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PREFACE

Accurate characterization of process dynamics from on-line sensor data is the key

issue in successful implementation of gain scheduling for controlling chemical processes.

This work presents a development of pattern-based gain scheduling for process control.

The approach employs process state maps constructed from windowed slices of multi­

sensor plant trend data. Process identification is done using principles of similarity based

pattern recognition. This technique provides a straightforward means to associate unique

gain, integral time and/or derivative time controller settings with different states of the

process. Simulation results show that better control performance may be achieved by use

of gain scheduled controller as compared to the conventional fixed feedback systems.

I am sincerely grateful to my thesis advisor, Dr. Rob Whiteley. His guidance

went well beyond that of academic supervision and technical advise, and showed a deep

concern for the professional and personal development of his students. I wish to thank

Dr. Randy S. Lewis and Dr. Gary L. Foutch who served on my committee. A special

thanks also goes to Dr. Eduardo Misawa whose courses gave me a good understanding of

nonlinear control theory.

I also wish to thank all my friends who gave me company during long, late nights
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CHAPTER I

Introduction

1.1 Motivation

Control of chemical processes has traditionally been performed using linear feedback

controllers. Feedback control adjusts the manipulated variable in order to force the

process to conform to a desired behavior. Such controllers are typically designed on an

assumption that the process dynamics can be approximated by a linear time-invariant

system (LTIS). With the advances in linear control theory, designing a good feedback

controller for a LTIS plant is a relatively straightforward exercise. Unfortunately, the

dynamics exhibited by chemical processes are typically nonlinear. For such nonlinear

systems the controllers are often detuned to maintain an adequate stability margin but

they perform poorly when the process drifts away from the design condition. Thus there

is an incentive to investigate alternate methods for design of controllers with widely

varying parameter dependent dynamics.



Gain scheduling, or more rigorously controller parameter scheduling, offers a good

solution to compensate for process nonlinearities (Mellichamp et. aI., 1966b, and Pott,

1984). In this approach controller settings are expressed as a function of one or more

measured process outputs and are calculated on-line to maintain optimum and stable

performance. This control methodology is termed gain scheduling because initially it

was used to accommodate changes in process gain (Kp) only (Astrom, 1983).

1.2 PID Controllers

The most popular feedback controllers used in the chemical industries are PI

(proportional-integral) and PID (proportional-integral-derivative). As the name suggests,

they adjust the manipulated variable depending on the magnitude of error (proportional),

the cumulative error integrated over time (integral) and the rate of change of error or

derivative of the error (derivative). Derivative action cannot always be used since it is

sensitive to noise in the error signal. This control structure is shown in Figure 1.1. A

controller weights the proportional, integral and derivative action depending on the

tuning parameters. The general equation of a PID controller can be expressed as:

[ 1 J de(t) ]pet) == K c e(t) + - e(t*) dt* + ~D -- + ps
~I dt

(1.1)

Error (e(t)) is defined in equation 1.1 as the difference between the desired value (ysp(t),

the set point) and measured variable YM(t)
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e(t) == Ysp(t) - Ym(t) (1.2)

where: pet) is the manipulated variable.

Ps is the controller bias.

Kc is the proportional gain of the controller (adjustable).

"CJ is the integral time constant or reset time (adjustable).

"CD is the derivative time constant (adjustable).

The controller bias (Ps) is the value of the manipulated variable at steady state, or

when there is no net error (e(t)), and, hence, no control action. The variable Ps is also

called the controller bias. For a PI controller "CD is zero and thus insensitive to the rate of

change of error.

d(t) Disturbance

y(t)

Measuring
Device

1_--+-....L.......lo.'---.IFinal Controll_~
Element

Controller Mechanismr--------
y~ e(t)

I -t~-l Yi.......ml.o\ool'(t+-) I

Figure 1.1: Schematic of a feedback control loop.

3



1.3 Gain Scheduled PID Controllers

Gain scheduling adjusts the controller parameters (Ke, 'tr and 'tD) to compensate for

the changes in process dynamics. The key to successful implementation of gain

scheduling lies in accurate characterization of the process dynamics. Mellichamp (1966)

suggested that dynamic information can be inferred from estimation of the process gain

(Kp ). Bristol (1977) describes a pattern recognition method that characterized process

dynamics from response to step input changes. In this work process dynamics are

inferred using a pattern map of the process. All three methods are discussed in the

following chapter.

While theoretically attractive, the practical implementation of gain scheduling

remains difficult. Work by Shamma and Athans (1990) provides guidelines for selection

of scheduling variables and operating conditions. One of the main drawbacks of gain

scheduling is that the controller parameters are adapted in an open-loop fashion. There is

no feedback to compensate for an incorrect schedule since the adaptation is performed in

a feedforward mode (Astrom, 1983). Thus the key issue for successful implementation of

gain scheduling is to be able to accurately characterize the process dynamics, i.e.

recognize the current state of the process and the state to which the process is evolving.

Also, the way in which the scheduling is performed becomes critical because smooth

transition in controller parameters is essential if one expects the properties of local linear

controllers to carryover to the gain scheduled control system. This thesis addresses both

Issues.
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1.4 Contribution of Thesis

This thesis is built on the initial work done by Anderson (1993) which looked at the

use of similarity based pattern recognition to perform gain scheduling. Anderson showed

that a multi-sensor pattern-based gain scheduling system performs better than a

conventional fixed PI controller. Previous work used a neural network based pattern

recognition approach.

The current work focuses more on how the sensor data can be effectively used to

identify the process state rather than the tool to measure similarity between pattern

vectors. Extracting information regarding the state of the process from information

embedded in the multi-sensor trend patterns plays a key role in successful design of a

gain scheduling control system. Guidelines to select scheduling variables are also

presented. Thus the focus of this thesis has been to develop a novel method to accurately

characterize process dynamics using the tools developed previously by Anderson (1993).

This study has also investigated various interpolation techniques that can be used to

perform gain scheduling. The emphasis has been to develop a strategy that is effective

even during periods of transient operation. Using a nonisothermal continuous stirred tank

reactor (CSTR) as a demonstration system, a formal methodology to design a gain

scheduled controller has been developed.

5



1.5 Organization of Thesis

This thesis is organized into six chapters. In Chapter II different approaches to design

a gain scheduled control system are presented. Our pattern-based approach is also

introduced and various successful applications of gain scheduling are discussed.

In Chapter III an on-line identification technique to characterize different operating

conditions is presented. A pattern based methodology to effectively utilize multi-sensor

data is developed. Issues, like selection of scheduling variables and use of a sliding

window for process characterization, are also discussed.

Chapter IV presents different strategies that can be used to perform controller

parameter calculations after the state of the process has been established. The chapter

begins with a discussion on the choice of the number of closest neighbors to be used for

performing gain scheduling, followed by the presentation of three different interpolation

strategies.

Chapter V demonstrates our pattern-based gain scheduling approach for a simulated

CSTR. First the dynamics of the nonisothermal reactor are described. Next, a pattern­

based gain scheduling control system is designed. Finally, the results are presented

which are used to evaluate performance of our scheduling approach.

Concluding remarks, as well as a discussion on issues for future work, are

documented in Chapter VI.

6



CHAPTER II

Gain Scheduling: An Adaptive Control Strategy

2.1 Overview

This chapter presents an overview of different methods that have been used to

perform controller parameter adaptation. This chapter starts with a discussion on a need

for controller parameter adaptation. The key issue in implementation of a gain scheduled

system is identification of the process dynamics. Three methods, as well as the

differences in the methodology used to characterize the process dynamics, are presented.

Finally, some successful commercial applications of gain scheduling are discussed.

2.2 Need for Controller Parameter Adaptation

According to linear state feedback control theory, the best way of controlling any

process is by measuring all the state variables in order to manipulate the process inputs in

some desired fashion (such as the PID algorithm). This is rarely done in practice because

7



all the state variables cannot be measured using on-line sensors and a rigorous knowledge

of the existing process dynamics is not known. The most common control methodology

utilizes a single input single output (SISO) structure. This is very popular because of the

relative ease of the control system design. The main disadvantage of such a system is

that it disregards the process dynamics of other measured and unmeasured process

variables.

One alternative is to retain SISO methodology, but incorporate the effect of other

process variables on the process dynamics by adaptively changing the controller

parameter settings (e.g. Kc, ~I and ~D). For example, a chemical reactor is often

controlled by measuring the temperature of the reactants and adjusting the coolant flow

rate. It is well known that the dynamics of a reactor will vary with different feed and

product compositions. Thus, the use of more than one variable to measure the process

dynamics in ,a continuous manner becomes imperative. Information extracted from more

than one process variable can then be used to schedule controller gains for the variations

in the process dynamics. Such a control strategy is termed adaptive since the controller

adapts itself to maintain satisfactory control for a nonlinear process.

Different approaches have been investigated to adapt PI controllers to respond to

variations in process dynamics. Different approaches to gain scheduling are discussed in

this Chapter with the aim at implementing this controller adaptation technique in real

time.

8



2.3 Gain Scheduling Based on Process Gain

Mellichamp (1966b) presented an adaptive control system designed to maintain

good control characteristics for processes showing wide variations in process gain. This

method takes advantage of the fact that a good control can be maintained in spite of time

varying process by holding the overall control loop gain constant. The overall open-loop

gain for a PID control structure is the product of the gains of all the elements in the

feedback control loop. Open-loop gain is expressed in equation 2.1 as:

(2.1)

where: Kp is the process gain.

Km is the gain of the measurement device. (For example thermocouple)

K c is the controller proportional gain.

Kf is gain of the final control element. (For example flow control valve)

If the objective of controller adaptation is to keep the open-loop gain constant, then a

simple gain scheduling can be expressed as shown in equation 2.2. This is further

illustrated in Figure 2.1.

Kc = Constant
KpKmKf

9
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The controller gain Kc is adapted to compensate for the variations in the process gain,

Kp . This method can also compensate for the variations in the gains of the other control

elements such as a control valve or other measuring device. The gain associated with the

final control element (Kf) and measuring device (Km) can be identified in a

straightforward manner since they are inherent characteristic of these mechanical devices.

The key step to successfully apply this method is to be able to accurately characterize the

gain of a time varying nonlinear process (Kp). In an earlier paper, Mellichamp (1966a)

presented a method for continuously estimating the gain of a process by applying

sinusoidal perturbations to the process.

Adaptation Mechanisms

~LII.'../S:/\ e t
S~

Ym(t)

Kc=

Controller

(Constant)

Gm=K m

Valve

Kv
Gv= ---

1:vS + 1

OQ-Iine Kp
Identifier

Process

Kp
Gp = ---

1:pS + 1

y(t)

Auxiliary P cess
Measure ents

Measuring Device

Figure 2.1: Feedback control loop and adaptation mechanism.

Such a control strategy is limited only to those systems whose dynamics can be

approximated by afirst order plus dead time (FOPDT) model. Many processes, such as

10



exothermic reactions, have dynamics which cannot be approximated as FOPDT and are

not amenable to Mellichamp's method. For the demonstration system used in this study

the Kp varies considerably as the process is open loop unstable. This is explained later

when the dynamics of the demonstration system are discussed. Keeping the open loop

gain (Koverau) constant for such a system would lead to unstable controller performance.

Moreover such a scheme neglects variation in other controller settings such as the reset

time, 'tIe

Mellichamp's gain scheduling strategy assumes that the process dynamics can be

characterized by estimating the value of the process gain (Kp). This simple gain

scheduling approach may result in poor control unless the process dynamics are also

considered (Seborg et aI., 1986). For a process which has a long time-delay, this

approach to controller parameter adaptation may result in a performance worse than

conventional PID control unless some kind of time delay compensation is employed

(Wong and Seborg, 1985).

2.4 Gain Scheduling Based on Error Diagnostics

Another way of approaching gain scheduling is as a self-tuning algorithm which

adjusts the controller parameters based on the transient error pattern. Bristol (1977) was

first to propose an algorithm to adapt the controller parameters based on a pattern

recognition approach. Typically, with this approach the closed loop is perturbed and the

11



resulting pattern of the response is observed. This pattern is compared with one that is

personally desired. Key characteristics, such as damping and overshoot, are extracted

from the recorded response to characterize the dynamics of the process. Such a self­

tuning PID controller automatically adjusts the controller setting to result in a desired

damping and overshoot of the response pattern.

Recently, much work has been done to characterize various process states and

associate them with different pattern characteristics (Cao and McAvoy, 1990; Megan and

Cooper, 1992). In this manner a gain scheduling algorithm can be set up which aims at

driving the error pattern to a desired form. Figure 2.2 shows some typical transient

pattern which can be analyzed to interpret the state of the process. The best response to a

unit step in manipulated variable is represented by the center pattern in Figure 2.2. The

deviation in characteristics of the error pattern recorded from desired pattern can be used

to update the parameters of the controller. A table of pattern characteristics

corresponding to different states of the process (as shown in Figure 2.2) is used. Once the

transient pattern is characterized in reference to the table of different nominal patterns,

the process gain (Kp) and the process time constant ('tp) can be established. A rule along

the lines of Zeigler-Nichols (1942) method can then be used to correlate the most

appropriate controller settings.

The aim of a gain scheduler is thus to recognize characteristics of an error pattern as

the process is perturbed by a unit step change in the manipulated variable. Controller

parameter are adapted to drive the error response to the desired form (Cooper and

Lalonde, 1990). This method, like any tuning exercise, is an iterative process. The

12



characteristics of error response are first extracted and then controller adaptation is

performed. This is repeated till the final error characteristic is similar to the desired error

pattern. Highly advanced pattern recognition algorithms such as the ART2-A neural

network, have been used for this purpose (Megan and Cooper, 1992, 1994, 1995).

•O.SKp

~~-..---.I -r· ~__--....

'*2.0Kp

*1 .0.,..p 2.01'p

Figure 2.2: Exemplar patterns used for pattern recognition. (Megan and Cooper, 1992)

Controller tuning based on error diagnostics has been successfully commercialized

(Kraus and Myron, 1984) and offers an excellent way to adapt controller settings for a

time varying system. This commercially available self tuning controller has been dubbed

as "EXACT" which stands for Expert Adaptive Controller Tuning by the Foxboro

13



company. The EXACT controller utilizes expert-system techniques and artificial

intelligence to tune PID coefficients with no need for process modeling. This has been

successfully used to tune PID coefficients for chemical processes showing large dead-

time and nonlinearities.

Recently, fuzzy reasoning has also been used for this application in an effort to

implement gain scheduling in real time. Zhao et aI. (1993) arrived at a gain scheduling

methodology which utilizes fuzzy rules and reasoning to determine the controller

parameters based on the error signal and its first derivative (rate of change of error). This

approach is schematically presented in Figure 2.3. The strategy of adapting the controller

parameter with reference to error (e(t)) and rate of change of error (ile(t)) is represented in

a form of rulebase. A typical fuzzy rule could be:

"If the error is small and the rate ofchange oferror is large, then reduce the controller

gain (Ke) and increase the reset time (~I)."

Input

+

Fuzzy Rules
and Reasoning

Process Output

Figure 2.3 : Schematic of a gain scheduler using fuzzy reasoning. (Zhao et aI., 1993)
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For this strategy the gain scheduling is performed only when a step change in setpoint

is made. The scheme is ineffective when the process is in steady state or while the

process is evolving to a new steady state.

Controller parameter adaptation based on error diagnostics cannot be used to schedule

PI controllers in real time. The main reason being that the steady state operation of the

process needs to be perturbed in order to obtain the error diagnostics. Nevertheless, this

technique is an excellent alternative to trial and error tuning (or "hand" tuning) routinely

performed by the process expert to update the controller parameters. In a way this

methodology has automated the "art" of controller tuning by use of artificial intelligence.

2.5 Gain Scheduling Using Pattern-Based Tuning Map

Perturbations in input variables to record error diagnostics are often not possible since

it disrupts the smooth operation of a plant. Characterizing process dynamics based on the

process gain (Kp) is also not effective for processes which cannot be modeled as an

FOPTD model. Thus there is a big incentive to develop a method to accurately

characterize process dynamics using some other approach. Our approach uses a process

state map constructed from windowed slices of multi-sensor plant trend data. This

pattern-based process state map is used to characterize process dynamics at different

operating conditions. Thus a method to uniquely associate gain, integral and/or

derivative time controller settings with different states of the process is developed.

15



In this approach controller parameter adaptation is performed by treating a nonlinear

plant as a set of localized linear processes (Rugh, 1991). The number of operating

conditions at which the process is linearized to approximate the plant dynamics depends

on the extent of process nonlinearity and are normally chosen to cover the expected range

of plant dynamics. The dynamics of the process are characterized at different operating

conditions and appropriate controller settings are determined for each of these operating

conditions. An automated "tuner" such as Foxboro's EXACT controller may be used to

determine a good set of controller settings at each of the operating conditions. A table of

controller settings at each of the operating conditions is referred to as a "gain map" or

"gain table" in this study. This "gain map" relates the process operating conditions to the

desired controller settings. During plant operation the process state is identified on-line

and as the process moves from one operating condition to another, the controller

parameters are automatically changed. The adaptation strategy is schematically presented

in Figure 2.4.

Our approach uses a novel pattern-based technique for scheduling controller

parameters. More than one process variable is considered over a finite period of time

(window) to accurately characterize the process state. The features extracted from these

multi-sensor pattern trends are analyzed and the process state is identified by measuring

the similarity of the pattern vector corresponding to the process state with each of the

nominal operating points.

16



Figure 2.4: Gain scheduling: A programmed adaptive control system.

Our pattern-based gain scheduling approach involves three basic steps:

• Selection of nominal conditions representing steady operating process conditions.

• Characterization or identification of the process operating state from multi-sensor

pattern trends.

• Scheduling the controller parameters.

Though this work has looked at implementing gain scheduling for a PI controller, the

strategy is not limited to PID type controllers. Rather, the same strategy can be used for

any linear controller whose parameters can be scheduled to compensate for the

nonlinearities in the process.

17



2.6 Applications of Gain Scheduling

A number of industrial applications of gain scheduling implementations can be

identified. The popularity of such a design technique lies in the fact that it is an

adaptation strategy to the ubiquitous PID algorithm which has time proven utility and

applicability to many of the industrial feedback control problems.

2.6.1 Aircraft control

Early development of gain scheduling included applications in high performance

aircraft for design of an auto pilot (Seborg et aI., 1986). It was found that monitoring the

mach number and dynamic pressure allowed a suitable schedule to be developed

(Astrom, 1987). Astrom's work looked at the effect of state variables other than the

controlled variables (altitude and direction) on the flight dynamics. Since then gain

scheduling has become a primary method to compensate for variations in flight control

problems. It is used extensively in the design of an auto pilot system (Stien, 1980). Gain

scheduling was initially limited to the aircraft industry. With the arrival of computer

control systems, gain scheduling has become easier to implement (Astrom and

Wittenmark, 1989).

2.6.2 Ship Auto Control

This involves use of gain scheduling to compensate for parameter changes due to

environmental changes. These changes include wind velocity, water currents and ship

movements such as sway and yaw. A table look up approach has been used to do gain

scheduling (Kallstrom et aI., 1979). The main goal of this system was to reduce drag in

the ship movement. The tuning values were changed as a continuous function of a ship's

speed. Basically the controller parameters were read directly from a table when the

change in wind velocity and water currents were determined.

18



2.6.3 Process Control

The "EXACT" controller is a commercially available adaptive controller that uses

pattern recognition to achieve desired closed loop characteristics. Although the complete

algorithm is proprietary, its basic features have been published (Bristol and Kraus, 1984).

This self tuning PID controller provides a micro-processor based tool for use at the front

line of process control (Kraus and Myron 1984). The Foxboro company has dubbed this

new controller "EXACT" for Expert Adaptive Controller Tuning.

One notable case where on-line adaptive control has been widely used is to control

pH of a reacting system. The wide variations in titration curves with changes in buffering

makes pH control ideal for on-line adaptive control methods. Gain scheduling has been

successfully used in controlling pH of a reacting system (Astrom, 1987). Gain

scheduling has been performed by storing the parameters in a chart form. The feedback

controller can be effectively used in the entire range of operating conditions.

Cardello and San (1988) have looked at gain scheduling for batch bioreactors. Batch

processes are extremely nonlinear and their dynamics show wide variations with time.

They found that Oxygen Uptake Rate (OUR) can be used as a scheduling variable. A

table look-up is used to select the gain depending on the OUR measurement. In

comparison to a fixed PID controller and feedforward - feedback controller, the integral

of the square of the error (ISE) was 20% less for the gain scheduled method. Cardello

and San found that scheduling was an effective method for controlling dissolved oxygen

levels in a batch fermentor. These conclusions are important as the fermentor had large

variations in process load.

Leuba et al. (1992) have extended the concept of gain scheduling and fuzzy logic to

set up an adaptive PI controller. The controller controls the fluid level in U-tube steam

generators. The fuzzy logic circuit analyzes the disturbance and based on that

information, decides what the controller effort should be. The gain scheduling aspect of

the system changes controller parameters based on the temperature of the feed water. The
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gain is adjusted as a linear function of the feed water temperature. This led to a much

smoother and stable performance.

2.7 Need for Future Research

Gain scheduling has emerged as a very powerful and useful technique to reduce the

effect of parameter variations. It is in fact the predominant method to handle parameter

variations in flight control systems. Gain scheduling seems to have gained wide

acceptance for processes whose operating state can be identified by some auxiliary

variables. Auxiliary variables are measurable process variables other than the controlled

variable. From a review of the process control applications where some kind of gain

scheduling has been applied it is clear that controller parameters are scheduled using a

table look-up approach. Once a new operating condition is identified by a process expert,

the controllers are retuned. In applications, such as fluid level control in U-tube steam

generators (see subsection 2.6.3), an instantaneous value of a single variable is used to

characterize the state of the process. These techniques have not been widely accepted in

the process industries because it is often difficult to characterize and differentiate one

operating condition from another. There is thus a need to develop a methodology to

apply this technique in an on-line fashion. Microprocessor based controllers can be easily

programmed to store a table of controller settings and even calculate them on-line. For

process control systems which have large time constants and time delay there needs to be

a proper method to be able to identify the process condition by looking at the plant

variables or the sensor readings. The aim of this study thus focuses on development of a

technique which uses pattern-based information to characterize process dynamics from

on-line sensor data.
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CHAPTER III

Pattern-Based Process Characterization

3.1 Overview

An on-line identification technique to characterize different operating conditions is

presented in this chapter. The characterization of process dynamics is the key issue for

designing a gain scheduled controller. The first step in setting up a gain scheduled

controller is to approximate the nonlinear plant by a set of linearized models. The

method to represent each of the nominal conditions at which the plant dynamics are

linearized is discussed in this chapter. Once a set of operating conditions are identified

the process dynamics at these conditions are mapped to form a pattern-based tuning map.

The key step in this pattern-based approach is to map the process dynamics at different

operating conditions. Which scheduling variables are chosen to construct the pattern­

based tuning map is also an important issue. The use of such a map to characterize

process dynamics in an on-line fashion is discussed next.
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3.2 Formation of Pattern-Based State Map

A gain scheduling algorithm needs a way to map the controller parameters to

variations in process dynamics. A state map relates the process dynamic characteristics at

different operating conditions to a set of well tuned parameters which will result in

satisfactory and stable control action at those process conditions. A state map of all

possible operating conditions corresponds to a "gain surface". A gain surface can be

described as a plot of controller parameters (for example controller gain, Kc ) at all

possible process operating conditions. The topology of this "surface" is the characteristic

of the process under consideration. We do not propose to associate controller parameters

at all possible operating conditions to arrive at this "gain surface". Rather, the gain

surface is approximated by interpolating the controller parameters when the process

operates between the nominal points.

Formation of state maps typically involves three different steps:

• Selection of nominal conditions.

• Selection of scheduling variables to identify these nominal conditions.

• Represent the nominal conditions by the multi-sensor pattern trends typically seen

at those conditions

3.2.1 Selection ofNominal Conditions

Nominal conditions are operating conditions at which process dynamics are

represented by a linear model and at which satisfactory controller parameters are
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available. The choice of nominal operating conditions is often based on the historical

data of the plant. The conditions at which the plant normally operates are the first choice

as nominal operating conditions. Generally, a few more operating conditions are chosen

so that the entire nonlinear operating region can be reasonably approximated.

A process state can often be associated with sensor trends of certain measured

variables. Most chemical processes can be modeled by mass momentum and energy

balances. Mass, energy and momentum in tum can be characterized by variables such as

density, concentration, temperature and flow rate. These characterizing variables are

called state variables and their values define the state of the processing system

(Stephanopoulos, 1990). According to linear control theory, the process dynamics are

directly related to the values of"state variables" rather than the values of measured

variables. For the demonstration system the controller settings are also distributed in the

same manner as the operating conditions in the state space and that there can be one to

one mapping between the two. That is, no two operating conditions have similar

controller parameters associated with them. Thus the nominal conditions are chosen such

that they cover the range of dynamics of the plant and represent the conditions at which

the plant normally operates.

3.2.2 Selection ofScheduling Variables

The next implementation issue is to identify process variables that can then be used to

characterize the process state. Often the state of the process is inferred from the

instantaneous value of the controlled variable. For example the dynamics of a reactor is
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often inferred from the temperature at which the reaction is occurring. Since the process

dynamics are a function of more than just the controlled variable there is a need to

identify other process variables which can be considered for interpreting the process

dynamics. The most common method for selecting schedulings variables is to look at the

physics of the process and choose variables which can help characterize it. The designer

is often limited to choose the scheduling variables from the measured process variables.

For example often it is not possible to measure the production rate since the product

concentration cannot be analyzed in an on-line fashion.

Shamma and Athans (1992) in their work on developing a theoretical analysis of gain

scheduled systems present two guidelines for selection of scheduling variables. They are:

1. The scheduling variables should capture plant nonlinearity.

2. The scheduling variables should move slowly.

The first guideline is only a reminder that the plant models are only linearized

approximations to the nonlinear plant. Similarly the second guideline that the scheduling

variables should vary slowly is a reminder that the design model explicitly assumes a

fixed operating condition. Previously these heuristic rules of thumb were verified by

simulations though the work by Shamma (1988) and shows that these guidelines have a

rigorous mathematical justification.

Since the identification of a nominal operating condition is performed by looking at

the patterns of the scheduling variables, the sets of process variables representing a

particular operating condition should be as distinct as possible from "neighboring"

operating conditions. Often the number of process variables which can be measured by
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on-line sensors are limited. For example concentration cannot be accurately measured

on-line. Thus there may be a need to identify certain "virtual variables" which can be

computed on-line to help establish the current process state. A virtual variable is a

combination of one or more measured variables whose trend provides valuable

information regarding the process dynamics. An example of a virtual variable for a

reactor could be the "concentration" of the reactant inferred from reactor temperature and

a reaction kinetic model. Often it is possible to identify virtual variables that not only

capture information regarding plant dynamics, but also move "slowly" during periods

when the process is under transition from one operating state to another. Since at times it

is not possible to identify slow varying real variables which can be used to uniquely

associate different operating conditions, the use of virtual variables becomes important.

One advantage of using patterns of these scheduling variables is to make process

characterization during periods of transition much more slow and smooth. During

periods of transition some variables fluctuate a lot before they settle down to the value

corresponding to the new steady state. By using patterns of process data the effect of

such fluctuations during period of transition can be reduced. The guidelines to select

scheduling variables to form a pattern map are as follows:

1. Patterns of scheduling variables should capture plants nonlinearites

2. Patterns of scheduling variables should vary slowly as the process moves from one

operating condition to another.
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3. The pattern representation (in a vector form) of the scheduling variables

characterizing an operating condition should be as distinct from each other as

possible.

3.2.3 Representation ofNominal Conditions Using Multi-Sensor Pattern Trends.

The final implementation issue in formation of a state map is to arrive at a way to

represent the "nominal conditions". It is generally not possible to accurately characterize

the process dynamics by just measuring the instantaneous value of scheduling variables.

An instantaneous view of the process gives no information regarding the process state

during periods of transition. In another words the process state cannot be accurately

characterized by instantaneous views.

The use of an instantaneous view of the process variables is prone to errors because of

disturbances and transient periods. The fact that the instantaneous view of the process

can result in wrong process characterization will be demonstrated using an illustrative

example. The process state of a reactor is often inferred from the reactant and coolant

temperatures. Gain scheduling is done based on the steady state at which the process is

operating. When the process is in transition and evolving from one steady state to

another an instantaneous view can result in a wrong process characterization. If only the

instantaneous value of a single variable or more than one variable is used to establish the

state of the process, then there is always a danger that the process may "appear" to go

through other steady state operating conditions during transition periods. This is shown

in Figure 3.1. If only an instantaneous value of temperature is used then the process
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appears to be operating at steady state 3 (883) while the process is actually in transition

(see Figure 3.1a). If two variables (reactant and coolant temperature) are used, even then

the instantaneous view of the process may result in a wrong process characterization (see

Figure 3.1 b). A view of the time history of the process or the pattern trend of temperature

data (see Figure 3.1a) reveals that the process actually went through a period of transition

before evolving to steady state 2 (882). Thus if the process state is viewed from

windowed slices of sensor data then it is possible to accurately characterize the state of

the process. The process dynamics at any operating condition would be very different

depending on whether the process is steady or is in transition at that condition.

Furthermore if the objective of the on-line gain scheduler is to track the process and

simultaneously schedule parameters depending on the operating conditions, then the idea

of operating condition being represented by a single dimensional vector of process

variables can result in a wrong schedule. There is a need to develop a method that

uniquely identifies each of the operating conditions even during periods of transition.

Traditionally a gain map relating the process operating conditions to fine tuned

controller parameters were made using instantaneous views of single scheduling variable.

We propose to replace the traditional gain map by a more robust, pattern-based gain map.

Accurate characterization of a process state requires consideration of more than one

variable for a finite period of time (Anderson and Whiteley, 1993a). In this new approach

the single value scheduling variable is substituted by a multi-sensor pattern to

characterize the process more accurately and thus significantly improve the gain

scheduling during periods of transient operation. Use of multi-sensor pattern trends to
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identify process dynamics can result in considerable improvement in process

characterization during periods of transition.

3.2.4 Arriving at a Pattern-Based Representation

The last step in the formation of a pattern-based state map is to represent the multi­

sensor patterns by a vector in a multi-dimensional pattern space. First the time period

over which the process variable needs to be considered must be specified. This time

period is called the "window length". Window length is thus the time for which the

process needs to be observed before its state can be characterized. The length of the

window is a characteristic of the process for which the controller is being designed.

Some processes show more "sluggish" response to changes in set point than others. How

a window of process data can be transformed to be represented by a point in multi­

dimensional pattern space is shown in Figure 3.2.

The time constant ('tp) of a process is a measure of the time necessary for the process

to adjust to a change in its input. For a first-order process, the process evolves to a new

state in about five times the process time constant ('tp) (Stephanopoulos, 1990). The same

relation can be used to arrive at the window length as given in equation 3.1.

Window Length (ro) = 5 x 'tp

Where'tp is the process time constant.
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In Figure 3.2 it is shown that the a window of process data can be represented as a

vector. To arrive at this vector representation the process data is first normalized.

Normalization is done so that the variable can be expressed as a value between 0 and 1.

This is important for doing any similarity analysis on the pattern vectors since they need

to be expressed on a uniform scale. Equation 3.2 is used for normalization.
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where

x j­
i-

x x 0

spa n
(3.2)

Xi
j is the normalized value corresponding to the ith sample reading of the jth sensor.

X i
j is the actual sampled value of the ith sample reading of the jth sensor.

Xois the zero of the measurement device.

span is the range of the measurement device.

The normalized pattern vector can be expressed in equation 3.3 as:

I I 1 2 2
8 j== (Xl 'X2 , Xd , Xl , .. · · Xd , ..

a a )T)...., Xl , · . ,Xd

where:

Xi
j is the sample reading ofjth sensor at the ith sensor reading.

(3.3)

d is the number of sampled data points (d = co ) where co is the window length and f
f

is the sampling frequency.)

a: Number of different sensor patterns.

The total number of samples making up a single sensor pattern is d. Since there are a

sensors the dimension of a pattern is "ued". For example, a multi-sensor pattern
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composed of 10 discrete samples of three different variables can be represented in a 30

dimension vector space.

In this way all the nominal operating conditions can be represented in pattern space.

Controller parameters are then associated with each of the nominal pattern vectors. This

representation is thus termed as a ''pattern-based gain map". Gain map is actually a

misnomer since controller parameters other than the controller gain (Ke) may be

associated with each of the nominal pattern vectors. The following section describes an

on-line methodology to identify the process state based on the location of the process on

the gain map.

3.3 On-Line Process Characterization

This section describes a method to identify the process state from a window of multi­

sensor data. This work is based on earlier work done to develop a pattern recognition

methodology to characterize process sensor data (Anderson, 1993).

The state of the process is characterized by measuring the similarity between the

pattern vectors corresponding to the prototypes and the on-line sensor data. Prototypes

are the pattern vector representation of the nominal operating conditions. During on-line

operation the sensor readings are first normalized and represented in a pattern vector form

as discussed in the previous section.
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In this section, the similarity index to compare two pattern vectors will be presented.

The similarity index will then be used to characterize the process state. Various

proximity indices can be used to compare two multi-dimensional vectors. The most

common index for such patterns is the Minkowski metric:

Minkowski metric (M) is defined by equation 3.5:

where r ~ 1 (3.5)

where y is the vector representing the on-line sampled data.

8 j is the vector representing one of the nominal operating condition in the

pattern-based gain map. 81is also referred as "prototype".

Euclidean Distance (d )is defined in equation 3.6 by:

- I' '1 2 1/2d(y,8 j ) = [L 8/ - y/ ] (3.6)

Euclidean distance or Euclidean norm is a special case of Minkowski metric with n equal

to 2. Euclidean norm, d(y,8 j), is a measure of dissimilarity. The smaller the value of

d(y,8 j), the closer or more similar the pattern vectors. Euclidean distance is the most

common of the Minkowski metrics. The familiar geometric notions of invariance to

translations and rotations of the pattern space are valid only for Euclidean distance.

Euclidean distance has been widely used in engineering work. Figure 3.3 shows how a

two dimensional vector can be compared with a prototype.
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The distance between two pattern vectors is measured as a Euclidean norm. As

shown in Figure 3.3, there can be a locus of points having the same Euclidean norm.

Accurate process characterization in those cases requires measurement of the angle also.

Angle is a measure of how the vector points are oriented in the pattern space with respect

to each other. For the purpose of gain scheduling, the process needs to be characterized

in respect to more than one "nominal" operating condition. Euclidean norm as a

similarity measure is adequate for gain scheduling purposes. This can be explained

using Figure 3.3. For a two dimensional vector only two prototypes can be used to infer

the process state in the pattern space. The locus of equidistant points intersect at two

points. Using three prototypes one can uniquely associate the pattern vector in the pattern

space. As shown, there can be only one unique combination of dl :d2:d3 for the pattern

vector shown. For a n dimensional space the number of prototypes needed to uniquely

characterize any pattern vector is n+1. Thus even a distance measure (such as Euclidean

norm) gives a good estimate of "where" the input pattern vector is located. The angle is

not one of the more importance parameter since the similarity is reflected only in

associating how much weightage the controller parameter of the nominal condition will

have on the final controller value.

To determine the location of a pattern with respect to the prototypes, a gravitational

pull analogy can be used. The closer the pattern vector is to any of the prototypes, the

more "pull" or influence it should exert on the controller parameters. The final controller

settings can be determined by combining the "pulls" or proximity indices of two or more.
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How these "pulls" are analytically combined is a separate issue which will be discussed

in detail in the following chapter.
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Figure 3.3: Identification of the process state using Euclidean norm.
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3.3.1 Use ofSliding Window for On-Line Process Characterization

A sliding window is used to extract the most recent pattern of sensor data from the

process. This is presented schematically in Figure 3.4. The sensor data is normalized and

represented in a column vector form as discussed earlier. If the pattern is identical to one

of the prototypes, then the corresponding values of the controller parameters are used. If

the pattern vector falls between prototypes, then the process is in transition and evolving

to a new steady state. In such cases the controller parameters to be scheduled must be

interpolated.

3.3.2 Use ofTime Smoothened Sensor Patterns

The gain map is formed from a number of nominal operating points. These nominal

points typically correspond to steady state operations. In short, this method uses steady

state process trend information as a basis for interpolation during transient periods. We

propose to use time smoothening to extract the fundamental trend of a process variable

during periods of transition. The value of a sensor is calculated based on an arithmetic

mean of the previous sensor values. This can be considered as a compressed pattern

information. Effect of time smoothening on a wildly fluctuating sensor pattern to extract

its trend is shown in Figure 3.5. This is an illustrative example. The effect of time

smoothening is also shown for the demonstration system in Chapter V.

The strength of our proposed technique is the ability to handle transient conditions.

This method has been developed to match the performance of a skilled operator in

recognizing the process state. An incorrect interpretation of a process trend data can give
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rise to wrong parameters being scheduled and may result in an unstable response which

seriously jeopardizes the safe operation of the plant.
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3.4 Concluding Remarks

This chapter describes our pattern-based method to characterize the state of a process.

The process dynamics are captured by windowed slices of multi-sensor trend data. A

sliding window is used to extract sensor data which is represented as a pattern vector.

The current state is compared to any nominal state by measuring the similarity between

pattern vectors. This approach provides an alternative to accurately characterize the state

of the process even during periods of transition. Due to normal fluctuations in process

variables during transition periods, it is not possible to measure process gain (Kp) or look

at error diagnostics to decipher the process state. Thus the methods relating controller

parameters to process gain or characteristics of error pattern (described in Chapter II) fail

during transition periods.

The objective of a gain scheduler is to determine the process state and then schedule

the controller parameters to maintain stable and satisfactory control action. The

information regarding the distance between the current process state and its neighboring

nominal conditions needs to be quantified in the form of a scheduled controller

parameter. An interpolation technique which can perform this task is discussed in the

next chapter.
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CHAPTER IV

Controller Parameter Calculation

4.1 Overview

The final objective of a gain scheduler is to calculate the controller parameters as the

process moves from one operating state to another. Different strategies to perform

controller parameter calculations after the state of the process has been established is

discussed in this chapter. The best way to calculate controller parameters is to

approximate the gain surface by some continuous function of the process variables or

patterns of process variables. Gain surface, as defined in Chapter 3, is a plot of controller

parameters for all possible operating conditions. Arriving at a gain surface would require

a good analytical model of the process and the controller parameter values at all possible

operating conditions. One reason this is not possible is due to the presence of process

uncertainties. Moreover it is not practical to establish controller parameters at all possible

operating conditions. Thus there is a need to schedule the parameters based on some

approximation of this gain surface.
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4.2 Scheduling About a Few Nominal Points

We propose to do the gain scheduling about a few nominal operating points. This is

based on the premise that some sort of interpolation between these operating conditions

can be used to approximate the "gain surface." The interpolation strategies discussed in

this chapter use the pattern-based state map, discussed in the previous chapter, to

characterize the process dynamics. The process characterization is interpreted from the

similarity measure of the current pattern vectors when compared to the nominal

conditions. The scheduling or interpolation needed to establish the controller parameters

is described in the following sections.

Our gain scheduling approach employs a set of linear stable controllers designed

for different operating conditions. Our gain scheduled controller is thus a linear

parameter varying (LPV) system. Earlier work done by Shamma (1993) shows that for

such LPV systems a smooth transition in parameters is essential if one expects the

properties of the linear controllers to carry over to the gain scheduled control system. No

guarantee on overall stability of the system can be made (Shamma, 1990) while the

process is in transition. Based on Shamma's theoretical analysis, one heuristic to govern

interpolation has emerged. This heuristic states that even when rapid variations in plant

parameters are present the scheduling should be performed slowly. Moreover gain

scheduling is performed in a feedforward manner and there is no feedback for a wrong

schedule. Thus, there is a need to develop a good strategy to interpret information

regarding the state of the process to schedule the controller parameters.
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4.3 Gain Surface Approximation

Gain surface is a plot of the controller parameters for all possible operating

conditions. Gain scheduling is a relatively straightforward exercise if a function to map

operating conditions onto controller parameters is available. In such a case once the

process state is determined the controller parameters could be directly be read off the gain

surface plot. This is practically impossible since controller parameters at all possible

operating conditions are never known.

We are addressing this problem by approximating the gain surface about a few

nominal conditions. In Figure 4.1 a hypothetical plot of a gain surface is presented. This

plot has been generated using a continuous mathematical function and should not be

confused with the gain surface of the demonstration system used in this study. Moreover

this is a very simplified representation since a gain surface is unlikely to be in a three

dimensional space. Also shown are a few operating conditions at which the controller

parameters are empirically known. The aim of an interpolation strategy is to approximate

the gain surface from the controller values at a few nominal conditions.

Once the process has been characterized at a few nominal operating conditions, a gain

map can be constructed. This gain map relates the patterns of process variables, typically

seen at these operating conditions, to the controller settings that needs to be used at these

conditions. Such a representation of nominal conditions is also shown in Figure 4.1.
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How close the gain surface is approximated depends on the number of nominal

conditions used to approximate it. The curvatures in a gain surface occurs because of

nonlinearities in the process. The extent of the nonlinearity governs the number of

nominal conditions required to approximate the gain surface. For a linear process, the

gain surface can be represented by a flat plane of constant controller parameters for all

operating conditions. The next implementation issue is the choice of the number of

neighbors or the prototypes to be uses for interpolation.

4.4 Choice of Number of Closest Neighbors

Each of the nominal conditions is associated with a set of controller parameters (Ke,

'tJ, 'tn). When the process state is the same as one of the nominal conditions, then the

controller settings corresponding to that operating condition are used. Interpolation is

required when a process state is different from any of the nominal conditions. In such a

case, the number of nominal conditions used to establish the scheduled controller setting

plays is a critical issue.

The effect of different numbers of prototypes used for interpolation is illustrated in

the Figure 4.2. Imagine a gain surface approximated by four nominal operating points. If

only the closest neighbor is used to establish the controller parameter, then the gain

surface can be represented as shown in Figure 4.2b. Each shaded region corresponds to

the settings associated with the nominal condition that is enclosed in that region. Thus
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the gain surface can be viewed as made of four flat planes. Switching between these

settings will occur whenever the process trajectory goes through more than one region.

This can lead to very rapid variations in controller settings during periods of transition.

1 KC=40

•
A trag
chang

2 conditio•
KC=50

3 KC=55•
Current state

4•KC=45

a Again map showing four nominal
conditions.

b The gain map can be approximated
as 4 different sectors if only one of the
closest neighbor is used interpolate

Figure 4.2: Interpolation using a gain map formed using four nominal conditions.

The effect of different numbers of closest neighbors used for interpolation can be

shown using a similar example. Figure 4.3 illustrates the characteristic of a gain

trajectory with different number of operating points used. Gain trajectory is the record of

changes in controller coefficients with changes in process conditions. When two or more

closest neighbors are used to arrive at the final controller settings, then the final value is a
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weighted average of the controller parameters of the nearest nominal conditions. As

shown in Figure 4.2 the distance (di) is a measure of the distance between vectors in

pattern space. The associated weights are inversely proportional to the distance.

The difference in gain trajectory when different number of closest neighbors are used

is illustrated using the example shown in Figure 4.3. For this example an arbitrarily

chosen gain trajectory is used. When only the closest neighbor is used lot of variations

are seen depending on which sector the process state falls in. Similarly for the case using

two neighbors the gain trajectory is jagged since pairs of nominal points may compete as

the "closest two" while the process is in transition. For this example, all the nominal

conditions should results in a smooth gain trajectory. This will increase the

computational burden but is necessary if smooth transition in controller parameters is

desired. Later in Chapter V the effect of using a different number of nominal conditions

for interpolation for the test system is demonstrated.

4.5 Interpolation Methods

Different approaches to weight the similarity between pattern vectors can be used.

How the similarity measured is interpreted is a critical issue in performing interpolation.

In this study three different interpolation methods have been investigated. The gain

scheduling is done using pattern-based gain map in all the three cases. Different pattern
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similarity measures to compare on-line pattern vectors to those representing nominal

conditions can be used. The three different methods are:

1. Linear Interpolation Using Euclidean Distance.

2. Quadratic Interpolation Using Pattern Similarity Measured by ART2 Neural Network.

3. Fuzzy Interpolation.

The first two methods differ in the similarity measure used. The third method can be

used for any similarity measure.

4.5.1 Linear Interpolation

Linear interpolation is based on the premise that the gain surface can be approximated

by a hybrid surface made up of planes of constant slopes. The similarity between two

pattern vectors is measured by the Euclidean norm between the two. Two perfectly

similar patterns will have a Euclidean norm of zero. A schematic of linear interpolation

is shown in Figure 4.5. Linear interpolation uses the lever rule to calculate the final

controller parameter. Equation 4.1 is used to calculate the controller parameter.

n

L(Ki / di)
j

K==----

where: K is the final controller parameter

(4.1)

Ki == The controller parameters(e.g. Kc' "CJ or "CD) associated with the i
th

nominal

condition.
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di == 1/(8) where 8 is the Euclidean distance used to measure similarity between

pattern vectors.

K =55
OcK =45c

to
K =40" I

c n \ d~ Pattern associated
Nearest ~ 'd \ r with current state
neighbor ~ ~\~ / of process

-....,..,~
.".",.~ * ......... 'S

_ ,..d2f Kc \ 2..~" K =50
~ -- --,.,., c

K =35 ~ \

c \ Net nearest

neighbor

Kc=450

Figure 4.5: Schematic of linear interpolation.

For the case shown in Figure 4.5, the controller gain can be calculated as shown in

Equation 4.2. In this illustrative example only four nearest neighbors are used to arrive at

the final controller gain, Kc:
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Kc1 Kc2 Kc3 Kc4
-+-+-+-

Kc = dl d2 d3 d4
111 1
-+-+-+­
dl d2 d3 d4

(4.2)

In the same manner the other controller parameters can be scheduled. The main

advantage of linear interpolation is the ease of implementation.

4.5.2 Quadratic Interpolation Using Pattern Similarity Measured by ART2 Neural

Network

The ART2 neural network is a modified version of an autonomous learning model

based on Grossberg's adaptive resonance theory (Carpenter and Grossberg, 1987).

Anderson (1993) previously modified the ART2 network to identify regions in pattern

representation space which represent different operating conditions. In this approach the

neural network is trained to recognize patterns previously seen at different nominal

conditions. The nominal operating points are then represented by clusters rather than

points.

Anderson's method to interpret the process state from a window of pattern

information was developed on previous work by Whiteley and Davis (1993a, b). In this

method a sliding window is used to continuously extract the most recent pattern of

operation from the process. This pattern is input to the ART-2 network. If the pattern

lies within the cluster of one of the nominal operating points, then the corresponding

values of controller parameters are used. If the pattern lies outside the cluster then some
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sort of interpolation is applied. When a process pattern is completely identical to one of

the nominal operating points the ART2 similarity value is 1.00.

ART2 based similarity measure is an alternative to Euclidean distance. This

similarity measure depends on the distance as well as the orientation of patterns in the

representation space. Addition of orientation improves the process characterization.

Similarity between a process pattern and a nominal operating point is actually a quadratic

function of the angle between the two (Whiteley et aI., 1993).

The function used to find the quadratic distance between a process pattern and a

prototype is :

(4.3)

where d j is the distance from pattern to the cluster.

p is the radius of the pattern cluster, a user specified variable.

Sj is the ART2 similarity between the pattern and the ith nominal operating point.

The motivation of using the ART2 based quadratic interpolation strategy is to utilize

the orientation as well as the distance between the pattern and the prototype for

calculating the similarity.
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4.5.3 Fuzzy Interpolation

Fuzzy reasoning is associated with systems involving uncertainties. Fuzzy inference

or fuzzy reasoning, often called approximate reasoning, has become a powerful technique

for practical implementation in control system design (Zimmerman, 1991). We

investigated fuzzy inference because of the uncertainties associated with controller

settings. More often than not these settings are empirically based using a heuristic rule of

thumb or trial and error tuning. There is rarely an exact set of tuning values associated

with any process or operating condition. The use of "excellent," "good" or "bad"

descriptions is often used to describe the efficacy of different controller parameter values.

These linguistic variables (e.g. "excellent") can be represented by fuzzy sets. The

controller parameters used at any nominal condition are also expressed as a fuzzy set.

This is very similar to representing a nominal condition by a cluster in pattern

representation space as described in the previous section. Figure 4.5 shows some typical

fuzzy sets that can be used to represent a controller parameter for example controller gain

c
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c
~
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C.
:.c
~
Q)
.0
E
Q)

~

1.0
Trapezoidal

45 50
Kc

Bell

45 50
Kc

Controller Parameter, Kc

45 50
Kc

Figure 4.5: Some typical fuzzy sets to represent controller parameters.
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Membership function (y axis) is a measure of the confidence associated with the

controller parameters. In this work membership function is the degree of similarity

between pattern vectors. For the first case shown in Figure 4.5, even when the pattern

vectors are completely similar (membership function = 1.00) there is uncertainty in

choice of gain value (45- 50). We have used triangular membership functions to

accommodate the uncertainties in the controller parameters. The spread of which can be

varied depending on how confident a designer is regarding the controller settings.

The controller settings at all operating conditions are thus represented by fuzzy sets.

The degree of overlap is dependent on how different the controller settings are at these

operating conditions and how much uncertainty is associated with them. During on-line

implementation the process state is characterized using tools presented in Chapter III and

the process pattern is compared with the patterns representing the nominal conditions.

The similarity is normalized and scaled between 0 and 1. The similarity can now be

inferred as a membership function. This is used to clip the fuzzy set of the controller

parameter corresponding to the nominal condition as shown in Figure 4.6. Thus the

process state is compared to each of the nominal operating conditions and its similarity is

represented by the "clipped" fuzzy set. These clipped fuzzy sets can be used together to

calculate the final controller setting. This is called "defuzzification." The number of

clipped fuzzy sets used depends on the number of operating conditions chosen, as

discussed in section 4.4.
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In this study, the center of area (COA) defuzzification method (Driankov, 1990) has

been used. Center of area looks at the region represented by clipped fuzzy sets and

calculates its center of gravity. The controller parameter corresponding to the center of

gravity of this fuzzy region is the final controller output. An example of this

interpolation method is illustrated using Figure 4.7. In this example only the two closest

neighbors are used to interpolate. It is clear that the current pattern is more similar to the

operating condition "two."

The formula to compute a center of area is:

u* =

where:

k

LUi X f.lu(Ui)
i=l (4.4)

u* = Final interpolated value of controller parameter.

f.li = Normalized similarity value with respect to ith nominal condition.

Ui = The controller setting at the ith nominal condition.

Either the Euclidean norm or the ART2 similarity measures can be used to perform

fuzzy interpolation. In this study we have implemented fuzzy interpolation using

Euclidean norm as a measure of similarity. A sufficient number of nominal conditions
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should be used so that all the fuzzy sets representing them overlap. This representation

can thus result in a continuous approximation of the gain surface. This also gives a

powerful tool to change the topology of the approximated gain surface by the use of

different kinds of fuzzy sets and different defuzzification methods.

4.6 Concluding Remarks

This chapter presented different interpolation methods using a pattern-based tuning

map. The methods presented aim at approximating the gain surface. Linear interpolation

assumes that the gain surface can be represented as planes of constant slopes while the

ART2 and fuzzy methods aim at representing them by piece wise smooth surfaces with

variable topology. Each of the methods can be used to calculate the controller parameters

in an on-line fashion. The controller parameters scheduled can never be labeled as

"right" or "wrong". The performance of the gain scheduler can be inferred from the error

trajectory of the controlled variable. All these three methods are implemented and

investigated in Chapter V using a nonisothermal reactor as a demonstration system.
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CHAPTER V

Demonstration of Pattern-Based Gain Scheduling

5.1 Overview

This chapter demonstrates our pattern-based gain scheduling approach for a

simulated stirred tank reactor. The dynamics of the nonisothermal reactor are described

in the next section. A pattern-based gain scheduled control methodology is then

developed to control the reactor temperature. The third section presents results which we

use to evaluate the performance of our gain scheduling approach. The importance of

pattern-based information to characterize the state of the process is first presented. The

effect of interpolation using a different number of nominal operating points is then

shown. Finally, the performance of this gain scheduled controller at different operating

conditions is demonstrated and compared with the performance of PI controllers having

fixed controller parameters.
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5.2 Nonisothermal Stirred Tank Reactor

The process used to demonstrate our approach exhibits dramatic changes in the

process gain (Kp). The demonstration system is highly nonlinear and open loop unstable.

A schematic of the nonisothermaljacketed CSTR is shown in Figure 5.1. The system

here has been adapted from Luyben (1990).

The CSTR has one feed and one product stream and the control objective is to

keep the reactor temperature at the desired set point by manipulating the flow rate of the

coolant Fc(t) in the outer jacket. A time delay of 30 seconds is used to compensate for

imperfect mixing. A small amount of white noise is added to the temperature sensor

reading to simulate measurement noise. Reactor parameters and the model equations

appear in the Appendix.

The main source of nonlinearity is the exponential dependence of the reaction rate

on the reactant temperature. This exponential function is popularly known as the

Arrhenius equation. A phase plane analysis for the process dynamics reveals that the

reaction "runs away" at various ranges of temperature. The process gain (Kp) and the

controller gain (Ke) are of opposite signs in the temperature ranges where the reactor is

open loop unstable. What makes open loop unstable systems particularly challenging is

that the controllers can be "detuned" to only a certain extent to account for model

uncertainties but must be tuned "tightly" enough to maintain closed-loop stability.

Detuning often leads to an unstable response or results in system entering limit cycles in
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Figure 5.1: Schematic of the demonstration system.

the presence of saturators. Gain scheduling offers an excellent technique to control such

processes.

A look at the process gain at different reactor temperatures is shown in the Figure

5.2. This system shows a wide variation in process gain. As shown in Figure 5.2, there

are two temperatures at which the process gain switches from negative to positive

infinity. The operating region between these two points is open loop unstable. This

system offers proof that the knowledge of process gains alone is not enough to

characterize the process dynamics. Details of a pattern-based gain scheduled control

design for this CSTR is presented in the following section.
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Figure 5.2: Process gain at different operating temperatures.

5.3 Gain Scheduler Design

Design of the gain scheduler starts with formation of the pattern-based state map.

First the key operating conditions are identified. Since this CSTR is a test system the

conditions at which the reactor normally operates are decided arbitrarily. The nominal

conditions are chosen such that the process dynamics vary from one condition to another.

Reactor temperature and feed concentration are used to label or 'tag' each of these

nominal operating conditions. Eight operating conditions are chosen as nominal
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operating conditions. These are listed in Table 5.1. The controller settings for each of

these operating conditions have been arrived at by using continuous cycling approach

(Zigler and Nichols, 1942). The parameters were then fine tuned using trial and error

tuning (Jury 1973). Details of how the controller settings were established are

documented in the Appendix.

Table 5.1
Tuning Parameters at Various Nominal Operating Conditions.
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The next step in the construction of a pattern-based gain map is to represent each

of these nominal operating conditions as points in pattern representation space. The

pattern vector was constructed from four scheduling variables. The scheduling variables
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used are the reactor temperature, coolant temperature and the coolant flowrate. The

reactor temperature set point was used as the fourth scheduling variable. The setpoint is

used to give additional weight to the operating condition where the process is headed. A

six minute sliding window was used. The pattern vector is constructed from ten time

samples for each variable. Thus the sampling frequency is 10/6 min.-1 and each

operating state is represented as a 40 dimensional vector in a pattern representation space.

Both Euclidean norm and similarity measure using ART2 neural network can be

used for process characterization. Typically interpolation is done using the four closest

neighbors. The controller can be programmed to use more nominal conditions for

interpolation. For fuzzy interpolation triangular fuzzy sets are used to represent the

controller settings.

In this way a gain scheduling algorithm is designed to control the demonstration

system. The CSTR was simulated on Simulink by MathWorks Inc. as shown in Figure

5.3. Simulink is an extension of Matlab. The CSTR is modeled using four coupled

ordinary differential equations(ODE). The simulation uses a 5th order Runge-Kutta

method to simultaneously integrate the four differential equations. Details of CSTR

model development and simulation appears in the Appendix. This simulation can be

changed to test different interpolation strategies. The performance of this gain scheduled

design under different degrees of pattern information and different numbers of operating

condition is investigated and presented in the next section.

62



f(u)
Reaction
Constant

•························..···Fl
Input

Concentration1
Cornponent

Balance

C3
t

Ca

Time

Tset

Kc

Taul

•."w~_"w.~"w.~w ~~w_,,-~...•_~,-~_._~~'-f"::

Ti Energy Balance

Inlet Temperature
Changes

Temp.

Normalized
Data

emu~-------

Demux

+Euler

+Gear

Gain Scheduler

I I - •.

+ Runge-Kutta 3 +Runge-Kutta 5 + Adams

+Adams/Gear +- L1nsim

Start Time: '--10_00 ---'

Stop Time: ,--13_00_0 -----'

Min Step Size: I'--0_00_02_5 ---'

Max Step Size: L-10_oO_02_5 ---'

Tolerance: 1L-1_e-_7 -------'

Return Variables:

Imi::::::m:::il::::::::i@::U

1:::jjj;;:liiili;jj;:j:jlil
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5.4 Results and Discussion

The performance of the gain scheduled controller is evaluated for different cases

in this section. The aim is to identify the parameters that playa vital role in successful

design of such a system. First the importance of pattern-based information is

investigated. The next two sections aim at investigating how the gains should be

scheduled once the process dynamics have been accurately characterized.

5.4.1 Importance ofPattern-Based Information

One simple way to perform gain scheduling is based on an instantaneous view of

the process. In other words, no sliding window is used and raw sensor data are used to

extract on-line process information. On the other extreme process state can be inferred

from time smoothened pattern trends. This section explores the importance of pattern

information for gain scheduling. The simulation system is controlled at various operating

conditions using different degrees of pattern information. The importance of pattern­

based information is inferred from controller performance during periods of transition.

The system is initially at the nominal condition of 6400R temperature and

perturbed with changes in set points. The Euclidean norm is used as a similarity measure

and linear interpolation is used to arrive at the controller settings ( Kc and ~I). It is worth

pointing out that the first and third setpoints are the nominal operating points while the

second is not. Figure 5.4 shows performance of the gain scheduled controller using only

the instantaneous view of the process to characterize the process state. In other words
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Figure 5.4: Gain scheduled control performance using instantaneous raw sensor values.
The controller gain (Ke) picks up wrong values during periods of transition.
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the window length is zero. Moreover the sensor readings are not smoothened. At the

first step change, the controller settings rapidly change and the controller settings for a

process state far from the desired plant operating condition is scheduled. As the

fluctuations in process variables die out, the controller settings gradually settle down to

the final value. This behavior is seen at both the set point changes. Such a gain schedule

can be disastrous as it can schedule 'wrong' controller settings that could lead to an

unstable or undesired response.

A time smoothening approach is used to process the sensor signals. Figure 5.5

illustrates how the performance of this controller improves by the use of time smoothened

sensor patterns. The arithmetic mean of the past 10 sensor values is used to identify the

state of the process. Here again, instantaneous values of the smooth sensor signals are

used. Just a simple smoothening leads to large improvement in controller performance.

The improvement in controller performance can be attributed to this smoothening

technique. Time smoothening should not be confused as a signal processing technique to

smooth noisy sensor data. It is actually a way to compress pattern information contained

in a time period for which the signal is smoothened. Such smoothening results in a

sensor trend which is less sensitive to rapid variations in process during periods of

transition. Thus the trend change in the process dynamics can be effectively extracted

from such smoothened pattern trends.

Another way in which use of pattern information can be implemented is by

observing the process for a finite period of time. In this approach a sliding window is

used to extract the features of sensor patterns. The width of this sliding window is

approximately equal to the time it takes for the process under investigation to transform
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Figure 5.5: Gain scheduled control performance using time smoothened sensor values.
The controller gain (Ke) fluctuates but not as much as shown in case A.
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from one state to another in response to a step change. Here a six minute sliding window

consisting of 10 time samples is used. As expected the gain trajectory smoothens as a

result of better process characterization. The controller performance for this case is

shown in Figure 5.6.

One result that emerges from these investigations is that use of pattern

information is imperative for design of a gain scheduler. Finally a controller which

extracts features of time averaged sensor patterns over a window length to characterize

the process dynamics, is simulated. Its performance is shown in Figure 5.7. This

controller uses a window length of six minutes and 10 sampled values of time

smoothened sensor outputs.

The results of all the cases discussed so far in this section are tabulated in Table

5.2. The performance of a gain scheduled controller for different cases are compared by

the IAE (integral of absolute error) value of the controller variable. IAE is one of the

most popular indices to measure the performance of a controller. Table 5.2 also shows

controller performance when the process characterization is done using ART2 based

similarity measure. The variation in IAE values as more and more pattern information is

used reemphasizes the importance of pattern information for gain scheduling.
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Table 5.2

Importance ofPattem-Based Information for Gain Scheduling.

CASE Pattern-Based Information IAE

A Raw sensor patterns. No window information. Linear interpolation: 2.32

B Time smoothened sensor patterns. No window information. Linear interpolation. 1.85

C Raw sensor patterns. Six minute fmite window. Linear interpolation. 1.80

D Time smoothened sensor patterns. Six minute finite window. Linear interpolation. 1.80

Note: Corresponding IAE values when ART2 similarity measure was used are 1.98, 1.81, 1.98 and 1.72 for cases A,
B, C and D respectively.

5.4.2 Number ofNominal Conditions

In the previous section the controllers were scheduled using linear interpolation

based on the four nearest neighbors. Chapter IV illustrated that gain scheduling

performance varies depending on how many nearest neighbors are used for interpolation

purposes. In this section, the effect of a different number of nominal conditions used to

interpolate is shown. The pattern similarity is measured using Euclidean norm and the

final controller settings are calculated using linear interpolation.

The number of nominal conditions used for interpolation is a key issue for

successful implementation of this strategy. Controller performance with interpolation

using 2, 4 and 7 prototypes are shown. In all cases, sensor patterns are time smoothened

and a six minute sliding window is used. Euclidean norm is used as similarity measure.
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Thus any difference in performance can entirely be attributed to the number of prototypes

used for interpolation.

Figure 5.8 shows the controller performance when only the two nearest neighbors

are used for interpolation. A look at the gain trajectory immediately reveals that during

periods of transition the process state is not correctly identified and results in a wrong

schedule. The process takes almost 25 minutes to settle down to its final value. This is

because when the process is in transition it passes through regions where it could be

distinctly closest to one prototype ('the closest neighbor') but equally closer to two or

more prototypes ('the next closest neighbors'). As the process evolves its interpolation is

constantly done using two or more pairs of prototypes. This results in a jagged gain

trajectory.

Next, the four closest neighbors are used to arrive at the final controller setting.

The resulting controller performance is shown in Figure 5.9. This means that the process

state is observed from four different points in pattern space and all the four of the

similarity measures are used to characterize the state of the process. This gives much

smoother gain trajectory and a drastic improvement in controller performance. Using 7

prototypes further smoothens the gain trajectory (Figure 5.10). Also the IAE value is

reduced by approximately 5 %. The effect of the number of prototypes used for

interpolation is summarized in Table 5.3.
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Figure 5.8: Controller performance with interpolation using only the 2 closest neighbors.
Gain trajectory is very jagged indicating that transient pattern information
was misinterpreted causing a wrong schedule.
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CASE F
INTERPOLATION USING 4 PI~OTOTYPES

Sensor Pattern: Tinlc sll100thcncd
Windovt' : 6 nlinutc sliding \\'indo\\'
Sinlilarity Measure Euclidean norm
Interpolation: Linear
IAE: 3.06

Controlled Variable, Reactor Temperature

680

a: 660 f'
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l _.

T'
..

Q)

~ 620

600

Controller Gain Trajectory

-20

()

~ -40
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0.4 0.8 1.2 1.6

0
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Figure 5.9: Controller performance with interpolation using only the 4 closest neighbors.
Gain trajectory is quite smooth.
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CASE (;
INTERPOLATION USING 7 PROTOTYPES

Sensor Pattern: Tinle snl00thened
Windo\v: 6 nl inute sliding \vindo\v
Sinlilarity Measure Euclidean nornl
Interpolat ion Linear
IAE: '2.97

Controlled Variable, Reactor Temperature
680r-----r------r---------,r-------.------.

a: 660

~640..----"'\
Q)

J- 620

600'-------....I-----.....J........-------L---------L----.J

Controller Gain Trajectory
-20

u
~ -40
c

~ -60

-80

Controller Reset Time

Q)

E
~
+'"
Q)

~ 0.1
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0 0.4 0.8 1.2 1.6
Time in Hours

Figure 5.10: Controller performance with interpolation using 7 closest neighbors.
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CASEG
INTERPOLATION USING 7 PROTOTYPES

Sensor Pattern: Tin1e sI1100thened
Windo\v: 6 n1inute sliding \vindo\v
Sin1ilarity Measure Euclidean norm
Interpolat ion Linear
IAE: 2.97

Controlled Variable, Reactor Temperature
680r-----.-----.----------,.---------,r----.

a: 660

E-6401----
Q)

~ 620

600'---------'--------......L..--------I....---------L---.J

Controller Gain Trajectory
-20

u
~ -40
c

~ -60

-80

Controller Reset Time

Q)

E
j=
+-'
Q)

~ 0.1
a:

0 0.4 0.8 1.2 1.6
Time in Hours

Figure 5.10: Controller performance with interpolation using 7 closest neighbors.
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Table 5.3

Effect ofNumber of Operating Conditions on Interpolation

Number of Operating
CASE Points Considered for Qualitative Analysis of the Gain IAE

Interpolation Trajectory
Gain trajectory is very jagged indicating that

E 2 transient information is misinterpreted leading to a 3.14
"wrong" schedule.

Gain trajectory is quite smooth and responds
F 4 smoothly during transient periods. 3.06

Gain trajectory is very smooth and very smooth
G 7 changes in controller settings are seen in presence 2.97

of transient condition.
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5.4.3 Interpolation Strategy

The results shown in the previous two subsections demonstrates the importance of

pattern-based information and use of more than two nearest neighbors for gain

scheduling. This subsection investigates performance of a gain scheduled controller

using different interpolation strategies. The aim of an interpolation strategy is to

approximate the gain surface. The trajectory of controller parameters as the process

moves from one operating condition to another is used to evaluate how well the

interpolation strategy approximates the gain surface. First, the system is simulated using

linear interpolation, next a quadratic interpolation based on an ART2 similarity measure

is simulated. Finally, the process is simulated using fuzzy interpolation.

The system is initially at the operating temperature of 6400R and inlet

concentration is 1.0 lb. mole/ft3. Step changes are made in reactor temperature to

increase the reactor temperature to a maximum possible temperature of 675°R. Then the

temperature is decreased thus covering the entire operating range. For all the simulations

a six minute sliding window and a sampling frequency of 10/6 min.-1 is used.

Controller performance using a Euclidean based process state identifier is shown

in Figure 5.11 and with an ART-2 based identifier in Figure 5.12. Figures 5.11 and 5.12

show a comparison in controller performance for step changes in set point. It is worth

noting that though the IAE are comparable, the gain trajectory is a bit smoother for the

case in which an ART2 based similarity measure is used. This could be attributed to the

fact that ART2 based similarity not only measures the distance between the pattern

vectors but also takes into consideration its orientation in the pattern space.
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CASEH
LINEAR INTERllOLATION

Sensor Pattern: Tin1e sn100thened
Window 6 111inute sliding \vindow
Interpolation: Linear using the 4 closest neighbors
Similarity Measure: Euclidean norm
IAE: 5.31

Controlled Variable, Reactor Temperature

a: 680

c.
E640
Q)

r-
600L.-__L--_-----J__-L__---L__---L..__---.-....__---Z;'-O'----.J

Gain Trajectory
-20.---------r-----~----r--------,r----_.

o
~ -40
c

'«1 -60
(!)

-801- ---L. --l- -JL- -.L..- ---I

Time Smoothened Trend Patterns

0.5

OL.-__J.-__-.L__-l ..L-__~___.L... ..I..__---'

o 0.4 0.8 1.2 1.6 2 2.4 2.8
Time in Hours

Figure: 5.11: Overall servo performance using Euclidean norm as a similarity measure.
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CASE I
INTERPOLATION USING ART2 SIMILAI{ITY MEASlJI~E

Sensor Pattern: Time smoothened
Window 6 n1inute sliding \vindow
Interpolation: Quadratic using the 4 closest neighbors
Similarity Measure: ART2
IAE: 5.16

Controlled Variable, Reactor Temperature

a: 680

Q.

E640
Q)

I-

600'-__....L-__---I-__---"" ...a..-__---'---__---'- """--~

Gain Trajectory
-20..--------,r-------r----~-----.,--------,

o
~ -40
c:

'«1 -60
(!)

-80'- ~L--.- • --I.'_._._._.__---L ---'- -----.J

Time Smoothened Trend Patterns

. . .0.5 .. . Fe .: .

QL.-__--L...-__----I-__---L ....I.-- -.l-__--JL......----...J

o 0.4 0.8 1.2 1.6 2 2.4 2.8
Time in Hours

Figure 5.12: Overall servo performance using the ART-2 based similarity measure.
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Moreover, the gain surface approximated using a quadratic interpolation technique can be

inferred to be less discontinuous than the case using linear interpolation. This is based on

an assumption that any discontinuity in gain trajectory is an indication of a discontinuity

in the approximated gain surface.

Fuzzy interpolation is implemented using a triangular fuzzy set to represent

controller settings at each nominal condition. The span of a triangular fuzzy set

representing the controller gain is 20 (ft3hr- I
OR-I) while the one representing the reset

time ('tl) is 0.02 hr. A center of area defuzzification is used as described in Chapter IV.

The gain trajectory is much more smoother than the previous two methods as shown in

Figure 5.13. This indicates that fuzzy interpolation results in much smoother

approximation of the gain surface.

The performance of fixed gain PI controllers is also shown for comparison

purpose. Figure 5.14 shows controller performance with controller settings for operating

condition number 3 (see Table 5.1). Fixed controllers having controller settings

corresponding to operating conditions 4 and 7 are shown in Figures 5.15 and 5.16,

respectively. It is clear from these simulations that fixed gain controllers perform

effectively only very close to the nominal operating condition. On the other hand, a

simple gain scheduling algorithm superimposed on the PI control structure greatly

enhances the controller performance. The results of the overall servo performances for

the different interpolation strategies are tabulated in Table 5.4.
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CASEJ
FUZZY INTERPOLATION

Sensor Pattern: Time smoothened
Window: 6 minute sliding window
Interpolation: Fuzzy using the 4 closest

neighbors
Similarity Measure: Euclidean the norm
IAE: . 5.22

Controlled Variable, Reactor Temperature

a: 680

a.
E640
Q)

f-
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o 0.4 0.8 1.2 1.6 2 2.4 2.8
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Figure 5.13: Overall servo performance using center of area (COA) fuzzy interpolation.
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CASEK
FIXED PI AT NOMINAL CONDITION 3

Sensor Pattern: Time snloothened

Fixed Parameters: Kc== -35: 'tJ == 0.08
IAE: 5.31

Comment: Poor perfornlance a\vay frolll the
design conditions

Controlled Variable, Reactor Temperature

(L 680

Q.

E640
Q)

~

600L.-_-.l-----.l------1.---'-----'------'-----L.---J

Gain Trajectory
-20 ! ! ! I
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o 0.4 0.8 1.2 1.6 2 2.4 2.8
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Figure 5.14: Overall servo performance ofa fixed PI controller. Controller settings
corresponding to nominal operating condition number 3.
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CASEL
FIXED PI AT NOMINAL CONDITION 4

Sensor Pattern: Time smoothened
Fixed Parameters: Kc== -30: tl == 0.15
IAE: 10.55
Comment: Limit cycles.

Controlled Variable, Reactor Temperature

a: 680

a.
E640
Q)

f-

600L.-_---l__--L-__--.1...-__....l...-.-__1--_--L.__~___I
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o 0.4 0.8 1.2 1.6 2 2.4 2.8
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Figure 5.15: Overall servo performance of a fixed PI controller. Controller settings
corresponding to the nominal operating condition 4.
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CASEM
FIXED PI AT NOMINAL CONDITION 7

Sensor Pattern: Time smoothened

Fixed Parameters: Kc= -50; ~I = 0.12

IAE: 5.26

Comment: Large settling time away from the
design operating condition.

Controlled Variable, Reactor Temperature

a: 680

c.
E640
Q)

~

600

-20
Gain Trajectory

I ! r !

(J
~ -40~ -
c
'(ij -60--
C!J

-

-80 - I I '( I

Time Smoothened Trend Patterns

Figure 5.16: Overall servo performance of a fixed PI controller. Controller settings
corresponding to the operating condition number 7.



Table 5.4

Overall Servo Performance of Fixed PI Controllers and Gain Scheduled

Controllers Using Different Interpolation Strategies.

Case Similarity Measure and Interpolation Strategy Used IAE

Linear Interpolation using the 4 closest nominal conditions.
H 5.31

Using ART-2 based pattern similarity measure and quadratic interpolation
I using the highest 4 similarity values. 5.16

Using the Euclidean norm for pattern recognition and a center of area (CGA)
J fuzzy interpolation. 5.22

Fixed PI controller, parameters corresponding to those of nominal operating
K. Condition 3. 5.31

Fixed PI controller, parameters corresponding to those of nominal operating
L condition 4 10.55

(Limit Cycles)
Fixed PI controller, parameters corresponding to those of nominal operating

M condition 7 5.26.

5.5 Concluding Remarks

From the results shown in this chapter it is clear that the successful

implementation gain scheduling is dependent on accurate characterization of the

process dynamics. Use of multi-sensor trend patterns is critical for accurate

process state characterization. Use of time smoothening is also very important to

monitor the change in process trend towards a different operating condition.
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Another key issue is use of more than two nominal conditions to schedule

the final controller parameters. The similarity measure itself does not playa very

important role. Thus a simple Euclidean Norm based similarity measure can be

thus for final design. Though the use of quadratic and fuzzy interpolation

strategies does not result in a large improvement in IAE values they definitely

result in a much smoother gain trajectory. This is an indication that the real gain

surface can be better approximated by continuous smooth nonlinear surfaces as

discussed in Chapter IV.
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CHAPTER VI

CONCLUSIONS

The main contribution of this thesis is that it has led to an improved understanding

that characterization of process dynamics is the key issue in implementation of a gain

scheduled control system design for controlling chemical processes. How the controller

parameters can be scheduled for any possible operating condition based on information

regarding the controller settings at a few discrete operating points is also formalized.

Such an analysis is necessary if gain scheduling is to evolve as a control technique to

compensate for nonlinearites in chemical plants.

Gain scheduling is a standard way of designing flight control systems for aircraft

which operate at wide ranges of altitude and speeds. It is gaining popularity for process

control applications. The main bottleneck in its application in chemical process

industries is that there is no technique to extract information regarding the state of the

process from on-line sensor data. Thus, the emphasis of this thesis has been to develop a

methodology to predict the state of the process from the on-line multi-sensor trend data.

The importance of pattern-based information is vital for accurate characterization

of process dynamics. This conclusion can be made based on the results in Chapter V. It
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is shown that an instantaneous view of the process can lead to a wrong schedule. A

pattern-based process characterization is proposed. This method of process

characterization relies heavily on extracting the steady state trends from transient sensor

data. The use of time smoothening as a way to compress pattern information is also

demonstrated. It has been demonstrated that a simple pattern-based technique such as

time smoothening can considerably improve the gain scheduling.

The next critical issue is to be able to use the results of this process

characterization scheme to schedule controller settings in an on-line fashion. How the

interpolation is performed is of vital importance in this adaptive control scheme.

Interpolation plays a very vital role because a process rarely operates at anyone nominal

condition. A formal methodology to perform interpolation based on a few nominal

operating conditions is developed in this study. One main result that emerges from

simulation results shown in Chapter V is that for the given system, at least four nominal

conditions are needed to perform interpolation. The number of nominal conditions

required to be used for interpolation depends on the distribution of the nominal operating

conditions in the pattern-based gain map.

The analysis regarding the interpolation strategy in Chapter IV has revealed that

interpolation is a way to approximate the gain surface. The characteristic of the gain

trajectory can indicate how well the gain surface is approximated. Our investigations

show that fuzzy interpolation results in a much smoother gain trajectory. This is

desirable since rapid parameter variations can often lead to instability. Similarity
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measure based on a simple Euclidean norm between pattern vectors is adequate for gain

scheduling purposes.

The main conclusions are summarized in the list below.

1. Characterization of the process dynamics is the key issue in successful

implementation of a gain scheduled controller.

2. Patterns of multi-sensor data should be used to accurately characterize the process

dynamics.

3. Time smoothening as a way to compress pattern-based information results in

considerable improvement in the performance of gain scheduled systems.

4. More than two nominal conditions should be used for interpolation purposes. The

exact number of nominal conditions to be used for gain scheduling depends on the

distribution of nominal conditions in the pattern representation space.

5. Euclidean Norm as a pattern similarity measure is adequate for gain scheduling

purposes.

6. Fuzzy interpolation results in a much smoother gain trajectory.

6.1 Future Work

The attention is now directed towards future research. The entire thesis is built on

the fact that the relation between process dynamics and controller parameters are known

for a few operating conditions. In this work, the controller parameters for the

demonstration system were determined by use of process reaction curve and continuous

cycling methods. All these methods are based on empirical rules relating the controller
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parameters to the sensitivity of the manipulated variable to the controlled variable. The

main advantage of an adaptive control strategy is that it can accommodate dynamics of

process variables other than the controlled variable by adjusting the controller parameters.

Hence it is important to investigate the effect of other process variables on the controller

parameters. Such a study can give invaluable insight on the characteristic of the gain

surface relating controller parameters to process dynamics. Such a analysis can also

throw light on the interpolation technique that shows the same characteristic as the real

gain surface.

Another implementation issue that was addressed in this thesis but needs further

investigation is the way to predict the process state that the process is evolving to, during

periods of transition. In this expectation-based gain scheduling, more and more weight

would be given to the controller parameters corresponding to the nominal condition at

which the process would finally settle. We have addressed this by incorporating the

desired set point as a scheduling variable. It is possible to extract information regarding

the trend change in the process by looking at smoothened transient data. With advances

in pattern recognition it is possible to classify different transient trajectories and develop

a method to predict the state towards which the process is headed. The main bottleneck

for such an investigation is the lack of good transient data in process industries.

Analysis of the stability of such control methodology is needed if this method is

to ever evolve as a commercial technique for process control application. This is a

formidable task because there is no function to map the controller parameters to the

process state variables. Absolute stability theory using Popov criteria (Popov, 1962) can
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be used to establish stability margin and establish boundaries on parameters that will

yield stable controllers for a nonlinear system. Investigations performed by Shamma

(1988) show that main source of instability in such a design scheme is due to rapid

variations in the system parameters. Though this work has developed a method to

minimize rapid variations by use of time smoothened pattern information and a better

interpolation strategy, a theoretical analysis of stability is missing. Such a study would

be based on the linear parameter variation (LPV) analysis ( Desoer and Vidyasagar, 1975,

Shamma, 1993) of control systems.

From a design perspective, this work can be used as a starting point in

development of a gain scheduled controller for chemical processes. This work presents a

scheme to leverage process information from on-line sensor readings for use in designing

an adaptive controller. Unlike other existing methods proposed to perform gain

scheduling this method does not disrupt the smooth plant operation in order to

characterize its state. One drawback is that the design of a such an adaptive controller is

time consuming. The tuning parameters need to be calculated at the nominal operating

conditions and the scheduling variables need to be identified before the gain scheduled

controller can be implemented. The calculation of controller settings based on the

auxiliary and process variables is often computationally intensive. This is not a major

problem with the advancement of micro-processor technology. It is not difficult to

implement such a methodology on the platform offered by the modern distributed control

systems.
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APPENDIX

Model Development and Simulation

AI.I Introduction

The appendix can be divided in two parts. In the first section the model

development of the CSTR is presented followed by the discussion of the dynamic

characteristic of the CSTR. The second section documents the tuning techniques used to

establish the controller parameters. Finally, the simulation of the demonstration system

under a gain scheduled controller using a dynamic simulator, Simulink, is presented.

AI.2 Nonisothermal CSTR

Nonisothermal reactors are often the most difficult units to control in a chemical

plant, particularly if the reaction is exothermic. Small deviations in temperature can

significantly change the reaction rate and, consequently, the yield. Furthermore, the
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increase in reaction rate with increasing temperature tends to make the reactor unstable.

The system discussed here has been adapted from Luyben (1990).

An irreversible exothermic reaction (chemical "A" reacting to form another

chemical "B") is carried out in a perfectly mixed CSTR. The reaction is first order and

exothermic in nature. Negligible heat losses and constant density are assumed. The

reactor has a coolant jacket and the flowrate of coolant is used to control the temperature

of the reactants.

Simple first order reaction is expressed as:

A~ B

where A is the reactant and B is the product.

Arrhenius function governing the reaction rate is expressed as:

k(T) == ko exp (-E/RT)

where ko, E and R are constants and T is reactor temperature in oR.

The ODEs describing the system are:

Total continuity:

dV
-==F-F
dt °

where F° and F are inlet and outlet flowrates in ft3/hr

Reactor Component A continuity :
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where CAD and CA are the concentration of reactant A in feed and reactor.

Reactor Energy Equation:

d(VT)
p ==p( Fo - F) Cp - L1Hrxn VkCA - UAHx(T-TJ)

dt

(AI.4)

(AI.5)

where Cp is the heat capacity of the reacting mixture and L1Hrxn is the exothermic heat of

the reaction. U is the heat transfer coefficient and AHX is the heat transfer surface area.

Jacket energy equation:

CPJ is the heat capacity of the coolant.

(AI.6)

The CSTR model parameters are shown in Table AI.I. These are the CSTR parameters

at a steady condition operating at 600oR.
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Table AI.I
Nonisothermal Reactor Parameters

Volume VJ = 3.85 ff Rate Constant: ko = 7.08 x10 1u h{J

Activation Energy: E = 30,000Btu/lb.mol Gas constant R = 1.99 Btu/ lb.mol oR

Heat Transfer Coeff :U= 150 BTU/hr ft'~ oR Heat transfer Area: AHx = 250 ftL

Coolant Inlet Temp. TJO = 530 oR Heat ofRxn:~HRXN=-30,000Btu/ Ib.moloR

React. Specific Heat Cp = 0.75 BTU/Ibm oR Coolant Specific HeatCpc=1.0 BTU/IbmoR

Reactant Density: p = 50 lbm/fe Coolant Density PJ = 62.3 lbm/ ftj

Inlet Concentration: 1.0 Ib.mol A/ ftj Set Point Temperature : T~r.l = 600 oR

Ai.2.i Open Loop Dynamic Characteristics

The main source of nonlinearity is the Arrhenius dependence of the reaction rate.

For this example, even a lOR rise in temperature increases the reaction rate by more than

I0 percent, enough to cause significant change in conversion. Furthermore, the increase

in rate with increasing temperature tends to make the reactor unstable. The effect of this

reactor going unstable will be further analyzed based on a steady state analysis later in

this subsection.

Figure AI.I shows that the reactor in absence of a controller runs away at certain

temperature ranges. At 6800 R the process is stable in open loop but does not show a

response which can be modeled as a first order plus dead time (FOPDT). The process

runs away at 6000 R and settles down to a new steady state. Such a response cannot be
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Figure A1.1: Open loop behavior of the demonstration system.
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modeled by a FOPDT since the process is actually operating between two steady state

points. The reactor shows a FOPDT type response at lower temperatures (540oR).

What makes the dynamics of CSTR especially interesting is that for any value of

a manipulated variable there can exist more than one steady state. Whether this CSTR

shows multiplicity will be explored next. There is one source of heat generation, the heat

of reaction, and two ways in which this heat is removed. Some of the heat is removed as

sensible heat in the product stream and the rest is transferred to the coolant in the cooling

jacket. The heat generated by the chemical reaction and the heat removed by the jacket

and product stream are plotted together against the reactor temperature,as shown in

Figure A1.1. This plot is shown for a fixed coolant jacket flowrate.

The heat generated in the CSTR is the heat of reaction at the given steady state

conversion corresponding to each reactor temperature. The heat generated is calculated

as follows:

-J1.HRXN'tCAO ( k(T) )
QGEN=

pCp ~.+k(T)

where ~ = V/F

(Al.7)

The generation rate is high at first because of the exponential effect of temperature

but the slope eventually decreases because of the decrease in reactant concentration.

Thus the graph becomes asymptotic to the heat released at complete conversion. The

heat removed graphs are linear as shown in the expression below.
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(AI.8)

The heat generated and the heat removed are plotted as a function of reactor

temperature. The slope of the plot of the heat removed depends on the flowrate. There

can be three cases based on the coolant flowrate. For Cases I and 3 (see Fig. AI.2) there

can be only one equilibrium point for which the rate of heat removal is same as the rate of

heat generated. For case 2 there can be three steady states. The middle steady state ("B")

is clearly a unstable steady state even though heat balance equation is satisfied. A slight

increase in temperature makes the rate of generation of heat more than the rate of heat

removal which results in the reactor "running away" to the upper steady state ("C").

Similarly a decrease in temperature results in the reactor "running away" to steady state

("A").

Thus controlling this reactor at unstable steady states becomes a challenging

control problem. The amount of self regulation provided by the reactor dynamics

depends entirely on the condition of the steady state operation. For steady states which

are "stable" even a no control action can ensure that the reactor will be stable. But for

conditions when it is "unstable" as in condition "B" (shown in the Figure AI.2 ) tight

control is necessary. Often commercial reactors are operated at nearly unstable

conditions for economic reasons. There have been many cases of runaway reactions

leading to plugged kettles, melted reaction tubes and explosions.
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Figure A1.2 : Existence of multiple steady states
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Al.3 Estimating Controller Settings at Nominal Operating Points.

The gain scheduling controller can be visualized as made up of many

different linear controllers. The performance of this global compensator depends

on the quality of each local controller tuning. A good set of controller settings

should be able to perform satisfactorily for a small change in a setpoints

disturbance and be stable for even a reasonably large perturbation in process

conditions.

It is always a subject of controversy as what the performance criteria should

be. A simple performance criteria is based on some characteristic feature of the

closed loop response of the system (Stephanopoulos 1990). The most often used

criteria are

• overshoot.

• rise time ( time needed for the response to reach the desired value).

• settling time (the time needed for the response to settle within 5% of the

desired value).

• error integrated over time( IAE or ITAE).

Selection of different performance criteria result in different controller

settings. The process dynamics are often inferred from the open-loop response of

the process to a small change in a manipulated variable. The open loop response is

then approximated as a first order plus time delay (FOPTD) model. The resulting

model parameters, along with empirical tuning correlations are used to determine

the initial controller settings.

One challenge in designing a controller for this nonisothermal CSTR is that

most of the conventional tuning methods fail. This is because the process response

cannot be approximated by a FOPDT model.
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For open loop unstable cases, tuning is reduced to a trial and error technique. The

initial guess can be obtained by forcing the process to operate at conditions where the

process dynamics can be modeled as a FOPDT. Using the empirically correlated

controller parameters as the initial guess, the controller parameters can be established.

For process operating conditions when the response is open loop stable but cannot be

approximated by a lower order dynamic model, continuous cycling method (Zigler and

Nichols, 1942) can be used. Continuous cycling method involves observing the system

dynamics under closed loop conditions. The controller is put in a P (proportional) only

mode and the controller gain (Ke) is increased untill the process shows continuous

oscillations of constant amplitude. The controller gain resulting in these continuous

oscillations is called the ultimate gain (Ku). Ku can be used to empirically establish the

controller parameters.

The final controller parameters were established after trial and error tuning.

The transient closed loop response after trial and error tuning resembled the one

shown in Figure A2.3 for all nominal conditions. An effort was also made to

arrive at controller settings which gave minimum IAE (integral of absolute error)

for both set point and load changes at any given operating condition. Furthermore

these controller settings were tested with reasonably large load and set point

changes to check if they yielded a stable response.
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T}pical temperature response for a set point
change at any nominal condtion. Fine tuning
bcsed on trial and error.
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Figure A2.3: Typical controller performance at any nominal operating point.
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The CSTR dynamics were simulated using a package called "Simulink" by

MathWorks Inc. This package is an extension of MATLAB and is excellent for studying

the dynamics of a system and the effect of different control strategies. Simulink has

built-in integration subroutines which makes simulation a relatively easy task for a user.
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