 {:} 3, let A eq be written as

Aeq = UAV·

where

>'t 0 0

A .Q.. 0 >'2 0

0 0

0 0 >'n

and

U ~
Ul I U2 I ... Un ]

V ti [ I I I Vn ]- Vl V2 ...

so that U and V are scaled UV· = V·U = I. Looking at Mo(z) reveals

(4.11)

(4.12)

(4.13)

(4.14)

lW(Z) C(zI - A + BF)-LH

BC[ K]C(zI - A + - A - (1- -)1 )-lH
GB ¢

C(zI - Aeq)-lH

C(zUV· - UAV·)-lH

CU(zI - AtLV· If

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

which can be alternatively written in matrix residue form as

From Equation (4.19) it is trivial to see Condition 2 {:} 3.
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4.5 Design Procedure

Given a discrete quadruple L:d(A, B, C, D) operating inside a boundary layer 4>, the

hyperplane design for discrete variable structure control procedure using quasi-loop

transfer recovery for recovery at the plant output is as follows:

1. Consider recovery at the plant output, break the DVSC control loop at the

output of the plant (See Section 4.2).

2. Design the target filter loop, Cif!(z)H using any tuning method. Optimal

control lends several plausible techniques for designing the target filter loop,

(See Section 3.1.1). For upcoming designs shown in Chapter 5, MATLAB's

dlqe.m is used to shape the target filter loop (i.e., design the filtering

observer matrix H).

3. Fix the filter gain matrix H, and design the observer based hyperplane

S(k) = Gi(k) using quasi-loop transfer recovery (qLTR) as follows:

(a) Satisfy constraint equations given by

Equations (2.42, 2.43, 2.44, 2.45, 2.46, 2.47) for a fixed a. (For a general

rule of thumb see Remark 5.1).

(c) Run Tang's scripts dvsclqrl.m and dvsclqr2.m with operands A, B,

Qd and a for p ---t 00 to obtain desired level of recovery ultimately

yielding G and F. dvsclqrl.m and dvsclqr2.m will solve the LQR

hyperplane design via the inverse optimal solution and using dvsclqrl.m

and dvsclqr2.m in the context of (b) coincides with a hyperplane design

using loop transfer recovery.
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Chapter 5

LTR Hyperplane Design Example

This chapter covers a design example following the LTR hyperplane design

technique discussion in Chapter 4. A symbolic 4th order disk drive model is first

shown followed by parameters sufficient to match the Goh et.. al. [50] drive model

given in Section 2.5 within the frequency domain. Next, the novel compensator

design technique encompassing both target filter loop and loop transfer recovery

hyperplane design are covered.

5.1 Symbolic Disk Drive Model

Consider an inertial mass rotating about a single pivot point. A symbolic model for

the rotating system, see Figure 5.1, includes an actuator inertia .1, torque constant

Kt , coefficient of friction J-L, actuator arm radius r and resonance model R(s) taken

as Equation. (5.1). The appropriate continuous time model mapping input current

(amps) into displacement (inches) is given by Equation (5.2). Substituting the

numerical values of parameters from Table 5.1 and putting Equation (5.2) into

continuous time observerable canonical form yields the state space representation

~(Ae, Be, Ge, De) of Equations (5.3-5.6).
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Figure 5.1: Symbolic 4th Order Disk Drive Model.
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Figure 5.2: Bode Diagram Comparison of Symbolic Drive Model to Goh et.al.
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R (s) = as
2 + bs + 1

cs2 + ds + 1

G( ) KtT
S = S ( Jcs3 + Jds2 + J s) + f-£

Table 5.1: Simulation Parameters.

Resonance Parameters

a a
b a
c 1.0243 . 10-8

d 1.6349 . 10-5

Actuator Inertia, J 5.10-5

Actuator Arm Radius, r (in) 2.00

Coefficient of Friction, f-£ 0.0001

Torque Constant, K t (o:;:;;~n) 1000

Sampling time (sec) 50. 10-6

Tracks Per Inch (TPI) 17500

(5.1 )

(5.2)

0 1 0 U

0 0 1 a
Ac (5.3)

0 0 0 1

0 -1.95.108 -9.76.108 -1.59.103

B [ a a a 3.91.1015r (5.4)c

Cc [ 1 o a 0] (5.5)
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Dc = [0] (5.6)

Applying a zero order hold using a sampling time of t s = 40.10-6 seconds yields the

discrete time state space representation I:d(A, B, C, D) given in

Equations (5.7-5.10).

1 4.00· 10-5 7.90· 10-10 1.04· 10-14

o 1.0· 10° 3.90.10-5 7.73.10-9

A (5.7)
o -1.51.10-1 9.24.10-1 3.77.10-5

o -7.37· 103 -3.69 . 103 8.64 . 10-1

B [ 4.09· 10-5 4.07.10° 3.02.105 1.47· 10LO r (5.8)

c (5.9)

D= [0] (5.10)

A Bode diagram comparison of the disk drive model used in Section 2.5 and the

symbolic drive model substituting the parameters of Table 5.1 is given in Figure 5.2.

The comparison essentially shows that the two models are equivalent for a given

frequency spectrum.

5.2 Target Filter Loop Design

Following the traditional LTR procedure for recovery at the plant input, the target

filter loop is designed first for a cross-over frequency near 1000 rad. The MATLABsec

command

» [T,P,Z,E] = dlqe(A,diag([.5eO 0 0 0]) ,C,diag([le-2 0 0 0]) ,i);
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produces the desired target loop shaping. Note the prediction filtering structure1 on

the observer gain matrix H. The frequency response of the resulting target filter

loop is shown in Figure 5.7, which is generated using the MATLAB dlinmod.m

and dsigma.m commands in conjunction wi th the Simulink block diagram in

Figure 5.3. Checking the eigenvalues of the observer dynamics, Ai(A - He), reveals

that condition 1 of Conjecture 4.1 is satisfied.

The next step in the LTR hyperplane design procedure is to choose the parameters

within the constraint Equations (2.42-2.47).

Remark 5.1 Satisfying the constraint Equations {2.42-2.47} can be an arduous task

because of the unequal amount of constraint equations and unknowns. To satisfy the

constraints, a possible rule of thumb for choosing parameters is as follows:

1. Fix 3 of the unknown variables using practical considerations like sampling

time f:1t limitations, boundary layer thickness ¢, and perhaps a so that there

are 3 equations and 3 unknowns.

2. Solve for the remaining unknowns using constraint equations making sure all

constraints are satisfied.

For example, suppose a, f:1t and ¢ are to be fixed which seem practically feasible.

The remaining unknowns from the constraint equations are K, E and ,. Rewriting

the constraint equations using simple algebra to solve for the unknowns leads to

(5.11)

Solving for the unknowns, and E becomes a simple matrix inversion and

multiplication.

1For more details on observer structures for discrete time systems see Section 3.2.2.
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For the simulations shown, a = -0.92, f:lt = t s = 40 . 10-6 and the boundary layer

thickness ¢ = 1 . t s were chosen to be constant. Solving for the remaining unknowns

as suggested by Remark 5.1 reveals, = 3.2.10-6 and € = 0.92.

y

x(k+1) 1 x(k)

2.

Unit Delay

A

Figure 5.3: C<J>(z)H, Target Filter Loop Block Diagram (Open-Loop).

5.3 Hyperplane Design using Loop Transfer

Recovery

The last step in the procedure is to apply LTR as Conjecture 4.1 implies using

Qd = pcTe. This final recovery step is carried out via MATLAB scripts, shown in

Appendix C. The process includes tending the design variable p large and allowing

the compensator loop shown in Figure 5.4 to recover the target filter loop design of

Xd-Generator DVSC

Position

u y I----.--i~ Y

y

4th Order
Disc Model

ZOH (ts)

u

xhat I-------.l xhat

u

I---.ly

u

observer

Figure 5.4: Compensator Loop Block Diagram (Closed-Loop).
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Figure 5.3. Recovery of the filter loop is illustrated by Figure 5.8 for

p = 1014
, 1016

, 1017
.

Remark 5.2 For this simulation example it was necessary to use relatively large

values for p. If smaller values for p were used in an effort to recover the target filter

loop, Tang's scripts would ultimately fail during the construction of the F matrix

which uses the MATLAB dlqr.m command.

To further check the recovery design, Figure 5.9 was simulated2 using the hyperplane

design for F for p = 1014 in the time domain (as compared to the frequency domain
I

representation shown in the recovery Figure 5.8) for a step response equivalent to a

single track change in set point at 17500 TPI (tracks per inch). Figures 5.5, 5.6 were

used to simulate the time response in a closed loop fashion. Recall the cross over

frequency of the target filter loop and the recovered compensator loop is near 1000

Tad which approximately corresponds to a settling time of approximately 4.5 ms
sec

(assuming critically damped system), as seen in Figure 5.9. Also in Figure 5.9 is the

control effort used during the closed loop simulation for the compensator. A high

frequency component in evident in the control effort. Looking at the internal states

reveals that the observer estimate of position not converging to the actual position.

Also, although the design variable p is relatively large, the control effort is relatively

small in magnitude. This fact contrasts the traditional LTR methodology which

typically exhibits a increase in control effort for an increase in recovery effort.

As Theorem 4.1 suggests, to yield exact LTR the recovery error matrix Mo(z) must

vanish. Specifically paying attention to Equation (4.20) and calculating appropriate

right and left eigenvectors (unsealed) via MATLAB eig.m command in fact reveals

2Simulations are in discrete time, although discrete samples are not specifically

shown.
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x(k+1)

z

Unit Delay

x(k)

y

A

Figure 5.5: CcfJ(z)H, Target Filter Loop Block DiagTam Loop (Closed-Loop) .

the following:

Tt

~v:H~ 0 for 1:S 'i:S n
i=]

which also somewhat verifies the validity of the recovery procedure and the

argument contained within Conjecture 4.1.

5.4 Behavior Outside the Boundary Layer

(5.12)

To simulate the behavior of the system outside the boundary layer thickness, two

extra simulations were ran. The first simulation considered a regulation control

objective with a large initial condition [i;/ 00 OjT placed in the plant dynamics of

Figure 5.6: Compensator Loop Block Diagram Loop (Closed-Loop).
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Figure 5.7: Frequency Response of the Target Filter Loop.
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Figure 5.6. The second simulation considers a change in step input of 25 tracks

(i.e., i~l for the same system without initial conditions). The sliding function for

both scenarios is given in Figure 5.10 and Figure 5.11 respectively. Both simulations

show the system trajectory clearly leaving the boundary layer region due to either a

set point change or initial conditions. For both simulations the trajectory returns

inside the boundary layer. This result alludes to the sliding surface design by qLTR

being locally attractive in neighborhood around ¢.
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Chapter 6

Conclusions

A new hyperplane design procedure for discrete variable structure control systems

has been presented. The method seeks to combine observer and controller design for

discrete variable structure systems. A brief literature review of discrete LTR and

discrete variable structure control is given to lay the foundation for the hyperplane

design technique. Several assumptions are necessary for the theory including that

the sliding dynamics are restricted inside the boundary layer thickness ¢, a

regulation control objective, (i.e., no trajectory generation from a xd-generator) and

recovering a target filter loop based on breaking the control loop at the plant

output. A key conjecture suggests compensator loop behavior may approach that of

a target filter loop as a cheap control like mechanism is applied. Simulation results

show target filter loop recovery for a discrete 4th order disk drive plant using the

newly proposed method.

6.1 Contributions

• A novel hyperplane design procedure for discrete variable structure control

systems using a quasi loop transfer recovery (qLTR) technique consisting of:
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1. Necessary and sufficient conditions for exact target filter loop recovery for

recovery at the plant output.

2. Conjecture for qLTR behavior as cheap like control is applied forecasting

recovery of a target filter loop.

3. Simulation results verifying target filter loop recovery alluded to by

qLTR conjecture statement for disc drive application.

• Design examples for both discrete variable structure control and discrete time

LQG/LTR. Two different disturbance observers within discrete variable

structure control simulated for a 4th order disk drive model.

6.2 Future Work

Formal proof of Conjecture 4.1 is needed for stronger validation of the design

technique. Several relationships among design variables need investigation. The

following list of questions may give possible future work pertaining to hyperplane

design for discrete variable structure control using loop transfer recovery:

• What role does the design variable a play within hyperplane design using

LTR?

• What limitations are introduced from the sampling process of discrete time

systems in relation to LTR hyperplane design?

• What are the significant impacts of system characteristics (i.e., minimum

phase versus non-minimum phase plants)?
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Appendix A

MATLAB Setup files for

Example 2.1

A.I Main Setup File

%This m-file sets up the OBDVSC with Disturbance Observer Example

%for the comparison of OBDVSe with bias and dist. state modelling

%
%Design plant taken from Goh, et. al.

%m-file written by R. Todd Lyle

%Advanced Controls Laboratory

%Oklahoma State University

%Stillwater, OK

%Initially clear the workspace

clear, clc

disp(lworkspace cleared to setup for OBDVSC simulations .... ')

%Setup the mechanical model (gives A,B,C,D)

%
%Setup mechanical model from Goh et. al.

mnum_goh=[4.3817e10 4.3247e15];

mden_goh=[1 1.5962e3 9.7631e7 0 0];
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%state space representation of Goh

[A,B,C,DJ=tf2ss(mnum_goh,mden_goh);

Ap=A; Bp=B; Cp=C;

% Physical parameters

tpi=17500;

ts=40e-6;

%tracks per inch

% samples per second

% spindle angular speed in RPM

% simulation stop time milliseconds

% Specify the simulation conditions

rpm=7200;

tstop=O.Ol;

% Discretize the mechanical model

[A,BJ=c2d(A,B,ts);

% switches for simulation conditions

ON=!; OFF=O;

dist_switch=OFF;

reg_switch=ON;

bode_switch=OFF;

% disturbance switch

% reg_switch=ON=follow, reg_switch=DFF=1 trk seek

% plot bode diagram of HDA models

%Bode diagram compare for the three models

if bode_switch==DN

w=logspace(2,6,10000);

figure, bode(mnum_goh,mden_goh,w), hold

bode(mnum_lee,mden_lee,w), bode (mnum_seg,mden_seg,w)

end

% DBDVSC design for Goh et. al.

cpole=[4.611643777792891e-001+8.682636351410205e-001i

4.611643777792891e-001-8.682636351410205e-001i

9.016391355195683e-001

7.709338644383628e-001J;

lambda=cpole(4);

phi=.1; % boundary layer thickness
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% sliding surface

gain matrix

4th order model

% sliding gain

% controller feedback

% OBDVSMC design based on

K=phi*(l-lambda);

F=place(A,B,cpole);

%F=cpole_map(A,B,F);

I=eye(4);

G=null«A-B*F-lambda*I)')';
G=G(size(G,l),:);

Aeq=A-B*G/(G*B)*(A-(l-K/phi)*I) ;

Ed=inv(G*B) ;

% Trajectory shaping & generation based on position in inches

sp=l/tpi

wb=366;

m=O.2;

tref=2*sqrt(sp)!wb;

zeta=O.96;

wn=4000/(zeta*m);

taul=1/(10*wn*zeta);

tau2=1/(10*wn*zeta);

den=conv([l 2*zeta*wn wn-2],[tau1*tau2 taul+tau2 1J);

Fd=acker(A,B,exp(roots(den)*ts)) ;

pref=C*inv(I-A+B*Fd)*B;

%trajectory generation based on position in tracks

sp=1; % set sp=1/tpi for position in inches

% Augmented observers

%bias estimator design

%augmented state for bias estimator

Aaug=[A B;zeros(1,4) 1];

Baug=[B;O] ;

Caug=[C 0];

%Maximum augmented state for scaling using scale.m
max=[2e-3 5e-8 2e-12 4e-16 2e-2] , ;
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%scale the augmented system by max values

[As,Bs,Cs,MJ=scale(Aaug,Baug,Caug,max) ;

L=inv(M) ;

%Observer gain matrix for bias estimator

%bias estimator gains using pole placement

Hs=[3.075526465608720e+000

1.034766225843390e+00l

1. 197031939632046e+00l

1.893023985993461e+000

3. 167896383124237e+003J ;

%disturbance state modelling design

%Setup the windage disturbance model (call dist_state.m)

dist_state

%Discretize windage state space for observer augmentation

[Ad,BdJ=c2d(Awin,Bwin,ts) ;

Cd=Cwin;

Dd=Dwin;

%Define Augmented systems with disturbance model (discrete time)

Aaug=[A B*Cd;zeros(4,4) AdJ;

Baug=[B B*Dd;zeros(4,1) zeros(4,l)J;

Caug=[C zeros(l,4)J;

%Maximum augmented state for scaling using scale.m

max2=[2e-3 5e-8 2e-12 4e-16 2e-6 2e-l1 5e-16 4e-21J';

%scale the augmented system by max values

[As2,Bs2,Cs2,M2J=scale(Aaug,Baug,Caug,max2) ;

L2=inv(M2) ;

%Observer gain matrix for disturbance state

Gamma=diag([O 001 1 1 le2 le2J);

Q=diag([l 1 1 lel le40 le18 le20 le25J);

R=l;
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[T,P,Z,E] = dlqe(As2,Gamma,Cs2,Q,R);

Hs2=As2*T;
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A.2 Setup File for Disturbance Model.

percent_f1=.8; % change

percent_f2=1.2; % change

percent_z=1.2; % change

%This m-file sets up the disturbance model for the

% disturbance state modelling observer augmentation to be

% internally called by setup.m

%
% written by R. Todd Lyle

%variation of actual disturbance model (robustness)

in 1st peak freq (e.g. 1.1=10%change)

is 2nd peak freq

damping all poles and zeros

%First peak

wn1=600*2*pi*percent_f1;

zetapole1=O.008*percent_z;

h1num=[lJ;

h1den=[1 2*zetapolel*wn1 wnl-2];

%Between peaks

zetazero1=O.2*percent_z;

zwn1=750*2*pi*percent_f1;

hzerosl=[l 2*zetazero1*zwnl zwn1-2];

%Second peak

wn2=1200*2*pi*percent_f2;

zetapole2=O.006*percent_z;

h2num= [1] ;

h2den=[1 2*zetapole2*wn2 wn2-2];

%zeros after peaks

%zwn2=1400*2*pi*percent_f2;

%zetazero2=O.7*percent_z;

~~zeros2=[1 2*zetazero2*zwn2 zwn2-2];
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%Overall Transfer function and state space (C-T)

Ka=wnl-2*wn2-2/(zwnl-2);

windage_num=Ka*hzerosl;

windage_den=conv(hlden,h2den);

[Awin,Bwin,Cwin,Dwin]=tf2ss(windage_num,windage_den) ;

%Frequency range for bode plot of windage transfer function

ON=! ;

OFF=O;

bode_plot=OFF;

if bode_plot==DN;

w=logspace(2,5,10000);

bode(windage_num,windage_den,w);

hold

end
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Appendix B

MATLAB Setup files for

Example 3.4

B.l Setup File for Continuous Time LQGjLTR

Example of Section 3.4

% This m-file sets up the design plant for MIMO LQG/LTR continuous

% time example

%
% Design plant taken from Maciejowski's appendix

% m-file written by R. Todd Lyle

%
%Design criteria

%1) bandwidth of 10 rad/sec

% 2) good damping of step responses

%3) zero steady-state error with step demands & disturbances

% Initially clear the workspace

clear, clc

%Remotely Piloted Vehicle (RPV, from Maciejowski) in C-T

A=[-0.02567 -36.6170 -18.8970 -32.0900 3.2509 -0.76257;

9.257*10--5 -1.8997 0.98312 -7.256*10--4 -0.1708 -4.965*10--3;

0.012338 11.720 -2.6316 8.758*10--4 -31.6040 22.3960;

o 0 1 0 0 0;

o 0 0 0 -30.0000 0;
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o o o o o -30.0000];

B=[zeros(4,2);30*eye(2)] ;

C=[O 1 0 0 0 0;

o 0 0 1 0 0];

D= [0 0; 0 0];

%Augment Design Plant with free integrators one each channel

Aaug=[zeros(2,8); B A];

Baug=[eye(2);zeros(6,2)] ;

Caug=[zeros(2,2) C];

Daug=[zeros(2,2)] ;

% Target loop design for recovery at the plant output

% Loop shaping for the target loop

Llow=-inv(C*inv(A)*B); %matching singular values CD low freq

Lhigh=C'*inv(C*C'); %matching singular vaules CD high freq

%O'Dell matching singular values (comment out if using prior design)

Llow=-inv(C*inv(A)*B);

Lhigh=inv(A)*B*inv(C*inv(A)*B);

L=[Llow;Lhigh] ;

Qlqe=L*L' ;

mu=(1/10)-2; %select desired crossover freq 10 rad/sec

R=mu*eye (2) ;

[H,P,E]=lqe(Aaug,eye(size(Aaug»,Caug,Qlqe,R);

figure, hold

w=logspace(-3,5,100);

sigma(Aaug,H,Caug,Daug,w) %the target loop SV plot

%Loop Transfer Recovery

Qlqr=Caug'*Caug;
recovery=[15 10 15];

s=size(recovery);
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for i=l: s ( : ,2)

rho=1*10-(-recovery(i));

Rlqr=rho*eye(2);

[F,S,E]=lqr(Aaug,Baug,Qlqr,Rlqr) ;

% Transfer function of the model based compensator

Ak=Aaug-Baug*F-H*Caug;
Bk=-H;

Ck=-F;

At=[Aaug Baug*Ck;zeros(size(Aaug» Ak];

Bt=[zeros(size(H» ;Bk];

Ct=[Caug zeros(size(H'»];

Dt=zeros(2,2);

sigma(At,Bt,Ct,Dt,w) %Singular Value plot of MBC

end
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B.2 Setup File for Discrete Time LQG/LTR

Example of Section 3.4

% This m-file sets up design plant for MIMO LQG/LTR discrete time

% example

%
% Design plant taken from Maciejowski's appendix

% m-file written by R. Todd Lyle

%
% Design criteria

% 1) bandwidth of 10 rad/sec

'l. 2) good damping of step responses

'l. 3) zero steady-state error with step demands and disturbances

% Initially clear the workspace

clear, clc

% Remotely Piloted Vehicle (RPV, from Maciejowski) in continuous time

A=[-0.02567 -36.6170 -18.8970 -32.0900 3.2509 -0.76257;

9.257*10--5 -1.8997 0.98312 -7.256*10--4 -0.1708 -4.965*10--3;

0.012338 11.720 -2.6316 8.758*10 A -4 -31.6040 22.3960;

o 0 1 a 0 0;

o 0 0 a -30.0000 0;

o 0 0 a 0 -30.0000];

B=[zeros(4,2);30*eye(2)] ;

C=[O 1 0 0 0 0;0 0 a 1 0 0] ;

D=[O 0;0 0];

% Discretize the plant model with sampling time of ts=0.0001

ts=.OOOl; %sampling time

[A,B]=c2d(A,B,ts);

%Augment Design Plant with free integrators per channel

Aaug=[zeros(2,8); B A];
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Baug=[eye(2) ;zeros(6,2)] ;

Caug=[zeros(2,2) C];

Daug=[zeros(2,2)];

[Aaug_discrete,Baug_discrete]=c2d(Aaug,Baug,ts);

%Target loop design for recovery at the plant output

%Loop shaping for the target loop

Llow=-inv(C*inv(A)*B); %matching singular values ~ low freq

Lhigh=C'*inv(C*C'); %matching singular vaules ~ high freq

%O'Dell matching singular values (comment out if using prior design)

Llow=-inv(C*inv(A)*B);

Lhigh=inv(A)*B*inv(C*inv(A)*B);

L=[Llow;Lhigh] ;

Qlqe=L*L' ;

mu=(1/10)-2; %select desired crossover freq 10 rad/sec

Rlqe=mu*eye(2);

[H.P,E]=lqed(Aaug,eye(size(Aaug»,Caug,Qlqe,Rlqe,ts) ;

figure, hold

w=logspace(-3.5,100);

dsigma(Aaug_discrete,H,Caug,Daug,ts,w) %the target loop SV plot

%Loop Transfer Recovery

Qlqr=Caug'*Caug;
recovery=[15 10 15];

s=sizeCrecovery);

for i=l:s(: ,2)

rho=1*10-(-recovery(i»;

Rlqr=rho*eye(2);

[F.S.E]=lqrd(Aaug,Baug,Qlqr,Rlqr,ts) ;

%Transfer function of the model based compensator

Ak=Aaug_discrete-Baug_discrete*F-H*Caug;
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Bk=-H;

Ck=-F;

At=[Aaug_discrete Baug_discrete*Ck;zeros(size(Aaug» Ak];

Bt=[zeros(size(H» ;Bk];

Ct=[Caug zeros(size(H'»];

Dt=zeros(2.2);

dsigma(At,Bt,Ct,Dt,ts.w) %Singular Value plot of MEC

end
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Appendix C

MATLAB Setup files for Chapter 5

C.l Main Setup File

%This is MATLAB m-file script.m

%Initialization script for DVSC LQG/LTR

%written by R. Todd Lyle, June 1, 2000

%Advanced Control Laboratory

%Oklahoma State University

%Initialization script for DVSC LQG/LTR

clear, clc

%Disk drive physical parameters

ts=40e-6;

mu=0.0001;

J=0.00005;

Kt=1000.0;

r=2.0;

tpi=17500;

%Sampling period, ms

%Friction coefficient

%Actuator inertia

%Torque constant

%Radius inches

%TPI, track per inch

%Setup mechanical model from Goh et. al.

mnum_goh=[4.3817e10 4.3247e15J;

mden_goh=[1 1.5962e3 9.7631e7 0 0];

%Resonance parameters

WIl_res=600;

zeta_res=.3;
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c=inv(wn_res-2);

d=2*zeta_res/wn_res;

c=inv(9.7631*10-7); i.uncomment to match Goh model in frequency

d=(1.5962*10-3)*c; i.uncomment to match Gob model in frequency

% 4th order mechanical plant model for a,b=O

Acont=[O 1 0 0; 0 0 1 0; 0 0 0 1; 0 -mu/(J*c) -l/c -d/cJ;

Bcont=[O 0 0 Kt*r/(J*c)] >;

Ccont=[l 0 0 OJ;

C=Ccont;

%discretize tbe system with sample time of ts

[A,BJ=c2d(Acont,Bcont,ts);

%Specify the

sp=1/tpi ;

rpm=7200;

tstop=O.Ol;

simulation conditions

% set point at l/tpi (single track seek)

%spindle angular speed in RPM

% simulation stop time milliseconds

i. Simulation trajectory generation (if needed)

wb=266;

m=O .4;

% switches for simulation conditions

ON=l; OFF=O;

reg_switch=ON;

%osnvsc design via lqg/ltr (call script.m)

script
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C.2 Filter Loop Design and Recovery

% This is MATLAB m-file script.m

% To be called internally by setup_lqgltr.m

%written by R. Todd Lyle, June 1, 2000

%Advanced Control Laboratory

%Oklahoma State University

%OBDVSC design via lqg/ltr

%Frequency vector for singular value plots

w=logspace(1,6,700);

%Target filter loop design observer using dlqe 4th order

[T,P,Z,E] = dlqe(A,diag([.5e-1 0 0 O]),C,diag([leO ° 0 0]),1);

H=A*T;

% Calculate and plot singular values for target filter loop

[Atestl,Btest1,Ctest1,Dtest1]=dlinmod(Jtest1') ;

dsigma(Atestl,Btest1,Ctestl,Dtest1,ts,w), hold

%Hyperplane Design using Loop Transfer Recovery

%fixed parameters of OBDVSC

alp=-9.2e-l; %real eigenvalue

phi=leO*ts; %boundary layer thickness

%calculate other constraints (K. gamma, epsilon)

K=phi*(l-alp); % sliding gain

%Calculate gamma and epsilon (fixing alpha, ts, and phi)

% Display warning message if gamma > 0 or epsilon > 0 is violated

M=inv([1 2*ts;1 ts])*[phi*(1-alp); phi];

if MO,:) <= 0

disp('Gamma < 0, sliding matrix G may be invalid J)

end

if M(2,:) <= 0
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disp('Epsilon < 0, sliding matrix G may be invalid')
end

%Identity Matrix size of A
I=eye(4);

%Rho values to be recovered

test_vector=[14 16 17J;

% LTR procedure (loop running test2 "j II times)

for j=1:3

rho=1*10-(test_vector(j))

Qd=rho*C'*C;
[q,F,G]=dvsclqr1(A,B,Qd,alp);

Aeq=A-B*G/(G*B)*(A-(1-K/phi)*I);

% Trajectory shaping & generation (if needed)

tref=2*sqrt(sp)/yb;

zeta=O.96;

wn=4000/(zeta*m);

taul=1/(10*wn*zeta);

tau2=1/(10*wn*zeta);

den=conv([1 2*zeta*wn wn-2],[tau1*tau2 taul+tau2 1]);

Fd=acker(A,B,exp(roots(den)*ts);

pref=C*inv(I-A+B*Fd)*B;

%Calculate and plot singular value for compensator loop

[Atest2,Btest2,Ctest2,Dtest2]=dlinmod('test2') ;

dsigma(Atest2,Btest2,Ctest2,Dtest2,ts,w);

end
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