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CHAPTER I 

INTRODUCTION AND BACKGROUND 

A. Purpose of the Study 

One of the most practical (as well as one of the most interesting) 

areas in mathematics is acceleration methods. The strategy of such 

methods is to use some kind of transformation on the partial sums of a 

slowly convergent series (or sequence). The goal of the methods is to 

produce new sequences which converge to the same limit as the old 

sequence, but faster. 

The list of methods is quite extensive; each one is tailored to 

some particular assumption about the manner in which the sequence is 

approaching its limit. Smith and Ford (1979, 1982) did comparison test

ing on a number of the more important methods: Euler's method, the Wimp

Salzer method, Toeplitz arrays, Aitken's method, the epsilon, rho, and 

theta algorithms, and the u, v, and t transforms of Levin. Other methods 

covered in Wimp's (1981) book are Richardson and Romberg integration, 

power series methods, Lubkin's W transform and other variations of 

Aitken's method, the Q-D algorithm, the eta algorithm, and the G trans

form. Covering all these algorithms in this thesis was out of the ques

tion. A somewhat arbitrary subset has been chosen for discussion: 

Euler's method is easy to motivate and illustrates the basic acceleration 

concepts well, so we begin with it. Then will come a chapter on Richard-

1 



son extrapolation. It is discussed briefly in the textbooks, but the 

reader has probably not seen some of the material we will present. 

2 

Aitken extrapolation comes next--again, a textbook algorithm, but with 

more material here than in the usual text. We then move on to the epsi

lon algorithm, a generalization of Aitken's algorithm which is well-known 

for its power. The epsilon algorithm has had a vast number of articles 

written about it, but it is still not in the textbooks. The notation 

and the difficulty of the proofs for this algorithm are not conducive 

to inclusion in the undergraduate curriculum. But the main features of 

the epsilon "landscape" are quite accessible to any post-Calculus II stu

dent, if the notational difficulties and intricate proofs can be postponed 

for later studies. We finish with a brief introduction to the rho and 

theta algorithms, both offshoots of the epsilon algorithm. The rho al

gorithm complements the epsilon algorithm; and the theta algorithm, as an 

all-purpose accelerator, surpasses either of its "relatives". Smith and 

Ford (1979) decided that if•each method is judged only as a "solo" per

former, u, v, and e are the winners. In their later (1982) article, 

looking at things from a slightly different point of view, they elevated 

epsilon and u (taken as a pair) to the top ranking. Therefore, though 

we do not discuss all acceleration methods, we have chosen some of the 

most important ones. 

The overruling principle in our discussions will be clarity, not 

rigor. If something is easy to motivate, we motivate it. But we will 

often take the approach, "It can be shown that ..• " This is not 

done because the proofs are thought to be unimportant; rather, it is done 

because the sheer mass of such details would be likely to discourage the 

average reader from ever pursuing the subject. For the reader who wishes 
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to go through the proofs, we give the appropriate references. (There are 

enough proofs in this subject to give plenty of reading for many years.) 

We seek, for now, to complement the "precise" style of the current lit-

erature, in hopes of making the area more accessible. 

B. An Illustration of the Problem 

Consider the series 

1T = 4(1 - l + l - l + ) 3 5 7 • • • ' 

which results from setting x = 1 in the Maclaurin series 

-1 
tan (x) 

3 5 7 
x-~+~-~+ 

3 5 7 

(1) 

(2) 

The next question is, assume we had the right side of (1) come up in 

a problem and we did not know the answer. How could we find it? (We 

thus are simulating a "real-world" problem, where we often would not know 

the sum of a particular series.) Any Calculus II student should answer, 

"Just add up some partial sums, and they will approach pi--even if you 

don't know they should approach pi." Good answer, but not too practical 

in this situation. 

Let us assume we want to take partial sums until the distance from 

-9 
pi is less than 5•10 ; our demand is thus for eight decimal place accur-

acy, less than most calculators have. If we let 

o, 4, 
1 

4(1 - 3), (3) 

then the last term in Sn is ±4/(2n - 1). If we require Sn and Sn+l to be 

within 5•10-9 of the correct answer, they have to be within 10-S of each 

other. Therefore, we must require 



4 1 < 10-8 
2n + 

4 

(4) 

n > 199,999,999.5 

n .::_ 200,000,000. 

Adding this many terms is out of the question, even on a large computer. 

And note, we have not necessarily insured that Sn and Sn+l are close to 

pi; just because they are close together does not force them to be close 

to the limit or even insure that a limit e_xists. But we have shown no n 

less than 200,000,000 has any chance of being large enough. 

In fact, a good Calculus II student might say that the n of (4) 

should be doubled. The standard theorem on alternating series with terms 

going to zero monotonically says this: the size of the error is less 

than the size of the first omitted term. That theorem would insure that 

S is good enough, if 
n 

4 1 < 5•10-9 
2n + 

n > 399,999,999.5 

n .::_ 400,000,000. 

Nevertheless, the 200,000,000 is closer to being ideal than the 

400,000,000. This follows from an easy result which should be in the 

textbooks but is not. The result, surprisingly, was first proven by a 

beginning Calculus student, Calabrese (1962); his theorem depends on 

an additional hypothesis which most alternating series satisfy anyway. 

(5) 

Namely, not only the terms but also the gaps between the terms go to zero 

monotonically. The result is as follows: assume 



Then 

S = S + r . 
n n 

a. -+ 0 
l 

Not being able to resist giving the gist of a proof considerably 

shorter than Calabrese's, we show r 4 is greater than aS/2: 

r4 as - a + a -
6 7 as + ..• 

(as a6) + (a7 as) + .... 

2r4 (as - a ) 
6 

+ (as a6) + (a7 as) + (a7 as) + .•• 

as = (as - a6) + (a6 - a ) + (a7 - a ) + (a - a9) + .•... 7 s s 

s 

(6) 

(7) 

(S) 

By comparing the two series term-wise and using the additional hypothesis, 

the result is immediate. Writing a4 as a series leads to the other half 

of (7). Calabrese's result can easily be applied to show that to get an 

error less than S•l0-9 on the pi series, it is sufficient to take 

a 
__.!.!:. < s · 10 - 9 
2 - ' n ~ 200,000,001; 

and it is necessary to take 

an+l 
--< 

2 
n ~ 200,000,000. 

(9) 

(10) 
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Thus Calabrese has indeed saved us an added 200,000,000 partial sums 

that we thought might be necessary; unfortunately, we are still left with 

the first 200,000,000! Since that number is obviously prohibitive, this 

series is a prime candidate for an acceleration method of some type. In 

fact, series (1) is easily conquered by most of the methods we will dis

cuss in this thesis. 

C. Selecting the Best Approximation 

When the different methods are applied to the partial sums, we will 

end up not with one new sequence, but a triangular array (taking the 

original sums as the left side). The question then arises, which of the 

entries is the best approximation? The answer, if things are working 

even half-way, should be "somewhere on the last row". Those entries will 

be influenced by the later, more accurate partial sums. A natural can

didate will be the right end of the last row, since that entry is in

fluenced by all the information available (to that point). Unfortunate

ly, this candidate does not always deserve "election". Fortunately, the 

table entries themselves can sometimes be used to give us a clue as to 

when the best entry is not on the end: if the best entry is somewhere 

in the middle of the row, the approximations will generally get closer and 

closer together until we pass the best approximation. Then they will 

start spreading out as we continue along the row. By monitoring the hor

izontal differences and watching for them to increase in size, one can 

often pick out the best entry within a couple of columns. In fact, some

thing like this can be easily proven in the case where we assume we have 

an oscillating series with the errors monotonically decreasing and then 

monotonically increasing. 
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For example, let 

xl S + e1 , x2 S - e2 , x3 S + e3 , x4 s - e4' 

(11) 

XS s + es, x6 s - e6' x7 S + e 7 , XS s ~ ei, 

with all e. positive and 
l 

and (12) 

Then 

(13) 

which translates into 

(14) 

The smallest difference has to involve x4 , the best approximation. We 

shall discuss this topic most in the chapter on Euler acceleration, but 

it is a good standard to keep in mind when using any of the algorithms. 

Fortunately, the best answers are often on the right end of the last row; 

this alleviates the problem somewhat. 

D. The Role of Divergent Series 

The modern student has generally been trained to think of divergent 

series as worthless for giving any information. The truth of the matter 

is, as we shall show repeatedly, there often is enough information hidden 
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in the divergent partial sums to determine quite precisely what function 

value the series was unsuccessfully "trying" to converge to. And if a 

powerful enough acceleration method is chosen to apply to the sums, it 

may very well generate a sequence which converges to what the divergent 

series "should have" converged to! 

Euler (1707-1783) was certainly the leader in the use of divergent 

series to arrive at correct answers. For him, if a certain function f 

gave rise to a series, then the "sum" of that series for any x should be 

taken as f(x), even when the series diverged. He was of course aware 

that he was using the word "sum" in an extended sense but asserted there 

was no great problem since "the new definition ... coincides with the 

ordinary meaning when a series converges ... " (Bromwich, 1926, p. 

322). This amounts to a belief, which Euler explicitly affirmed, that it 

was impossible for more than one function to produce a given (power) 

series. Bromwich adds that, although this "rule" is not completely cor-

rect, Euler used his definition "almost exclusively" in the form of de-

fining 

z u 
n 

00 

= Lim( L: 
x~l n=O 

n 
u x ), 

n 
(15) 

when that limit exists. If restricted to this case, Bromwich notes that 

the rule will always give the "correct" answer for the series (in the 

modern terms of analytic continuation). Of C¥urse, Euler did not have 

access to that later development. Of Euler's rule, Hardy (1949, p. 8) 

remarked, "No mathematician of his period could possibly have expressed 

himself on such a subject without very serious ambiguity," because of the 

"inadequacy of the current theory of functions." 

Naturally some other early mathematicians tried to use divergent 
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series and came up with erroneous results. Knopp (1951, p. 459) comments 

that "It was only Euler's unusual instinct for what is mathematically 

correct which in general served him from false conclusions in spite of 

the copious use which he made of divergent series." 

One example of the way Euler used divergent series was in obtaining 

the values of slowly convergent series. He was able to transform (delib-

erately!) the very slowly convergent series 

(p > 1) (16) 

into a sequence of divergent series. Each of the series eventually di-

verged; but each one approached more closely, and more rapidly, to the 

correct answer before diverging. By noticing where the differences 

started to increase (as in the previous section), Euler could pick a best 

approximation from each divergent series. The best approximations con-

verged to the correct answer much more rapidly than the partial sums of 

the original convergent series! 

A simpler use of divergent series, but still impressive, is given by 

Bromwich (1926, p. 320) from the works of Fourier (1768-1830). Fourier 

was obtaining a sine series for a particular function and found a series 

expression for the coefficient of sin (~x); namely, 

(-l)n-1(_!__ _ _!__ + _!__ ) 1 3 5 - • • . • (17) 
n n n 

When n > 1, the series reduces to the function 

f(n) 
(-l)n-1 n 

= -'---'---- (18) 

But when n = 1, the series is 
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1 - 1 + 1 - 1 + .•• , (19) 

which Fourier does not hesitate to evaluate by using (18), which came 

only via (17)! The answer obtained is 1/2, which can be shown by more 

conventional techniques to be correct. Presumably it was this sort of 

maneuver which caused some of the early mathematicians to have severe 

doubts about the value of Fourier's work; but Euler would have agreed 

with him completely. After all, (19) can also be obtained by setting 

x = -1 in 

2 3 
l+x+x +x + •.• , (20) 

which was "always" 1/ (1- x). Note: although we have here one numerical 

series coming from two functions, we do not have one power series from 

two functions; (17) and (20) are quite dissimilar. And, as Euler would 

have expected, when the two functions do give the same numerical series 

at x= 1, it is only because the functions themselves have identical values 

at that x--namely, 1/2, which Euler thought of as the "intrinsic" value 

of (19). 

Cauchy and Abel renounced the use of any non-convergent series in 

the 1820's, but they did this with some hesitation (Knopp, 1951, p. 

459). In modern times, since the theory of complex variables has become 

more developed, a lot of the "tricks" Euler succeeded with can be ex-

plained in terms of analytic continuation and asymptotic series. We dis-

cuss those two topics briefly before moving on to begin our study of 

acceleration methods. 

Because some of the readers may not have any background in complex 

variables, we will restrict ourselves to a simple example on analytic 
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continuation. Let 

f(z) = 
1 

(21) 1 - z 

Except for having a "pole" at z = 1, which corresponds to a "vertical 

asymptote" if we keep z real, this function is perfectly well-behaved. 

All its derivatives are continuous away from z = 1. In the language of 

complex variables, f is "analytic" except at z = 1. Now let us consider 

the function g(z) defined by 

g(z) 1 + z + z2 + z 3 + .... (22) 

Notice that since g(z) is defined only by the power series, g(z) is 

meaningless outside the disk of unit radius centered at 0. E.g., for 

z = -2, +3, or 2 + 2i, the ratio test implies divergence of the defining 

series. When g(z) is defined, it is identical to f(z); but f(z) is de-

fined on the entire plane (except z = 1) while the domain of g is severe-

ly restricted. Nevertheless, g does have the power of determining all 

the function values of f, in the following sense: suppose you want to 

find another function h, besides f, which is analytic on the (punctured) 

plane and agrees with g where g(z) is defined. Complex variable theory 

says you can't find such an h; by making the function satisfy the stated 

conditions, you have eliminated every function except f(z); f therefore 

has a legitimate right to be called "the analytic continuation" of g to 

the rest of the plane. We will later apply our acceleration methods to 

the partial sums for "g(z0)" where z0 is outside the unit disk. The par

tial sums will diverge since g(z0 ) is not actually defined. But often 

the acceleration method can, to put it very roughly, "unscramble" the 

deficient information and produce the natural extension value, f(z 0). 
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When this happens, it is of course quite exciting to observe! The "mir-

acle" is caused by the fact that the acceleration method is transforming 

the (divergent) partial sums of the power series into the "convergents" 

of some other representation for f(z). Of course we are most familiar 

with the power series representation of f. But there are other represen-

tations, and sometimes they represent f on a much wider region than the 

power series does. If our acceleration method translates the power 

series into one of these "better" forms, we often get convergence to the 

correct value as the result. This is called "analytic continuation" of 

the power series function. 

We turn now, briefly, to asymptotic series. Again, we will work via 

a standard example; it has the additional advantage of showing Euler's 

genius for violating rules and still coming up with correct results. Let 

f(x) 
-w 

oo e 
= JO _l_+_xw_ dw • 

First, let us ignore the fact that xw ranges up to 00 , and expand 

(1/ (1 + xw) as a geometric series; we now have 

f(x) r00 (e-w _ -w 2 2 -w 
;O xwe + x w e 

3 3 -w x we + ... ) dw. 

The Advanced Calculus veteran should recognize that the next step re-

(23) 

(24) 

quires uniform convergence, whereas we have no reason to think we have 

any convergence. Nevertheless, forging ahead, we get 

f(x) = f,w e -w dw 
0 

00 -w 
- xf we dw 

0 
2 00 2 -w + x J0 w e dw (25) 

The reader who has studied probability will recognize the gamma integrals 

in (25); they do legitimately give factorials. We thus have 
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f(x) = O! - l!x + 2!x2 - 3!x3 + .•.. (26) 

We previously talked about doing an analytic continuation of a power 

series that converged on just a small disk in the complex plane. But 

this power series is considerably worse: the ratio test shows the series 

in (26) converges only for x = 0. Is there really any chance of a legiti-

mate connection between f(x) and such a crazy series? We shall soon see 

there is. 

Euler (1755) showed that the integral for f(x) could be rewritten 

as a finite integral: 

f(x) 
-1/t 

lel/x f,x~ dt 
x 0 t ' 

(27) 

so that, for example, 

f (1) 
1 1 

= efo 17t dt. 
te 

(28) 

By the trapezoidal rule or some other rule, this integral can be evalu-

ated as precisely as desired. It is approximately .596347. Euler 

therefore concluded 

.596347 = O! - l! + 2! - 3! + 4! - .... (29) 

We are greatly surprised, but Euler was probably not, when he repeatedly 

applied his acceleration method to the right side of (29) and obtained a 

sequence of divergent series which indicated the correct answer was about 

.596347. Euler had several other ways of attacking the series; and they 

all indicated about the same answer. He therefore concluded that the 

"natural" value of Wallis' series (the right side of (29)) was indeed 

f(l). A very complete account of Euler's work on this series is given 
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by Barbeau (1979). 

The function f(x) is analytic as a function of a complex variable, 

in the entire plane. Hardy (1949, p. 26) even gives a series represen-

tation for it, though not a power series. But what is the connection 

between the series in (26) and the nice function f(x)? The connection 

will require a bit of explanation. 

We are used to thinking of keeping z (or x) fixed and letting the 

partial sum index n go to 00 But for this situation we must switch gears: 

keep n constant and let z approach zero. Then, no matter what n we 

choose, f(z) is not "very" far from the nth partial sum of (26) when z 

gets close to zero. More precisely, let z be kept in any "wedge" in C 

which does not contain the negative real axis. Hardy (1949, p. 27) shows 

there is then a K which depends on neither n nor z, such that for any n 

and z, 

Denote the partial sum by f (z). For any n, we have 
n 

lfCz) - f (z)I 
_____ n __ .::_ K(n + l)! lzl, 

lzln 

which goes to zero as lzl ----"> O. 

(29) 

(30) 

Now it would seem fair to claim the f are "good" representations 
n 

for f(z) when Jzl is small, in a modified sense. For let n be any number; 

choose it very large, to make lzln --7 0 very fast as lzl ~ 0. Then 

(30) asserts that the difference between f(z) and f (z) goes to zero even 
n 

faster as lzl __,. 0. In this situation, the series in (26) is said to be 

"asymptotic" to f(z) as z --7 O. We indicate this by replacing "=" in 



(26) with""'"· Acceleration methods are sometimes able to recover f(z) 

from a merely "asymptotic" series for f(z). Several of the methods we 

discuss will successfully recover f(z) on Wallis' series. Hardy (1949) 

gives more information on asymptotic .series. 

At long last, we now begin our study of the acceleration methods 

proper. It seems appropriate to begin with Euler's method, for obvious 

reasons. 

15 



CHAPTER II 

EULER ACCELERATION 

A. Introduction 

The simplest and oldest acceleration method will be discussed first. 

It was published by Euler (1755, p. 281) but is still in use. We will 

examine standard results concerning its application to both convergent 

and divergent series; then we will discuss some minor but possibly new 

refinements found by the present author. 

Recall a series mentioned earlier: 

1 1 1 
1T = 4 Cl - 3 + 5 - 7 + ... ). (1) 

Let 

o, s1 = 4, (2) 

(The reason for the initial "O" will be clear later.) By a well-known 

theorem, the errors of the partial sums alternate between being positive 

and being negative. Form a new sequence of averages: 

(3) 

Examination will show that the new sequence is converging to pi faster 

than the original partial sums, with errors still alternating in sign. 

So repeat the averaging process, again and again. This gives the Euler 

16 
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method. The results obtainable by using s0 , •.. ,s6 are shown in Table I, 

with the best entry in each row underlined. (The table is better con-

structed by row than by column, if the S. are difficult to obtain for a 
l 

particular problem.) 

TABLE I 

EULER ACCELERATION OF PI SERIES 

s. T. 
l l 

0 

4.000 2.000 

2.667 3.333 2.667 

3.467 3.067 3.200 2.933 

2.895 3.181 3.124 3.162 3.048 

3.340 3.117 3.149 3.137 3.149 3.098 

2.976 3.158 3.138 3.143 3.140 3.145 3.122 

Note, the best answer on each row is not obtained by continuing the 

process as far as possible. See Table II. Again, the position of the 

best entry in each row is indicated by underlining. The best answers are 

consistently about two-thirds of the way across the row, instead of at 

the end. The present author has not seen this sort of rule elsewhere, 

and it leads to several (apparently) new results and conjectures, which 

will be mentioned later. The best entry in Table I, 3.140, is more pre-

cisely 3.13997. It can be easily shown that to attain an answer of this 

accuracy by ordinary summation would require over six-hundred partial 



sums. The Euler method has used seven. 

0 

1 0 

1 1 1 

1 2 2 

1 2 2 

1 2 3 

1 2 3 

1 2 3 

1 3 3 

1 3 4 

2 3 4 

2 3 4 

TABLE II 

NEGATIVE OF EXPONENTS ON ERRORS IN EULER 
ACCELERATION FOR PI SERIES WHEN 

ERRORS ARE IN SCIENTIFIC 
NOTATION 

1 

2 2 

3 3 2 

3 3 3 2 

4 4 4 3 3 

4 4 4 4 4 3 

4 5 5 5 5 4 

4 5 5 5 5 5 

5 5 5 6 6 6 

B. An Alternate Presentation 

18 

3 

5 3 

5 5 4 

The presentation of the Euler method in terms of repeated averaging 

is apparently well known. Wynn (1971) mentions that it was used as an 

example in the original report on ALGOL 60. But this common knowledge 

does not seem to find its way into the numerical analysis textbooks. For 

example, Hardy (i949, p. 2lff) gives an extended discussion of the Euler 

method; but he never mentions that averaging is equivalent. He does men-
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tion averaging for the partial sums of a divergent series, but he attrib

utes it only to Hutton in 181Z. Most books do not mention averaging, 

even when Euler's method is included. This seems unfortunate; neverthe

less, the standard presentation does aid in understanding the algorithm's 

performance. For that reason, we will now re-formulate the algorithm in 

terms more similar to those used in the texts. 

We proceed in a purely formal way. 

S = Al - AZ + A3 - A4 + AS - A6 + 

S = Al - AZ + A3 - A4 + AS -

Adding term-wise, 

Write 

ZS= Al - (AZ - A1) + (A3 - AZ) - (A4 - A3) + ... 

S = A1/z - (l/Z)(~Al - Mz + ~A3 - •.• ). 

Repeat the process: 

S = A1/z - (l/Z)(~Al - ~AZ+ ~A3 - •.. ) 

S = A/Z - (l/Z)( M1 - Mz + · • ·) • 

Adding term-wise, and dividing by Z, 

This process can be continued. The infinite series we are proceeding 

toward is 

S = (l/Z)(A1 - (l/Z)~Al + (l/4)~ZAl - ••• ), 

the standard representation for the basic Euler transform. 

On the other hand, we could rewrite (4): 

(4) 

(S) 

(6) 

(7) 

(8) 
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(9) 

then apply (8) to the abridged sum in "( )" to obtain 

(10) 

This is what Wynn (1971) calls the "delayed" Euler transformation, with 

a delay of one. It is easy to show that the entries along any diagonal 

of the Euler table are partial sums in the Euler series with an appropri-

ate delay. See Table III. 

0 

sl 

s2 

SJ 

s4 

TABLE III 

REPRESENTATION OF THE EULER TABLE IN 
TERMS OF SERIES 

0 + (l/2)A1 

s -
1 

(l/2)A2 O + (l/2)(A1 - (1/2)~A1 ) 

s -2 (l/2)AJ s -
1 

(l/2)(A2 - (l/2)~A2 ) 

s -
J 

(l/2)A4 s2 + (l/2)(AJ - (l/2)~AJ) 

The standard presentation considers a one-dimensional string of 

approximations which corresponds to one diagonal. The method of calcula-

tion is typically a table of forward differences instead of a table of 

averages. See Table IV and the accompanying calculations for the diagon-. 

al through SJ (J.46667) in our previous example. 



TABLE IV 

FORWARD DIFFERENCES FOR COMPUTING THE s3 DIAG
ONAL OF THE PI SERIES 

.4444 -.1270 

.3636 -.0808 .0462 

We can use the top diagonal of Table IV to compute the next three 

entries in the s 3 diagonal; as in Table I, 

s -
3 

(l/2)A4 = 3.181 
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s -
3 

(l/2)(A4 - (l/2)~A4 ) = 3.149 (11) 

s3 (l/2)(A4 - (l/2)~A4 + (l/4)~2A4 ) = 3.143. 

Note that what appears to be an alternating series is in fact monotonic 

because the differences alternate in sign. 

C. Keys to Successful Use 

Knopp (1951, p. 243) says Euler gave his results "without any con-

siderations of convergence." Ames (1901) was the first to prove that if 

any sequence oi. S. converges to a limit S, then the columns and diagonals 
l 

of the associated Euler table must also converge to S. However, the con-

vergence rate for what we now call "totally oscillatory" alternating 

series had been established much earlier by Poncelet (1835, pp. 1-15). 

(Note that Table IV suggests the pi series is totally oscillatory, since 

the signs on the differences alternate.) Ames (1901) reached equivalent 
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results; they essentially state that if the series is totally oscilla-

tory, then the upper bound on error is divided by a factor of 2 for each 

step down any diagonal in the Euler table. 

Pinsky (1978) essentially halved the upper bound on errors that had 

been given earlier, by using the results of Calabrese (1962) given in 

Chapter I. Assume that we do have a totally oscillatory series; i.e., 

suppose the diagonals are monotone, in alternating directions. (See 

Table III.) Then, although Pinsky evidently did not see this, his result 

immediately implies: an upper bound on the size of the error of any en-

try in the table is the difference between the entry above it and the 

entry beside it; i.e., a difference on the next higher diagonal. 

To see how a lack of "total" oscillation can destroy the usual sue-

cess, see Table V, based on the series 

'IT+l 

0 

4.500 

3.417 

4.342 

3.833 

4.308 

3. 960 

(4 + 1/2) - (4/3 - 1/4) + (4/5+1/8) - (4/7 -1/16) + .... 

TABLE V 

APPLICATION OF EULER'S METHOD TO AN ALTERNATING 
SERIES WITH MONOTONE COMPONENT 

(SUM = PI + 1) 

2.250 

3.958 3.104 

3.879 3.919 3 .511 

4.087 3.983 3.951(*) 3.731 

4.071 4.079 4 .031 . 3.491(*) 3.861 

4.134 4.103 4.091(~~) 4.061 4.026(*) 3.926 

(12) 



23 

The best entry on each row is underlined, and (*) denotes a viola-

tion of the required monotonicity along diagonals. Series (12) is an 

alternating series, with differences going to zero monotonically. The 

diagonals are still converging to pi, but quite slowly. The later col-

umns seem to be a waste of time. The difficulty comes from the flawed 

2 3 monotonicities of the diagonals, indicating wrong signs on~ A2 , ~ A2 , 

4 2 
~ A2 , and ~ A4 • 

If we did not know the correct limit for Table V, which entries 

should we accept as the best? As we shall discuss later, a row of the 

Euler table will often oscillate about the limit, with the errors first 

decreasing and then increasing in magnitude. In such a case, monitoring 

the differences between consecutive entries of a row seems a good idea~ 

The best entry is likely to be near the smallest difference. For Table 

V, the differences do locate the best entries fairly well, as we dis-

cussed in Chapter I. See Table VI. Best entry positions and smallest 

differences are underlined. 

x 

x -2.250 x 

x .541 x 

x -.463 x 

x .254 x 

x .237 x 

x .174 x 

TABLE VI 

HORIZONTAL DIFFERENCES FOR THE 
ENTRIES IN TABLE V 

-.854 x 

.040 x -.408 x 

-.104 x -.032 x -.220 x 

.008 x -.048 x -.022 x 

-.031 x -.012 x -.030 x 

-.130 x 

-.035 x -.100 x 
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It should be fairly clear that Euler's method is useful mostly for 

oscillating sequences, not for monotone ones. For a monotone sequence, 

each column will be worse than the previous one. However, it should be 

noted that on some occasions, a monotonic series can be rewritten in 

terms of an alternating one. For example, Ames (1901) sums the series 

for Zeta(p), 

Zeta(p) (p > 1) (13) 

by rewriting Zeta(p) as 

Zeta(p) 
2p-l 

-p -p 
1 (1 - 2 + 3 - ... ), 

2p- - 1 
(14) 

and then applying the Euler method. See Table VII, for the case p = 2. 

The true sum is 1.645 to three decimal places. Again, the best entry in 

each row is underlined. 

TABLE VII 

ZETA(2) VIA EULER'S METHOD 

0 

2.000 1.000 

1.500 1. 750 1.375 

1. 722 1.611 1.681 1.528 

1.597 1.660 1.635 1.658 1.593 

1.677 1.637 1.648 1.642 1.650 1.621 

1.622 1.649 1.643 1.646 1.649 1.647 1.634 
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D. "Summing" Divergent Series 

To this point, we have examined the use of Euler's method on conver-

gent alternating series. Although a monotone component will destroy the 

method's effectiveness, the method will work beautifully on totally os-

cillating series. We have seen that the table entries can easily be used 

to calculate the maximum error of any entry. But now we turn to what may 

seem less orthodox: the use of the method to "sum" divergent series. 

We have discussed, in Chapter I, Euler's rule about how the "sum" of 

a divergent power series should be defined. His rule would give (in the 

extended sense), for all~· 

2 
1/(1 - x) = 1 + x + x + ... (15) 

2 2 3 
1/(1 - x) = 1 + 2x + 3x + 4x + .... (16) 

His opinion was strengthened by the experimental evidence that his trans-

form, when applied to a divergent series, often converged to the "right" 

answer. For example, setting x = -2 in (15) and then applying the trans-

form gives the following results on our top diagonal (Knopp, 1951, p. 

468). 

1 - 2 + 4 - 8 + ... --'> 1/2 - 1/4 + 1/8 - 1/16 1/3 (17) 

1/(1 - x)]x=-2 

Likewise, setting x -1 in (16) gives 

1 - 2 + 3 - 4 + ... --'>l/2 - 1/4 + 0 + 0 + ... 1/4 (18) 

2 
= 1/(1 - x )]x=-l 

On the other hand, the transform does not always succeed so well. With 



26 

x = 2 in (15), we obtain 

-1 1+2+4+8+ .... (19) 

It is obvious that no amount of averaging of the partial sums is going 

to give -1 as a limit. This raises the question of when, exactly, is 

the method going to give the "right" answer for a divergent series? We 

turn now to that question, which amounts to discussing the use of the 

method in analytic continuation. 

To explore this topic, we need to allow repeated applications. This 

consists in taking a diagonal, generally the top one, and using it as a 

new "initial" column for another table. We will use E to denote the 
p 

operation of applying the transform p times in this manner. 

Knopp (1951, p. 508 ff.) gives several results along this line. The 

results for even a geometric series are revealing; he obtains 

oo E co p n 
2: Zn ( Z E ~) L 2-p 2: ( 2 - 1 + Z) ( 2 0) 

n=O n=O 2np 

The original series has a radius of convergence "l". The tranformed 

series is also geometric and also sums to 1/ (1 - Z), but it converges 

whenever I z - (1 - 2P) I < 2P. The region of convergence increases as p 

increases. See Figure 1. 

The picture itself suggests the proper conclusion: If Re(Z) < 1, 

then the series 1 + Z + z2 + •.• is "E -summable" to 1/ (1 - Z) for suffi
p 

ciently large p. For example, Z -4 gives 1 - 4 + 16 - 64 + ... , which will 

be outside the E1 circle. The top diagonal will diverge. But if we use 

that top diagonal as the basis for a new table, the next top diagonal 

will converge to the "proper" sum, 1/5, since Z = -4 is inside the E2 



circle. 
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On the other hand, notice that none of the circles in Figure 1 reach 

to the right of the line Re(Z) = 1. That means that no E will sum a 
p 

geometric series like 1 + 2 + 4 + 8 + . . . (Z = 2). This is true in general: 

if the partial sums of a series "converge" to either plus or minus infin-

ity, the transformed sums will likewise go toward the same infinite limit. 

It is only when the partial sums diverge by way of oscillation that the 

Euler transforms may give a finite limit (Hardy, 1949, p. 10). 

The first systematic work on the E transforms was in two papers by 
p 

Knopp in the early 1920's. The papers are in German, but two of the more 



interesting theorems are given by Hardy (1949, p. 179): 

Theorem: If a series is E -summable and p > q, then the series is 
q 

also E -summable to the same limit. 
p 

Thus, just as in Figure 1, the transforms always do form a "nested" se-

quence of methods, with bigger and bigger convergence regions. 

00 

Theorem: If L a is E -summable, then a 
n=l n q n 
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This theorem simply puts a limit on how fast a can grow without destroy
n 

ing the chances of the E transform to converge. 
q 

The most beautiful theorem on the use of the transform is also by 

Knopp (1949, p. 508). It gives an explicit algorithm for drawing the 

circles of consequence (as in Figure 1) for much more general series than 

the geometric series: 

00 

Theorem: Assume L c z 
n=O n n 

f(z) has a finite positive radius of con-

vergence in ~. Given a natural number p, this is how to find where (in 

~)the series is E -summable to f(z): for each a, 0 2_ a< 2rr, move in 
p 

the "a" direction from 0 until reaching the first singular point of f(z) 

in that direction. Call that point z • (If no singularity lies in the 
a 

"a" direction, that direction need not be considered in what follows.) 

Define k to be the circle in C given by lz/z + 2P - lJ < 2P. Take the 
a a 

intersection of all k as G • Then the series is (absolutely) E -sum-
a P P 

mable to the analytic extension of f on the interior of G • Outside G 
p p 

the E transform of the series is divergent. 
p 

For another example, consider the well-known series, which converges 

when -1 < x < +l: 
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ln(l + x) 
2 3 4 

x - (l/2)x + (l/3)x - (l/4)x + .... (21) 

The convergence regions given by Knopp's theorem are as shown in Figure 

2, along with the original circle of convergence. 

~ - ---... ........ 
/ '\ - ..... 

'\ 
' \ \ 

I 5 

I 
10 

/ 

/ 
/ ....._ ___.,,, 

-5,.i 

/ " ...... - .,,,, 

Figure 2. Convergence Regions for 
ln(l + x) Series and its 
First Three Euler Trans
forms 

I 

\ 

I 

I 

According to Figure 2, we .can let x = 2 and use (21), apply Euler's 

method to the partial sums, and obtain a top diagonal converging to 

ln(3). For x = 4, Figure 2 indicates we will have to use E2 to obtain 

convergence of (21) to ln(S), 1.609 ... This is in fact the case; see 

Table VIII. 



TABLE VIII 

RESULTS OF APPLYING E2 TO THE DIVERGENT SERIES 
FOR LN(5) = 1.609 ... 

0 0 0 

4.000 2.000 1.000 

-4.000 1.000 1.250 

17.333 2.167 1.396 

-46.667 .917 1.474 

158.133 2.442 1.522 

-524.533 .546 1.551 

1816.038 3.003 1.570 

-6375.962 -.208 1.583 

Partial Sums E1 Diagonal E2 Diagonal 

The gains may not be so considerable when the original function 

f(z) has "unfortunately" placed singularities. For example, let 
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g(z) 1/ (1 - z) + 1/ (2 + z). (22) 

The series can be obtained easily and converges for lzl < 1. The conver-

gence regions for the series itself, along with the convergence regions 

for E1 , E2 , E3 , are shown in Figure 3. On the real axis, E2 , E3 , ••• 

give us no additional extension of the convergence region. 

We have been discussing problems where the Euler method takes a di-

vergent series and finds the "correct" sum by converting the divergent 

series into a convergent one which converges to the correct limit. But 

the next (and last) example we shall introduce shows that the production 
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of a convergent series is not absolutely necessary to the successful use 

of Euler's method! 

~t 
I I 
1-

-5 

~ 11: 
1\'V I I I 

1, I I -Si 
I 

Figure 3. Convergence Regions for 
the g(z) Series and its 
First Three Euler Trans
forms 

E. "Almost Summing" Divergent Series 

Wallis' series was introduced in Chapter I: 

O! - l! + 2! - 3! + 4! - ... 

5 

(23) 

has the "natural" associated value .596347 ... , as we discussed earlier. 

Barbeau (1979) gives a complete study of the different ways Euler used to 

justify the value obtained. (See Chapter I for one way.) One of the 
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methods Euler used is the one we have been discussing. We will work with 

the related series 

l! - 2! + 3! - 4! + 5! - •.• , (24) 

which should clearly have the value .403653 if .596347 is correct for 

(23). Hardy (1949, p. 26) describes the efforts of La Croix, working in 

1819, to assign a proper value to (24). His best estimate was .4008. We 

follow his basic attack: apply the Euler method repeatedly and hope that 

something good happens! After the first application we will (with La 

Croix) always use a delay of two, which means the first two entries on 

the diagonal are not used in producing the next table. For the resulting 

upper diagonals, see Table IX. The best entry in each diagonal is under-

lined. 

TABLE IX 

THE INITIAL PARTIAL SUMS OF LA CROIX' SERIES, 
AND THE RESULTS OF APPLYING E1 , E2 , E3 

0 .3594 

1 .4005 

-1 .250 .3594 .3967 

+5 .625 .4414 .4016 ---
-19 -.062 .3447 .3999 

101 1.594 .4949 .4024 

-619 -3.234 .2263 .4009 

4421 13.320 .7845 .4034 

-35,899 -51.863 -.5212 .4007 
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Note that each transformed sequence eventually diverges; in fact 

Hardy (1949, p. 28) comments that each generated sequence eventually di

verges almost as wildly as the original partial sums. However, each new 

sequence approaches nearer the correct value and stays there longer than 

did the earlier sequences. when the differences in a given sequence 

begin to grow, we know we are leaving the "best" part of the sequence. 

This makes it possible to estimate the "correct" sum without ever obtain

ing a convergent series. Bromwich (1926, p. 326) mentions that Euler 

sometimes obtained answers correct to eighteen decimal places using such 

techniques! But it should be noted that, as a matter of fact, there are 

other methods, to be discussed later, which will "sum" Wallis' series 

much more quickly than does Euler's method. 

F. Some (Possibly) New Results and Conjectures 

Having discussed the standard facts about Euler's method, we return 

to a question suggested by Table I: under what conditions might we be 

able to predict the location of the best entry on a particular row of the 

Euler table, even before we construct the table? This question does not 

appear to be approached in the recent literature, probably because the 

algorithm is usually discussed in terms of one diagonal. However, 

Poncelet (1835, pp. 1-17) did notice a fact which is extremely relevant: 

given two consecutive entries in a column which oscillates about the 

limit, the average of those entries will fail to be an improvement on 

both of them only if the error in the better of the two entries is less 

than one-third the error in the worse of the two entries. See Figure 4. 
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n 
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Figure 4. The Fastest Improvement Which 
Euler's Method Can Allow With-
out Giving a Worse Average 

Poncelet did not put the question quite in our terms; but to find 
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the best entry in a row, we therefore just proceed along the row until we 

reach an element "x" which is three times as close to the limit as is the 

element just above "x". Next question: how can we know when the error 

ratio reaches one-third, since we do not know the correct limit? At 

this point, we shall not discuss proofs; on some points the present author 

would not claim yet to have completely rigorous proofs, anyway. But there 

do seem to be some things one can predict about series which approach 

their limit in such a way that the error has a specified form. Namely, 

assume that in the original sequence, for i = 1, 2, 3, •.• , 

(25) 

then the following things are apparently true in the Euler table formed 

from the SI: 

(1) The columns and rows both oscillate regularly about the correct 

(2) 

answer: positive error, then negative, then positive, etc. 

In the first column IS. - SI goes to zero at the same rate as 
1 

i-p goes to zero. In the next column, IT. - S I goes to zero at 
1 



the same rate as i-(p+l) goes to zero. And so forth. 

(3) For large values of i, the best approximation in row i will 

occur about two-thirds of the way across the row, regardless 

of K1 , K2 , ... and p. 
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(4) By.assuming that when we reach two-thirds of the way across the 

row the error ratio is about 1/3, we can calculate an extrapo

lation based on that assumption. The extrapolation tends to be 

much better than any entry in the Euler table to that point. 

The author hopes to publish explanations and proofs for these results 

someday; but they are too technical to fit into the present thesis. 

G. Conclusions 

We have spent so much time on the Euler algorithm because it illus

trates so many of the things that happen with all extrapolation algo

rithms. As a competitive method, it falls short on some problems when 

compared with more recent algorithms. Nevertheless, the method is still 

used for problems that are not "too" wild. And nothing can possibly be 

more satisfying than finding the sum of a slowly convergent series or a 

divergent one, without ever doing anything more complicated than averag

ing pairs of numbers! For convergent series where the ratio of consecu

tive errors approaches -1, and for divergent series which oscillate back 

and forth (but not too wildly), the more modern methods are not apt to 

make much improvement on Euler's method. 



CHAPTER III 

RICHARDSON/ROMBERG EXTRAPOLATION 

A. Introduction and Overview 

At this point, we switch to a slightly different context. In the 

discussion on Euler's method, the approximations used to generate the 

table were assumed to be partial sums of some series. But in the present 

discussion, the approximations used will not be partial sums; instead, 

they will be function values A(h), where his a varying positive step 

size; the goal is to use the A(h) values to estimate lim A(h). 
h+O 

The two algorithms discussed in this chapter have generated an enor-

mous amount of literature. Their histories have been interwoven and have 

been so interesting that, rather than simply presenting the algorithms in 

their modern forms immediately, we shall discuss the evolution of the 

methods to their present forms. 

Richardson (1910, 1~23, 1927) introduced his extrapolation idea 

briefly in his two earlier articles, but the 1927 article was completely 

dedicated to extrapolation. The reason for the later attachment of 

Richardson's name to the method might lie in the fact that the Philosoph-

ical Transactions had such a broad readership. However, we shall see 

that Richardson was, at best, only the fifth person to use "his" method 

in some sense. And, in fact, the algorithm did not reach its present 

form until Romberg's work (1955). 

36 



37 

Romberg's contribution was a new implementation of Richardson's 

method in general, though Romberg was interested in the application to 

numerical integration. That application is now called Romberg integra-

tion. Because of the advantages of Romberg's implementation, Richardson 

extrapolation is now always done in the Romberg style, even for problems 

not involving integration. The reader of most texts might assume that 

Romberg was (just) the first person to apply Richardson's method to in-

tegration. This is not the case, as we shall now see: the "Richardson" 

method was first used in integration in 1900! 

B. The Earlier Writers on Extrapolation 

W. F. Sheppard (1900) used the Euler-Maclaurin series for the exact 

error made by the trapezoidal rule when using m equal sub-intervals on 

[a,b]; we give the theorem involved. 

Theorem: Leth= (b-a)/m, x. = a+ih for i = 0, ... ,m; let f. = 
1 1. 

f(x.). Assume f and its first 2k derivatives are continuous on [a,b]. 
1. 

Let A.= B./j! for j = 2,4,6, ... , where the B. are the Bernoulli numbers. 
J J J 

Then there is a c in [a,b] such that 

b f f (x)bx 
a 

h(J:.2£0 +£1 + •.• +f +lf )-A h2 (f'(b)-f'(a))-
m-l 2 m 2 

Formula (1) assumes the notation for the Bernoulli numbers given in the 

CRC Standard Mathematical Tables (1974, p. 485). For example, 

1/42, B8 = -1/30. (2) 
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Krylov (1962, p. 216) gives a proof of the theorem. 

If all derivatives of f are continuous, it seems natural to write 

I= T(h) - Dh2 - Eh4 - Fh6 - .... (3) 

Strictly speaking, "=" is not always correct; but "......," is. We shall, 

however, use (3) with the proviso that more will be said on this topic, 

later. 

We now discuss the main results of Sheppard (1900). Assume the 

trapezoidal sums T(h) and T(2h) are available. Then we can find a linear 

combination of them which has an error series beginning with h4 . For 

small h, such an approximation should be better than either T(2h) or T(h). 

The combination needed is easily obtained from 

T(2h) = I + 4Dh2 + 16Eh4 + 64Fh6 + 

T(h) I + Dh2 + Eh4 + Fh6 + 
(4) 

Thus, 

4T(h) - T(2h) 4 6 
= I - 4Eh - 20Fh - .... 

3 
(5) 

Sheppard noted some other interesting facts besides the elimination 

of the h2 term. First, if the number m of subintervals is even, then it 

is easy to show 

4T(h) - T(2h) 
3 

S(h), (6) 

where S(h) is Simpson's approximation with m subintervals and m/2 parab-

olas to approximate the curve over [a,b]. We have thus written a more 

sophisticated area approximation as a linear combination of trapezoidal 

approximations. Sheppard showed this could be done for a number of so-



phisticated approximations. Another fact that he noted concerned the 

2 
price paid for the elimination of the h term: the coefficients on the 

remaining terms are magnified. Consequently, if D were zero, the domi-
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nant error term in S(h) would be four times larger than the corresponding 

term of T(h). In such a case, we would do better to use T(h) than S(h), 

even though S(h) is "normally" more accurate for small h. Referring back 

to (1), we thus see that T(h) should be considered preferable to S(h) if 

f'(b) = f'(a). 

Sheppard also dealt with the simultaneous removal of many of the 

error terms. E.g. , suppose T(4h), T(2h), and T(h) are available. Then 

I T(4h) + 16Dh2 + 256Eh4 + 4096Fh6 + 

I T(2h) + 4Dh2 + 16Eh4 + 64Fh6 + (7) 

I T(h) + Dh2 + Eh4 + Fh6 + 

Using p, q, and r as undetermined coefficients gives 

(p + q + r)I = [pT(4h) + qT(2h) + rT(h)] + Dh2 [16p + 4q + r] + 

Eh4 [256p + 16q + r] + Fh6 [4096p + 64q + r] + .... (8) 

Set the coefficient of I equal to 1 and the h2 and h4 coefficients 

to 0 to obtain 

[ 
1 

16 

256 

1 

4 

16 ~] [:] [~] 
Solve (9) to obtain 

I 
T(4h) - 20T(2h) + 64T(h) + 652Fh6 

45 9 + .... 

(9) 

(10) 

Sheppard noted that this approximation is equivalent to what is called 



40 

Boole's integration rule, ordinarily obtained by using fourth-degree in

terpolating curves. (In our present day tables, the third column will be 

approximations given by Boole's rule.) 

Sheppard extended our system (7) to allow elimination of any number 

of powers of h, given an appropriate number of trapezoidal approximations. 

Unfortunately, if you decide at the end of calculations that it would be 

better to eliminate another power of h, you essentially have to set up a 

new linear system and begin again. But no one before 1955, including 

Richardson, made any improvement on Sheppard's presentation of "Richard

son" extrapolation, so far as the present author knows. It is not diffi

cult to see why Joyce (1971, p. 477) considers it unfortunate that 

Sheppard's article has not been more widely known. 

It is puzzling that the 1900 article was apparently never read by 

Richardson, though he does cite (1910, pp. 308, 310) one of Sheppard's 

articles published in the same Proceedings a year earlier. The only 

early writer who built on Sheppard's foundation was Buchanan (1902). 

Milne (1903) used similar operations to reduce errors in a completely 

different problem. It concerned the approximation of the length of a 

circular arc by taking inscribed polygons. This process was of ancient 

interest, because it gives approximations for pi if the arc is a semi

circle with unit radius. We next sunnnarize the basic idea for that 

special case. 

Let the semi-circle be divided into n equal arcs with h as the meas

ure of the central angles in radians. Therefore h = ~/n. Let P(h) de

note the total length of the corresponding inscribed polygonal approxima

tion to the semi-circle. It is trivial to show from elementary geometry 

and trigonometry that 
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P(h) 27f . (h) 2 4 - sin - = 7f - ah + bh - ••.• 
h 2 

(11) 

Therefore, if we have P(h) and P(2h) available, we can use the same sort 

of approach as before, with a better approximation for pi given by 

Q(h) 
4P(h) - P(2h) 

3 

It should b~ noted that this is a modern restatement of Milne's 

work; he never actually obtained anything quite so simple as (11) and 

(12) 

(12), though what he did is logically equivalent. Using a larger number 

of P values and then truncating the series so as to obtain a system of K 

equations in K unknowns, he found even better approximations. However, 

his presentation is defective when compared with Sheppard's, because 

Milne did not see the new approximations had an error series with the 

lower powers of h removed. He apparently just felt, accurately, that the 

approximation obtained by solving the truncated linear system would be 

better than the approximations used in forming the system. Milne's 

claim to predating Richardson lies mainly in the fact that he did obtain 

the same results as Richardson's method gives, though his explanation was 

lacking a bit. 

S. A. Corey (1906) likewise obtained some "Richardson-like" results 

before Richardson's first article; again, the method was truncation, 

which prevented his noticing the form of the error for the new approxima-

tion. 

In his 1927 paper, Richardson did make some important points that 

had not been made before. For example, he noted that when physical prob-

lems were modeled by differential equations and solved approximately by 

central differences, the error series for the approximation generally 
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has no odd powers of h. He was the first to apply the method to problems 

of general scientific interest; even the titles of his articles indicate 

an interest in applied mathematics. But only in one example (1927, pp. 

2 4 
308-311) did he eliminate both the h and h terms. He showed no inter-

est in proceeding further. He never used his method for improving esti-

mates of a definite integral value. 

C. The Modern Algorithm 

As we have seen, the early writers always eliminated several error 

terms by setting up a linear system which eliminated all of them at once. 

As we have seen, this would be a bit inconvenient if one decided at the 

end that it would have been a good idea to eliminate a few more powers. 

Essentially you have to start over. Romberg (1955) was the first to see 

how to avoid this difficulty imposed by having to solve a linear system. 

We show now how his procedure works. It is so simple that it seems in-

credible no one devised it earlier. 

Suppose we want to find a quantity X which is the limit, as h 

approaches zero, of some more easily accessible quantity A(h). Suppose 

there are constants D, E, F, ••• , such that, for every h, 

X = A(h) + Dh2q + Eh2q+Z + FhZq+4 + .••. (13) 

We do not need to know the constants involved, except q. Then 

x A(h) + Eh2q+2 + Fh2q+4 + 
(14) 

Take a linear combination as before, to obtain 
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x 

(15) 

The sturcture of the error series for B(h) is the same as the error 

series for A(h); we can thus repeat the pattern if we have B(2h) avail-

able, computed from A(2h) and A(4h): 

(16) 

x B(h) 

Take a linear combination, to obtain 

x 

(17) 

- C (h) + F*''~h Zq+4 + ••.. 

The process can be continued. How far depends on our knowledge about the 

powers in the initial error series, and how many step sizes we are able 

to use in the initial stage of finding "A" values. If we halve the step 

size for each new A and call the first step size h, we have the following 

dependencies as set up by Romberg (see Figure 5). 

Romberg's paper had to do with definite integral approximations based 

on the trapezoidal and mid-point rules. He did not restrict himself to 

step-halving, realizing that other patterns had possible advantages. But 

we will discuss only the use of the trapezoidal approximations; and at 

present we will also restrict ourselves to step-halving, since that is 

still the best known method. 
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A(h) 

·_?_~ 

10 

A(h/8) ~ B(h/8) --+ C(h/8) ~ D(h/8) 

Figure 5. Dependencies in the Romberg 
Implementation of Richard
son Extrapolation 

D. Initial Illustrations on Romberg Integration 
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We now examine the algorithm's performance on several definite in-

tegral problems. The pattern of calculations is as in (13) - (17), since 

the hypotheses of the Euler-Maclaurin theorem will be satisfied. First, 

an example where the method succeeds well: the integral of l/x from 1 to 

2. The correct answer is, of course, ln(2), .693147181 .••. For the re-

sults obtained from the first five trapezoidal sums, see Table X. Cor-

rect digits are underlined. 

The entry in the right-most positions has an error series beginning 

with hlO and is about 179,000 times as accurate as the best trapezoidal 

sum used, .693391. 

Unfortunately there are some other fairly simple integrals where the 

extrapolation process leads to less satisfying results. For example, 

consider the results in Table XI, of applying the method to an example 

given by Bauer, Rutishauser, and Stiefel (1963). The best entry in each 



row is underlined. 

TABLE X 

2 
ROMBERG PERFORMANCE ON !1 (l/x) dx = .693147818 

n 

1 • 750000 

2 

4 

8 

16 

n 

1 

2 

4 

8 

16 

32 

64 

.708333 

.697024 

.694122 

.693391 

5.04950 

2.71706 

1.74703 

1. 49162 

1.47120 

1.47111 

1.47112 

.694444 

.693254 

.693155 

.693148 

.693175 

.693148 

.693147194 

TABLE XI 

.693147478 

.693147183 

ROMBERG PERFORMANCE ON lQlOl/(l+x2) dx = 

tan-1 (10) = 1.47113 ... 

1. 93958 

1.42368 1.38929 

1.40649 1.40534 1.40560 

1.46439 1.46825- 1.46925 1.46950 

1.47108 1.47153 1.47158 1.47159 

1.47113 1.47113 1.47112 1.47112 

.693147182 

1.47159 

1.47112 

Bauer et al. (1963) imply that the optimal column moves toward 
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the right as we extend the table. This is true, but the movement is 

slow. The accuracy of the first few columns does become spectacular, but 

some deterioration still takes place at the end of the rows. 

E. A Search for Factors Determining Performance 

1. Rate of Divergence 

Removing many error terms seemed to help greatly in the first exam-

ple, but the same process seemed counter-productive in the second example. 

Stroud (1974) makes the enigmatic remark that when we extend (1) into the 

infinite series (3), the series is known to diverge for "most" functions. 

The present author then guessed that the series for the l/x example con

verged nicely, while the series for the l/(l+x2) error diverged. This 

turns out to be quite incorrect, as we shall now see. 

First, what could cause the series to diverge for "most" functions? 

Could it be the A. constants in (l)? No. Using a known asymptotic ex
J 

pression for the Bernoulli numbers, it can be shown that for large j, 

• 2 
Aj+l = (-1/4~ )Aj (Engels, 1978, p. 389). Thus the A. go to zero and 

J 

the divergence must be caused by the derivative differences in (1) grow-

ing fast enough to cause divergence. But why would that generally ?appen? 

The reader who knows any complex variables theorems can show that 

if a function is analytic at "a" but has some singularities somewhere, 

and if a certain "often existing" limit does exist, then lfk(a)I does 

indeed have to go to infinity as k becomes large (Conway, 1973, pp. 

30ff). 

2 
Let f 1 (x) = l/x and f 2 (x) = l/(l+x ). It seemed promising to con-

struct the terms of the actual error series for f 1 and f 2 . This required 
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calculating high derivatives of the two functions. Higher derivatives of 

f 2 are nontrivial to calculate; but it does turn out to be possible to 

calculate the value of f~(x) without knowing the exact albebraic formula 

k 
for f 2 (x). The reader with considerable manipulative skills might enjoy 

trying to obtain the following recursion: 

f~n-l)(x) = n 
Q (x)/(l + l/x) , where 

n 

Qn+l (x) 
2 

-n[(n+l)(l + l/x )Qn_1 (x) + 2Qn(x)]. 

(18) 

The surprise is that the supposedly "nice" f function has derivatives 
1 

which grow much more rapidly than the supposedly "bad" f 2 ·function! The 

error series for f 1 diverges much more rapidly than the error series for 

f 2 . After the first twenty-three terms, the coefficient of h46 is 

-4.598E+l9 for ~he f 1 example, and -3.628E-27 for the f 2 example. 

The question then arose, is having a rapidly divergent error series 

somehow helpful in the extrapolation process? This seemed attractive 

partly because it is obvious that the extrapolation process greatly en-

courages divergence as we move to the right. The later terms are magni-

fied enormously. For example, it is not difficult to use the pattern in 

(15) to show that by the time we eliminate the h2 , h4 , h6 , and h8 terms, 

the h 48 coefficient is magnified by a factor of • 9E + 52. 

However, when the error series (including the h values in the compu-

tations) were computed for the entries throughout Tables X and XI, the 

hypothesis, that the rate of divergence was crucial, was not supported. 

For example, the twentieth terms of the error series for the two tables 

were almost interchangeable, position for position. And in the success-
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ful f 1 table, the rate of improvement slowed down as we move to the right 

and the more rapid divergences. 

We must conclude that our evidence about the connection between rapid 

divergence and successful extrapolation seems rather mixed. In the first 

column, rapid divergence and good extrapolating went together; but the 

later columns do not support such a connection. It is tempting to guess 

that, in itself, the rapidity of divergence may simply be irrelevant. 

2. The Removed Terms as an Error Estimate 

However, it is clear that the performance is controlled by how good 

an approximation the removed term was for the true error. Let us be more 

precise: 

T(2h) 

T(h) 

assume 

2k 
= I + a(2h) P2h 

2k 
I+ ah Ph. 

Then it follows quickly that 

4kT(h) - T(2h) 

4k - 1 

1 Ph 
I + (- - 1) (T (2h) - I) 

4k - 1 p2h 

(19) 

(20) 

Thus, if the errors were exactly 100a,2h) 2k and 100ah2k, a perfect extrap-

olation would result. Thus it is not quite correct to say that the suc

cess of extrapolation depends on ahk and a(2h)k being good approximations 

to the actual error. What is crucial is that those two terms should be 

about the same percentage of the respective errors. Of course, the easi-

est way to force this is to have both P2h and Ph close to 1. Formula 
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(20) can be used to establish that the extrapolation will be an improve-

ment on T(h) if and only if 

1 2-
k ' 

4 
(21) 

with 1 as the ideal value for P2h/Ph. The required interval is always 

contained in (0,2). Similarly, the extrapolation will be better than 

T(2h) if and only if a much less stringent requirement is met; namely, 

k Ph k 
2-4 <--<4. 

p2h 
(22) 

Notice also that if T(h) and T(2h) are on opposite sides of I, then P2h 

and Ph have opposite signs and (21) insures that improvement is impossi

ble. An oscillating column is a good sign in an Euler table, but not in 

a Richardson/Romberg table. 

The calculation of the Ph values for the entries. in the f 1 table 

2 (l/x) and the f 2 table (1/ (1 + x ) ) shows how the f 1 table attains its 

superiority. For example, consider the Ph values in the row with n= 8, 

for f 1 : .9981, .9634, .7559, and .2932. The corresponding values in the 

f 2 table are -80, +20,870, l.243E+5, and 9.369E+4. But we do still get 

some improvement for some Ph values faraway from 1: for example, in 

the f 2 table, the Ph value below the 1. 243E + 5 is 3. 4 77E + 5. This gives 

P2h/Ph = .36, which is in the acceptable range (.03,1.97) for that column. 

And in the f 1 table, the Ph value below the .2932 is .6341, giving a 

ratio of .46, well within the desired range, (.02,1.98). Of course the 

resulting improvement is not nearly so good as the corresponding one in 

the second column, which results from having a .9995 Ph value under the 

.9981 value. 

The extrapolation process itself tends to force the Ph values away 
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from "l" as you move along a row, because of the magnification of the 

later terms in the series. For example, if we began with unit coeffi-

2 4 cients on all the powers (h ,h , •.• ), then the ratio of the second term 

to the first increases as we move along the row: from lh2 to 5h2 to 2lh2 

to 85h2 to 34lh2 , in the first five columns. The result is a deteriora-

ting rate of improvement as we move along the row, even in the f 1 table: 

e.g., in the row with n= 16, the error is multiplied by .0019, then .0291, 

then .1831, then .5397. 

The author has not seen the Ph idea elsewhere, but it does seem to 

help in understanding what is happening. We now move on from f 1 and f 2 

to examples which illustrate other points about the process. 

F. Examples on Other Points 

An illustration given by Davis (1959) makes clear what the infinite 

series in (3) signifies. Let us compute the Romberg table with 

f ( ) . 095 
3 x = 1. 81 - 1. 80cos (x) 

(23) 

All requirements of the Euler-Maclaurin theorem are satisfied. But f 3 

has a period of 2~, making all the terms in (3) equal to zero. Does this 

mean that the error is zero for any h? Absolutely not. See Table XII. 

One aspect of the behavior in Table X is made clear by referring 

back to (1), the original Euler-Maclaurin series. No matter how far we 

choose to extend the series, all the weight is in the last term, the one 

that is never included in (3). The extrapolation process is continually 

trying to remove terms that are not there. This hinders rather than 
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helps. Suppose we have (for f 3 , any k is appropriate) 

I = T(2h) - A 4kh2kf2k(c) 

I T(h) - A h2kf2k(cl). 
(24) 

Then the first extrapolation will give 

4T(h) - T(2h) 
k 2k 

I A h2kf2k(c )(!±... _ 4 f (c) ) 
3 1 3 3f2k(cl) 

(25) 

The 4k is a very bad sign of things to come. And sure enough, the ex-

trapolations in Table X are not improvements over the elements used in 

computing them. 

TABLE XII 

PERFORMANCE OF ROMBERG INTEGRATION ON 
J 2TI f (x) dx = TI 
0 3 

n 

1 59.69 

2 29.93 20.00 

4 15.13 10.20 9.54 

8 7. 89 5.48 5.16 5.09 

16 4.57 3.46 3.33 3.30 3.29 

32 3.37 2.96 2.93 2. 92 2.92 2.92 

64 3.15 3.08 3.08 3.09 3.09 3.09 3.09 

The other main aspect of Table X is much more encouraging and shows 

what the infinite series (3) does imply when all the terms are zero: 
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namely, the error function I - T(h) is asymptotic to the zero function and 

thus goes to zero (as h-+ O) faster than any polynomial in h. The column-

one entry for n=512, h=21f/512, has an error of only .222E-13. In a 

way, the failure of extrapolation causes no great concern here, because 

the trapezoidal sums themselves converge very rapidly to the answer. 

They do have difficulty at first because the vast majority of the area 

under the curve is at the ends of the interval. 

Another example which shows the importance of one of the Euler-

Maclaurin hypotheses is 

(26) 
1 J0 f 4 (x) dx = 1. 

We almost have the requirements of the theorem, but the derivatives fail 

to be continuous at 0. We can no longer be sure that the error series 

for T(h) is an h2 series; in fact it is not, though the h2 , h4 , ••• terms 

are present and it does help a bit to remove them. The rows of the 

Romberg table improve slightly. as we move to the right, but each new "9" 

in the approximation requires about four times as many function evalua-

tions as the previous decimal place required. The rate of improvement 

along the top diagonal is no greater than the rate of improvement for the 

trapezoidal sums themselves. We shall see later how to modify the Romberg 

algorithm to make the extrapolation on this example much more successful. 

But the point for now is simply that if the hypotheses assumed by the 

Euler-Maclaurin series are not completely satisfied, then the extrapola-

tions based on that series are also not likely to succeed. 
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G. Quality Estimates on Extrapolations 

By this point it seems reasonable to approach the question of how we 

can detect whether extrapolation is justified. The answer is not very 

complicated. If the first remaining term in the error series for a se

quence of approximations V(4h), V(2h), V(h) is an h2k term, and if the 

Ph, P2h, P4h are used as before, 

Then 

V(4h) A + Cl6kh2kP 
4h 

V(2h) A + C4kh2kP 
2h 

V(h) A+ Ch2kP. 
J 

k 
V(4h) - V(2h) 
V(2h) - V(h) 

k 4 p4h - p2h 
4 (-k----). 

4 p2h - Ph 

If P 4h, P 2h, Ph are all approxima,tely equal, which is all we need for 

successful extrapolation, then 

V(4h) - V(2h) 
V(2h) - V(h) 

(27) 

(28) 

(29) 

If we are proposing to use the V column for extrapolation and assume the 

2k 
first term in the error is an h term, we can thus get a measure of how 

good the extrapolation based on that assumption is likely to be, by noting 

how close (30) is to a true equality: 

V(h) - V(2h) 4k • 
V(2h) - V(4h) l. 

(30) 

(29) is itself often used as a quality estimate (Conte and deBoor, 1972, 



p. 316). But if one wishes to use variations beside step-halving, 

it seems most convenient to set up quality estimators which always ap-

proach "l" when the procedure is working correctly. See Table XIII, 

where the quality estimators were calculated assuming the usual h2 , h4 , 
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.•. series. Note that if the quality estimate is not close to "l", vir-

tually anything may happen to the error via extrapolation. But when the 

estimator is near 1, the extrapolation invariably multiples the error by 

a number considerably less than 1. Joyce (1971) attributes the first use 

of (30) to Lynch (1965). 

fl 

f2 

f3 

f4 

TABLE XIII 

QUALITY ESTIMATES FOR THE FIRST FIVE COLUMNS OF 
ROW SIX (n=64), WITH THE ACTUAL MULTI

PLICATIVE EFFECT ON ERROR VIA 
EXTRAPOLATION FROM THAT 

COLUMN'S ELEMENTS IN 
ROWS FIVE AND SIX 

1.0005 1.0076 1.0626 1. 3744 2. 7764 

(. 0001) (.0019) (. 0160) (. 0911) (. 3053) 

.54707 .10781 -7. 7725 -50.125 -228.92 

(. 0007) (-1114.) (-1.104) (1. 540) (1.089) 

.71660 -3.6377 -24.776 -111. 05 -456.70 

(-8.708) (.8824) (.9569) (.9882) (.9970) 

1.4398 5.6570 22.627 90.510 36.204 

(. 4006) (.8781) (. 9710) (. 9928) (. 9982) 
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H. Theorems and Implications in Use 

Having seen the kinds of success and failure that the Richardson/ 

Romberg method can produce, the question arises as to what hypotheses 

will always guarantee success. Most of the basic theorems on Romberg 

integration are to be found in the important paper by Bauer, Rutishauser, 

and Stiefel (1963). We will now informally discuss the main ones and 

their implications. 

The first crucial theorem insures that if f is continuous on [a,b], 

then all columns of the Romberg table must converge to the correct value 

of the definite integral. This is certainly a believable result, regard-

less of the difficulty of the proof. 

To see what the second main theorem asserts, use system (19) to show 

T(2h) - I 
T(h) - I 

k p2h 
4 p· 

h 
(31) 

The theorem asserts, translating into our terms, that if enough deriva

tives of f are continuous to let us extend the removal process to the h2k 

column, then (for small h), P2h/Ph will be close to 1 and we must have 

successful extrapolation. More precisely, if we proceed deeply enough 

into the column where the error series begins with h2k, any entry will 

have an error about 4k times as large as the error of the entry under-

neath it. 

The third theorem we shall discuss requires f, considered as a func-

tion of a complex variable, to be analytic in an open domain of ~ which 

contains [a,b]. The conclusion is that as we proceed down any diagonal, 

the ratio of consecutive errors goes to zero. Again, reinterpreting the 

theorem in our terms is easy. Referring back to (20), the crucial ratio 
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is, for the 
2k 

h column, 

1 Ph 
(32) 

4k -
(- - 1). 
p2h 1 

The theorem implies that, under the stated conditions, Ph/P2h is not too 

far from 1. So the limit of (32) will be zero. 

Unfortunately, as often happens in mathematics, these limit theorems 

are not as conclusive in practical computing as we might hope. We shall 

soon see an example where round-off error will actually result in the 

columns getting worse as we proceed down, no matter how far we proceed. 

2 
As for the other two theorems, note that 1/ (1 + x ) , which causes some 

difficulty in extrapolation, satisfies the hypotheses of both the theo-

rems. We are guaranteed by the theorems that if we are able to proceed 

far enough down any column or diagonal, and if round-off error remains 

insignificant, then the stated limits will eventually be approached. The 

problem with the f 2 example is that the conclusions are just beginning to 

take effect when we reach the limits of our finite precision arithmetic 

and the limits of how much computer time we are willing to use. (Each 

new row added essentially doubles the total number of function evalua-

tions needed.) For example, as we proceed down the second column of the 

f 2 table, through the row with n = 512, the consecutive error ratios are 

essentially 10, 1, 10, 149, 16703, 57, 16, and 16. In the later columns, 

the error ratios are not yet close to converging at this point in the 

table. 

The same sort of thing is happening on the diagonals. The ratio of 

consecutive errors is decreasing steadily but is only down to .001 (on 

the top diagonal) by the time we reach the tenth row of the table. 

The last theorem we shall discuss was not in the 1963 paper, but it 
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was in an earlier paper by Rutishauser and Stiefel (1961). This theorem 

essentially says that if f is an arbitrary polynomial of degree 2m or 

2m + 1, then m extrapolations should. be required to produce the exact in-

1 All h . . .h th 1 . 1 h ld b . d tegra • t e entries in t e m-- extrapo ation co umn s ou e i en-

tical and should be absolutely correct. This points out the main fault 

of Romberg integration. To integrate a fifteenth degree polynomial pre-

cisely, eight rows and columns are necessary in the table. This requires 

129 function evaluations, even if we can avoid evaluating f (x) more than 

once for any x used in the trapezoidal sums. Based on this criterion 

alone, the Romberg method would be very inferior to the Newton-Cotes and 

Gaussian methods of integration. They require only fifteen and eight 

function values, respectively, for exact integration of any fifteenth de-

gree polynomial. But Bauer et al. (1963) point out some other con-

siderations which are important. Romberg integration is the only one of 

the three methods which permits easy, iterative calculation of the higher 

order approximations, based on the lower level approximations already 

calculated. And the higher order Newton-Cotes methods have a rather 

frightening feature: mathematicians have constructed continuous func-

tions such that the Newton-Cotes methods do not converge to the proper 

answer. Davis (1962, pp. 482-483) gives such a function. Stroud (1974, 

pp. 106-140) gives a good discussion of these two alternatives to Romberg 

integration. 

At this point, we should perhaps answer a question that may have 

occurred to the reader: why measure a method by its ability to integrate 

a polynomial, anyway? Certainly we do not need a numerical method to 

integrate polynomials. The answer involves a "big" theorem in analysis: 

any continuous function on [a,b] can "essentially" be "followed" by a 



polynomial, if we make the degree high enough. Bartle (1964, pp. 177-

182) gives a more precise statement. Thus integrating arbitrary con

tinuous functions is a lot like integrating polynomials. 
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Before we move on to other things, we should also answer another 

question we have raised: how do you arrange to calculate the successive 

trapezoidal sums so that f is never evaluated at any x more than once? 

Staying on [O,l] for simplicity, the scheme is this: with s 1 , s 2 , s 3 , 

.•• as the trapezoidal sums, compute via 

s 1 = (f(O) + f(l))/2 

s 2 = s 1 /2 + f(l/2)/2 

s3 S2/2 + (f(l/4) + f(3/4))/4 

s 4 = s 3/2 + (f (1/8) + f (3/8) + f(S/8))/8 

I. Maximizing Accuracy of the Initial Sums 

(33) 

Before discussing other variations of Romberg integration besides 

step-halving, we shall discuss a refinement which may be used either with 

step-halving or some other method. This refinement was suggested by 

Rutishauser (1967) for getting more accurate sums in the initial column 

of the Romberg table. Wallick (1970) found that if one hopes to reach 

full machine accuracy with the extrapolations, then Rutishauser's sum

mation algorithms may be needed to attain the last digit or two. We now 

explain this method, which could be used in sununing any list of numbers. 

The difficulty in adding a long string of numbers on the computer is 

that, by the time we approach the end, we may be adding comparatively 

small terms onto comparatively large partial sums. In finite precision 
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arithmetic, this can result in a considerable error. Rutishauser tries 

to minimize this problem by having three levels of summation. Call our 

sum variables PP (for "pre-pre-sum"), P (for "pre-sum"), and S (for 

"sum"). We will choose another variable "NG", for "number in a group". 

The idea is to divide the collection of numbers into groups of NG terms, 

each. The groups are themselves divided into collections of NG groups, 

each. The surmnation goes thus: after NG terms are added up in PP, the 

collection sum P is updated via PP and PP is reset to zero to begin the 

2 
next group sum. When P has been updated NG times (i.e., after (NG) 

terms have been taken into account) the sum S is updated via P, and both 

P and PP are reset to zero to begin the next collection sum. Assume all 

the initial terms to be added together are of approximately equal size. 

Then it is only on the final "S" level that a quantity will ever be added 

onto another one which is more than about NG times as large. Raising 

NG will cut down on this effect in the "S" level, at the price of less 

balanced summations on the earlier levels. The reader might find it in-

structive to follow the process in adding up the numbers from 1 to 32--

first with NG= 2, then NG= 3. Rutishauser suggests NG= 16, though most 

of the sums for this thesis were done with NG= 8. To show that all this 

3 does make a difference on the computer, the trapezoidal sums for x , from 

-2 to 0, were computed repeatedly with different values of NG. To make 

sure the error being measured was essentially due only to the summing, 

all the variables were kept in double precision except for the vari-

ables PP, P, and S, used in surmning the new function values each time. 

If the surmning process itself adds no extra error, the trapezoidal sums 

obtained should be correct to between seven and eight digits. The amount 

of error introduced by the summing can reasonably be measured in units of 
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error in the eighth place. See Table XIV, which indicates that for this 

problem, setting NG= 4 is the best strategy. The correct sum for n sub

divisions of [ -2, O] is easily calculated to be -4 (1 + l/n2); this gave the 

standards for comparison. (The number n was taken to be powers of two 

and the triples of those numbers, rather than just powers of two. This 

is immaterial for the point at hand, however. That subdivision scheme 

will be discussed next.) 

TABLE XIV 

UNITS OF ERROR IN THE EIGHTH PLACE, FOR x3 SUMS 
WITH VARIOUS NG VALUES AND N SUBDIVISIONS 

N: 96 128 192 256 

1 79 26 88 112 

2 28 0 30 19 

4 25 4 21 16 
t 

NP 8 34 14 35 25 

16 56 28 52 48 

32 79 35 65 55 

64 79 74 88 76 

J. Generalized Step Sequences 

1. Overview and the Use of Interpolation Theory 

At this time, we will begin working toward the goal of alleviating 

the main weakness of "step-halving" Romberg integration: the large num-
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ber of function evaluations needed to add a row to the table. As we 

shall see, there is a price to be paid, both in simplicity and suscep-

tibility to round-off error in the calculations. Nevertheless, on bal-

ance, one of the variations to be examined is possibly preferable to 

step-halving in most problems. The other variation we will discuss, 

while previously rejected out of hand because of susceptibility to round-

off error, has been recognized lately as a legitimate method of economiz-

ing when high accuracy is not required. However, the reader will have to 

be patient for a while as we develop the (less obvious) formulas for the 

arbitrary step sequences. The argument followed for step-halving (equa-

tions (13) - (17)) seems to be impossibly difficult to implement in this 

new context. But help will come from taking a different approach, based 

on the connection between Romberg integration and interpolation. 

First, recall the "truncation" approach which would have been used 

by some of the older writers to eliminate the h2 and h4 errors and obtain 

a new approximation I*; solve 

so I* 
2 

+ aho + bh4 
0 

sl I* + 
2 

ah1 + bh4 
1 

(34) 

s2 I* 
2 

bh4 + ah2 + 2 

The I* obtained is the same approximation Sheppard obtained with his more 

sophisticated technique; and I* can be interpreted in terms of interpola-

tion: I* is P2 (0), where P2 (x) is the unique second degree polynomial 

satisfying 

2 2 2 
P2(h0) so, P2(hl) = sl' P2(h2) s2. (35) 

So far as the Romberg table is concerned, I* is the entry two columns to 
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the right of 

I* by P,, (O: 

s 2 . Adopt the notation of Stroud (1974, p. 150) and denote 

2 2 2 
h0 ,h1 ,h2). A similar interpretation can be put on all the .. 

entries of the table. We then obtain Table XV, as in Stroud (1974). 

TABLE XV 

THE ROMBERG TABLE IN TERMS OF INTER-
POLATING POLYNOMIALS 

so P0 (0: h2) 
0 

P0 (0: h2) pl (0: 
2 2 

s, hO,hl) 
.L 1 

P0 (0: h2) pl (0: 
2 2 P2 (0: 

2 2 2 
s2 2 hl, h2) h0,hl,h2) 

This lends some light on deterioration along the rows, if the reader is 

familiar with interpolation characteristics (Shampine and Allen, 1973, 

p. 42). 

We can now use a recursion discovered by Neville (1932), 

x-xo 
p l(x: xl, ... ,xn) + xn - x0 n-

x - x 
n (36) 

Let Ti denote the entry in column n and diagonal i (i, n = 0, 1, 2, •.. ) ; then 
n 

set x = 0 in (36) to give 
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h. 2 ·+1 Ti (-l-) Tl 
n-1 n-1 

Ti hi+n 
(37) 

n h. 2 
(-l-) 
hi+n 

- 1 

It is routine to show that when step-halving is used we obtain the more 

common formula. 

For FORTRAN implementation, relabel the table with T. k being the 
J' 

entry on row j and column k, with j and k = 1,2,3, ...• 

number of subintervals corresponding to h., we obtain 
l 

T 
n,k 

N2 
( n ) T - T 
N2 n,k-1 n-1,k-l 
n-k+l 

N2 
( n ) - 1 
N2 
n-k+l 

Using N. as the 
l 

(38) 

The extrapolation (38) is equivalent to assuming there is a constant 

~ such that 

Tn-1,k-l I+ ~h~-1 .•• h~-k+l 

T 
n,k-1 

2 2 
1 + 1\hn' · · hn-k+2 · 

(39) 

As before, we can calculate a quality estimate which will be near 1 if 

the extrapolation is justified. Namely, 

T - T N2 N2 - N2 
(-n~, k_-_l __ n_-_l~,_k_-_l_) (-n-) (-n-_1 __ 2_n_-k_) • 1. 

Tn-1,k-l - Tn-2 k-1 N2 N2 N 
' n-k n n-k+l 

(40) 

The present author has not seen (40) elsewhere, but it is an obvious 

extension of (30), based on the known form of error in (39), which was 
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given by Bulirsch (1964) and also Gragg (1971). The use of (40) will 

be illustrated later. Engels (1980, pp. 376-380) gives a proof that 

correct convergence of each column is "mathematically" assured if the 

h. approach zero faster than some geometric null sequence. (As we shall 
1 

see, "computational" assurance is not implied in finite precision arith-

metic.) 

Each additional h. makes it possible to add one more column to the 
1 

table. We therefore desire to add as many h. as possible, but with no 
1 

more new function evaluations than necessary. 

2. Two Alternatives to Step-Halving 

The first scheme that comes to mind is likely to be exchanging the 

N. sequence 1,2,4,8,16,32, ••• of step-halving for the N. sequence 1,2,3, 
1 1 

1 1 1 1 1 
4,5,6, •.• , which gives the hi sequence 1,2•3•4•5•6•'··· We will call 

this method the "harmonic" one for the obvious reason. Implementation 

of this method requires a new scheme for economy in the trapezoidal sums. 

For each h. (N.) we will need to store intermediate sums as we progress. 
1 1 

See (41), where we again assume [a,b] = [0,1). 

Fl (f(O) + f(l))/2 

F2 = f(l/2) 

F3 f(l/3) + f(2/3) (41) 

F4 f(l/4) + f(3/4) 

N-1 
FN I: f(k/N). 

k=l 
(k,N)=l 

Here (k,N) denotes the greatest common divisor of k and N. Just for an 
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example, the twelfth sum will be formed via 

The Euclidean division algorithm can be used to decide whether (k,N) 1 

-(Agnew, 1972, p. 32). 

The other method we shall discuss in detail was suggested by Bulirsch 

(1964) : let N. = 1,2,3,4,6,8,12,16, .•. ; i.e., all powers of two and the 
l 

triples of those numbers. This is called the "Q" method of subdivision. 

This method is going to include the trapezoidal sums obtained by step-

halving, but with an extra sum between consecutive "step-halving" sums. 

Again, a suitable scheme has to be developed for use in the initial col-

umn. Define the F. as in (43): 
l 

F = 2 f(l/2)/2 

F = 3 (f(l/3) + f(2/3))/3 

F4 = (f(l/4) + f(3/4))/4 

FS = (f(l/6) + f(S/6))/6 

F6 (f(l/8) + f(3/8) + f(S/8))/8 

F7 (f(l/12) + f(S/12) + f(7/12) + f(ll/12))/12, 

etc. The general pattern becomes clear from s 4 , on: 

N = 1, sl (f(O) + f(l))/2 

N 2, 82 s 1/2 + F2 

N 3, 83 s 1/3 + F3 

N 4, 84 = sz12 + F4 
N 6, SS = S/2 + F"/3 ,_ + FS 
N 8, 86 84/2 + F6 
N 12, 87 s 5/2 + F/3 + F7 

(43) 

(44) 
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Surely (41) and (44) are well-known to the experts in this area; but the 

present author has not yet seen the formulations in print. 

In spite of the slightly more complicated implementation, the two 

variations we have discussed have a great economy advantage insofar as 

reaching the later rows (and thus, the desirable later columns) is con-

cerned. See Table XVI, based on one given by Bulirsch (1964). 

TABLE XVI 

NUMBER OF FUNCTION EVALUATIONS NEEDED TO 
ELIMINATE A SPECIFIED NUMBER OF 

TERMS FROM THE ERROR 

Degree of Last Term 
Removed From Error Halving Q 

2 3 3 

4 5 5 

6 9 7 

8 17 9 

10 33 13 

12 65 17 

14 129 25 

16 257 33 

18 513 49 

20 1025 65 

Harmonic 

3 

5 

7 

11 

13 

19 

23 

29 

34 

44 

Unfortunately, Table XVI is rather misleading when taken by itself. 

Two factors are at work to cut into the advantages of the more economical 

methods. The first factor, often not mentioned, is that any given column 
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of the "halving" table is more accurate than the same column of the other 

two tables. The superiority begins even in the initial column: the 

seventh trapezoidal sum in the "halving" table is based on sixty-four 

subdivisions of [a,b], compared with twelve and seven subdivisions in the 

other two methods. Bulirsch (1964) showed that for integration on [O,l], 

the accuracy along the top diagonal can be expressed by 

1 J0 f(x) dx m=0,1,2, .•. (45) 

for some c in (0,1), where K is independent off but depends on which of 
m 

the three methods we choose. Bulirsch gives the exact form of the vari-

ous K and calculates their exact values. See Table XVII. The most de
m 

sirable K's are the smaller ones, of course. On this basis, the order of 

preference would be step-halving, Q, and then the harmonic method. 

TABLE XVII 

IK I FOR THE THREE METHODS 
m 

Degree of Last Term Halving Q Harmonic 
Removed From Error 

2 3E-4 3E-4 3E-4 

4 5E-7 lE-6 lE-6 

6 2E-10 lE-9 lE-9 

8 2E-14 lE-12 lE-12 

10 5E-19 4E-16 lE-15 

12 3E-24 7E-20 5E-19 

14 5E-30 7E-24 2E-22 



68 

For the definite integral of l/x from 1 to 2, the new variations 

produce more accurate answers for a set number of function evaluations--

at least, when the number is small. However, as the number grows larger, 

the harmonic method falls behind quickly and the advantage of "Q" gradu-

ally vanishes. See Table XVIII. It would suggest that if the values of 

f(x) are difficult to obtain, the new variations might be quite helpful. 

TABLE XVIII 

ABSOLUTE VALUES OF ERRORS IN THE TABLES 

FOR i 2 1:_ dx 
1 x 

row 33 f(x) evaluations 

(6) halving .6E-4 .3E-7 .2E-9 .lE-10 .4E-ll 
.2E-ll 

(9) Q .lE-3 .5E-7 .2E-9 .3E-ll .lE-12 
.2E-13 .5E-14 .2E-14 .lE-14 

(10) harmonic .6E-3 l.E-6 .7E-8 .lE-9 .7E-ll 
.6E-12 .9E-13 .2E-13 .8E-14 .5E-14 

row 65 f(x) evaluations 

(7) halving .2E-4 .2E-8 . 4E-ll .6E-13 .5E-14 
.2E-14 .lE-14 

(11) Q .3E-4 .3E-8 .3E-ll .lE-13 0 
.3E-15 .4E-15 .4E-15 .4E-15 .4E-15 

(14) harmonic .3E-3 .2E-6 .8E-9 .7E-ll .lE-12 
.3E-13 . 5E-13 .8E-13 .12E-12 .14E-12 
.15E-12 .15E-12 .16E-12 

row 129 f(x) evaluations 

(8) halving .4E-5 .lE-9 . 6E-13 0 .3E-15 
.3E-15 .3E-15 .3E-15 

(13) Q .7E-5 .2E-9 . 4E-13 .3E-15 .4E-15 
.5E-15 .6E-15 .6E-15 .6E-15 . 7E-15 
.8E-15 .8E-15 .8E-15 .8E-15 



The deterioration at the ends of the rows in Table XVI, especially 

for the harmonic method, suggests that another factor besides the K 
m 
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values is affecting the accuracies: namely, round-off error. We now ex-

amine how this propensity to deterioration is different for each of the 

three methods. 

Consider the integral 

1. (46) 

For each of the three methods, every number in the tenth extrapolation 

column "should" be 1. This in fact does not happen, and the differences 

between the three columns are the result of the three methods having dif-

ferent susceptibilities to round-off error. Further, continuing downward 

in the columns increases the error due to round-off. See Table XIX. 

TABLE XIX 

MAGNITUDE OF ERRORS IN A COLUMN THAT WOULD BE 
EXACT WITHOUT ROUND-OFF ERROR (NUMBER 

Halving 

(1024) .9E-15 

(2048) . 9E-15 

OF FUNCTION EVALUATIONS IN 
PARENTHESES) 

Q 

(65) .27E-13 

(97) . 22E-13 

(129) .28E-13 

(193) . 24E-13 

Harmonic 

(43) .16E-ll 

(47) .JlE-11 

(59) .54E-ll 

(65) .lOE-10 
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Thus, the variations on step-halving may not be able to attain as 

high an accuracy as step-halving attains, regardless of how far the table 

is extended. Nevertheless, Table XIX should not be allowed to obscure 

the fact that the variations attain the less demanding accuracies faster 

than step-halving: The .27E-13 error attained by "Q" is not matched by 

any entry in the halving table based on less than 256 function evalua-

tions. The .16E-ll error for the harmonic method is not matched by halv-

ing until 128 function evaluations are used. 

Another way to measure the susceptibilities of the three methods to 

round-off error is to find the maximum magnification on a prescribed per-

turbation in the initial column. This is mentioned, for example, by 

Gragg (1971). Certainly every entry, in whichever table we use, is a 

linear combination of trapezoidal sums in the first column. Define the 

m 
coefficients ck . as follows: 

,J 

k 
T = I Cn S 
n,k j=l k,j n-k+j' 

1 < k < n. (47) 

(The reader would probably find it helpful to write out the sums for sev-

eral elements in the T k table.) 
n, 

Suppose that each S. is perturbed by a small quantity X., where 
l l 

all X. have a magnitude less than some positive X. Then, for any T k' 
l n, 

the sum of absolute values of the associated coefficients is a measure 

of the possible resulting perturbation Y in T k; thus n,k n, 

k 
n 

+ xn-k+j)' T n,k 
+ y 

n,k 
I Ck . (S k+· 

j=l ,J n- J 
(48) 

so that 

k 

[Yn,k! < ( I le~ .[)x. 
j=l ,J 

(49) 
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To find the recursion for the C's, use (47) to rewrite (38), clear 

the fractions and equate corresponding S coefficients on both sides. One 

will be led to extend the sums on one side by defining 

ck-1,0 = o and ck-1,k 0. 

The result is finally, for k > Z and 1 < j _.2 k, 

cm 
k-1,j-l 

NZ 
( m ) - 1 

NZ 
m-k+l 

m-1 
ck-1,j 

This a natural extension of a formula obtained by Bauer et al. 

(50) 

(51) 

(1963); the superscripts were unneeded for step-halving, since the row 

number makes no difference. We are here using a slightly different nota-

tion than those authors. 

The implementation of (51) is quite similar to the implementation of 

(38), though there are some slight complications due to having the super-

scripts. See Figure 6 for a schematic diagram. 

cm 
k-1,j-l 

Figure 6. 

m-1 
ck-1,j 

I w 
m 

ck . 
,] 

Pattern of Calculation 
for the C's, by Rows 
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The C's were calculated for each entry in the early rows of the 

Romberg table, for each of the three methods, and the absolute values 

were summed to give an "error magnification" bound for each entry. These 

bounds indicate clearly the differences in susceptibility to round-off 

error, as we vary from table to table or even from one position to an-

other in the same table. See Table XX. 

TABLE XX 

ERROR MAGNIFICATION BOUNDS IN THE SECTION OF THE 
TABLES FROM T4 , 5 to ~9 , 5 to T9 ,lO 

(TO,l = TO) 

Halving 

1.9641 
II 1. 9680 
II II 1.9692 
II II II 1. 9692 
II II II II 1. 9693 
II II II II II 1. 9693 

Q 

6.3 
8.2 8.4 
6.8 7.3 7.4 
8.2 8.7 9.0 9.1 
6.8 7.3 7.5 7.6 7.7 
8.2 8.7 9.0 9.1 9.2 9.2 

Harmonic 

13 
25 26 
48 54 56 
84 106 116 119 

140 195 233 251 256 
222 343 446 513 545 553 

~ 
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The entries in Table XX agree well with the upper bounds on the mag

nifications given in the literature: Bauer et al. (1963) give the upper 

bound for step-halving as 1.969 .•.. Bulirsch (1964) gives the upper 

bound for "Q" as less than 9.3. And virtually everyone mentions that 

there is no upper bound for the harmonic method. (E.g., Bauer et al. 

(1963).) 

Bulirsch, according to Joyce (1971), chose his own "Q" as the best 

all-around method, reasoning that the reduction in work justified accept

ing four times as much susceptibility to round-off error. And for some 

time, everyone assumed the unbounded magnifications for the harmonic 

method made it useless. For example, in their very influential paper, 

Bauer et al. (1963, p. 204) said that the harmonic method "causes severe 

numerical instability and therefore cannot be used practically." 

Laurie (1975, p. 277) noted that the 1963 article had given no ex

amples, and he proceeded to show that the instability is "only mild", re

sulting in a loss, at worst, of about two-fifths of a significant decimal 

digit for each new row or column added. 

Laurie's mathematical arguments are quite involved, but we can ex

perimentally reach comparable results without much effort. The harmonic 

section of Table XX indicates that, on any row, the last entry is the one 

most susceptible to round-off error magnification. Therefore we restrict 

ourselves to consideration of the top diagonal for our worst-case analy

sis. Assume that we have n digits for each number in the initial column, 

and we permit a perturbation of up to 1 in the kth digit of each of them. 

Then the numbers in the last part of Table XX can all be taken as the 

possible resulting perturbations, measured in units of variation in the 

kth digit. When we reach a possible magnification of 10, we have lost 
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10 units in the kth place; i.e., we have lost an extra significant digit. 

When the magnification reaches 100, we have lost two digits more than 

were lost in the initial column. In general, a reasonable way to measure 

the loss of digits is thus to take log10 of the magnification factors. 

If we do this for the entries along the top diagonal, the difference be-

tween consecutive logarithms is the number of additional digits lost by 

adding the new row. As it turns out, each new diagonal element loses a 

bit more accuracy than the preceeding one. However, taking the second 

differences indicates that the increase in losses is steadily declining. 

See Table XXI. 

TABLE XXI 

MAXIMUM LOSS OF SIGNIFICANT DIGITS ALONG THE 
TOP DIAGONAL OF THE TABLE FOR THE 

HARMONIC METHOD 

Magnification Total Additional New Loss 
Factors Digits Lost 

1 0 
1. 6667 .22186 .2219 
3.1333 • 49600 .2741 
6.2127 .79328 .2973 
12.694 1.1036 .3103 
26.441 1.4223 .3187 
55.823 1.7468 .3245 
119.03 2.0757 .3289 
255.73 2.4078 .3321 
552.76 2.7425 .3347 
1200.6 3.0794 .3369 
2618.5 3.4181 .3387 
5730.1 3.7582 .3401 

Increase 
in Loss 

:0522 
.0232 
.0130 
.0084 
.0058 
.0044 
.0032 
.0026 
.0022 
.0018 
.0014 
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The behavior of the last two columns makes it easy to believe 

Laurie's assertion that the loss per additional extrapolation will never 

go above .3574 digits. He tested several examples to confirm his pre-

dictions and concluded that the harmonic method is a plausible choice 

if we do not need too much accuracy. Havie (1977) agrees with Laurie's 

conclusions and extends them somewhat. 

It seems appropriate to mention here that the quality estimate (40) 

appears to be a fairly good indicator of when the round-off error begins 

dominating the calculations. See Table XXII. 

Function 
Evaluations 

65 

129 

TABLE XXII 

QUALITY ESTIMATES TOGETHER WITH THE ACTUAL 
MULTIPLICATIVE FACTOR APPLIED TO 

THE SIZE OF THE ERROR BY EX
TRAPOLATION, FOR THE HAR-

MONIC METHOD ON J. 2 1_ dx 
1 x 

1. 00023 1.00155 1.00504 
(. 0007) (. 003) (. 009) 

.857530 -2.8 -10 
(.2) (1. 7) (1. 6) 

1.00007 1.00048 1.00144 
(. 0003) (.002) (. 004) 
-.18 -. 72 -.14 
(.4) (10) (5) 

1.01084 
(. 02) 
-18 

(1. 3) 

1. 00933 
(. 03) 
-2.1 

(3) 

The use of horizontal differences in locating the best entry in a 
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row is also a possibility, but it has not been tested. 

K. Extrapolation in Initial Value Problems 

We have spent a great deal of time on the use of the Richardson/ 

Romberg technique as applied to definite integrals where the error series 

has only even integral powers of h. But it would be unfortunate not to 

discuss, at least briefly, other situations where the same techniques can 

be used with slight modification. 

First, assume we are given an initial value problem as follows: 

Find y(b), where y(x) satisfies y' = f(x,y) and y(a) = c. The simplest 

method to get an approximation of y(b) is to take small steps of size h 

along the x axis, using Euler's method to proceed from the estimate y(x) 

to a new estimate y (x + h) : 

y(x + h) y(x) + h•f(x,y(x)). (52) 

As Bauer et al. (1963) pointed out, the error in the final approxi-

mation y(b) can be represented by an error series in powers of h. But 

this time the odd powers ·are present as well as the even powers. The 

only modification needed in the Richardson/Romberg technique is to use 

the power sequence 1,2,3, ... , instead of 2,4,6, ... , in formulas (13) -

(17). For step-halving, the "4" in the previous recursion formula be-

comes· a "2": thus, 

2m k+l Tk 
Tm-1 - m-1 

2m - 1 
(53) 

Bauer et al. gave a theorem asserting that if f(x,y) is continuous and 

does not change too rapidly as y changes (more precisely, satisfies a 
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Lipschitz condition in y), then the diagonals and columns of the table 

constructed with (53) will converge to the desired value, y(b). 

They applied (88) to the problem 

y' y, y(O) 1, y(. 2) ? (54) 

The correct value is, of course, e · 2 1. 221 402 7 58 • . . . Using step sizes 

of .2,.1,.05, ... ,.00625, and using the six approximations for y(.2) thus 

obtained, they obtained the results shown in Table XXIII. (We round each 

entry as its accuracy seems to make appropriate.) 

1.2000 
1.2100 
1. 2155 
1.2184 
1. 2199 
1. 2206 

TABLE XXIII 

STEP-HALVING APPLIED TO AN INITIAL VALUE PROBLEM 
WITH SOLUTION 1.221 402 758 •.. 

1.220 
1.2210 1.221350 
1.2213 1.221395 1.221 401 7 
1. 221 376 1.221 401 7 1.221 402 68 1.221 
1.221 396 1.221 402 6 1.221 402 752 1.221 

402 747 
402 756 

Of course the same idea can be used to improve the estimates given 

by more sophisticated methods for solving differential equation. Joyce 

(1971) mentions that, as early as 1912, Runge had suggested a Richardson 

type extrapolation for use in improving the estimates obtained by the 

Runge-Kutta fourth-order method. 
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L. Modifications for a Broader 

Class of Problems 

To discuss other modifications of the Romberg technique, we now re-

turn to an .example mentioned earlier: Romberg integration in the "usual" 

sense does not work well on the problem 

1 3 I J0 2 vx dx 1. (55) 

Presumably the reason is the discontinuity in the first derivative at 0, 

which prevents application of the Euler-Maclaurin error series theorem. 

At first glance, it is not clear whether there is any way to modify our 

procedure slightly so as to solve this type of problem more successfully. 

But in fact, there is a good amount of literature dealing with possible 

modifications of the basic procedure, so as to solve a larger class of 

problems. Problem (55), for example, belongs to a class of integration 

problems which Fox (1967) studied. He showed that the only thing which 

causes ordinary Romberg integration to fail on (55) is that the error 

series contains an h312 term as well as all the even powers of h. Know-

ing this, it is easy to show that the extrapolation T(h) based on S(h) 

and S(2h) in the initial column should be 

T(h) 
2312 S(h) - S(2h) 

23/2 - 1 

From that point on, we can return to the ordinary power elimination, 

(56) 

dealing with h2 ,h4 , ..•. On the other hand, Fox showed that the required 

procedural changes could be considerably greater on other problems. For 

example, the integration problem 

I (57) 
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has derivative problems at both ends of the interval, and the resulting 

error series has no even powers of h at all. Instead, the powers are 

h312 ,h512 ,h712 , .•.. But again, the extrapolation procedure can be easily 

modified to remove those powers instead of the even ones. As one can see 

in equations (13) - (17), the crucial thing is not to have any particular 

"kind" of powers. It is, rather, to know what the power sequence is. 

Another more ominous example is given by Fox. For the problem 

I (58) 

3/2 2 4 the error series begins with an h ln (h) term! Then come h ,h , ••• , as 

usual. Fox does show how to obtain a modification of the Romberg method 

which will conquer this problem, but it depends heavily on knowing the 

first error term is h312 ln (h). It should be clear why this example is 

unsettling: it makes clear that if we do not have the assumptions of the 

Euler-Maclaurin theorem, then the error may not be expressible as a 

series in powers of h, at all. And such an error repres'entation is cru-

cial to everything we have done. 

Nevertheless, assuming that we are fortunate enough to be integrat-

ing a function which does have an associated error series containing only 

powers of h, we can use the approximations in each column of the table to 

help us guess which power of h should be removed next. At least for step-

halving9 this is not difficult. Returning to equation (29), with the 

power k instead of 2k, we obtain 

V(4h) - V(2h) 
• log(V(2h) -V(h) ) 

k log(2) 
(59) 
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The power to detect the correct first term for elimination was test-

ed on several problems where the form of the first term was known. See 

Table XXIV. 

N 

4 
8 

16 
32 
64 

128 
256 
512 

Appropriate 
Limit 

TABLE XXIV 

TEST ON ALGORITHM TO FIND THE LEADING POWER 
IN THE ERROR SERIES 

101 IX dx J:l IXlnx dx J:27T .095 
dx 0 0 1.81-1.8 cos x 

1.38 1.12 1.01 
1.42 1.18 1.03 
1.45 1. 2.3 1.12 
1.46 1.26 1.46 
1.47 1.29 2.48 
1.482 1.32 4.87 
1.487 1.33 9.73 
1.491 1.35 19.46 

3/2 None, or 3/2 None 

J:l 
0 

IX sin x dx 

1.84 
1.88 
1.92 
1.94 
1.96 
1.97 
1.98 
1.99 

2 

The IXlnx column of Table XXIV might be unexpected, but it is not 

difficult to show that the quantity inside log10 in the numerator of (59) 

does slowly approach 2312 , even though the first term in the error series 

is h312 ln (h). And, in this case, things go unexpectedly well if we do 

go through the operations indicated by the 3/2: the h312 ln (h) ;term is 

3/2 replaced precisely by an extra h term, for any h! But this is appar-

ently just a coincidence and we would probably not deduce the 3/2 from 

the approximations obtained, anyway. As for the IXsinx, it has no dis-
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continuity in the first derivative, so we can begin with the first (h2) 

term of the Euler-Maclaurin series. Fox (1967) did show that for any 

integral 

1 1/2 
I = !0 x g (x) dx, (60) 

where g(x) is analytic, the error series can be no more complicated than 

ah312 + bh2 + ch512 + dh3 + eh712 + fh4 + .... 

M. Conclusions 

This chapter has not come close to covering the vast amount of lit-

erature on Richardson-like procedures; we have touched only on the more 

accessible portions. The reader who wishes to pursue the matter further 

should refer to Joyce (1971) for a good beginning. When any sequence of 

numbers is approaching its limit slowly but monotonically, Richardson 

extrapolation is one of the first methods that should be tried--prefer-

ably in an interactive mode, a column at a time; so that the user can 

estimate the next power to be removed, based on (59). If, on the other 

hand, one wishes to do an integration of a known function which satisfies 

the Euler-Maclaurin hypotheses, doing the table by rows would seem to be 

a better idea. Interaction would not be so necessary. If the assumption 

of a series in h is valid, and if the powers can be established, no method 

short of Gaussian integration is likely to outperform the methods of this 

chapter. 



CHAPTER IV 

AITKEN EXTRAPOLATION 

A. Introduction 

The subject of this chapter is perhaps th~most powerfiU.._.method 

which is elementary to motivate. Todd (1962) sees an invention of the 

method in the work of Kummer (1837); however, the present author is un-

convinced on that point. (The impressive formulas of Kummer would reduce 

to the later method only by a drastic simplification: he works quite 

hard to solve for two variable coefficients which would be l's in the 

modern method.) It seems better to attribute the original invention to 

the author whose name the method now bears: A. C. Aitken (1926). The 

algorithm was originally invented to help accelerate the convergence of 

a standard method for solving polynomial equations; but it can be used in 

many other contexts. (Aitken's "tJ.211 method has more flexibility than the 

previous methods discussed: it can reasonably be tried as an accelera-

tor for either an oscillating sequence or a monotone sequence. 

B. Motivation and Implementation 

One motivation for the method rests on a certain expression for the 

"remainder" after n partial sums of a geometric series. Assume for some 

r (any r is permitted except r = 1) 

A 
n 

2 n 
a + ar + ar + . . . + ar , n > 0, (1) 
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then it is easy to show, for any r f 1, that 

where 

A 
n 

A 

A+ 

a 
1-r 

n 
er , 

and c = -ar/(1-r). 
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(2) 

(3) 

In other words, there are constants A and r such that the distance from 

A to A is always multiplied by r when we increase n by one. It is not 
n 

difficult to show that there can be only one "A" having that property. 

If lrl < 1, ·then A is the limit of the A and the sum of the series. 
n 

If 

r = -1 or lrl > 1, then A is still unique but is called the anti-limit of 

the A . "A" then has a natural meaning in terms of analytic continuation: 
n 

if we let z E ~ and take 

A(z) a/(1-z), (4) 

then the function A(z) gives rise to a geometric series with partial sums 

as in (1) (z replaces r). That series converges to A(z) only if lzl < 1. 

But if we can use the partial sums A (z), as in (1), to find A(z) even 
n 

when lzl > 1, we will have succeeded in computing the analytic continua-

tion of the power series at z. 

Can this computation of A be done irrespective of convergence? Yes, 

and we do not need to know the values of c, r, or n; we only need three 

consecutive sums. Assume 

A = A + crn 
n 

n+2 A + er 

(5) 
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It is simple to show 

1 
r 

A -A 
n 

A -A 
n+l 

A 1-A 
n+ 

A -A ' 
(6) 

n+2 

which then gives various forms 

A 

A 
n 

A A -A2 
n n+2 n+l (7) 

(8) 

(9) 

It is also obvious that we could have begun with (6), without ever 

mentioning geometric series; i.e., we need only assume that the ratio of 

consecutive errors is constant, independent of n. This amounts to assum-

ing "perfect" linear convergence; that is, of course, characteristic of 

convergent geometric series. 

The Aitken method consists in using one of the right sides of (7), 

(8), or (9) to approximate the limit of any sequence. Each trio in the 

original sequence gives an approximation. As we move down the original 

sequence, we thus generate a sequence of approximations. If we then use 

this new sequence for the basis of another application of the method, we 

are doing "repeated" Aitken extrapolation. It should not be surprising 

that Aitken extrapolation sums any geometric series perfectly, given only 

three sums. We planned it that way. E.g., if we use A1 , Az_:_~~~ A3 from 
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the partial sums of 1+2 + 4 + 8 + ... , we obtain -1, the appropriate value 

for 1/ (1 - x) when x = 2. 

Of course, we need no help in summing geometric series. But just as 

Euler's method works well when the ratio of consecutive errors approaches 

-1, Aitken's method would seem to have a good chance of success when the 

ratio of consecutive errors approaches any constant r # 0. We thus have 

considerably more latitude than in the Euler method. But it can be shown 

that the denominators in (7), (8), and (9) go to zero if r = 1. This 

would suggest that if the sum is finite but the ratio of consecutive 

errors goes to 1, the ~2 method is not going to work well. 

C. Successful Applications 

Certainly the Aitken method should work well on the pi series, since 

the Euler method did. And that is in fact the case. The best extrapola-

tion from the first seven entries in the initial column is 3.14156, com-

pared with Euler's best approximation of 3.140 through that point. Also, 

the best answers are always on the right end in the Aitken table, which 

is what we would hope. 

Now let us move on to other problems, for which the Euler method 

might not have been well-suited. For example,' let us look at the kind of 

problem the Aitken method was originally designed for: aiding in accel-

erating Bernoulli's method for finding the largest root of a polynomial 

equation. Suppose we want to solve the equation 

4 3 2 
x + 3x - 32x - 12x + 112 = O. (10) 

The roots are -/2, +/2, 4, and -7; and Bernoulli's method gives a se-

quence of numbers which will approach the -7. The algorithm goes thus: 
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begin with 

0 and x3 = 1. (11) 

Then compute x4 , x5 , x6 , ... , from 

xn = -3xn-l + 32xn-Z + 12xn_3 - 112xn_4 . (12) 

The ratio x 1/x will approach the -7, but not very rapidly. It can be 
n+ n 

shown that the ratio of consecutive errors does approach a constant for a 

polynomial of this "type". Henrici (1964, pp. 146ff) gives more de-

tails. Thus Aitken's method should help. It does. See Table XXV, where 

we use the method repeatedly. Each entry in the table is the extrapola-

tion based on the entry to its left and the two entries just above that 

one. The leftmost column is the sequence generated via the xn+l/xn 

ratios. 

TABLE XXV 

AITKEN'S METHOD USED TO ACCELERATE THE BERNOULLI 
RATIO SEQUENCE 

-3.00000 

-13.66667 

-5.04878 -8.8999438 

-8.62319 -7.57528 

-6.24706 -7.19588 -7.04360 

-7.48785 -7.06219 -6.98946 

-6.73939 -7.02100 -7.00265 -7.00007 



87 

The reader might wish to verify that the Euler method does not do as 

well on this problem as Aitken's method does; the ratio of one error to 

the next error approaches -7/4, not -1. 

The next two examples will show the ~2 method routinely mastering 

problems which the Euler method found either very difficult or not quite 

possible. For example, recall the ln (1 + x) series. As Figure 2 in 

Chapter II indicated, the Euler method would require four tables to be 

computed before convergence to ln(l7) would be achieved. See Table XXVI 

below, for the results obtained in the (single) Aitken table. 

Row 

10 

11 

12 

13 

14 

15 

TABLE XXVI 

AITKEN CONVERGENCE ON THE DIVERGENT SERIES 
FOR LN(l7), 2.83321 ... 

Column One Entry Last Column Last Column 

. 713437E + 10 5 2.85438 

- .102817E + 12 6 2.83031 

.14964 7E + 13 6 2.83654 

- . 219598E + 14 7 2.83290 

. 3244 71E + 15 7 2.83363 

- . 482250E + 16 8 2.83319 

Entry 

Another problem we saw where Euler's method was never able to pro-

duce convergence (although each new table had a top diagonal better than 

the previous table's) was related to the asymptotic sum of Wallis' series, 

.59634736 ... "'0! -1! +2! -3! +4! - (13) 
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Aitken's method produces rather spectacular convergence along the diagon

als, though the columns still diverge. See Table XXVII; correct digits 

are underlined. 

TABLE XXVII 

THE AITKEN RESULTS ON WALLIS' SERIES 

Row Column One Entry Last Column Last Column Entry 

10 .3590E+ 5 5 .5965 

11 -. 3270E + 6 6 .596337 

12 . 3302E + 7 6 • 596363 

13 -. 3661E + 8 7 .5963469 

14 . 4424E + 9 7 .59634849 

15 -.5785E+l0 8 .59634742 

D. Unsuccessful Applications 

We hope the reader is now convinced that Aitken had a very good 

idea. But in order to give a realistic view of matters, we shall now 

show that our new-found power on some problems is accompanied by the 

possibility of Aitken's method doing strange things on some problems-

e.g., not converging even when the initial column does, or converging to 

the wrong answer! Wimp (1981, p. x) explains that this is generally the 

price of power in acceleration methods: if you insist on a method that 

will always give only the correct answer, the method will generally never 

be spectacular because it is trying to be too versatile. Euler's method 
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would never do the bad things we are about to demonstrate; but it also 

was unable to compete with Aitken's method on the problems of the pre-

vious section. 

The first example we shall discuss was given by Lubkin (1952). The 

series is 

1 + 1/2 - 1/3 - 1/4 + 1/5 + 1/6 - •.. 

Tr/4 + (ln2)/2=1.13197 .... 

See Table XXVIII below. 

TABLE XXVIII 

FAILURE OF AITKEN'S METHOD ON LUBKIN'S SERIES, 
SUM= 1.13147 ... 

0 

1 

1.5 2.0000 

1.1667 1.3000 

.9167 .1667 3.1308 

1.1167 1.0278 .6560 

1. 2833 2 .1167 -3.0888 7.9530 

1.1405 1. 2064 1.6209 -1..0027 

1.0155 .1405 7.4390 -23.098 

(14) 

A continuation of the table would show that the second column is in 

fact approaching three different limit points separated by gaps of 1: 
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.13197 ... , 1.13197 ... , and 2.13197 .... The method is unable to analyze 

this behavior and the following columns are worthless. The source of the 

difficulty is, of course, in the error pattern in column one: the signs 

of the errors are-, -, +, +, -, -, +, +, .... This makes the ratio of 

consecutive errors alternately positive and negative. Such a sequence 

2 of ratios is not going to converge in the manner assumed by the 6 method. 

The method therefore fails: the "accelerated" columns do not converge to 

the proper answer though the initial column did. 

The next example was invented by Shanks (1955). In a way this ex-

ample is worse than Lubkin's because in Shanks' example the method con-

verges nicely--to the wrong answer. The function involved can be written 

as the sum of two geometric series: 

f(z) 
2 2(-1-) 1 

= 
(l-z)(2-z) 1-z z 1- (-) 

2 

1 
3 + 7 2 + 15 3 (15) + zz "42 g-z + 

If we let z = 4, we will get a rapidly divergent series. But this is 

no cause for alarm: if Aitken's method can "sum" one divergent geometric 

series easily, we would perhaps expect the method to find the "sum" of 

(15) without much difficulty. Unfortunately, this is not the case. See 

Table XXIX. The value of f(4) is 1/3. The later columns converge to 

7/27 (.25926 ... ) instead. 

Shanks does show that this mistaken limit is going to occur only at 

x = 4, which is somewhat encouraging. However, though this particular 

series was his only numerical example, his analysis did show that there 

is going to be such an x for the sum of virtually any two geometric 

series. This is not encouraging; but from a probabilistic view, one might 
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think that, since there is only one x that causes the mistaken limit, we 

can generally expect the Aitken method to do well for most x's. On the 

other hand, the existence of even one such x might be an indication that 

something is wrong, in general. Shanks mentions that the convergence is 

nonuniform near the crucial x; but he gives no examples. It seems reason-

able to try a number of x's on both sides of 4, to see what happens. We 

will compare relative errors to get a uniform standard for the different 

x's. The basic approach was to record the smallest relative error attain

ed by the ~2 method in the tenth row of the Aitken table. See Table XXX. 

The relative errors grow toward -.222 as we approach 4 and are really 

never very small past 4.0. 

0 

1 

7 

35 

155 

651 

2667 

10,795 

43,435 

TABLE XXIX 

CONVERGENCE OF AITKEN'S METHOD TO THE WRONG 
ANSWER ON SHANKS' EXAMPLE 

-.2000 

-.6364 

-1.5217 .2241 

-3.2979 .2437 

-6.8526 .2519 .2579 

-13.9634 .2557 .2589 

-28.1854 .2575 .25920 .25932 



TABLE XXX 

AITKEN CONVERGENCE ON ROW TEN FOR SHANKS' 
EXAMPLE (FOUR EXTRAPOLATIONS ALLOWED) 

x Best Relative Error 

.6 . 98E - 9 

1.4 . 38E - 4 

2.2 .12E - 2 

3.0 -.SOE - 2 

3.8 -.14E+ 0 

4.6 -.17E + 0 

5.4 .12E - 1 

6.2 -. 36E - 1 

7.0 -. 63E - 1 

7.8 -.93E-l 

8.6 -.12E + 0 

9.4 -.14E + 0 

10.2 - .14E + 0 

11.0 -.13E+ 0 

The larger x's are, of course, associated with more rapidly diver-

gent partial sums. Thus, some of the method's difficulties are from 

severe round-off error in the later rows, as opposed to intrinsic weak-

ness in the method itself. Nevertheless, the poor performance can not 

be attributed mostly to round-off errors: a method to be introduced in 
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the next chapter takes exactly the same partial sums and slightly more 

complicated calculations based on them and does much better than the ~2 

method. For large x's, the ~2 method finds this simple problem more dif-

ficult than summing Wallis' series. See Table XXXI, based on the sums 
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at x = 10. All partial sums can easily be verified to be correct to six-

teen decimal places. The correct sum is .027777777 .... The other method 

mentioned above produces a table where all the entries beyond column two 

and above row eleven are at least as good as .027777777. 

0 

1 

.16E + 2 

.19E + 3 

.21E+ 4 

. 21E + 5 

. 22E + 6 

. 22E + 7 

. 22E + 8 

. 22E + 9 

TABLE XXXI 

AITKEN'S METHOD ATTEMPT TO SUM SHANKS' EXAMPLE 
AT x = 10 TO . 2 77 ... E - 1 

-. 71E - 1 

.41E + 0 

-.20E + 1 .17E - 1 

-. 99E + 1 .64E - 2 

-.49E + 2 -.19E-l . 23E - 1 

-.24E+ 3 -.83E -1 .24E - 1 

-.12E+ 4 -.24E + 0 . 24E - 1 

-.60E+ 4 -.64E+O .23E - 1 

.24E - 1 

.24E - 1 

The monotonicity of the partial sums is not the major difficulty: 

at x=-10, where the sums are oscillating, Aitken's method is not able to 

obtain more than three correct digits in the first ten rows. It seems 

reasonable to guess that the ~2 method is often not going to work well 

on the sum of (even) two geometric series, even when it does eventually 

approach the correct answer. 

We saw in Lubkin's example how a failure of the consecutive error 
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2 
ratios to converge can destroy the ti. methud's effectiveness completely. 

But even when the ratios converge, success may be postponed "indefinite-

ly" if the convergence is too slow. For an example of this, we used the 

"pi+ 1 11 series which destroyed the effectiveness of the Euler algorithm 

(Chapter II, equation 12). The Aitken method will succeed perfectly if 

and only if the ratio of consecutive error ratios is 1. For the pi 

series, the ratio of ratios from s9 through s14 has values 1.016, 1.012, 

1.010, 1.008, 1.007, 1.006. The result is good extrapolation: an abso-

lute error of -.12E -10 after five extrapolations, in the s14 row. For 

the "pi+ l" series, the corresponding ratios are . 886, 1. 092, • 968, 1. 032, 

.994, and 1.013. The monotone component in the series has retarded the 

convergence. The result is fairly poor extrapolation: an absolute error 

of . 92E - 3 after five extrapolations, in the s14 row. 

The next example shows that when the ratio of consecutive error 

ratios is not 1, how close it needs to be to 1 for good success of the ti.2 

method may depend on what the ratio of errors approaches. Regroup the pi 

series as follows: 

1T = 4(1-1/3) + 4(1/5 -1/7) + 4(1/9 -1/11) + •.•. (16) 

The ratios of ratios from s9 through s14 are as good as for the original 

pi series: 1.016, 1.012, 1.010, 1.008, 1.007, and 1.006. But now those 

are not good enough: the limit of consecutive errors is now +l instead 

of -1. We have turned our friendly pi series, for which every accelera-

tion method seems to work, into a logarithmically convergent series. 

Those are known to cause difficulty for most acceleration methods; in 

particular, we saw earlier that troubles were to be expected for Aitken's 

method when the ratio of errors approaches 1. The Aitken method in fact 



does do very poorly on the regrouped pi series. See Table XXXII. 

TABLE XXXII 

62 ATTEMPT AT SUMMATION OF THE RE
GROUPED "PI" SERIES 

0 

2.67 

2.90 2.92 

2.98 3.02 

3.02 3.06 3.08 

3.04 3.08 3.10 

3.06 2.09 3.11 3.12 

Construction of the corresponding rows for the original pi series 

would give a 3.14156 ... in place of the 3.12 above, in spite of using 

only half as many terms in forming the partial sums. 
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We have seen how various misbehaviors of the error ratios can destroy 

2 
the effectiveness of the 6 method. But there is one other situation, 

actually extremely desirable, which can make the 62 method quite useless. 

Suppose that, in the original sequence, the ratio of one error to the 

error preceding it goes to zero. This is no longer linear convergence, 

and the Aitken method will customarily give "accelerations" which in fact 

are not as good as the best number used in the computations. Suppose, 

for example, that we have the sequence 1/2, 1/4, 1/16, 1/256, ..•. In-

stead of 
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Sn - S - K(Sn-l - S), (17) 

with K non~zero and independent of n, we have 

s - s (S - S) (Sn-1 - s) ' n n-1 

s - s 
(18) 

lim (s n s) o. 
n-+= n-1 

What will the Aitken method conclude from the first three numbers, for 

example? It is not difficult to use system (5) to show that for a geo-

metric series we always have 

An+2 - An+l 

An+l - An 
r. (19) 

From the differences -1/4 and -3/16, the assumption of a geometric series 

forces the conclusion r = 3/4. The Aitken estimate of the limit will 

therefore assume that for all n, 

sn+2 - sn+l 

Sn+l - Sn 

3 
4 . (20) 

In fact, however, the skips beyond the 1/16 are going to zero much faster 

than in (20); in fact, 

sn+2 - sn+l 
lim ~~~~~~ 
n-+00 Sn+l - Sn 

s - s 
lim (sn+2 s) 
n-+= n+l -

o. (21) 

Consequently, the Aitken method drastically underestimates how rapidly 

the skips are diminishing and calculates the S will approach -1/2 in
n 

stead of the true limit, 0. Note that the -1/2 is not as good an approx-

imation as two of the three numbers used in calculating it. This kind of 
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occurrence extends through the Aitken table. See Table XXXIII, where the 

method consistently overshoots the limit and is producing answers not as 

good as the best number used in calculating them. 

TABLE XXXIII 

AITKEN'S METHOD ON A SEQUENCE CONVERGING 
SUPER-LINEARLY TO ZERO 

.SOOE + 0 

.250E + 0 

. 625E - 1 

. 391E - 2 

.153E - 4 

. 233E - 9 

-. SOOE + 0 

-.227E-l 

-.262E - 3 

-.598E - 7 

+.848E - 3 

+.302E - 5 

However, the failure of the method is not very critical in such an 

instance: the original sequence is converging quite rapidly and we were 

really being a bit greedy to try to accelerate it more. 

E. Prediction and Measurement of Success 

By now we have seen the b2 method succeed in a quite spectacular 

way, and we have also seen it produce rather dismal failures. It seems 

appropriate to address briefly the questions of how to tell whether the 

method is likely to succeed on a given sequence, and how to estimate the 

quality of the extrapolations when we do not know the correct limit. 

The answer to the first question is that for a geometric series, we 



obtain from (19) that 

An+3 - An+2 

An+2 - An+l 

98 

(22) 

Therefore, if we have a sequence of numbers s1 ,s2 , ... , we can conclude 

that it is a good candidate for Aitken extrapolation if, for large n, and 

some positive c, 

s ) 
n 

- 1, (23) 

with 

8n+2 - 8n+l 
S S -1 >c>O. 
n+l - n 

(24) 

For example, on Wallis' series, 

s0 = O! , S = O' -1 1 1 . . ' S =0'-1'+2' 2 . . . ' •••• (25) 

It is not hard to show that the quotients corresponding to the left sides 

of (23) and (24) are 

n + 3 = 1 and - (n + 2) < < + 1. 
n+2 

For the pi sequence, let 

4(1- 1/3), s3 

The ratios obtained are 

2 
4n + 12n+ 9 

2 
4n + 12n+ 5 

- 1 and 
2n+ 1 
2n+ 3 

- -1 :/. +l. 

(26) 

4(1-1/3+1/5) ' .... (27) 

(28) 
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The first eight ratios corresponding to (23) are thus 1.80, 1.19, 1.09, 

1.05, 1.03, 1.02, 1.02, 1.01. On the other hand, the corresponding ra-

tios for the troublesome "pi+l" sequence are 3.55, .64, 1.70, .78, 1.24, 

.92, 1.08, .98. On this basis alone, we could predict that the ~2 method 

is not going to work well. (But if we go deeply enough into the sums, 

the monotone component does die out and Aitken's method would eventually 

succeed as well as on the pi series.) 

The second question, concerning how to estimate quality of the ex-

trapolations when the limit is unknown, is usually answered in the fol-

lowing way: assume for now that the limit is fl, fl =f 0. Then the relative 

error of any entry x in the Aitken table is given naturally by 

r = x - fl 
fl 

~-1 fl • (29) 

(We vary here from the usual convention, (fl - x) I fl, because it seems back-

wards to the present author.) For an estimate of r when fl is unknown, 

use the entry y to the right of x in the table as an approximation for fl. 

I.e., the relative error in xis approximated by 

r' ~ 
y 

~-1 
y 

(30) 

We thus estimate the relative accuracy of the entries by their relative 

variations. This may seem to be a desperate measure, but it generally 

works quite well: normally, when the table entries are close to each 

other, they are also close to the limit. 

Some examples of the relative error approximation are given in 

Table XXXIV. They are based on the approximations calculated for the 

entries in row ten, for various tables. 



pi 

pi: 

Wallis: 

with ( ) : 

Shanks: 
(x=lO) 

TABLE XXXIV 

ACCURACY OF THE RELATIVE ERROR ESTIMATES IN 
THE AITKEN TABLES, ROW TEN 

estimates .351E-l .149E-3 . 306E - 5 
true . 353E - 1 .153E-3 .324E-5 

estimates .597E + 3 .686E+ 2 .436E+O 
true . 602E + 5 . 996E + 2 .446E+O 

estimates -. 782E - 2 -.430E - 2 -.240E - 2 
true -.177E - 1 -.993E - 2 -.566E - 2 

estimates -.367E+5 .949E+4 -.285E+2 
true . 798E + 10 -.217E+6 -.239E+2 

100 

.165E - 6 

.184E - 6 

.611E - 2 

.638E - 2 

.142E - 2 

. 327E - 2 

-.342E -1 
-.167E + 0 

The worst thing that can happen is, of course, for the method to 

stall far away from the limit. For example, the last error estimate on 

row fifteen of the Shanks example (with x=lO) is -.257 E - 5, while the true 

relative error is +.105E - 1. But this sort of thing is usually temporary; 

for example, at the end of the sixteenth row of the same table, the rela-

tive error estimate (-.429E -1) is quite close to the actual values 

(-. 535E - 1). If one is setting up a termination criterion for using the 

Aitken method in an automatic mode, it would be a very good idea to base 

the termination criterion on several error estimates, not just one. In 

case the limit is zero, one ~ranch of the program should allow for con-

eluding a zero limit on the basis of absolute value rather than relative 

error. 

F. Theorems Concerning the Method 

We have by now, hopefully, a fairly good idea of when the ~2 method 
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is likely to work and when it is likely to fail. Our study has been 

built on examples rather than theorems. But there are some relevant 

theorems which should be mentioned before we conclude our discussion. 

Wimp (1981) has gathered several in his book; we now discuss them infor-

mally, along with a few others given elsewhere. 

First, the reader may have noticed that we used, in (24), the nat-

ural assumption that for large n, 

sn+2 - s sn+2 - sn+l 
-

Sn+l - S Sn+l - Sn 
(31) 

Wimp (pp. 6-7) proves that if the limit of error ratios converges to some 

number other than -1, 0, or +l, then (31) is always justified. The proof 

if not as easy as one might think, but the result seems quite plausible. 

Most of the results he gives are in his Chapter 7 (pp. 149-151). 

For example, if (Sn+2 - Sn+l)/(Sn+l - Sn) is bounded away from "l" and 

the S converge to S, then the (single) application of extrapolation will 
n 

produce a new column which converges to S, also. (Lubkin's example ob-

viously must not have satisfied the first hypothesis.) Lubkin (1952) did 

show that if any two consecutive columns of the Aitken table both con-

verge, then they converge to the same limit. (But recall Shanks' example 

with x = 4: the first column converged, the second diverged, and the rest 

converged to another limit.) Tucker (1967) proved that, in a sense, 

things can not be too much worse than in Lubkin's example: if a column 

converges to S, then the next column at least has a subsequence converg-

ing to S. In Lubkin's example, we had three limit points in the second 

column. But one of them was the true answer, as Tucker's result would 

predict. Note that none of these theorems are concerned with accelera-
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tion, only convergence. 

One of Lubkin's results, not mentioned by Wimp, essentially says 

that if the ratio of consecutive differences goes to -1 (excluded by the 

first theorem, concerning (31)), and if our formula (23) holds, then con-

vergence will be preserved and accelerated by the next column (Theorem 5, 

p. 231). Lubkin gives several theorems on when acceleration will occur, 

but the hypotheses seem to be rather complex except in a few of the theo-

rems. We mention only two for that reason. His Theorem 11 says that if 

the S converge and the ratio (S - S 1 )/(S +l - S ) can be written as a 
n n n- n n 

power series in l/n, with leading constant c0 , then the next column will 

accelerate convergence if c0 # l; but if c0 = 1, then the convergence will 

not be accelerated. (For the regrouped pi series, c0 was obviously 1.) 

His Theorem 17 concerns the case where the S diverge. In this case, if 
n 

the ratio above can be written as mentioned above, with leading constant 

-1, then using an appropriate number of columns will eventually give con-

vergence to the right answer, which of course involves an analytic con-

tinuation. We leave it to the reader to pursue the details in Lubkin's 

paper. 

Of course the one fact which is the most important is that if any 

sequence converges linearly, then the Aitken method will accelerate the 

convergence. Johnson and Riess (1977) give a formal theorem and proof; 

but notice that the statement given is misleading for the case when the 

limit (Sn+l - S)/(Sn - S) is zero. (The standard of comparison for ac-

celeration should be the error in the last of the three numbers used, not 

the first.) 



G. Conclusions 

We have seen that the Aitken method, while easy to motivate, is 

considerably more powerful than Euler's method. The ~2 method can sum 

some divergent series which are difficult or impossible for Euler's 

method; and it can accelerate the convergence of any convergent series 
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which has consecutive error ratios approaching any non-zero number except 

+l; Euler's method needed a -1 limit. The ~2 method can be used on both 

monotone and oscillating sequences, while the previous methods were re-

stricted to oscillating sequences (Euler) or monotone sequences (Richard-

son/Romberg). 

In their second survey article on extrapolation methods, based on 

extensive testing of many problems, Smith and Ford (1982) included 

Aitken's method in their tests. The method did not "win" any of the 

categories, but was competitive in almost all categories. The main lapses 

arose with logarithmic series (like our regrouped pi series) and series 

where the error signs did not fit into the acceptable patterns (like 

Lubkin's example). We have also seen a case where the slow convergence 

of the error ratios delayed the effectiveness of the ~2 method consider-

ably (the "pi+ l" series). Finally, there was Shanks' simple example 

2 
which was not handled well at all by the ~ method. The method to be 

introduced in the next chapter will, in some of these areas, make consid

erable improvements on the ~2 method. But on some problems, ~2 will 

actually be slightly superior to the more "sophisticated" method (e.g., 

on Wallis' series and the ln(l7) series). 



CHAPTER V 

THE EPSILON ALGORITHM 

A. Introduction and Historical Overview 

The algorithm we shall study in this chapter has a history somewhat 

similar to that of Richardson extrapolation: even as early as Jacobi 

(1846) and then Froebinius (1881), explicit expressions had been given 

for every approximation in what is now the "epsilon" table. The only 

problem was that the expressions involved determinants; and if anyone had 

considered setting up a table as is used now, he would have been quickly 

discouraged: the matrices would have become larger and larger, and the 

determinant calculations increasingly inconvenient. Also, each entry 

would have been necessarily calculated from the original column, some

what in the same way the earlier writers removed several powers of h in 

Richardson extrapolation. The computations needed made the expressions, 

while useful from a theoretical standpoint, quite uninviting for actual 

implementation. The formulas thus lay unused and forgotten until Schmidt 

(1941) and Shanks (1955), without any knowledge of the earlier work or 

each other, rediscovered them and implemented them in spite of the deter

minants. It seems unlikely that their example would have ever been fol

lowed by many, even in the coming Computer Age. However, Wynn (1956) 

made the next crucial step: he discovered a way to find the entries of 

the table very simply, with no determinants required. Since this advance, 

104 
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the method has become increasingly popular, with good reason. Smith and 

Ford (1982), after extensive testing on most of the main acceleration 

methods, found that the combination of "epsilon" and Levin's "u" (1973) 

was unsurpassed on their test problems. In the next section, we will 

begin by showing one motivation for the kind of expressions obtained by 

the writers before Wynn. (There is probably no way to motivate Wynn's 

ingenious determinant manipulations in deriving the new formulas. Wimp 

(1981, pp. 244-247) gives some details Wynn (1956) omitted.) 

B. Motivation of Shanks' Transforms 

Let us return briefly to the geometric series with partial sums 

A 
n 

n 
= c +er+ .•. + er , 

and limit (or anti-limit) 

A c/ (1 - r) . 

n,-> 0, (1) 

(2) 

Then, in a step reminiscent of Richardson extrapolation, and Aitken ex-

trapolation, write 

n+l 
A =A-~ 

n 1 - r 

n+2 
A-~ 

1 - r 

So we see that in a geometric series, the correct limit is always a 

(3) 

weighted average of the last two partial sums, with the weights not de-

pending on n. I.e., if we know we have a geometric series, then even 

without knowing c, n, or r, we can be sure there exists constants a and b 

such that a+ b = 1 and, for all n, 
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aAn + bAn+l = A (5) 

The next question would be, how do we find A? Use the fact that a and b 

work for any n, to set up the system, 

1 

A 
n 

1 0 

[:]- [:] 
Cramer's Rule quickly gives 

A 

1 

A 
n 

1 

- A ) ' 
n 

(6) 

1 0 

-1 

-1 

(7) 

which is, of course, Aitken's formula. Note that although we could have 

also used (6) to find the weights in terms of the A., that was not neces-
1 

sary in calculating A. We only needed (4) to guarantee (6) could be set 

up independently of n. Now let us see if we can extend this procedure. 

Suppose that our series is the sum of two geometric series: let A 

be the limit (or anti-limit), as n ~ oo, of 

A 
n 

and let 

x 
n 

n n 
= c + d + er + ds + . . . + er + ds , 

n+l 
er 
1 - r 

and 
dsn+l 
1 -_ s 

(8) 

(9) 
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Then, as in (3)' 

A A+ x + y 
n n n 

An+l A+ rx + syn (10) 
n 

An+2 A+ 2 
+ 

2 
r x s yn. n 

As before, take a, b, and e as coefficients in a linear combination so as 

to end with only "A" left on the right side. This could be accomplished 

by solving for a, b, e, in 

a+b+e=l 

2 
a + br + er 0 

2 
a + bs + es 0. 

(11) 

We conclude that the desired coefficients do exist, and that the "A" can 

be written as a weighted average of any three (not two, as before) con-

secutive partial sums, with the weights independent of n. But solving 

(11) requires that r and s be known; can we avoid this requirement? And 

we would prefer not to have to get the formulas for a, b, and e. We 

really want A, and in terms of the A. only. Our goals can be attained 
l 

by solving for A below: 

a + b + e 1 

aA + bAn+l + eAn+Z - A 0 
n 

(12) 

aA l + n+ bAn+2 + eAn+3 - A 0 

aAn+Z + bAn+3 + eAn+4 - A o. 
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Once again, Cramer's rule could be used to solve for A; this time the 

matrices would be 4x4 instead of 3x3, with twenty-four terms in the de-

terminant formulas instead of six. We conclude that if we have a sum of 

two geometric series, then the sum is the weighted average of any three 

consecutive partial sums, with the required weights not depending where 

we are in the summing process. Note that the determinant formula is go-

ing to require An through An+4 . 

Somewhat similar arguments (though our presentation is more in line 

with the later one of Levin (1973)), led Shanks to this conclusion: if 

we have a series which is obtained by adding k geometric series together, 

then the sum A is always the weighted average of any An' An+l'"""' An+k' 

with the weights independent of n. Further, the desired limit (or anti-

limit) can be calculated using only the A. and an appropriate pair of 
l 

(k+l)x(k+l) determinants, involving An through An+2k. 

Shanks then defined what he called the e 1 , e 2 , e 3 , ..• , transforma

tions. The progression is like this: e 1 (An) is the implied limit, assum

ing that An' An+l' and An+2 are partial sums in a geometric series. If 

these assumptions are correct, then A= e 1 (A1 ) = e 1 (A2 ) = ... ; otherwise, 

we get a new non-constant sequence. Thus, e 1 is identical with Aitken's 

6 2 process. e2 (An) is the implied limit, assuming that An, An+l' An+2 ' 

An+J' An+4 are partial sums in a "double" geometric series. If these 

assumptions are correct, then A= e 2 (A1 ) 

get a new non-constant sequence. From the poor attempt we saw Aitken's 

method make on a series of this type, e 2 must not be the same as applying 

Aitken's method twice. The difference will be discussed later. The 

process can be continued indefinitely: e 3 assumes a "triple" geometric 

series, etc. Some of the series can be null, of course: if we have a 
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single geometric series, then e2 , e 3 , ... , will sum it as well as e1 does. 

The dependencies on the Ai can be indicated in Figure 7, each ek(An) 

depends on the Ai's between the two diagonals through ek(An). 

AO 

Al el (AO) 

A2 el (Al) e2(AO) 

A3 el(A2) e2(Al) e3(AO) 

A4 el(A3) e2(A2) 

AS el (A4) 

A6 

Figure 7. Configuration for the e. 
Transforms 1. 

C. Wynn's Epsilon Table 

Now Wynn (1956) entered the picture. He showed that the entries in Fig-

ure 7 did not all have to be calculated directly from the A., using de-
1. 

terminants. The entries could actually be calculated from the previous 

column, if some auxiliary numbers were saved along the way. Wynn used 

epsilons with both subscripts (column number) and superscripts (diagonal 

number) to denote the entries of Shanks' table together with his own aux-

iliary numbers. See Figure 8 for the arrangement used in the "epsilon" 
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algorithm. 

AO 
0 E . 
0 

1 
0 

0 
E_l El 

Al 
1 0 

el (AO) EQ E2 

2 
0 

1 0 
E_l El E3 

A2 
2 1 

el(Al) 
0 

e2(AO) EO E2 E4 

3 
0 

2 1 
E_l El E3 

A3 
3 2 

el (A2) EO E2 

4 
0 

3 
E_l El 

A4 
4 

EQ 

Figure 8. Shanks' Arrangement, as Supplemented 
by Wynn 

The numbers in the odd subscript E columns customarily diverge to 

± 00 ; but the even subscript columns will (generally) converge to the limit 

of the A --more quickly than the A , if the assumptions made for that 
n n 

column are essentially correct. 

To compute any entry in the table, consider it as the right side of 

a lozenge with four corners. That right side entry can be calculated by 

the formula 

Right 
1 Left + ~~~~~~ 

Bottom - Top 
(13) 
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For example, assuming 
3 2 

and 3 
are available, so, sl, sl 

2 3 1 . (14) s2 = so + 3 2 ,/ 

s -
1 sl 

the most common procedure is to calculate and then print one rising diag-

onal at a time (printed as a row often, for convenience) to avoid unnec-

essary use of storage. However, the procedure must allow for the fact 

that most of the entries in the previous diagonal will be needed twice 

b f h "l II Th 3 b . 3 . d. 1 e ore t ey are ost . us, s 1 can not e written over s 0 imme iate y, 

because s; is also needed in calculating s;. Wynn (1965) suggested the 

use of auxiliary variables, so as to allow the final storage process to 

lag one step behind the calculation process. The process can be imple-

mented as shown in Figure 9. 

X G=XB 

Ready for the Cal
culation of H 

c 

B I-+XR 

A H=XB 

Ready for the Cal
culation of I 

Figure 9. Changes in Storage Allocation for 
One Step Along the Diagonal 

The enclosed area represents the vector used for storing the diag-
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anal entries. Entries above the enclosed area are now lost, having al-

ready been printed out and written over by entries in later diagonals. 

Entries below the enclosed area have either not yet been computed, or at 

least have not been placed in their final storage location. The first 

portion of the figure assumes we have already calculated E, F, and G 

along the new diagonal, with G not yet placed in the vector which will 

hold (only) the new diagonal at exit time. First, A, B, and G are used 

to calculate H, which is stored temporarily in XR. Now A is no longer 

needed, so its position in the diagonal vector is filled with G. Next, 

use XR to reset XB to contain H, leaving the XR slot available for the 

next computation. This brings us back to the beginning of the process, 

with everything now ready for the calculation of I. This process con-

tinues until you have calculated all the entries in the new diagonal; at 

the end, you have to add on one additional step for final storage of the 

last element. 

This is as good a time as any to mention the possibility of provid-

ing an additional step in the epsilon calculations, so as to permit the 

user the alternative of computing the Aitken table. The -1, 0, +l, and 

+2 subscripted columns are identical in the two tables. But when you 

h d h i 1 d 0 1 2 1 f "d wis to procee tote s 3 co umn, o not use s 1 , s 1 , s 1 , ... as et s1 es 

of the lozenges. Throw them away and use zeros in their place, just as 

we had zeros on the left for calculating the s~. And so forth: the odd 

column entries are calculated and are eligible to serve as lozenge tops 

and bottoms--but not as left sides. This will give the Aitken table in-

stead of the epsilon table. All the Aitken runs for this thesis were 

carried out in this way, rather than by using a separate Aitken program. 
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D. Successful Applications 

We will now look at some examples of the epsilon algorithm in ac-

tion. For the first example only, we shall include the odd columns and 

use the lozenge arrangement. This example is from Wynn (1956). 

Let 

s0 = o, sn+l = %-cs~ + 2) for n > o. (15) 

The reader can easily verify that if the S converge, the limit must be 
n 

2 ± 12. In fact, the lower choice is correct, .5857864 .••. The conver-

gence is rather slow, but the epsilon algorithm speeds it up consider-

ably. See Table XXXV; correct digits are underlined. (From now on, we 

will write out the rising diagonals as rows, and the "odd" columns will 

be omitted.) 

0 

0 

0 

0 

0 

TABLE XXXV 

THE COMPLETE EPSILON TABLE FOR WYNN'S 
ITERATION SEQUENCE 

0 
2.000 

.5000 .5714 
16.000 89.lll 

.5625 .58H 
60.235 1658.7 

.5791 .58573 
2ll.06 20262. 

.5838 .585781 
725. 94 

.5852 

.5874 

.5857857 
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The reader might want to verify that, on this particular problem, 

Aitken's method does just as well. Naturally, we are primarily interest-

ed in finding examples which show that the epsilon algorithm is able to 

handle problems not responsive to the earlier methods. 

The obvious place to begin our search is with Shanks' "double" 

geometric series, which gave the Aitken method great difficulty when x 

was fairly large. Recall the function could be written as 

2 
2 x x 

2 (1 + x + x + ... ) - 1 (1 + 2 + 4 + ... ) . (16) 

The e2 transform should "sum" (16) perfectly, regardless of x, given any 

five consecutive partial sums. Set x=lO since we know that series gave 

the Aitken method great difficulty. Part of the errors were due to fi-

nite precision in the calculations involving the large partial sums; and 

that factor still remains to prevent perfect summation ?Y e 2 • But e2 is 

able to obtain at least eight (out of sixteen) digits for all entries 

in rows five through ten. Naturally, the entries in the e2 column 

which are least susceptible to the calculation difficulties are the en-

tries based on the smaller partial sums. We might expect that the later 

columns would quickly drift further from the correct answer. But in fact, 

the drift is quite slow: most of the later entries are about as good as 

the best number used in computing them. This self-protection against 

error growth seems rather incredible to the present author. No explana-

tion presents itself at this time; conceivably the good behavior is by 

chance, but that seems unlikely. See Table XXXVI for the absolute errors 

of the table entries. 



-.277E-l 
.972E - 2 
.160E + 2 
.191E+ 3 
.207E + 4 
. 214E + 5 
. 218E + 6 
.220E+7 
.221E + 8 
.222E + 9 

TABLE XXXVI 

ABSOLUTE ERRORS IN THE EPSILON TABLE FOR 
SHANKS' DOUBLE GEOMETRIC SERIES, 

WITH x = 10 

el 

-.992E-l e2 
-.434E+O 
-.204E + 1 -.47 E - 15 e3 
-.992E+ 1 -. 387E - 14 
-.489E+2 . 230E - 13 -.85 E - 15 
-.243E+ 3 .193E; - 12 -.893E -14 
-.212E+ 4 .730E-ll .188E - 13 
-. 604E + 4 .773E-10 -. 611E - 12 
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e4 

-.USE -14 
-.4-2E -14 

For ouf next example, let us return to Lubkin's series, which com-

pletely confused the repeated Aitken method because the ratio of consecu-

tive errors kept switching signs. Recall that the series was 

1 1 1 -+-+--
4 5 6 

1T 1 - + -ln (2) 
4 2 

1.13197175 .... (17) 

The epsilon table begins with the same two first columns as the Aitken 

table because e1 is just Aitken's method. However, whereas the Aitken 

method was unable to make any real progress at all, the epsilon method 

soon approaches the correct limit in the later columns. See Table XXXVII. 

Another example where the Aitken method had great difficulty (at the 

beginning) was the "pi+ l" series, which has an alternating component and 

a monotone component. The monotone component, though it finally becomes 

insignificant, temporarily kept the Aitken method from making much pro-

gress. After fifteen rows, the closest Aitken's method had come to 

4.14159265 ... was 4.142 .... By that same point in the partial sums, the 
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epsilon algorithm will produce 4.14159264 •.• and several other approxima-

tions of comparable quality. We see that the new algorithm seems less 

sensitive to the presence of competing components in the series being 

summed. This is probably not very surprising, considering the original 

motivation was built on assuming several components. In their testing, 

Smith and Ford (1982) found the epsilon algorithm by far the best method 

for accelerating slowly convergent series with irregular sign patterns. 

The test problems involved Fourier series; for example, for 0 < x < 27T, 

sinx 
sin 2x sin 3x 

+ 2 + 3 + ... = 
1T - x 

2 

was one of their test problems. 

0 
1.00 
1.50 
1.17 
.917 
1.12 
1.28 
1.14 
1.02 
1.13 

TABLE XXXVII 

THE EPSILON TABLE FOR LUBKIN'S SERIES, 
SUM = 1.13197 

2.00 
1.30 
.167 
1.03 
2.12 
1.21 
.140 
1.07 

1. 0755 
1.1248 
1.1420 
1.1333 
1.1285 
1.1315 

1.1504 
1.1359 
1.1226 
1.1304 

1.1300 
1.1317 

(18) 

The epsilon algorithm has also been found useful in definite inte-

gral problems which do not fit well into the Romberg scheme. For example, 



recall an example from Chapter III; the integral was 

J~lx(l - x) dx -2!:. 
8 . 

As we mentioned, the singularities in the derivatives at both ends of 
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(19) 

the interval prevent successful application of the Romberg scheme; the 

powers in the error series for the trapezoidal sums are not h2 , h4 , h6 , 

3/2 5/2 7/2 ... ,but h , h , h , •... If we know that, we can modify the Romberg 

algorithm accordingly and obtain success in that way. But requiring the 

user to have such knowledge is obviously undesirable. Chisholm, Genz, 

and Rowlands (1972) were able to show that the epsilon algorithm will 

succeed well, given the (step-halving) trapezoidal sums for any problem 

of the type 

I (20) 

with a and S not integers. Applying the epsilon algorithm to (19) gives 

us Table XXXVIII. Correct digits are underlined. 

TABLE XXXVIII 

EPSILON PERFORMANCE ON AN INTEGRAL WITH 
END-POINT SINGULARITIES 

0 
.2500 
.3415 
.3745 
.3862 
.3904 
.3919 

.39433 

.39302 

.39276 

. 39271 

.39270 

.39269233 

.39269856 

.39269904 .392699086 
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Chisholm et al. (1972) note, however, that the algorithm is not 

likely to do well on problems with well-behaved integrands. No one has 

proposed the epsilon algorithm as a substitute for Romberg integration in 

general; but it is a valuable supplement. 

It should be mentioned that the Aitken method also does well on (19); 

but the analysis of the behavior of the ~2 method in later columns has 

not been catried out as successfully as for the epsilon algorithm. In 

short, ~2 sometimes works well when we can not show why it should. This 

may seem rather paradoxical, since the Aitken calculations can be done as 

a slight simplification of the epsilon algorithm. But the additional 

structure in the epsilon algorithm evidently makes its theory more man-

ageable. The epsilon algorithm also is not able quite to match the Aitken 

method on the ln (17) series we used earlier, or on Wallis' series. These 

cases may be indicative of general patterns: Smith and Ford (1982) did 

2 
find in their testing that the ~ method was superior to the epsilon al-

gorithm on alternating divergent power series and most of the asymptotic 

series tested. Nevertheless, from the standpoint of being able to under-

stand what is going on, many users would probably prefer the epsilon 

2 
algorithm even when it is slightly less effective than the ~ method. 

Certainly Smith and Ford, along with most other writers, regard the epsi-

lon algorithm as more powerful than the Aitken method, over-all. 

E. Unsuccessful Applications 

By now, the reader may have concluded that the epsilon algorithm is 

the answer to everything. Unfortunately, no acceleration method is that 

good. One of our earlier examples was the simple "regrouped" pi series, 

TI= 4(1 - ..!_) + 4(1:_ - ..!_) + 4(1:_ - 111) + •••• 
3 5 7 9 

(21) 
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As we mentioned earlier, the grouping has given us a logarithmic series, 

with the ratio of consecutive errors going to 1. The Aitken method did 

poorly; the epsilon algorithm does no better. See Table XXXIX. 

TABLE XXXIX 

EPSILON ALGORITHM ATTEMPT ON THE REGROUPED 
PI SERIES 

0 
2.67 
2.90 2.92 
2.98 3.02 
3.02 3.06 3.08 
3.04 3.08 3.10 
3.06 3.09 3.11 3.12 

An additional rather disconcerting feature of this example is the 

following: a reasonable way to estimate the relative error of an entry 

is to compare its relative "difference", compared to the next entry on 

its right. (See Chapter IV.) But the epsilon algorithm "stalls" to 

such an extent that the relative error estimates are often more than one 

hundred times too low at the end of rows eleven through sixteen. See 

Table XL. 

Another simple example from the first article of Smith and Ford 

(1979) is the "p" series with p = 2, 

(22) 
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The epsilon table is again disappointing; after sixteen rows the smallest 

absolute error in the table is -.146E - 1. And once again, the error es-

timates are often considerably too low, though not as bad in the previous 

example. (The Aitken error estimates on the last two problems, while 

low, are consistently better than the estimates in the epsilon table. No 

reason is apparent.) 

TABLE XL 

ACCURACY OF RELATIVE ERROR ESTIMATES FOR 
REGROUPED PI SERIES 

Row Estimate True Relative Error True/Estimate 

11 .389E - 4 .526E - 2 135 
12 .145E - 3 .452E - 2 31 
13 .201E-4 .376E - 2 187 
14 . 785E - 4 .330E - 2 42 
15 .115E - 4 .282E - 2 245 
16 .461E-4 '.251E - 2 54 

As the reader could have guessed by now, Smith and Ford found the 

epsilon algorithm to be consistently ineffective on logarithmically con-

vergent series. That class of series was one of the very few classes 

where other methods were found to work much better. In general, given 

many slowly convergent monotone sequences, the epsilon algorithm tends 

to be unstable, with relative errors due to finite precision becoming 

magnified increasingly as the calculations continue. But this is not the 

case for all monotone sequences. For example, recall the integration 
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problem we worked with the epsilon algorithm. Some analysis of how 

well the algorithm may be expec.ted to work on certain classes of series 

is given by Wynn (1966). 

F. The Connection with Older Mathematics 

We have previously mentioned the advantage that the epsilon algor-

2 
ithm has over the t::. method, from the standpoint of mathematicians being 

able to analyze the behavior. Part of the advantage comes from the fact 

that the (even column) entries in the epsilon table can be related to 

much older areas of mathematics, areas well developed before the algor-

ithm itself was invented. Those areas are "Pade approximants" and "con-

tinued fractions". We now discuss these connections briefly. 

1. Pade Approximants - Assume f(x), a given fraction, can be repre-

sented by 

f(x) a + bx + ex 2 + dx 3 + ex 4 + .... (23) 

Suppose we want to approximate f(x) by a rational function; for example, 

suppose we allow a first degree polynomial in both numerator and denomin-

ator: 

Q(x) = 
A'x + B' 
C'x + D' 

Ax + B 
x + D 

(24) 

We want to choose Q(x) so that it is the "best" rational approximation , 
for f(x), given the allowed degrees. By "best", we mean that we want the 

power series for Q(x) to coincide with the power series of f (x) as far as 

possible. Since (24) gives us three parameters to adjust, it seems rea-

sonable to guess that we might be able to match the first three terms of 

(23), but not four. 
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The solution process is not hard, though it is a little tedious. We 

want 

f(x) - Ax + B 
lx + D 

3 4 
Ex + Fx + ... , 

f(x)(lx + D) - (Ax+ B) 
3 . 4 

(lx + D)(Ex + Fx + ... ) 

' 4 ' 5 Ex +Fx + .... 

(25) 

(26) 

Substituting (23) for f(x), we easily obtain a power series for the left 

side of (26). Set the coefficients of x0 , 
1 

x ' 
2 

and x equal to zero and 

we will obtain a linear system which (barring zero determinants) allows 

solution for A, B, Din terms of the early coefficients in (23). 

The same sort of procedure can be done with other degree restric-

tions. For example, the best R(x) of the form 

R(x) Ax + B (27) 
lx2 + Dx + E 

Would be called the [1/2] Pade approximant to f(x), while our Q(x) would 

be the [2/2] approximant. The 0/0 ' 1/0 ' 2/0 ' ... approximants of 

f(x) are exactly the partial sums in (23). If we then put all the ra-

tional functions together, we obtain Pade table for f(x), normally ar-

ranged as in Figure 10. (For any set value of x, all the rational func-

tions reduce to numbers, of course.) 

[0/0] x [1/0] x 
[2/0] x 

[0/1] x [l/l] x [2/1] x 
[0/2] 

. x 
[1/2) 

. x 
[2/2] 

• x 

Figure 10. The Pade Table Arrangement 
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The connection of this with the e. transforms and the corresponding 
1 

epsilon table is easy: Shanks (1955) showed that if the A0 , A1 , •.• se

quence is being formed from the partial sums of the power series for f(x), 

evaluated at x, then the ek(An) table consists of half of the Pade table, 

evaluated at x. The "half" table is now on its side; see Figure 11. 

(The top "zero" does not fit in this time, since even the [0/0] entry is 
x 

normally not zero.) 

AO [O/O] 
x 

Al [1/0] 
x 

A2 = [2/0] [1/1]1 el (AO) x 

A3 [3/0] [2/1] el (Al) x x 

A4 = [4/0] [3/1] el (A2) [2/2] = e2(AO) x x x 

Figure 11. The Relation Between the Pade Table and 
the ek Table 

Figure 11 should make clear that if we use a power series of a ra-

tional function to generate the initial column of our table, then the 

epsilon algorithm will find the exact limit--after only a finite number 

of partial sums. For example, assume 

g(x) 5x3 + 3x + 2 
6x + 7 

(28) 

If the power series for g(x) is being used to generate the initial column, 

it is obvious that 
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= [ 3/1] 
x 

g(x), (29) 

and all later entries in the e1 column should be exact, also. (The epsi

lon algorithm would require some slight modification to avoid division by 

zero in moving to the following columns; but with that change, all the 

entries beyond [3/1] would be exact, except for round-off error.) 
x 

Why is the connection between the epsilon algorithm and the Pad~ 

table important? A main reason is that Pade approximation theory had 

been nicely developed much earlier than the work of Shanks and Wynn. In 

essence, as soon as the ek transforms were invented, there were already 

some nice theorems which described how they should work. For one main 

example, Montessus de Balloire (1902) had shown under fairly general con-

ditions, the rows of the Pad~ table had to converge nicely to f(x). 

Shanks could translate the statement into tenns of his ek table and have 

the following theorem: if f(z) is analytic for lzl .::_ R except for p 

poles within this circle, and if {A } is the sequence of partial sums of 
n 

the power series for f(z), evaluated at some z0 , then the ep transform 

will converge uniformly to f(z 0) in the domain obtained from lz\ .::_ R by 

removing the interiors of small circles with centers at the poles. For 

example, let 

f(z) 
(z - 2)(z + 3) 
(z + 1) (z - 4) 

If we agree to keeping 

I z + l \ > • 01, I z - 4 I > • 01, I z I < 1000 

(30) 

.. 

(31) 

and generate an ek table using the epsilon algorithm and the partial sums 

of the power series for f(z 0), and if we require an accuracy of 5•10-8 , 
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then there will be an integer N such that if n > N, then the e2 (An) en

-8 
try will be within 5•10 of f(z 0), regardless of what z0 is chosen. 

When the epsilon algorithm succeeds, it is because the Pade approx-

imations are often better representations of f(x) than a power series in 

x, in two senses: a sequence of Pade approximants (the [n/n] sequence, 
x 

for example) will often converge to f(x) when the power series diverges. 

And even if both converge, the Pade approximants may converge much more 

rapidly. 

2. Continued Fractions - The other well-developed theory that was 

waiting for the invention of the epsilon algorithm was the theory of con-

tinued fractions. This theory is related to the Pade approximants but is 

not a subset of that area. Just as we can represent functions by power 

series and Pade approximants, continued fraction representations can be 

derived. A continued fraction is of the form 

b 
a+ d c + (32) 

------
e + f ----

g + ... 

where the division process continues forever, somewhat like the partial 

sums of an infinite series. The value of (32) is the limit, if it ex-

ists, of the "convergents" 

0 a b b 
l' l' a+~, a +-c-+_d....,./e- '· • • • 

There is a difficulty not involved with partial sums: 
th 

having the n-

(33) 

convergent is not obviously helpful in computing the (n+l)~ convergent. 

However, there is a way to compute the convergents from the top, down. 

First, let us agree to write (32) in the (standard) form to save space: 



b d f a+- - -
c + e + g + 

L P IQ be the n th 
et convergent, 

n n 

a 
n 

+ b 
n 

Then P and Q can be generated directly from the previous ones, for 
n n 

n > 2, by 

P = b P + a P 2 n n n-1 n n-

Q - b Q + a Q 1 2 . 
n n n- n n-
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(34) 

(35) 

(36) 

Khovanskii (1963, pp. 2-3) gives a proof. However, this method of com-

putation tends to be unstable numerically (International Dictionary of 

Applied Mathematics, 1960, p. 374). 

Just as we have a standard form for representing f(x) as a series, 

so there is a standard form for the continued fraction representation for 

f(x). Namely, the fraction should be of the form 

a1x a 2x 
f (x) ----? b + - - + 

0 bl + b2 

. h h th h . . . . wit t e n~ convergent aving a power series representation agreeing 

n 
with the f(x) power series through x . Such a fraction is called the 

(37) 

"corresponding" continued fraction for f(x). There is an algorithm for 

obtaining the corresponding continued fraction from the power series 

(Khovanskii, 1963, pp. 27-28). 

As it turns out, the corresponding continued fractions are an excel-

lent vehicle for giving new insight into what happens as we move along 

the diagonals of the epsilon table. To take a typical example from 

Shanks (1955), the continued fraction representation for ln (1 + z) has 
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long been known to be 

ln (1 + z) O+~ 
1 + + + + + + 

(38) 

And it has also been widely known that, unlike the power series for 

ln(l + z), which diverges when lzl > 1, (38) converges for any com-

plex z except the real z _.:::. -1. Fortunately, the convergents of this con-

tinued fraction are exactly the entries of the two top diagonals of the 

.ek table when we use the power series in the initial column; e.g., let 

2 
z 1 z 

k2 = 0 + 1 + -2- ' .... (39) 

Using the power series for ln (1 + z) to generate the initial column in 

the ek table, the convergents in (39) are located in Figure 12. 

ko 

kl 

x k2 

x k3 

x x k4 

x x ks 

x x x k6 

Figure 12. Continued Fraction 
Convergents in 
the ek Table 
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A similar type of thing happens in general. For example, we have 

earlier seen the function 

f(x) 
-t 

oo e 
= 1o 1 + xt dt. (40) 

This function is well-behaved for x 2_ O; but the power series expansion 

around zero is woefully inadequate as a good representation, converging 

for no x except zero: 

2 3 4 
f(x) rv l! - l!x + 2!x - 3!x + 4!x - •.•• (41) 

But Sullivan (1978) gives a continued fraction whose convergents will be 

found in the i::-table (include the top "O") based on (41): 

f(x) 
1 x x 2x 2x 3x 3x 4x 4x 

0 +1+1+1+T+T+T+T+T+T+ (42) 

This gives some insight as to why the epsilon algorithm is able to "sum" 

the series (41) well; along the top two diagonals, it is converting the 

wild partial sums of (41) into the nicely behaved convergents of (42). 

G. The Special Rules 

We have previously mentioned that, due to finite precision, the ep-

silon algorithm sometimes does not do as well as the theorems (assuming 

infinite precision) would predict. Difficulties are also inherent in 

certain cases, regardless of precision. We will end our discussion of 

the epsilon algorithm by describing how these undesirable situations can 

occur, and how Wynn (1963), Cordellier (1977), and Brezinski (1978) have 

suggested dealing with them. As Brezinski says, so much is lost in terms 

of simplicity that one may often prefer to use the "basic" epsilon algor-

ithm. Nevertheless, the refinements we are about to discuss are crucial 
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to accuracy in some problems. 

Wynn (1963) describes the basic difficulty and lays out the basic 

pattern for evading it. He gives the first part of the epsilon table 

generated by the partial sums of the power series for ex. He then tries 

setting x = 2. One section of the resulting table is shown in Figure 13. 

-1 N 

1 
NW 1 NE - = 

2 2 

3 w +oo c 5 E 

1 
SW 

1 
SE - = 

2 2 

9 = s 

Figure 13. An Indeterminancy in 
the Epsilon Table 

i 
What has happened is that two entries in the s1 column have accidently 

become equal. There is no problem in seeing that the l/2's in the next 

odd column are appropriate. But the 5 can hardly be obtained using the 

usual formula. There is no question, however, that the appropriate answer 

is 5, based on the rational function in that position. Wynn cleverly 

evades the difficulty by deriving another formula for the 5. He shows 

that when the ±oo occurs in the middle of a "large" lozenge, the correct 

formula to use is 
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E = S + N - W. (43) 

Unfortunately, when NW, SW, NE, and SE are almost equal, then 

(43) is no longer very accurate. And that is the more common case. The 

±00 is now replaced by a very large "C". Since 

1 
E = C + SE - NE 

1 . 1 
= W + SW - NW + SE - NE ' (44) 

E is highly susceptible to the loss of significant digits via subtraction 

when SW ~ NW. The first question at this point might be, how can we 

write a program to recognize when subtractive cancellation is occurring? 

The second question would be, what can we do about it? 

The first question is very easy. Assume that we have SW and NW to 

nine significant digits, with SW equal to 98765.4321 and NW equal to 

98764.3245. Then SW- NW is 1.1076; even C will lose four significant 

digits. The way to have a program "discover" this is to estimate the 

number of digits lost by comparing the difference to the size of one of 

the original numbers. E.g., if SW is about ten times as large as the 

difference, you have essentially lost one significant digit. In general, 

let the estimate of digits lost by C be given by 

\sw\ 
L = LoglO.(lsw - NW!) (45) 

This is the estimator used by Brezinski (1978) to detect when emergency 

measures are required. He sets a cut-off value for L; if L gets larger 

than that value, special formulas somewhat similar to (43) are used when 

we get to E in the large lozenge. We shall next describe those formulas 

and their implementation, though not their derivation. We shall use the 

special rules of Cordellier (1977) because they extend to the "vector" 
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case, which is not true with Wynn's rules. Also, the program needed is 

slightly less complicated than Wynn's though the final formulas look 

rather intimidating: 

N + s w + ic 

E = (C - N)2 (C - S)2 (C - W)2 
1 1 1 

- N)2 
+ 

S)2 - W)2 
+ i 

(C (C - (C 

(46) 

where 

i (N - W) 2 
+ (W - S) 2 (S - N) 2 

(C - W) 2 (c N)2 (C - W) 2 (C S)2 (C - N) 2 (c - S) 2 
(47) 

The program used in this thesis is, in all major respects, the EPS2 pro-

gram of Brezinski (1978). However, a few minor revisions have been made: 

for example, the variables were given more descriptive names. Also, the 

exit operations were simplified to bring them into line with the simple 

relative error estimate prescribed by Brezinski himself on page 330. (It 

is the same type of estimate we have used before, except that he compares, 

7.) The present author is convinced that the relative error estimates of 

many of the (excellent) programs in Brezinski's book are slightly faulty. 

(The interested reader who has access to the 1978 book may verify this by 

printing out Al, A2, and E values in the last section of EPS2.) A 

couple of other potential difficulties in some of the programs are the 

use of automatic initialization of variables to zero, and assumed preser-

vation of local variables between subroutine calls. It is also puzzling 

that, while the programs insert a zero at the top of each table, the ex-

tra entries which result (and are computed) are never printed out. The 

program used in this thesis inserts the zero, but has been modified so 

that the extra entries are eligible for printing. Revisions of this sort 
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are very minor, of course; the programs will be of great value to 

anyone who is wanting to learn the details of implementing the algor-

ithms discussed. 

The routine implemented by Brezinski will allow handling several of 

the instability occurrences at once, so long as we do not have three con-

secutive entries of one column close together by accident. (That would 

result in N - C and C - S being close to zero, which would create obvious 

problems in (46) and (47).) Such an occurrence causes termination of 

the calculations. Queues are maintained for the W and N values which 

will be needed in the future, as well as for the column numbers where the 

cancellation occurred. (This last queue lets us know when we are ready 

for the next E calculation.) The program prints out only the last (per-

mitted) even column entry on each rising diagonal of the epsilon table. 

Brezinski (1978, p. 319) gives a nice example to illustrate the dif-

ference the special measures can make. Let 

1. 5999999, s2 1.2, s3 = LO 

(48) 

n 1, 2' .... 

It is clear zero can be written as a weighted average of any four con-

secutive partial sums; namely, 

0 
8Sn+3 - 4Sn+2 - 2Sn+l - Sn 

8 - 4 - 2 - 1 

This should remind us of the sum of three geometric series, with 

zero as the sum. Therefore, it is not difficult to believe Brezinski 

(49) 

when he asserts that the e 3 column should be all zeroes. (The top entry 

is probably an exception, if we begin the table with the initial zero as 
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usual. The recursion in (48) does not hold for 0, 1, 1.2 and 1.5999999.) 

If we set the upper bound on the L of (45) at 20 and use EPS2, the spe-

cial rules will never come into effect. EPS2 thus uses the usual epsilon 

calculations, which give an e 3 column as shown in the left half of 

Table XLI. If we set the upper limit at 4 instead of 20, the special 

rules are used only in computing two entries in the first thirteen rows. 

However, the carried over effect in the e 3 column is quite striking; see 

the right half of Table XLI. 

TABLE XLI 

THE EFFECTS OF THE SPECIAL RULES IN 
BREZINSKI'S EXAMPLE 

.247E-l 

.215E - 1 

. 318E - 2 

. 319E - 1 

.149E- 1 

. 241E - 2 
• 278E - 15 

Usual Rule 

-.200E - 6 
. 888E - 15 

-.125E- 14 
-.289E-14 
-.430E -15 

.928E - 16 

.278E-15 

Special Rules 
(Twice) 

It seems appropriate to examine in some detail what has happened in 

this example. The two entries which were calculated by the special E 

rule are located as indicated in Figure 14. The later entries in the 

table which are influenced by them are enclosed by the dotted line. 
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Figure 14. The Position of the E Entries in 
Brezinski's Example, and Their 
Areas of Influence 

The upper E in Figure 14 was -.174999995 ..• ; the simple algorithm 

obtained -.125678 ... in that position, off by about 28%. For the upper 

E, the respective values were -14.999999 ... and -14.92139 ... , a bit 

closer. The NW and SW entries in the upper large lozenge show how the 

special rules were triggered. See Figure 15. 

Trying to attain even more accuracy by setting the upper limit on 

digit loss at 1 will result in three consecutive entries being close 

enough to trigger the abortion process before the e 3 column is ever 
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reached. 

N = -5.00000000 

NW 1.00000000 NE = .99999999 

w 0 C = -.800E + 8 E = -14.99999938 

SW .99999999 SE = 1.00000000 

s = -10.0000006 

Figure 15. The Upper E Lozenge in Brezinski's Example 

H. Conclusions 

We have seen the epsilon algorithm is in essence a generalization 

of Aitken's method, dealing with the sum of several geometric series in-

stead of one. This generalization gave many new powers not enjoyed by 

2 2 
the 6 method, although the 6 method does tend to be slightly superior 

on some classes of problems, for reasons that are not always clear. The 

epsilon algorithm, like many other acceleration methods, does have diffi-

culty with logarithmic convergence. Therefore, one would rather have an 

alternating sequence to accelerate via the epsilon method, though the 

results are fine for some monotonic sequences. 

We have seen that the epsilon algorithm's success can be made more 

understandable by its connections with Pade approximants and continued 

fractions. And finally, since a great deal of subtractive cancellation 

sometimes takes place, we have seen how to counteract the effects of this 
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by using other formulas which, while more complicated, are able to mini

mize the impact of C and avoid the subtraction SE - NE completely. 

The reader who is interested in pursuing the study of the epsilon 

algorithm will have no difficulty in finding enough material to occupy 

anyone for twenty years. Wynn has virtually built a career writing on 

his invention. Anyone who can read French will certainly want to have 

Brezinski's books (1977, 1978) on hand. The bibliography of the earlier 

one is, by itself, worth the price of the book. The programs and exam

ples in the latter one are indispensable, and mostly understandable even 

to the person who does not read French. Wimp (1981) has also written 

a book which is an excellent reference on the epsilon algorithm, as well 

as well as on many other methods. 



CHAPTER VI 

A GLIMPSE OF SOME "RELATIVES" OF THE 

EPSILON ALGORITHM 

A. The Rho Algorithm 

We saw in the previous chapter that the epsilon algorithm, while 

very powerful, tends to have trouble with logarithmically convergent 

series. Evidently, assuming a sum of geometric series does not give 

a good model for the logarithmic convergence. At almost the same time 

that Wynn invented the epsilon algorithm, he also designed the "rho" 

algorithm as a complementary algorithm (Wynn, 1956b). The rho al-

gorithm is based on Thiele's reciprocal differences, which are well-

explained by Milne-Thomson (1933). Instead of assuming the initial column 

is approaching its limit as a sum of geometric series would, the assump-

tion is that the limit is being approached in the same manner as a 

rational fraction approaches its horizontal asymptote. Such an approach 

is eventually monotone, of course. Thus, the rho algorithm is predis-

posed to good performance on monotone sequences. And in particular, if 

the initial columns are actually being generated by the rule 

s 
n k 

n + 

k-1 
a 1n + 

. th 
then the k~ even column of the o table will be all S's (Brezinski, 
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(1) 
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1977, p. 104). Naturally the method is useless on oscillating sequences. 

Fortunately, the rho algorithm (at least in the original "simple" 

form used by Wynn, which is the only one we will discuss) requires only 

a trivial change in the calculations made for the epsilon algorithm. If 

we number the columns starting with "zero" in the initial column, then 

the rule for calculating entries in the kth column is 

Right Left + ~~-k~~
Bot tom-Top ' 

(2) 

which requires only an additional branch in the epsilon subroutine. All 

the rho tables for this thesis were thus done with the same program that 

implemented the epsilon and Aitken algorithms, with the program notified 

by a numerical code as to which algorithm was desired. 

Let us begin with the rho algorithm's performance on the regrouped 

pi series. The best answer Aitken was able to produce in eight rows was 

3.1265; the epsilon algorithm was even worse, attaining only 3.1108. the 

rho algorithm does considerably better. See Table XLII. Correct digits 

are underlined in the last two columns. 

TABLE XLII 

RHO PERFORMANCE ON THE REGROUPED PI SERIES 

0 
2.667 
2.895 
2.976 
3.017 
3.042 
3.058 
3.070 

3.167 
3.145 
3.143 
3.142 
3.142 
3.142 

3.14139 
3.14156 
3.141585 
3.141590 

3.1415929 
3 .1415929 
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For another example, let us use the new algorithm on the p series 

2 
with p = 2, Zeta(2) = TI /6 = 1.6449341.... In eight rows, the Aitken 

method could only reach 1.618; the epsilon algorithm fell behind again, 

with 1.590. Once again, the rho algorithm excels. See Table XLIII. 

TABLE XLIII 

RHO PERFORMANCE ON THE LOGARITHMIC 
ZETA(2) SERIES 

0 
1.000 
1.250 
1.361 
1.424 
1.464 
1.491 
1.512 

1.667 
1.650 
1.647 
1.646 
1.645 
1.645 

1. 644 74 
1. 64489 
1.644923 
1.644929 

1. 644936 
1.6449344 

By now, it may be appearing that the rho algorithm is "the" answer 

for logarithmic series. Unfortunately this is not the case. Smith and 

Ford (1979) found that on six of the eight logarithmic test problems they 

used, the rho algorithm did do slightly better than even the best of the 

competing algorithms. However, on the last two problems, the rho algor-

ithm completely failed, while some of the competitors continued to per-

form quite well. One of the failures was caused by the series 

1 -12 1/2 -12 1/3 -12 
(1 + e) + (2 + e ) + (3 + e ) + ... = 1.7137967 ... (3) 

After fifteen rows, the rho algorithm has reached only 1.592 .... (It is 
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"stalling" enough that the relative error estimates are off by a factor 

of ten, but this does not seem too bad.) Because there were some methods 

that did quite well on all eight test problems, Smith and Ford concluded 

that the.slight advantage of "rho" on most of the problems was outweighed 

by its failure on the last two. Brezinski (1977, p. 106) comments that 

the rho method has not been used too much because of the lack of theorems 

concerning its convergence. Nevertheless, he has found a slightly modi

fied rho algorithm superior to Romberg integration in some situations. 

B. The Theta Algorithm 

Brezinski (1971) invented the "theta" algorithm, which is in a sense 

a hybrid of the epsilon and rho algorithms. He comments (1977, p. 123) 

that the method is more versatile than either the epsilon or rho methods: 

it may not quite match the better of its two relatives on a particular 

problem; but it tends to do quite well both on "epsilon-type" problems 

and "rho-type" problems. Smith and Ford (1979) ranked theta as one of 

the top three methods, although they later decided (1982) to rate the 

epsilon method above it for general use, if the "u" algorithm of Levin 

(1973) is available as an alternative to epsilon. (We will not try to 

discuss "u" in this thesis, unfortunately.) 

The theta algorithm is essentially the epsilon algorithm with an 

acceleration parameter involved in the even column calculations to make 

those columns converge more rapidly. The odd columns are calculated as 

in the epsilon algorithm. The entries of the table which are used in the 

acceleration parameters do not all lie in the lozenge of the epsilon al

gorithm. See Figure 16 for the configuration of the entries used in the 

calculations for the even columns. 



XT 

XL XR 

XB 

X2BCK 

XSUB 

Figure 16. The Entries Needed 
in Calculating 
XR (Even Column) 

The formula is 

XR X2BCK(XSUB - XB) - XL(XB - XT) 
(XSUB - XB) - (XB - XT) 

The presence of XSUB in Figure 16 forces abandonment of our usual 
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(4) 

movement along diagonals. The calculations by Brezinski's THETA on one 

cell fall along what could be called a "weave", rather than along a diag-

onal. The calculations for a weave require the accessability of the two 

previous weaves. See Figure 17 for the appearance of the weaves and one 

of the even column XR configurations. 

The program used in this thesis was, in all important aspects, 

Brezinski's THETA (1978, p. 369). We have taken the liberty of making 

the same sort of changes we earlier made in EPS2. THETA is designed to 

print out only the sequence elements, the last even column entry in the 



weave, and a relative error estimate. 

Figure 17. The Order of Calculation for 
Theta Algorithm 

142 

First, let us apply THETA to the pi and regrouped pi series, recall-

ing that epsilon succeeds only on pi and rho succeeds only on the re-

grouped series. After twelve rows on the pi series, epsilon had 

3.14159267; after twelve rows on the regrouped series, rho had 

3.14159265360. (Recall, we progress more rapidly into the later terms on 

the regrouped series.) By the same point in the partial sums, THETA 

gives 3.14159265261 on the pi series and 3.14159265341 on the regrouped 

series. At least on these two problems, THETA is not excelled on either 
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problem by either of the other two methods. 

An even more impressive demonstration is given on (3), the logar

ithmic series which caused the rho algorithm to fail. The correct limit 

is 1.7137967 .••. The best entry on row fifteen is 1.46 for Aitken, 1.33 

for epsilon, and 1.59 for rho. See Table XLIV for the numbers given at 

the end of the weaves by THETA through the same partial sums. It is not 

difficult to see why the method is highly regarded. 

TABLE XLIV 

THETA PERFORMANCE ON SERIES (3) 

Weave Number Last Partial Sum Approximation 

10 .805 1.83 

11 .838 1. 73 

12 .867 1. 718 

13 .894 1. 7142 

14 .917 1.71366 

15 .939 1. 713766 

With the inclusion of these last two algorithms, we have what might 

be called the epsilon family of methods. Taken together, they form a 

very potent arsenal of acceleration methods. The theory is most devel

oped for the epsilon algorithm itself; but the theta algorithm is cur-

rently the focus of much research, for obvious reasons. 



CHAPTER VII 

SUMMARY AND AREAS FOR FURTHER STUDY 

The reader may have hoped at the beginning of this paper to be 

shown some acceleration method which would excel on every slowly converg

ing sequence. But by now, this hope must surely have faded: there are 

obviously too many different manners for slowly convergent sequences to 

approach their limit. As Wimp (1982, p. x) points out, the only methods 

which can accomodate virtually any manner of approach pay the price of 

well-rounded mediocrity. At this stage of development of the theory, the 

choice of methods is, generally speaking, an art as much as a science. 

There are general rules of thumb: for example, the epsilon algorithm 

"often" does very well on oscillating sequences, and "often" do1es not do 

well on monotone sequences. But these statements are not very precise. 

Often you just try a method on a sequence; and if it seems to be converg

ing to something, you "hope" it is the correct limit! If two methods 

approach the same limit, so much the better. 

Two acceleration researchers in the French "school" (led by Brezin

ski) are Delahaye and Germain-Bonne. In a 1980 article they showed that, 

for example, it is impossible for any method (now or in the future) to 

accelerate every logarithmic sequence. This is a rather amazing thing 

to pr.ave, to say the least. But it indicates that future research can, 

at best, hope to find methods which succeed a higher percentage of the 

time. The current situation of having a method work well and then fail 

144 
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miserably is, therefore, somewhat intrinsic to the subject. 

Brezinski (1980) has recently invented a "super-algorithm" which in-

eludes many of the others as special cases, depending on the choice of 

parameters. He has now published a corresponding computer code 

(Brezinski, 1982). This may help bring the theory together a bit more. 

It would have been nice to include in this paper a study of the "u" 

transform of Levin (1973), which Smith and Ford (1979, 1982) regard so 

highly. But including it did not turn out to be feasible. Professor 

Smith has graciously provided a preprint of an article that will soon 

appear in the ACM Transactions on Mathematical Software. It discloses a 

nice iterative scheme for u which has not been previously available in 

print. 

There are two advantages of the epsilon and rho algorithms which 

the present author (and, no do~bt, many others) would like to see extend-

ed to some of the other algorithms, such as Euler's, Aitken's, theta, and 

u. Namely, we know precisely what kind of sequence in the initial column 

will produce "perfect" answers in the e 2 , e3 , ... , columns. But, to take 

one example, what kind of sequence do you have to start with in order for 

2 
the ~ method to produce perfect answers in two or three columns? The 

present author worked on this for a while, but with no results. If this 

sort of question could be answered, it would be of great benefit in un-

derstanding exactly what the Aitken method is doing. Cordellier (1977) 

has shown some preliminary results for the theta algorithm: he has char-

acterized the sequences which one application of theta solves exactly; it 

turns out that this collection contains all sequences which either epsilon 

or rho solves in one application. Smith and Ford (1979) also give some 

"exactness" results for u. 
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There will undoubtedly be great advances in the future. This field 

really began growing only with the invention of the epsilon algorithm. 

Shanks (1955, p. 40) commented that "the literature on non-linear trans

forms is not very large." The situation is completely different now; 

indeed, one is just about half-way through a new important paper on the 

subject when another one is published. There is perhaps no area of 

mathematics that is more exciting at the present moment than acceleration 

methods. 
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APPENDIX A 

A TEXTBOOK SUPPLEMENT ON 

ACCELERATION METHODS 

Infinite series and sequences are an important part of both pure and 

applied mathematics. In Calculus II you learned various theorems which 

help to determine whether the partial sums S of a series are going to 
n 

converge to a limit or diverge. But if we have any practical tendencies 

at all, showing only that the limit does exist is not completely satisfy-

ing. The natural next question is, "How do we actually find what the sum 

is?" Of course, adding up an infinite number of terms is not really an 

option; but on some series something "close" to an infinite number of 

partial sums is required if we want good accuracy. The topic we are going 

to look at involves various methods used to accelerate the process of 

finding the limit with a good deal of accuracy. In some cases we will 

get good answers when no number of partial sums could get close! 

For example, take the standard series 

ln(2) ... ' (1) 

which results from setting x 1 in a Maclaurin series, 

1 ( 1 ) = 1 2 + lx3 1 4 nx+ x-2x 3 -l;x + ..•. (2) 
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Assume that we don't know where the right side of (1) came from; we can 

still assert, via the alternating-series test, that the partial sums do 

converge to something. And in fact a standard theorem tells us that the 

error of any partial sum is, in this situation, less than the size of 

the first omitted term. Let us suppose we demand an error less than 

5·10-9 , which amounts to eight decimal-place accuracy. How many terms 

are needed? It would be possible to answer this quite precisely by using 

a theorem discovered by a beginning calculus student in 1962 (Calabrese, 

1962). However we choose to take a less rigorous approach, to get an 

approximate answer to our question. If Sn and Sn+l are both within 

5•10-9 of the time limit, they must be within 10-8 of each other. There-

fore, the term an+l which is added (or subtracted) from Sn to obtain Sn+l 

has a magnitude less than 10-8 • But an+l is l/(n+l), which means it is 

necessary (though perhaps not sufficient) to require 

1 < 10-8 
n+l 

n > 99,999,999. (3) 

Adding that many terms is obviously out of the question, even on a large 

computer. If we do not already know the limit is ln(2), we are not going 

to be able to find that limit to the required tolerance, unless we can do 

something besides simply adding up partial sums. That is what accelera-

tion methods are designed for, in hopes of taking the earlier partial 

sums and "coaxing" some more information out of them. 
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Exercise 1. A standard series is 

II 4(1 - l + l - l + ) 3 5 7 • • • ; (4) 

Assume that we are far enough into the summing so that Sn+l and Sn are 

correct to nine decimal digits. What is the smallest n that has a chance 

of making this happen? 

Exercise 2. If we take the harmonic series 

. . . , 
(5) 

we can use an argument similar to the one above to show that using 

-8 
n > 99,999,999 will keep Sn+l and Sn within 10 of each other. Does it 

follow that both of them are within 5·10-9 of the "limit?" What is 

different? 

Every acceleration method, no matter how sophisticated, depends on 

making some assumption about the manner in which the partial sums ap-

proach the limit. If we apply the particular method to a series which 

behaves (more or less) in the assumed manner, the results can be spec-

tacular. If the assumptions are not close to being appropriate for 

that· series, the acceleration method may hinder rather than help. For-

tunately, it is often possible to tell easily which of these situations 

is occurring; this will become clear. 

Exercise 3. Use a calculator to compute the first six partial sums of 

(l); graph them on graph paper as y values, at x = 1, 2, ... 6. Also 

graph the line y = ln(2). Can you see a way to use the partial sums in 
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pairs to obtain five new approximations which give a considerably tighter 

fit around the line y = ln(2)? Calculate those five new approximations 

and graph them. Explain how this process might be continued. 

The simple process which you recently discovered in Exercise 3 

was first used by the great mathematician Leonard Euler in 1755. It is 

mainly for use with oscillating sequences which appear to be oscillating 

in a fairly symmetrical way about the limit. At each step of the process, 

the calculation is based on the assumption of exactly opposite errors in 

consecutive partial sums. That isn't exactly a true assumption for the 

ln(2) series; but it is close enough to being true that the method works 

well. To get the nicest connections with Euler's theory, an initial zero 

should be placed at the beginning. We then can have the arrangement in 

Figure 18 which we will call the Euler table. 

0 = sl 

s2 tl = (s1+s2)/2 

s3 t2 (S2+s 3)/2 u = 
1 (tl+t2)/2 

s4 t3 (s3+s4)/2 u = 2 (t2+t3)/2 v1 = (u1+u2)/2 

SS t4 (S4+s5)/2 u = 3 (t3+t4)/2 v 2 = (u2+u3)/2 wl = (vl+v2)/2 

Figure 18. The Euler Table 

Before we get you involved in implementing the algorithm, some ex-

planation is necessary about the pattern we are going to follow in 
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studying all the algorithms. They all are going to give tables that are 

similar in structure. Therefore, to make it possible for you to spend 

less time on things like FORMAT statements and more time on studying the 

algorithms themselves, the subroutine ANLYZ has been written to take care 

of all output for all the methods. You will find more details in the pro-

gram listing itself, but here is the general idea: you will have to write 

a subroutine to calculate one row of the table per call. You will also 

use either a supplied function subprogram which calculates one new par-

tial sum per call, or write one yourself. The procedure is then to call 

ANLYZ, supplying it with the relevant information about what kind of 

table is desired. ANLYZ will then follow this pattern repeatedly: ob-

tain a partial sum from the function subprogram, call your row-generating 

subroutine, and print out the results. After all desired rows have been 

thus processed, ANLYZ returns control to the calling program. 

Some explanation is also needed for the procedures used by ANLYZ in 

its error analysis. For use in problems when we don't know the correct 

limit, we would like to have estimators for the relative and absolute 

error of a particular entry. The estimates should be calculated using 

only the table entries themselves, not the actual limit. For example, in 

Figure 18, the actual values for the absolute and relative error of u3 

would be 

True A.E. u3 - CORRECT 

True R.E. (u3 - CORRECT)/CORRECT (6) 

Although our next step may appear rather desperate, it generally works 

fairly well: estimate how close u3 is to the correct answer by how close 
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u3 is to v2 ! Thus, the estimates for u3 are 

Est. A.E. u3 - v 2 
Est. R.E. = (u3 - v 2)/v2 • (7) 

ANLYZ will complete and print all the numbers in (6) and (7). You will 

thus see, not only how well the algorithm is actually performing, but 

also how well our "blind" estimators of the performance are working. 

Note that our procedures will give no estimates of the accuracy of the 

last entry on a row. 

Exercise 4. Write a subroutine which will use the following information: 

the row number, the new partial sum, the entries in the previous row of 

the Euler table, and the maximum number of row entries allowed by the 

user. The subroutine should then furnish the following information on 

return: the contents of the new row (written over the old row) and the 

number of entries in the new row. See ANLYZ for the exact structure re-

quired of METHOD, the "place-holder" name for your subroutine. (The 

second form shown is appropriate for the Euler method). You may assume 

the row numbers begin with "1." You will need some "local" storage but 

ask your teacher whether local vectors are permitted. 

Exercise 5. Write a (short) program to call ANLYZ three times to build 

three Euler tables using your subroutine and the supplied subprogram 

LNlPX; the calling program should store x = l.DO in COMMON/XLINK/, 

so that the correct limit is DLOG(2.DO). The tables are to have the 

following features: 

(1) Twelve rows, but never more than six columns. Error analysis 
is to be included. 



(2) Same as (1), but no error analysis. 

(3) Same as (1), but "twenty" specified as the maximum number 
of columns allowed. 

Exercise 6. Discuss your table from the third part of Exercise 5, on 

the following points: 

(1) What is the ratio of the A.E. in the tenth partial sum to 
the A.E. in the best entry in row ten? 

(2) Can you see any pattern as to where the best entry on any 
row is apt to lie? 

(3) Where on the rows are the horizontal differences (absolute 
error estimates) the smallest? 

(4) Like big cities, the table 'has some one-way streets along 
the diagonals. Explain. 

(5) Pick any three entries in the interior of the table. Show 
that the A.E. of each x chosen is smaller than the distance 
between the entry to the right of x and the entry above x. 

(6) How are our "blind" estimators working? 
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Exercise 7. Repeat Exercise 5, part (3), and Exercise 6 with the sup-

plied function program PI. (CORRCT = 4.DO*DATAN(l.DO)) 

Exercise 8. Repeat Exercise 7 with a geometric series program GEO 

"tt b F" l h 9 wri en y you. irst use r = -4, t en r = - 10 • How many of the pre-

vious conclusions still hold? 

The previous examples were in the class of "totally oscillating" 

series, the type of alternating series most likely to arise in applica-

tions: the terms go to zero in a "regular" way which we shall not try 

to make more precise. The next alternating series has a small monotone 

component. 
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Exercise 9. Repeat Exercise 7, but with the program PIPl, which gener-

ates partial sums of the series 

II + 1 = (4 + l) 
2 

(!±_ 
3 (8) 

Now we are going to see some great stuff; if you like to break the 

"rules" and still get the right answer, you'll love this. Every Calcu-

lus II student knows that the equation 

1 
1-r 

2 
l+r+r + ... (9) 

is true if and only if Ir! < 1. And everybody knows that the right side 

of (9) is useless if, for example, r = -2. We then get 1 - 2 + 4 -

8 + ... which certainly has no connection with 1/(1-(-2)) = 1/3; 

everybody knows that, right? 

Exercise 10. Apply Euler's method to the series generated by your GEO 

subprogram. Try r = -2, as discussed above. 

The results of the previous exercise are explainable only in terms 

of what is called "analytic continuation." There is nothing bad about 

the function 1/(1-r) at r = -2; but the series is just not capable of 

representing the function at that r value. On Exercise 10, the Euler 

method was able to take the "deficient" series and convert it to a new 

series which converged to what the old series "should" have converged to. 

Exercise 11. Verify (for at least four or five terms) that, while the 

initial column was formed from partial sums of 1 - 2 + 4 - ... , the 
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Euler transform has given, on the top diagonal, the partial sums of 

1 1 1 1 1 
2 4 + 8 - i6 + . , which converges to 3. 

Sometimes, even when the method doesn't work, using it more than 

once gives success. Doing the table as we have corresponds to the E1 

transform. If we take the top diagonal and use it for a new initial col-

umn for another table, this corresponds to the E2 transform. And so 

forth, for E3 , E4 , • ANLYZ is equipped to allow this procedure 

without difficulty: while the table is being built, ANLYZ saves the last 

entry on each row, in a vector. The subprogram REDO was written to gen-

erate its partial "sums" out of that vector. You thus can call the orig-

inal series program to build the original table, and then call ANLYZ to 

use REDO for more tables. 

Exercise 12. Set r = -8 in GEO and call ANLYZ to try to sum the series. 

(Hint: you need not ask for error analysis). Call ANLYZ three more 

times, with instructions to use the "artificial" series generator REDO 

instead of GEO. Discuss the four top diagonals thus generated; verify 

that each top diagonal is the initial column of the next table. 

By now, we hope the reader is suitably intrigued; however, the Euler 

method is the weakest one we are going to study! We certainly would not 

be prone to use the Euler method on a monotone sequence, for example: 

averaging consecutive partial sums doesn't sound very attractive in that 

situation. The next method, due to A.C. Aitken in 1926, will master any 

series the Euler method will master, and a lot more. And, while it isn't 

quite as simple as averaging, it is still not difficult to motivate. 
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Suppose we have a geometric series (either convergent or divergent, 

r positive or negative, so long as r 11). 

c(l+r), s4 
2 

c(l + r + r ), .... (10) 

Define Sas c/(l - r). If JrJ > 1, then we can reasonably say Sis the 

"anti-limit" of the S , as will become clear. In either case, by an easy 
n 

identity, 

s 
n c(l + 

n-1 
c - er 
1 - r 

n-1 er 
S - 1 - r 

S + prn-1 

where p is independent of n and is given by 

-c 
p 

(1 - r) · 

Thus, for any n, 

n n-1 
Sn+l - S = pr = r(pr ) r(S - S). 

n 

(11) 

(12) 

(13) 

Regardless of convergence or divergence, we see that there is a relation-

ship between the behavior of the S and the special number S: the dif
n 

ference between the partial sum and S is multiplied by r in moving to 

the next partial sum. 

Now let's assume we have an ordered triplet of numbers A, B, and C 

which we know are consecutive partial sums of some geometric series, with 

r unknown. Suppose also that we know only that there is some n such that 

A= Sn' B = Sn+l' and C = Sn+Z' but we don't known. Assuming that 

we do have "some" Sn, Sn+l' Sn+Z' we claim it is easy to use (13) to set 
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up an equation where r does not occur, n is unimportant, and S is the 

only "unknown." 

Exercise 13. Use (13) (twice) to set up an equation which can be solved 

for S, in terms of Sn' Sn+l' and Sn+2 . Carry out the solution process. 

Exercise 14. Use your answer to Exercise 13 to show that the formula 

gives the same answer if Sn and Sn+2 are exchanged, thus reversing the 

assumed "time" sequence of the numbers. 

For the next exercise, we need some notation. Given any sequence 

Al, A2' ••• ' let 

/:::,A An+l A 
n n 

f:::,2A /:::,(i:::,A ) = i:::,An+l i:::,A (An+2 - An+l) - (An+l A ) (14) 
n n n n 

Exercise 15. Show that your answer to exercise (13) can be written as 

the following. (Do the four parts in any order.) 

s 

s 
n 

s 
n 

- Sn+l) - (Sn+l -

2 
(Sn+l - Sn) 

s ) 
n 

(15) 

(16) 

(17) 

(18) 
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You can now see why this is called Aitken's "delta-square" process. 

The formulas you will want to use in the subroutine are (16) and/or (17). 

Actually, all of the results can also be obtained from a different 

viewpoint, with no reference to geometric series. Suppose we have any 

sequence A1 , A2 , A3 , •.. and there is a number A and a non-zero number 

x such, that, for all large n 

An+l A 

A - A 
- x (19) 

n 

Such a sequence is said to "converge linearly" to A, if Jxl < 1 and we 

thus obtain convergence. Of course, "linear convergence" is really iden-

tical with the errors behaving approximately like the errors of a geomet-

ric series, at least when n is large. A geometric series might be said 

to converge in a "perfectly" linear way, since no "approximation" is 

needed in (19). 

Exercise 16. Explain why, if we have linear convergence to S, then all 

the previous results (beginning with number 13) hold, except that "=" 

is replaced by ",;,". 

Aitken extrapolation, like Euler's method, has its distinctive as-

sumption: namely, given any ordered triplet, it assumes the sequence is 

behaving "perfectly" linearly, and uses (15) - (18) to calculate the 

implied limit. Generally speaking, this assumption will not be exactly 

true; but if it is close to being true as n increases, then the Aitken 

sequences generated from the successive triplets will converge more rap-

idly to the limit S then the S do. We can then use the method on the 
n 

original Aitken sequence, generating a third column, etc. 
2 

The /J. table 
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will have a slightly different form than the Euler table, since we need 

three numbers, instead of two, to use the algorithm. See Figure 19, where 

each entry is to be generated from the entry on its left and the two 

entries above that. We thus will need to have the two previous rows 

available in computing a new row. In the Euler method, recall, we only 

needed one row of entries. 

sl 

82 

83 Tl 

84 T2 

85 T3 ul 

s6 T4 u2 

87 TS u3 vl 

SS T6 u4 v2 

Figure 19. Configuration of the 
Aitken Table 

Exercise 17. Use the result of Exercise 14 to show that if we turn the 

first column of Figure 19 upside down, thus running a finite portion of 

the sequence "backward", all of the other columns are turned upside down 

also. 

Exercise 18. Explain why allowing any non-zero "x" in (19), as Aitken 

does, is a less restrictive condition than the Euler method assumes. 
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In view of the derivation of the ~ 2 method, the next exercise 

should not be surprising; we essentially designed the method to work 

"perfectly" on geometric series, didn't we? 

Exercise 19. 2 
Let c(l + r + r + ••. ) be any geometric series, with 

n 
r # 1, so that A = c(l + r + ••• + r ). Show the result of applying the n 

Aitken transformation to any three consecutive partial sums An' An+l' 

An+2 is c/(l - r). Now verify this by using Aitken on any three partial 

sums of 0 + 1 + 2 + 4 + 8 + 16 + •.. ! 

The next exercise shows that if we could be sure the error in A 
n 

was exactly the type assumed by Richardson extrapolation (only one power 

of h), then we would not even need to know the power of h involved, 

though using the Richardson formula would require it. We could instead 

just use the Aitken formula on any three consecutive approximations and 

the limit would be attained exactly. 

Exercise 20. Assume that 

A = A + c(4h)p 
n 

An+l A + c(2h)P (20) 

An+2 = A+ chp. 

Then the usual Richardson steps give 

A 

p 
2 An+2 - An+l 

(21) 
2P - 1 

but assume we don't have immediate knowledge of p. Show that, in fact, 



(21) implies that 

Further, substituting (22) in (21) and simplifying leads to 

A= 
A A - A2 

n n+2 n+l 
- A ) 

n 

which we could have done without ever worrying about p! 

Exercise 21. Show that we may often verify linear convergence on the 

basis of the partial sums alone: if 

then 

Hint: rewrite (25) as 

-> r, with r f: 1, r :f. 0, 

8n+2 - sn+l 

8n+l - Sn 
-.-l>- r • 

(Sn+2 - S) - (Sn+l - S) 

(Sn+l S) (Sn - S) 

now divide everything by (Sn+l - S) and let n + +oo •. 
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(22) 

(23) 

(24) 

(25) 

(26) 

Exercise 22. Write a subroutine to calculate and store a new row of the 

Aitken table, given the row number, a new partial sum, the previous two 
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rows of the table, and the upper limit specified by the user for the 

number of columns to be filled. Note that the routine must actually 

update two rows on each call; and it should also return the number of 

entries in the row. See ANLYZ for the exact structure required. Use 

the top structure for METHOD shown, since METHOD is to be 2 for this 

routine. Ask your teacher if local vectors are allowed. 

Exercise 23. Use your routine to test performance on the PI subprogram. 

Where are the best answers on the rows? 

Exercise 24. Test your routine with the LNlPX program to try to find 

ln(l7). (So let x 16). How do the columns behave differently from 

the diagonals? This is a very difficult series, diverging so rapidly 

that the Euler method is able to bring it under control only after doing 

four tables. 

The next problem is wilder still. The Euler method is never "quite" 

able to produce a convergent series out of it. The way we "show" what 

the appropriate value of the series "should" be is really quite illegal; 

but you will probably find it fairly plausible. Define f (x) by 

f(x) 
-w 

oo e 
= 1o l+xw dw • (27) 

Euler was able to show that f(x) can be rewritten as a finite integral, 

f(x) 
1 l/x oo e-(l/t) 
~ e fo t dt. (28) 

For a given x, (28) can be evaluated by the trapezoidal rule to any de-

sired accuracy. The true value of f(l) is .59634736 .... Everything 

through this point is legitimate. But now Euler expanded the l/(l+xw) 
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in (27) as a geometric series; this ignores the fact that xw is varying 

up to 00 • Oh, well .• 

f(x) 
00 -w 2 2 3 3 

J0 e ( 1 - xw + x w - x w + ... ) dw. (29) 

The next step demands what is called uniform convergence of the series. 

We do not have any convergence when w is large. But integrate term by 

term, anyway. This gave Euler 

00 0 -w 00 1 -w 2 00 2 -w f (x) = J0 w e dw - x J0 w e . dw + x J0 w e dw - .... 

The integrals probably don't look familiar, but anybody who has had 

probability theory knows that 

We thus get 

00 k -w 
J we dw 

0 
k! 

2 3 4 f(x) <~> O! - l!x + 2!x - 3!x + 4!x - ... 

(30) 

(31) 

(32) 

This series is perfectly horrible: the ratio test shows it doesn't con-

verge for any x besides x = 0. Nevertheless, forging ahead, we set 

x = 1 in (32) and assert that all this seems to indicate 

.596347 .... "=" O! - l! + 2! - 3! + 4! - 5! + . . .. (33) 

Exercise 25. Try your Aitken routine on the program WALLIS (the name of 

the first mathematician associated with (33)). The main program should 

initialize FACT as l.DO in COMMON before calling ANLYZ. Again, note the 

diagonals versus the columns. 

By now, you might be thinking the Aitken method can sum anything 

effectively. Sorry, but no acceleration method is that good. The price 

of our new-found power is that, while Aitkens' 62 method can handle some 
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extremely difficult problems, it can also do some strange things when 

confronted with fairly simple problems which don't match its assumptions. 

The next problem concerns a series proposed by Lubkin in 1952: 

1.13197 
'IT 1 - + - ln(2) 
4 2 

1 + ! - 1 
2 3 

(34) 

Exercise 26. 
2 

Try the 6. method on the partial sums generated by LUBK. 

You will see the second column can't decide between 1.13197, .13197, and 

2.13197! What happens in the later columns? Use the result of exercise 

(21) to show that the error ratios are "confusing" the Aitken method by 

not converging. Note also the pattern on error signs in the first col-

umn to show the same thing. 

This next example is even more diabolical; it was invented by Shanks 

in 1955. Aitken "wipes out" any geometric series problem immediately. 

How about a series which is the sum of two geometric series? Should be 

easy, right? The series implemented by DGEO is 

2 2 x x 
2 

(l-x)(2-x) 2(1 + x + x + ... ) - 1(1 + 2 + 4 +; .. ). (35) 

Exercise 27. 2 
Use the 6. method on DGEO; the main program should set X 

4.DO and XD2 = 2.DO in COMMON/DZ/ before calling ANLYZ. The "correct" 

answer for this divergent series is~, from (35). What happens in the 

t:i. 2 table? 

Shanks did show that the "disaster" in Exercise 26 was going to hap-

pen at (only) one point for just about any "double" geometric series. 

But "disasters" at one point often indicate poor performance elsewhere. 
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Exercise 28. Try Aitken on DGEO with X = 7.DO and XD2 = 3.SDO. How 

does this compare with the performance on the difficult ln(l7) problem? 

Before you do the next exercise, you should note that much of what 

we did in equations (10) - (13) wouldn't make much sense with r = 1. 

This would seem to suggest that Aitken might have difficulty with the 

regrouped pi series 

IT 
1 

11) + .... (36) 

This is now what is called a "logarithmically" convergent series, a type 

that creates difficulties for most accelerators. The ratio of consec-

utive terms (and errors) goes to +l. 

Exercise 29. 2 
Try your 6 subroutine on the partial sums generated by 

PIGRP. Pretty impressive performance? 

We have mentioned that the 6 2 method accelerates "linear" conver-

gence. On the other hand, there are faster kinds of convergence. The 

next exercise will demonstrate what Aitken gives us if we get greedy and 

use it on a sequence that already converges as rapidly as anyone could 

reasonably ask. For example, consider the sequence which follows the 

pattern 

xl 
1 

x2 
1 

.x3 
1 x xz 

2' = 4' 16' . . . ' Il n-1 

xn+l - 0 
= x -> o. x - 0 n n (37) 

This is superlinear convergence to O. 
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Exercise 30. Write a function subprogram which generates the successive 

elements in (37), and try Aitken on it. Discuss what happens. Can you 

give an intuitive reason why, in terms of what the Aitken method assumes? 

We arrive finally at one of the most popular algorithms presently 

available: the epsilon alogrithm. Smith and Ford (1982) did a lot of 

testing on the various acceleration methods available, and they concluded 

that a "team" made up of the epsilon algorithm and another recent method 

("u," invented in 1973 by Levin) is virtually unbE;!atable. 

Just as the Aitken method assumes the numbers are partial sums in a 

geometric series, the epsilon algorithm assumes that we are dealing with 

the sum of several geometric series. The algorithm generates what a-

mount to the "ek" transforms invented by Shanks. (See his 1955 paper). 

But Shanks' formulation required the constant use of larger and larger 

determinant calculations; this made his "invention" quite unattractive for 

actual use. Fortunately, Wynn in 1956 published an article showing how 

to calculate the same "ek" approximations with completely trivial cal-

culations. The epsilon table has a different structure then the earlier 

tables we have done. See Figure 20. The ek (A.) are the approximations; 
. l 

the x's are auxiliary numbers which, while absolutely necessary to the 

process, will always diverge to + 00 when the ek(A.) columns are con-
- l 

verging nicely! 

The reason for the name "epsilon" alorithm is that Wynn denoted the 

entries of the table by epsilons with both subscripts (column number) 

and superscripts (diagonal number). We won't do that, however. 

The dependencies in Figure 20 are like this: each ek(Ai) depends on 

all the Ai between the two diagnols going through ek(Ai). Thus e 3 (Ai) 
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depends on A1 through A7 . First, you can take A1 - A3 , assume a single 

geometric series, and calculate the implied limit, e1 (A1). Thus e1 (A1), 

e1 (A2), ..• will be the same as the second column of an Aitken table: 

2 
e1 = !::. • Or you can take A1 - A5 , assume the sum of two geometric series 

(like DGEO) and e2 column entries should all be exactly correct. (Round-

off may prevent this from quite happening, however.) 
2 

From the !::. per-

formance on DGEO, e 2 is obviously not 11 1::. 2 twice". Similarly e 3 (A1 ) is 

the limit implied by assuming that A1 - A7 are partial sums of a "triple" 

geometric series. 

Al 

(0) x 

A2 el(Al) 

(0) x x 

A3 el(A2) e2(Al) 

(O) x x x 

A4 el(A3) e2(A2) e3(Al) 

(0) x x x 

AS el(A4) e2(A3) 

(0) x x 

A6 el(A5) 

(O) x 

A7 

Figure 20. Configuration of the Epsilon Table 
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But how do we calculate the entries? It's simple, believe it or not! 

Regard the table as a set of parallelograms, generally called "lozenges" 

in the literature. On each lozenge, the right side entry can be calcu-

lated from the formula 

Right Left+ ---1--
Bottom - Top 

For example, if we replace the x between e2 (A1 ) with "y", then 

(37) 

(38) 

Thus, any entry can be calculated from the entry just behind it on its 

own (rising) diagonal and two entries on the previous diagonal. Your 

epsilon routine will therefore calculate one rising diagonal. You might 

as well think of it as a row, since we will print the rising diagonals 

as rows. See Figure 21. (We generally won't print the other columns.) 

The configuration with the even columns omitted is the same as an Aitken 

Table, though the entries are different after the e1 column. 

Al 

A2 

A3 el (Al) 

A4 el (A2) 

AS el (A3) e2(Al) 

A6 el (A4) e2(A2) 

A7 el (AS) e2 (A3) e3(Al) 

Figure 21. The Usual Printing of 
the ek Table 
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Exercise 31. Refer to the earlier figure of the "complete" epsilon table 

and formula (37). Your epsilon subroutine will be given, as usual, "row" 

(diagonal) number, and the previous "row" (diagonal), along with the new 

partial sum and a maximum on the number of columns to be used. You will 

need some local storage; but ask your teacher if local vectors are allowed. 

Note that the second column calculations use some "virtual" zeros which 

will not actually be in the row vector. Your subroutine should replace 

any "ultra-small" denominator by something like 1.D-30, to avoid over-

flow possibilities. NINROW must also be adjusted before exit. 

Exercise 32. Use the epsilon routine and the PI program with ANLYZ. Set 

METHOD 3 to see all the columns and then switch to METHOD = 4 to get 

rid of the auxiliary columns in the display. 

Exercise 33. Try the epsilon routine on LUBK, the Lubkin series whose 

2 confusing error ratios were too much for the ~ method. Discuss what 

happens. Why should epsilon handle "competing" components better than ~ 2 ? 

Exercise 34. Try the routine on DGEO with X = 7.0DO and XD2 = 3.SDO. 

The e 2 column (and all following ones) should "theoretically" be perfect. 

What actually happens? What happens as you go more deeply into the e 2 

column? Do you have any ideas why? How does the performance compare 

with the Aitken method's performance? 

The next problem comes from Smith and Ford's testing; it gave most 

methods "fits" because of the irregular sign patterns typical of Fourier 

series. 
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sin(2) sin(4) sin(6) + sin(B) 
1 + 2 + 3 4 + ... 

II 
2 - 1. (39) 

Exercise 35. Write a program for (39) and apply the epsilon algorithm. 

Then try the Aitken method on it. 

Exercise 36. Write a function subprogram TRAP to find the (step-

halving) trapezoidal sum approximations for the integral 

~ = f~ lx(l-x) dx (40) 

This integral does not "yield" to Romberg integration; because of singu-

larities in the derivatives at 0 and 1, the error series is not in powers 

of h 2 . But use the epsilon algorithm on it, and then Aitken's ~ 2 method. 

Exercise 37. The epsilon routine can be modified slightly to allow com-

putation of the Aitken table as an alternative: you need a "key" in 

labelled COMMON which is specified by the main program and available in 

your epsilon routine. If the request is for "Aitken via modified Epsilon," 

all that has to be done is to compute all the even columns the way the 

second one is: whenever an even column is being computed, the left side 

of the lozenge is thrown away and replaced by zero. Make this slight 

addition to your epsilon routine and then test against some old Aitken 

table to see that they agree. 

Exercise 38. Show that the Aitken method (slightly) outperforms the 

epsilon algorithm on WALLIS. Nevertheless, the epsilon algorithm has a 

bit of an advantage from the standpoint of our being able to analyze what 

is going on. The algorithm is doing something along the diagonals that 
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can be connected with the theory of continued fractions. The "nice" 

fraction f(x) in (28) is woefully misrepresented by the horrible series 

(32), but it can be represented nicely by a well-behaved "continued" 

fraction, as explained by Sullivan (1978). 

f (x) 0 + 1 (41) 
1 + x -------

1 + x -----
1 + 2x 

1 + 

The zeroth through the fourth "convergents" of f(x) are 

0, 
1 1 1 1 
l' 

---
' 1 +x 1 + x ' 1 + x 

(42) 
---

1 1 + x 1 + x 
1 1 + 2x 

1 

Verify that with x = 1, these expressions reduce to the numbers on the 

right end of the first five rows of the ek table. When the epsilon · 

algorithm succeeds spectacularly, it is because it is using the partial 

sums of the power series to generate the convergents of the continued 

fraction representation of f(x). As we have seen, the new representation 

may converge to f(x) much faster then the power series, or it may con-

verge when the power series diverges. The epsilon algorithm is also in-

timately connected with what is called the Pade table; but we shall not 

go into that. 

But even the epsilon algorithm has trouble with logarithmic series. 

One such series, for zeta (2), was used by Smith and Ford: 

11 2 J:_ + J:_ + _l + 
6 = 12 22 32 

(43) 
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Exercise 39. Verify that the epsilon algorithm is not able to succeed 

well on the sums generated by PIGRP and ZETA2. 

Wynn designed the "rho" algorithm to make up for the often noted 

poor performance of the epsilon algorithm on logarithmic series. Your 

epsilon routine only needs one more small "branch" to allow it to do the 

"rho" algorithm: when calculating an entry in column K, replace the 

usual "l" in the numerator of the lozenge formula by "K-1" This changes 

the "assumption" made by the algorithm. It now assumes the sequence is 

approaching its limit in the same way that a rational function approaches 

its horizontal asymptote. This allows handling some monotone series not 

susceptible to the epsilon algorithm. 

Exercise 40. Add the modification to your epsilon routine so that it can 

perform the rho algorithm on request. Show that it works well on the 

PIPGRP and ZETA2 programs, but is very poor on the ordinary PI program. 

However, it also does poorly on the monotone sequence generated by TRAP; 

so even on monotone sequences it is not the answer to everything. 

The reader may have initially hoped we would demonstrate a method 

which would always work well. Unfortunately, no sucp method exists. The 

subject of acceleration methods is very much a current research topic 

and the use of the methods is still as much an art as a science. It is 

pretty well agreed that the epsilon algorithm is the strongest method we 

have discussed, over-all. But for divergent power series and asymptotic 

series, (e.g., ln(l7) and the Wallis series), Smith and Ford found Aitken 

slightly preferable. The best method we have not discussed, the other 

one ranked by Srrith and Ford at the "top" when paired with E, is the u 
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transform of Levin. It has only existed since 1973 and is still the sub

ject of intense study by many mathematicians. Also, the 8 algorithm of 

Brezinski is a powerful hybrid of the epsilon and rho algorithms; it, too, 

is a research topic of great current interest. 



APPENDIX B 

COMPUTER PROGRAM~ 

SUBROUTINE EULER(N,SUMN,ROW,NINROW,MAXKL) 
C THIS SUBROUTINE ODES THE HEART OF THE CALCULATIONS NEEDED FOR 
C A EULER TABLE. WHEN COMBINED WITH THE SUBROUTINES ANLYZ ANO REDO 
C (BOTH SHOWN LATER) AND A USER-WRITTEN SEQUENCE PROGRAM, EULER CAN 
C PRODUCE TABLES FOR THE E1,E2,E3, ... TRANSFORMS. SEE ANLYZ AND REDO 
C TOWARD THE END OF THE APPENDIX, FOR MORE DETAILS. 

DOUBLE PRECISION ROW(1),SUMN,XR,PX 
NINROW=N 
IF(NINROW.GT.MAXKL) NINROW=MAXKL 
NM1=NINROW-1 
XR=SUMN 
IF(NINROW.EQ. 1) GO TO 10 
DO 5 J=1,NM1 
PX=XR 
XR=(ROW(J)+PX)/2.DO 
ROW(J)=PX 

5 CONTINUE 
10 ROW(NINROW)=XR 

RETURN 
END 

SUBROUTINE ROMBRG(A,B,F,KOLMAX,IMAX,METHOD,LAUOPT,TRUE) 
C THIS PACKAGE PERFORMS ROMBERG INTEGRATION, USING STEP-HALVING. 
C THE HARMONIC METHOD, OR THE Q METHOD OF BULIRSCH. ROMBRG 
C CALLS HALVER, HARMON, OR BULIRQ TO CALCULATE THE TRAPEZOIDAL SUMS IN 
C COLUMN ONE AND GENERATE THE APPROPRIATE N SEQUENCE. THOSE THREE 
C ROUTINES CALL RSUM, WHICH IMPLEMENTS THE SUMMING PROCEDURE OF RUTI
C SHAUSER TO MAXIMIZE ACCURACY OF THE TRAPEZOIDAL SUMS. RSUM USES 
C THE SUBROUTINE LOCATR TO HELP IT FIND THE X-S WHERE F NEEDS TO BE 
C EVALUATED. THE FUNCTION SUBPROGRAM FOR F(X) MUST BE SUPPLIED BY THF 
C USER. SEE REQUIRED FORM BELOW. THE CORRECT ANSWER IS ASSUMED KNOWN 
C BUT ANY NUMBER COULD BE SUPPLIED FOR TRUE IF THE ANSWER IS NOT KNOWN. 
C IN THAT CASE THE ERRORS PRINTED OUT WILL BE MEANINGLESS. 
C THE ACTUAL EXTRAPOLATIONS ARE DONE BY ROMBRG ITSELF, USING A 
C FORTRAN IMPLEMENTATION OF THE GENERALIZED STEP SEQUENCE FORMULA OF 
C LAURIE. (TWO ARRANGEMENTS OF THE FORMULA ARE AVAILABLE.) QUALITY 
C ESTIMATES ARE ALSO CALCULATED FOR THE TABLE ENTRIES. 
c 
C PAGE NUMBERS AND FORMULA NUMBERS GIVEN IN THE COMMENTS REFER TO THE 
C ED.D. THESIS BY MARK TOWNSEND. THE PRECISE BIBLIOGRAPHIC REFERENCES 
C ARE GIVEN IN THAT THESIS. 
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ROMBRG (CONTINUED) 

C INPUT PARAMETERS-
.C A -THE LEFT ENDPOINT OF THE INTEGRATION INTERVAL. 
C B -THE RIGHT ENDPOINT. 
C F -THE USER-WRITTEN DOUBLE PRECISION FUNCTION TO BE 
C INTEGRATED. IT SHOULD INCLUDE A COMMON/AB/ICOUNT 
C STATEMENT AND INCREASE !COUNT BY 1 EACH TIME F IS 
C CALLED. ROMBRG WILL INITIALIZE !COUNT. 
C KOLMAX-THE LAST COLUMN ALLOWED IN THE ENTIRE TABLE. THE 
C TRAPEZOIDAL SUMS FORM COLUMN 1. IF KOLMAX.GT.25, 
C THE VECTORS WILL NEED TO BE LENGTHENED. 
C IMAX -THE NUMBER OF ROWS ALLOWED. THE INITIAL TRAPE-
C ZOIDAL SUM IS ROW 1. 
C METHOD-USE +1 FOR BULIRQ, 0 FOR HALVER, -1 FOR HARMON. 
C LAUOPT-USE 0 FOR USE OF THE ORIGINAL FORMULA, 1 FOR THE 
C RE-ARRANGEMENT RECOMMENDED B~ LAURIE AS BEING LESS 
C SUSCEPTIBLE TO ROUND-OFF ERROR. (IN THE THESIS 
C PROBLEMS, THE CHOICE MADE VIRTUALLY NO DIFFERENCE.) 
C TRUE -THE TRUE VALUE OF THE INTEGRAL. IF THAT VALUE IS 
C UNKNOWN, USE ANY VALUE BUT IGNORE THE ERRORS 
C PRINTED. 
C OUTPUT PARAMETERS-NONE. 
c 
C LOCAL VARIABLES IN THE ORDER OF APPEARANCE-
C !COUNT-KEEPS COUNT OF FUNCTION EVALUATIONS. 
C KOUT -UNIT NUMBER FOR OUTPUT. 
C KENDI -THE COLUMN NUMBER OF THE LAST COLUMN ALLOWED ON ROW I. 
C KENIM1-DITTO, EXCEPT IN REFERENCE TO ROW (I-1). 
C QUAL -QUAL(K) IS AN ESTIMATE OF THE QUALITY OF THE ENTRY JUST 
C OBTAINED IN COLUMN K OF ROW I. IT IS BASED ON THE 3 
C LAST ENTRIES IN THE PREVIOUS COLUMN. (QUAL(1} IS A 
C DUMMY VALUE, THOUGH IT IS PRINTED OUT.) A QUALITY ESTI-
C MATE NEAR 1 INDICATES THE NEW ENTRY IS PROBABLY BETTER 
C THAN THE TWO NUMBERS USED IN COMPUTING IT. 
C K -THE COLUMN NUMBER OF THE ENTRY BEING COMPUTED. 
C ROWIM1-HOLDS ALL ENTRIES OF THE (I-1)ST ROW. 
C ROWIM2-HOLDS ALL ENfRlES OF THE (l-2)ND ROW. ----- ··-- ~ 

C NI -THE NUMBER OF SUBDIVISIONS OF (A,B) USED IN COMPUTING 
C THE ITH TRAPEZOIDAL SUM. NI IS ADJUSTED BY HARMON. ETC. 
C SI -THE ITH TRAPEZOIDAL SUM, THE ONE WHICH BEGINS ROW I. 
C ROWI -HOLDS ALL ENTRIES OF THE ITH ROW. 
C RN2 -HOLDS ALL THE NI**2 VALUES, SINCE MANY ARE NEEDED IN 
C THE EXTRAPOLATIONS. IF MORE THAN 50 ROWS ARE USED, RN2 
C WILL HAVE TO BE LENGTHENED. 
C ERR -HOLDS ALL THE ERRORS FOR THE ITH ROW. 
C KM1 -K-1 
C KENIM2-SAME AS KENDI, BUT IN REFERENCE TO ROW (I-2). 

c 

DOUBLE PRECISION ROWI(25),ROWIM1(25),ROWIM2(25),ERR(25),RN2(50), 
TRUE,Sl,F,A,B,DENOM 

REAL QUAL(25) 
COMMON /AB/ICOUNT 
EXTERNAL F 

C INITIALiiATIONS AND HEADINGS. 
KOUT=6 
KENDI=1 
KENIM1=0 
QUAL(1)=987654.E25 
ICOUNT=O 

C THE FOLLOWING LOOP IS NEEDED TO PREVENT ABORTION IN THE 
C SHIFT-LOOP AT STATEMENT 90. 

DO 5 K=1,KOLMAX 
ROWIM1(K)=O.DO 
ROWIM2(K)=O.DO 

5 CONTINUE 
WRITE(KOUT,1000) KOLMAX,IMAX,TRUE 
IF(LAUOPT.EQ. 1) WRITE(KOUT, 1100) 

182 



ROMBRG (CONTINUED) 

c 
c 

c 

c 
c 
c 

c 

c 
c 
c 

c 
c 

c 

c 

10 

20 

30 
40 

50 

GO 

CALCULATIONS AND OUTPUT FOR FOR EACH OF THE IMAX ROWS. 

DO 110 I=1, IMAX 
IF(METHOD) 10,20,30 
CALL HARMON(A,B,I,NI,F,SI) 
GO TO 40 
CALL HALVER(A,B,I,NI,F,SI) 
GO TO 40 
CALL BULIRQ(A,B,I,NI,F,SI) 
ROWI ( 1)=SI 
RN2(I)=NI*NI 
ERR(1)=SI:-TRUE 

IF ON ROW 1, WE ARE READY FOR OUTPUT ALREADY. 
IF(I.LT.2) GO TO 80 

DO THE CALCULATIONS FOR ALL THE KENDI ENTRIES IN ROW I. 

DO 70 K=2,KENDI 
KM1=K-1 o 
IF(LAUOPT.EQ.1) GO TO 50 

THE NEXT FORMULA USED IS NUMBER 38 OR PAGE G3. 
ROWI(K)=(RN2(I)/RN2(I-K+1)*ROWI(KM1) -ROWIM1(KM1)) I 

(RN2(I)/RN2(I-K+1)-1.DO) 
GO TO GO 

THIS OPTIONAL RE-ARRANGEMENT IS RECOMMENDED BY LAURIE AND 
SHOULD BE LESS SUSCEPTIBLE TO ROUND-OFF ERROR. (NEW=OLD+ 
A SMALL CORRECTION.) 

ROWI(K)=ROWI(KM1) + RN2(I-K+1)/(RN2(I)-RN2(1-K+1))* 
(ROWI(KM1)-ROWIM1(KM1)) 

ERR(K)=ROWI(K)-TRUE 
NO QUALITY ESTIMATE IS POSSIBLE UNLESS THERE ARE AT LEAST 
3 ENTRIES ALREADY COMPUTED IN THE PREVIOUS COLUMN. 

IF(KENIM2.LT.KM1) GO TO 70 
THE FORMULA USED BELOW IS NUMBER 40 ON PAGE G3. 

DENOM=ROWIM1(KM1)-ROWIM2(KM1) 
IF(DABS(DENOM).LT.1.D-1G) DENOM=1.D-1G 
QUAL(K)=RN2(I)*(RN2(I-1)-RN2(I-K))/RN2(I-K)/(RN2(I)-RN2(I-K+1))* 

(ROWI(KM1)-ROWIM1(KM1))/DENOM 

70 CONTINUE 

C OUTPUT FOR ROW I. 
80 WRITE(KOUT,1200) I,NI,ICOUNT 

WRITE(KOUT,1300)(RDWI(K),K=1,KENDI) 
WRITE(KOUT,1400)(ERR(K),K=1,KENDI) 
IF(I.LT.3) GO TO 90 
LASTQ=KENIM2+1 
IF(LASTQ.GT.KOLMAX) LASTQ=KOLMAX 
WRITE(KOUT,1500) (QUAL(K),K=1,LASTQ) 

90 DO 100 K=1,KENDI 
ROWIM2(K)rROWIM1(K) 
ROWIM1(K)=ROWI(K) 

100 CONTINUE 
C SHIFT IN PREPARATION FOR THE NEXT ROW. 

KENIM2=KENIM1 
KE NIM 1 =KENDI 
KENDl=KENDI+1 
IF(KENDI.GT.KOLMAX) KENDI=KOLMAX 

110 CONTINUE 
RETURN 

1000 FORMAT(17H1COLUMNS ALLOWED,,I3,5X, 14H ROWS ALLOWED,,I4,5X,11H TRUE 
' ANS.=, D25. 16) 

1100 FORMAT(33H LAURIE RE-ARRANGEMENT IS IN USE.) 
1200 FORMAT(//4H ROW, I4,20H RESULTS FOLLOW. N=, I5,5X,21HFUNCTION EVALU 

'A TI ONS, , I 5) 
1300 FORMAT(/10H ENTRIES,/4( 1X.D23.1G,GX)) 
1400 FORMAT(/ 9H ERRORS,/4( 1X,D23. 16,6X)) 
1500 FORMAT(/20H QUALITY ESTIMATES,/4( 1X,E23.6,GX)) 

END 
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SUBROUTINE HALVER(A,B,I,Nl,F,SI) 

C THIS SUBROUTINE SUPERVISES CALCULATION OF ONE NEW TRAPEZOIDAL SUM 
C PER CALL, WITH NO FUNCTION VALUES EVER RECALCULATED ON LATER CALLS. 
C THE NI SEQUENCE IS 1,2,4,8,16, .... THE FORMULAS IMPLEMENTED ARE 
C ON P. 58. HALVER CALLS RSUM TO DO THE ACTUAL SUMMATIONS OF THE NEW 
C FUNCTION VALUES. FOR DESCRIPTION OF THE PARAMETERS, SEE ROMBRG 
C ABOVE. 

DOUBLE PRECISION A,B,F,SI.SIM1,Fl,Hl,RSUM,BMA 
C SOME VALUES NEED TO BE SAVED BETWEEN CALLS. 

COMMON/SAV2/BMA,SIM1,N03S 
EXTERNAL F 
IF(l.GT.1) GO TO 10 

.C INITIALIZATIONS AND FIRST SUM. 
NI=1 
BMA=B-A 
SI=BMA*(F(A)+F(B))/2.DO 

C OUR SUMS WILL BE OF F(X) VALUES, WHERE X=A+J*HI AND J= 
c 1,3,5,7,9,11,. ... 

N03S=O 
GO TO 20 

C SUMS PAST THE FIRST BEGIN HERE. 
10 NI=2*NI 

HI=BMA/DFLOAT(NI) 
C RSUM WILL FINO THE X VALUES, F(X) VALUES, AND THE NEEDED 
C SUM. 

FI=HI*RSUM(NI,HI,N03S,F,A) 
SI=SIM1/2.DO + FI 

20 SIM1=SI 
RETURN 
END 
SUBROUTINE BULi RQ( A, B, I, NI, F, SI) 

C THIS SUBROUTINE SUPERVISES CALCULATION OF ONE NEW TRAPEZOIDAL SUM 
C PER CALL, WITH NO FUNCTION VALUES EVER RECALCULATED ON LATER CALLS. 
C THE BULIRSCH Q SEQUENCE IS USED, WITH NI=1,2,3,4,6,8, 12, 16,24,32,. ... 
C THE FORMULAS IMPLEMENTED ARE IN EQUATIONS 43 ANO 44 ON PAGE 65. 
C BULIRQ CALLS RSUM TO DO THE ACTUAL SUMMATIONS OF THE NEW FUNCTION 
C VALUES. FOR DESCRIPTION OF THE PARAMETERS, SEE ROMBRG ABOVE. 
C LOCAL VARIABLES ARE SELF-EXPLANATORY. 

DOUBLE PRECISION A,B,SI,SIM1,S!M2,Ft,FIM1,FIM2,FIM3,HJ,BMA,RSUM,F 
C SOME OF THE LOCAL VARIABLES MUST BE PRESERVED BETWEEN CAtLS. 

COMMON/SAV/ SIM1,SIM2,FI,FIM1,FIM2,FIM3,BMA 
EXTERNAL F 
IF(l.GE.4) GO TO 40 
IF(I-2) 10,20,30 

C ROW 1 INITIALIZATIONS ANO SUM 
10 NI=1 

BMA=B-A 
HI=BMA 
SI=HI•(F(A)+F(B))/2.00 

C THE FOLLOWING VALUES ARE ARBITRARY BUT Will PRFVENT ABORT-
C TION IN HIE 60-BLOCK DURil\IG THE FIRST FEW CAi...LS. 

SIM1=0.DO 
FI=0.00 
FIM1=0.DO 
FIM2=0.DO 
GO TO 60 

C ROW 2 SUM 
20 Nl=2 

HI=BMA/2.00 
FT=HT~rrrA~R)/? QO) 
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SI=SIM1/2.00 +Fl 
GO TO 60 

C ROW 3 SUM 
30 NI=3 

Hl=BMA/3.DO 
FI=HI*(F(A+Hl)+F(A+2.DO*HI)) 
SI=SIM2/3.DO +FI 
GO TO 60 

40 IF(I/2*2.NE.I) GO TO 50 
C ROW 4 OR 6 OR 8 OR . . . SUM 

NI=2**(1/2) 
HI=BMA/DFLOAT(NI) 

C FOR SUCH A SUM, WE WANT RSUM TO ADD F(X) VALUES AT X= 
C A+J*HI, WHERE J=1,3,5,7,9, ... ,(NI-1). 

N03S=O 
FI=HI*RSUM(Nl,Hl,N03S,F,A) 
SI=SIM2/2.DO + FI 
GO TO 60 

C ROW 5 OR 7 OR 9 OR . . . SUM 
50 NI=3*2*•((I-3)/2) 

HI=BMA/OFLOAT(NI) 
C FOR SUCH A SUM, WE WANT RSUM TO ADD F(X) VALUES AT X= 
C A+J*HI, WHERE J=1,5,7,11,13,17, ... ,(NI-1). 

N03S=1 
FI=HI*RSUM(Nl,HI,N03S,F,A) 
SI=SIM2/2.DO + FIM3/3.DO + FI 

C SHIFT IN PREPARATION FOR THE NEXT CALL. 
60 SIM2=SIM1 

SIM1=SI 
FIM3=FIM2 
FIM2=FIM1 
FIM1=FI 
RETURN 
END 
SUBROUTINE HARMON(A,B,l,NI,F,SI) 

C THIS SUBROUTINE SUPERVISES CALCULATION OF ONE NEW TRAPEZOIDAL SUM 
C PER CALL, WITH NO FUNCTION VALUES EVER RECALCULATED ON LATER CALLS. 
C THE NI SEQUENCE IS 1,2,3,4,5, .... THE FORMULAS IMPLEMENTED ARE IL· 
C LUSTRATED IN EQUATIONS 41 AND 42 ON PP. 64 AND 65. HARMON CALLS RSUM 
C TO DO THE ACTUAL SUMMATIONS OF TH~ NEW FUNCTION VALUES. IF ONE 
C WISHES TO GO BEYOND·THE 51ST TRAPEZOIDAL SUM, FISAV WILL HAVE TO BE 
C LENGTHENED. FOR DESCRIPTION OF THE PARAMETERS, SEE ROMBRG ABOVE. 
C LOCAL VARIABLES ARE SELF-EXPLANATORY EXCEPT AS NOTED. 

DOUBLE PRECISION FISAV(25),HI,BMA,SI,A,B,FI,RSUM,F,SUMFI 
EXTERNAL F 

C SOME LOCAL VARIASLES MUST BE PRESERVED BETWEEN CALLS. 
COMMON /SAVE/BMA,FISAV,N03S 
IF(I.GT.1) GO TO 10 

C ROW 1 INITIALIZATIONS AND SUM 
BMA=B-A 
FISAV(1)=(F(A)+F(B))/2.DO 
SI=BMA*FISAV(1) 

C SET N03S TO TELL RSUM HARMON IS THE CALLING SUBROUTINE 
C FOR THIS TABLE. 

N03S=-1 
NI=1 
GO TO 30 

C ROW 2 OR 3 OR 4 OR . . . SUM 
10 NI=I 

HI=BMA/DFLOAT(NI) 
C RSUM WILL CALCULATE THE SUM OF F(X) VALUES, WITH X=A+J*HI, 
C WHERE 1.LE.J.LE.(NI-1) AND Nl,J ARE RELATIVELY rRIME. 

FI=RSUM(Nl,Hl,N03S,F,A) 
SUMFI=FI 
IF(I~LE.25) FISAV(I)=FI 
LASTRY=NI/2 

185 



ROMBRG SATELLITE PROGRAMS (CONTINUED) 
C SUM ALL FI SUMS WHICH CORRESPOND TO DIVISORS OF NI. 

DO 20 J=1,LASTRY 
IF(NI/J*J.EQ.NI) SUMFI=SUMFI+FISAV(J) 

20 CONTINUE 
SI=SUMFI*HI 

30 RETURN 
END 
DOUBLE PRECISION FUNCTION RSUM(Nl,HI,N03S,F,A) 

C THIS SUBROUTINE DIRECTS THE COMPUTATION AND SUMMATION OF THE NEW F(X) 
C VALUES NEEDED FOR THE COMPUTATION OF THE ITH TRAPEZOIDATL SUM IN HAL
C VER, HARMON, OR BULIRQ. THE 3-LEVEL SUMMATION PROCESS OF RUTI-
C SHAUSER IS AS DESCRIBED ON PP. 58-59. LOCATR IS CALLEO BY RSUM WHEN 
C A NEW X IS NEEDED. LOCATR RETURNS NSTEPS. WHICH IMPl.ICITLY LOCATES 
C THE NEW X. FOR A DESCRIPTION OF THE PARAMETERS OF RSUM, SEE ROMBRG, 
C ABOVE. 

DOUBLE PRECISION F,PPSUM,PSUM,HI,A,XIJ 
C INITIALIZATIONS 

NG=8 
PPSUM=O.DO 
PSUM=O.DO 
RSUM=O.DO 
NG2=NG*NG 
J=1 
LASTEP=NI·-1 

C FIND THE XIJ VALUES NEEDED AND SUM THE F(XIJ) VALUES. 
10 CALL LOCATR(ND3S,J,NI,NSTEPS) 

XIJ=A+DFLOAT(NSTEPS)*HI 
PPSUM=PPSUM+F(XIJ) 

C IF J IS NOT A MULTIPLE OF NG, DO NOT UPDATE THE UPPER LEVELS. 
IF(J/NG*NG.NE.J) GO TO 20 

C TIME TO UPDATE THE SECOND LEVEL ANO REINITIALIZE THE FIRST. 
PSUM=PSUM+PPSUM 
PPSUM=0.00 

C IF J IS NOT A MULTIPLE OF NG**2, DO NOT UPDATE THE 3RD LEVEL. 
IF(J/NG2*NG2.NE.J) GO TO 20 

C TIME TO UPDATE THE 3RD LEVEL ANO REINITIALIZE THE 2NO. 
RSUM=RSUM+PSUM 
PSUM=0.00 

C IF WE HAVE NOT YET REACHED THE LAST X NEEDED, GO BACK FOR 
C ANOTTHER ONE, AFTER INCREASING THE INDEX J. 

20 IF(NSTEPS.NE.LASTEP) GO TO 30 
C LAST SWEEP-UP IS NOT ALWAYS NECESSARY BUT DOES NOT EVER HURT. 

RSUM=PPSUM+PSUM+RSUM 
RETURN 

30 J=J+1 
C BACK WE GO FOR THE NEXT F(XIJ). 

GO TO 10 
ENO 
SUBROUTINE LOCATR(N03S,J,NI,NSTEPS) 

C THIS SUBROUTINE IS CALLEO BY RSUM TO COMPUTE THE NUMBER OF s·rEPS 
C TO THE JTH NEW X NEEDED FOR THE ITH TRAPEZOIDAL SUM THE VALUE 
C OF N03S IMPLICITLY TELLS LOCATR WHICH SCHEME TO USE, SINCE THf:RE 1'RE 
C 3 ALTERNATIVE PATTERNS USED IN HALVER, BULIRQ, AND HARMON. (lHE 
C STEPS ARE OF LENGTH HI, THOUGH LOCATR DOES NOT USE THAT I"lFORMATIOM.) 

IF(N03S) 30,20, 10 
C WHEN N03S=+1, WE WANT TO GENERATE NSTEPS=1,5,7,11, 13, 17, ... 
C ON SUCCESSIVE CALLS WITH J=1,2,3,4,5,6, .... 

10 NSTEPS=3*J-1 
IF(J/2*2.NE J) NSTEPS=NSTEPS-1 
GO TO 70 

C WHEN N03S=O, WE WANT TO GENERATE NSTEPS=1,3,5,7,9,11, t3, .... 
C ON SUCCESSIVE CALLS WITH J=1,2,3,4,5,6, .... 

20 NSTEPS=2*J-1 
GO TO 70 

C WHEN N03S=-1, WE WANT NSTEPS TO TAKE ON ALL VALUES RELATIVELY 
C PRIME TO NT AS WE MAKE SUCCESSIVE CALLS WlfH J•f ,2,3.4,5, .. 
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ROMBRG SATELLITE PROGRAMS (CONTINUED) 

30 IF(J.GT. 1) GO· TO 40 
NSTEPS=1 
GO TO 70 

C WE WILL INCREASE NSTEPS ONE UNIT AT A TIME UNTIL WE FIND THE 
C NEXT NUMBER RELATIVELY PRIME TO NI. 

40 NSTEPS=NSTEPS+1 
C WE USE THE EUCLIDEAN ALGORITHM TO SEE IF GCO(NI,NSTtPS)=1. 

IDIVSR=NSTEPS 
IDIVD=NI 

50 IREM=IOIVD-IDIVD/IDIVSR•IOIVSR 
IF(IREM.EQ.O) GO TO 60 
IOIVO=IDIVSR 
IDIVSR=IREM 
GO TD 50 

60 IF(IOIVSR.EQ.1) GO TO 70 
C BACK TO TRY THE NEXT VALUE FOR NSTEPS. 

GO TO 40 
70 RETURN 

ENO 

ROMBERG-RELATED PROGRAMS 

SUBROUTINE ERRSER(A,B,NROWS,MAXEX,NTERMS) 
C THIS SUBROUTINE GIVES THE FIRST FEW TERMS ANO THE FIRST FEW PARTIAL 
C SUMS FOR THE· ERROR SERIES CORRESPONDING TO VARIOUS ENTRIES IN A 
C ROMBERG TABLE FOR A DEFINITE INTEGRAL. ORIGINAL COEFFICIENTS OF THE 
C COLUMN 0 ERROR SERIES ANO All MAGNIFICATION FACTORS ARE ALSO PRINTED 
C OUT. THE USER MUST PROVIDE A ROUTINE OFILL WHICH PLACES THE DERIVA
C TIVE DIFFERENCES OF THE EULER-MACLAURIN SERIES INTO THE VECTOR DDIFF. 
C (SEE DDIFF DESCRIPTION BELOW.) 
c 
C INPUT PARAMETERS-
C A -LEFT ENDPOINT OF THE INTEGRATION INTERVAL. 
C B -RIGHT ENDPOINT OF THE SAME INTERVAL. 
C NROWS -NUMBER OF ROWS TO BE CONSIDERED IN THE ROMBERG 
C TABLE. THE TOP ENTRY IS ROW 1. 
C MAXEX -NUMBER OF EXTRAPOLATION COLUMNS TO BE CONSIDERED. 
C (~HE TRAPEZOIDAL-SUMS DO NOT COUNT.) IF MAXEX.GT. 
C S, THE FIRST DIMENSION OF MAG WILL HAVE TO BE 
C RAISED. 
C NTERMS-THE NUMBER OF POWERS OF H**2 TO BE CONSIDERED IN 
C THE ORIGINAL ERROR SERIES, COLUMN 0. IF NTERMS.GT. 
C 25, THE DIMENSIONS OF 25 WILL HAVE TO BE RAISED. 
C LOCAL VARIABLES IN ORDER OF APPEARANCE-
C DOIFF -DDIFF(J) WILL HOLD F2JM1(B)-F2JM1(A), WHERE F2JM1 IS 
C THE (2J-1)TH DERIVATIVE OFF, THE FUNCTION TO BE INTE-
C GRATED. 
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ROMBERG-RELATED PROGRAMS (CONTINUED) 
C ORICOF-ORffOF(J) WILL HOLD THE ORIGINAL COEFFICIENT OF H**2J, 
C IN THE COLUMN 0 ERROR SERIES FOR I(F)-T(H,F). 
C AJ -AJ(J) WILL HOLD A-SUB-2J AS IN FORMULA 1 ON PAGE 37 OF 
C THE THESIS. THESE ARE INITIALIZED WITH A DATA STATE-
C MENT. 
C KOUT -UNIT NUMBER FOR OUTPUT. 
C NLEFT -THE NUMBER OF NON-ZERO TERMS LEFT, OUT OF THE ONES ORI-
C GINALLY CONSIDERED. 
C K -EXTRAPOLATION NUMBER CORRESPONDING TO THE COLUMN. 
C J -TERM NUMBER. (ONLY EVEN POWERS OF HI ARE COUNTED.) 
C MAG -MAG(K,M) HOLDS THE TOTAL MAGNIFICATION FACTOR WHICH IS 
C APPLIED TO THE MTH TERM OF THE ORIGINAL ERROR SERIES 
C IN REMOVING THE FIRST K TERMS VIA ROMBERG INTEGRATION-
C IE., INK EXTRAPOLATIONS. IF M.LE.K, 0 RESULTS. All 
C ENTRIES IN MAG ARE INITIALLY SET TO 0 IN A DATA STATE-
C MENT. 
C I -THE ROW NUMBER. TOP ENTRY IS ROW t. 
C NI -THE NUMBER OF SUBDIVISIONS OF (A,B) USED IN COMPUTING 
C THE COLUMN 0 ENTRY ON ROW I. 
C OTERM -OTERM(J) HOLDS THE JiH TERM FOR THE (ORIGINAL) ERROR 
C SERIES IN COLUMN 0 OF THE CURRENT ROW. 
C TERM -TERM(J) HOLDS THE JTH TERM FOR THE ERROR SERIES IN THE 
C CURRENT COLUMN OF THE CURRENT ROW. 
C SUMS -SUMS(J) HOLDS THE SUM OF THE FIRST J ENTRIES OF TERM. 

c c 
c 
c 

c 

c 
c 
c 
c 

c 
c 

c 

DOUBLE PRECISION MAG(5,25),AJ(25),0RICOF(25),TERM(25),0TERM(25), 
DDIFF(25),SUMS(25),HI,A,B,FK 

DATA AJ/8.333333333D-2,-1.388888889D-3, 3.306878307D-5, 
'-8.267t95766D-7,2.0876756990-8,-5.284190138D-10,1.338253653D-11, 
'-3.389680296D-13,8.586062055D-15,-2. 1748686990-16,5.509002827D-f8, 
'-1.395446469D-19,3.534707041D-21,-8.953517428D-23,2.267952452D-24, 
'-5.744790671D-26, 1.455172476D-27,-3.6859949420-29,9.3367342570-31, 
'-2.365022416D-32,5.990671762D-34,-1.517454884D-35,3.8437581260-37, 
'-9.736353073D-39,2.4662470440-40/,MAG /125*0.00/ 

OBTAIN THE COEFFICIENTS OF THE ORIGINAL COLUMN 0 ERROR SEIHES, 

THROUGH ALL PRESCRIBED TERMS. 

CALL OFILL(A,B,OOIFF,NTERMS) 
KDUT=6 
DO 10 J=1,NTERMS 

SEE THE FORMULA ON PAGE 37. 

10 
ORICOF(J)•-DDIFF(J)•AJ(J) 
CONTINUE 

20 
30 

40 

WRITE(KOUT, 1000) 
WRITE(KOUT,1600) (ORICOF(J),Jz1,NTERMS) 
NLEFT=NTERMS 

FIND THE MAGNIFICATION FACTORS FOR ALL ALLOWED TERMS, FO~ ALL 
ALLOWED COLUMNS. PRINT ALL THE FACTORS OUT. 

DO 30 K= 1, MAX EX 
EACH COLUMN HAS ONE LESS ALLOWED TERM THAN THE LAST 
COLUMN DID. 

NLEFT=NLEFT-1 
FK=4.DO**K 
DO 20 J= 1, NL EFT 

THE FOLLOWING FORMULAS ARE ILLUSTRATED ON PP. 42 F. 
·IF(K.EQ.1) MAG(1,1+J)•4.D0*(1.D0-4.DO**J)/3.DO 
IF(K.GT.1) MAG(K,K+J)•MAG(K-1,K+J)*FK*(1.00-4.DO**J)/(FK-1.DO) 
CONTINUE 
CONTINUE 
DO 40 K= 1, MAX EX 
WRITE(KOUT,1100) K 
WRITE(KOUT,1600)(MAG(K,J),J=1,NTERMS) 
CONTINUE 
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ROMBERG-RELATED PROGRAMS (CONTINUED) 
c 
c 
c 
c 
c 

FOR EACH ALLOWED ROW, ANO EACH ALLOWED COLUMN IN THAT ROW, 
CALCULATE AS MANY TERMS OF THE ERROR SERIES AS POSSIBLE. 
ALSO FIND THE CORRESPONDING PARTIAL SUMS. PRINT IT ALL. 

DO 80 1=1,NROWS 
IF(l.EQ.1) NI=1 
IF( I.GT. 1) NI=2*NI 
HI=(B-A)/DFLOAT(NI) 
WRl~E(KOUT, 1200) I,NI,HI 

C CALCULATIONS FOR THE INITIAL COLUMN IN ROW I. 
DO 50 J=1,NTERMS 
OTERM(J)=ORICOF(J)*HI**(2*J) 
IF(J.EQ.1) SUMS(t)=OTERM(t) 
IF(J.GT. 1) SUMS(J)=SUMS(J-1) + OTERM(J) 

50 CONTINUE 
K=O 
WRITE(KOUT, 1300) K 
WRITE (KOUT,1400) 
WRITE(KOUT, 1600) (OTERM(J),J=t,NTERMS) 
WRITE(KOUT,1500) 
WRITE(KOUT,1600) (SUMS(J),J=t,NLEFT) 

C IF WE ARE IN ROW 1, NO EXTRAPOLATIONS. 
IF (I . EQ. 1 ) GO TO 80 

C WE CAN NOT USE ALL COLUMNS IN ALL ROWS. 
MAXK=MINO(I-1,MAXEX,NTERMS-1) 
NLEFT=NTERMS 

C CALCULATIONS FOR THE EXTRAPOLATION COLUMNS IN ROW I. 
D070K=1.MAXK 
WRITE(KOUT, 1300) K 
NLEFT=NLEFT-1 

C CALCULATIONS FOR THE ALLOWED NON-ZERO TERMS FOR THE 
C ERROR SERIES IN COLUMN K OF ROW I. 

c 
c 

DO 60 J= 1. NL EFT 
TERM(J)=MAG(K,K+J)*OTERM(K+J) 
IF ( J. EQ. 1 ) SUMS ( 1) =TE RM( 1 ) 
IF(J.GT.1) SUMS(J)•SUMS(J-1) +TERM(J) 

60 CONTINUE 
WRITE(KOUT,1400) 
WRITE(KOUT, 1600) (TERM(J),J•1,NLEFT) 
WRITE(KOUT,1500) 
WRITE(KOUT,1600) (SUMS(J),J 2 1,NLEFT) 

70 CONTINUE 
80 CONTINUE 

1000 FORMAT(91H1THE COEFFICIENTS OF H**2, H**4, H**6, ... IN THE EULER-M 
'ACLAURIN SERIES FOR I(F)-T(H,F) ARE) 

1100 FORMAT(// 53H THE CUMULATIVE TERM MAGNIFICATION FACTORS FOR COLUMN 
',13.2X,3HARE) 

1200 FORMAT(////52H RESULTS FOR THIS PARTICULAR PROBLEM FOLLOW, FOR ROW 
',I3,2X,8H,WITH N=,I3,2X,4H,H= ,D15.8) 

1300 FORMAT(//10X,22HRESULTS FOR THE COLUMN,I3,2X,20HERROR SERIES FOLLO 
'W.) 

1400 FORMAT(20X,30HTHE LEADING NON-ZERO TERMS ARE) 
1500 FORMAT(20X,27HTHE SUMS OF THOSE TERMS ARE) 
1600 FORMAT(6(1X,015.8,5X)) 

STOP 
END 
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ROMBERG-RELATED PROGRAMS (CONTINUED) 
SUBROUTINE COEFF(NROWS,KOLMAX,RN2,KOUT) 

C THIS PACKAGE IS AN AID IN EXAMINING THE CHARACTERISTICS OF ANY 
C GENERALIZED STEP SEQUENCE ROMBERG INTEGRATION. THE OUTPUT SHOWS 
C HOW EACH ENTRY IN THE ROMBERG TABLE CAN BE WRITTEN AS A LINEAR COMBI
C NATION OF THE TRAPEZOIDAL SUMS IN COLUMN 1. THE SUM OF THE ABSOLUTE 
C VALUES OF THE NEEDED COEFFICIENTS IS ALSO SHOWN, BECAUSE THAT CAN ~E 
C REGARDED AS A MEASURE OF THE SUSCEPTIBILITY OF THE SPECIFIC ENTRY TO 
C ROUND-OFF ERROR. (SEEP. 70 OF THE THESIS.) NEWCS FINDS THE COEF-
C FICIENTS OF EACH ENTRY IN ROW M OF THE ROMBERG TABLE. THE SUBROUTINE 
C. SHOWCS PRODUCES THE DESIRED OUTPUT. COEFF SUPERVISES THE OPERATIONS. 
C INPUT PARAMETERS-
C NROWS -NUMBER OF ROWS ALLOWED. THE TOP ENTRY IN THE TA-
C BLE IS ROW 1. 
C KOLMAX-THE MAXIMUM NUMBER OF COLUMNS (INCLUDING THE TRAP-
C ZOIDAL SUMS). IF KOLMAX.GT. 13, THE ARRAYS WILL HAVE 
C TO BE ENLARGED. 
C RN2 -MUST HOLD THE SQUARES OF THE NI, THROUGH 
C ROW NROWS. (E.G., FOR Q, 1, 4, 9, 16, 36, ... ) 
C KOUT -UNIT NUMBER FOR OUTPUT 
C OTHER VARIABLES IN ORDER OF THEIR APPEARANCE 
C M -THE CURRENT ROW NUMBER. THE TOP ENTRY OF THE TABLE IS 
C ROW 1. 
C C1 -C1 HOLDS THE COEFFICIENTS FOR ROW (M-1) WHEN M IS ODO. 
C WHEN M IS EVEN. C1 RECEIVES THE COEFFICIENTS FOR THE 
C ROW M ENTRIES. 
C C2 -SAME AS C1, BUT REVERSE EVEN AND ODD. THIS ALLOWS US TO 
C AVOID SHIFTING THE MATRIX ENTRIES THEMSELVES. NEWCS 
C WILL ALWAYS BE WRITING THE ROW M COEFFICIENTS OVER THE 
C ROW (M-2) COEFFICIENTS. 

DOUBLE PRECISION C1( 13,13),C2(13,13),RN2(10) 
DO 30 M=1,NROWS 
IF(M/2*2.EQ.M) GO TO 20 
CALL NEWCS(C2,C1,M,RN2,KOLMAX) 

C THERE IS NO ANALYSIS NEEDED ON ROW 1, EVEN THOUGH 
C WE DID NEED THE INITIALIZATIONS BY NEWCS. 

IF(M.EQ.1) GO TO 30 
CALL SHOWCS(C2,M,KOLMAX,KOUT) 
GO TO 30 

20 CALL NEWCS(C1,C2,M,RN2,KOLMAX) 
CALL SHOWCS(C1,M,KOLMAX,KOUT) 

30 CONTINUE 
RETURN 
END 
SUBROUTINE NEWCS(CM,CMM1,M,RN2,KOLMAX) 

C THIS SUBROUTINE IMPLEMENTS FORMULAS 50 ANO 51 ON PAGE 71 OF THE THE
C SIS. AT THE END OF THE MTH CALL, NEWCS RETURNS (IN THE TWO-DIMEN-
C SIONAL ARRAY CM) ALL THE COEFFICIENTS FOR ALL THE ENTRIES IN ROW M. 
C INPUT PARAMETERS-
C CMM1 -THE JTH ROW OF CMM1 WILL HOLD THE COEFFICIENTS FOR 
C THE JTH COLUMN ROMBERG ENTRY IN ROW (M-1). ORDER-
C CMM1(J,J) GOES WITH THE TRAP. SUM ON ROW(M-1), 
C CMM1(J,J-1) GOES WITH THE ONE ON ROW (M-2), .... 
C CMM1(J,1) GOES WITH THE FIRST ONE WHICH HAS ANY 
C INFLUENCE ON THE JTH COLUMN OF ROW (M-1). 
C CMM1(J,J~1) MUST BE 0. (ALL THESE RESTRICTIONS 
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C ARE WAIVED FOR THE INITIAL CALL, HOWEVER.) 
C M -NUMBER OF THE ROW.FOR WHOSE ENTRIES. WE WANT ALL THE COEF-
C FICIENTS. 
C RN2 -SEE COEFF. 
C KOLMAX-SEE COEFF. 



ROMBERG-RELATED PROGRAMS (CONTINUED) 

c 
c 

c 

c 

c 
c 

c 

c 
c 
c 

c 
c 

10 

c 
c 

20 

OUTPUT PARAMETERS-
CM -THE SAME AS CMM1, BUT WITH (M-1) REPLACED BY M. 

DOUBLE PRECISION CM(KOLMAX,KOLMAX),CMM1(KOLMAX,KOLMAX),RN2(1).AMK 
THE COEFFICIENTS FOR THE FIRST COLUMN ARE EASY. 

CM ( 1 • 1 ) = 1 . DO 
CM( 1. 2) zO. DO 
IF(M.EQ.1) RETURN 

THE USER MAY NOT WANT ALL COLUMNS DONE. 
M1=MINO(M,KOLMAX) 

FIND THE COEFFICIENTS FOR EACH OF THE COLUMNS IN TURN. 
WE ALREADY DID THE FIRST COLUMN. 

DO 20 KOL=2,M1 
AMK COMES FROM FORMULA 51 ON P. 71. 

AMK=RN2(M)/RN2(M-KOL+1) 
WE SKIRT AROUND THE FACT.FORTRAN WILL NOT ALLOW CM(K-1~0)=0 IN 
THREE MORE LINES. WE ARE COMPUTING THE COEFFICIENT OF 
THE OLDEST RELEVANT TRAPEZOIDAL SUM, SEPARATELY. 

CM(KOL,1)=-CMM1(KOL-1,1)/(AMK-1.DO) 
FIND THE COEFFICIENTS OF THE REMAINING TRAPEZOIDAL SUMS WHICH 
AFFECT COLUMN KOL OF ROW M. (FORMULA 51) 

DD 10 J=2,KOL 
CM(KOL.J)=(AMK*CM(KOL-1.J-1)-CMM1(KOL-1,J))/(AMK-1.DO) 
CONTINUE 
IF(KOL.EQ.KOLMAX) GO TO 20 

IF WE DO NOT DO THE NEXT STEP, WE WILL GET WIPED OUT AT THE 
END OF THE THE NEXT PASS THROUGH THE 10-LOOP. 

CM(KOL,KDL+1)=0.DO 
CONTINUE 
RETURN 
END 
SUBROUTINE SHOWCS(CM,M,KOLMAX,KOUT) 
DOUBLE PRECISION CM(KDLMAX,KOLMAX). SUMN.SUMP 
WRITE(KDUT,1000) M 

C THE USER MAY NOT WANT THE ENTIRE ROW DONE. THE ONLY COEF-
C FICIENT OF THE COLUMN 1 ENTRY IS 1. DO NOT PRINT IT OUT. 

M1=MINO(M,KOLMAX) 
c 
C PROCESSING FOR EACH COLUMN, IN TURN. 
c 

DO 20 KOL=2.M1 
C THE LEFTMOST CQEFFICIENTS WILL GD WITH THE EARLIEST TRAPEZOI-
c DAL SUMS. 

WRITE(KDUT,2000) KOL,(CM(KOL,L),L=1,KOL) 
c FOR EACH ENTRY IN THE ROW, SUM ns COEFFICIENTS IN SUCH A WAY 
C AS TO MINIMIZE SUBTRACTIVE CANCELLATION. 

c. 

SUMN=O.DO 
SUMP=O.DO 
DO 10 L=1,KOL 
IF(CM(KOL,L).LT.0.00) SUMN=SUMN+CM(KOL.l) 
IF(CM(KDL,L).GT.O.DO) SUMP=SUMP+CM(KOL,L) 

10 CONTINUE 
SUMP=SUMP-SUMN 
WRITE(KOUT,3000) SUMP 

20 CONTINUE 

RETURN 
1000 FORMAT(//25H COEFFICIENT DATA FOR ROW,13) 
2000 FORMAT(11HO COLUMN,I3/7(1X,D15.5)) 
3000FORMAT(78X,17HSUM OF MAGNITUDE_S,3X,D15.5) 

END 
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EXTRP PACKAGE, FOR AITKEN, EPSILON, RHO 

SUBROUTINE EXTRP(FN,CORRCT,KOUT,NMAX,KMAX,KEY) 
C THIS SUBROUTINE CALLS SHNK3 ONCE FOR EACH OESIRED ROW OF THE 
C EPSILON, AITKEN, OR RHO TABLE. EXTRP ALSO WRITES OUT THE ROWS, 
C ALONG WITH ERROR ANALYSIS. 
c 
C INPUT PARAMETERS-
C FN- A USER-WRITTEN FUNCTION SUBPROGRAM WHICH COMPUTES 
C PARTIAL SUMS. USE EXTERNAL STATEMENT IN THE 
C CALLING PROGRAM. SEE REQUIRED STRUCTURE BELOW. 
C CORRCT- OBVIOUS. 
C KOUT- UNIT NUMBER FOR OUTPUT. 
C NMAX- NUMBER OF ROWS IN THE OESIRED TABLE. 
C KMAX- SEE SHNK3 BELOW. KMAX MUST BE .LE. 12 WITH PRE-
C SENT OIMENSIONS IN EXTRP. 
C KEY- SEE SHNK3 BELOW. 
C OUTPUT PARAMETERS- NONE 

OOUBLE PRECISION OIAG(25),REEST(25),TRUERE(25),ABERR(25),SNEW, 
CORRCT,FN,DENOM,HDIFF(25) 

IBEGIN=1 
IF(KEY.EQ.-1) WRITE(KOUT,100) 
IF(KEY.EQ. 0) WRITE(KOUT,200) 
IF(KEV.EQ.+1) WRITE(KOUT,300) 
WRITE(KOUT,400) CORRCT 
DO 20 N" 1 ,NMAX 
SNEW=FN(N, SNEW) 
CALL SHNK3(IBEGIN,KMAX,DIAG,KEV,SNEW,MAXLT,LOCEN) 
IF(LOCEN.LT.3) GO TO 15 
DO 10 KOL=3,LOCEN,2 
DENOM=OIAG(KOL) 
IF(DABS(DENOM).LT.1.D-30) DENOM•1.0-30 
R0EEST ( KOL-2) =OIAG( KOL-2) /DENOM- 1 . DO 
HOIFF(KOL-2)•DIAG(KOL-2J-OIAG(KOL) 
OENDM=CORRCT 
IF(OABS(CORRCT).LT. 1.0-30) DENOM=1.D-30 
TRUERE(KOL-2)=0IAG(KOL-2)/DENOM-1.DO 
ABERR(KOL-2)=0IAG(KOL-2)-CORRCT 

10 CONTINUE 
LOC=LOCEN 
IF(LOCEN/2*2.EQ.LOCEN) LOC=LOC-1 
ABERR(LOC)=OIAG(LOC)-CORRCT 
DENOM:sCORRCT 
IF(DABS(DENOM).LT. 1.0-30) OENOM=l.0-30 
TRUERE(LOC)=OIAG(LOC)/DENOM-1.00 

15 WRITE(KOUT,500) N,(OIAG(KOL),KOL=1,LOCEN,2) 
LM2=LOCEN-2 
IF(LM2.LT. 1) GO TO 20 
WRITE ( KOUT, 600) 
WRITE(KOUT,900) (REEST(KOL),KOL=1,LM2,2) 
WRITE(KOUT, 700) 
WRITE(KOUT,900) (TRUERE(KOL),KOL=1.LOCEN,2) 
WRITE ( KOUT, 800) 
WRITE(KOUT,900) (ABERR(KOL),KOL=1,LOCEN,2) 
WRITE(KOUT, 1000) 
WRITE(KOUT,900) (HOIFF(KOL),KOL•1,LM2.2) 

20 CONTINUE 
RETURN 

100FORMAT(1H1,12HAITKEN TABLE) 
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EXTRP PACKAGE! FOR AITKEN. EPSILON, RHO (CONTINUED) 
200 FORMAT(1H1,13HEPSILON TABLE) 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

300 FORMAT( 1H1 ,9HRHO .TABLE) 
400 FORMAT(15H CORRECT LIMIT=,D25. 16/4HOROW) 
500 FORMAT(///. 14. 3X ,023. 16, 3( 7X ,D23. 16), /4(7X ,D23. 16)} 
GOO FORMAT(1H0,16HREL. ERR. ESTS.-)· 
700 FORMAT ( 1HO, 1 GHTRUE REL. ERRS. - ) 
800 FORMAT(1H0,11HABS. ERRS.-) 
900 FORMAT(4(20X,010.3)) 

1000FORMAT(1HO,12HHOR. DIFFS.-) 
END 
SUBROUTINE SHNK3(IBEGIN,KMAX,DIAG,KEY,SNEW,MAXLT,LOCEN) 

THIS SUBROUTINE COMPUTES ONE ROW OF THE AITKEN, EPSILON, OR 
RHO TABLE, DEPENDING ON THE VALUE OF THE INPUT PARAMETER KEY. 
INPUT PARAMETERS-

IBEGIN- VALUE OF 1 INDICATES THE CALLING PROGRAM WANTS 

KMAX-

DIAG
KEY
SNEW
LOC EN-

TO BEGIN A NEW TABLE. 
ALLOWED NUMBER OF EXTRAPOLATIONS. DO NOT COUNT 
THE SEQUENCE COLUMN OR THE ODD COLUMNS OF THE 
EPSILON TABLE. 
OBVIOUS. 
-1 FOR AITKEN. 0 FOR EPSILON, 1 FOR RHO. 
OBVIOUS. 
AFTER THE FIRST CALL, THE LOCATION OF THE LAST 
ENTRY IN THE OLD ROW. 

OUTPUT PARAMETERS-
IBEGIN- SET TO 0 DURING THE CALL TO BEGIN A TABLE. 
DIAG- OBVIOUS. 
MAXLT- SET DURING THE FIRST CALL, TO SET UPPER LIMIT ON 

LOCEN-
THE ROW LENGTH, CORRESPONDING TO KMAX SPECIFIED. 
THE LOCATION OF THE LAST ENTRY IN THE NEW ROW. 
IT MAY CORRESPOND TO EITHER AN EVEN OR AN ODD 
COLUMN IN THE EPSILON TABLE. 

DOUBLE PRECISION DIAG(1),XL,XR,XT,XB,DENOM.XNUM,SNEW,X2B 
IF(IBEGIN.EQ.O) GO TO 10 
IBEGIN=O 
MAXLT=2*KMAX+1 
LOCEN=1 
DIAG( 1 )=SNEW 
RETURN 

10 IF(LOCEN.LT.MAXLT) LOCEN=LOCEN+1 
XB=SNEW 
XL=0.00 
DO 20 KOL=2,LOCEN 
XT=OIAG(KOL-1) 
XNUM=1.DO 
OENOM=XB-XT 
IF(DABS(OENOM).LT.1.D-30) DENOM=1.0-30 
IF(KOL.GE.3) XL=DIAG(KOL-2) 
IF((KEY.EQ.-1).AND.(KOL/2*2.EQ.KOL))XL=O.DO 
IF(KEY.EQ.+1) XNUM=DFLOAT(KOL-1) 
XR=XL +XNUM/DENOM 
IF(KOL.GE.3) DIAG(KOL-2)=X2B 
X2B=XB 
XB=XR 

20 CONTINUE 
DIAG(LOCEN)=XR 
OIAG(LOCEN-1)=X28 
RETURN 
END 

193 



EPS2, FOR EPSILON WITH THE SPECIAL RULES 
SUBROUTINE EPS2(SNEW.LOSDI,ICONT,LASKOL,XLAST,RELER) 

C THIS PROGRAM IS A SLIGHTLY MODIFIED VERSION OF THE ORIGINAL ONE. FOR 
C THE ORIGINAL EPS2 BY BREZINSKI, SEE HIS ALGORITHMES D-ACCELERATION DE 
C LA CONVERGENCE. ETUOE NUMERIQUE, 1978, PP. 347FF. EPS2 IMPLEMENTS 
C THE SPECIAL RULES OF CORDELLIER WHEN EXCESSIVE SUBTRACTIVE CANCELLA
C TION OCCURS IN THE EPSILON CALCULATIONS. THIS VERSION AVOIDS THE 
C NEED FOR A FEW STEPS IN THE ORIGINAL EPS2, AND A FEW OTHER STEPS AND 
C VARIABLES ARE ADDED FOR CLARITY. THE PARTS OF EPS2 WHICH HAVE BEEN 
C CHANGED APPRECIABLY ARE INDICATED IN THE COMMENTS. (TRANSLATIONS OF 
C ORIGINAL BREZINSKI COMMENTS ARE PRECEDED BY *.) ONE DIAGONAL OF THE 
C EPSILON TABLE IS DONE PER CALL. 
c 
C INPUT PARAMETERS (BREZINSKI VARIABLE NAMES IN PARENTHESES)-
C SNEW -THE NEW PARTIAL SUM. (TERM) 
C LOSDI -THE NUMBER OF LOST DECIMAL DIGITS WHICH WILL BRING THE 
C SPECIAL RULES INTO EFFECT. (NC) 
C !CONT -SET TO 0 BEFORE BEGINNING A NEW TABLE. EPS2 WILL RESET 
C TO 1 TO INDICATE A CONTINUING TABLE. (IKK) 
C LASKOL-LAST COLUMN TO BE ALLOWED IN THE ENTIRE TABLE. PARTIAL 
C SUMS ARE IN COLUMN 0. (ICM) 
C OUTPUT PARAMETERS-
C XLAST -LAST EVEN COLUMN ENTRY AT EXIT TIME. (RES) 
C RELER -ESTIMATE FOR ABSOLUTE VALUE OF RELATIVE ERROR OF x'LAST. 
C BASED ON XLAST AND THE ENTRY OF THE PREVIOUS DIAGONAL 
C WHICH SITS AT THE SAME HEIGHT IN EPSILON TABLE. (PREC) 
C LOCAL VARIABLES, IN ORDER OF APPtARANCE-
C MAXKOL-LARGEST COLUMN NUMBER EPS2 CAN ACCOMODATE. CURRENTLY 
C 49, THOUGH BREZINSKI ALLOWED 201. (NMM PLUS 1) 
C SMALL -USED AS A RESET VALUE FOR ULTRA-SMALL DENOMINATORS. (ZE) 
C KOUT -UNIT NUMBER FOR OUTPUT. (NI) 
C MXNSI -MAXIMUM NUMBER OF SINGULARITIES WHICH EPS2 CAN PROCESS 
C AT ONCE. CURRENTLY 20. BUT SUCCESSIVE SINGULARITIES IN 
C A COLUMN CAUSE ABORTION. (NSM) 
C XNXLS -NEXT-TO-LAST EVEN COLUMN ENTRY AT EXIT TIME. (RA1) 
C !CANT -SET TO 1 BY EPS2 IF ONE OF THREE ABORTION CONDITIONS 
C ARISES. SEE MAXKOL AND MXNSI. (!1,I2,I3) 
C CANCL -THE SMALLEST MAGNITUDE OF (BOTTOM-TOP)/TOP WHICH CORRE-
C LATES TO A LOSS OF LESS THAN LOSDI DIGITS. (ANC) 
C INPRS -O WHEN NO INSTABILITY IS BEING PROCESSED. 1 IF AT LEAST 
C ONE IS STILL IN PROCESSING. (LIP) 
C NOWE -SET TO 1 AFTER XSE IS CALCULATED, TO INDICATE THE NEXT 
C ENTRY IS AN E. 0 AT OTHER TIMES. (ICC) 
C NOWW -SET TO 1 DURING THE CALCULATION FOR A NEW C, TO INDICATE 
C XLOZL SHOULD BE STORED IN THEW QUEUE AFTER C IS DONE. 
C 0 AT OTHER TIMES. (!AC) 
C NOWN -SET TO 1 AT THE END OF THE NOWW PROCESSING. INDICATES 
C THAT AFTER THE NEXT ENTRY. NE, IS DONE, XLZTO SHOULD BE 
C STORED IN THEN QUEUE. (!BC) 
C LOCEN -CELL OF DIAG WHICH HOLDS THE LAST ENTRY ON THE DIAGONAL 
C AT EXIT TIME. (EXCEEDS BREZINSKI M BY 2) 
C DIAG -HOLDS THE PREVIOUS DIAGONAL AT BEGINNING OF A CALL. AND 
C THE NEW DIAGONAL AT EXIT. (E) 
C XLZBO -BOTTOM OF THE LOZENGE. (A1) 
C KOL -COLUMN NUMBER OF XLOZL. (IS) 
C IQFRT -POINTS TO THE CELL IN KOLQU WHICH HOLDS THE W COLUMN 
C NUMBER FOR THE OLDEST SINGULARITY STILL IN PROCESSING. 
C WHEN KOL EXCEEDS THAT COLUMN NUMBER BY 1, EPS2 KNOWS 
C SE WAS JUST DONE. S IS THEN STORED ANO NOWE IS SET TO 
C 1. IQFRT ALSO POINTS TO THE LOCATIONS IN WQU AND NQU 
C WHICH HOLD THE CORRESPONDING W ANO N VAl lJFS IQFRT 
C BEGINS AT 1 AND IS INCREASED BY 1 EACH TIME AN E IS 
C FINISHED. BUT IF NO MORE SINGULARITIES ARE IN LINE, 
C IQFRT RETURNS TO 1. (LB) 
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EPS2. FOR EPSILON WITH THE SPECIAL RULES (CONTINUEO) 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

IQBAC -SAME AS IQFRT, EXCEPT IT LOCATES INFORMATION ABOUT THE 
NEWEST SINGULARITY. IQBAC BEGINS AT 0 TO INDICATE NO 
SINGULARITIES ARE BEING PROCESSED. WHENEVER A NEW ONE 
OCCURS, IQBAC IS INCREASED BY 1 .. WHEN IQFRT EXCEEDS 
IQBAC, IT IS A SIGNAL THAT NO SINGULARITIES ARE IN PRO
CESSING. INPRS IS SET TO 0, WHICH WILL CAUSE RESETTING 

XLZTO 
DENOM 
KOLQU 

THE TWO POINTERS TO THEIR INITIAL VALUES. (LE) 
-TOP OF THE LOZENGE. (NOT A BREZINSKI VARIABLE) 
-DENOMINATOR OF THE EPSILON FORMULA. BOTTOM-TOP. (AO) 
-HOLDS THE COLUMN NUMBERS OF THE W VALUES CORRESPONDING 

TO THE ILL-DETERMINED C VALUES. THOSE NUMBERS ARE USEO 
TO TRIGGER RECOGNITION WHEN NEXT ENTRY IS AN E. (IS1) 

C,ETC -C, N, W, S, AND E ARE THE LARGE-LOZENGE ENTRIES WHEN THE 
SPECIAL RULES ARE IN EFFECT. (NOT BREZINSKI VARIABLES) 

LAMDA -TH£ A OF BREZINSKI (1978,P.318). CORDELLIER USED 

XLOZR 
XLOZL 
WQU 

LAMBDA. (PA) 
-RIGHT SIQE OF THE .LOZENGE. (AO) 
-LEFT SIOE OF THE LOZENGE. (BB) 
-HOLDS THE W VALUES WHICH WILL BE NEEDED FOR LATER E 

CALCULATIONS. (A) 
NQU -SAME AS WQU, BUT FOR N VALUES. (B) 
X2BAC -THE DIAGONAL ENTRY WHICH WAS CALCULATED JUST BEFORE 

XLZBO. (A2) 
THE FOLLOWING VARIABLES ARE NECESSARY ONLY BECAUSE BREZINSKI CHOSE 
TO INVOLVE AN ENTRY FROM THE PREVIOUS DIAGONAL IN THE CALCULATIONS 
FOR RELER. THE ORIGINAL EPS2 SEEMS TO HAVE SOME ERRORS IN THE RELER 
CALCULATIONS, AND THE TRANSLATIONS OF THE FOLLOWING TERMS ARE UN
CERTAIN FOR THAT REASON. 

XPRDIA-THE X ON THE PREVIOUS DIAGONAL WHICH SITS AT THE SAME 
HEIGHT IN THE EPSILON TABLE AS XLAST. 

PXLAST-THE XLAST ENTRY ON THE PREVIOUS DIAGONAL. 
PXNXLS-THE XNXLS ENTRY ON THE PREVIOUS DIAGONAL. 
LOCPEN-THE LOCATION OF THE END OF THE PREVIOUS DIAGONAL. 

C *CARDS POSSIBLY TO BE CHANGED BEFORE USE. 
C (THROUGH MXNSI ASSIGNMENT) 
c 

DOUBLE PRECISION SNEW.XLOZL,RELER,XLOZR,XLZBO,X2BAC,DIAG(50), 
*CANCL,WQU(20),NQU(20),DENOM,SMALL,C,W,S,N,E,XNXLS,XLAST,XLZTO, 
'LAMOA,XPRDIA,PXNXLS,PXLAST 
DIMENSION KOL0U(20) 

C LABELLED COMMON INSURES THE FOLLOWING VARIABLES WILL STILL 
C HAVE THEIR OLD VALUES ON THE NEXT CALL. 

c 

COMMON /SAVE/DIAG,WQU,NQU,CANCL,SMALL,PXNXLS,PXLAST,KOLQU,ICANT, 
INPRS,NOWE,NOWW,NOWN,LOCEN,IQFRT,IQBAC,LOCPEN,KOUT, 
MAX KOL 

C *INITIALIZATIONS 
c 

IF(ICONT.EQ.1)GO TO 2 
KOUT=6 
SMALL=1.D-60 
MAXKOL=49 
MXNSl=20 
CANCL=10.DO**(-LOSDI) 
ICANT=O 
XLAST=SNEW 
XNXLS=O.DO 
RELER=1.DO/SMALL 
IF(LASKOL/2*2.NE.LASKOL) LASKOL=LASKOL-1 
ICONT=1 
INPRS=O 
NOWE=O 
NOWW=O 
NOWN=O 
LOCEN=2 
DIAG( 1 )=O.DO 
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EPS2, FOR EPSILON WITH THE SPECIAL RULES (CONTINUED) 
c 
C •EPSILON CALCULATIONS 
c 

2 IF(ICANT.EQ. 1)GO TO 20 
c 
C INITIAL PROCESSING FOR THE NEW DIAGONAL. THE POINTERS CAN BE 
C (RE)INITIALIZED ONLY HERE. 
c 

c 

XLZBO=SNEW 
KOL=O 
IF(INPRS.EQ. 1)GO TO 3 
IQFRT=1 
IQBAC=O 

C *SPECIAL RULES OFF. CORDELLIER. 
c 

c 

3 XLZTO=DIAG(KOL+1) 
DENOM=XLZBO-XLZTO 

C CHECK TO SEE IF A NEW INSTABILITY HAS OCCURRED. FOUR WAYS TO AVOID 
C A YES- TOP VERY SMALL, THE POTENTIAL C IS AT THE END OF A DIAGONAL, 
C TIME TO CALCULATE AN E, OR (BOTTOM-TOP)/TDP IS NOT TOO SMALL. 
c 

c 

IF(DABS(XLZTO).LT.SMALL) GO TO 5 
IF(KOL+2.GE.LOCEN.OR.NOWE.EQ. 1.0R.DABS(DENOM/XLZTO).GT. 

CANCL) GO TO 5 

C PERFORM PRELIMINARY PROCESSING FOR THE NEW SINGULARITY. THE PROGRAM 
C THROUGH INPRS=1 HAS BEEN SHORTENED SOMEWHAT. 
c 

c 

IF(INPRS.EQ.O) GO TO 4 
IF(KOL.EQ.KOLQU(IQFRT)) GO TO 18 

4 NOWW=1 
IQBAC=IQBAC+1 
IF(IQBAC.GT.MXNSI)GO TO 17 
KOLQU(IQBAC)=KOL 
INPRS=1 

5 IF(NOWE.EQ.0) GO TO 7 

C THE CALCULATION OF E. 
c 

c 

XLOZL=DIAG(KOL) 
C=XLOZL 
N=NQU(IQFRT) 
W=WQU(IQFRT) 
LAMDA=((N-W)/(C-W)/(C-N))**2 + ((W-S)/(C-W)/(C-S))**2 -

* ((S-N)/(C-N)/(C-S))**2 
E=(N/(C-N)**2 + S/(C-S)**2 - W/(C-W)**2 + LAMDA*C) / 

( 1.DO/(C-N)**2 + 1 .DO/(C-S)**2 - 1 .DO/(C-W)**2 + LAMDA) 
XLOZR=E 
NOWE=O 
IQFRT=IQFRT+1 
IF(IQFRT.GT.IQBAC)INPRS=O 
GO TO 12 

C •NORMAL RULE OF THE EPSILON ALGORITHM 
C (BREZINSKI PUT THIS ONLY ON THE 11-BLOCK, WHICH WE OMIT.) 
c 

c 

7 XLOZL=O.DO 
IF(KOL.NE.O)XLOZL=OIAG(KOL) 

DENOM WAS DONE BACK AT 3 FOR THE CHECK ON CANCELLATION. 
IF(DABS(DENOM).LT.SMALL)DENOM=SMALL 
XLOZR=1.DO/DENOM+XLOZL 
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EPS2, FOR EPSILON WITH THE SPECIAL RULES \CONT!NUEO) 

C THE NEXT STATEMENT LETS US AVOID THE NEED FOR THE 11-BLOCK, WHICH 
C DUPLICATED THE 7-BLOCK. 

IF(INPRS.EQ.O) GO TO 12 
c 
C ONE OF THE FOLLOWING BLOCKS WILL BE USED, IF WE HAVE JUST CALCULATED 
C A C, AN XNE, OR AN XSE. 
c 
C THE 8-BLOCK (WE OMIT 8 BECAUSE NO JUMP IS NOW MADE TO IT) FOLLOWS 
C THE C CALCULATION. 
c 

c 

IF(NOWW.EQ.O) GO TO 9 
WQU(IQBAC)=XLOZL 
NOWW=O 
NOWN=1 
GO TO 12 

C THE 9-BLOCK FOLLOWS THE XNE CALCULATION. 
c 

c 

9 IF(NOWN.EQ.O)GO TO 10 
NQU(IQBAC)=XLZTO 
NOWN=O 
GO TO 12 

C THE 10-BLOCK FOLLOWS THE XSE CALCULATION. 
c 

c 

10 IF(KOL.NE.(KOLQU(IQFRT)+1)) GO TO 12 
S=XLZBO 
NOWE=1 

C STORAGE IN DIAG AND SHIFTING OF THE LOZENGE. RETURN TO 3 TO BEGIN 
C CALCULATION OF THE NEXT DIAGONAL ENTRY, IF APPROPRIATE. 
c 

c 

12 IF(KOL.NE.O)DIAG(KOL)=X2BAC 
X2BAC=XLZBO 
XLZBO=XLOZR 
KOL=KOL+1 
IF(KOL+2.LE.LOCEN) GO TO 3 

C *EXIT OPERATIONS (BREZINSKI HAD THIS ABOVE THE 12-BLOCK.) 
c 

DIAG(LOCEN-1)=X2BAC 
DIAG(LOCEN)=XLZBO 

C XLAST MAY OR MAY NOT BE THE LAST ENTRY ON THE DIAGONAL. 

c 

IF(LOCEN.EQ.2) GO TO 16 
IF(LOCEN/2*2.EQ.LOCEN) GO TO 13 
XLAST=DIAG(LOCEN) 
XNXLS=DIAG(LOCEN-2) 
GO TO 14 

13 XLAST=DIAG(LOCEN-1) 
XNXLS=DIAG(LOCEN-3) 

C ERROR ESTIMATE AND SAVING XLAST, XNXLS, AND LOCEN FOR THE NEXT CALL. 
c 

14 IF(DABS(XLAST).LT.SMALL) GO TO 15 
C THE ENTRY USED FROM THE PREVIOUS DIAGONAL ALTERNATES BETWEEN BEING 
C THE LAST EVEN COLUMN ENTRY OR THE NEXT-TO-LAST ONE, UNTIL WE REACH 
C THE LAST COLUMN ALLOWED BY THE uSER. (PRINT OUT A1 AND A2 IN THE 
C ORIGINAL EPS2, ALONG WITH THE REST OF THE DIAGONAL, TO SEE SOMETHING 
C IS WRONG.) 

XPRDIA=PXLAST 
IF(LOCEN/2*2.EQ.LOCEN.OR.LOCPEN.EQ.LASKOL+1) XPRDIA=PXNXLS 
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EPS2, FOR EPSILON ~ITH THE SPECIAL PULES \CONT!NUEDI 
RELER=DABS(1.DO-XPRDIA/XLAST) 
GO TO 16 

15 RELER=DABS(XLAST) 
16 PXLAST=XLAST 

PXNXLS=XNXLS 
LOCPEN=LOCEN 
IF(LOCEN.LT.LASKOL+1) LO~EN=LOCEN+1 
IF(LOCEN.LT.MAXKOL+1) GO TO 20 
WRITE(KOUT. 101) 
GO TO 19 

1 7 WRITE ( KOUT . 1 02 ) 
GO TO 19 

18WRITE(KOUT,100) 
19 ICANT=1 
20 RETURN 

100 FORMAT(/34H NON-ISOLATED SINGULARITY IN EPS2,/ 
• 23H IMPOSSIBLE TO CONTINUE/) 

101 FORMAT(/32H INSUFFICIENT DIMENSIONS IN EPS2/) 
102 FORMAT(/31H TOO MANY SINGULARllIES IN EPS2/) 

END 
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THETA 
SUBROUTINE THETA(SNEW,ICALL,LASCO,XLAST,RELER) 

C THIS .IS A SLIGHTLY MODIFIED VERSION OF THE ORIGINAL. SEE THE BREZIN
C SKI ORIGINAL IN HIS ALGORITHMES D-ACCELERATION DE LA CONVERGENCE, 
C ETUDE NUMERIQUE, 1978, P. 369F. THETA IMPLEMENTS THE BREZINSKI ALGO
C RITHM OF THAT NAME. THE CHANGES IN THIS VERSION ARE ALMOST PURELY 
C NOTATIONAL, EXCEPT FOR THE ADDITION OF EXPLANATION AT THE VERY BE-
C GINNING. (TRANSLATED) BREZINSKI COMMENTS ARE THE ONLY ONES IN THE 
C PROGRAM BODY, EXCEPT FOR THE COMMENTS PRECEDED BY *. 
c 
C INPUT PARAMETERS (BREZINSKI NAMES IN PARENTHESES)-
C SNEW -THE NEW PARTIAL SUM OR SEQUENCE ELEMENT. (S) · 
C !CALL -COUNTER ON THE CALLS MADE TO THETA DURING A TABLE. SET 
C TO 0 BEFORE THE FIRST CALL. !CALL IS UPDATED BY THETA. 
C !CALL IS USED TO SIGNAL WHEN INITIALIZATION IS FINISHED, 
C ANO ON WHICH CALLS THE LENGTH OF THE WEAVE CAN INCREASE. 
C {IK AND M PLUS 1) 
C LASCO -THE LAST COLUMN IN THE ENTIRE TABLE WHICH IS ALLOWED BY 
C THE USER. THE PARTIAL SUMS ARE IN COLUMN 0. (ICM) 
C OUTPUT PARAMETERS-
C ICALL -SEE ABOVE. AT END OF 1ST CALL, ICALL=1, ETC. 
C XLAST -THE LAST EVEN COLUMN ENTRY IN THE WEAVE AT EXIT TIME. 
C (R) 
C RELER -AN ESTIMATE OF THE RELATIVE ERROR OF XLAST, BASED ON 
C XLAST AND THE WEAVE ENTRY TWO COLUMNS BACK. (PR) 
C OTHER LOCAL VARIABLES, IN ORDER OF APPEARANCE-
C SMALL -A RESET VALUE FOR ULTRA-SMALL DENOMINATORS. (ZE) 
C KOUT -UNIT NUMBER FOR OUTPUT. (NI) 
C MAXLE -THE MAXIMUM LENGTH WEAVE WHICH THETA CAN ACCOMODATE. 
C CURRENTLY 50, THOUGH BREZINSKI ALLOWED 100. (MM) 
C WV2BK -THE WEAVE TWO BACK FROM THE WEAVE CURRENTLY BEING COM-
C PUTED. (P) 
C !CANT -SET TO 1 BY THETA IF THE WEAVE LENGTHS ACCOMODATED ARE 
C EXCEEDED. THIS CAUSES ABORTION OF CALCULATIONS. 
C PWEAV -THE PREVIOUS WEAVE, ONE BACK OF THE CURRENT WEAVE. (D) 
C XLZBO -BOTTOM OF THE LOZENGE. (NOT A BREZINSKI VARIABLE) 
C XLZTO -TOP OF THE LOZENGE. (NOT A BREZINSKI VARIABLE) 
C DENOM -DENOMINATOR OF THE EXPRESSION FOR THE THETA ENTRY. DIF-
C FERENT FORMS FOR EVEN AND ODD COLUMNS. (PR) 
C XLOZR -RIGHT SIDE OF THE LOZENGE. (NOT A BREZINSKI VARIABLE) 
C LENWV -THE LENGTH OF THE CURRENT WEAVE AT EXIT TIME. (LD) 
C LNPWV -THE LENGTH OF THE PREVIOUS WEAVE. (L) 
C ISWCH -USED TO SWITCH THE ALGORITHM BACK AND FORTH BETWEEN EVEN 
C AND ODD COLUMN CALCULATIONS. ( K) 
C LOCXR -THE CELL NUMBER OF WEAVE WHICH WILL HOLD XR AFTER XR IS 
C COMPUTED. (I) 
C XLOZL -LEFT SIDE OF THE LOZENGE. (R) 
C XSUBB -THE ENTRY RIGHT UNDER XLZBO. XSUBB IS USED ONLY ON 
C EVEN-COLUMN CALCULATIONS. (NOT A BREZINSKI VARIABLE) 
C X2RAC -THE WEAVE ENTRY CAl CIJt ATE[) dlJST 8FFORE )(LZ80 (NOT A 
C BREZINSKI VARIABLE) 
C LOXLS -LOCATION IN WEAVE OF THE LAST EVEN COLUMN ENTRY. (L) 
C XNXLS -THE NEXT-TO-LAST EVEN COLUMN ENTRY IN THE WEAVE. (PR) 
c 
c 
C CARDS POSSIBLY TO BE CHANGED BEFORE USE 
c 
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THETA (CONTINUED) 
DOUBLE PRECISION SNEW,XLAST,WV2BK( 50),PWEAV( 50),WEAV( ~O),RELER, 

'SMALL,XNXLS,DENOM,XLOZR,XLDZL,XLZTO,XLZBO,X2BAC,XSUBB 
C *THE NEXT LINE HAS BEEN ADDED TO INSURE PRESERVATION OF SOME 
C LOCAL VARIABLES BETWEEN CALLS TO THETA. 

c 
c 
c 

c 

c 

c 
c 
c 
c 

c 
c 
c 

c 
c 
c 

COMMON /SAVE/ PWEAV,WV2BK,L~NWV,ICANT 
SMALL=1.D-60 
KOUT=G 
MAXLE=100 

INITIALIZATIONS *(3 POSSIBLE SETS, DEPENDING ON !CALL.) 

IF(ICALL.NE.O) GO TO 1 
WV2BK( 1 )=SNEW 
ICALL=1 
XLAST=SNEW 
ICANT=O 
RELER=1.DO/SMALL 
GO TO 10 

IF(ICALL.GE.2) GO TO 2 
PWEAV(1)=SNEW 
XLZBO=PWEAV(1) 
XLZTO=WV2BK( 1) 
DENOM=XLZBO-XLZTO 
IF(DABS(DENOM).LT.SMALL)DENOM=SMALL 
XLOZR=1.DO/DENOM 
PWEAV(2)=XLOZR 
ICALL=2 
LENWV=2 
XLAST=SNEW 
GO TO 10 

2 IF(ICANT.EQ. 1)RETURN 
WEAV(1)=SNEW 
ICALL=ICALL+1 
LNPWV=LENWV 
IF(ICALL/3*3.NE.ICALL) LENWV=LENWV+1 
IF(LENWV.GT.(LASC0+1))LENWV=LASC0+1 
IF(LENWV.GT.MAXLE)GO TO 9 
ISWCH=1 

THETA CALCULATION *(BREZINSKI HAD THIS COMMENT ABOVE THE 
2-BLOCK. ) 

DO 5 LOCXR=2,LENWV 
GO TO (3,4),ISWCH 

ODD COLUMN 

3 XLDZL=O.DO 
IF(LOCXR.NE.2) XLOZL=WV2BK{LOCXR-2) 
XLZTO=PWEAV(LDCXR-1) 
XLZBO=WEAV(LOCXR-1) 
DENOM=XLZBD-XLZTO 
XLOZR=XLOZL+1.DO/DENOM 
WEAV(LOCXR)=XLOZR 
ISWCH=2 
GO TO 5 

EVEN COLUMN 

4 XLZTO=WV2BK(LOCXR-1) 
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THETA (CONTINUED) 

c 
c 
c 

XLZBO=PWEAV(LOCXR-1) 
XSUBB=WEAV(LOCXR-1) 
XLOZL=WV2BK(LOCXR-2) 
X2BAC=PWEAV(LOCXR-2) 
DENOM=(XSUBB-XLZBO)-(XLZBO-XLZTO) 
IF(DABS(DENOM).LT.SMALL) DENDM=SMALL 
XLOZR=( X2BAC~(XSUBB-XLZBO)-XLOZL~(XLZBO-XLZTO) ) / DENOM 
WEAV(LOCXR)=XLOZR 
ISWCH=1 

5 CONTINUE 

EXIT OPERATIONS 

LOXLS=LENWV 
IF(ISWCH.EQ.2)LOXLS=LENWV-1 
XLAST=WEAV(LDXLS) 
IF(LENWV.EQ.2)GO TO 7 
XNXLS=WEAV(LDXLS-2) 
IF(DABS(XLAST).LT.SMALL)GO TO 6 
RELER=DABS((XLAST-XNXLS)/XLAST) 
GO TO 7 

6 RELER=OABS(XLAST) 
7 DO 8 LOCXR=1,LNPWV 

WV2BK(LOCXR)=PWEAV(LOCXR) 
8 PWEAV(LOCXR)=WEAV(LOCXR) 

IF(LENWV.GT.LNPWV) PWEAV(LENWV)=WEAV(LENWV) 
GO TO 10 

9 ICANT=1 
WR I TE ( KOUT, 100) 

10 RETURN 
100 FORMAT(/33H INSUFFICIENT DIMENSIONS IN THETA/) 

END 
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PROGRAMS FOR APPENDIX I 
SUBROUTINE ANLYZ(MAXN,MAXKL.METCOO,METHOD.SERIES,CORRCT,IBRF.KOUT) 

C PROGRAMMER- MARK TOWNSEND, MARCH 1983 
C THIS SUBROUTINE ANALYZES THE OUTPUT OF A USER-WRITTEN 
C ACCELERATION SUBROUTINE, OPERATING ON A USER-WRITTEN 
C FUNCTION PROGRAM WHICH COMPUTES PARTIAL SUMS OF A SERIES. 
C SEE THE FORMAT STATEMENTS FOR THE METHODS ACCOMODATED. 
C ANLYZ TAKES CARE OF ALL OUTPUT FORMATTING FOR YOU. HOORAY. 
c 
c 
C INPUT PARAMETERS-
C MAXN- NUMBER OF ROWS ALLOWED. 
C MAXKL- MAXIMUM NUMBER OF COLUMNS ALLOWED. INCLUOE 
C PARTIAL SUMS COLUMN. INCLUDE EVEN COLUMNS IN 
C METHODS 3-6. ANALVZ ALLOWS MAXKL THRUUGH 20. 
C METCOD- SEE THE BEGINNING STATEMENTS AND THEIR FORMATS. 
C METHOD- NAME OF THE SUBROUTINE DOING THE CALCULATIONS 
C OF THE TABLE ROWS. USE EXTERNAL STATEMENT 
C IN THE CALLING PROGRAM. SEE STRUCTURE BELOW. 
C SERIES- NAME OF THE FUNCTION SUBPROGRAM WHICH GENERATES 
C THE PARTIAL SUMS. USE EXTERNAL STATEMENT IN THE 
C CALLING PROGRAM. SEE STRUCTURE BELOW. 
C CORRCT- OBVIOUS. 
C IBRF- 1 IF NO ERROR ANALYSIS IS DESIRED. 
C KOUT- UNIT NUMBER FOR PRINTING. 
C OUTPUT PARAMETERS-NONE 

INTEGER MAXN,MAXKL,METCOD,IBRF,KOUT,IJUMP,L 
REAL HOIFFS( 19),ABERR(20) ,RELEST( 19) ,RELTRU(20) 
DOUBLE PRECISION SUMN,SERIES,CORRCT,ROW(20),PRVROW(20),DENOM, 

SAVTOP(20) 
COMMON /TOP/ SAVTOP 
IF(METCOO.EQ.t) WRITE(KOUT,100) 
IF(METCOD.EQ.2) WRITE(KOUT,200) 
IF(METCOD.EQ.3) WRITE(KOUT,300) 
IF(METCOD.EQ.4) WRITE(KOUT,400) 
IF(METCOO.EQ.5) WRITE(KOUT,500) 
IF(METCOD.EQ.6) WRITE(KOUT,600) 
WRITE(KOUT,700) CORRCT . 
IJUMP=t 

C FOR THE LAST THREE METHODS, THE EVEN COLUMNS ARE NOT PRINTEO OR 
C USED IN ERROR ANALYSIS. 

IF(METCDD.GT.3) IJUMP=2 
DO 40 Ns t, MAXN 

C NOTICE THE REQUIRED STRUCTURE FOR THE SERIES ROUTINE YOU WRITE. 
C ON THE LEFT SIDE, SUMN IS THE NEW PARTIAL SUM. ON THE RIGHT 
C SIDE, SUMN IS THE PREVIOUS PARTIAL SUM. 

SUMN=SERIES(N,SUMN) 
C NOTICE THE REQUIRED STRUCTURE OF THE ACCELERATION ROUTINE 
C YOU WRITE. IT MUST UPDATE ROW, PRVROW(IF USED),AND NINROW. 
C THE STRAIGHT AITKEN METHOD REQUIRES THE LAST TWO ROWS FOR 
C CALCULATIONS. 

IF(METCOD.EQ.2) CALL METHOD(N,SUMN,ROW,PRVROW.NINROW,MAXKL) 
IF(METCOD.NE.2) CALL METHOO(N,SUMN,ROW,NINROW,MAXKL) 

C SAVE THE TOP DIAGONAL FOR POSSIBLE RE-EXTRAPOLATION LATER. 
IF(METCOD.LT.3) SAVTOP(N)=ROW(NINROW) 
IF(METCOO.GE.3.AND.NINROW/2*2.EQ.NINROW) SAVTOP(N)=ROW(NINROW-1) 
IF(METCOD.GE.3.AND.NINROW/2*2.NE.NINROW) SAVTOP(N)=ROW(NINROW) 

202 



PROGRAMS FOR APPENDIX I (CONTINUED) 

C TWO WAYS TO SKIP ERROR ANALYSIS- BY REQUEST. OR BECAUSE ALL 
C COLUMNS OF THE EPSILON TABLE ARE PRINTED. 

IF(IBRF.EQ. l.OR.METCOO.EQ.3) GO TO 20 
DO 10 KOL•1,NINROW.IJUMP 
ABERR(KOL)=ROW(KOL)-CORRCT 
IF(KOL+IJUMP.GT.NINROW) GO TO 5 
HDIFFS(KOL)=ROW(KOL+IJUMP)-ROW(KOL) 

C RELATIVE ERROR ANALYSIS IS INAPPROPRIATE IF CORRECT LIMIT IS 0. 
5 IF(CORRCT.EQ.0.00) GO TO 10 

RELTRU(KOL)•ROW(KOL)/CORRCT-.1.00 
IF(KOL+IJUMP.GT.NINROW) GO TO 10 
DENOMzROW(KOL+IJUMP) 
IF(DABS(DENOM).LT.1.0-30) OENOM•1.D-30 
RELEST(KOL)=ROW(KOL)/DENOM-1.00 

10 CONTINUE 
C OUTPUT TIME. 

20 WRITE(KOUT,800) N,(ROW(KOL),KOL•1,NlNROW.lJUMP) 
IF(IBRF.EQ. 1.0R.METCOD.EQ.3) GO TO 40 
L=NINROW-IuUMP 
IF(CORRCT.EQ.0.00) GO TO 30 
IF(L.LT.1) GO TO 25 
WRITE ( KOUT, 900) . 
WRITE ( KOUT. 1300) (REL EST( KOL). KOL= 1. L. I JUMP) 

25 WRITE(KOUT.1000) 
WRITE(KOUT,1300) (RELTRU(KOL).KOL•1,NINROW.IJUMP) 

30 WRITE(KOUT,1100) 
WRITE(KOUT,1300) (ABERR(KOL),KOL=1,NINROW.IJUMP) 
IF(L.LT.1) GO TO 40 
WRITE(KOUT. 1200) 
WRITE(KOUT, 1300) (HDIFFS(KOL),KOL•1,L,IJUMP) 

40 CONTINUE 
RETURN 

100 FORMAT(1H1,11HEULER TABLE) 
200 FORMAT( IHI, 12HAITKEN TABLE) 
300FORMAT(1H1,31HEPSILON TABLE WITH EVEN COLUMNS) 
400FORMAT(1H1, 13HEPSILON TABLE) 
500 FORMAT(1H1,29HAITKEN USING MOOIFIED EPSILON) 
600 FORMAT( 1Hl,9HRHO TABLE) 
700 FORMAT(15H CORRECT LIMIT=,023.16/4HOROW) 
800 FORMAT(///I4,3X,023.16,3(7X,023. 16),/4(7X,023.16)) 
900FORMAT(1HO. 16HREL. ERR. ESTS.-) 

1000FORMAT(1HO,16HTRUE REL. ERRS.-) 
1100 FORMAT( 1HO. 11HABS. ERRS. - ) 
1200 FORMAT(1H0,12HHOR. OIFFS.-) 
1300 FORMAT(4(20X,E10.3)) 

ENO 
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PROGRAMS FOR APPENDIX I (CONl!NUED) 
C FOR ALL THE FOLLOWING PARTIAL SUM PROGRAMS, ANLYZ SETS SOLO EQUAL 
C TO THE PARTIAL SUM JUST OBTAINED, IMMEDIATELY AFTER THE SUM PROGRAM 
C RETURNS CONTROL. (SOLD IS NOT A SEPARATE VARIABLE IN ANLYZ, BUT 
C THE CONTEXT THERE MAKES THE SITUATION THERE QUITE CLEAR.) 
C ZERO IS ALWAYS TAKEN AS THE FIRST PARTIAL SUM. 

OOUBLE PRECISION FUNCTION LN1PX(N,SOLD) 
C THIS SUBROUTINE GIVES PARTIAL SUMS OF EQUATION 2 IN THE CHAPTER. IF 
C X.GT. 1, THE SERIES DIVERGES. BUT THE APPROPRIATE LIMIT IS ALWAYS 
C OLOG(1.D0+X). THE MAIN PROGRAM MUST PUT X IN COMMON /XLINK/ AND 
C INITIALIZE IT TO WHATEVER VALUE IS DESIRED. 

DOUBLE PRECISION SOLD,SGN,X 
COMMON/XLINK/ X 
IF(N.EQ.1) GO TO 10 
SGN= 1. DO 
IF(N/2*2.NE.N) SGN=-SGN 
LN1PX=SOLD + SGN*X**(N-1)/DFLOAT(N-1) 
RETURN 

10 LN1PX=O.DO 
RETURN 
END 

DOUBLE PRECISION FUNCTION PI(N,SOLD) 
C THIS SUBROUTINE GIVES PARTIAL SUMS FOR EQUATION 4 IN THE CHAPTER. 
C CORRECT LIMIT IS 4.DO*DATAN(1.DO). 

DOUBLE PRECISION SOLD,SGN 
IF(N.EQ.1) GO TO 10 
SGN" 1.DO 
IF(N/2*2.NE.N) SGN=-SGN 
PI~SOLD+SGN*(4.DO/DFLDAT(2*N-3)) 
RETURN 

10 PI=O.DO 
RETURN 
END 

DOUBLE PRECISION FUNCTION PlP1(N,SOLD) 
C THIS SU8ROUTINE GIVES PARTIAL SUMS AS IN EQUATION 8 OF THE CHAPTER. 
C THE CORRECT SUM IS 4.DO*DATAN(1.DO) + 1.DO. 

DOUBLE PRECISION SOLD,SGN 
IF(N.EQ.1) GO TO 10 
SGN= 1 .DO 
IF(N/2*2.NE.N) SGN=-SGN 
PIP1=SOLD+SGN*(4.DO/DFLOAT(2*N-3)+SGN/2.DO•*(N-1)) 
RETURN 

10 PIP1=0.DO 
RETURN 
END 

DOUBLE PRECISION FUNCTION REDO(N,SOLD) 
C THIS SUBROUTINE DOES NOT REALLY GIVE PARTIAL SUMS. SOLD IS NOT USED. 
C IN CONSTRUCTING ANY TABLE, ANLYZ SAVES THE LAST EXTRAPOLATION ON EACH 
C ROW, IN THE VECTOR SAVTOP. REDO SIMPLY RETRIEVES THOSE VALUES TO 
C ALLOW US TO DO REEXTRAPOLATION TABLES. 

DOUBLE PRECISION SOLD,SAVTOP(20) 
COMMON /TOP/ SAVTOP 
REDO=SAVTOP(N) 
RETURN 
ENO 
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PROGRAMS FOR APPENDIX I (CONTINUED) 

DOUBLE PRECISION FUNCTION WALLIS(N,SOLO) 
C THIS SUBROUTINE GIVES PARTIAL SUMS OF EQUATION 33 IN THE CHAPTER. 
C THE SERIES IS DIVERGENT BUT THE APPR9PRIATE LIMIT IS .5963473621. -·. 
C THE MAIN PROGRAM SHOULD PLACE FACT IN COMMON AND INITIALIZE IT TO 
c 1.DO. 

DOUBLE PRECISION SOLO,SGN,FACT 
COMMON FACT 
IF(N-2) 20,30,10 

10 FACT=FACT*DFLOAT(N-2) 
SGN=1.DO 
IF(N/2*2.NE.N) SGN=-SGN 
WALLIS =SOLD+SGN*FACT 
RETURN 

20 WALLIS=O.DO 
RETURN 

30 WALLIS= 1 .DO 
RETURN 
ENO 

OOUBLE PRECISION FUNCTION LUBK(N,SOLO) 
C THIS SUBROUTINE GIVES PARTIAL SUMS OF THE SERIES IN EQUATION 34. 
C THE CORRECT LIMIT IS OATAN(1.DO) +.5DO*DLOG(2.DO). 

DOUBLE PRECISION SGN,SOLD 
COMMON /CT1/SGN 
IF(N.EQ. 1) GO TO 10 
IF(N/2*2.EQ.N) SGN=-SGN 
LUBK=SOLD+SGN/DFLOAT(N-1) 
RETURN 

10 SGN=-1. DO 
LUBK=O.DO 
RETURN 
END 

DOUBLE PRECISION FUNCTION DGED(N,SOLD) 
C THIS SUBPROGRAM GIVES THE PARTIAL SUMS FOR EQUATION 35 IN THE CHAP
C TER. THE CORRECT SUM IS 2.00/ (l.DO-X)/(2.DO-X). X AND X02(,,X/2l 
C MUST BE PLACED IN COMMON/OZ/ AND SET BY THE MAIN P~OGRAM. 

DOUBLE PRECISION SOLD,X,XD2 
COMMON /DZ/ X,XD2 
IF(N.EQ. 1) GO TO 10 
DGEO=SOLD+2.DO*X**(N-2)-XD2**(N-2) 
RETURN 

10 DGEO=O.DO 
RETURN 
END 
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PROGRAMS FOR APPENDIX I (CONTINUED) 
DOUBLE PRECISION FUNCTION PIGRP(N,SOLD) 

C THIS SUBROUTINE GIVES PARTIAL SUMS FOR EQUATION 36 IN THE CHAPTER. 
C THE CORRECT LIMIT IS 4.DO*DATAN( 1.00). 

DOUBLE PRECISION SOLD,X 
IF(N.EQ. 1) GO TO 10 
X=DFLOAT(4*N) 
PIGRP=SOLD+4.D0*(1.DO/(X-7.D0)-1.DO/(X-5.00)) 
RETURN 

10 PIGRP=O.DO 
RETURN 
END 

DOUBLE PRECISION FUNCTION ZETA2(N,SOLO) 
C THIS SUBROUTINE GENERATES PARTIAL SUMS OF THE SERIES IN EQUATION 
C 43 OF THE CHAPTER. CORRECT LIMIT IS (4.00•0ATAN(1.D0))**2/6.DO. 

DOUBLE PRECISION SOLD 
IF(N.EQ. 1) GO TO 10 
ZETA2=SOLD+1.00/DFLOAT(N-1)**2 
RETURN 

10 ZETA2=0.DO 
RETURN 
ENO 
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