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CHAPTER 1

INTRODUCTION

In the history of science there are few people who were able to make a revolu-

tionary change in our understanding of nature. Einstein is a man to whom physics

owes much. One can hardly find an area of physics that has not benefited from his

revolutionary ideas. One of the best known predictions made by him is Bose - Ein-

stein condensation (BEC). Realization of BEC has became a great goal for physicists,

worthy of the Nobel prize from the beginning.

The story starts when early attempts to calculate the Black body spectrum

using classical statistical mechanics had failed, resulting in the catastrophe of the

Rayleigh-Jeans law. In 1924 Satyendranath Bose found the correct way to evaluate

the distribution of identical particles (such as Plancks radiation quanta) that allowed

him to calculate the Planck spectrum using the method of statistical mechanics 1.

Einstein generalized Bose’s new idea to identical particles with discrete energies. The

result was Bose-Einstein (BE) statistical mechanics. The BE distribution is

N(E) = 1/(exp(β(E − μ)) − 1), (1.1)

where β = 1/kBT, E is the energy of the particle and μ the chemical potential.

Einstein applied the new concept of Bose statistics to an ideal sample of atoms or

molecules that were at thermal equilibrium and trapped in a box. Based on this model

he predicted that at sufficiently low temperatures the particles would accumulate in

the lowest quantum state in the box, giving rise to a new state of matter with many

unusual properties 2,3. Conceptually, the effects of quantum statistics (which arise

from the indistinguishability of the particles) arises if the mean inter-particle distance

1
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(V/N)1/3, where V is the volume of the system, in the system is comparable to the

mean thermal wavelength of the particles λdB,

V

N
≈ λ3

dB,

or nλ3
dB ≈ 1, which is refered as the “phase space density” - the number of atoms

within a volume λ3
dB. The process of increasing the phase space to orders of unity

is what we know today as Bose-Einstein condensation. An excellent review of the

theoretical development of BEC is given by Griffin 4. It took nearly 70 years for

experimentalists to overcome various technical difficulties before BEC could emerge.

The following list highlights some of the main breakthroughs of the field.

1) 1985: Migdall et al., 5 demonstrated the idea of the magnetic trap.

2) 1986: Chu et al., 6 demonstrated the first optically confined atoms.

3) 1987: First magneto optical trap (MOT) was realized 7 .

4) 1990: Successful loading of magnetic traps from a MOT 8 .

5) 1994: Successful demonstration of rf evaporative cooling 9,10.

6) 1995: Time Orbiting Potential (TOP) trap is demonstrated 11.

7) 1995: First observation of BEC.

It was in 1995 that Eric Cornell, Carl Wieman 12 and co-workers at JILA in a

remarkable series of experiments produced BEC in a dilute gas of Rubidium atoms

using a TOP trap. Shortly thereafter Wolfgang Ketterle 13 and co-workers at MIT

created a BEC in sodium atoms also in a magnetic trap. An interesting review of the

historical development of laser cooling and the achievement of BEC can be found in

review articles by Phillips 14 and Cornell et al.,15.

In a different approach, all-optical methods of reaching the BEC phase transi-

tion have been pursued since the early days of laser cooling. Despite many impressive

developments beyond the limits set by Doppler cooling, including polarization gradi-

ent cooling 16, velocity selective coherent population trapping 17, Raman cooling 18–20,

and evaporative cooling in optical dipole traps 21–25, the best results for phase space

density was a factor of 10 away from the BEC transition 24,25. Hence optical traps
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have played only an auxillary role in BEC experiments. The MIT group used a mag-

netic trap with an optical dipole to reversibly condense a magnetically confined cloud

of atoms restoratively cooled to just above the BEC transition 26. Additionally, Bose

condensates created in magnetic traps have been successfully transferred to shallow

optical traps for further studies 27–30. However, it was Chapman’s group at Georgia

Tech. that announced the first observation of a BEC using all optical methods in

2001 31. Soon after the Grimms’ group at Innsbruck condensed Cesium atoms using

all optical methods 32. More recently, invention of the compressible crossed dipole

trap technique 33 for creating BEC has streamlined achieving BEC using all-optical

techniques. Overall Bose-Einstein condensation has been realized by more than 50

groups around the word now and promises to revolutionize many areas of physics.

1.1 Organization

The following chapters describe the first work carried out in the BEC laboratory

at Oklahoma State University. The main goal of the research was to create Bose-

Einstein condensate of Rb87 atoms using an all optical method. To achieve this

goal it was necessary to develop a strong understanding of laser cooling and trapping

techniques of neutral atoms in addition to constructing the experimental apparatus.

Having this in mind the dissertation is organized in the following way.

In Chapter 2 a review of the physics of laser cooling and trapping of neutral

atoms is presented. The theory behind the magneto-optical trap and evaporative

cooling will also be explained. The theoretical concepts of noninteracting Bosons

will be reviewed in Chapter 3. Here the thermodynamic properties of a BEC in an

external harmonic trap and its experimental relevance will be discussed. The chapter

ends by reviewing the properties of an interacting Bosonic system.

Chapter 4 is dedicated to a detailed discussion of the technical aspects of the

experimental set up. This includes a discussion on the vacuum chamber and the

optical system. The chapter continuous by describing the stabilization of the diode
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lasers and a description of the dipole trap and how it can be realized. The chapter

concludes with the observation of the BEC using the designed experimental apparatus.

Chapter 5 is dedicated to presenting a study on the loading of optical traps.

It starts by introducing a theoretical model which is followed by an experimental

investigation. Based on this study the concept of time averaged optical traps is

introduced. The conclusion is that the time averaged traps can be used to reduce the

problem of low efficiency of dipole trap loading.

In Chapter 6 a new method to tailor the trap shape is demonstrated. The

chapter starts by showing that spherical aberration can alter the potential shape

near the focus of a lens. The new pattern for the beam is such that it produces

local intensity minima along the propagation direction capable of trapping atoms. In

the remander of this chapter the experimental results of loading these local minima

will be presented. The chapter concludes with proposals for several applications for

spherical aberration micro-optical traps.



CHAPTER 2

TECHNIQUES TO COOL AND TRAP

NEUTRAL ATOMS

This chapter is dedicated to explaining the theoretical details of our approach

to realize a Bose-Einstein condensate. In general, the following steps are the “ ABC ”

of making a BEC,

A) preparing a source of cold atoms,

B) loading atoms into a magnetic or far-off-resonant optical trap,

C) Selectively removing the atoms with high energies to reduce the trapped

cloud’s temperature.

For step A almost all of the research groups use a magneto-optical trap (MOT)7.

This trap utilizes a clever combination of magnetic fields and laser light to trap and

cool the atoms. However, there are limits on the lowest temperature and highest phase

space densities achievable with a MOT and these are far away from the conditions

necessary to realize a BEC. Step B and C should be taken to break these limits and

achieve the BEC transition. There are two different approaches to step B. In one

method a magnetic trap and in another one a far-off-resonant-optical trap (FORT) is

used. Both share the advantage that they do not have any near resonant laser beam

to heat the atoms via spontaneous emission. We have used the second method and

therefore will study it through the rest of this thesis.

It is clear by glancing through steps A, B and C that having a knowledge of

light-matter interactions is important. Therefore, we start this chapter by reviewing

the concepts of laser cooling followed by a simple explanation of the working principles

of a MOT. Finally we study step C in Section 3.

5
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2.1 Concepts of Laser cooling

The idea of cooling neutral atoms using an off-resonant laser beam was intro-

duced by Hänsch and Schawlow 34 in 1975. They showed that a low-density gas can

be cooled by illuminating it with intense, quasi-monochromatic light tuned to the

low-frequency side of a resonance line. To understand this process let us consider the

situation of a two level atom interacting with an electromagnetic wave. The force on

the atom is defined as the expectation value of the quantum mechanical force operator

35,

F̂ = −∂Ĥ

∂z
. (2.1)

Where Ĥ is the Hamiltonian. The expectation value of this operator on an ensemble

of atoms is given by,

< F̂ >= Tr(ρ̂F̂ ). (2.2)

Where ρ̂ is the density matrix and its time evolution is given by,

dρ̂

dt
= − i

�
[Ĥ, ρ̂]. (2.3)

Therefore we need to determine the Hamiltonian, Ĥ, before explicitly calculating the

force on the atoms by the laser field. Our starting point towards this goal is the

Schrödinger equation,

(i�
∂

∂t
− Ĥ)Ψ = 0, (2.4)

where,

Ĥ = Ĥrad +

∑jmax
j=1 [p̂j +

ej

c
A(Rj)]

2

2mj
+

jmax∑
j=1

V (R1, ..., Rjmax), (2.5)

where p is the particle’s momentum, A is the magnetic vector potential and V is the

particle-particle interaction potential. The first term is the energy operator of the

noninteracting electromagnetic field,

Ĥrad =
∑
k,λ

�ωka
†
k,λak,λ,
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where the sum is over a complete set of the electromagnetic creation and annihilation

operators. A laser with a 1-eV photon, a single mode flux of 1 mWcm−3 and a typical

coherence volume of 1 cm3 has about 105 photons in the field,

N =
flux

�ω

V

c
≈ 10−3Wcm−3

1eV

1cm3

3 × 1010cms−1
≈ 2 × 105.

This very high quantum number makes it reasonably accurate to describe the laser

light as a classical electromagnetic field. This reduces the problem to a semiclassical

one. Therefore, we use the interaction representation where the time evolution due

to the field energy is absorbed into the wave function,

Ψ = exp(−i
Hradt

�
)Ψ1.

Substituting this definition into Eq. 2.5 we get,

(i�
∂

∂t
− Ĥ1(t))Ψ1 = 0,

where

Ĥ1(t) =

∑jmax
j=1 [p̂j − ej

c
A(Rj)]

2

2mj

+

jmax∑
j=1

V (R1, ..., Rjmax). (2.6)

The particle coordinate in Eq. (2.6) can be transformed into a center-of-mass coordi-

nate, R, and relative coordinate ri, such that, Ri = R + ri and the vector potential

A(Ri, t) is then a function of this coordinate through the factor exp(±ik.(R + ri)).

The relative coordinate, ri, is usually limited to the size of the atom in all matrix

elements and thus we will replace the exponential factor with unity, since,

< k.ri >� kα0 � αF � 1

137
.

This is the dipole approximation that is applicable to all of the laser beams. There-

fore, the center of mass coordinate couples to the laser through the remaining factor

exp(±ik.R). R in terms of the nuclear and electron coordinates is given by,

R = (MNRN +

Z∑
i=1

mRi)/Ma,

ri = Ri − RN,

Ma = MN + Zm,
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where MN is the nuclear mass and Ma is the atomic mass, m the electron mass, Z is

the electron number, RN and Ri are the nuclear and electrons positions respectively.

With these variables the Hamiltonian of Eq. (2.6) in the dipole approximation becomes

(we have dropped the subscript on Ĥ1),

Ĥ(t) =
P̂r

2Ma

+
1

2μ

Z∑
i=1

[p̂i−e

c
A(R, t)]2+

1

MN

Z∑
i>j=1

[pi−e

c
A(R, t)].[p̂j−e

c
A(R, t)]+V (r,R),

(2.7)

where μ is the reduced mass. The Hamiltonian can be written as,

Ĥ(t) = [
P̂r

2MA

+
Ze2

2μc2
A2(R, t)]+[

1

2μ

Z∑
i=1

p̂2
i +

1

MN

Z∑
i>j=1

p̂ip̂j+V (r,R)]+[
e

μc
A(R, t).

Z∑
i=1

p̂i].

(2.8)

For a plane wave the vector potential is related to the electric field as,

A(R, t) =
cE0

ω
cos(ωt − k.R), (2.9)

where E0 is the amplitude of the electric field, then

A2(R, t) =
c2

2ω2
E2

0(R) +
c2

2ω2
E2

0(R)cos(2(ωt − k.R)), (2.10)

since the atomic mass is too large to respond to the rapid change of the second term,

its effect on the center of mass motion is negligible. On the other hand, a fast atom

moving at 107 cm/sec travels 10−9 cm in a typical period of internal atomic motion

of 10−16 sec. Therefore, the external condition, E0(R) can be treated as constant or

adiabatically changing. This reduces the first term in Eq. (2.10) to a constant which

represents the energy stored in the electromagnetic field. It can be absorbed in the

wave function as a constant phase. In the atom reference frame the Hamiltonian can

be rewritten as,

Ĥ(t) =
1

2μ

Z∑
i=1

[pi − e

c
A(R, t))]2 +

1

MN

Z∑
i>j=1

[pi − e

c
A(R, t)].[pj − e

c
A(R, t)] + V (r,R),

(2.11)
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Now in order to absorb the electromagnetic energy as a phase factor in the wave-

function let us use a gauge transformation,

Ψ′ = eiφΨ

such that Ψ′ satisfies a new Hamiltonian which does not have the A2 term. Substi-

tuting Ψ′ in the Shrödinger equation we get,

[i�
∂

∂t
− (e−iφHeiφ − �φ̇)]Ψ′ = 0, (2.12)

Now to remove the A2 term we define φ as 36,

φ =
Ze2

2mc2�
(
Ma

MN

)

∫ t

−∞
dt′A2(R, t′), (2.13)

where m is the electron mass. This reduces the Hamiltonian given by Eq. (2.11) into,

Ĥ ′(t) =
1

2μ

Z∑
i=1

p̂i +
1

MN

Z∑
i>j=1

p̂i.pj +
e

mc

Ma

MN
A(R, t).

Z∑
i=1

p̂i + V (r,R), (2.14)

The coupling of the matter field to the electromagnetic field is only in the term A(t).p.

Hence the Hamiltonian of the system can be written as,

Ĥ ′ = Ĥ0 + Ĥ1,

where Ĥ0 is the atomic unperturbed Hamiltonian and Ĥ1 = (e/mc)A(t).
∑

i p̂i is the

interaction Hamiltonian. Now that we have derived the interaction Hamiltonian we

focus the discussion to the case of a two level atom with a single electron where the

interaction Hamiltonian can be further simplified. For such a case the interaction

Hamiltonian is given by, Ĥ1 = (e/mc)A(t).p̂. Since for any Ĥ0 = P̂ 2/2m + V (R) it

is true that,

[R̂, Ĥ0] =
i�

m
P̂ , (2.15)

then we find that,

< e|P̂ |g >= im(ωe − ωg) < e|R̂|g >, (2.16)
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where |e > and |g > are the excited and ground state wave-functions of the two level

atom with �ωe and �ωg their energies. Substituting Eq. (2.16) into Eq. (2.15) the

elements of the perturbation Hamiltonian are given by,

H1eg(t) = − e

ic
A(t).(ωe − ωg) < e|R̂|g > . (2.17)

On the other hand, for the electric field we have (only -ω is used in order to satisfy

energy conservation),

E = −1

c

∂A

∂t
(2.18)

= −1

c

∂

∂t
(A0e

−iωt)

=
iω

c
A0e

(−iωt)

=
iω

c
A(t),

where ω is the laser frequency. Substituting Eq. (2.19) into the perturbation Hamil-

tonian we get,

H1eg = −E.μ(
ωe − ωg

ω
), (2.19)

where μ = e < e|R̂|g > is the induced dipole moment. Obviously parity conservation

is going to set the diagonal elements of the perturbation Hamiltonian to zero. How-

ever, Eq. (2.19) can be simplified further if we note that the ratio in this equation is

very close to unity in the case of the nearly resonant laser beams in which we are

interested. Finally, using all of this information the Hamiltonian can be written as,

H =

⎛
⎝ �ωg −μ.E(t)

−μ.E∗(t) �ωe

⎞
⎠ . (2.20)

The time variation of the elements of the density matrix is given by,

d

dt

⎛
⎝ρ11 ρ12

ρ21 ρ22

⎞
⎠=− i

�

⎛
⎝ −μ.(E(t)ρ21 − E∗(t)ρ∗

21) −�ω0ρ
∗
21 + μ.E(t)(ρ11 − ρ22)

�ω0ρ21 − μ.E(t)(ρ11 − ρ22) μ.(E(t)ρ21 − E∗(t)ρ∗
21)

⎞
⎠.(2.21)
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Where we have used the fact that ρ12 = ρ∗
21 and ω0 = ωe − ωg. We can reduce these

equations to,

dρ21

dt
= −ρ21

T2
− iω0ρ21 + i

μE∗(t)
�

(ρ11 − ρ22) (2.22)

d

dt
(ρ11 − ρ22) = −(ρ11 − ρ22) − (ρ11 − ρ22)0

τ
+ 2i

μ

�
(E(t)ρ21 − E∗(t)ρ∗

21) .(2.23)

Where the first parts in the equations are introduced to account for the effect of

collisions and spontaneous emission in the evolution of the density matrix with T2

and τ for their time constants respectively (see Yariv37 for more details). If we assume

that ρ21 = σ21(t) exp (−iωt) and E(t) = E0(R) cos(ωt) then

σ̇21 = −σ21

T2
+ i(ω − ω0)σ21 + i

μE0

2�
(ρ11 − ρ22) (2.24)

+ i
μE0

2�
(ρ11 − ρ22)e

2iωt

ρ̇11 − ρ̇22 =
(ρ11 − ρ22) − (ρ11 − ρ22)0

τ
+

2iμE0

�
(σ21 − σ∗

21) (2.25)

+
2iμE0

�
(σ21e

−2iωt − σ∗
21e

2iωt),

where the index 0 indicates the initial value of the ρ11 − ρ22. We ignore the terms

with high frequencies in the last result because they average to zero (Rotating Wave

Approximation ). The steady state solution (time variation of the parameters is zero)

for the variables is,

2Im(σ21) =
Ω T2

1 + δ2T 2
2 + Ω2 T2τ

(2.26)

2Re(σ21) =
δ Ω T 2

2

1 + δ2 T 2
2 + Ω2 T2 τ

(2.27)

ρ11 − ρ22 =
1 + δ2 T 2

2

1 + δ2 T 2
2 + Ω2 T2 τ

(2.28)

(2.29)

Where Ω = μE0

�
is the Rabi frequency, δ = (ω − ω0) and (ρ11 − ρ22)0 = 1. Using

ρ11 + ρ22 = 1, one can explicitly calculate ρ11 and ρ22. Now we are ready to calculate

the force operator from Eq. (2.20),

F̂ = −∂Ĥ

∂R
=

⎛
⎝ 0 μ∂Ê

∂R

μ(∂Ê
∂R

)∗ 0

⎞
⎠ , (2.30)
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Where we have assumed that the electric field’s amplitude is constant all over the

interaction region. From Eq. (2.2) we have,

F = Tr(ρ̂F̂ ) = 2�Re(ρ12(
∂Ê

∂R
)∗). (2.31)

For a travelling wave the electric field is given by,

E =
E0

2
(ei(kz−ωt) + c.c.). (2.32)

Substituting this expression for the electric field in Eq. (2.31) we get the force as,

F = �Re(ρ12
ikE0

2
(ei(kz−ωt) − c.c.)). (2.33)

Using Eq. (2.27) the force on the atom in a travelling wave is given by,

F =
�k

2

Ω2 T2

1 + δ2T 2
2 + Ω2 T2τ

. (2.34)

In calculating the last result the rotating wave approximation causes the positive

frequency component of E(z) to drop. For atoms moving with a velocity v, there is

a Doppler shift in the frequency in the atom’s moving reference frame and hence the

detuning will be ,

δ + k.v. (2.35)

By placing this general detuning into Eq. (2.34) we get the following expression for

the force on a moving atom,

F =
�k

2

Ω2 T2

1 + (δ + k.v)2 T 2
2 + Ω2 T2τ

. (2.36)

Now let us consider two counter propagating beams in the z direction, from Eq. (2.36)

we have,

F =
�k

2

Ω2 T2

1 + (δ + kvz)2 T 2
2 + Ω2 T2τ

− �k

2

Ω2 T2

1 + (δ − kvz)2 T 2
2 + Ω2 T2τ

, (2.37)

where vz is the velocity component in the z direction and k is the wavevector. There-

fore, the velocity dependent force is given by F = −βvz where the damping coefficient

is,

β = �k2 2Ω2T 3
2 δ

(1 + (δ + kvz)2 T 2
2 + Ω2 T2τ)(1 + (δ − kvz)2 T 2

2 + Ω2 T2τ)
. (2.38)
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This equation can be interpreted in the low light intensity limit as follows38. With

light detuned below resonance, atoms travelling towards one laser beam see it Doppler

shifted upward, closer to resonance. Since such atoms are travelling away from the

other laser beam they see its frequency Doppler shifted further downward, hence

further out of resonance. Atoms therefore scatter more light from the beam counter

propagating to their velocity and thus their velocity is lowered. This is the damping

mechanism called optical molasses. Note that this force is velocity dependent and

therefore non-conservative. This force is an important tool in laser cooling. By using

pairs of beams in three orthogonal directions the atoms will feel a damping force

where the beams intersect that will slow them in three dimensions.

One may think that such a pure damping force would reduce the atomic veloc-

ities without limit and hence the temperature would go to absolute zero. Since this

violates thermodynamic’s third law, something has been left out of our description.

In fact we have ignored the quantum momentum exchanged at each scattering be-

tween the atom and photon. Because of the recoil effect during the absorption and

emission of photons, each atom has a statistical movement comparable to the Brow-

nian motion. If the laser frequency ω was tuned to the resonance frequency ω0 of the

atomic transition, the net damping force would be zero (see Eq. (2.38)). Although

the time average of the atomic velocity 〈v〉 would not change, the mean value of 〈v2〉
would increase due to diffusion and the atoms would be heated. The optical cooling

for ω − ω0 < 0 must compensate for this statistical heating caused by the photon

scattering. If the velocity of the atoms has decreased to v < γ/k the detuning ω−ω0

of the laser frequency must be smaller than the homogeneous line width of the atomic

transition γ, in order to stay in resonance. This puts a lower limit of

�γ < kBTmin

or

TD =
�γ

2kB

(2.39)
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on the temperature (Doppler limit) if the recoil energy Er = �ω2/(2Mac
2) is smaller

than the uncertainty �γ of the homogeneous linewidth. The Doppler limit is typically

several hundred μK. However, lower temperatures than TD have been observed 39.

These sub-Doppler temperatures have been attributed to the multiplicity of sublevels

that make up an atomic state 40,41. In fact there is another limiting temperature

usually refer to as the recoil limit. The recoil limit corresponds to the energy that a

single photon transfer to an atom after scattering. That is,

Tr =
�

2k2

MakB
, (2.40)

where k is the laser wave vector and Ma is the atomic mass. This temperature is

typically a few μK. Therefore, temperatures in the range of a few tens of μK are

achievable with optical molasses techniques.

Now let us expand our imagination and assume that we can come up with an

arrangement such that ω0 is also a linear function of the z displacement. The detuning

becomes δ ± kvz ± αz and the net force can be written as,

F = −βvz − αβ

k
z. (2.41)

This equation shows that this assumption leads to a spatially dependent force where

an appropriate choice of α can lead to a trapping force. Therefore, by proper ma-

nipulation of the atom-radiation field interaction one can cool as well as trap the

atoms.

2.2 Magneto Optical Trap (MOT)

In the previous section we saw that the radiative interaction can provide cooling.

In the following we will show that an appropriate inhomogeneous magnetic field leads

to the trapping force discussed in the previous section. This mechanism is the working

principle of a Magneto Optical Trap (MOT) which is the most popular approach for

setting up an apparatus for trapping neutral atoms.



15

To understand the operation of the MOT consider a simple system of atomic

transitions with the scheme of Jg = 0 to Je = 1. To further simplify the model let

us assume that the atomic motion is only in the z-direction and it is exposed to a

linearly inhomogeneous magnetic field B = B(z) = B0z. This magnetic field splits

the excited state into its three Zeeman components. Adding two counter-propagating

laser beams of opposite circular polarization, each detuned below the zero field atomic

resonance completes the requirements for making the MOT. This situation is shown

pictorially in Fig. 2.1. Because of the Zeeman shift, the excited state Me = +1 is

shifted up for B > 0, where as the state with Me = −1 is shifted down. At z′, in

Fig. 2.1 the magnetic field tunes the ΔM = −1 transition closer to resonance and

the ΔM = +1 transition further out of resonance. Since the polarization of the laser

beam incident from the right is chosen to be σ− and correspondingly for the other

beam σ+, more light is scattered from the σ− beam than from the σ+ beam. Thus the

atoms are driven towards the center of the trap where the magnetic field is zero. On

the other side of the center of the trap, the roles of the Me = +1 and Me = −1 states

are reversed and now more light is scattered from the σ+ beam, again driving the

atoms towards the center. This design of the magnetic field and the polarization of

light provides both cooling and trapping forces. A 3D extension of this process leads

to trapping the atoms at the zero magnetic field region. MOT was first demonstrated

in 1987 7.

2.3 Evaporative Cooling

In Chapter 1 it was mentioned that to observe the condensation transition,

phase space densities of the order of 1 are required. Such a transition can not be

observed for dense systems where the strong atom-atom interactions makes the con-

densate extremely unstable. This restriction has directed the research efforts towards

dilute systems where the atom-atom interactions are considerably weakened. This

naturally requires a reduction in the temperature to increase the phase space density.
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Figure 2.1. The Zeeman splitting for atoms in the Jg = 0 to Je = 1 scheme as a func-
tion of z-displacement in the presence of an inhomogeneous magnetic
field.
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In the early days of laser cooling there was a great hope that this would be one of the

possible routes to reach the desired conditions for a BEC transition. However, conven-

tional laser cooling methods typically result in trapped atomic clouds with densities

of 1010cm−3 to 1011cm−3. As we saw in the previous section, in these traps the tem-

perature is limited by the recoil limit of polarization-gradient cooling. Furthermore,

the density is limited by absorption and radiation trapping of the cooling light 42, by

excited state collisions 43, and eventually by level shifts due to the resonant dipole

interactions 44. All of the above mentioned phenomena limit the maximum achievable

phase space density to 10−5−10−4. A breakthrough on the problem occurred in 1985,

when Harald Hess 45 suggested evaporative cooling as an efficient way to cool trapped

atoms 46,47. His idea was based on the preferential removal of those atoms from a

confined sample with energy higher than the average, followed by re-thermalization of

the remaining atoms by elastic collisions. His original suggestion focused on trapped

atomic hydrogen, but in 1994 the technique was extended to alkali atoms by combin-

ing evaporative cooling with laser cooling 48. Very soon, evaporative cooling showed

its dramatic potential by becoming the key technique to achieve BEC 12,49,50. Ob-

viously, evaporative cooling of atomic gases requires an environment for the atoms

which insulate them from the “hot world”. Therefore, a wall-free confinement of the

atomic cloud would be ideal. However, since the evaporative cooling must cool the

atoms below the recoil limit, none of the elements of the MOT can be used. Mainly

two methods are used to provide such conditions for the atomic cloud, magnetic fields

or far-off-resonant optical fields.

Far off-resonant optical dipole traps (FORTs) 51 rely on the principle that an

off-resonant laser beam attracts or repels atoms depending on whether it is red or

blue detuned. The trap depth depends on the laser intensity divided by the detuning,

where as the spontaneous rate of light scattering scales as the intensity divided by

the square of the detuning. Therefore, heating due to the spontaneous scattering

is considerably suppressed as the detuning is increased 52. For the purpose of this
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chapter we ignore the FORT loading and study only the physics of evaporative cooling.

In the later chapters we will give a more complete treatment of the properties of optical

traps and their loading characteristics.

The process of evaporative cooling has been the subject of several theoretical

studies. Since evaporative cooling is a relatively simple classical process its theoretical

foundation is well established. The first comprehensive model of evaporative cooling

was presented by Doyle and coworkers 53,54. They derived a set of coupled differential

equations which described various cooling, heating and loss processes. They also

included adiabatic change of the potential during the cooling process. Luiten et al.

55 modelled evaporative cooling with a kinetic theory and a numerical solution of the

Boltzman equation. Davis et al. 56 approximated the evaporative cooling as a discrete

series of truncation and rethermalization processes and arrived at simple analytical

results. Monte Carlo trajectory techniques were developed by Holland et al. 57, and

Wu and Foot 58, to directly simulate the evaporation process. However, most of

the dynamics of evaporative cooling is model independent and follows from simple

considerations. In the following we use a scaling law approach motivated by the work

of O’Hara et al. 59 to see the effect of the evaporation and lowering the potential on

increasing the phase space density.

Let us take the zero of energy to be at the bottom of the trap. The evaporating

atoms will have an average energy of U + αKBT , where α = (η − 5)/(η − 4) 59 and η

is the ratio of trap depth to thermal energy. The energy loss rate is then

Ė = Ṅ(U + αKBT ) (2.42)

where Ṅ is the rate at which atoms evaporate from the trap. As the trap depth

is adiabatically lowered at a rate U̇ , it changes the total energy of the trap. The

atoms vibrate in a harmonic potential, and therefore E/2 is the average potential

energy. The potential energy then changes at a rate U̇
U

E
2

and the total energy obeys

the evolution equation

Ė = Ṅ(U + αKBT ) +
U̇

U

E

2
. (2.43)
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In the classical limit, E = 3NKBT is the total energy of the trapped gas. Therefore

Eq. (2.43) can be rewritten as

3NKBṪ = Ṅ(U + αKBT − 3KBT ) +
1

2

U̇

U
3NKBT (2.44)

Solving this equation with a fixed value for η i.e U̇ = ηKBṪ , the number of trapped

atoms as a function of trap depth is given by,

N

Ni
= (

U

Ui
)

3
2(η′−3) , (2.45)

where i refers to the initial condition at t = 0 and η′ = η+α. The phase space density

in the classical regime is

ρ =
N(hν)3

(KBT )3
(2.46)

where ν(t) ∝ √
U is the geometric mean of the trap oscillation frequencies. Using

Eq.(2.45) we get
ρ

ρi

= (
Ui

U
)

3(η′−4)

2(η′−3) = (
Ni

N
)η′−4. (2.47)

The important feature of Eq. (2.47) is the increase in the phase space density even

though particles leave the trap. This is the key point to understanding why evap-

orative cooling followed by a lowering of the potential depth helps to increase the

phase space density. Figure 2.2 is a plot of Eq. (2.47) for ρi = 3 × 10−3 and shows

that lowering the well depth by a factor of 85, a reasonable factor for optical traps,

yields a phase space density of unity. The initial phase space density that we have

used in plotting Fig. 2.2 is approximately the same as the phase space density in an

optical trap immediately after loading from a MOT. The phase space density versus

number of atoms given by Eq. (2.47) is shown in Fig. 2.3. Therefore, as far as an

experimentalist is concerned, the scaling laws show that one can start from the initial

values present in an optical trap and use evaporative cooling to increase the phase

space density and still have enough atoms to observe the BEC transition. All of these

discussions are valid under the condition that the re-thermalization, determined by

the elastic collision rate, is faster than the time scale over which the potential changes.
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Figure 2.2. Phase space density versus potential depth with η = 10.
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Figure 2.3. Phase space density versus number of atoms in the trap with η = 10.
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The collision rate is given by γ = n0v̄σ, where v̄ =
√

3KBT/M , n0 is the peak den-

sity, and σ is the scattering cross section. Since n0 = ρ/λ3
dB and λdB ∝ T−1/2 then

γ ∝ ρT 2. Therefore,
γf

γi
= (

Uf

Ui
)η′/2(η′−3) (2.48)

Figure 2.4 shows the evolution of the scattering rate versus trap depth for η = 10.

For the numbers used in this section, this figure shows that the elastic scattering rate

reduces by a factor of over 20 at the end of the process. Ultimately this determines

the speed of the evaporative cooling. Now that we are convinced that evaporative

cooling is capable of increasing the phase space density despite the loss of some atoms,

we explain our set up for realizing all-optical BEC.
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Figure 2.4. Scattering rate versus trap depth with η = 10.



CHAPTER 3

THE IDEAL BOSE GAS IN A HARMONIC TRAP

As mentioned earlier, Einstein used noninteracting bosons in a box as the basis

for his prediction of BEC. The first step in reproducing his theory for particles of

mass m is approximating the confining potential with a quadratic form (this formula

will be justified later),

Vext(r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). (3.1)

Where ωx, ωy and ωz are the trap frequencies in x, y and z directions. It is straight-

forward to study a system of noninteracting particles confined in this way. The many-

body Hamiltonian is the sum of single particle Hamiltonians whose eigenvalues have

the form,

εnxnynz = (nx +
1

2
)�ωx + (ny +

1

2
)�ωy + (nz +

1

2
)�ωz. (3.2)

The ground state of N noninteracting bosons confined by the harmonic potential is

obtained by putting all the particles in the lowest single-particle state nx = ny =

nz = 0,

φ(r1, ..., rN) = Πφ0(ri) (3.3)

where

φ0(ri) = (
mωho

π�
)3/4 exp(−m

2�
(ωxx

2
i + ωyy

2
i + ωzz

2
i )) (3.4)

and we define

ωho = (ωxωyωz)
1/3. (3.5)

24



25

The density distribution then becomes n(r) = N |φ0(r)|2. The size of the BEC is

characterized by the harmonic oscillator length

aho = (
�

mωho
)1/2. (3.6)

In the current experiments, aho has a typical value of the order of 1 μm. At finite

temperatures, only a fraction of the atoms occupy the ground state and the rest are

distributed in the excited states. A rough estimate for the atomic cloud’s size can be

obtained by assuming kBT >> �ωho. Where T is the cloud’s thermal temperature,

and taking the density of the thermal cloud of atoms to be given by a classical

Boltzmann distribution

ncl ∝ exp(− Vext

kBT
). (3.7)

Then if Vext = 1
2
mω2

hor
2, the width of the gaussian is

RT = aho(
2kBT

�ωho
)1/2 (3.8)

which is greater than aho. Therefore we expect BEC to show up with the appearance

of a sharp peak in the central region of the density distribution. The Fourier transform

of the wave function specifies that the momentum distribution of the atoms in the

condensate will have a width proportional to a−1
ho . Therefore, BEC appears as a

peak in both coordinate and momentum spaces. Using these properties Anderson

et al. 12 have developed a method to observe the condensate. We will discuss the

methods to detect BEC in the coordinate space in a separate section. In the case of

the momentum distribution one lets the condensate expand freely, by switching off

the trap, and measures the density of the expanded cloud with light absorption. For

non-interacting particles the expansion is ballistic and the imaged spatial distribution

of the expanding cloud can be directly related to the initial momentum distribution.

The interaction between the atoms can significantly modify the shape of the

observed momentum distribution. It is very important to study this effect in detail

as it is the situation encountered in the experiment. We will return to this point after

reviewing the thermodynamics of the trapped bosons at finite temperatures.
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3.1 Thermodynamics of BEC in an external potential

In the grand canonical ensemble the total number of particles is given by,

N =
∑

nxnynz

(exp([β(εnxnynz − μ)] − 1))−1 (3.9)

and the total energy is given by

E =
∑

nxnynz

εnxnynz(exp([β(εnxnynz − μ) − 1]))−1 (3.10)

where μ is the chemical potential and β = (kBT )−1. Below a given critical tempera-

ture, Tc, the population of the lowest state becomes macroscopically occupied. This

is the definition of BEC. The calculation of the critical temperature, the fraction

of particles in the lowest state (condensate fraction), and the other thermodynamic

quantities, start from Eqs. (3.9) and (3.10) with the appropriate spectrum of eigen

energies. Since the system is inhomogeneous the statistics of the trapped particles is

not trivial. As a first step let us find the density of states Ω. The number of states

in volume d3r with the magnitude of momentum between p and p + dp is,

Ω(p)d3rdp =
d3rd3p

h3
=

d3r4πp2dp

h3
. (3.11)

If we ignore the particle-particle interaction, the energy of a particle is given by,

ε =
p2

2m
+ U(r). (3.12)

By this definition we can rewrite Eq. (3.11) as,

Ω(ε)dε =
d3r

4π2�3
(2m)3/2

√
ε − U. (3.13)

Integrating this equation over the available volume for the particle gives the expression

for the density of states

ρ(ε) =
(2m)3/2

4π2�3

∫
Vε

√
ε − Ud3r. (3.14)
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For a system of N bosonic particles the occupation number n(ε) of particles in an

energy ε with degeneracy gε is given by

n(ε) =
gε

exp( ε−μ
kBT

) − 1
. (3.15)

Using Eqs. (3.14) and (3.15) the total number of particles in a bosonic gas is given

by

N = N0 +

∫ ∞

0

n(ε)ρ(ε)dε. (3.16)

Here the number of particles in the ground state N0 is written separately because

according to Eq. (3.14), ρ(U) = 0. The total energy of the system is

E(T ) =

∫ ∞

0

εn(ε)ρ(ε)dε, (3.17)

and the heat capacity is

C(T ) =
∂E(T )

∂T
=

1

kBT

∫ ∞

0

ερ(ε)

gε
[μ′(T ) +

ε − μ

T
]n(ε)2 exp[

ε − μ

kBT
]dε, (3.18)

where μ′(T ) = ∂μ
∂T

. This relation indicates that to evaluate C(T ) we need μ(T ) which

one can relate to N . To go any further we need to have the form of the potential.

We will justify later that in our experiments the potential can be approximated with

a power law. Therefore we consider the potential to be 60,

U(r) = ε1|x
a
|p + ε2|y

b
|l + ε3|z

c
|q, r2 = x2 + y2 + z2. (3.19)

Applying this potential in Eq. (3.14) the density of states is given by

ρ(ε) = [
2π(2m)3/2

h3
]

abc

ε
1/p
1 ε

1/l
2 ε

1/q
3

εηF (p, l, q), (3.20)

where η = 1/p + 1/l + 1/q + 1/2 and F (p, l, q) is defined by,

F (p, l, q) = [

∫ 1

−1

(1 − Xp)1/2+1/q+1/ldX][

∫ 1

−1

(1 − X l)1/2+1/qdX][

∫ 1

−1

(1 − Xq)1/2dX].

(3.21)

Therefore,

N = N0 +

∫ ∞

0

(
(2m)3/2

4π2�3

)
abc

ε
1/p
1 ε

1/l
2 ε

1/q
3

εηF (p, l, q)
1

exp( ε−μ
kBT

) − 1
dε. (3.22)
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N0 is zero and μ goes to zero at Tc, therefore the last equation can be written as,

N =
(2m)3/2

4π2�3

abc

ε
1/p
1 ε

1/l
2 ε

1/q
3

F (p, l, q)(kBTc)
η+1Q (3.23)

where Q is given by

Q =

∫ ∞

0

xηdx

ex − 1
(3.24)

and so the critical temperature for a system with N bosons is,

kB Tc = [
4π2

�
3

(2m)3/2

N

abc

ε
1/p
1 ε

1/l
2 ε

1/q
3

F (p, l, q) Q(η)
]

1
η+1 . (3.25)

The ratio of bosons in the ground state to the total number of particles for T < Tc is,

N0

N
= 1 −

(
T

Tc

)η+1

. (3.26)

Eq. (3.25) clearly shows the effect of a change in the geometry of the potential on

critical temperature. To make this point clear let us study the effect of a far off

resonant field (like a CO2 laser beam in the case of Rb87) on a atom. If the atom has

the polarizability αg then the atom-field interaction energy is,

U = −1

2
αg|E|2 (3.27)

where E is the electric field of a gaussian beam propagating in the z direction and is

given by,

E(x, y, z) = E0
w0

w(z)
e

−(x2+y2)
w(z) eik x2+y2

2R(z) ei(kz−ωt−φ(z)) (3.28)

where

w(z) = w0

(
1 + (

z

zR

)2

)1/2

and zR =
πw2

0

λ
.

Here w0 is the beam waist, R(z) the radius of curvature of the beam and zR is the

Rayleigh length. Then

|E|2 =
E2

0 exp
(

−2(x2+y2)

w2
0(1+( z

zR
)2)

)
1 + ( z

zR
)2

. (3.29)
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Experimentally we can focus a CO2 laser beam down to about 50 μm so that the

BEC will have a dimension around a few microns. Therefore the Rayleigh length is

large compared to the BEC dimensions and we can approximate the potential as,

U = −1

2
αgE

2
0(1 − 2x2

w2
0

− 2y2

w2
0

− z2

z2
R

). (3.30)

Redefining the potential as U = U1 − U01 with U01 = 1
2
αgE

2
0 we get

U1 = U01(
2x2

w2
0

+
2y2

w2
0

+
z2

z2
R

). (3.31)

Comparing this form of the potential with the general form given by Eq. (3.19) one

reads

ε1 = ε2 = ε3 = U0, p = l = q = 2, a = b =
w0√

2
, c = zR

Therefore Tc for this potential can be found from

kBTc = [
h3

2π(2m)3/2

2N

w2
0zR

U
3/2
0

F (2, 2, 2)Q(2)
]1/3. (3.32)

Now let us consider a second laser beam propagating in the y direction. The amplitude

of this beam is given by,

|E|2 =
E2

02 exp −2(x2+z2)

w2
0(1+( y

zR
)2)

1 + ( y
zR

)2
(3.33)

where E02 is the amplitude of the second beam’s electric field. Using the same ap-

proximation to expand this field one can write the total potential in the region where

the two beams overlap as,

U = U1 + U2 = (U01 + U02)
2x2

w2
0

+ (
U02

z2
R

+
2U01

w2
0

)y2 + (
2U02

w2
0

+
U01

z2
R

)z2. (3.34)

Again the comparison of this result with Eq. (3.19) specifies the potential character-

istics as,

ε1 = ε2 = ε3 = U01, p = l = q = 2. (3.35)

a =
w0√

2(1 + D)
(3.36)

b =
w0zR√

2z2
R + Dw2

0

(3.37)

c =
w0zR√

w2
0 + 2Dz2

R

(3.38)
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where D is the ratio of U02 over U01. These parameters are clearly different from the

one beam configuration but of the same order. Therefore it is possible to realize a

BEC using only one beam with a different critical temperature61.

3.2 Many particle interacting Bosonic system

So far we have seen the effect of statistics on the low temperature properties

of an ideal bosonic gas. The main result is that the ground state contains all the

particles at T = 0. This requires reformulation of the perturbation theory for such

systems. In the following we shall briefly discuss the theory 62. For this situation let

us assume that the ground state of N bosons is given by

|Φ0(N) >= |N, 000 > (3.39)

where zeros are the occupation number of the excited states and the particles are

in a box with volume V with periodic boundary conditions. Having many particles

in the ground state averages the momentum of the system to zero. If the creation

and destruction operators â†
0 and â0 for the zero momentum mode are applied to the

ground state we get,

â0|Φ0(N) >= N1/2|Φ0(N − 1) >, â†
0|Φ0(N) >= (N + 1)1/2|Φ0(N + 1) > (3.40)

Since it is generally preferable to deal with intensive variables we shall introduce the

operators,

ξ̂0 ≡ V −1/2â0,
ˆ
ξ†0 ≡ V −1/2â†

0 (3.41)

which have the following properties

[ξ̂0,
ˆ
ξ†0] = V −1

ξ̂0|Φ0(N) >= (
N

V
)1/2|Φ0(N − 1) >

ˆ
ξ†0|Φ0(N) >= (

N + 1

V
)1/2|Φ0(N + 1) > .
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In the thermodynamic limit N −→ ∞, V −→ ∞ then [ξ̂0,
ˆ
ξ†0] = 0 and therefore it

is reasonable to treat the raising and lowering operators as c numbers. This idea

was first introduced by Bogoliubov 63. In an interacting system the inter-particle

potential energy reduces the occupation of the ground state. Thus the ground state

expectation value of N̂ is less than the total particle number. This can be understood

as follows, let us write the boson’s field operator as

ψ̂(x) = ξ0 + Σ′
kV

−1/2eik.xâk = ξ0 + φ̂(x) = n
1/2
0 + φ̂(x) (3.42)

where prime means omit the k = 0. Let us study the effect of this representation on

the Hamiltonian. The interaction part of Ĥ is

V̂ =
1

2

∫
d3xd3x′ψ̂†(x)ψ̂†(x′)V (x − x′)ψ̂(x′)ψ̂(x). (3.43)

Which has the following terms

E0 =
1

2
n2

0

∫
d3xd3x′V (x − x′) (3.44)

V̂1 =
1

2
n0

∫
d3xd3x′V (x − x′)φ̂(x′)φ̂(x)

V̂2 =
1

2
n0

∫
d3xd3x′φ̂†(x′)φ̂†(x)V (x − x′)

V̂3 = 2
1

2
n0

∫
d3xd3x′φ̂†(x′)V (x − x′)φ̂(x)

V̂4 = 2
1

2
n0

∫
d3xd3x′φ̂†(x)V (x − x′)φ̂(x)

V̂5 = 2
1

2
n

1/2
0

∫
d3xd3x′φ̂†(x′)φ̂†(x)V (x − x′)φ̂(x)

V̂6 = 2
1

2
n

1/2
0

∫
d3xd3x′φ̂†(x′)V (x − x′)φ̂(x′)φ̂(x)

V̂7 =
1

2

∫
d3xd3x′φ̂†(x′)φ̂†(x)V (x − x′)φ̂(x′)φ̂(x)

Since the Bogolibov description dominates the operators â0 and â†
0 entirely, all re-

maining destruction operators annihilate the ground state, therefore becoming the
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vacuum state. Consequently the number operator is defined by,

N̂ = N0 +

∫
d3xφ̂†(x)φ̂(x) = N0 + Σ′

kâ
†
kâk. (3.45)

Where N0 is a c number. N̂ no longer commutes with the Hamiltonian since the

various interaction terms alter the number of particles in the condensate. As a result

the total number of particles is no longer a constant of motion and must instead be

determined through the subsidiary condition

N = N0 + Σ′
k < â†

kâk >, (3.46)

where the brackets denote the ground state expectation value in the interacting sys-

tem. We therefore return to the original Ĥ = T̂ +V̂ where â0 and â†
0 are still operators.

Let us introduce the grand canonical hermitian operator,

K̂ = Ĥ −μN̂ =

∫
d3xψ̂†(x)[T −μ]ψ̂(x)+

1

2

∫
d3xd3x′ψ̂†(x)ψ̂†(x′)V (x−x′)ψ̂(x′)ψ̂(x)

(3.47)

This operator has a complete set of eigenfunctions |ψj〉 and commutes with N̂ . It

is impossible to find an exact solution for this many particle hamiltonian. Therefore

we assume that an assembly of bosons is condensed whenever the ensemble average

〈ψ̂(x)〉 remains finite in the thermodynamic limit. Now we introduce the notation

Ψ(x) = 〈ψ̂(x)〉 (3.48)

and the deviation operator

φ̂(x) = ψ̂(x) − Ψ(x). (3.49)

The c number function Ψ(x) is frequently known as the condensate wave function. In

the system under consideration the interaction is weak and most of the particles are

in the condensate. Therefore the operator φ̂(x) may be considered a small correction

to Ψ(x). If we expand K̂ in powers of φ̂(x) and its complex conjugate operator up to

the second order we get

K̂ = K0 + K̂l + K̂ ′
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where

K0 =

∫
d3xΨ(x)[T − μ]Ψ(x) +

1

2

∫
d3xd3x′V (x − x′)|Ψ(x)|2|Ψ(x′)|2 (3.50)

K̂l =

∫
d3xφ̂†(x)[T − μ +

∫
d3x′V (x − x′)|Ψ(x′)|2]φ̂(x) (3.51)

+

∫
d3x[T − μ +

∫
d3x′V (x − x′)|Ψ(x′)|2]Ψ∗(x)φ̂(x)

K̂ ′ =

∫
d3xφ̂†(x)[T − μ]φ̂(x) +

∫
d3xd3x′V (x − x′)[|Ψ(x′)|2φ̂†(x) (3.52)

+ Ψ∗(x)Ψ(x′)φ̂†(x′)φ̂(x) +
1

2
|Ψ∗(x)Ψ∗(x′)φ̂(x′)φ̂(x)

+
1

2
φ̂†(x)φ̂†(x′)Φ(x′)Φ(x)]

This result can be simplified if Ψ(x) satisfies the following equation 64,65

[T (x) − μ]Ψ(x) +

∫
d3xV (x − x′)|Ψ(x′)|2Ψ(x) = 0. (3.53)

Therefore the effective K̂eff is

K̂eff = K0 + K̂ ′.

Which can be used to construct

ρ̂eff =
e−βK̂eff

Tr(e−βK̂eff )
, (3.54)

where the ensemble average of any operator is

〈D̂〉 = Tr(ρ̂eff φ̂(x)).

Let us assume that the inter-particle potential is a delta function. Then Eq. (3.53)

reduces to the well known Gross-Pitaevski (GP) equation 66,67,

−(
�

2∇2

2m
+ μ)Ψ(x) + g|Ψ(x)|2Ψ(x) + V (x)Ψ(x) = 0, (3.55)

where the coupling constant g is related to the scattering length a through

g =
4π�

2a

m
. (3.56)
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Eq. (3.55) specifies the condensate wave function for an interacting system of bosons.

The validity of the GP approximation is based on the condition that the s-wave

scattering length is much smaller than the average distance between atoms and that

the number of atoms in the condensate is larger than 1.

In general to solve the GP equation one should appeal to numerical methods.

The numerical solution of the time independent GP equation is easy to obtain 68. For

a time dependent GP equation we have

i�
∂Ψ(x, t)

∂t
= −(

�
2∇2

2m
+ μ)Ψ(x, t) + g|Ψ(x)|2Ψ(x, t) + V (x)Ψ(x, t). (3.57)

Among the different methods for solving the GP equation we will review the Fast

Fourier Transform (FFT) technique, also known as the split step method. In this

approach, to find a numerical solution for a GP equation H is expressed as the sum

of a kinetic part T̂ and a potential part V̂ . Using the propagation operator we have,

Ψn(x, t + dt) = exp(−i
δt(T̂ + V̂ )

�
)Ψn(x, t) (3.58)

We know that the potential operator is diagonal in configuration space while the

kinetic operator is diagonal in momentum space. It is therefore effective to split

the exponential operator into potential and kinetic parts and operate separately in

position space and momentum space. It can be shown that 69

exp(−i
δt(T̂ + V̂ )

�
) = exp(−i

δtV̂

2�
) exp(−i

δtT̂

�
) exp(−i

δtV̂

2�
) + O(δt3). (3.59)

This expansion is refered to as a half-step potential expansion. The potential operator

is easy to apply and corresponds to a phase factor of the wave function in position

space. The kinetic part is also a phase factor but in momentum space. Therefore we

add exp(−iV̂ δt/2�) to the wave function at jth spacial point to get

f j
n = exp(−iδt

V̂ j
ext + g|ψj

n|2
2�

)Ψj
n, (3.60)

here we split the potential into the external potential term and the particle-particle

interaction potential term. In the next step a FFT of the f j
n takes it to the momentum
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space where the kinetic part in the half step expansion is a phase factor, therefore we

have,

F k
n+1 = exp(i

π2k2δt

2�2L2
)FFT (f j

n), (3.61)

where k denotes the momentum step and 2L is the size of the spacial grid. The inverse

Fourier transform takes F k
n+1 back to the coordinate space where the first part of the

half-potential step is a phase factor and finally we have,

Ψj
n+1 = exp(−i

δt(V j
ext) + g|Ψj

n|2)
2�

)FFT−1(F k
n+1). (3.62)

This can be continued to complete the solution of a GP equation in one dimension.

By using numerical methods one can generalize this technique to solve GP equations

in multi-dimensions.



CHAPTER 4

EXPERIMENTAL APPARATUS

This chapter is organized in a manner that gives a step by step tour of the

setup developed in our laboratory for atom trapping and laser cooling. This part

starts with selecting an appropriate atom source for the experiment followed by an

explanation of the vacuum system. Optical setup including the working principles of

diode lasers and their associated optics is explained in details at the end.

4.1 Vacuum system

The heart of the BEC experiments is the vacuum chamber where atoms are

collected and cooled to the condensation temperature. Accurate planning of the

vacuum chamber is needed since an ultra-high vacuum with a large amount of optical

access to the chamber is essential for the experiment. Our vacuum chamber consisted

of a six-way cross with an octagonal multi-port chamber attached to one of its flanges.

All components were stainless steel and are shown in Fig. 4.1. Four 2.5 cm viewports

were used for directing the MOT beams into the chamber and four 2.5 cm diameter

ZnSe viewports allowed us to transmit the 10.6 μm light from a CO2 laser into the

chamber (see Fig. 4.2 for the light beam geometry through the octagonal multi-port

chamber). A 12.5 cm quartz view port was attached to another one of the six-way

chamber. The ion pump was attached to the third flange where the fourth flange

was attached to a valve which was used to attache the roughing and turbo pumps. A

cluster flange with three angled 70 mm conflate flanges was also attached to the six

way cross. One of these flanges has an electric feedthrough which is connected to the

rubidium dispensers. Another one is used as a port for vacuum gauge.

36



37

Ion pump

Electric feed through

supplies the current

through RB dispensers

Vacuum gauge

octagonal multi-port

chamber

Pump out valve

(turbo pump was

attached here during

initial pump down)

Cluster flange

Six way cross

Figure 4.1. Vacuum chamber apparatus. The six-way cross is mounted behind the
octagonal multi-port chamber in this schematic.
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Figure 4.2. MOT and FORT beam geometry relative to the octagonal multi-port
champer.
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The ultra high vacuum required for the experiments was prepared using three

different pumps. First a Travac-b rotary vane vacuum pump was used as a roughing

pump. The pump speed was 1.6 m3/hour. The roughing pump can pump gases and

vapors and evacuate the vacuum chamber to a pressure of about 0.1 Torr. It took

only a few minutes for the Travac-b to reach such a pressure.

A Turbo-molecular pump was switched on after this stage for pumping the

chamber to lower pressures. We used a Turbovac model# 151 C to pump the vac-

uum chamber down to pressures in the high-vacuum range. While the roughing and

turbo pumps were working we started to bake out the vacuum chamber. In order to

thermally isolate the chamber we made a cage around it and covered it with pieces

of a thermal blanket. Using electrical heaters the temperature was raised to 200◦ C.

The system was left at this temperature for 3 days to ensure that most of the water

and other impurities outgassed from the chamber’s walls. The ultimate pressure that

we were able to observe using the turbo-pump during bakeout was ≈ 10−8 Torr. In

the next stage, a Varian Valcon Plus 55 ion pump was used for further pumping the

chamber. After 1-2 weeks of operation the vacuum reached the low 10−11 Torr.

4.2 Rubidium Dispenser

To make a BEC we needed a sample of atoms at low temperature and high

density such that the atomic deBroglie waves started to overlap. For the following

reasons we used Rb87 atoms.

i) The excitation frequency from the lowest to the first excited state is in the

near IR region which makes it relatively simple to generate light using cheap diode

lasers.

ii) It is easy to generate an atomic vapor of Rb87 atoms since rubidium has

high vapor pressure even at room temperature.

iii) The collisional properties of Rb87 atoms make it easy to evaporatively cool

them to ultra low temperatures.
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We used a rubidium dispenser in our vacuum chamber as a source for the atoms.

Rubidium dispensers have been widely used to provide pure atom sources in atomic

research systems. In these dispensers, rubidium atoms are released from a metal

surface when it reaches a critical temperature as it is heated by an electric current.

After the current is switched off, the dispenser cools below the critical temperature

and stops dispensing. Heat loss dominated by radiation results in a fast switch-off

time constant of less than 10 s. It is important to find the correct current to operate

the dispenser. Too low a current and the MOT will be very small, while too high

a current and the vacuum (and consequently the life time of atoms in the MOT)

will be adversely affected. In our experiments we applied different currents to the

dispenser depending on its age. The current starts at around 2 A for a new dispenser

and gradually increases to 4 A near the end of its life when the dispenser does not

produce Rb atoms efficiently. We chose the operation current Iop as one in which the

MOT loading time was about 20 s (P ≈ 10−11). Our Rb dispenser was a commercial

product from SAES Getters (RB/NF/4.8/17FT10+10). To use a new dispenser it

had to be run at high currents for several minutes to remove an oxide layer. Also,

it is important to run a high current through the dispensers during the bake out

to allow the absorbed water and any other impurities to outgas. These dispensers

usually worked for about a year before they needed to be replaced with a new one. We

installed three dispensers in the vacuum chamber in order to provide enough Rb87

for experiments during at least four years.

4.3 Optical system: Overview

Developing a stable laser optical subsystem was one of the most important

parts in building the Bose-Einstein condensate apparatus. From the MOT to BEC

creation and imaging, precision and rapid control of different laser frequencies and

powers is required. All of the equipment necessary to prepare the cooling light beams

was placed on a single optical table separated from the vacuum chamber. Since we
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have two different experiments running in the lab the setup was designed to be cost

effective by sharing some of the lasers between both experiments. In the following we

will explain details of the optical setup which enables us to perform atom trapping

and cooling experiments.

In our setup, a MOT cooling beam at 40 mW was created using a series of

semiconductor laser diodes. A grating stabilized “Toptica Photonics DL 100” diode

laser with 15 mW output power from was used as a master laser. This laser was

locked to a frequency near the F = 2 → F ′ = 3 transition of Rb87 atoms. The

output of the master laser was directed to a high power home made diode laser (slave

1) to force this laser to follow the master laser. The output power of the slave 1 laser

was about 110 mW and was divided into two parts. We used injection locking 70

with a double-pass acousto-optical modulator (AOM) configuration to force the slave

to follow the master with a small frequency offset. The double pass configuration

allowed us to change the frequency offset of the light used to inject the slave over a

wide range (up to 80 MHz). By extending this principle we were able to inject two

additional slave lasers following slave 1. Each of these slaves was used for one of the

two MOT experiments.

Another grating stabilized “Toptica Photonics DL 100” diode laser was used

as a repumping laser. The output from the repumping laser was locked on the F =

1 → F ′ = 2 transition. This light was divided into two parts to provide repumping

light for both MOT experiments. Each of these beams was transferred to the vacuum

tables by an optical fiber after double passing through an acousto-optical modulator

(repumping AOM). The repumping AOM for the BEC experiment was driven by an

RF power supply whose amplitude could be controlled in order to vary the amount

of light in the AOM’s first diffraction order. This was critical to allowing efficient

loading of the FORT.
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4.4 Operating principles of the diode laser head DL 100

In the DL 100, light emitted from the front face of the laser diode was collimated

by a multi-element lens with a very short focal length (diffraction limited) and then

scattered from a diffraction grating. The grating was adjusted in the Littrow setup

where the first diffraction order of the grating was reflected back to the laser diode

as feedback. As the feedback of the grating is considerably higher than the feedback

from the laser diode front face, the laser resonator consisting of the rear face and the

grating starts oscillating. The free spectral range of this new resonator with a length

of a few centimeters is substantially smaller than the one of the laser diode which

has an internal cavity length of approximately 100 μm. The line width, therefore,

is reduced to a typical value of 1 MHz compared to a 100 MHz line width for a

free-running laser diode.

4.5 Design of the diode laser head DL 100

A Peltier element, which stabilizes the laser head temperature, is located on a

solid base block which serves as a heat reservoir. The laser base plate was installed on

top of the Peltier element by plastic screws. This electrically and thermally isolates

the laser base plate from the base block. The laser, collimator, and grating holder

are attached to the laser base plate by metal screws. A thermistor is cemented into

the laser base plate in order to achieve an accurate temperature reading.

The laser diode is inserted into a drilled hole provided in the laser and collimator

holder aligned by a ring and fixed by two screws.

4.6 Design of the home made diode lasers

The home made diode lasers used as slaves were similar to the DL 100 except

for the elimination of the diffraction grating. Also, we used high power Sanyo diode

lasers with 120 mW output power. The current in the diode laser was supplied
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by a Thorlabs LDC500 Laser Diode Controller. A Thorlabs TEC2000 Temperature

controller was used to monitor and stabilize the laser diodes’ temperature (for a

detailed discussion on the current and temperature controller circuits see reference

71). For the later experiments three such diode lasers were used in the setup. One

of them was injection locked directly to the master laser. Thus we made a copy

of the master laser with very high power. This power was enough to be divided

into two parts for both the BEC and Cold Atom apparatuses. After dividing, each

beam travelled through a double pass AOM configuration. Depending on the AOM

frequency shift, 5-10 mW of power remained in each beam after the double pass. This

provided enough power to inject into another one of the slave diode lasers.

4.7 Optical isolation of the master diode lasers

Stray reflection of light from optical components into a laser can result in feed-

back which interferes with the stability of the laser. Considering the fact that we

need to stabilize the diode laser frequency within a few MHz such reflections should

be blocked before reaching the diodes. This is accomplished by using optical isola-

tors. Although these isolators are factory made, it is useful to briefly review their

operational concept. Optical isolators are passive, non reciprocal devices that utilize

the phenomenon of magneto-optic rotation to isolate the source from reflections in

an optical system. The heart of the optical isolator is a Faraday rotator, for example,

Yttrium Iron Garnet-YIG (LPE and bulk) or Terbium Gallium Garnet-TGG single

crystals.

In 1842, Michael Faraday discovered that the plane of polarized light rotates

while transmitting through glass (or other material) that is contained in a magnetic

field. The direction of rotation is dependent on the direction of the magnetic field,

and not on the direction of the propagating light (non-reciprocal). This capability

allows the realization of many schemes to manipulate laser light in ways that are

otherwise impossible or, at least, much more difficult to implement. By far, the most
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common application of Faraday rotators is their use in optical isolators, devices used

to protect laser sources from harmful back reflections. A basic optical isolator is

shown in Figure 4.3. Light from a linearly polarized laser source enters an aligned

beam-splitting polarizer from the left. It then proceeds through a Faraday rotator

which is tuned to provide a 45◦ rotation of the polarization direction for the particular

laser wavelength. A second polarizer is added to the assembly on the opposite end

of the rotator and aligned at 45◦ with respect to the original polarizer (see Fig. 4.3

(a)). This last polarizer is necessary because the polarization of light reflected back

towards the laser source may not be the same as that in the forward direction. Any

orthogonal polarization component accidentally produced will now be rejected by the

polarizer-rotator combination shown in Fig. 4.3 (b). In Figures 4.3 (a) and (b) we

have traced the changes through the isolator of the diode beam and reflected beam

respectively.

4.8 Optical isolation of the slave diode lasers

Since the slave diode lasers need to be injection locked to the master laser a

conventional isolator can not be used in its setup or no light from the master would

get to the slave. A small change in the isolator can allow the injection beam to

propagate into the diode laser while still eliminating any stray reflected light. Figure

4.4 (a) illustrates the concept of such a setup. As shown in Fig. 4.4 (a) there is a half

wave plate in front of the first polarizer which is set to rotate the polarization plane

of the laser beam by 45 degrees. The first polarizer is rotated by the same amount to

pass through the maximum amount of the light. The Faraday rotator adds another

45 degrees to the polarization direction such that the beam passes through the last

polarizer. The optical paths and each equipments’ effect on the polarization of the

injection and reflected light is shown in Fig. 4.4(b) and (c).
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4.9 Frequency control

For our experiments it was crucial that we had precise control of the laser

frequency and intensity. Three different frequencies for the laser beams were needed

on the way towards realizing a condensate. These were:

i) Light with -15 MHz detuning from the F = 2 → F ′ = 3 transition to make

the MOT (MOT beam).

ii) Light with -80 MHz detuning from the F = 2 → F ′ = 3 transition for optical

molasses cooling of the atoms in the MOT.

iii) Light resonant with the F = 2 → F ′ = 3 transition for imaging the trapped

atoms and the condensate.

iv) Light tuned from the F = 1 → F ′ = 2 for repumping (this is discussed in

more detail in the following section).

Furthermore, there were two intensity requirements that had to fulfilled during

the experiments:

i) High intensity (> the saturation intensity) for the MOT beams was required

in order to create a highly populated MOT. We will see later that the loading efficiency

from the MOT to the FORT was only about 10% so that a MOT with large number

of atoms was important in order to realize a condensate using all-optical methods.

ii) Fast switching of the light beams. The experiments should be performed

much faster than the time scales in which mechanical shutters typically respond.

These requirements were met by using AOMs in the optical set up. We used

a master AOM to manipulate the slave laser frequency. However, the beam was

deflected at an angle proportional to the frequency shift. Such a change in the direc-

tion of the light was highly undesirable particularly because the light was directed

into the slave diode laser for injection locking. In order to overcome this problem

the modulator was set in a double pass configuration as shown in Fig. 4.5. Here the

modulator was placed at the center of a one-to-one telescope and thus in the focal

plane of each lens. In this configuration the deflected beam was perpendicular to the



47

retro-reflecting mirror, independent of the angle of deflection and thus independent

of the frequency shift. This double pass, through the quarter wave plate in between

the lenses, rotates the polarization of the reflected beam 90◦ compared to the original

beam. Therefore, the polarizing cube in front of the first lens was able to separate

the incoming and reflected beams. The frequency shift and the light paths are given

in Fig. 4.5. In our set up the master AOM was a 80 MHz center-band frequency

deflector with a 20 MHz band width. In practice this allowed us to sweep the fre-

quency of the slave light over about 80 MHz. Furthermore, to build a switch for the

MOT beams the output light of the slave laser passed through another modulator,

the slave AOM. The slave AOM modulated the frequency by a fixed amount of -80

MHz. The first order diffraction after the slave AOM was coupled to a fiber optic

cable and transported to the vacuum table. Since the power in the deflected beam

was a function of the RF power, switching off the RF reduced the power through the

fiber to near zero in less than a μs. The master laser was locked to the cross-over

transition of the F = 2 → F ′ = 2−3. By changing the frequency of the master AOM

the slave laser frequency was manipulated. This process was controlled by a Labview

program.

4.10 Repumping laser set up

There is small probability that the slave laser will excite transitions other than

the F = 2 → F ′ = 3. Atoms excited to the F ′ = 1 or F ′ = 2 state can spontaneously

decay to the F = 1 state. Such a process prevents the atoms from interacting with

the trapping beams and rapidly destroys the trap. Therefore, in the conventional

approach to realize a Rb87 MOT a repumping laser is also used which is locked

to the F = 1 → F ′ = 2 transition. This light returns atoms in the F = 1 state

to the cycling transition necessary for efficient MOT operation. However, there are

other considerations for the repump light when loading an optical trap. On the road

towards realizing a condensate we had to load as many atoms as possible from the
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MOT to the optical trap. The efficiency of this process could be enhanced greatly if

the repumping beam power was reduced after loading the MOT. To have control of

the repumping beam power the repump laser was locked to the cross-over transition

of F = 1 → F ′ = 1 − 2. A double pass AOM arrangement was then used to shift

the frequency up to the F = 1 → F ′ = 2 transition. For this AOM we used an RF

driver whose power could be controlled with a low voltage signal from a computer.

This allowed us to vary the repumping beam power.

4.11 Saturated absorption spectroscopy

In laser cooling experiments, two methods are generally used to lock the laser

frequency to the desired hyperfine transition. These are saturation absorption spec-

troscopy and DAVLL locking. In the work of this thesis saturated absorption spec-

troscopy was used. This technique will now be explained.

First consider the hyperfine structure of the isotope of Rb87, a structure which

results from the electronic spin interactions with the spin of the nucleus. The satu-

ration absorption spectroscopy setup to and the energy level structure of Rb87 are

shown in Figs. 4.6 and 4.7. Since the hyperfine structure covers a frequency range

smaller than the Doppler broadened spectrum, we must use more than one laser

beam to distinguish the fine spectral lines. When the laser comes to the beam split-

ter, most of it will pass through (becoming the saturating beam) and only a small

part of it will be reflected (this is called the probe beam). The saturated and probe

beam nearly overlap each other but travel in opposite directions inside the rubidium

cell. The absorption cross section for an atom with the velocity component −→vz on a

transition |1 >→ |2 > is 72

σ(ω, vz) = σ0
(γ/2)2

(ω − ω0 − kvz)2 + (γ/2)2
(4.1)

where σ0 is the maximum absorption cross section at the center of the atomic transi-

tion. Due to saturation, the population density of the lower level, N1(vz)dvz, decreases

within the velocity interval dvz = γ/k while the population density, N2(vz)dvz, of the
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Figure 4.6. Schematic of the saturation absorption spectroscopy setup.
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upper level |2〉 increases correspondingly. On the other hand atoms with velocity

components in the interval vz to vz + dvz give the contribution

dα(ω, vz) = δN(vz)σ(ω, vz) (4.2)

to the absorption coefficient α(ω, vz). Therefore the saturation beam burns a hole in

the absorption coefficient profile (Lamb dip).

The probe beam is sufficiently weak to cause no extra saturation. Therefore

the absorption coefficient for a tunable probe beam is an unsaturated Doppler profile

α0(ω) with a saturation dip at the probe frequency ω = ω0. The hyperfine structure

of Rb87 determined by saturating absorption spectroscopy is given in Fig. 4.8.

4.12 Polarization

The next step was to set the polarizations of the six MOT beams. The orienta-

tion of the respective circular polarizations were determined by the sense of the current

and orientation of coils used to produce the magnetic field gradient. The four beams

which propagate through the chamber perpendicular to the coil axis should all have

the same circular polarization (relative to the beam direction) while the two beams

which propagats along the coil axis should have the opposite circular polarization to

the first four beams. Although in principle it is possible to initially determine and

set all polarizations correctly with respect to the field gradient, in practice it is much

simpler to set the polarizations relative to each other and then try both directions of

current through the coils to determine which sign of magnetic field gradient makes

the trap work. A polarization analyzer was built to set the circular polarizations (see

Fig. 4.9). The analyzer consisted of a polarizing beam splitter and a quarter wave

plate. To initially set the wave plates’ orientation we used the fact that double pass-

ing a linearly polarized beam through a quarter waveplate rotates the polarization 90

degrees if the polarization direction makes a 45 degree angle with the waveplate axis.

Light was sent through the beam splitter cube and was reflected after the wave plate.

The waveplate was then rotated to maximize the power of ray 3 in Fig. 4.9 (a). To



52

make the trapping beams circularly polarized the light was passed through the wave

plate of the analyzer. Then another quarter wave plate was installed in front of the

analyzer and rotated to maximize the beam which was either passing through the

beam splitter cube or reflecting from it Fig. 4.9 (b). Removing the analyzer left the

trapping beam circularly polarized before going through the chamber. At the other

side of the vacuum chamber the beam passed through another quarter wave plate and

reflected back on itself. Therefore, inside the chamber in each direction, beams have

a σ+-σ− scheme. The intersection region between the laser beams inside the chamber

was about 2.2 cm3. This was the volume in which the MOT was realized.

4.13 Magnetic coils

To provide the magnetic field required for the MOT, we built a set of water

cooled anti-Helmholtz coils. Each of the coils had a diameter of 22.5 cm with 86

turns of wire carrying 12 A of current. The separation between the coils was 12.5

cm. These coils made a magnetic field with a gradient of approximately 7 G/cm. To

cancel out the effect of the Earth’s magnetic field we used a pair of Helmholtz coils in

each direction (nulling coils). Finally, using this setup we trapped around 40 million

atoms in the MOT.

4.14 Time-of-flight

This section presents one of our early experiments that used a time-of-flight

(TOF) technique to extract the velocity distribution in the MOT and consequently

its temperature. The optical arrangement is shown in Fig. 4.10. The magnetic field

and laser beams creating the MOT were turned off and the atoms in the MOT fall

down under the influence of gravity. Using the TOF, the velocity distribution was

determined by observing the amount of light absorbed from an on resonant laser

beam as a function of time. This beam propagated horizontally about 10 cm below

the MOT.
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Fig. 4.11 shows typical data taken for a TOF experiment. A Gaussian fit to

the velocity distribution shows that the trapped atoms had a thermal temperature

of 19μK. In the BEC experiments we used a direct imaging method (with a camera)

for all of these measurements. This method is explained fully in the next section.

4.15 Optical Dipole Trap

The light for the optical trap originated from a 50 Watt RF excited CO2 laser.

The setup used for creating two beams is shown in Fig. 4.12. The output beam of

the laser passed through an AOM. The zeroth order of the output from the AOM

was then directed to a beam dump and the first order toward another AOM. Two

2.5 cm diameter ZnSe viewports allowed us to transmit the the CO2 laser beams

into the vacuum chamber. The focusing arrangement for the CO2 beam consists of

a 2× beam expander followed by a 3.75 cm focal length lens which is placed within

the vacuum. The AOM’s are driven by amplified 40 MHz RF signals. The 40 MHz

RF signal for the first AOM passed through two MiniCircuit electronics attenuators,

model ZAS-3, before entering the amplifier. The controllers of the attenuators were

connected to separate analog terminals controlled by a computer. Depending on the

voltage applied to the controllers the RF power changed, giving computer control of

the total power and hence the optical trap’s well depth. Therefore the evaporative

cooling was performed using this AOM. Another advantage of using the attenuators

in the setup was that the trap could be switched off in less than 1 μs which was

crucial for the consistency of the time of flight experiments.

In the same way, the efficiency of the second AOM was controlled in order to

change the ratio of the power in the FORT beams. This streamlined the control of the

optical trap geometry (single or crossed beam configurations). The main complexity

that arrived from introducing the attenuators was that the total power was not pro-

portional to the control voltage. Thus accurate control of the ramp-down required us

to measure the power versus control voltage in order to build a lookup table .
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4.16 CO2 beam optics and detection

Unfortunately, the usual optics for the MOT were not useful for CO2 beams

because of the high absorption of glass and quartz at the 10.6 μm wavelength of the

laser. One of the best materials with a low absorption coefficient at this wavelength

was Zinc-Selenide (ZnSe). Although the technology for mass production of this ma-

terial is well developed the optical components are usually more expensive than those

for visible wavelengths. When working with CO2 beams proper eye goggles should al-

ways be used and caution taken, since only a fraction of a Watt is enough to seriously

damage the eyes. We used thermal plates to detect and align the beam. A thermal

image plate displays IR laser beams through the use of thermal-sensitive phosphors.

These phosphors fluoresce when illuminated by an ultraviolet light (3600A). The in-

tensity of the fluorescence decreases with increasing temperature. When an IR laser

beam strikes the thermally sensitive surface, the absorbed energy raises the surface

temperature and produces a corresponding thermal image. The pattern produced

appeared as a dark image on a bright fluorescent background. Different sensitiv-

ity ranges were obtained by using different phosphors and by varying the amount

of thermal insulation between the phosphors and the anodized aluminum heat sink.

Any long wavelength, ultraviolet light could be used to illuminate the surface, but

Macken Instruments’ Lamp Model 22-UV was the one that we used. Its small size

and high-illumination level permitted it to be conveniently positioned in the working

area.

4.17 CO2 beam alignment

Since the CO2 beam frequency is far-off-resonant from the electronic transition

frequency of the Rb atoms, it was very difficult to align the beam with the MOT.

Initially we aligned the CO2 laser trap with the MOT using the following method. We

aligned a 780 nm laser beam (probe beam) on top of a He-Ne laser. The probe beam
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was aligned such that it destroyed the MOT when we allowed it into the chamber.

By burning a hole in a piece of paper with the CO2 laser beam, we could overlap the

CO2 beam along the same path as the He-Ne beam and therefore ensure the beam

passed close to the MOT. Since the Rayleigh length is short and the focus is tight,

this method does not locate the focus of the beam on the MOT at first try. For final

alignment, the CO2 beam was turned on and off periodically and the MOT moved

using the nulling coils until the fluorescence intensity changed in the MOT. However,

later on when we improved the setup to load more atoms in the MOT the intensity

fluctuation was not observable anymore and the method was not very useful.

To overcome this difficulty, we devised a method which allowed us to observe

the position of the CO2 laser beam in real time directly on an inexpensive CCD

camera that normally monitors the MOT. To accomplish this, it was necessary to

improve the contrast between the atoms trapped in the MOT and those trapped in

the FORT. Several techniques will work; for example, increasing the detuning of the

MOT light from resonance or reducing the intensity of the MOT light. A similar

effect is obtained if these operations are performed on the re-pumping light. With

any one of these methods, the brightness of the MOT and the effect of its near

resonant light on pushing atoms out of the FORT can be reduced. However, there

can still be enough near-resonant light present in the MOT beams to cause atoms

that are contained in the FORT to fluoresce and hence make the FORT beam visible.

Using these techniques greatly simplifies alignment of the CO2 laser beam, turning a

task which could previously take several days into one that can be performed in few

minutes 73.

4.18 Imaging system

Because of the poor response of the eye at 780 nm, the trapped atoms can be

seen with the unaided eye only if the lab is very dark. Therefore an observing device

is required for aligning. One can use a standard IR fluorescent card or a piece of
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white paper (on which an image of the MOT can be formed) if the room is darkened.

However, it is highly convenient to have a CCD TV camera to monitor the MOT

inside the vacuum chamber. The security cameras work well for this purpose. They

show the cloud of trapped atoms as a bright white glow.

Quantitative measurements of the cloud properties is more involved. In general

there are two methods for quantitative measurements, fluorescent and absorption

imaging 74. In fluorescent imaging atoms are driven to saturation and the scattered

photons are imaged. The absorptive technique, which is used in our lab, is also based

on the resonant interaction of the light with the atoms. The atoms are exposed to a

50 to 60 μs pulse from a 1 cm diameter weak laser beam, 120 nW, on resonant with

the F = 2 → F ′ = 3 transition. The intensity of the beam will be reduced by the

scattering of photons from the beam by the atoms. Thus the atoms effectively cast

a shadow in the beam which can be imaged on a high resolution CCD camera. In

order to calculate the number of atoms we use the fact that the absorption rate for a

low intensity laser beam travelling in the z-direction is 38,

dI

dz
= −σnI, (4.3)

where σ is the scattering cross section, n is the density of atoms and I is the imaging

beam intensity. The solution of Eq. (4.3) is I(x, y) = I0(x, y)exp(−σñ) where ñ is

the column density. In order to find I(x, y) usually we take 3 images. One image

is taken when there is no laser light to account for background noise. This gives us

an intensity we denote Ib. Two more images of the beam are taken with, I1, and

without, I0, the atomic cloud. The intensity profile I(x, y) is then given by,

I(x, y) =
I0 − Ib

I1 − Ib
, (4.4)

The number of atoms can be obtained by integrating over the column density which

in terms of the digital images we have taken is given by,

N = −S

σ

∑
pixels

ln(I), (4.5)
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where the sum is over all of the pixels and S is the scaled area of a pixel which

is 13μm2 for our CCD camera. Fig. 4.13 depicts our setup for the imaging system.

A 4* microscopic objective was used to magnify the image 75,76. A gaussian fit to

the intensity profile determines the cloud size. The temperature of the cloud was

determined by imaging the cloud after different expansion times and determining the

ballistic expansion rate of the cloud. Although the imaging system was primarily

used to observe the BEC and FORT, it can also take images of atoms in the MOT.

Fig. 4.14 shows one such picture taken from the MOT. However, the discussion for

determining the cloud size is not valid for a BEC since Bose statistics affects the cloud

profile.

4.19 BEC

We have built the vacuum chamber for atom trapping and cooling to realize

BEC. After 1-2 weeks of operation the vacuum reached 10−11 Torr. The FORT lifetime

was 5 to 6 seconds at this pressure range. Using this setup the first BEC of Rb87 atoms

was observed on August 2004. To realize a condensate the MOT was formed with a

20 G/cm magnetic field gradient, and by two 2.5 cm diameter, 20 mW beams. The

FORT and MOT alignment was accomplished using the method in Ref. 73 which was

also explained earlier in this Chapter. The following procedure was used to load the

FORT from the MOT. First the MOT was loaded for 25 seconds from the background

vapor while at the same time the CO2 laser remained switched on. Then, as a key

step in efficiently loading the FORT, the repump intensity, 1.9 mW, was reduced by

a factor of about 10 to make a temporal dark SPOT 77,78. This reduction in the

repump power occurred 50 to 100 ms before switching off the MOT trapping beams.

Alongside reducing the repump power, the trapping beam detuning was changed to

−80 MHz for further laser cooling. This also ensured that our atoms always saw the

MOT beams as negatively detuned even after considering the differential ac-Stark

shift between the ground and excited states 77,79,80. Finally, the main MOT beams
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were extinguished (which was accomplished by using fast mechanical shutters) and

the MOT magnetic field was ramped to zero in a 10 ms time frame. The earliest time

that we could image the FORT was 100 ms after releasing the MOT. This ensured

that any untrapped atoms had sufficient time to fall away from the FORT under

the influence of gravity. Time-of-flight measurement showed the temperature of the

trapped atoms in the FORT was ≈ 70μK. Also, the phase space density was ≈ 10−3

which was enough to initiate the evaporative cooling. For evaporative cooling we used

a trial and error method by maximizing the phase space density at each step of the

evaporative cooling stage. This was cautiously done by changing the amount of the

reduction in the FORT power and the wait time in each step for rethermalization and

then observing the phase space density. Our final result was in very good agreement

with exponential decay of the FORT beam power with a time constant of 2 seconds.

Note that this was shorter than the FORT life time. In the latest version of the

experiment the FORT power is ramped down with a program which uses a power

law form. Figures 4.17, 4.18 and 4.19 depict the observed evolution of phase space

density, cloud temperature and FORT population versus the evaporation time. To

create these figures atoms were released from the FORT and imaged 10 ms after each

evaporation step.

As the evaporation proceeded the remaining thermal cloud got colder and at

around 400 mW of laser power, the bimodal distribution arises. At a trap power of

200 mW the cloud was almost pure condensate with ≈ 30 × 103 atoms. Figure 4.20

shows a typical absorption image of the condensate. For comparison the condensate

is shown with two other absorption images of the cold atoms before and at the BEC

transition.

In the following chapters we present other experiments that we have conducted

using the setup that has been described here.
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Figure 4.8. The D2 line hyperfine structure of Rb85 and Rb87 observed using satu-
ration absorption spectroscopy.
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Figure 4.10. The time-of-flight apparatus (TOF). The location of the two
counter-propagating laser beams resonant with F = 2 → F ′ = 3 tran-
sitions in Rb87. The beam propagats horizontally about 10 cm below
the MOT.
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Figure 4.11. Observed TOF data. The FWHM is 9.2 ms which corresponds to a
thermal temperature of 19μK.
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Figure 4.14. Absorption image of the loud of atoms in the MOT. The current in the
magnetic coils was 10 A, which produced a magnetic gradient of about
6 G/cm. Approximately 107 atoms are trapped in the MOT.
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Figure 4.16. Schematic of the experimental setup for trapping and cooling atoms.
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Figure 4.17. Observed phase space density versus evaporation time. Note that the
FORT phase space is in log scale.
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Figure 4.18. Observed temperature of the remaining cloud in the FORT versus evap-
oration time. The temperature was calculated using the expansion
rate of the cloud for a 10 ms time of flight data. Note that the FORT
temperature is in log scale.
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Figure 4.20. Atomic cloud after 6 ms expansion above, at, and below the condensation
transition. The FORT had 2×106 atoms after loading from MOT with
a 70 μK temperature. At the end of evaporative cooling the BEC had
10 × 103 atoms.



CHAPTER 5

GEOMETRICAL EFFECTS IN THE LOADING

OF AN OPTICAL ATOM TRAP

The trapping of atoms using light that is far-detuned to the red of an atomic

resonance has been the subject of study for almost a decade now 81,82. Recently

a resurgence of interest in these far off-resonant optical traps (FORTs) has led to

the all-optical production of BECs of rubidium 31, cesium 32 and ytterbium 83. A

FORT has been used to produce a degenerate Fermi gas of lithium 84 and has even

formed the basis for the first all-optical atom laser 85. These optical traps offer several

advantages over the traditional magnetic traps that are used to produce BEC; the

trapping is not limited to a particular Zeeman sub-state, and the geometry of the

trap can be readily adjusted. Furthermore, the tight confinement that is possible

in a FORT produces high initial elastic collision rates leading to the possibility of

rapid evaporative cooling. However, the efficient loading of a FORT with atoms still

remains a challenge.

Typically in rubidium FORT experiments, a far off-resonant laser beam from

a CO2 laser is focused into a collection of atoms that accumulate in a MOT. Al-

though there has been previous work on the mechanisms important in the loading of

a FORT 86, there are still many aspects of this process that are not well understood.

In particular the role of the FORT geometry has received scant attention. As we

will see, the FORT volume plays a critical role in determining the number of atoms

loaded. However, increasing this volume can lead to reductions in the density and

consequently a less useful trap for evaporative cooling. We suggest a way around this

problem using a time-averaged potential 87,88.

71



72

In this chapter we begin by examining the background to trapping atoms by far

off-resonant laser light, giving a simple theory which allows us to understand the key

parameters affecting the loading efficiency of the FORT from a MOT. We proceed

to present a detailed experimental study of the loading process, looking at the effect

of the FORT depth and spatial extent in section 5.3. In section 5.4 the concept of

time-averaged potentials is introduced and we report the results of our experiments.

5.1 Theoretical model

In our experiment, rubidium atoms in a MOT are exposed to a focused CO2

laser beam. Since the wavelength of this light (10.6μm) is far to the red of the

rubidium D2 transition (780 nm), the interaction of the atoms with the laser light is

quasi-electrostatic. This produces an energy shift of the atomic ground state given by

Eq. (3.27), U = −1
2
αg|E|2, where αg is the ground state static polarizability and |E|2

is the time average of the square of the laser light’s electric field. For a Gaussian laser

beam propagating in the z direction this quantity can be expressed as Eq. (3.29),

|E(x, y, z)|2 = E2
0

w2
0

w2(z)
exp(

−2(x2 + y2)

w2(z)
) (5.1)

where w(z) = w0

(
1 + ( z

zR
)2

) 1
2
. Here w0 is the beam waist, zR is the Rayleigh length,

and E0 is the electric field amplitude. The atoms experience a potential minimum

at the focus of the laser beam and can become trapped. Unfortunately, the capture

range and depth of such a trap is rather limited, so it is necessary to load the optical

trap from a MOT. Clearly the efficiency of such a process is of great interest since it

is highly desirable that the FORT contain as many atoms as possible. This loading

process has been theoretically investigated from several different perspectives. For ex-

ample, O’Hara and co-workers solved a Fokker-Planck equation (see 86 and references

therein), while Kuppens et al. 77 used a phenomenological approach to investigate the

process. In the present work we build on the simple model introduced in 89 rather

than engaging in a full 3D dynamical treatment of the problem. As will be seen,



73

this straightforward approach helps us to understand the effect of the geometrical

configuration on the FORT population.

We assume that the atomic cloud of the MOT has a Maxwell-Boltzman distri-

bution and that the atoms in the dipole trap eventually come into thermal equilibrium

with the MOT 23,89. Therefore the FORT population is given by,

N =

∫
nf(r,p) dr dp g(ε) (5.2)

where n is the particle density and f(r,p) is the distribution function for the atoms

with r and p their spatial and momentum vectors. In Eq. (5.2) the ratio of the density

of states for the gaussian potential created by the CO2 laser, to the density of states of

the MOT potential is represented by g(ε), where ε is the energy. Atoms with energy

less than the maximum potential U0 can be trapped in the FORT and therefore the

integration is truncated over all (r,p), for which,

U(r) +
|p|2
2m

> U0 (5.3)

where m is the mass of an atom. Hence the integration boundaries of r and p are

coupled together through Eq. (5.3) and the evaluation of N involves a complicated

integration. Perhaps the most critical parameter in this equation is g(ε) which varies

between zero (for a δ-function like potential) and one (for a very shallow FORT

potential). To study Eq. (5.2) we assume that in the overlap region between the

MOT and the FORT the particle density is constant and is equal to the MOT peak

density. To further simplify the equations we also treat g(ε) as a constant, g0, over

the overlap region. These assumptions transform Eq. (5.2) into,

N = n0V0
4g0√

π

∫ √
q

0

u2 exp(−u2)du

= n0V0g0

(
4√
π

Erf(
√

q) − 8

π

√
qe−q

)
(5.4)

where u = |p|/√kBT , q = U0/kBT . In Eq. (5.4) n0 and V0 are the MOT peak density

and the overlap volume between the MOT and the FORT respectively. Therefore
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n0V0 is the total number of atoms in the overlap region and the remainder of the

parameters define the loading efficiency. The integral in Eq. (5.4) saturates when q

approaches infinity which corresponds to an infinite well depth. In fact, evaluation of

this integral shows that for q > 4 the FORT population is approximately independent

of the value of q. Therefore we introduce the concept of a saturation power, beyond

which any increase in the CO2 laser power does not appreciably affect the FORT

population. For a MOT containing Rb87 atoms with a typical temperature of 0.2 mK,

the saturation power for a CO2 laser beam focused to a 35μm waist is expected to

be about 25 Watts. To achieve a higher FORT population, increasing the overlap

volume V0 would seem to be a sensible step. However, larger V0 leads to a shallower

potential well which can reduce the intensity and hence the loading efficiency. This

should not present a problem provided that the intensity in the trap remains greater

than the saturation level. In what follows we will present the results from experiments

in which we varied this volume in two different ways.

5.2 Experiment

5.2.1 Experimental setup

We used the same vacuum chamber that was described in chapter 4 to perform

this experiment. The horizontal 2.5 cm diameter ZnSe viewports are used to transmit

the 10.6 μm light from the CO2 laser into the chamber. The focusing arrangement

for the CO2 beam consisted of a beam expander followed by a 3.75 cm focal length

lens which was placed within the vacuum. As shown in Fig. 5.1(b), the FORT beam

was directed into the chamber horizontally. This light originated from a 50 Watt RF

excited CO2 laser. The total laser power is controlled by passing the output light

through an AOM. This reduces the laser power to roughly 36 Watts. The first order

of the AOM was then directed to the vacuum chamber. We used the same procedure

as explained in the conclusion of Chapter 4 to load the FORT. Then both the MOT
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and the FORT were destructively imaged using a resonant probe laser which passed

through the atom cloud and was incident on a CCD camera. The number of trapped

atoms was determined by integrating the optical density across the atom cloud. When

imaging the FORT, the CO2 laser beam was switched off at least 1 ms before the

image was taken to allow the cloud of atoms to expand to a size which was above the

resolution of the optical system.

5.2.2 Saturation power

We investigated the sensitivity of the FORT’s loading efficiency to the total

power in the optical trap. We began by focusing the CO2 laser beam into a 35±5μm

waist which coincided with the MOT center. Several experiments were performed

in which the FORT was loaded using different CO2 powers. The results of these

experiments are shown in Fig. 5.2. These data clearly show that the number of atoms

trapped in the FORT increases slowly as the power becomes larger until about the

20 Watt level. Above this power very little change in the number of atoms can be

seen, since U0 is much larger than the mean energy of the atomic cloud.

An additional point is that the differential ac Stark shift between ground and

excited states effects the efficiency of loading into dipole traps. This effect has been

reported by Scheunemann79 et al. as an improved loading efficiency in the wings of

the optical trap compared to its center. However, for the parameters of present work

(beam waist of 15 to 30 μm and power 36 Watts) the frequency shift induced by the

differential ac Stark effect is between -62 to -15 MHz. Since the cooling frequency is

detuned by -80 MHz from F = 2 − F ′ = 3 transition, the MOT light always remains

red detuned for the atoms. Therefore, one would conclude that at even higher CO2

laser power one would expect a decrease in FORT population.

Considering the growing interest in optical trapping and making BEC using all

optical methods, it is useful to note that if one is developing a cost effective setup

for an experiment that will be used for evaporative cooling (and consequently needs
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a beam waist of around 30 μm), it is unnecessary to invest in a laser with a power of

more than about 50 Watts (25 Watts per beam).

5.2.3 Effect of the FORT volume on the FORT population

In Section 5.2 we theoretically considered the effect of the overlap volume on

the FORT population. To experimentally observe this dependency we performed an

experiment in which the number of atoms in the FORT was measured as a function of

the beam waist of the laser beam. This was achieved by passing the CO2 laser beam

through a beam expander before the vacuum chamber. The beam expander consisted

of two lenses with 6.35 and 12.7 cm focal lengths whose separation could be varied by

mounting the second lens on a translation stage. The ABCD matrix method 90 was

used to calculate the beam waist corresponding to a specific separation of the lenses.

To perform the experiment the lens separation was initially set to a minimum and the

FORT was loaded. The remaining data points were obtained by regular increments

of the second lens position. The experimental results are presented in Fig. 5.3. It

is clear from these data that there is a significant reduction in the number of atoms

trapped in the FORT for smaller beam waists. Note that the FORT population

should in principle increase with w3. However, this is likely not observed (see section

5.4) because the saturation power also increases with w. For example, the saturation

power is about 71 Watts at a 70 μm beam waist.

5.3 The time-averaged-optical trap

The Theory of section 5.2 and the experimental results of Section 5.3 both em-

phasize the sensitivity of the optical trap’s population to its volume. In the following

section we introduce a dynamical technique to increase this volume. This method is

based on sweeping the FORT beam back and forth while it is overlapped with the

MOT. Provided the motion of the beam is rapid enough, such an oscillatory motion

creates a time-averaged potential with a large volume. This can capture atoms which
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Figure 5.2. Experimental data showing the number of atoms contained in the FORT
vs. power in the CO2 beam. The power is focused to a 35±5μm waist.
The MOT population was ≈ 2 × 107
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Figure 5.3. Experimental data showing the number of atoms vs. beam waist. The
total power in CO2 beam was 36 Watts.
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are out of reach of a static FORT. Hence, these oscillations are expected to produce

a significant increase in the number of atoms that can be loaded.

In order to create a time-averaged potential we used the fact that the angular

position of the first order AOM beam is proportional to the RF frequency supplied to

the AOM. Therefore a frequency change, Δν, from the original 40 MHz will produce

an angular deviation of the beam given by Δθ = λΔν/va, where λ is the wavelength

of the light and va is the velocity of the acoustic wave in the AOM. The 40 MHz

signal from the function generator was modulated with a triangle function which

changed the frequency with a period T and amplitude Δν. Such a technique may be

important in situations where a large volume trap is loaded with many atoms and

then adiabatically transformed to a tighter geometry for efficient evaporative cooling.

It is worthy of note that even though this procedure increases the time-averaged size

of the CO2 beam on the final lens, the size of the beam focus also increases. This

is the opposite to what would be expected for a real increase in beam size on the

final lens. In the following subsections we study the properties of the time-averaged

optical traps.

5.3.1 Repump light intensity

A well established part of the procedure for loading an optical trap is the strong

reduction in the repump power a few milliseconds before turning the MOT beams

off77. The reduction in the power of the repump laser, together with the energy

shift induced by the electric field of the CO2 laser, means that atoms trapped in the

FORT have a significantly reduced probability of being kicked out of the FORT by

the primary MOT light. We performed a series of measurements in order to study

the correlation between the trap loading and repump light power for different FORT

potentials. Figure 5.4 represents the experimental results for two different traps.

Data points with a square symbol represent observations for no frequency sweep, open

circles are for time-averaged traps with Δν = 2 MHz. As expected, the population of
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the time-averaged potentials has a similar correlation with repump light power as a

static FORT, where the population maximum is reached at a specific repump power

and then falls to some saturated level for higher powers. The maximum loading of the

time-averaged potentials also occurs at the same repump power as for the stationary

FORT. This behavior was observed for all of the other sweeping frequencies which

were examined.

5.3.2 Sweeping period

We also studied the effect of the sweeping period on the number of atoms in

the FORT, N . The experiment was carried out by changing the period, T , of the

triangle modulation function applied to the AOM by the function generator. The

data in Fig. 5.5 shows N for three different Δν’s taken at different sweeping periods.

This figure shows that the sweeping period at which N saturates depends strongly

on the sweeping frequency. Furthermore, the FORT population rapidly falls for long

sweeping period. These results indicate that the shoulder of the N curves (the edge of

the saturation region) is inversely proportional to Δν. Such behavior can be explained

by noting that the longer the period and the smaller Δν becomes, the more the atoms

are placed in a regime where they can adiabatically follow the motion of the laser

beam. This effectively negates the time averaging effect and prevents a larger volume

FORT being realized.

5.3.3 Sweeping amplitude

The number of atoms trapped in the FORT for different Δν is given in Fig. 5.6.

All data were taken with a sweeping period of T = 30μs. Since we ultimately wish to

use this procedure to capture as many atoms as possible in order to do evaporative

cooling, we switched to an experiment with a much smaller CO2 beam waist. The

beam waist was 20 ± 5μm and the CO2 beam had 20 Watts power. Figure 5.6 shows

that the FORT population reaches a maximum at Δν = 1 MHz with approximately a
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Figure 5.4. Experimental data showing the number of atoms trapped in the FORT
versus the intensity of the repump light during the FORT loading.
The beam waist was 35 ± 5μm and power in the FORT beam was 36
Watts. The initial repump intensity used to make the MOT was 0.16
mW/cm2. The square and open circle symbols represent the data for
Δν = 0 and 2 MHz respectively. The procedure for loading FORT was
same as discussed in subsection 5.3.1
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Figure 5.5. Experimental data showing the number of atoms vs. sweeping period.
The beam waist was 35 ± 5μm and power in the FORT beam was 36
Watts. The open circle, square, and star symbols represent the data
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100% improvement in the population compared to the stationary FORT. For sweeping

frequencies more than Δν = 3 MHz, the number of atoms falls even below the static

trap (Δν = 0 MHz) population. We believe this decrease is a result of the reduction

of the average well depth below the saturation level, which is inversely proportional

to the sweeping amplitude. Consequently only very cold atoms should stay in the

trap. This has been confirmed by the experiment that will be discussed in the next

subsection.

The next step after loading the time-averaged-trap was to transfer the atoms

into a tight FORT for efficient evaporative cooling. This was achieved by linearly

damping the sweeping amplitude over 6 ms after switching off the MOT beams. The

FORT population at the end of the damping is shown by filled circles in Fig. 5.6.

The data indicate that almost none of the atoms are lost from the FORT during the

damping process. Effectively this damping is a realization of an acousto-optically

controlled 1D zoom lens for the optical trap. We note that recently Kinoshita et al.

have achieved an all optical BEC using a mechanical 2D zoom lens 33.

5.3.4 Trap temperature

The ballistic expansion rate of the atomic cloud was used to deduce its thermal

temperature. The experiment was carried out by abruptly turning off the FORT

beam. The expanding cloud was destructively imaged after several different expansion

times for each of several different sweeping amplitudes. The corresponding data

are shown in Fig. 5.7 for radial expansion rate. These figures show that the cloud

trapped by time averaged potentials with a bigger Δν had a slower expansion rate

and consequently a lower temperature.

These temperatures are given by the open circles in Fig. 5.8 and indicate that

the time-averaged traps confine colder samples of atoms. In another series of exper-

iments the cloud temperature was measured after damping the sweeping amplitude

to zero. The final temperature for each Δν is shown by square symbols in Fig. 5.8.
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Figure 5.6. Experimental data showing the number of atoms vs. Δν. The beam waist
was 20 ± 5μm and power in the FORT beam was 20 Watts. The square
and circle symbols are the FORT population before and after damping
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The data shows a rise in the cloud’s temperature after damping. However, the final

temperature is still lower than the temperature of atoms loaded into a static FORT.

This behavior can be explained by noting that the trap well depth is inversely pro-

portional to the sweeping amplitude squared for time averaged potentials, so that

the time averaged traps’ well depth is smaller than the stationary beam. According

to the theoretical discussion of Section 5.2 this restricts the time-averaged FORT to

capturing atoms with lower energy in the overlapped volume. Consequently the time

averaged potentials in our experiments collected a colder sample of atoms. Further-

more, while damping the sweeping amplitude the well depth increases. Since the

potential is attractive the extra negative potential energy will be converted to kinetic

energy of the atoms which was observed as an increase in the expansion rate of the

cloud.

Comparing the results of Fig. 5.6 and Fig. 5.8 we conclude that the phase space

density after damping the sweeping should increase at least in proportion to the

number of atoms gained over the static beam case. This increase can be critically

important for reaching the BEC transition.

5.4 Conclusion

In this chapter we have shown that the volume of an optical dipole-force trap

is one of the most important factors in determining the number of atoms loaded

into such a trap. To increase this volume a time-averaged optical trap was realized.

Our observations show that the time-averaged traps can not only capture more atoms

compared to their static counterparts, but that the atomic clouds trapped within them

have a considerably lower temperature. By slowly damping the sweeping amplitude

almost all of the atoms were transported to a static trap. Although damping raised

the cloud temperature, interestingly, it was always lower than the temperature of

the cloud loaded directly into a static trap. Therefore, the ratio of the phase space

densities of a damped time-averaged potential and a static trap was increased by
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Figure 5.8. Temperature of the atomic cloud vs. frequency sweep. The open circle and
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a factor given approximately by the ratio of the trap populations. We have also

experimentally confirmed that above a certain laser power (which will depend upon

the volume of the trap) there is very little increase in the number of atoms that can

be loaded in a FORT. One possible avenue for future investigation is the realization

of a crossed beam time-averaged trap. This would allow for the loading of atoms

using even larger volume FORTs while still maintaining a tight trap for efficient

evaporation. This may be important for creating Bose-Einstein condensates using

rapid evaporation from a highly focused, near-resonant laser trap.



CHAPTER 6

MULTIPLE MICRO-OPTICAL ATOM TRAPS

WITH A SPHERICALLY ABERRATED LASER

BEAM

Quantum information research is another interesting avenue for potential ap-

plication of optical traps. For example the proposal of Brennenet al. 91 for quantum

logic gates using neutral atoms in optical lattices, provided a way around the deco-

herence problem which affects schemes involving charged particles. They showed that

entanglement between a collection of trapped neutral atoms can be created with a

laser using the induced electric dipole-dipole interaction. The main difficulty associ-

ated with their scheme has been the need to construct a lattice FORT with sufficient

separation between unit cells to address them individually and with a sufficient vol-

ume to load many atoms at each trapping site. These challenges have been the focus

of another series of experimental efforts. For example, using a holographic phase

plate, Boiron et al.92,93 constructed an optical lattice with a period of 29 μm using

a YAG laser. In other experiments, the Hannover group have developed a technique

using arrays of microlenses to focus a red detuned laser beam and create a series

of micro-traps for use as quantum memories 94–96. Peil et al.97 employed two inde-

pendent optical lattices, whose spatial periods differ by a factor of three, to load a

Bose-Einstein condensate of Rb87 atoms in sites having a separation of approximately

30 μm.

In most FORT experiments atoms are trapped at the intensity maxima formed

by a focused laser beam in either a travelling or standing wave configuration. In

this chapter, we demonstrate a new approach in which the peaks in the diffraction

90
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pattern associated with spherical aberration in the vicinity of the focal plane of a lens

are used to create a linear array of micro-traps. The primary spherical aberration

pattern has been studied and well documented by several authors. For example, Evans

and Morgan 98,99 theoretically produced the aberration pattern of a lens that was not

corrected for spherical aberration in order to explain laser induced breakdown in gases,

while Smith 100 experimentally verified the primary spherical aberration intensity

distribution produced by a lens uncorrected for spherical aberration. The spherical

aberration in our experiments is induced by the lenses in the path of a CO2 laser

beam. It will be seen that most of the contribution to the spherical aberration comes

from the final lens (primary lens) which is employed to focus the CO2 laser beam onto

the atomic cloud. Varying the incident beam size on the primary lens enabled us to

change the aberration pattern and hence control the separation of the micro-traps over

a range of about a millimeter. One of the advantages of our set up is the use of a CO2

laser as a far off-resonant light source. This considerably improves the coherence time

compared to some of the atom optical experiments mentioned above which use YAG

lasers to create dipole traps with micron size separation. Furthermore, the ability to

vary the spacing between the micro-traps over a range of about a millimeter makes the

addressing of the individual traps feasible using the techniques developed by Nägerl

et al.101.

This chapter is constructed as follows. In Section 6.2 we discuss the theory

of the multiple trap potential that is used in simulations. Section 6.3 is devoted to

the description of the experimental setup. In Section 6.4 we present the experimental

data and compare them with our simulation results. Our suggestions and future plans

for the use of these potentials appear in the conclusion section.

6.1 Aberration effect of a lens near the focal plane

In an ideal optical system, all rays of light from a point in the object plane would

converge to a single point in the image plane, forming a clear image. The influences
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which cause different rays to converge to different points are called aberration. In

general, the aberration effects are divided into 5 classes as follows:

1) Spherical aberration

For lenses made with spherical surfaces, rays which are parallel to the optical

axis but at different distances from it fail to converge to the same point. This situation

is shown in Fig. 6.1. This effect is more pronounced for lenses with small focal length

to aperture size ratio (f-number). In our experiment a lens with a 3.81 cm focal length

and 2.54 cm diameter is used to focus the FORT beam. The f-number for this lens

was small enough that spherical aberration should be taken into consideration when

calculating the trapping potential that will be experienced by the atoms. 2) Coma

Coma is an aberration which causes rays from an off-axis point of light in the

object plane to create a trailing “comet like” blur directed away from the optical

axis. A lens with a large amount of coma may produce a sharp image in the center

of the field, but become increasingly distorted toward the edges. Coma is an off-axis

aberration which can affect the trapped atoms under certain configurations of the

optical trap.

3)Astigmatism

Astigmatism is a result of different lens curvatures in different directions. Figure

6.3 shows such a condition for two vertical and horizontal beams. Considering the

well developed technology designing the lenses we have not observed any effect on the

FORT beam related to astigmatism.

4) Curvature of field

Curvature of field causes a planar object to project a curved (nonplanar) image,

see Fig. 6.4 for more details.

5)Chromatic Aberration

A lens will not focus different colors in exactly the same place because the focal

length depends on refractive index which in term depends on the light wavelength.

Since we were using light with a single wavelength this aberration was not important.
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Figure 6.1. Schematic diagram showing the spherical aberration effect on the beam
pattern near the focal plane of a lens.
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Figure 6.2. Coma effect on beam.
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Although there are well established methods to design aberration-free lenses we

would like to use a lens which is not corrected for spherical aberration and show the

interesting features of such systems for tailoring optical potentials for atoms.

Since the potential well depth of any FORT is proportional to the intensity

and therefore proportional to the electric field component of the laser light squared,

U = −1
2
αg|E|2, and it changes in presence of the aberration, we now proceed to

calculate the intensity distribution produced near the focus of the lens used in our

experiment. As stated previously, for the parameters of our experiment, only spherical

aberration and coma can strongly alter the beam pattern. Following Born and Wolf

102 and Yoshida and Asakura 103, the intensity close to the focus of a lens for an

incident Gaussian beam is given by,

I (u, v) =
1

w2

∣∣∣ ∫ 1

0

ρ dρ e
−ρ2

(w/a)2 e
−i

„
uρ2

2
+kβρ4

«
J0 (vρ)

∣∣∣2, (6.1)

where w is the spot size on the lens and ρ is the radial coordinate on the lens normal-

ized to the radius of the lens, a. v and u are the scaled cylindrical radial and axial

coordinates of the image space (with the origin for u at the Gaussian focus) and are

given by v = 2π
λ

a
R

√
x2 + y2 and u = 2π

λ

(
a
R

)2
z. k is the vacuum wave number, given

by k = 2π/λ, where λ is the wavelength of the light used. R is the radius of the

Gaussian reference sphere from the lens, (x, y) are the cartesian coordinates in the

Gaussian image plane and β is the primary spherical aberration coefficient, usually

expressed in terms of a number of wavelengths. This coefficient is additive over all

the elements used in an optical system. Our set up has three lenses in the path of

the laser light (see Fig. 6.5). The first two lenses constitute a telescope and the third

one (which is placed inside the vacuum chamber) we refer to as the primary lens.

Using the thin lens approximation, we calculate the primary spherical aberration

produced by such a lens of focal length f to be 104,

β =
w4

32f 3

[(
n

n − 1

)2

+
(n + 2)

n (n − 1)2

(
B +

2 (n2 − 1)

n + 2
C

)2

− n

n + 2
C2

]
, (6.2)
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where n is the refractive index of the lens medium and B is the shape variable given

by B = (c1 + c2)/(c1 − c2) and ci = 1/ri; i = 1, 2; ri are the radii of curvature

of the lens surfaces. C is known as the conjugate variable and is defined as C =

(u1 + u2)/(u1 − u2), where u1 and u2 are the divergence angles of the gaussian beam

before and after passing through the lens. These angles are given by ui = λ/πw0i;

i = 1, 2, where w01 and w02 are the minimum beam waists of the beam before and

after the lens. It should be noted that according to the usual sign convention, if the

lens produces a converging beam, then u2 is negative so that the denominator in the

definition of C is not zero in our experiment.

In the experimental situation we wish to model, the separation of the telescope

lenses is varied by moving the second lens in the optical system and keeping the other

lenses fixed. Thus the first lens of the telescope contributes a constant amount to the

total spherical aberration coefficient β as its w and C parameters are fixed. As the

position of the second lens in the telescope is moved, the beam size on this lens and

on the third (the primary) lens will change resulting in changes to the parameters w

and C for these lenses. This leads to a variable contribution to β by these last two

lenses and therefore a variable aberration pattern near the focus of the primary lens.

We have found that for our experiment the primary spherical aberration of the lens

varies from around 0.1 to around 18.2 wavelengths.

6.2 Experimental setup

In the following, we present an experimental setup which enabled us to create

the spherical aberration pattern to form a series of micro optical traps. We used the

vacuum chamber that is explained in Chapter 4. The primary lens was a meniscus

lens with a 3.81 cm focal length and 2.54 cm diameter placed inside the vacuum

chamber and is not corrected for spherical aberration∗. This lens was mounted such

∗Note that for some of the later experiments, this lens was replaced by an aspheric
lens
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that the convex side was towards the center of the chamber to maximize the spherical

aberration effects. Before reaching the primary lens, the CO2 laser beam passed

through the telescope which was composed of two plano convex lenses with 6.35 cm

and 12.7 cm focal lengths placed approximately 2 meters away from the chamber.

This configuration allowed us to control the beam size at the lens inside the chamber

by varying the separation of the telescope lenses. Consequently, we were able to

change the spherical aberration pattern close to the gaussian focus.

The CO2 light was directed into the vacuum system in a geometry such that

it propagated at an angle of 45 degrees to the vertical. The total laser power was

controlled by passing the CO2 light through an AOM. The first order of the modulator

was then directed into the telescope to expand the beam. The optical arrangement

used in this experiment is as shown in Fig. 6.5. For our atomic source we used the

MOT with 2 × 107 atoms. The parameters for the MOT were same as the ones

explained in Chapter 4. The MOT and FORT were aligned using our method of

contrast improvement described in Chapter 4. This is based on improving the contrast

between the atoms trapped in the MOT and those trapped in the FORT by increasing

the detuning of the MOT light from resonance.

The same method of the Chapter 5 was taken to load the FORT. When imaging

the FORT, the CO2 laser beams were switched off 3.5 ms before the image was taken

to allow the cloud of atoms to expand to a size which was significantly above the

resolution of the optical system.

6.3 Results and Discussion

Using the procedure described in Section 6.3 we have been able to load several

micro-optical traps created by the aberration pattern of the meniscus lens. Interest-

ingly, our observations show that there are approximately ten sites capable of holding

the atoms when the beam diameter was similar to the size of the primary lens, which

is in very good agreement with our simulation results. For a given amount of spherical
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aberration β, the separation between the micro-traps decreased as one moved away

from the focus and towards the primary lens. Therefore the number of micro-traps

being loaded from a MOT at a given time depends where the MOT and FORT over-

lappshows ed each other. Usually three micro-traps were loaded by placing the atomic

cloud of the MOT close to the gaussian focus of the lens. This can be increased to

four or five micro-traps by moving the MOT a few millimeters towards the lens (to

move the MOT we changed the currents in the nulling coils designed to cancel out

stray magnetic fields). Figure 6.6 shows three absorption images of the FORT and

the corresponding simulated potentials at two extreme separations of the telescope

lenses and one intermediate separation. The lower panels of Fig. 6.6 show that the

central FORT and one micro-trap are loaded. This happens when there is higher

spherical aberration β. Our simulations show that the separation between the peaks

is greater when there is a high spherical aberration. So in the lower panels of Fig. 6.6,

the spacial extent of the MOT is such that it could load only one micro-trap along

with the central FORT. For the parameters of Fig. 6.6(c), we found from Eq. (6.2) that

the spherical aberration β is around 18.2 wavelengths. The middle panel of Fig. 6.6

shows the central FORT and two micro-traps that are loaded when β is around 12.6

wavelengths. In the upper pictures, the spherical aberration is diminished by the

small beam size on the primary lens so that only the highly populated central FORT

remains. This higher population is due to the fact that for such cases the beam is not

focused tightly so that the capture volume of the FORT is increased. In the absence of

the spherical aberration the central FORT usually contained over 106 trapped atoms.

In the presence of spherical aberration, the other micro-traps usually had 2 × 105

atoms at 70μK temperature.

According to our numerical simulations, the spherical aberration contributions

from the telescope lenses can also alter the intensity pattern close to the focal plane

of the primary lens. Our telescope lenses are not corrected for spherical aberration.
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To demonstrate this point the meniscus lens was replaced with an aspheric lens cor-

rected for spherical aberrations so that the primary lens did not alter the wave front

because of the spherical aberration. Different combinations of lenses that made up

the telescope were tested, however all of them showed a similar pattern. Thus, here

we shall present only one setup in which we used two plano convex lenses, both with

12.7cm focal length. The separation of the telescope lenses was initially set equal to

24cm and was then decreased in 3mm steps. Figure 6.7 shows the observed intensities

along the optical axis of the primary lens as the telescope separation was varied. An

offset has been added to each profile to improve the readability. The sequence from

the top is in order of increasing distance between the telescope lenses. This figure

shows that a micro trap is created from the central FORT and starts to move away

from it as we increase the separation of the telescope lenses. This is because as the

beam size on the second lens increases so does the spherical aberration. From Fig. 6.7

it can be noted that after the seventh step of increment in the telescope separation

a second micro-trap emerges from the central FORT and moves away. This happens

while the first micro-trap has travelled far enough so that atoms are no longer loaded

into it. The second micro-trap moves away with increasing telescope lens separation

until the fifteenth step when a third micro-trap emerges from the central trap and

starts to travel towards the second micro-trap. These two micro-traps coexist for a

few more increments in the separation until the second micro-trap fails to load atoms.

Since fewer atoms are loaded into the micro-traps of Fig. 6.7 compared to Fig. 6.6, we

infer that the meniscus lens produces more spherical aberration than the telescope

lenses.

6.4 Conclusion

We have shown that the intensity distribution produced by a lens that is not

corrected for spherical aberration can be used to prepare a potential to realize micro-

optical traps. A beam from a CO2 laser focused with such a lens was employed to
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Figure 6.6. Experimental absorption images of the FORT (a), (b) and (c) with corre-
sponding theoretical plots (d), (e) and (f). The abscissa and ordinate
are distances in millimeters in each image. (a) and (d) The spherical
aberration β is less than a wavelength because of the small size of the
CO2 beam on the primary lens. (b) and (e) The spherical aberration is
around 12.6 wavelengths (c) and (f) The beam size on the primary lens
is larger and produces strong aberration of around 18.2 wavelengths.
Note that atom clouds in the experiment expanded for 3.5 ms before
the image was taken.



102

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−5

0

5

10

15

20

25

30

35

40

Distance (mm)

O
pt

ic
al

 d
en

si
ty

 (
ar

b.
 u

ni
ts

)
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load Rb 87 atoms into the micro-optical traps formed by the intensity maxima of the

spherical aberration pattern. Such high density (1013 atoms/cm3) samples of cold

atoms are of interest for a wide range of experimental studies including evaporative

cooling, cold collisions and quantum information processing with ultra cold Rydberg

atoms 105. Furthermore, the variable separation of the micro-traps could be used to

control the dipole-dipole interactions between the atoms in adjacent trapping sites.

Also increasing the separation of the micro-traps up to a few hundred microns makes

the task of individually addressing the different micro-traps relatively straightforward

with existing optical techniques. These properties are of great interest for quantum

information processing proposals for neutral atoms. Another possible experiment

would be to construct an atom interferometer using the micro-traps. One could take

a BEC formed using evaporative cooling in a single focused laser beam and then, by

changing the separation of the telescope lenses, split off a sub-group of BEC atoms.

By simply setting the telescope separation back to the initial value the two BEC

components could be recombined making an interference pattern which depends on

the phase difference accumulated between the wavefunctions. An analysis of such an

interference pattern releases information about the mechanisms affecting the phase of

the transported BEC. For example, if the second CO2 beam propagates in the vertical

direction a phase will be induced to the wavefunction proportional to the change in the

gravitational potential of the moving group. Therefore the final interference pattern

contains information that could be used to probe gravity.
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