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CHAPTER I 

INTRODUCTION 

Computer Graphics has emerged from the dark and noisy 

arcade to become one of the most prominent areas of computer 

application in the world today. The movie industry 

increasingly relies on computer graphics for special effects 

and animation, while the medical world eagerly adopts new 
, 

imaging techniques as soon as they are made available. Even 

the art community has been invaded by computer generated 

images, many of which challenge the most sophisticated 

viewer to determine whether or not the work is that of a 

human or a machine. Very few areas of computer science have 

had as large an effect on the everyday life of modern 

society. 

Two Goals of Computer Graphics 

In computer graphics, the current research pursues two 

goals: speed and realism. Unfortunately, these two goals 

are often at odds with each other. Achieving greater 

realism requires increasingly complex (and consequently more 

time consuming) rendering methods. Conversely, greater 
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speed requires simpler, and often less realistic algorithms. 

As often happens, one goal is sacrificed for the other. 

Realism 

Advanced techniques like Ray Tracing [Whitted, Foley] 

and Radiosity [Goral] were developed to create photo-

realistic images. These highly realistic rendering models 

actually simulate the generation of light rays from their 

source, the propagation of the light in the scene, and its 

reflection and refraction by the objects in the scene. 

Additional enhancements to these two methods such as 

shading, texture mapping, and volume rendering have 

increased overall realism. Unfortunately, the time it takes 

to generate one of these highly realistic scenes is often 

measured in hours, if not days. 

Speed 

For the computer scientist whose goal is speed, a 

typical project could be to generate ten seconds of a movie 

at 24 frames per second. (For this assign~e~t, time­

intensive rendering methods are not acceptable. If photo-

realism is the ultimate achievement in realistic imaging, 

real-tlme imaging is the ultimate goal of the speed methods. 

There are two major approaches to this goal of 

increased speed: brute force and parallelism [Machover] . 

rBrute force methods employ larger and faster computers, 
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requiring larger and larger budgets, and newer and newer 

technology. Parallelism, on the other hand, often makes use 

of existing hardware technology to achieve the same speed as 

brute force methods. Can the twin goals of speed and 

realism be realized? 

Z-Buffering Is The Answer 

Z-Buffering is a rendering algorithm that balances the 

two goals of graphics, speed and realism. The algorithm 

itself is not complicated, is easily implemented in a 

variety of languages on many different types of hardware. 

At the same time, Z-Buffering generates highly realistic 

images, and supports a number of additional techniques that 

enhance realism. The research done for this thesis focuses 

on the Z.-Buffer rendering method. 

Parallel Z-Buffering, A Better Answer 

('Developing a parallel algorithm !E~~-~ -~e~u~n~ial one 
' 

is intuitively expected to yield better results. This has 

prov,en to be correct on a number of different classical 

problems in computer science [Fox] . 

The goal of this thesis is to develop and implement Z-

Buffering techn1ques on a parallel architecture in the hopes 

of increasing performance and overall speed. 



4 

Overview 

In Chapter 2, background information is given on the 

development of rendering and the evolution of the z-

Buffering algorithm. The parallel environment is also 

discussed, with special emphasis on the iPSC/2 parallel 

computer on which a majority of this research was performed. 

Chapter 3 reviews some of the literature leading to the 

development of the Z-buffering method, some of the additions 

that have been made to the technique, and some of the 

previous research in the are~ of parallel Z-buffering. 

Chapter 4 discusses design choices necessary to 

implement the Z-Buffering algorithm on a parallel 

architecture. Many considerations should be carefully 

weighed before any sequential algorithm can be applied to a 

parallel architecture. 

Chapter 5 details the four parallel implementations of 

the Z-Buffering algorithm researched for this project. The 

four methods presented illustrate a gradual evolution of 

parallel algorithm development and attempt to solve some of 

the problems unique to the parallel environment. 

Results are discussed in Chapter 6, following a general 

' 
discussion of various performance measures. Detailed 

accounts of the timing results from the four different 

methods are discussed and illustrated. 

Finally, Chapter 7 contains the summary and conclusion 

of this research. The chapter also discusses a few of the 



problems encountered. Lastly, areas of future research are 

proposed and avenues of approach discussed. 
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CHAPTER II 

BACKGROUND 

All computer graphics method~ wpich generate images 

from scenes, including Z-Buffering, can be termed renderers. 
' 

Rendering is the process of translpting a two or three 

dimensional scene description into a two dimensional image 

to be displayed on a graphical output device i.e. a Video 

Display Terminal (VDT) or Printer/Plotter. 

Scene Components 

Any scene can be broken up into three elements: the 

viewer, the view plane, and the primitives. Figure 1 shows 

~he relationship between these three elements. The viewer 

provides information about the viewing position and 

direction. The view plane element of a scene contains the 

view plane, the 'window' through whic~ the viewer sees the 

scene, the view plane orientation, the dimensions of the 

view plane 1n pixels, and the frame buffer. Primitives 

(discussed in greater detail in chapter 4) form the third 

element of a scene. The primitives are the objects 

displayed in the scene such as spheres, cubics, conics, and 

6 



pyramids, and also the components of more complex objects 

such as trees and buildings. While a scene has only one 

viewer and view plane, the number of primitives may be as 

few as one or as many as tens of thousands. 

Viewer View Plane Primitives 

Figure 1: Components of a Scene 

The frame buffer mentioned above is the central data 

structure for all renderers. Along with other information, 

a frame buffer stores the rendered image, whether color, 

gray-scale , or black and white . The frame buffer is also 

7 
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the structure that is displayed on a VDT, or written to an 

image file, for later viewing. For color and gray scale 

images, a frame buffer will typically have one array for 

each spectrum. Each element of each array is a number that 

corresponds to a light intensity value (red, green, blue, or 

white) for the corresponding pixel. Black and white images 

will typically have only a single spectrum, often a bit-map. 

Tessellation 

There are a variety of ways in which a particular 

method may render the primitives in the scene: directly from 

a mathematical description, through polygonal approximation, 

etc. Rendering methods that are aimed at greatest realism, 

such as raytracing, employ the mathematical description of 

the primitive directly. Other methods, like the Z-buffer 

method, approximate the primitive using a large numbet of 

polygons to achieve greater speed. 

The process of approximating primitives using polygons 

is known as tessellation. As an example, take a regular 

octahedron having each of its eight points lying on the unit 

sphere. Replace each of the eight triangular polygons that 

makes up the octahedron by four smaller polygons, while 

maintaining all new vertices on the unit sphere. After a 

number of iterat1ons of this process, a very realistic 

sphere can be generated. The process of iteratively 

generating a shape using the above method is also known as 



recursive subdivision. Figure 2, below, shows two 

iterations in the tessellation of a 20 triangle. 

1 Polygon 4 Polygons 16 Poygons 

Figure 2: Tessellation 

9 

Tessellation is often preferred over direct calculation 

using a mathematical representation because it saves time. 

Fewer calculations are required to compute each pixel of 

every object in the image. A rendering method that is based 

on polygons rather than direct mathematical descriptions 

also has the advantage of be1ng smaller 1n s1ze because the 

program is only required to render one object, a polygon, 

rather than having to render each type of primitive. 
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Scan-Line Rendering 

Now that the scene has been described, the methods of 

rendering primitives into the frame buffer can be examined. 

Before describing the Z-Buffer rendering algorithm however, 

it is necessary to look at the scan-line algorithm, upon 

which it is based. 

The scan-line algorithm, ,developed by [Catmull] in the 

mid seventies, maps polygons into scan-lines, the horizontal 

rows of pixels on a VDT. For each scan-line, the algorithm 

first determines all the edge pixels -- the points where the 

scan-line intersects the polygon. For convex polygons, 

there will be 0, 1, or 2 intersections. Concave polygons are 

slightly more difficult due to the larger number of possible 

intersections. Next, the intersection list for each scan­

line is sorted by x-values; all y-values are identical 

because they lie on the same scan-line. For convex 

polygons, this involves a single comparison. Standard 

sorting methods may be employed for concave polygons. The 

sorted list of edge pixels is then traversed, and all pixels 

falling between the points of intersection are added to the 

frame buffer. Algorithm 1 gives psuedo-code for the simple 

scan-line algorithm. 



For each scan-line S in the frame buffer F 
Intersect P and S 
For each pair of intersections points, p1 and p2 

For each pixel X between p1 and p2 
Assign RGB to FB[S] [X) 

End for 
Endfor 

Endfor 

Algorithm 1: Scan Line Algorithm 

Figure 3 shows many scan-lines in the scan-line 

conversion of simple two dimensional polygons. Scan-line 

ten intersects the concave polygon in two places, point 

(13,10) and point (17,10). All pixels between those two 

points are rendered into the frame buffer. Three 

dimensional polygons are converted similarly. 

11 
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Figure 3: Scan Line of Convex and 
Concave Polygons 

Advantage of Scan-Line Rendering 

Speed is the greatest advantage of the scan-line 

renderer. This algorithm relies on the principle of 

coherence, the tendency of an object, and therefore its 

12 

pixels, to maintain a high degree of similarity over a given 

space. Span coherence then is exploited by the algorithm in 

relying on the pixels of a given scan-line to be colored 

similarly within a single object. Edge coherence, the 

tendency of edges to be similar, is also exploited in 

computing edge pixels and in various shading algorithms 

[Foley). The list of edge pixels can be computed quite 



rapidly given the vertices of the polygons, and the pixels 

can be computed equally fast with only a few operations. 

13 

In contrast, rendering methods that employ the 

mathematical description of the primitive directly often 

require hundreds of calculations per pixel, because each 

pixel is rendered independently of its neighboring pixels. 

In ray tracing for example, each ray must be intersected 

with every object in the scene. This is a highly 

computationally intensive step. Intersecting 512 rasters 

against 2000 polygons is much easier than 512 2 rays against 

50 complex parametric shapes. 

Disadvantages of Scan-Line Rendering 

Despite its speed and simplicity, the scan-line 

algorithm is not without its problems. One weakness of the 

algorithm is exposed when two or more polygons overlap. 

Depending on the order in which the two polygons of Figure 4 

are rendered, two very different images can be generated. 
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Figure 4: Problem of Overlapping Polygons 

To solve the problem of overlapping polygons, a step to 

sort the polygons is incorporated into the simple scan-line 

algorithm [Newel]. This modified algorithm, which is known 

as the painter's algorithm, attempts to sort the polygons in 

such a way that those polygons farthest · away from the viewer 

are rendered first, while nearer polygons are rendered on 

top of those farther away. In this way, overlapping 

polygons are correctly rendered into the image, since those 

polygons closer to the viewer are 'painted over' those that 

were rendered earlier. 

The polygons can be sorted by any of the standard 

sorting algorithms. Usually, either the centroid or the 
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minimal z coordinate of the polygon is used as the key for -- ~-. _., -~~- ~ -- ..... ~ ----"'"'_.,., .... ,..,.__ .. .,._.,..- ... ...,. __ 

~~~~~~~:) Computing centroids and finding minimal 

coordinates takes some computation, and the sorting process 

itself can be quite costly, especially with large scenes of 

thousands or hundreds of thousands of polygons. 
' 

( Adding the sorting step corrects problems due to 

overlapping polygons, but it also greatly increases the 

complexity of the algorithm and decreases its overall speed) 

Because the polygons in the scene must be compared and 

sorted against one another, they are no longer independent 

as in the simpler scan-line algorithm. This consideration 

weighs heavily on the algorithm, especially when considering 

the parallel implications. 

Although sorting solves problems of overlapping 

polygons in two or three dimensions, an additional problem 

occurs only in scenes of three dimensions: intersecting 

polygons. Figure 5 shows the example of a scene and two 

very different images, the possible results of rendering the 

intersecting polygons using the painter's algorithm. 

Depending on the sorted order of the polygons, one or the 

other image may result; both are wrong. 
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Actual Possible Possible 

Figure 5: Problem of Intersecting Polygons 

No sorted order will ever render this image correctly 

using the painter's algorithm because one polygon will 

always be added to the frame buffer before the other. To 

solve this problem, Newell added to the algorithm a series 

of tests to determine if one object intersects another. 

After all the tests and comparisons, if the problem does 

occur, the original polygon is divided into two or more sub­

polygons at the point of intersection, thus allowing the 

sorting step to work properly . 

It is not necessary to detail this method of resolution 

to see that it slows the algorithm even further . Other 

methods were then added to help restore the lost speed. 
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Binary Space-Partitioning Trees [Schumacker] are based on 

the idea that if a plane can be found that wholly separates 

one set of polygons from another, then the polygons that lie 

on the same side of the plane as the view point can obscure, 

but cannot be obscured by, the other polygons that lie on 

the other side of the plane. The ,use of bounding volumes 

[Rubin] is another method designed to 'increase the speed of 

the slowed algorithm. Instead of dividing the polygons into 

two groups separated by a plane, this method groups together 

objects within a three-dimensional volume such as a sphere. 

If two bounding volumes do not obscure each other, then no 

primitives within the bounding volumes can obscure each 

other. What started out as a simple algorithm has rapidly 

become a nightmare of complexity. 

Z-buffer Rendering 

The Z-Buffer rendering method takes the simplicity and 

speed of the original scan-line algorithm and combines it 

with the accuracy of the painter's algorithm, but without 

incurring additional computational costs. In the Z-Buffer 

algorithm, another spectrum (i.e., another array) is added 

to the frame buffer. This spectrum records the depth value 

associated with each pixel, which is based on the pixel's z 

coordinate, hence the algorithm's name. To start out, the 

spectra is initialized to positive infinity. 
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Before a pixel is added to the frame buffer, its depth 

is first compared with the current depth recorded in the Z 

spectral element of the frame buffer. If the new depth 

value is less than the recorded value, meaning the new pixel 

lies closer to the view point than the recorded one, the new 

pixel replaces the recorded one. Algorithms 2 and 3 give 

psuedo-code for both the standard polygon renderer using the 

scan-line algorithm and the Z-buffer renderer which uses the 

scan-line algorithm in combination with the improved frame 

buffer. 

For every object 0 having color RGB 
Tessellate 0 into polygons 
Sort polygons, resolving any conflicts 
For every polygon P 

For each raster R in the Frame Buffer FB 
Intersect P and R 
For ~ach pair of intersection points, 

(xl,R,zl) and (x2,R,z2) 
For each pixel X from xl to x2 

Assign RGB to FB[X] [R] 
End for 

End for 
End for 

End for 
End for 

Algorithm 2: Standard Polygon Rendering Algorithm 



For every Object 0 having color RGB 
Tessellate 0 into polygons 
For every polygon P 

For each raster R in the Frame Buffer FB 
Intersect P and R 
For each pair of intersection points, 

(xl,R,zl) and (x2,R,z2) 
dz <- (z2-zl) I (x2-xl) 
z <- zl 
For each pixel X from xl to x2 

If (z < FB[X] [R]) 
Assign RGB and Z to FB[X] [R] 

z <- z + dz 
End for 

Endfor 
End for 

End for 
Endfor 

Algorithm 3: Z-Buffer Rendering Algorithm 

Advantages of Z-Buffer Rendering 

The Z-Buffer rendering algorithm provides many 

advantages over the scan-line polygon rendering algorithm, 

and minimal disadvantages.(The primary advantage of Z-
, 

19 

Buffering is the lack of the sorting step required by the 

standard polygon renderer.) Even employing the best sorting 
/ 

algorithms, which have O(n log n) time complexity, the 

sorting process may be more time consuming than the actual 

rendering portion of the algorithm. 

Another advantage of the Z-Buffer method is that the 

polygons are once again independent of one another. The 

order in which the polygons are rendered does not affect the 
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final image. Instead of relying on a sorted order to render 

pixels correctly, the z portion of the frame buffer insures 

the closest object is seen in each pixel. The problems of 

overlapping and intersecting polygons in Figures 4 and 5 are 

correctly rendered the first time. The advantage of polygon 

independence will become more apparent when the parallel 

data decompositions are discussed in chapter 5. 

Disadvantages of Z-Buffer Rendering 

One noticeable disadvantage of the Z-buffer algorithm 

is the larger memory requirement due to the added Z 

spectrum. In the simple scan-line algorithm, only the RGB 

triple is stored; now RGB and z must be stored. 

Unfortunately, the z elements are often larger than the 

color spectra elements. Modern display hardware usually can 

handle only 8 bits per color spectrum element, or 24 total 

bits per pixel to represent an RGB image. For reasonable 

precision however, t4e Z elements must be at least 32 bits 

per pixel [Piol], corresponding to the single precision 

floating point variable type of many hardwares. In other 

words, adding the Z spectrum more than doubles the size of 

the frame buffer. A monochrome bitmapped 512 square image 

would require only ~2,768 bytes, an 8 bit gray-scale image 

requires 262,144 bytes, a 24 bit RGB color image 786,432 

bytes, while a 24 bit RGB&Z image requires 2,621,440 bytes. 

Typical image sizes are more often than not even larger then 



the 512 square example. The memory requirement of the z­

Buffering algorithm is serious a consideration to keep in 

mind. 
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CHAPTER III 

LITERATURE REVIEW 

As ment1oned earl1er, Z-Buffering was or1g1nally 

developed by Catmull [Catmull] out of the earl1est scan-11ne 

algorithms [Sutherland] . Th1s f1rst algor1thm was bu1lt on 

the work done for the scan-line algor1thm [Watk1ns] and 

later 1mproved on by add1t1onal work of Newell et.al. 

[Newell]. S1nce that time, many other add1t1ons have been 

made to the algorithm, and it has been used 1n many 

different appl1cat1ons. 

When used to produce images of high complexity, z­

Buffering has two very not1ceable drawbacks immed1ately 

apparent: al1asing and lack of transparency. Al1asing 1s 

the Jagged edge, or stair-step appearance, of near-vert1cal 

and near-hor1zontal l1nes when rendered w1th trad1t1onal 

methods. Ant1-Al1as1ng 1s the process of remov1ng the 

al1as1ng, to produce a much smoother l1ne. Transparency is 

the feature wh1ch allow some light to pass through obJects, 

rather than reflecting all of 1t, to 1llum1nate objects 

ly1ng farther from the viewer. Both these features are 

absent in the standard Z-buffering method, though very 

apparent in the more realist1c renderers. 

22 
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A-Buffering [Carpenter], a descendant of Z-Buffering, 

solves the two problems of aliasing and transparency. It 

gets 1ts name from an ant1-a11ased, area-averaged, 

accumulat1on buffer added to the frame buffer. To solve the 

al1as1ng problem, th1s method 1ncorporates a 4x8 bit mask 

per p1xel to represent subpixel coverage. Th1s bit-mask 1s 

s1milar to work done by Fiume et.al. [Fiume]. Transparency 

is handled by dynamically maintaining a sorted list of p1xel 

fragments assoc1ated with every pixel. A pixel fragment 

descr1bes the transparency, color, area, and f1ll mask 

assoc1ated with each object v1s1ble 1n the pixel. From th1s 

1nformat1on, an anti-aliased 1mage with transparency can be 

generated. The add1tional computation slows the algor1thm, 

but does a great deal to enhance the realism of the images. 

Alternately, a two-pass Z-Buffer method [W1lliams] 1s 

h1ghly effective 1n implementing shadows w1thout suffering 

the penalt1es of A-Bufferlng. In this method, the first 

pass of a Z-Buffer algor1thm creates a frame buffer from the 

viewpoint of the l1ght source. This frame buffer w1ll g1ve 

d1stances from the l1ght to the nearest obJect 1n the scene. 

The second Z-Buffer pass, from the v1ewpo1nt of the v1ewer, 

conta1ns a sl1ght mod1f1cat1on of the standard algor1thm. 

For each p1xel to be added to the frame buffer, if the 

d1stance from v1ewer to the object is greater than the 

distance from obJect to the light source as recorded in the 

f1rst pass, then the p1xel lies in shadow. Addit1onal light 
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sources are handled by additional passes of the first step. 

Figure 6 shows two cubes viewed overhead and in perspective. 

The arrow in the overhead view is the viewpoint. The dotted 

line marks the shadow cast by the right cube onto the left 

in the scene. 

Overhead Perspective 

·o.o 

Figure 6: William's Shadowing Method 

Constructive Solid Geometry (CSG) [Rossignac] is 

another addition to the Z-Buffer rendering method. CSG is a 

technique whereby complex shapes can be defined as a boolean 
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expression of two or more simpler shapes. For example, the 

lense of a magnifying glass might be defined as the 

intersection of two spheres which barely overlap. The 

technique is useful in defining realistic shapes that are 

' 
not easily built from simple primitives, greatly enlarging 

the set of objects capable of being rendered. 

Shading is perhaps the easiest technique to add realism 

to a renderer. Shading Models [Bishop, Blinn] give even a 

simple object a very realistic appearance. The simplest 

shading method, Gouraud shading [Gouraud], is incremental in 

nature. The shade value of edge pixels at each scan-line are 

computed, and pixels lying between the edges are computed 

with a single addition. Phong shading [Phong] improves on 

Gouraud shading by linearly interpolating the surface normal 

at each pixel rather than relying on the edge pixels. The 

method is much more computationally intensive, but yields 

far better results. 

The application of Z-Buffer rendering in parallel has 

largely been a hardware approach. One approach has been to 

vectorize portions of the algorithm on SIMD (Single 

Instruction Multiple Data) machines such as the Cray XMP-2/4 

and Convex C-1 computers [Dyer] . The portions of the 

algorithm that can be vectorized include calculation of 

surface normals, edge determination, clipping, and shading. 

Overall performance speed-up is directly proportional to the 

amount of the algorithm that can be successfully vectorized. 
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Another hardware implementation of z buffering uses 

VLSI approaches [Hu] . In this method, a number of 

processors, cooperate to render a single image into a single 

frame buffer. To minimize the memory bottleneck of multiple 

processors accessing a single frame buffer, a complex Omega 

Network [Hayes] is added to the design. This network can be 

thought of a large cross-bar switch, in which multiple paths 

exist from the processors to the memory, allowing 

simultaneous accesses. Input, in the form of polygons, is 

broadcast to each of the N processors, which each in turn 

render every Nth scan-line into the frame buffer. 



CHAPTER IV 

DESIGN CHOICES AND IMPLEMENTATION 

Architecture of the iPSC/2 

In parallel applications, the hardware available 

greatly influences the design of the software, especially on 

MIMD (Multiple Input Multiple Data) machines. The hardware 

and software work best together when matched in granularity. 

Granularity of a parallel system is defined as the ratio of 

computational power to communication power. Applying this 

definition to parallel hardware, a coarse-grain machine has 

very powerful processors but very costly communications. A 

fine-grained computer has communications and computational 

power that are equally matched. When applying granularity 

to parallel software, a process or task that communicates 

infrequently with other processes or tasks can be termed 

coarse-grain, while a process that must communicate often is 

termed fine-grain. 

The iPSC/2 Hypercube concurrent computer system is a 

typical model of a medium-grained distributed memory 

parallel architecture. Distributed memory means that no 

processor can access the memory of another processor, all 
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are separate. It is on this hardware that much of the 

research of this thesis was performed. 

Hardware 
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The iPSC/2 computer is divided into two main 

subsystems, the System Resource Manager (SRM), often called 

the host, and the Tower, which contains all of the nodes. 

The SRM is a 386 microprocessor front-end connected by a 

high speed data line to a single node of the tower. 

Each node board in the tower contains a 386 

microprocessor, a Weitech floating point co-processor, and 

up to sixteen megabytes of random access memory. Nodes 

communicate with each other and the host through a 

proprietary interconnection scheme. In this interconnection 

scheme, the nodes are connected in a hypercube topology, 

having direct connection to log2N other nodes, where N is 

the total number of nodes. By definition, in a hypercube 

architecture, each node is connected to log2N other nodes, 

meaning the maximum distance a message must travel between 

any two nodes is N-1 hops. 

Software 

The software for most iPSC/2 applications is designed 

in two parts: the host program and the node program. The 

host program runs on the SRM and is designed to decompose 

the problem for distribution among the nodes, handle I/O 
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functions, and collect any output from the nodes. The node 

program runs on each node and performs the actual work of 

the problem, all in parallel. All communication among the 

nodes and between the nodes and host must be expressly 

stated by the programmer using message passing. This 

architecture is ideal for medium-grained problems. Figure 7 

shows the data flow of a typical program on the Hypercube. 

Host 

Node Node Node 

Host 

Figure 7: Data Flow 
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Communication 

All communication on the iPSC/2 is handled by message 

passing. A message may be any number of bytes in length, up 

to the available memory on the receiving node. Both 

synchronous and asynchronous communication are available. 

In synchronous communication, the sending node waits for the 

message arrival to be confirmed, while the receiving node 

blocks processing till the message arrives. Asynchronous 

transmission does not wait for confirmation of arrival, and 

reception does not block processing. The particular path a 

message will take from one node to the next is determined by 

proprietary software running on each node. This path 

determining software is similar to other "worm-hole" methods 

in that a guaranteed unique minimal distance is traveled. 

As expected on a medium-grained machine, communication on 

the iPSC/2 is quite costly. Messages under one hundred 

bytes in length cost on the average 4 milliseconds per byte. 

Longer messages cost 275 ms plus 4 milliseconds per byte. 

Hypercube Image Processor 

Unfortunately, the Hypercube does not have any type of 

graphical display device directly connected to it. For that 

reason, the Hypercube Image Processor (HIP) [Daniel] can be 

used to display the generated images on a SUN 3/60 

workstation. This software package was designed to perform 

standard image processing operations on image buffers. 



These operations include convolution, threshold, read, 

write, etc. HIP also implements a display ability using 

UNIX sockets(2) [Sun], which solves the lack of display 

problem for the Hypercube. 
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The HIP display allows images of arbitrary size to be 

displayed very rapidly, within the physical pixel limit of 

the SUN workstation (1100x900 pixels) . A 512x512 RGB image 

can be displayed in only a few seconds. Unfortunately, the 

SUN palette is limited to 256 colors displayable in any one 

image. 

The images generated for this thesis did not need to be 

formatted for HIP. A number of different graphical formats 

could have been used, including GIF, HQX, or PIC. The 

output format was chosen to fit the available hardware. In 

fact, some other formats will generate smaller sized image 

files due to internal image compression using techniques 

such as run length encoding. 

Primitives 

Determining the set of primitives is a very important 

task because all output will be built on this set of 

objects. If the set of primitives is too small, few complex 

objects can be generated, and if the set is too large, the 

program's code segment may become too large for each node's 

finite memory. The number of primitives is only limited by 

the memory available. For this project, all primitives that 
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can be tessellated into a finite number of polygons are 

applicable. This research uses conics, cubics, cylinders, 

and spheroids. Each primitive in this set is easily 

tessellated into polygons. This set of five primitives can 

then be combined to generate more complex objects. Figure 8 

shows the collection of primitives used in this research. 

Cubics 

Spheroids 

Cylinders 

Conics 

Figure 8: Primitives 
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Scene Description Language 

To render any complex image, a scene description 

language must be implemented. The scene description 

language is used to define to the renderer the image to be 

generated. The scene description file may contain 

parameters for all the scene options and variables that 

correspond to the view plane and the viewer: viewing 

position, viewing direction, ambient light level, and 

position of light source(s). The file also defines the 

objects and their parameters, such as color, position, size, 

and object-specific variables, such as the maximum recursion 

level in recursively generated objects. 

Scene description languages vary widely in flexibility 

and functionality. Some are fixed format, while others are 

absolutely free format. Some are truly languages in the 

strict sense, while others are merely a list of integer 

parameters. Renderman [Upstill] and PHIGS+ [Mallett] are 

two of the newest and most flexible scene description 

languages available today, implementing nearly every aspect 

of complex scenes. 

The more flexibility that is built into a language, the 

larger the parser required. Smaller languages may be 

faster, but they lose functionality and extensibility. Ease 

of use is also highly desirable in these languages. 

For this research, the scene description language 

consists of a flat ASCII file containing one definition per 
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line. A definition is either a viewplane/viewer parameter 

or an object. An object is a list of tuples containing the 

parameter name and one or more values. There is no order 

imposed on the definitions by the parser. Figure 9, below, 

gives an example of a scene description file. 

# 
# Z-Buffer datafile to generate 
# three medium sized'red cubes 
# on a field of multicolored 
# stars with a randomly colored, 
# randomly positioned small sphere. 
# 
# Viewer/Viewplane definitions 
# 
ambient 40 
background black 
light -1,1,1 
nodes 16 
overlay gray 
outfile testout 
percent 1 
# 
# Object definitions 
# 
obj cube rot 0,1.9,0 scale 0.4 num 3 color red 
obj sphere scale 0.15 recursion 5 color random 

Figure 9: Sample Scene Description File 

Certain objects, such as the sphere in the figure, contain 

specific variables that can be defined by the user. In the 

sphere object, the parameter recursion corresponds to the 

number of iterations the tessellation step is to ta~e. 



CHAPTER V 

PARALLEL METHODS 

For computer graphics applications such as Z-Buffer 

rendering, there are a number of possible approaches to 

solving the problem in a parallel environment. Ultimately, 

these different approaches, or data decompositions, can be 

grouped into three categories, based on whether the 

algorithm decomposes the frame buffer, the object set, or 

both. (For this research, fou~ __ _?_i!~e_~~E?!!~ _ de_c:_c:>~\P~~~_!:_i~I1~- ~-~v~ 
' 

been implemented to perform Z-Buffer rendering on the iPSC/2 

concurrent computer. The first two methods, host initiated 

and node initiated, decompos~ only the object set.) The 

third parallel method, node initiated with object 

forwarding, decomposes the frame buffer as well as the 

object set. The fourth method decomposes only the frame 

buffer and not the object set. These four methods were 

chosen because they exemplify the three categories of data 

decompositions and because they show a natural evolution of 

the methods employed. 
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Host Initiated Method 

The Host Initiated method is the first of four 

different decompositions which have been implemented to 

perform Z-Buffer rendering on the iPSC/2 concurrent 

computer. In this method, the host reads a datafile 

containing primitives and tessellates the primitives into 

polygons. The polygons are compiled i~to a message 

structure and distributed to the nodes in a round-robin 

fashion. Each node receives its polygon packets from the 

host, processes approximately the same number of total 

polygons, then renders the polygons into its own complete 

frame buffer. 
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After all packets have been received and processed, the 

frame buffers are then merged hierarchically. The 

hierarchical merge is a means whereby P processors can 

combine P frame buffers in N communication steps, where 

N=log2P. A thirty-two node hypercube can therefore merge 32 

separate Z-Buffers in five communication steps. At each 

step, half the active processors send their frame buffer to 

their next closest neighbor. The other half of the 

processors (the neighbors) receive the buffers and compare 

each received pixel's Z value to their own frame buffer's z 

value for that pixel. If the received Z value is less than 

their own, the received pixel's RGB value is copied into the 

node's frame buffer. Psuedo-code for the merge step is 

given in Algorithm 4. 



L FB = local frame buffer 
N-= Log2P 
for S = 0 to N 

if ((l<<my node number) && S) 
then -

endif 
endfor 

receive frame buffer R FB 
for I = 0 to MAX X 

for J = 0 to MAX Y 
if (R FB's Z[I] [j] < L_FB's Z[I] [J]) 
then -

endif 
end for 

endfor 

L FB's Z[I] [J] = R FB's Z[I] [J] 
L-FB's R[I] [J] = R-FB's R[I] [J] 
L-FB's G[I] [J] = R-FB's G[I] [J] 
L-FB's B[I] [J] = R-FB's B[I] [J] 

Algorithm 4: Frame Buffer Merge 
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Although this merge step seems time consuming, it is a 

constant time algorithm based on the size of the frame 

buffer and not the number of objects in the scene. The time 

to merge is relatively small compared to the total 

processing time, especially for scenes containing a large 

number of polygons. Figure 10 shows the hierarchical merge 

process on 8 nodes. Each line represents a communication, 

and numerical values represent the portion of the image 

resident on the node following the merge. This method 

maintains the greatest utilization of processors, minimizing 

total node idle time. 
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In the host initiated method, the size of the polygon 

packet is an important consideration. Smaller packet sizes 

require more total packets to transmit the same information. 

Larger packet sizes mean that some nodes will have to spend 

too much time waiting on a polygon packet from the host. 

Polygon packet sizes ranging from 10 through 103 polygons 

per packet are compared in this research. 
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Advantages 

The advantage of this method is that each node carries 

only the code necessary for polygon rendering and not for 

tessellation, leaving more available memory for larger 

frame-buffers. Another advantage is that no modification to 

the Z-Buffer algorithm itself is needed. 

Disadvantages 

The disadvantages of host initiated processing is that 

the host-to-node communication link becomes a bottleneck. 

Because the host handles all the tessellation, the 

bottleneck worsens the size of the scene increases. Using 

packets containing 100 polygons each, the size of each 

message sent to the nodes is three kilobytes. 

Variations 

(A variation of the host initiated method wo.ul_~ -~-: __ to 
------..., -- ~-' ~ ~ ~ 

decompose the frame buffer as well as the object set, 

distributing both over the available nodes.'. If N nodes are 

each responsible for 1/N of the frame buffer, the host could 

send a polygon packet directly to the specific node 

rendering that portion of the image. Some rendering of the 

polygons would be necessary to determine which node to send 

the packet to. This would eliminate the merge step, saving 

some time, though probably using more time in the partial 

rendering step to determine the destination node. Overall, 
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this variation of the host initiated method would probably 

yield a negative overall effect, only adding to the already 

busy host process without taking advantage of any of the 

parallelisms of the architecture. 

1 Node Initiated Method) 
\ 

(The second parallel data decomposition tested moves the 

' ' 
tessellation process from the host to the nodes) As before, 

the host reads a scene description file, but rather than 

sending a lengthy polygon packet, the host distributes only 

the primitive's description to the nodes in a round-robin 

fashion. The nodes then tessellate the primitives and 

render them into their own frame buffers, then merge them 

hierarchically as before. 

Advantages 

An immediate advantage of this method is that the host-

to-node communication bottleneck is removed. The host is 

able to send out object description packets (only 100 bytes 

each) much faster than the nodes can tessellate and render 

them. Another advantage is that tessellation is now 

accomplished in parallel, making effective use of the 

parallel hardware. 
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Disadvantages 

Unfortunately; the nodes must now contain code to 

tessellate all primitives. Though this is not critical, it 

could become a problem in fully implemented production 

renderers having much larger sets of more complex 

primitives. The limited memory of the nodes must be used 

efficiently. 

Variations 

One possible variation of this method is to make 

specific nodes responsible for the tessellation and 

rendering of specific object classes. For example, on a 

four node hypercube, node numbers zero and one might be 

responsible for the simplest class of primitives such as 

cubes and prisms, while node number two would handle the 

object class containing spheres, conics, and tori. Lastly, 

an object class of complex primitive such as fractals and 

other iteratively defined functions might be the 

responsibility of node number three. 

Splitting the sets of primitives among the nodes would 

also provide natural load balancing. Hopefully, the 

distribution of code among the nodes would reflect the 

proportion of primitives in the scene. Normally, complex 

shapes are much more computationally intensive, but are 

greatly outnumbered by simpler shapes. Consequently more 

nodes should be allocated to simple shape generation. 
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Because scenes are individually unique, ideal node 

allocation would vary from one scene to the next. In any 

static object class distribution, this method introduces the 

possibility of load imbalancing, if the class distribution 

does not accurately reflect the scene's object distribution. 

A dynamic distribution would be an even more ambitious 

undertaking. In this variation, the host program could 

dynamically allocate nodes at run time to reflect the 

proportions of different object classes present in the 

scene. Load balance could be monitored, and the node 

distribution changed mid-run. 

~Node Initiated with Object Forwarding Method) 

(The third parallel method implemented in this project 

is designed to decompose the frame buffer as well as the 

object set. In the previous two methods, an entire frame 

buffer was maintained on each node. For even moderately 

sized images, this data structure could easily exceed the 

memory available to the node. A 1024x1024 pixel RGB image 

requires eleven megabytes, well in excess of a node's memory 

capacity. A way to decompose the frame buffer is needed so 

that each node maintains only 1/N of the total image. 

The node initiated with object forwarding decomposition 

builds upon the simpler node initiated method but maintains 

only 1/P of a frame buffer per node, where P is the total 

number of nodes. For this implementation, the frame buffer 



is decomposed into strips, and each strip is X/P pixels in 

height by Y pixels in length, where X and Y are the 

dimensions of the final image. 

43 

Primitives are received from the host in a round-robin 

fashion similar to the previous two methods and tessellated 

as before. However, if a polygon (or a portion of a 

polygon) is found to.lie in an different strip of the image 

than the one assigned to the node, then the object 

description is forwarded to the appropriate node. With a 

strip decomposition, as the strip grows narrower, a given 

object is more likely to extend beyond the boundaries of the 

node's strip. This object consequently requires forwarding 

to one or more other nodes, which can seriously effect 

performance, particularly with very large numbers of nodes, 

thus very small strip sizes. 

Instead of forwarding the object description (as sent 

from the host to the node), the tessellated polygons that 

compose the object could have been forwarded. The 

communications cost of forwarding the polygons is measurably 

less than the time ~needed to communicate the primitive's 

description to the appropriate node, combined with the time 

needed to tessellate the forwarded description. In essence, 

implementing this change moves the bottleneck present in the 

host initiated method to the nodes. 

After all polygons have been tessellated, forwarded, 

and rendered, the partial node images are pasted together 
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rather than merged. This can be accomplished hierarchically 

if memory allows, or linearly by the host. The choice of 

horizontal strips rather than vertical rows does affect this 

operation. Because the programs for this project were 

written in 'C', arrays are implemented in row major order. 

Pasting a row-major frame buffer strip into the row-major 

array of the local frame buffer takes only one operation, 

rather than N operations, where N is the number of rows. 

Similarly, if the project were designed in FORTRAN, in which 

arrays are stored in column major order, a vertical 

decomposition would be best. 

Advantages 

The greatest advantage of this method is that it 

increases the size of the overall frame buffer the scene can 

be rendered into. Where· before, NxN pixels were maintained, 

only Nxl/N pixels are now kept. The savings are quite 

substantial. A 1024x1024 frame buffer that is too large to 

fit on a single node using the node initiated method now 

fits comfortably distributed on four or more nodes using 

this node initiated with object forwarding method. 

Host Broadcast Method 

The final method researched explores the merits of 

decomposing the frame buffer only, rather than the objects 

set. In this method, the host reads the datafile and 



broadcasts all the objects to all the nodes, rather than 

distributing the objects in a round-robin fashion. 
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Similar to the object forwarding method, each node is 

responsible for an equal portion of the frame buffer. When 

a node receives an object from the host, it tessellates the 

object into polygons as with the other three methods. 

Polygons lying wholly outside of the node's portion of the 

frame buffer are discarded at this time. The polygons 

within the node's portion of the frame buffer are then 

rendered. After all primitives have been rendered, the 

frame buffer is pasted together hierarchically as before. 

Advantages 

Unlike the object forwarding method, this method does 

not suffer performance penalties as the number of nodes 

grows larger. This penalty was incurred in the previous 

method due to the communications costs of forwarding those 

objects lying on or outside the boundaries of the nodes 

partial frame buffer. As the number of nodes grew larger, 

more and more objects required forwarding, resulting in more 

communications. With this method, the objects not residing 

on the current node are simply discarding, incurring no 

penalty whatsoever. 

Another advantage lies in the fact that the frame 

buffer is not required to be decomposed in a contiguous 

manner. The load balance becomes much more even when the 



frame buffer is decomposed into scan-lines rather than 

strips. The first node would receive scan-lines 0, N, 2N, 

3N, etc. The second node would receive scan-lines 1, N+l, 

2N+l, 3N+l, etc. For arbitrary images, the balance is 

greater with this method, yielding an even better overall 

performance. 

Disadvantages 
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Compared to the object forwarding method, this method 

has a great deal more communications cost due to the initial 

broadcast step. This can be especially large for scenes 

with a great number of objects rendered on a large number of 

nodes. Some of this additional communications cost can be 

offset by taking into account the observation that broadcast 

messages can be sent hierarchically just as the frame buffer 

was collected in Log2P steps rather than N steps. 

Other Gonsiderations 

A major consideration of this third method is load 

balancing. Load bal~ncing is the relation of the work done 

on each node. For the best case load balancing, 0/P 

primitive9 would be rendered per node, where 0 is the total 

number of Objects in the scene and P is the total number of 

nodes. In the worst case scenario, all objects lie within 

the single strip of the image and are assigned to only one 

node. If there are 0 total objects and P nodes, each node 
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receives 0/P primitives, and forwards every one of them to 

the single node N, the node assigned to the image strip 

where all objects lie. Node N must then tessellate and 

render the entire scene of primitives. The worst case would 

result in even poorer performance than rendering the scene 
' 

on a single processor due to the communication cost of 

forwarding the objects. In actual practice, both the best-

case and the worst-case distributions are rarely achieved. 

In graphics, scenes tend to be centered in the image, 

resulting in a load balance that resembles a bell curve, 

where nodes having central portions of the image do most of 

the work. 

To help solve load imbalance, the decomposition by 

strips can be changed to a decomposition by grid. Each 

processor has X/N by Y/M pixels, where N*M=P is the total 

number of processors available. Any of a number of possible 

decompositions are available. For this application, the 

decomposition which minimizes the total perimeter of the 

nodes partial image is ideal, thus minimizing the number of 

overlapping objects requiring forwarding. 

Another consideration of any parallel decomposition is 

in the image to be generated. A scene containing a great 

number of largely vertical elements, such as a sky-line of 

tall buildings, would render quite poorly on a horizontal 

strip decomposition. In practice images are made up of a 



number of different elements, and there is no way to 

customize the decomposition for the image. 
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In this research, the four decompositions are tested 

using scenes made up of uniformly random distributed spheres 

of identical size. This will provide a good sample data 

set, if perhaps a bit too-ideal of a case. The three 

methods have been tested on 1, 2, 4, 8, 16, and 32 nodes. 

The number of spheres tested are between 1 and 21 1 (2048) . 

Each sphere is made up of 5102 polygons. In the largest 

case, over two million polygons are tested on 32 nodes. 



CHAPTER VI 

RESULTS 

Before detailing the results of the four data 

decompositions, we need to examine performance measures used 

to test the effectiveness of the approaches. 

Performance Measures 

Speed-up, one of the main measures of performance, is 

defined as the time a task takes on one processor divided by 

the time taken on n processors, i.e. Tp=T1/Tn. Perfect 

speed-up is achieved when N processors complete a task in 

1/N the time it takes to complete the same task on only one 

processor. Most tasks do not reach this goal due to a 

number of factors including inter-node communication cost, 

uneven data decomposition, and poor load balancing. 

Another measure of parallel performance is efficiency, 

the effective use of parallel resources. Efficiency is 

calculated as the product of speed-up and the number of 

processors, i.e. E = Sp*P. Perfect speed-up is also 100% 

efficient. 
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When a problem can be decomposed in such a way that no 

inter-node communication is necessary, it is said to be 

perfectly parallelizable. An example of a perfectly 

parallelizable problem would be integer summation: summing 

all integers between zero and some large integer I on P 

processors where P < I. The host passes each node a single 

message containing I. Each node sums its portion of the 

problem, from I/P*N to I/P*(N+l), where n is the node number 

from 0 to P-1. The resulting partial sums are returned to 

the host and totaled before being displayed. No inter-node 

communication is required, resulting in a perfectly 

parallelized problem. 

Most of the interesting problems in parallel research 

today require a certain amount of inter-node communication. 

As expected, these processes yield less than perfect speed­

up. It is even possible that some parallel implementations 

on certain architectures do take longer to execute on 

multiple processors than on single processor architectures. 

In such cases, communication costs outweigh computational 

savings to such a degree that it is not advantageous to 

decompose the problem into the parallel environment. Most 

parallel applications fall somewhere between these two 

extremes of perfect speed-up and actual speed degradation. 

On a speed-up curve, linear positive slope is good, 

suggesting that speed-up is directly proportional to the 

number of processors. Peaked performance shows on a speed-
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up curve as a local maximum, after which, adding processors 

to the task may actually decrease performance. Figure 11 

below is a speed-up graph showing a number of differing 

levels of performance. 
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Having presented the two basic performance measures, 

speed-up and efficiency, we can now examine the results from 

the four methods implemented for this research. 
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Host Initiated 

As expected, the host initiated decomposition yields 

very poor results due to the host-to-node communications 

bottleneck. Figures 12 gives the speed-up curve of the run 

with the best overall time, while Figure 13 shows the 
' 

efficiency curves of all runs tested. The host cannot send 

polygons packets to the nodes as fast as they,are able to 

render them into the frame buffer. As the number of nodes 

increases for any given number of polygons, both the 

efficiency and speed-up decrease due to the increased time 

spent waiting on the next polygon packet to arrive. As the 

number of polygons increase, this wait-time comes to 

dominate the time spent rendering. The variation in polygon 

packet size also yielded minimal change in the overall 

results. Testing this method on machines with even more 

nodes, or scenes containing ~ven more polygons, would be 

expected to show even poorer performance measures. 
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Node Initiated Method 

The node initiated method yielded the best results of 

54 

all four methods. The speed-up and efficiency curves, given 

in figures 14 and 15, respectively, are more in line with 

the optimal speed-up and efficiency curves. The results 

come from a minimization of overall communications and an 

absolutely equal load balance. Higher numbers of nodes and 

larger numbers of polygons would maintain the high results. 
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Node Initiated with Object Forwarding Method 

Node initiated with object forwarding failed to yield 

the expected results. The communications cost of object 

forwarding weighs very heavily on test runs with large 

number of nodes, thus having narrow strips of the frame 

buffer. Figures 16 and 17 show the speed-up and efficiency 

curves, respectively, of all runs. The performance curves 

wander quite a bit, most likely due to the random nature of 

data distribution over the nodes. From one test run to the 

next, a relatively small change in the percentage of the 

objects require forwarding can have a significantly high 

change in timing results, due to the high cost of­

communications. Averaging the run times of many tests would 

smooth out the curves, but it is certain that the results 

would be well below optimal. 
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Broadcast Method 

The broadcast method yielded very good results, though 

not quite as good as the node initiated method. Figures 18 

and 19, respectively, show the speed-up and efficiency 

curves respectively for this method. As the number of nodes 

generating a particular scene increases, the time to 

tessellate the broadcast objects remains constant, while the 

time spent rendering decreases. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Conclusion 

The previous chapters have shown that complex image 

rendering techniques can indeed be successfully implemented 

on medium-grain parallel architectures. Two of the four 

data decompositions researched, the node initiated method 

and the broadcast method, yield excellent results. With the 

other two methods, host initiated and node initiated with 

object forwarding, further research in certain areas may 

bring them up to more acceptable levels. Applying an 

algorithm such as Z-Buffering to parallel processing using 

four different data decompositions yielded four different 

results. Unlike some other areas of programming which may 

seem more straight-forward, if not actually cut-and-dried, 

developing parallel data decompositions still require that 

creative approach that appears almost to be art. 

Future Work 

A great deal of work can still be done in the area of 

Scene Description. RenderMan and PRIGS+ are by no means the 
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final word in this area. As scenes become larger and 

larger, and component objects become more and more complex, 

scene description languages are going to have to evolve as 

well toward greater flexibility and ease of use. 

The four decompositions researched in the previous 

chapters can all be classed static decompositions, since the 

decomposition does not change during execution of the scene 

rendering. Another possibility, less well researched, is 

the dynamic decompositions. These dynamic decompositions 

are also another method of load balancing. In the fourth 

decomposition, the broadcast method, if a poor load balance 

is determined to exist (as in the case of objects-clustered 

at the center of the image), the dynamics could be changed 

so that the nodes responsible for the central portions of 

the frame buffer handle proportionately less work, thus 

equalizing the overall load balance. 

Load balancing is the most visible area of this 

research that has the greatest effect on performance. A 

poor load balance can destroy even a good decomposition. If 

any kind of reasonable performance is to be realized from 

any decomposition, either static or dynamic, a suitable 

method of maintaining proper load balancing must be 

implemented. 

The scene sizes tested in this research (on the order 

of a few million polygons) may be large today, but in a few 

years, they will seem small by comparison. Graphics 



techniques, especially parallel techniques, must come to 

deal with larger scene sizes. 
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All the areas of future research mentioned above are 

aimed at advancing graphics technology toward the twin goals 

of speed and realism~ Better scene descriptions yield 

larger scene sizes, having greater realism. Advanced data 

decomposition methods yield faster rendering of the larger 

scenes. Load balancing ensures maximum speed-up and 

efficiency on the parallel architectures. As these areas 

are improved, both the speed and realism of image rendering 

graphics techniques will be advanced. 
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