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PREFACE

In this thesis, the analysis and synthesis equations (Rigid Body
Guidance, Path Point Generation and Function Generation) for a Geared
Spherical Five-Link Mechanism are derived. Generalized solutions were
formed for computer solution. Graphical results are presented for an
analysis solution, and computer results are given for the synthesis
problems.
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CHAPTER I
INTRODUCTION

Industrial linkage problems are planar, spherical, and spatial.
Beyer (1) states that spherical mechanisms are just as important in
machine design as planer mechanisms. This indicates that the majority
of industrial linkage problems can be satisfied by planar or spherical
mechanisms. Synthesis of planer linkages has reached a high level of
sophistication and completeness. However, the development of synthesis
procedures for spherical mechanisms is incomplete. The objectives of
the present.study is to develop closed form equations for the analysis
and synthesis of a geared spherical five-link mechanism. This will
complete to a large extent the synthesis problemé for spherical
mechanisms.

A number of studies have been made on the analysis and synthesis
of spherical mechanisms. Soni (2) developed the design procedures for
a spherical drag-link (four bar) mechanism. Suh (3) synthesized the
spherical four-link mechanism with the use of the displacement matrix.
Spherical six link mechanisms were synthesized for path generation by
Hamid (4). And Kohli (5) designed spherical four-link and six-link
mechanisms for multiple séparated positions of a rigid body. Other
significant contributions in the designing of spherical mechanisms

have been made by Huang (6), Hartenburg and Denavit (7) and Yang (8,9).



Displacement, velocity and acceleration analyses are considered.
The synthesis problems included in the present study are:

1. Rigid Body Guidance and Coordination of Input

2. Path Point Generation and Coordination of Input

3. Function Generation

Chapter II presents a description of the geared spherical five-
link mechanism, and, the development of analysis is given. Chapter III
presents the synthesis procedures for the mechanism. Finally, in

Chapter IV a summary of this study 1is given.



CHAPTER II

KINEMATIC ANALYSIS OF A GEARED
SPHERICAL FIVE-LINK

MECHANISM
2.1 Introduction

A geared spherical five-~link mechanis is shown in Figure 1.

Where M, A, B, C, and Q are points on the center of the revolute
pairs. The vectors ﬁ; K; 5; E, and 6 are unit vectors passing from the
center of the sphere to the respective points, M, A, B, C, and Q.

These vectors are the axes of rotation of the revolute pairs.

These vectors are also labeled as the kink-links of the spherical

mechanism. The twist angles ai's are the angles between two vectors

denoting links where

o = twist angle of input link MA
a, = twist angle of input link AB
ag = twist angle of coupler link BC
o), = twist angle of output link QC

0. = twist angle of ground link MQ
The Gear Ratio N is equal to the Ration R1/R2 where Rl = Radius
of the ground gear, Gl’ and R2 = Radius of the moving gear, G2. This

gives a displacement relationship of






93 = N62 + B

where B is the initial position of link AB.

The rotations of the revolute pairs are measured relative to an
extension of the previous link. All rotations are measured using the
right-hand rule, about the unit vector from the center of the sphere

through the revolute pair.

2.2 Displacement Analysis of the Geared

Spherical Five-Link Mechanism

In kinimatic analysis the position of the components of the
mechanism must be computed for a given mechanism. Closed-form dis-
placement relationships are required to obtain all the possible geo-
metric inversions of the mechanism. These relationships allow the
rotations of the links to be calculafed for positions of the input
link, MA. By computing the infinitesimal motion of the various links
in terms of the infinitesimal motion of the input link MA, velocity

and acceleration relationships may be obtained for the mechanism.
2.3 Discussion of Analysis Technique

The approach used for this analysis is screw motion. Various
works have previously been developed by Roth (10), Chen and Roth (11,
12), and Tsai and Roth (13, 14). In particular, the methods of suc-
cessive screw displacements, Kohli (15), are used to perform the
mechanism analysis.

The mechanism 1s separated in two separate open chains by

"disconnecting" the mechanism at one of the revolute pairs. In this



study, the separation was made at revolute pair C. The chains are now
rotated successively where all rotation angles ei i=1, *++, 5 are
zero. This in effect stretches the links of the two open chains

along a common axis. However, in spherical mechanisms fhe link lengths
are zero, as described by Denavit and Hartenberg (7). The result is
that all kink lengths (the vectors ﬁ; K; 5} 6} and 6) lie on a common
plane. In the analysis presented, the mechanism was stretched along

the Z axis forcing the kinks to lie in the X-Y plane.
2.4 Loop Closure Equation

By specifying M =1 i + 0 j + O k, and specifying MQ as the fixed

link, the positions of A, 5; Ei, and Eé can be found (see Figure 2).

The vectors are

i

=1
I

§‘= cos (a5) i + sin (a5) 3

Eé = cos (ah + as) i+ sin (dh + as) 3

A = cos (al) i - sin (al) 3

B = cos (al + a2) i - sin (dl + @2) J

Ei = cos (al +a, + a3) i - sin (al to, t a3) 3

For the loop closure equation, the unit vectors in each open chain

are successively rotated: e.g. rotate Ei about g.resulting in Ei ',

", and rotate C. " about M

then rotate C. ' about K'resulting in C. 1

1 1
C. Rotating Eé about a.yields Eé '. The mechanism was

'n

to produce Cl

previously broken at pair C resulting in two vectors, Ei and Eé.
These vectors are the same vector in the closed chain. By equating

the rotated vectors Ei '" and Eé ', the loop closure equation is

obtained. The loop closure equation is:



—» N

Figure 2. Mechanism Unfolded Onto the X-Y Plane



cos eh [ cos 62 (cos 63 Sl -sin §L SY)
-sin 92 (cos 0, Ei -sin EL E%)
+ (cos 05 ﬁi -sin GL ﬁ%) ]
-sin 6), [ cos 6, (cos 63 Eé -sin 55 56)
-sin 6, (cos o5 Eé -sin Eé Eé) (2.1)
+ (cos 63 ﬁé -sin ﬁé ﬁé) ]
+ cos 6, (cos 93 55 -sin 56 gé)
-sin 6, (cos o, Eé -sin Tg E})
+ (cos o, 65 -sin 6, ﬁé _é) =
cos 65 Vi + sin 65 Vé + Vé

The derivation of the loop closure equation and the constants are

found in Appendix A.l.
2.5 Displacement Analysis

Freudenstein's displacement analysis is obtained by rearranging
the loop closure equation so that the rotations of the other links are
functions of the input rotation for a given mechanism. It is seen that
the rotation of the input link AB is a function of the rotation of
input line MA.

The relationship is

6, =N 8 (2.2)

3 2

Equation 2.1 is now in two unknowns, eh and ©

+ B

for specified

>

rotation angles of input link MA. To obtain an equation to compute

the output displacement, eu must be eliminated. This may be ac-
complished by the following procedures.

Let,

=1
M
i

(8

>4
i

1, b, 7

kil
]

2, 5,8



[}

X3 f(62’ e3’ Si’ i’ i

) = f(es, Vi) i = 1,2, 3

>4

so that equation 2.1 becomes

cos 8), iﬁ -sin 94 ié + i} = iﬁ (2.3)

The angle eh can now be easily eliminated by taking the dot product of

(ii X X2) and equation (2.3). This produces the displacement equation

f 6.:
or 5
o = opay~l AA Va2 o 382 _ cc? (2.1)
5 BB + CC )
where
AA = (Xl x xg) v,
BB = (xl x xg) "V
cC = (xl x xg) (X3 - v3)
This will product two possible positions of 65. By substituting the
values of 65 into equation (2.3), 8), may be computed
0. = cos_l FF - EE
L DD
where,
- (¥ = e T+ T+ %
DD = (X, x X;) (i+J +k)
= (X.xX,) *+ (1+3+k
EE = (X, x X;) i+ +k)
FF = (x2 x h) - (i +J +k)

This will product two possible positions of eh. The link BC can assume

these two positions (one for each 6_ from the preceeding analysis).

>

Complete derivations and constants are found in Appendix A.2.
2.6 Velocity Analysis

The velocity analysis is obtained by taking the first derivative

with respect to time of equations (2.1) and (2.2). This gives
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equations,

e5 wl = eu W. + W (2.5)
and 6, = N6, (2.6)

equation (2.5) contains two unknowns, 85 and éh'

By specifying é2

Teking the cross product of W2 and equation (2.5) eliminates éh and

produces the equation (in one unknown é5).

. (W, xw,) - 1
by = 2 —— (2.7)
(W, x W) - i
Then, the values of é5 may be substituted in equation (2.5) to compute
Gh.
0), = (e5 W) - w3) - i (2.8)

The complete derivation and constants may be found in Appendix A.3.
2.7 Acceleration Analysis

Teking the second derivative with respect to time of equations

(2.1) and (2.2) provide

_ T . .
05 2, + L, =6, 73 +7) (2.9)
65 =16, (2.10)

By taking the cross product of Eé and equation (2.9), eh is eliminated

and the acceleration relationship as a function of 62 is obtained.

. (Z,x7%) 1 - (2,x2,) 1
e - (2.11)
(Z3 X Zl) c i

After computing the values of 65, a substitution into equation (2.9)

provides a relationship for Sh.
. (6. 2. + Z, - Zh) < i
9)4=
Z, - T
3

(2.12)
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Appendix A.4 gives the complete derivation and constants.

2.8 Sample Computations for a Given

Spherical Five-Link Mechanism

The derivations in the previous sections are used to compute the
displacements, velocities and accelerations of each component in order
to provide an Analysis.

The input data was

a, = 45°
a, = 45°
a3 = 90o
o), = 90O
bas = 45°
N = 2.0
B =0°
6, = 1.0
6, = 1.0 ‘

Computations were made for increments of 5° taken from 5° to 360° of
rotation for the input link MA. The results are plotted in Figures

3, 4, and 5.
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CHAPTER IIT

SYNTHESIS OF A GEARED SPHERICAL

FIVE-LINK MECHANISM
3.1 Introduction

Kinematic Synthesis is the inverse of Kinematic Analysis. That
is, the dimensions of the mechanism components must be found, so that
the mechanism will provide a specified motion. In this chapter, the
Geared Spherical Five-ILink Mechanism is synthesised for rigid body
guidance, point-path generation, and function generation.

The synthesis of the mechanism was achieved through the use of
the displacement matrix. This method provides a convenient step-by-
step solution. For problems of two and three positions, the solution
can be simplified while still in matrix form. Mathematical procedures
which Suh (9, 16) developed to design a spherical four-link mechanism
are extended to derive synthesis equations for the geared spherical
five-link mechanism.

(x ) can be dis-

Suh's approach states that a point P 10 Vi Zq

1

placed to a point P (x2, Yoo z2) by rotating Pl about an axis U

2
through 6 degrées to point P2, by the equation,

X5 X
Y | = E) ] - Y (3.1)
2 12| U, 6, 1
Z2 Zl

15
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Where,
.ﬁi vers 612 + cos 612 Ux’Uy vers 612 - Uz sin 612,
[Dlg]ﬁ;e = Ux U& vers 6,, + Uzsinel2 Ui,‘ vers 612 + cos 612 ’
12 .PX UZ vers 912 - Uysine12 Uy’Uz vers 812 + UX sin 612,
UX UZ vers 912 + Uy sin 612
Uy U, vers 6,, - U_sin 6,, (3.2)
US vers 612 + cos 612
8

and 612 is the rotation difference ( - el) from position 1 to

2
position 2. By employing Suh's method and variation of it, the geared
spherical five-line mechanism can be designed for rigid body guidance,

path-point generation, and function generation.
3.2 Rigid Body Guidance

The problem of synthesis for Rigid Body Guidance is one of
dimensioning a mechanism so that it will move a rigid body connected
to the coupler link BC through a number of specified positions. The
maximum number of positions of Rigid Body Guidance for a geared
spherical five-link mechanism is limited to five:by the CQ side of the
mechanism,

The positions of a rigid body can be specified by rotating the
rigid body from position 1 to position n about a unique axis Ei

N

through an angle ¢ A displacement matrix, previously solved by

iN*
Suh (9), mey be found that will describe this rotation by using the

equation
o e -2
1,i Pl,l\I
D ] =|p ' (3.3)
[11\7 2,i| |Fo,n
P, . P!
. 3,1} L 35N
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where,
DlN - is the displacement matrix which rotates the rigid body
from Position 1 to Position n
Pi,i =1,2,3 - a point on»the rigid body in the initial position.
Two points will uniquely describe a rigid body
Pi,i =1,2,3 ; designates the point in the nth position. -

The displacement matrix D... describes the motion of any point on the

1N
rigid body. Thus, any point on the rigid body may be computed in the

nth position as a function of the initial position.

3.3 Derivation of Design Equations for
Rigid Body Guidance and Coordination

of the Rotation of Input Link MA

The mechanism is designed in two parts for rigid body guidance.
The positions of the points C and Q are determined on the CQ side,
which is identical to the problem with a four-link spherical mechanism.
The MAB side of the mechanism can be defined by two equation sets in
twelve unknowns, which would indicate seven positions. However, the
mechanism is constrained to five positions by the C§ link. Thus, this
allows for a solution to the rigid body guidance with input coordina-

tion for four positions by specifying the input link rotations.

3.3.1 General Equations for CQ Side

Point C lies on the rigid body, therefore the nth position of C

can be found by using Equation 3.1,
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CxN Cx
Con| = [DlN] cy
CzN Cz

This will provide C. in terms of C such that

N
CxN =87 Cx * 810 Cy * #13 Cz
Cow = 8, Cx 85 Oy ¥ 8,55 C) (3.4)
C = g C +a C + a C

zN 31 x 32 7y 33 "z

The a's represent the elements of the displacement matrix DlN'

The link CQ has a constant length. Therefore, the condition,

2 2 ‘ 2
(Cop = Q)7 *+ (G = Q)™+ (C - Q)" =

2 2

(c, - @)%+ (c, - )%+ (c, - q) (3.5)

Z

will insure that the link CQ will be of constant length for all n

positions. By using the equations,
2 2

2
CxN + cyN + czN = 1
2 2 2
+ = .
and Qx + Qy QZ 1 (3.6)

which constrain the points to lie on the unit sphere and by using
equation (3.5) the equation

(c —CX)QX+(C -c)J)q +(c . -C)q =0 (3.7)

xN yN Yy zN z' "z

can be derived. By substituting the values of CxN’ C .., and CZ into

yN N

equation (3.7) and by simplifying the general rigid body guidance

equation for the CQ side is obtained

C. Q C_Q Q c_Q
(a, -1)=2 L+a L Eig Xyg XL
n—’c; o Ttec, o T3 T facC Q
c 31 Q C C
(a-1)L L +a  Lra Era L+
22 CZ Qz 23 Qz 31 CZ 32 CZ
(ay-1) = 0 (3.8)



19

3.3.2 General Equations for MAB Side

The value for the unknown gear ratio, N, may be specified for the
MAB side of the mechanism. This will leave 6 + (n-1) unknowns in AX,

A,B,B,M,M, and 6

v x* Oy o Yy 01 i=2, ... n.

By using the displacement matrix mathematics, the point B can be
rotated about A and then about M to obtain B in its nth position.

This is found by,

w Pul 5, oy Pull T, 0y 5 2
N 1N} M, B2N 1N| A, 63N B
where,
D - is the displacement matrix for rotating
1N| A, 63N
a polnt about A by 831\1
and
D v is the displacement matrix for rotating
1N| M, 62N
a point about M by 62N'
The point B on the rigid body can also be found in terms of B

N

from equation (3.1). Since the mechanism is assumed to lie on a unit

sphere only Bx and B . are necessary to define the point. Setting

N yN
the two resulting values of BxN and ByN equal produces the general
rigid body guidance equations for side MAB. These are in the form of:
22MPB_T1 + A%B T3 + M°B_T2 + B_TU
X X X X X X X X

+ A A M2B TL + AABT3 - A M2B T5 - A B T6
Xy Xy XyVy Z XYy 2y

2B T1 + AABT3 + A M2
b4 X 2 2

+ AAM BT5 + A BT6
X Z2 X Y X 2 Yy 2z

+A AMMBTL -AAMBTY  +AMMBT5 - AMB T8
XYy Xy x Xy z x Z Xy X z 2z X
2 2

+ A MMBTL - AMBT{ +MMBT2-~-MBT9
yxyy yzvy Xyvy 2y
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+AAMMBTL-AAMBT/  -AMMBTS +AMBT8
Y2 Xy 2z Yy 2z 2 XXy 2 Xz z
+AAMMBTL -AAMBT -AMMBTS - AMB T8
X2 X2z X X 2y X Yy X2 X yyx
+AAMMBTL -AAMBTI +AMMBTS5 + AMB T8
Y2 X2y yzyy XXzYy Xy¥y

+ A2M MBTL + A2M BT + MMBT2 +MBT9
Z X 2 2 Xy 2z X 2z z vy z

- a;;B - al2By - al3BZ =0 (3.10a)

and
2

AMMBTL + A2M BT +MMBT2 +MBT9
XXy x X z X Xy x z X

+AAMMBTL +AAMBT] -AMMBTS - AMB T8
XY Xyy Xy zy 2 Xyy z 2y

+ AAMMBTIL+AAMBTIT +AMMBTYS + AMBT8
Xz Xy 2 X2z 2 2 Y Xy 2z Yy z z

+ A A M2B T1 + AABT3 + A M2B T5 + A B T6
XyyXx Xy X 2y x z X

+ A2M2B Tl + A2B T3 + M2B T2 + B T4
yyvy Yy vy y

+

A A M2B T1 - AABT3 - A M2B T5 — A B T6
Yy Z2y 2z Yz z Xy z Xz
+ AAMMBTL -AAMBT -AMMBT5 +AMB T8
X2z2y 2z x X2z X X VY 2 x Y X x
+AAMMBTL -AAMBT/ +AMMBT5 - AMBTS
Yyzyzy Yz xy Xy zy XXy
2

+ AgM MBT1 -AMBT{+MMBT2~MBT9
2y zz Z X 2 yzz Xz

- anBz - a22By - a23Bz = 0 (3.10b)

T's are functions of 62 and 63 in the nth position, and a's are elements

in the displacement matrix for the nth position. (See Appendix B.1l for

the expansion of the T's).
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3.4 Rigid Body Guidance and Coordination

of Input Link MA

3.4.1 Two Positions of a Rigid Body

For two positions of a rigid body the general equations 3.8, 3.10a,
and 3.10b are written once. This gives the difference of rotations
from position 1 to 2. By specifying all of the unknowns except one
in 3.8 and two in 3.10a and 3.10b, the design may be computed.
Side CQ
Specify: Qx/Qz’ Qy/Qz’ and Cy/cz

Substituting these values into the general equation provides the

solution,
e x E L, & % &
c.~ T T2 = +a . _.=— + (a,.. -1)
z c, Q 13 Q, 22 c, Q,
Q C Q
A A - - 2
T3 G Te2g 7 (ay3 - 1) (a;; - 1) a,
1 .
+ay, q, + a3lJ (3.11)
where
¢ = 1 —

Side MAB
Specify: N(Gear Ratio),

0, (Rotation of input 6, from position 1 to 2)

22

A ,A ,M,andM
Xy X y

2
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Substituting these values into the general equation and reducing to two

unknowns by dividing by BZ provides the solutions:

E

EX _ El E6 - E3 Eh )
B
Z

E2 Eﬁ - El E5 T
E& ) —E2 E7 - E3 .
B, E, 8

Where the E's are constants obtained from substitution. Appendix B.2

contains the values of these constants.

3.4.2 Three Positions of a Rigid Body

In the three positions rigid body guidance problem, each of the
general equations must be written twice. The displacement matrix DlN
is used twice (once for a position change from 1 to 2 and then for a
position change from 1 to 3). With this data, we may specify the
needed values for each equation and compute the coordinates of the
remaining unknowns.

Side CQ

Specify: C_, C

Ty

CZ may be computed from the constraint condition:

C2 + 02 + 02 =1
X v z

By substituting the specified values into the general equation, the

equation may be expressed as:

Q Q
D X+yp L4

N Q. T Ooy q, T3 T 0 (3.12)
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The DlN's (i = 1,2,3) are the coefficients for the position change from
1 to n. Writing equation (3.12) two times, once for each position
change, enables the solution to be found by simultaneous equations,

so that

S _ D32 Pp3 = P33 a3
z P12 Pz = D13 Dy

& _ PP - P

Q

A D22

1

O

By rearranging the constraint equation for a unit sphere the x, y, and

z coordinates are found,

1
QZ =
2 2
+
Dl + D2 1
va= Dle

%y

Appendix B.3 contains the values of 0.

o
<

Side MAB

Specify: M_, My, 622 and 6

X 23

Substituting the known values into the general equations (3.lOa) and
(3.10b) results in four non-linear equations having four unknowns Bx/Bz’
By/Bz’ Ax’ and Ay‘ This class of problems may be solved with the
Newton-Raphson Iteration Technique (17,18). In using this technique,
initial estimates are made for the unknowns. These estimates are
continually corrected during the solution process until the error is
minimized. Appendix C has a description of the Newton-Raphson Techni-

que.
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3.4.3 Four Positions of a Rigid Body

Four positions is the maximum number of positions for Rigid Body
Guidance with coordination of input link rotations. The solution for
the MAB side is simplified if the angular displacements of the input

link are specified. However, three other values may be chosen if

desirable.
Side CQ
C
Specify: E£
Z

Substitute this value into equation (3.8) in the form

Q c Q Q C q
Gy & * by 7t Lyt Yy o o
QZ Z QZ Q‘Z C Z Q‘Z
S
+‘d5N Lra, =0 (3.13)

zZ
The din's are coefficients of the general equation. (See Appendix B.k
for the definition of all din's.

The general equation (3.13) may be solved by the method of linear

superposition.
Let,
o
Al = o '§~ (3.1&&)
Z Z
S %
Ay =G g (3.14p)
pA Z
QX
5; = Ll + Ml Al + N A (3.15a)
%
Qz = L2 + M2 Al + N2 Ag (3.15b)
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and

C
¥ =
Cz L3 + M3 At N3 Ay | (3.15¢)

The general equation now takes the form of:

Aty * dipth Ay FodipliaAs +dg Le *odatoA

+ d3NN2)\2 + d L + dsNMBA + d5NN3)\2

(3.16)

=dgy ~ dogty — dupto

This may be broken into three sets of equations:

alNLl + a3NL2 + aSNL3 = —acy n =2,k
+ = - =

alNMl + aBNME aSNM3 8,y n= 2,4

ag Ny * a3NN2 + aSNNB = -a). n =2,k

By solving each set of simultaneous equations the values of Li’ Mi’
and Ni i=1,2,3 are found. Substituting these values into the

compatability equations (3.1ka) and (3.14b) and expanding results in:

(3.17a)

]}
o

2
tlkg + t2A2 + t3
and

2
thkz + t612 + t6 = 0 (3.17p)

The ti's are functions of Al. Appendix B.5 contains the values of
t, (i=1, ... 6).
By using Sylvesters dialytic eliminate technique, A2 may be elimi-

nated, and a solution of Al may be found. This is obtained by solving

the determinant:
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t, t, ty O
0 b, t, t

12 "3,
ty, ts tg O
0 %, oty tg

for Al. This will result in a fourth order polynomial in Al with 0, 2

or 4 real roots. Substituting each real answer of A, into equation

1
(3.17a) and (3.17b) gives a solution for_kg. By substituting the
solutions of A, and A, into equations (3.15a), (3.15b), and (3.15b),
Qx/Qz’ Qy/Qz’ and Cy/cz may be found.
Side MAB
Specify: 622’ 623, and 62h
The solutions of A , A, B, B , M and M are found by using the
x’ Ty Tx? Ty’ x y

Newton-Raphson Iteration Technique for non-linear eguations. The

procedure is the same as in part 3.k4.2.

3.4.4, Five Positions of a Rigid Body

The MAB side of the Geared Spherical Five-Link Mechanism is
solved by the method used for three and four positions of a rigid body.
However, MX and My are the only specified variables. A solution (for
five positions) may also be obtained with two input rotations specified.

The CQ side of the mechanism is solved by using the techniques of
four position synthesis of a rigid body. However, the problem is
solved in two parts. First, solutions for positions 12, 13 and 1k are
obtained.' By varying the value of Cx/cz’ a curve representing the
solutions of this part may be drawn. Then, solutions for positions

12, 13 and 15 are obtained and graphed in the same manner. The inter-
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sections of these two curves is the solution for all five positions.

Appendix D.1 contains solutions of rigid body guidance problems.
3.5 Path Point Generation

In path point generation, the problem is to design a mechanism
such that a point on the rigid body of the coupler link will trace a
path through & number of specified points. A procedure often used for
point path generation is to extend the rigid body guidance problem.
Suh (9) has previously developed this technique.

On the sphere, the displacement of the rigid body with a point

tracing a path may be described as follows. A point on the rigid body

is rotated about an axis SlN from position 1 to

by an angle @lN

position n. This may be achieved by taking the cross product (P, X PN).

(Pl and PN are unit vectors from the sphere center to points Pl and PN

respectively.) The cross product provides the screw axis:

8,y = P X Py (3.18)
and

o = cos T (F, + ) (3.19)

1N 1 N
Thus, a displacement matrix may be found to rotate point Pl to PN,
which is

[Dll\l] = (3.20)
1N 1N

The rigid body may also experience a rotation BlN about §i from

position Pl to PN' This rotation may be placed in the displacement

matrix form:

[DlN] 5 (3.21)
1° "1N
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terms. By multiplying these two displacement matrices, the displace-

This matrix will result in elements having cos (B,.) and sin (B

1N 1N

ment of the rigid body may be described by a displacement matrix with

BlN as an unknown.

3.6 Development of the General Equations for
Path Point Genération for the Geared

Spherical Five-Link Mechanism

From the development in Section 3.5, the equation for the displace-

ment equation of the path generation rigid body is:

D = D - D - (3.22)
[ lN:I [ 11\1] SIS ¢1N [ lNJ PlN, 811\1

Equations for point B_ on the rigid body may be found from the rigid

N

body displacement equation. Equations are also fourd from rotating B

about K'by 6., and then rotating the displacement'g about ﬁ'by 6

3 2°
These equations appear as:
— r T —
By = thN— B (3.23)
and
B = |D..| = [D ] B (3.24)
N | 1N] M, 62N 1N A’63N

The point C on the rigid body may also be described by two equations:

Sy = [P © (3.25)

and

-C)q =0 (3.26)

(c zN Z Z

G & (G- e) @+ (C

Together these general equations produce 3(n-1) equations in 2(n-1) + 10

unknowns. Thus, a maximum of eleven points may be traced by the coupler
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link. There are two methods by which these path generating problems
may be solved. One method is for two-five positions, and the other is

for six-eleven positions.

3.7 Path Point Generation for

Two-Five Points

Equations (3.18) and (3.19) are used to calculate the displacement

matrix:

bl 5
l 1N SlN’ @lN

By specifying B,B ,A,A,M,M, and 6, in equation (3.24), the

¥y X Yy X Yy 2N

values of B may be calculated. Then, by substituting

xN? N
these values into equation (3.23) and (3.22), the BlW'S may be computed.

ByN’ and BZ

This provides the displacement matrix for the rigid body. The solution
may be obtained by solving for the CQ side. This is exactly the same

solution as obtained in rigid body guidance.

3.8 Path Point Generation of

Six-Eleven Points

Setting equation (3.23) equal to (3.24) produces three equations
of which any two are unique general equations. Another unique equation
may be obtained by substituting values of Eﬁ obtained in equation (3.25)
into equation (3.26). These three general equations may be written
(n -~ 1) times and solved using the Newton-Raphson Iteration Technique

described in Appendix C. Appendix D.2 contains a solution of a £ive-

point generation problem.
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3.9 Function Generation for the Geared

Spherical Five-Link Mechanism

Function Generation is the cooperation of input and output rotation-
al displacements for multiply-separated positions. The mechanism may be
designed for function generation by kinematic inverstion (9). If the
output link CQ is fixed,.as the ground link, ther successive rotations
of the links about vectors K} ﬁ, and 6 are made respectively. This may

be expressed as,

The mechanism must be rotated by —65 about‘a due to the inversion.

3.10 Derivation of the General Design Equation
for Function Generation of the Geared

Spherical Five-Link Mechanism

There is a constraint imposed on the coordinates of M and Q
because M and Q lie on a great circle. Since the choice of that great
circle will not help specify an additional position of function

generation, the following simplifications may be made:

<°

Qx = 0
Qz = 0
M = 0
Z
and
M2 + M2 = 1
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Meking these substitutions in equation (3.27) produces B as a function

’AQ

B
> Tg X

of B, B A ,A ,M and M. Knowing that the link BC is of
x* Ty y? z° x ¥y

constant length allows the use of the equation

(B, - Bx)Cx + (B

N " By)cy + (BZN - BZ)C =0 (3.28)

xN Z

into this equation will produce (n-1) equations in seven

Substituting BN

independent unknowns (Bx’ By, A, Ay’ Cx,'Cy, MX). Thus, eight po-
sitions of function generation may be solved. The gear ratio, N; and

a sphere of unknown radius would allow for two more positions; however,

these would produce highly complex equations.

3.10.1 Function Generation for Two Positions

Specify: M_, Ax’ Ay’ B> By’ Cx/cz’ 6,5 65, N

Compute: M&, A, BZ from unit sphere constraing equations

Z

By computing B, from equation (3.27) values may be found for BxN’

N

Substituting these values into equation (3.28) results

ByN’ and BZN'

in the equation:

c/c, = -|cy/cz (]3y1\I - By) +(By - B[ [(By - B )| (3.29)

3.10.2 Function Generation for

Three Position Synthesis

Specify: M

Compute: My’ A, B

Solving for B2 and B3 with equation (3.27) provides two equations

in two unknowns:
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o C
—}- l ] .
Do c, * Doy c_ +* Dy =0 (3.30a)
and
c_ Ex
Dig 6;'* Dpg c, +Dyp =0 (3.30b)

Solving these equations by simultaneous equations producesi

S _ D33~ PxsPer | |

C,  DioPo3 = Dy3Pos 1
and

¢c  -(D.D. +D.)

b A e V- M-~

Cz D22 2

The values of Cx’ Cy’ and CZ may now be computed to be:

Cz = L
2
‘V/Dl + D2 + 1
Cx = chz
Cy = DECZ

The D's are constants obtained from the displacement equation (3.28).

3.10.3 Function Generation for Four Positions

Specify: Mx’ Ax’ Ay, Bx/Bz’ N

Compute: My’ Az

The solution for this problem is similar to the solution for four
positions of a rigid body for the CQ side. The solution procedures are
identical. If an exact answer is not required, then the Newton-Raphson

Iteration Technique may be used.
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3.10.4 Function Generation for Five Positions

Specify: M , A , A, N

Compute: M&, A

Solve for §ﬁ in terms of ﬁ'using equation (3.27). By substituting

BN
rigid body guidance problem for the CQ side of the geared spherical

into equation (3.28), the problem is identical to a five position

five-link mechanism. By iterating the value of Bx/By for positions 12,
13, and 14, the solution curve may be obtained for positions 12, 13, and
14. Then, by iterating Bx/Bz for position changes 12, 13, and 15, the
solution set for these positions is obtained. The intersection of the

two curves is the solution to the five position problem.

3.10.5 Function Generation for Six

to Eight Positions

By applying the Newton-Raphson Iteration Technique for sets of
non-linear equations (Appendix C) this set of problems may be solved.
There will be (n-1) equations in (n-1) unknowns for an n position
function generation problem. The Newton-Raphson Iteration Technique
may be used to solve all the function generation problems. This would

simplify programming for the set of problems.



CHAPTER IV
SUMMARY

As a result of the research, a unified approach for the analysis
and synthesis of the Geared Spherical Five-Link Mechanism has been
developed. The successive screw displacement method (15) was used for
the analysis of the mechanism, and the displacement matrix method (9,
16) were appliéd for synthesis of rigid body guidance, path-point gener-
ation, and function generation.

The screw displacement method proved to be very adaptable to
spherical mechanisms. By "unfolding" the linkage onto a plane and
successively rotating the kink-links the motion may be easily visualized.
Equating the two parts of the disconnected joint results in a closed
form solution. Any gearing’arrangement may be readily incorporated in
the analysis. This allows gearing changes after the general analysis
equations have been derived.

The use of the displacement matrix for synthesis provides a
generalized approach to rigid body guidance, path-point generation, and
function generation. The initial matrix equations are produced by
rotational matrices in a successive order. This allows the simplifi-
cation of equations (while still in matrix form) for problems of less
than maximum synthesis positions. By arranging the synthesis equations
for path-point generation and function generation, the solutions may be

obtained through the use of the rigid body guidance equations for the

34



35

CQ side of the mechanism for a maximum of five positions. Through
performing the proper matrix multiplications and substitutions, path-
point and function generation problems may be siﬁplified in an equation
form identical to those of rigid body guidance equations for the CQ side.

Since the equations for synthesis are developed by emplcying the
displacement method, the general computer program which uses the
Newton-Raphson Iteration Technique for non-linear sets of equations
.Would make solutions available to all the synthesis problems. Changes
in gearing ratio or arrangement can be made after the general equations
have been developed. This may be accomplished either by substitution
into the present equationsvand/or by inversion of the mechanism.

The present work is concerned with only one gearing arrangement of
the Geared Spherical Five-Link Mechanism. However, the developed
equations are very general and proper substitution into these equations
will define all of the gearing combinations. Thus, this study provides
the general equations and methods for their solution for analysis and

synthesis of the Geared Spherical Five-Link Mechanism.
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APPENDIX A

ANALYSIS OF A GEARED SPHERICAL

FIVE-LINK MECHANISM

A.1 Loop Closure Equation

M=1

Q = cos (a5)i + sin (a5)j

Eé = cos (ah + as)i + sin (a) +,a5)j

A = cos (al)i - sin (al)j

B = cos (al + ag)i - sin (dl + ag)j

6i'= cos (al +o, + a3)i - sin (al toa, * d3)j

Rotations of vectors on the right hand side of the X-axis are right-
hand positive screw sense. Rotations of vectors on the left hand side

of the X-axis are negative right hand screw sense.

—' — ~ - . A : N . Yy
Chy = cos O fc, - (¢, - Q)q] + sin 0. (3% Cy) + (T, * Q)
= S = =L E .
C1y =cos 8, [ - (C, - B)B] - sin 6, (BxT,) + (C, - B)B
oL T - (C' - AYAl _ as N vC') + (C' - M)A
Cyy = cos 6, [C) - (T} - B)A] - sin 0, (KxC}) + () * M)A
= - L o LU v-A v R = - + (o" . A\
Ciy = cos 6, [bl (c} M)M] sin 0, (M x CJ) + (C] * M)M

. . “n . _n _n . i n . T A

By substituting ClN into ClN and ClN into ClN’ and by setting ClN‘ Czw’

the loop closure equation is obtained. The simplified equation is
obtained by letting:

L = cl - (C, * B)B

2 1

£
[
|
e
Q
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L3=(El~B)B

'ﬁl =fl - (El - A)A

§2 ='I?2 - ('II2 - A)A

§3 =33 - (33 - A)A

§M=KX31

'§5=Kx32

'1-‘?6=Kxf3

'§7=(fl-K)K

§8=(32-K)K

§9=(I3 A)A

§1=§i-(§l M)M i=1, , 9
T; =M x ﬁg i=1, > 9
ﬁl=(§i M)M i=1, > 9
Vl =52— (52 Q)q

72=§x52

<
1}
al
n
O
O

This produces the equation found on page 7.

A.2 Constants for Displacement

Analysis
ii = cos 62 (cos 63§i - sin 63§L + 5%)
- sin 62 (cos 635i - sin 63—L + E})
+ (cos esﬁé - sin 93ﬁg + ﬁé)
ié = cos 0, (cos 93§é - sin 95§5 + §é)
- sin 6, (cos GBTé - sin 9355 + Té)
+ (cos 6552 - sin 6355 + ﬁé)

39
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(cos

>
i

cos 6

D
=)

- sin 62 (cos

3

+ (cos 8

X) = cos 6 (V.)

A.3

!

1 V2 cos 65 - Vl

-sin Gh [cos 62

=
il

=|
I

~sin 62
+

-cos 6

W3 = CoSs eh [—62 sin
-0, cos

+ cos

-sin

sin
-0, cos
2
+ cos

- sin

sin

-6, cos

373

+ sin 6

3

Constants for

Analys

sin ©

p

(cos 6381

(cos 63

(cos 6_U

3
&os 62

-sin 62
+

6. (cos

8. (cos 8

Velocity
is

-sin 63Su + ST)
-sin 6T, + TT)

-sin 6 Uh + UT)]

H

1

1

(cos 8 -sin 6.5 + Eé

355 3°s5

(cos e3T2 -gsin e3T5 + T8)

(cos 6.U. ~sin 6.U_ + Bé)]

372 375
s,

6 -sin 6 Sh + 7)

35
TT)

R N
3Tl sin 63Th
sin 6381 —63

sin 63Tl —63

sin 63 1 63

-5i S+
sin 63 5

-sin 63T5 + T8)

cos 6

cos
cos 63EL)
93Uh)]
Sg)

cos

6382

63T2

. § _
sin 63 > 93

sin 63T2 —93 cos 63T5)

sin 63 5 63 cos 63U5)]

6383 -sin © 86

6T

3T3 -sin 63T6 +
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L}
[e]
[¢]
7]

Ny
]
]
<D

S

-COSs

—29h

+ cos 6, (—63 sin 9383 —63 cos 63 6)

- sin 62 (—63 sin 63T3 —63 ¢os 63 6)

+ (-93 sin 63U3 -93 cos 63U6)

A.4 Constants for Acceleration

Analysis

95V2 -sin 6_V

51
cos GSVi - ég sin 65V2
6hw[bos‘62 (cos 63§i -sin 63§L + E%)
- sin 6, (cos 635i -sin 63EL + E%)
+ (cos 63ﬁl -sin 63_L + ﬁ%)]
o), [cos 0, (cos 63§é -sin 9355 + 58)
-sin o (cos GSTé -sin 9355 + Té)
+ (cos 63ﬁé -sin 63ﬁg + Gé)]
cos 8) [cos 6, (cos 63§i -sin 63§L + 5%)
-sin 6, (cos e3ﬁi -sin BBTL + E%)
+ (cos e3ﬁi -sin 63ﬁL + ﬁ%)]
sin éh [cos 6, (cos 63§é -sin 6355 + §é)
-sin 6, (cos 63Té -sin 6355 + Eé)
+ (cos 63ﬁé -sin 6355 + ﬁé)]

3

sin 6) [—62 sin 62(cos ) T

2

+ cos 92(-9 sin 6.S. -6 cos e3sh

3 371 3

-sin 62(—é sin 6.T. -6. cos 6.T.)

3 3’1 3 3

+ (-6 sin 6.0, -0 cos 63ﬁh)]

3 371 3

2

cos eh‘[-eg sin 6 355 3 55

\—é cos 6

2 pleos 83T, 3 Ts

—ai S, + S
Sl sin 63Sh S.)

-0 cos 92(cos 93Tl -sin eBTh + E})

(cos 8.8, -sin 6. S_ + gé)

cos 6.T,. —-sin 6. T_ + 8)

L1
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(1 - cos 62)(1 - cos 6.)

APPENDIX B

CONSTANTS FOR RIGID

BODY GUIDANCE

B.1l Definition of T's for General

Equation, MAB Side

3

(1 - cos 8,.)(cos 6.)

(cos 62)(1 - cos 6.)

(1 - cos 6,)(sin B
(cos 6,)(sin ©
(1 - cos 6.)(sin 6,,)
(sin 6,)(sin ©

(sin 6,.)(cos ©

2 3

62)(cos 63)
2

)

2 3

3
)

)

2 3

2 3
B.2 Definition of E's for Two Position
Synthesis of Rigid Body Motion
for MAB Side
2.2 2 2
+ + +
AxMle AXT3 MXT2 Th
AAMMT -AAMT, +AMMT. -AMT
Xy xyl Xy 2z T zZ Xy 5 z z 8
AAMMT +AAMT -AMMT_ -AMT
Xxzxzl Xzy T y xz' 5 yy 8

8

11

o



AAMYT. + AAT, — AMT
Xy x'1 Xy 3 2 X5
+ APMMT. - APMT +MMT ~MT
yxyl yzy Xy2 z°9

+ AAMMT + AMMT
Yz X 2 X X Z

=
i

- AZT6

+ AAMT + AMT
1 yzy T 5 xy 8

~ 810

E,=AA M2T + AAT

X z x 1 X z 3

+ AAMMT -AAMT
Yyzxyl Yz 2z

+ A2M MT + A2M T

z X 2z 1 zy T

2
+ AMT_ + AT
yx5 Tyb6
- T + M
T AxMxMy AM Tg

+ MMT
X Z

5

+ M T
2 vy 9

- alj =0

2 2
= A + + +
Eh AXMXM Tl AXMZT7 MxMyT2 MZT9
2 2
A AM + A A + A M A
+ <Ly Tl - yT3 2 yT5 + zT6
+ AAMMT - AAMT —-AMMT +AMT
Xzyazl Xz x 7 Yy z5 y x 8

- 85

E. = AXAyMkM&Tl 7
2 2 2 2

+ A°M + A + M + T

Ay yTl yT3 yT2 i

+ AAMMT -AAMT
yzyzl Y 2 X

- 85

= + +
E6 AXAZMxMyTl AXAZT7 AnyMyT5
2 2
+ A A + - -
Ay zMyTl AyAzT3 AXMyT5 AXT6

+ A2M MT - A2M T
zy zl Z X

+ AAMT, -AMMT
Xy z Z X

y'5 AzMzT8

+ -
7t AMMTS - AN T

+
AyMZTB

T x 9

+MMT -MT
y 2z 2z
- a

23
B.3 Definition of the Constants D

D.._ = (a

1N - l)Cx/Cz + a

11 125/C, + 85
oy = 8pCy/C, + By, - 1)C/C +a

3N a3lcx/cz * a32Cy/cz + (a

D 23

- 1) (for n = 2,3)

D 33

where:



a;, = S,y (lv- cos QlN) + cos @

815 = SyySyy (1= cos &y) =8 S yty

813 = SyySpy (1= 008 &p) +8,,8 30y

8 = S ySyy (1= cos @yp) +8 ysi )y

8op = S§N (1 - cos @lN) + cos

83 = SypS,y (1 - cos &y) + 8 4800
831 = SyyS,y (1= cos &) =SSy
85 = systN (1 - cos @lN) * 8 Sy
833 = SEN (1 ~ cos @lN) + cos &

B.4 Definition of d's for

Rigid Body Motion of

the QC Side
Ay = (agy = 1)C,/C, +a)g
doy = 212
Aoy = 8516 /C; * 203
Ay = 8~ 1
sy = 232
dey = a3lcx/cZ + (a33 -1)
The'alN's are elemehts of the displacement matrix describing the

rigid body motion.

B.5 Definition of t's for

Linear Superposition

t, = N1N3

ct
[

Al(M3Nl + M1N3) + (L3Nl + L1N3)



2
AlMlM

3
= N2N3

+ Al(L

= A, (MN, +MN

132 2
2
ity ¢ 0,0

+ -
3Ml L.M 1) + LlL

13 3

3) + (L3N2 + L2N3 - 1)

M * LMg) + Lyl

LT



APPENDIX C

NEWTON-RAPHSON ITERATION TECHNIQUE

FOR SETS OF NON-LINEAR EQUATIONS

Given two non-linear equations,
f(x,y) =0
and g(x,y) =0
in two unknowns x and y. An iterative solution for x and y may be

obtained by using the Newton-Raphson Technique. Let,

of /9x = fx
af/3y = £,
9g/dx = g
dg/dy = &,

let x = r and y = s be roots, and expand both functions in Taylor Series
form about point (x, y) in terms of (r - x) and (s - y). Where (x, y)

is a point in the neighborhood of the root (r, s).

Then,
== + — f - + ...
f(r,s)=0 f(xl,yl) fx(xlgyl)(r xl)+ y(xl,yl)(s yl)
and
g(r,S)=O=s(xl,yl)+gx(yl,yl+(r—xl)+gy(xl,yl)(s—yl)+---
Let:
r—xl = Ax
and
8-y, = Ay

L8



L9

So that the Taylor Series expansion ending with the first partials is

represented in matrix form:

fx(Ax) fy(Ay) i -f
g, (Ax) gy(Ay) -8
This provides the corrected solution for (x21y2):
= +
Xy = X Ax

= +
Yo =¥ v Ay
Solving for Ax and Ay:
-f f
Y

-2y

Ax = ——
f £

x Ty

&y 8y

and

X
Ay f T
X

g

X gy
will provide & correction to the initial estimates, resulting in an
answer closer to the real root. By repeating this procedure several

times, an answer may be determined sufficiently close to the real root



APPENDIX D

COMPUTER SOLUTIONS FOR SYNTHESIS

PROBLEMS OF A GEARED SPHERICAL

FIVE-LINK MECHANISM

D.1 Rigid Body Guidance

Displacement Matrix for Position 1-2

p. 84823527k
-$.140815306
f.510556527
Displacement
B.922658397
@.3584L5872
-0.164364593
Displacement
6.49202976
$.692799582
$.527195799
Displacement
$.163691592
6.984524696
-0.0624791k

-$.4188571k4L
-0.768326496
$.483976328

f.324122778
-0.624375963
-3. 716783157

Matrix for Position 1-3

p.251532581
-f.865189829
-$.433794788

-3.294176319
§.358656169
-$.88590L4p25

Matrix for Position 1-k

-9.3768290p95
f.715384k221
-0.5884090699

-p. 78479127 -
p.09p852p29
$.613057282

Matrix for Position 1-5

-B.077171637
-6.050461101
-0.995739933

50

-$.993488332
$.167822524

B.P6TTLTSL



51

YRIGID BODY GUIDANCE FOR THE GEARED SIDE OF A
GEARED SPHERICAL FIVE-LINK MECHANISM
USING THE NEWTON-RAPHSON TECHNIQUE FOR SETS OF NON-LINEAR EQUATIONS
FOR 4 POSITIONS OF A RIGID BODY
HAVING A GEAR RATIO OF 2
KRERKRREREREREXREEREEREERLEERRRERRERRRRAEREXERERREREERRERREXRRRLRRRERRERX
INITIAL VALUES AND ESTIMATES OF POINfs IN THE INITIAL POSITION
Bl= ¢ B2=-0.T@7106781  B3=-PT7HT1HE6T81

Al= P.7PT1IP6T81  A2=-p.5 A3=-p.5
M= 1 M= @ M3= ¢

INITIAL VALUES OR ESTIMATES FOR INPUT ROTATIONS (DEG) ABOUT M
THETA 12= 165

THETA 13= 190
THETA 1h= 245

KRERRREEKRRRRREERRREREERRRREEEKRRERRERRREREEEE R RRREEEERRRRERER KRR RERKKF
VALUES FOR THE 1 TH CALCULATION

FOR THE FUNCTION F

F(1 )= 1.17908E-p6
F( 2 )=-2.p8pPLE-P6
F( 3 )==k.92L4TLE-p6
F( 4 )= 2.18516E-06
F( 5 )= 1.2813pE-P5
F( 6 )==T.73942E-p6
F( 7 )=-5.3000pE-1p
F( 8 )=-2.6p0@pE-10
F( 9 )= 9

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION

c( 1 )= 2.92279E-pk
c( 2 )= 8.Th4616E-p5
c( 3 )=-8.74725E-@5
c( 4 )=-8.824L4LE-p5
C( 5 )=-2.03938E-pL
c( 6 )= T7.914L41E-p5
c(t )=2¢90

c( 8 )=-6.31p59E-p5
c( 9 )= 5.85p51E-P5
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INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION
0(1)= 164.9998129 0(2)= 189.9996883 0(3)= 2L4.999618¢

Bl= 2,92279E-P4  B2=-p.THTP19319  B3=-f.THT19L425L
A= 9.767018537 A2=-p.5p¢$203938 A3=-p.499920856
Mi= 1 = M2=-6,31059E-f5 M3= 5.05p51E-§5

VECTOR B= 1.000000116
VECTOR A= 1.000000053
VECTOR M= 1.,000000007

HREERRRERRERRHFLRRRERREERERRFERERKERRRERRRRERREERELRRXERRXRRRERRRRIRRRRRR*

CQ Side

END OF RUN
ERROR CODE = 3
FOR EQUATION ‘ '
696883 +-8p8@L1.5 *¥Q+ 139p885.62 *¥Q+2+ 1633917.529 *Q+3+
-1.30P@PE-p5 QL

REAL ROOTS IMAGIMARY ROOTS
p.28147381p -p. 471551323
0.28147581¢ P.471551323

~-1.h1k2goTT5 p

CX/Cz = @
LAMDAl=-1,41L2@97T75 LAMDA22=-1.pp@p@221T
0l= §
02=-p.T@T7118853
03= P.T70T1P2709
Ql= P.747143781
Q2= $.499999718
Q3= §.5pp@pL525
RIGID BODY GUIDANCE FOR THE GEARED SIDE OF A
GEARED SPHERICAL FIVE-LINK MECHANISM
USING THE NEWTON-RAPHSON TECHNIQUE FOR SETS OF NON-LINEAR EQUATIONS
FOR 5 POSITIONS OF A RIGID BODY
HAVING A GEAR RATIO OF 2

RRRERREERRARXRERXXXRXREERELRBARRRERRRRRRRREERERRRRRRRE XX RLERRRRRRRRRRRRRR

INITIAL VALUES AND ESTIMATES OF POINTS IN THE INITIAL POSITION
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Bl= @ Bo=-p.7@T7106781 B3=-p.70T7106781
Al= §.707106781  A2=-p.L5 A3=-0.55
Mi= 1 M= ¢ M3=

INITIAL VALUES OR ESTIMATES FOR INPUT ROTATIONS (DEG) ABOUT M

THETA 12= 165
THETA 13= 190
THETA 1Lk= 24p
THETA 15= 305

HEREEEERXXRR LR RRERLAEREERER L RERLERRRER XXX EERRE XXX XXX ERERRRRRHERRRRNRR%

VALUES FOR THE 1  TH CALCULATION
FOR THE FUNCTION F

1 )= $.$353569
2  )=-p.p241858
3 )=-p.132631

L )=-p.¢12539k4

5 )=-3.34724E-p3
6 )==2.457P6E-P3
T )=—0.15856

8  )=-=0.137267

9 )=-5.30PPPE-10
19 )= 4.99999E-p3

53l B B M- s M- B~ e - e
NN NN AN SN NN AN AN

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION

. 968723
Lp1kh711
LPLULTRT
.P712303

. P98p293
.P9B31E-p3
.P145326
LPré@1LY
.P611k4T

) -0.0695924

INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION

eNoNoNoNoNoNoNoNO N
P e R T D
HWO oo FwhH
N N N e e e e e N s
II I n ll || ‘I i u ll II

'S-S"S-O\'S.'S"&"S.‘S

0(1)= 16L.1667322 0(2)= 190.9169858 0(3)= 243.5p03p522 0(k4)=
301.911972

=-0.0968723 B2=—-§.T21577881 B3=—p.692636081
Al= 0.635876L481 A2=-,5489293 A3=-p.55609031
Ml= 1 Me= @ M3= @
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VECTOR B= 1.p0p98@3622
VECTOR A= 1.#148987p8
VECTOR M= 1

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES

Bl=-f.096LPP913 B2=-p.T18P66639 B3=-f.689265671
Al= §.631191893 A2=-p.544885264  A3=-§.551993518
Ml= 1 M2= ¢ M3= §

VECTOR B= 1
VECTOR A= 1
VECTOR M= 1

VALUES FOR THE 2 =~ TH CALCULATION

FOR THE FUNCTION F

F( 1 )= 8.3423pE-p5
F( 2 )= 1.7P56TE-p3
F( 3  )=-3.89242E-p3
F( 4 )= 5.26506E-03
F( 5 )=-2.p285pE-p3
F( 6 )= 1.96672E-03
F( 7 )= 4.p719pE~-plL
F( 8 )=-1.604p2E-p3
F(9 )=-3.p0p0@PE-11
F( 19 )=-2.pppp@E-11

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION

c( 1 )==p.1kopo1

c( 2 )=-p.p583194
c( 3 )= p.p815969
C( b )=—p.pL13965
c( 5 )=-3.8L4855E-03
c( 6 )=—p.p435365
c( 7 )=-p.g11k792
c( 8 )= p.p136387
c(9 )= 1.48476E-p3
c( 1p )= P.1692

INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION

0(1)= 163.5089767 0(2)= 191.6979273 0(3)=243.5878509 0(L)=
310. 7964179



Bl=-f.2L45491913 B2=-0.T776386039 B3=-0.6p76687T1
Al= §.589795393 A2=-(.54873381 A3=-$.59553p¢18
Ml= 1 M= p M3= @ ,
VECTOR B= 1.032302897

VECTOR A= 1.0p36234p6

VECTOR M= 1

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES

Bl=—p.24162pLk11  B2=-p.T6L142129  B3=-0.598@85599
Al= $.588729754  A2=-p.54TTL2365 A3=-p.59LLsLp1T
Ml= 1 M= ¢ M3= P

VECTOR B= 1
VECTOR A= 1
VECTOR M='1

55

VALUES FOR THE 3 TH. CALCULATION

FOR THE FUNCTION F

F( 1 )= 4.94Lo8T7E-03
F( 2 )=-2.L1p86E-93
F( 3 )= 3.L4p228E-@3
F( L )=-p.p187969
F( 5 )= 1.939L48E-p3
F( 6 )=-=L,5220pE-p3
F( 7 )= 2.79096E-p3
F( 8 )=-p.p2813¢8
F( 9 )= 8.pp@p¢E-11
F( 18 )= 8.ppppPE-11
CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION
c(1 )= p.pk26769
c( 2 )= 2.24733E-03
c( 3 )=—p.p2p1197
c( b )= p.p2853pk
c( 5 )= 9.09581E-p3
c(6 )= p.p198762
c( 7 )= L4.36545E-03
c( 8 )=-6.56190E-03
c(9 )= 1.97h77E-@3
c( 1§ )=-0.0391762

INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION



0(1)= 163.7587863 0(2)= 101.321L494p 0(3)= 243.7pP7227
3¢8.4615693

Bl=—§.198943511 B2=-p.76189L4799 B3=-0.618196299
Al= §.617260154  A2=-@.5386L6555 A3=-p.5TL5TT7817
Ml= 1 Mo= M3= @

VECTOR B= 1.pp2228869
VECTOR A= 1.p$128987T
VECTOR B= 1

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES

B1=-0.198722171 B2=-p.T761P4T134 B3=-0.6175@8509
Al= §.61686244L  A2=-0.538299496  A3=-p.5T7L2PT6P8
Ml= 1 Mo= @ M3= ¢

VECTOR B= 1
VECTOR A= 1
VECTOR M= 1

VALUES FOR THE L TH CALCULATION
FOR THE FUNCTION F

4. p29LoE-pk
-1.58632E~pk

2.24839E-pk
~1.29345E-¢3

L, 41853E-pL
-k, P3972E-pL
-4, 48LU51E-p5
-1.
7.
1.

1P785E-@k
PPOPPE-11
) PPPPPE-11

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION

e e B o B B B B B
HYO o3I O0Wuv &wmhH
N e N e e N N N e
LI (O {1 IO | B |

c{1 )= g.p171664

c( 2 )= 6.4L831E-#3
c( 3 )=—p.p13h7p2
c{ & )= 2.68357E-p3
c( 5 )==L.966LPE-pL
c( 6 )= 3.3484TE-03
¢ )= 1.79375E-$3
c( 8 )==1.21257TE-03
c{ 9 )= L.oLpb2E-ph
c( 19 )=-p.p2p2752

9(k)

56



INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION

0(1)= 163.8613L457 0(2)= 191.2515931 0(3)= 243.7287976
307.2996169

Bl=-§.181555771  B2=-p.T54598824  B3=—p.63p9T8789
Al= §.619546414  A2=-§.538796136 A3=-p.570859138
M= 1 M2= § M3= §

VECTOR B= 1.@p@51601k
VECTOR A= 1.pp0018696
VECTOR M= 1

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES

Bl=-p.181508946  B2=-p,T5LLPLoPT  B3=-p.630P815975
Al= §.61954p223 A2=-$.5387911pp A3=-p.570853802
Ml= 1 Mo= @ M3= 0

VECTOR B= 1
VECTOR A= 1
VECTOR M= 1

o1

VALUES FOR THE 5 TH CALCULATION

FOR THE FUNCTION F

F(1 )= T7.36P91E-p5
F( 2 )=—2.T5T8BE-P5
F( 3 )= 1.p446pE-g5
F( L )==3,12216E-pk
F( 5 )==2.30T75TE-P5
F( 6 )=-2,59281E-p5
F( T )= 5.89722E-pB5
F( 8 )=-L.53012E-pk
F( 9 )==5.00pP@E-11
F(19 )=9

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION

-3.866L42E-pk
-5.T79916E- @k
8.pLUTBOE-pU
5.24L423E-p4
3. 7728 TE-Bk
2.13P51E-pL
-1.62613E-§5
-5. 5904 PE-P5
1.58510E-pk
1.05252E-03

oNoNoNoNONONONONON®]
P N T T i e e e
— N e e N N e e e

wwuwnnn

1
2
3
L
>
6
T
8
9
1

p



INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION

0(1)= 163.8601998 0(2)= 191.2481554 0(3)= 243.737392¢ o(L)=
307.359TT15

Bl=-@.181895588 B2=-p.T54984123 B3=-@.630p11195
Al= @.62¢p64646  A2=-0.538L13813 A3=-p.57P6LPTS51
Mi= 1 M2= @ M3= ¢ '

VECTOR B= 1.p@@@g1137
VECTOR A= 1.ppp@ppLés
VECTOR M= 1

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES

Bl=-$.181895485 B2=-p.75k983694 B3=-p.630P10837
Al= §.620p65Lp1  A2=—@.538413688 A3=-p.5TP6L0618
=1 M2= @ M3= @

VECTOR B= 1
VECTOR A= 1
VECTOR M= 1

58

VALUES FOR THE 6 TH CALCULATION

FOR THE FUNCTION F

F(1 )= 2.58089E-p6
F( 2 )=-9.5p5@8E-p7
F( 3 )=-p.65782E-06
F( 4 )= 8.95L62E-pT
F( 5 )=-1.5L68PE-@T
F( 6 )= 9.62521E-p6
F( 7 )=-=T7.2805TE-p6
F( 8 )= 2.p4oLlr-p6
F( 9 )=-2.0ppp@¢E-11
F( 19 )=-5.0pP@PPE-11

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION

1.p1663E-06
-9. L4954 6E-P6
1.1p861E-@5
1.55L46E-p5
1.14327E-95
6.10396E-p6
3.22LL9E-p6
2.23591E-06
1.559p2E-p5
2.26@13E-P5

P T e P W P
O o1 o0\ &FWw

N e e e e e e e e s

oNoNoNoNONoNONONONS]
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INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION

0(1)= 163.8601998 0(2)= 191.2481554 0(3)= 243.7379649 o(k4)=
307.36091TL

Bl=-%.18189L4E8  B2=-§.754993199 B3=-p.629999750
Al= 0.620@8ppL6  A2=-f.5384P2255 A3=-p.57P63451k
Ml= 1 M2= M3= @

VECTOR B= £.999999999

VECTOR A= 1

VECTOR M= 1

EXRRRRERRRE XU IR LR RRRRERERERRLRRRR SRR ERERRERRRXEERRRRRELARERRREXRRERRRRER

CQ Side

Cx/Cz -8 ' =L | L 8 )

123k

Figure 6. Circle Point Curves for
Positions 12, 13, 14 and
12, 13, 15
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D.2 PATH POINT GENERATION

P1=(.577350269 ,~.816496581,0)
P2=(.831724289, .546036202,-.100395069)
P3-( 326975171,.988754556,.259330660)
b=(.591753109 ,~.18412p746,.78481p65L4)
P5~( 157517762, .609616916,.776888168)

981972231, .057963120, .994354186)
.=.211742597,-.149724626,.791643797)
-.6L4@T795216,-.45311p6k42,.37686228)
-.634326533,-.448536593,.48p5752¢4 )

Q12=88.¢3¢759h5 )
Ql3-123 .58791¢2 )
)
)

N unn
Mty Mgy
Vi W
nwnn

Qq},=60.52901277
Ql5-11h .pplloss

LET,

=130.02
12—128 12

h-e? o7
5“7 .76

8

The resulting displacement matrices are identical to those obtained
in the five position rigid body guidance problem. Therefore, the so-
lutions are the same.

D.3 TFUNCTION GENERATION

FUNCTION GENERATION FOR EIGHT POSITIONS
OF THE INPUT AND OUTPUT LINKS OF A
GEARED SPHERICAL FIVE-LINK MECHANISM

HAVING A GEAR RATIO OF 2

USING THE NEWTON-RAPHSON TECHNIQUE FOR SETS OF NON-LINEAR EQUATIONS
HREEERXRERRRRREREXERREXAXRERRERERERERRRREREREREARRREXRRRRAXRRRXREXRRRERSR
ESTIMATES OF POINTS IN THE INITIAL POSITION

Ml= §.7@71p6781  M2= @.TATIP6T8L  M3= P.pAPAPAPRHL

Al= 1.00pp00pp0  A2= P.0PPRPRRPP  A3= D.pPPPRRRR0



Bl= @.7@71P6781
Cl= 9.09pPpPPpe
Q= P.0p0pP00P0

B2=-@. 77106781
Ce= ¢.p0p00p0p0
Q2= 1.0pppppopo

61

B3= §.00p0p0000
C3= 1.000Ppp0pe
LRI

Q3

INPUT-QUTPUT ROTATIONS

POSITION
1-
1-
1-
1
1~
1-
1-

O3 OV WD

INPUT
10,000
20 . 90
3p. 000
Lo . gpp
56. 900
60. 6P
T0.000

OUTPUT
31.365
52.497
65.135
72.135
73.555
65.001
37.117

***********************************************************************

VALUES FOR THE 1

FOR THE FUNCTIONS

|DVISVMTWIITUT O H O\

N e e e N e e e N e

LU | N (N | N | N

b e e B B B~ e B e B e
HFEWOWOITOoOWw FwhhH

H =

.55394E-pP6
.6LTTEE-P6
.5837TE-P5
.88581E-@7
.83188E-p6
LLSPLE-B6
. T326L4E-p6
. 3PPPPE-10

. 3PPPPE-1P

TH CALCULATION

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION

aoaoacaaaaQaad
PN TN TN TN TN SN TN TN ST TN
FHEWOOIAU EWwN -
N N N N e e N S e SN

CORRECTED

.$8@5911L48
.P8p591149

. $680¢92834
L171pL4L @88
.$19366894
. 19366894
133997895
LPLL537RTL

p.p54182563

ESTIMATES FOR NEXT CALCULATIONS



Ml= p.626515633

Al= 1.00pp0pp00

Bl= §.687739887

Cl=—@.pkk537471
Ql= 0.pp0000000

VECTOR Q= 1

 Me= §.78769793p
A2= (.p68p9283L

B2=-0.726473675
C2= 0.054182563

Q2= 1.000p00000

It

VECTOR M= 1.$12989867
VECTOR A= 1.$33892714
VECTOR B= 1.01788763

VECTOR C= 1.ppL9193

NORMALIZED INPUT VALUES

Ml= §.622L485675
Al= $.9834T72595
Bl= $.6816T783T9
Cl=—p.gLLL27928
QL= 9.000pP0000

M2= §.782631193
A2= 0.06696TL436
B2=-f. T2pp6233¢
Ce= @#.p54pLoT782
Q2= 1.000pP00e

AND CORRECTED

M3= 3.0p000p000
A3= 9.171p4Lp88
B3= 0.13p987895
C3= 1.ppppoogps
Q3= 9.00pPP00P8

ESTIMATES

M3= 0.pPP3PPPPP
A3= £.168217173
B3= £.12975259k
C3= P.997549387
Q3= 0.ppp0p0Ppd
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