
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

HIRSCHMAN OPTIMAL TRANSFORM LEAST MEAN SQUARE

ADAPTIVE FILTERS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

OSAMA M. ALKHOULI

Norman, Oklahoma

2007

UMI Number: 3291940

3291940
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

HIRSCHMAN OPTIMAL TRANSFORM LEAST MEAN SQUARE

ADAPTIVE FILTERS

A DISSERTATION APPROVED FOR THE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Victor DeBrunner

Joseph Havlicek

Tomasz Przebinda

Tamer Ibrahim

Murad Özaydin

c© Copyright OSAMA M. ALKHOULI 2007

All Rights Reserved.

Acknowledgements

I would like to sincerely thank my supervisors Dr. Victor DeBrunner and Dr. Joseph

Havlicek who introduced me to one of the most important and diverse fields in Electri-

cal Engineering, Digital Signal Processing (DSP). They taught me everything I know

about this field, inspired me with its wide applications, and guided me throughout

my research. They also put all efforts to provide me continuous financial support

during my graduate study at University of Oklahoma.

I would like also to thank Dr. Tomasz Przebinda and Dr. Murad Özaydin for being

part of out research and for the SigCam lectures that helped me better understand

the mathematical theory behind the Hirschman optimal transform. I would like also

to thank Dr. Tamer Ibrahim for his advices and comments that helped me better

presents the results of my dissertation.

My family has given me their spiritual support. Their encouragement kept me

motivated to proceed to expand my knowledge. Their love and support made all of

this worthwhile.

Last but not least, I would like to thank my friends at University of Oklahoma.

With their presence and help I felt like having a family in Norman.

iv

Notation

The following notations are used throughout the dissertation. Nonbold lowercase

letters are used for scalar quantities, bold lowercase is used for vectors, and bold up-

percase is used for matrices. Nonbold uppercase letters are used for integer quantities

such as length or dimensions. The lowercase letter k is reserved for the block index.

The lowercase letter n is reserved for the time index. The time and block indexes

are put in brackets, whereas subscripts are used to refer to elements of vectors and

matrices. The uppercase letter N is reserved for the filter length and the uppercase

letter L is reserved for the block length. The superscripts T and H denote vector

or matrix transposition and Hermitian transposition, respectively. The subscripts F

and H are used to highlight the DFT and HOT domain quantities, respectively. The

N ×N identity matrix is denoted by IN×N or I. The N ×N zero matrix is denoted

by 0N×N . The linear and circular convolutions are denoted by ∗ and ?, respectively.

Diag [v] denotes the diagonal matrix whose diagonal elements are the elements of the

vector v.

v

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Original Contributions . 2

2 Background 4

2.1 FIR Adaptive Filters . 4

2.2 The LMS Algorithm . 5

2.3 Statistical LMS Theory . 7

2.4 The Transform Domain LMS Algorithm 11

3 Review of the Transform Domain LMS Algorithms 14

4 Hirschman Optimal Transform 26

4.1 The Phase Plane for Continuous Time Signals 26

4.2 The Phase Plane for Discrete-Time Finite Duration Signals 28

5 Hirschman Optimal Transform LMS Algorithm 35

5.1 Development of the Basic Algorithm 36

5.2 Asymptotic Autocorrelation Matrix in the HOT Domain 37

5.3 Convergence Analysis of the HOT LMS Adaptive Filter 45

vi

5.4 Self-Orthogonalizing HOT Adaptive Filter 52

5.5 Self-Orthogonalizing HOT Block Adaptive Filter 58

6 Hirschman Optimal Transform Block LMS Algorithm 68

6.1 Convolution Using the HOT . 68

6.2 Development of the Basic Algorithm 74

6.3 Computational Complexity Analysis 77

6.4 Convergence Analysis in the Time Domain 79

6.5 Convergence Analysis in the HOT Domain 82

7 HOT DFT Block LMS Algorithm 94

7.1 Development of the HOT DFT Block LMS Algorithm 94

7.2 Computational Cost of the HOT DFT Block LMS Algorithm 100

7.3 Convergence Analysis of the HOT DFT LMS Algorithm 101

7.4 Simulation of the HOT DFT Block LMS Algorithm 104

8 Conclusions and Recommendations for Future Research 110

8.1 Conclusions . 110

8.2 Recommendations for Future Research 113

vii

List of Tables

5.1 Coloring filter impulse response . 66

8.1 Adaptive LMS algorithms and their computational complexities. . . . 114

viii

List of Figures

2.1 FIR adaptive filer block diagram. 6

2.2 Schematic diagram of the transform domain LMS algorithm. 12

4.1 The Relation between HOT and DFTs of the polyphase components. 33

5.1 Plot of the second term of the Hilbert-Schmidt norm of R− R̃ versus

N for r(k) = 1/k2. 46

5.2 Image representation of the HOT autocorrelation matrix RH with K = 8. 51

5.3 Image representation of the HOT autocorrelation matrix RH with K =

16. 52

5.4 Learning curves for the LMS and HOT LMS algorithms. 53

5.5 learning curves for the LMS and self-orthogonalizing HOT LMS algo-

rithms. 57

5.6 Multiplication counts per sample for the SOBAF and SOHBAF. The

filter length at which the SOHBAF becomes more efficient than the

SOBAF is about 7000. 62

5.7 Learning curves for the LMS, SOBAF, SOHBAF, and DFT block LMS

algorithms. The filter length was 64 and the block length for the SO-

HBAF filter was 64. 63

ix

5.8 Learning curves for the LMS, SOBAF, SOHBAF, and DFT block LMS

algorithms. The filter length was 256 and the block length for the

SOHBAF filter was 256. 64

5.9 Learning curves for the LMS, SOBAF, SOHBAF, and DFT block LMS

algorithms after the correlation parameter ρ was changed to 0.8. The

filter length was 256 and the block length for the SOHBAF filter was

256. 65

5.10 Frequency response of the coloring filter. 66

5.11 Learning curves for the SOBAF, SOHBAF, and DFT block LMS algo-

rithms. The filter length was 256 and the block length for the SOHBAF

filter was 256. 67

6.1 HOT block LMS adaptive filter. 76

6.2 Multiplication counts for both the DFT block and HOT block LMS

algorithms. 78

6.3 Learning curves of the DFT and HOT block LMS algorithms with the

conventional LMS filter. 81

6.4 Three-dimensional representation of L16. 91

6.5 Three-dimensional representation of L32. 92

6.6 Learning curves of the LMS, DFT block LMS, and HOT block LMS

algorithms. K = 16. 93

7.1 Ratio between the number of multiplications required for the HOT

DFT and the DFT block LMS algorithms. 101

7.2 Learning curves for the LMS, HOT DFT block LMS, and DFT block

LMS algorithms. N = 4 and K = 3. ρ = 0.9. 105

x

7.3 Learning curves for the LMS, HOT DFT block LMS, and DFT block

LMS algorithms. N = 50 and K = 10. ρ = 0.9. 106

7.4 Learning curves for the LMS, HOT DFT block LMS, and DFT block

LMS algorithms. N = 50 and K = 10. ρ = 0.8. 107

7.5 Frequency response of the coloring filter. 108

7.6 Learning curves for the LMS, HOT DFT block LMS, and DFT block

LMS algorithms. N = 50 and K = 10. 109

xi

Chapter 1

Introduction

1.1 Overview

Least mean square (LMS) adaptive filters, as investigated by Widrow and Hoff in

1960 [1], find applications in many areas of digital signal processing including channel

equalization, system identification, adaptive antennas, spectral line enhancement,

echo interference cancelation, active vibration and noise control, spectral estimation,

and linear prediction [4]. The computational burden and slow convergence speed of

the LMS algorithm can render its real time implementation infeasible. The discrete

Fourier transform (DFT) has been used to improve the computational cost [2, 3] and

the convergence speed [6] of the LMS algorithm.

The Hirschman optimal transform (HOT) is a recently developed discrete unitary

transform that uses the orthonormal minimizers of the entropy-based Hirschman un-

certainty measure [13]. This measure is different from the energy-based Heisenberg

uncertainty measure that is only suited for continuous time signals. The Hirschman

uncertainty measure uses entropy to quantify the spread of discrete-time signals in

1

time and frequency [14]. Since the HOT bases are among the minimizers of the

uncertainty measure, they have the novel property of being the most compact in

discrete-time and frequency. The fact that the HOT basis sequences have many zero-

valued samples, as well as their resemblance to the DFT basis sequences, makes the

HOT computationally attractive. Furthermore, it has been shown recently that a

thresholding algorithm using the HOT yields superior frequency resolution of a pure

tone in additive white noise to a similar algorithm based on the DFT [46].

This dissertation introduces new transform domain LMS algorithms based on the

HOT. The analyses of presented in this dissertation not only show the improvements

in the computational efficiency and convergence speed of the HOT based LMS algo-

rithms but also add more insight into the properties of the HOT and its effects on

random signals.

1.2 Original Contributions

The original contribution of this dissertation is four new transform domain LMS

algorithms. The First algorithm is the HOT LMS algorithm. This algorithm is

somewhat faster than the LMS algorithm and requires less than half the computations

of the DFT LMS algorithm. The second algorithm is the self-orthogonalizing block

HOT LMS algorithm which requires slightly more multiplications than the block

DFT LMS algorithm but converges at a faster rate. The third algorithm is the HOT

block LMS algorithm. This algorithm requires less multiplications than the LMS

and DFT block LMS algorithms. The fourth algorithm is the HOT DFT block LMS

algorithm. This algorithm is very similar to the DFT block LMS algorithm and

reduces it computational complexity by about 30% when the filter length is much

2

smaller than the block length.

These computationally efficient transform domain LMS algorithms reduce the

computational burden of the conventional LMS algorithm more than the DFT domain

LMS algorithms and hence expand the real time applications of the LMS algorithm

beyond the real time applications of the DFT domain LMS algorithms.

3

Chapter 2

Background

In this chapter, the Least Mean Square (LMS) algorithm is reviewed. The review

includes the structure of the algorithm and its statistical convergence analysis.

2.1 FIR Adaptive Filters

The general finite impulse response (FIR) adaptive filter problem can be stated as

follows: given two random signals d(n) and u(n), what is the impulse response w(n) of

an FIR filter which, when driven by u(n), will produce an output y(n) = w(n) ∗ u(n)

that is the best estimate in the mean square sense of d(n). The optimal FIR filter

can be found by minimizing the following mean square error (MSE):

ξ(n) = E
∣∣e(n)

∣∣2 = E
∣∣d(n)− w(n) ∗ u(n)

∣∣2. (2.1)

Let

u(n) =

[
u(n) u(n− 1) · · · u(n−N + 1)

]T

(2.2)

4

and

w(n) =

[
w0(n) w1(n) · · · wN−1(n)

]T

(2.3)

be the tap-input and tap-weight vectors, respectively. The optimal tap-weight vector

can be found from solving

R(n)w(n) = rdu(n), (2.4)

where R(n) = Eu∗(n)uT (n) is the autocorrelation matrix of the input vector and

rdu(n) = E d(n)u∗(n) is the cross-correlation vector between the desired and input

signals [41]. If all of the involved signals are jointly wide-sense stationary (WSS),

then the optimal filter will be time-invariant. Equation (2.4) is called Wiener-Hoff

equation and the optimal filter is called the Wiener filter.

2.2 The LMS Algorithm

An adaptive filter based on equation (2.4) is not practical in most applications, since

the matrices R(n) and rdu(n) are not known in advance and inverting R(n) requires a

great deal of computations. To avoid any matrix inversion, the adaptive filter weight

vector can be updated according the steepest decent algorithm according to [41]

w(n + 1) = w(n) + µE u∗(n) e(n), (2.5)

where µ is the step size that controls the convergence of the algorithm. If Ee(n)u∗(n)

is replaced by the simple estimate u∗(n)e(n), then we have the stochastic update

equation [41]

w(n + 1) = w(n) + µu∗(n) e(n), (2.6)

5

which is known as the LMS [41] algorithm.

An LMS adaptive filter having N coefficients requires N multiplications and N

additions to update the filter weights. In addition, one addition is necessary to

compute the error e(n) and one multiplication is needed to form the product µe(n).

Finally, N multiplications and N − 1 additions are needed to calculate the output

of the adaptive filter. Thus a total of 2N + 1 multiplications and 2N additions per

input sample are required. Figure 2.1 shows the FIR LMS adaptive filter [41].

Figure 2.1: FIR adaptive filer block diagram.

The analysis of the LMS Adaptive filter is difficult since it is not linear. With the

initial condition w(n) = 0, the solution of equation (2.6) is [4]

w(n) = µ

n−1∑
i=−∞

u∗(i)e(i). (2.7)

6

The filter output is given by [4]

y(n) = µ

n−1∑
i=−∞

uH(i)u(i)e(i). (2.8)

From equation (2.8), the LMS adaptive filter is a complicated nonlinear filter. This

implies that the analysis of the LMS algorithm is very difficult. However, the LMS

algorithm can be analyzed under the condition of small step size for a stationary

environment, as will be explained in the next section.

2.3 Statistical LMS Theory

Let ε(n) = wo−w(n) be the error in estimating the filter weight vector, where wo is

the Wiener optimal solution of equation (2.4). The error ε(n) satisfies the stochastic

difference equation [4]

ε(n + 1) =
(
I− µu∗(n)uT (n)

)
ε(n)− µu∗(n) eo(n), (2.9)

where eo(n) is the error produced by the Wiener filter. The above equation can be

analyzed based on the following two assumptions:

I. The step size is small, such that the LMS filter acts as a lowpass filter with a

low cutoff frequency.

II. The desired response d(n) is generated from the linear regression model d(n) =

wo(n) ∗ u(n) + eo(n), where eo(n) is a white-noise process with variance Jmin

such that eo(n) is statistically independent of the input.

7

Equation (2.9) can be iteratively solved by expressing ε(n) as [4]

ε(n) = ε0(n) + ε1(n) + ε2(n) + · · · . (2.10)

Substituting equation (2.10) into equation (2.9) yields [4]

ε(n + 1) =
(
I− µR

)
ε(n)− µu∗(n) eo(n) + µP(n) ε(n), (2.11)

where P(n) = u∗(n)uT (n)−R, which leads to the following set of coupled difference

equations [4]:

εi(n) =
(
I− µR

)
εi(n) +





−µu∗(n) eo(n) if i = 0,

−µP(n) εi−1(n) if i 6= 0,

(2.12)

When µ is small, only the first term in equation (2.10) is significant and the small

step size LMS theory can be described by the difference equation [4]

ε0(n + 1) =
(
I− µR

)
ε0(n)− µu∗(n) eo(n). (2.13)

If the autocorrelation matrix is decomposed using its eigenvectors according to [41]

R = VΛVH , (2.14)

then equation (2.13) can be written as [4]

εT (n + 1) =
(
I− µΛ

)
εT (n)− µVH u∗(n) eo(n), (2.15)

8

where εT (n) = ΛHε0(n). The second order statistics of the forcing term in equation

(2.15) are given by [4]

E µVHu∗(n) eo(n) = 0, (2.16)

E µ2
(
VHu∗(n) eo(n)

)(
VHu∗(n) eo(n)

)H

= µ2Jmin Λ. (2.17)

The solution of equation (2.15) is given by [4]

εT (n + 1) =
(
I− µΛ

)n

εT (0)−
n−1∑
i=0

(
I− µΛ

)n−1−i

µVH u∗(i) eo(i). (2.18)

Equations (2.16 and 2.17 give the following second order statistics of the solution in

equation (2.18) [4]:

EεT (n) =
(
I− µΛ

)n

εT (0) (2.19)

E |εl(n)|2 = µ
Jmin

2− µλl

+ (1− µλl)
2n

(
|εl(0)|2 − µ

Jmin

2− µλl

)
. (2.20)

The most common performance measure of the LMS algorithm is the mean square

error (MSE) J(n) = E
∣∣e(n)

∣∣2. A plot of the MSE versus time is called the learning

curve. The MSE can be written as [4]

J(n) = Jmin + Tr
[
RE ε0(n) εH

0 (n)
]
. (2.21)

In terms of the eigenvalue decomposition of R, equation (2.21) can be written as

J(n) = Jmin + Tr
[
E εH

T (n)Λ εT (n)
]
, (2.22)

9

or equivalently,

J(n) = Jmin +
N∑

l=1

λl E |εl(n)|2 . (2.23)

Substituting the result of equation (2.20) into equation (2.23) gives [4]

J(n) = Jmin + µJmin

N∑

l=1

λl

2− µλl

+
N∑

l=1

λl

(
|εl(n)|2 − µ

Jmin

2− µλl

)
(1− µλl)

2n. (2.24)

The steady state MSE can be found by evaluating the MSE in equation (2.24) at

infinity [4]:

J(∞) = Jmin + µJmin

N∑

l=1

λl

2− µλl

. (2.25)

These results are subject to the assumption that the LMS algorithm is convergent. To

guarantee convergence of the LMS algorithm in the MS sense, it is generally required

that [4]

µ <
2

λmin

. (2.26)

The second term in equation (2.25) is positive, which implies that the steady state

MSE is higher than that of the Wiener filter. Therefore, in spite of the fact that the

LMS algorithm converges to the Wiener filter, the MSE of the LMS filter is higher than

that of the Wiener filter. This result is expected, since at steady state the LMS weight

estimate fluctuates about the Wiener solution. The difference between the MSE of

the LMS and Wiener filters is called the excess mean square error Jex. The percent

deviation of the steady state error of the LMS filter is called the misadjustment [4]

and is given by

M =
Jex

Jmin

= µ

N∑

l=1

λl

2− µλl

. (2.27)

10

Equation (2.24) can be used to determine the average time constant (the time

needed for the transient behavior to decay) of the LMS algorithm [4]:

τave =
N

2µ
∑N

l=1 λl

. (2.28)

Another measure of the time constant of the LMS algorithm is the time constant of

the slowest mode of the LMS filter [4], which is given by

τmax =
1

2µλmin

. (2.29)

But we have µ ∼ 2/λmax, so [4]

τmax ∼ λmax

λmin

. (2.30)

This result shows that the speed of convergence of the LMS algorithm depends on

the eigenvalue spread of the autocorrelation matrix of the input.

2.4 The Transform Domain LMS Algorithm

The speed of convergence of the LMS algorithm can be increased if the step size is

replaced by the matrix αR−1 to obtain [4]

w(n + 1) = w(n) + αR−1u∗(n) e(n). (2.31)

With this change in the LMS algorithm, (2.13) becomes [4]

ε0(n + 1) =
(
I− αR−1R

)
ε0(n)− αR−1u∗(n) eo(n). (2.32)

11

Equation 2.32 implies that the convergence of the LMS algorithm is independent

of the input statistics and that the convergence does not depend on the eigenvalue

spread that slows down the convergence of the conventional LMS algorithm. This

algorithm is known as the self-orthogonalizing LMS algorithm [40]. Upon substituting

R−1 = VΛ−1VH , equation (2.31) can be written as [4]

wT (n + 1) = wT (n) + αΛ−1u∗T (n) e(n), (2.33)

where wT (n) = VHw(n) and uT (n) = VTu(n).

Figure 2.2: Schematic diagram of the transform domain LMS algorithm.

The result in equation (2.33) means that the self-orthogonalizing LMS algorithm

can be equivalently implemented by transforming the input vector by VT and using

an individual step size for each transformed input component that is proportional

to the inverse of the corresponding eigenvalue of the autocorrelation matrix. This

12

implementation is referred to as the transform domain LMS algorithm. A schematic

of the transform domain LMS algorithm is shown in Figure 2.2.

13

Chapter 3

Review of the Transform Domain

LMS Algorithms

Although the LMS algorithm is computationally simpler than the least squares (LS)

algorithm, real time implementation may not be feasible, especially for large filter

lengths. To reduce the computational cost of the LMS filter, Ferrara proposed a

frequency domain implementation of the LMS algorithm [2]. In this algorithm, the

data is partitioned into fixed-length blocks and the weights are allowed to change

after each block is processed. This algorithm is called the block LMS algorithm. The

computational reduction in the block LMS algorithm comes from using fast DFT

convolution to calculate the convolution between the filer input and weights and the

gradient estimate. For an adaptive filter of length N , this algorithm, known as the

DFT block LMS algorithm, requires 10N log2(2N)+16N real multiplications whereas

the conventional LMS algorithm requires 2N2 + N real multiplications.

A time domain convergence analysis of the DFT block LMS algorithm was pre-

sented in [3]. It was proved that the conditions under which the block LMS and

14

conventional LMS algorithms converge in the mean are the same. It was also shown

that if the ratio between the step sizes of the block LMS algorithm and conventional

LMS algorithm equals the block length, then both algorithms will converge at the

same rate and have the same misadjustment provided that they are driven by the

same input.

The DFT block LMS algorithm is required to perform five DFTs, two of them

due to the fact that the DFT can perform circular convolution and the estimation

of the gradient requires linear convolution instead. The DFT block algorithm is also

referred to as the constrained DFT block LMS filter, since the two additional DFTs

are needed to constrain the gradient. Mansour, et. al., removed this constraint to

save two DFT computations [24]. This algorithm is called the unconstrained DFT

block LMS algorithm. This block LMS algorithm was proposed for applications that

require adaptive filters of order up to a few thousands, such as sonar signal processing

and echo cancelation. It was shown that with the constraint removed, the algorithm

can still converge to the Wiener solution under certain conditions.

The LMS algorithm is known to have low convergence speed when driven by col-

ored input. In [5], it was shown that for stationary data with small step size, the speed

of convergence of the LMS algorithm is dependent on the ratio of the maximum to the

minimum eigenvalues (the condition number) of the input autocorrelation matrix. To

increase the convergence speed of the LMS algorithm, Narayan and Peterson proposed

the transform domain LMS (TRLMS) algorithm [6, 7]. This algorithm uses a fixed

transform such as the DFT or discrete cosine transform (DCT) to whiten the input

and reduce the condition number of the autocorrelation matrix. The tap-input vec-

tor is transformed into another vector which is then used to feed the LMS algorithm.

15

Each filter weight is assigned an individual step size that is inversely proportional to

the power of the corresponding component of the transformed vector.

The work in [6, 7] did not include any convergence analysis or an algorithm to

estimate the powers needed for the step sizes. Nevertheless, it was shown that with a

properly chosen transform, a reduction in the condition number can be expected. The

performance of the TRLMS algorithm was presented for the first time in [8]. It was

shown that the MSE of the Wiener filter in the transform domain is the same as the

time domain Wiener filter MSE. Also, it was shown that the convergence speed and

steady state MSE of the TRLMS and LMS algorithms are the same if the TRLMS

algorithm is implemented with a constant convergence factor. It was explained in

[8] that if the transform domain correlation matrix is approximately diagonal, then

the convergence speed of the TRLMS algorithm is improved significantly compared

to the LMS algorithm for the same steady state MSE. In [8], two methods were

proposed to estimate the diagonal elements of the transform domain autocorrelation

matrix that are needed to calculate the step sizes. In the first method, the first

row of the input autocorrelation matrix is estimated recursively using a single pole

lowpass filer. The diagonal elements are then given by the DFT of the estimated row.

The second method is based on the observation that, since the diagonal elements of

the transform domain correlation matrix are the powers of the components of the

transformed input vector, they can be estimated recursively from the transformed

input vector with a single pole lowpass filer. It was mentioned that the DFT performs

well, provided that the input autocorrelation sequence decays much faster than the

filer order. Assuming a real input, the computational complexity of the DFT LMS

algorithm is N(log2 N + 3) + 4 real multiplications. The multiplication count for the

16

DCT LMS algorithm is N(log2 N − 3/2) + 4, which is slightly less than that for the

DFT LMS algorithm, since the DCT is a real value transform.

Real Transforms such as the DCT and discrete sine transform (DST) are preferred

since they are real and thereby avoid the need for complex multiplications. This re-

sults in fewer computations than the DFT. Another real transform, called the discrete

Hartley transform (DHT) was also used in the TRLMS algorithm [10]. The running

DHT of an input u(n) is given by [10]

uDHT(n, m) =
N−1∑

k=0

u(n− k)
(
cos(

2π

N
km) + sin(

2π

N
km)

)
. (3.1)

The DHT adaptive filter was in introduced in [9]. It was used in recovering narrow-

band signals from noise contamination.

The aforementioned research results verified by theory and simulations that the

speed of convergence of any TRLMS algorithm depends on the condition number

of the correlation matrix of the transformed input. The optimal transform for the

TRLMS algorithm is the Karhunen-Loeve transform (KLT). Since the KLT is defined

in terms of the statistics of the input, it is certain that no fixed-parameter transform

will deliver optimal learning characteristic for all signals. Therefore, the choice of a

suitable transform is application dependent. After many transforms were suggested

in the literature, a comparative study was presented in [11]. The performances of

the DFT, DCT, DHT, Walsh-Hadamard transform (WHT), and power-of-2 (PO2)

transform LMS algorithms were compared and tested with different colored inputs.

The results of the simulations verified that there is no single transform that can per-

form better than the others. For example, the DFT performed best with narrowband

input whereas the DCT performed best with wideband input. Also, [11] presented

17

a novel explanation for the convergence rate improvement property of the TRLMS

algorithm. It was shown that the effect of an ideal transform on the shape of the MSE

surface is to convert the equal error contours, which are initially hyperellipses, into

hyperspheres. In [11], it was shown through simulations that the error surface theory

can only predict the overall convergence rate and it does not take into considerations

the distributions of the eigenvalues or the noise level in the desired signal.

Although most research agrees on the advantages of the transform domain LMS

algorithms, there were no analytic calculations of the asymptotic eigenvalue spread of

the transformed input vector autocorrelation matrix prior to [12], where the asymp-

totic eigenvalue spread for the DFT and DCT LMS algorithms were derived for the

case of first-order Markov input signals. The following summarizes the main results

in [12]:

I. The eigenvalue spread of the autocorrelation matrix of a first-order Markov

signal of parameter ρ ∈ [0 , 1] tends to (1 + ρ)2/(1− ρ)2 as the length of filter

increases.

II. The eigenvalue spread of the autocorrelation matrix of the same signal after

DFT and power normalization tends to (1 + ρ)/(1 − ρ) as the length of filter

increases. For a finite filter length, the eigenvalue spread is always less than

(1 + ρ)/(1− ρ).

III. The eigenvalue spread of the autocorrelation matrix of a first-order Markov

signal transformed by a DCT with power normalization tends to 1 + ρ as the

length of filter increases. For finite filter length, the eigenvalue spread is slightly

greater than 1 + ρ as the length of filter increases.

18

The TRLMS algorithm was proposed to increase the convergence speed whereas

the DFT block LMS algorithm was proposed to reduce the computational complexity

of the conventional LMS algorithm from O(N2) to O(N log2 N). These two algo-

rithms can be combined to improve the overall performance of the LMS filter. In

[19], it was explained how to improve the convergence speed of the DFT block LMS

algorithm in the context of echo cancelation such as that widely used to reduce the

echo signal in telephony systems by normalizing the power in each frequency bin. The

power in each frequency bin is estimated recursively from the transformed input vec-

tor with single a pole lowpass filer as suggested in [8]. In [19], the gradient constraint

was represented by a window function; this window function was used to force the

second half of the time domain augmented impulse response to zero in the constrained

block LMS algorithm. It was shown that the difference between the unconstrained

and constrained block LMS algorithms is dependent on the type of window that is

used. The analysis and simulations in [19] showed that, depending on the global enve-

lope of the echo path impulse response, an efficient window can be used to eliminate

two of the five DFTs without degrading the convergence performance of the adaptive

filter.

Theoretical performance analysis of the DFT block LMS algorithm with power

normalization and the unconstrained DFT block LMS algorithm with and without

power normalization was given in [25]. The autocorrelation matrices that govern the

weight updates in the frequency domain were analyzed in the time domain to conclude

the following results, all of which were expected:

I. The unconstrained DFT LMS algorithm converges to the Wiener optimal filter

in the mean for sufficiently large filter length with slightly higher misadjustment

19

than that of the constrained DFT LMS algorithm.

II. Both the unconstrained and constrained DFT block LMS algorithms with power

normalization converge faster than the conventional LMS algorithm.

III. The constrained LMS algorithm with power normalization converges slightly

faster than the unconstrained DFT approach.

The recursive least square (RLS) adaptive filters are known to have superior con-

vergence speed compared to the LMS filters at the expense of increased computational

complexity, which is of order O(N2), compared to O(N) for the LMS filter [43]. The

convergence of the RLS algorithm is consistent and does not depend on the statistics

of the input. Panda, et. al., worked on an algorithm that lay between the RLS and

the LMS algorithms in both computational complexity and performance, providing

a rate of convergence that is independent of the input signal conditioning [26]. To

make the algorithm independent of the input signal conditioning, they looked at es-

timating the autocorrelation matrix of the input and to improve the computational

complexity they used the DFT block LMS algorithm. Their algorithm is called the

self-orthogonalizing block adaptive filter (SOBAF). They did not use the well-known

unbiased autocorrelation matrix estimate [42]

1

N

N−1∑
i=0

u(i)uT (i), (3.2)

since it is not Toeplitz and its inverse can not be calculated efficiently. Instead,

they estimated the first row of the autocorrelation matrix and generated the rest of

the elements assuming that the autocorrelation matrix is symmetric and Toeplitz.

Therefore, the inverse of the estimate can be found efficiently using the Levinson

20

recursion, which requires O(N) operations per sample, or using the fast algorithm

given in [27] that requires O(log2 N) operations. Since the DFT block LMS algorithm

also requires O(log2 N) operations, the overall SOBAF requires O(log2 N) operations,

a dramatic reduction in computational load compared to the basic LMS algorithm.

Their simulations showed that the convergence of SOBAF is close to that of the ideal

KLT LMS algorithm.

DFT convolution may not necessarily be the most efficient convolution algorithm.

An efficient block LMS algorithm given in [28] employed the rectangular transform

(RT) to implement circular convolution in the block LMS filter [29]. RT convolution

is more efficient than DFT convolution up to a signal length of 420 points. However,

for applications with filter lengths of several hundreds, where efficient block LMS

algorithm is crucial, the DFT block LMS algorithm is more efficient than the RT

LMS algorithm. Another efficient block LMS adaptive filter based on the DHT was

proposed in [30], see equation (3.1). The circular convolution between u(n) and h(n)

in the DHT domain is given by [30]

(
he

DHT(k) + ho
DHT(k)

)
ue

DHT(k) +
(
he

DHT(k)− ho
DHT(k)

)
uo

DHT(k). (3.3)

This algorithm is similar to the unconstrained DFT LMS filter [24] and hence has

higher steady state mean square error than the DFT block LMS algorithm. The

convergence speed of the DHT block LMS algorithm is similar to that of the uncon-

strained DFT LMS filter and enjoys about a 30% reduction in the computational

complexity.

The computational reduction of the aforementioned block LMS algorithms comes

from fast implementation of convolution using specific transforms while keeping the

21

weights fixed in each block. As mentioned before [3], for the block LMS algorithm

to converge at the same rate as the conventional LMS algorithm, the step size of the

block LMS filter has to be scaled by the block length; this has the effect of reducing

the stability domain of the block LMS filter. In [18], Benesty and Duhamel presented

a block LMS algorithm that is mathematically equivalent to the LMS algorithm. The

algorithm is called the fast exact LMS (FELMS) algorithm. The computational sav-

ing in the FELMS algorithm comes from writing the LMS update equations in each

block and eliminating all weight vectors except the last one. This way, the compu-

tations required to calculates the weight vectors inside each block can be avoided to

improve the overall computational count. The FELMS algorithm is computationally

most efficient for small block lengths. For example, the number of multiplications

needed for a 512-point filter and a block length of 32 is 1024, 289, and 243 with the

LMS, FELMS, and DFT block LMS algorithms, respectively. The performance of the

FELMS algorithm is worse than that of the LMS algorithm when the filter and block

lengths are equal. This is opposite from the case of the DFT block LMS algorithm,

which is most efficient when the filter and block lengths are the same. In any case,

the DFT block LMS algorithm is more efficient than the FELMS algorithm.

Although the DFT block LMS algorithm with a block length smaller than the

filter order is not the most efficient, it is preferred in order to avoid undesirable exces-

sive delay in the output samples that would limit the application of the DFT block

LMS filter in some cases. To increase the computational efficiency of the block LMS

algorithm with smaller block length, Boroujeny, et. al., developed the generalized

sliding FFT (GSFFT) that computes the DFT of the current block input vector us-

ing the already computed DFT of the previous block input vector [32]. It is worth

22

mentioning that the sliding DFT is a special case of GSFFT when the input sequence

slides one sample at a time as is the case in the TRLMS algorithm [31]. It was shown

that the computational complexity of the DFT block LMS algorithm for smaller block

lengths can be improved by 30% to 70% depending on the ratio between the filter

length and block length. This improvement comes at the expense of increasing the

misadjustment, which is negligible for small block lengths.

Lee and Un provided a convergence analysis of the DFT block LMS algorithm

following a mapping of the frequency domain information to the time domain before

proceeding with the analysis of the algorithm [25]. Therefore, their analysis was

difficult to follow. Boroujeny and Chan [22] presented an equivalent analysis of the

DFT block LMS algorithm in the frequency domain. Their analysis gives better

insight into the effect of various processing components in the algorithm structure

on its convergence behavior. In addition to the conclusions of [25], they added the

following observations:

I. For both the constrained and unconstrained DFT block LMS algorithms, the

eigenvalues of all modes of convergence are asymptotically the same. This is due

to the window function that is used to extract the circular convolution samples

that correspond to linear convolution. Without this effect, the eigenvalue spread

would have been as predicted by F. Beaufays [12].

II. The constrained DFT block LMS algorithm converges slightly faster than the

unconstrained block LMS algorithm because of the window, which constrains

the weights and reduces the eigenvalue spread compared to the spread of the

unconstrained block LMS filter.

The DFT block LMS algorithm is implemented using five DFTs. Narasimha [33]

23

reduced the number of DFTs from five to three by combining the required convolution

and correlation operations into a single complex filtering process. Although the new

structure did not reduce the number of multiplications, it decreased the number of

additions. The corresponding architecture is more elegant and simpler to implement

in hardware or software compared to previous LMS implementations.

Modifications to the original TRLMS algorithm were also suggested. Ogunfunmi

and Peterson proposed a TRLMS algorithm that contained two adaptive algorithms

running at the same time [34]. The first LMS algorithm estimates the DFT using the

input signal as the desired signal and the phasor vector

u(i) =

[
1 ej 2π

N
i ej 2π

N
2i · · · ej 2π

N
(N−1)i

]T

(3.4)

as input. This algorithm requires O(N) computations per sample to estimate the

DFT of the input while the conventional DFT algorithms require O(N log2 N) com-

putations per sample. Such computational improvement is not new, since the sliding

DFT can also be used to compute the DFT with O(N) computations per sample.

All of the previously mentioned versions of the LMS algorithm used fixed step

sizes. Chao, et. al., proposed another fast adaptive filter algorithm that uses variable

step sizes [35]. They showed that there exist finite optimum update positions in the

gradient direction of the LMS algorithm and the optimum step sizes to reach these

positions are the reciprocal eigenvalues of the input autocorrelation matrix. This

algorithm is different from the previous TRLMS algorithms that used the reciprocal

of the eigenvalues as step sizes for the convergence modes of the filter. This new

algorithm uses the reciprocal of one eigenvalue as a step size before it uses another

eigenvalue in the next update. This algorithm requires good estimation of the eigen-

24

values and the gradient. They used the DCT to estimate the eigenvalues and block

averaging for better gradient estimation. The number of multiplications required is

about 11 log2 N + 12 per sample. Another transform domain variable step size LMS

algorithm was proposed in [37]. The step size for the ith frequency bin is given by

µi(n) = µ(n)/σ2
i , where µ(n) is a time-dependant step size, constant for all modes and

is called the global step size. It is chosen to be dependant on the output error of the

filter. Simulations showed that this variable step size can speed up the convergence

compared to other TRLMS algorithms.

A wavelet TRLMS algorithm was presented by Hosur and Tewfik in [38]. The algo-

rithm exploits the special sparse structure of the wavelet transform of wide classes of

correlation matrices and their Cholesky factorizations in order to compute a whiten-

ing transformation of the data in the wavelet domain and minimize the computational

complexity. They described two approaches. The first approach explicitly computes a

sparse estimate of the wavelet domain correlation matrix of the input process. It then

computes the Cholesky factorization of that matrix and uses the inverse to whiten

the input. The complexity of this approach is O(N log2
2 N). In contrast, the second

approach computes a sparse estimate of the Cholesky factorization of the wavelet

domain correlation matrix directly. This second approach has a computational com-

plexity of O(N log2 N) operations. However, it requires a more complex book keeping

procedure. Both algorithms have a convergence rate that is faster than that of the

time domain, DFT, and DCT LMS algorithms.

25

Chapter 4

Hirschman Optimal Transform

The Hirschman optimal transform (HOT) is a recently developed discrete unitary

transform that uses the orthonormal minimizers of the entropy-based Hirschman un-

certainty measure [13]. This measure is different from the energy-based Heisenberg

uncertainty measure that is only suited for continuous time signals. The fact that the

HOT basis sequences have many zero-valued samples, as well as their resemblance to

the DFT basis sequences, makes the HOT computationally attractive. This chapter

describes the mathematical theory behind the HOT.

4.1 The Phase Plane for Continuous Time Signals

Let u(t) be a signal in the space of square integrable functions L2(R). The norm of

u(t) is given by [14]

‖u‖2 =

∫

R

|u(t)|2dt. (4.1)

26

The Fourier transform of u(t) is given by [14]

uF (j ω) =

∫

R

u(t) e−jωtdt. (4.2)

The set of all points (t, ω) ∈ R2 define the phase plane. The uncertainty in position

is a measure of the duration where the signal has non-negligible energy and is defined

by [14]

σ2
t =

1

‖u‖2

∫

R

(t− t̄)2 |u(t)|2 dt, (4.3)

where

t̄ =
1

‖u‖2

∫

R

t |u(t)|2 dt. (4.4)

The uncertainty in frequency is a measure of the bandwidth where the signal has

non-negligible energy and is defined by [14]

σ2
ω =

1

‖uF‖2

∫

R

(ω − ω̄)2 |uF (jω)|2 dω, (4.5)

where

ω̄ =
1

‖uF‖2

∫

R

ω |uF (jω)|2 dω. (4.6)

A time-frequency uncertainty measure may be defined as the product of the un-

certainties in both position and frequency according to [14]

U = σ2
ω σ2

t . (4.7)

The uncertainty measure in equation (4.7) is invariant under the following operations

[14]:

27

(i) Translation u(t) → u(t− to),

(ii) Dilation u(t) → 1√
a
u(t

a
),

(iii) Modulation u(t) → ejωtu(t).

Due to the reciprocal spreading nature of the Fourier transform, no signal can have

arbitrarily small uncertainty simultaneously in time and frequency. The uncertainty

measure equation (4.7) has a lower limit of 1/4π, i.e.,

σ2
ω σ2

t ≥
1

4π
. (4.8)

The result in equation (4.8) is known as the Heisenberg-Weyl uncertainty principle

[14]. The lower limit in the Heisenberg-Weyl uncertainty principle is achieved by the

Gaussian
√

2πe−
t2

4 (4.9)

or by any composition of translation, dilation, or multiplication of the Gaussian by a

complex number of magnitude one [14].

4.2 The Phase Plane for Discrete-Time Finite Du-

ration Signals

Let u(n) be a signal in the space of square summable sequences defined on the finite

abelian group
{

0, 1, . . . , N − 1
}

. The norm of u(n) is given by [14]

‖u‖2 =
N−1∑
n=0

|u(n)|2. (4.10)

28

The Fourier transform of u(n) is given by [14]

uF (k) =
N−1∑
n=0

u(n) e−j 2π
N

kn. (4.11)

The set of all points (n, k) ∈
{

0, 1, . . . , N − 1
}2

defines the phase plane. The un-

certainty in position and frequency of discrete-time signals can be defined similarly

to continuous time signals. However, such direct extension might generate a measure

that is not invariant under translation and modulations [44]. Therefore, an alterna-

tive measure is needed for discrete-time signals. The translation and modulation of

discrete-time signals are defined follows [14]:

(i) Translation u(n) → u(〈n− no〉N) ,

(ii) Modulation u(n) → ej 2π
N

knu(n),

where 〈n〉N means n modulo N .

Entropy is a measure of how much a probability distribution is spread and is

defined as follows for a discrete-time signal with ‖u‖2 = 1 [14]:

H(u) = −
N−1∑
n=0

|u(n)|2 log |u(n)|2. (4.12)

If |u(n)|2 is considered a probability distribution, then the entropy of u is the mean

of log |u(n)|2. The entropy based uncertainty of u(n) in frequency is given by [14]

H(uF) = −
N−1∑

k=0

|uF (k)|2 log |uF (k)|2. (4.13)

29

A joint time-frequency uncertainty measure may be defined as a weighted sum of the

uncertainties in time and frequency [14]:

Hp(n) = pH(u) + (1− p)H(uF). (4.14)

For p = 1/2, equation (4.14) is known as the digital Hirschman measure [21]. The

parameter p allows for a trade-off between concentration in time and in frequency.

When p = 1, the frequency is ignored. When p = 0, the time is ignored. Before

stating the lower limit of H1/2 and the signals that achieve that limit (the minimizers),

periodization is defined [39].

Definition 1. (periodization) For N = KL, the periodization of v ∈ CK is x ∈ CN

defined as x(sK + n) = 1√
L
v(n) for 0 ≤ s ≤ L− 1 and 0 ≤ n ≤ K − 1.

The lower limit of H1/2(u) may be stated as follows [14, 39].

Conjecture 1. The minimal value of H1/2(u) is 1
2
log N . The only sequences u ∈ CN

for which H1/2(u) is minimal are obtained from the Kronecker delta by applying any

composition of periodization, translation, modulation, the DFT, or multiplication by

a complex number of magnitude 1.

The first part of Conjecture 1 is called the Hirschman uncertainty principle. The

minimizers in Conjecture 1 are different from Gaussians, which are the minimizers

of the energy based uncertainty measure [14]. The minimizers of the Hirschman

uncertainty measure H1/2(u) are of special interest since they form a basis that is

useful for representing a wide variety of signals. Based on group theory, Przebinda,

et. al., presented an original a proof of the Hirschman uncertainty principle [13].

Before the theorem is stated, some notations are quoted from [13].

30

Let A be an abelian group with respect to addition. The Heisenberg group of

degree one with coefficients in A is the group G1(A) of all matrices of the form [13]




1 x z

0 1 y

0 0 1




, x, y, z ∈ A. (4.15)

Let

χ(a) = ej 2π
N

a, a ∈ A. (4.16)

This is a unitary character of the additive group. Let L2(A) be the set of all u : A → C

that are square summable. Let

ρ(x, y, z)u(a) = χ(ay + z)u(a + x). (4.17)

Then ρ is a group homomorphism from G1(A) to the group of unitary operators in

L2(A) [13]. In simple terms, x represents translation, y represents modulation, and

z represents multiplication by a unit-magnitude constant. Consider u ∈ L2(A) with

‖u‖2 = 1 equivalent to v = λu where |λ| = 1. As H(u) = H(v) and Hp(u) = Hp(v)

for equivalent u and v, H and Hp are defined on the equivalence classes. This set of

equivalence classes, which is denoted P (A), forms a complex projective space. Now,

after listing the necessary notation, the main theorem in [13] is stated.

Theorem 1.

(a) If u ∈ P (A) then H1/2 = 1
2
log |A|.

(b) The set of all vectors u ∈ P (A) and H1/2 = 1
2
log |A| coincide with the union

31

of the orbits

ρ(x, y, z)
1√
|B|1B(B — a subgroup of A)1. (4.18)

(c) Each orbit is an orthogonal basis of L2(A).

(d) The set of vectors u ∈ P (A) and H1/2 = 1
2
log |A| for all 0 ≤ p ≤ 1 is not empty

if and only if |A| is a square. In this case, this set coincides with the orbit in

equation (4.18) for the unique subgroup B ⊆ A of cardinality |B| =
√
|A|.

Part (d) indicates that Hirschman uncertainty minimizers with H1/2 = 1
2
log |A| for

all 0 ≤ p ≤ 1 exist only when N is a perfect square. These minimizers form bases

that define a unitary transform called the Hirschman optimal transform (HOT). The

32-point HOT matrix is explicitly given below [13]:




I3×3 I3×3 I3×3

I3×3 e−j 2π
3 I3×3 e−j 2π

3
2I3×3

I3×3 e−j 2π
3

2I3×3 e−j 2π
3

4I3×3




. (4.19)

Equation (4.19) shows that the K2-point HOT is equivalent to taking the K-point

DFT of the K polyphase components of u(n) separately.

The algorithms that we proposing are best analyzed if the relation between the

HOT and DFT is presented in matrix form. This matrix form is shown in Figure 4.1,

where I0, I1,..., IK−1 are K×K2 matrices such that multiplication of a vector with Ii

produces the ith polyphase component of the vector. The matrix IK is formed from

11B is the indicator function of B.

32

I0, I1,..., IK−1, i.e.,

IK =




I0

I1

...

IK−2

IK−1




. (4.20)

Since the rows of
{
Ii

}
are taken from the rows of the K2 × K2 identity matrix,

multiplications with such matrices does not impose any computational burden. The

K2-point HOT requires fewer computations than does the K2-point DFT. The com-

putational efficiency of the HOT was used to implement fast convolution algorithms

in [15]. When K is an integer power of 2, K2 log2 K (complex) multiplications are

needed to compute the HOT, which is half the number required when computing the

DFT. For the special case K = 3, we have

Figure 4.1: The Relation between HOT and DFTs of the polyphase components.

33

I0 =




1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0




, (4.21)

I1 =




0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0




, (4.22)

I2 =




0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1




. (4.23)

The K2-point HOT matrix is denoted by H. It satisfies the following:

HHH = KIK2×K2 , (4.24)

H = HT . (4.25)

34

Chapter 5

Hirschman Optimal Transform

LMS Algorithm

HOT bases are optimally compact in time and frequency, i.e., their spread in time

is optimal without compromising their spread in frequency. The compactness of the

HOT basis in time is manifested by the many zeros in the transform. Therefore,

the HOT transform is computationally efficient [15]. The compactness in frequency

is also desirable to filter the input into disjoint frequency bands [4]. The frequency

bands of the HOT basis are wider than the DFT and DCT bands, which constitutes a

trade-off of performance against computational efficiency. In this chapter, we present

new transform domain LMS algorithms based on the HOT. Since the frequency bands

of the HOT basis are wider than those of the DFT basis, the performance of the HOT

LMS algorithms are theoretically and numerically investigated to study the trade-off

of performance against computational efficiency.

35

5.1 Development of the Basic Algorithm

Let u(n) be the filter input and u(n) be the tap-input vector. The HOT transform of

u(n) is denoted by uH(n) and the output of the filter is given by y(n) = wT
H(n)uH(n).

In the HOT LMS algorithm, the filter tap-weight vector wH(n) is updated using

wH(n + 1) = wH(n) + αΛ−1(n)u∗H(n) e(n), (5.1)

where the filter error is given by e(n) = d(n)− y(n). The diagonal matrix Λ(n) con-

tains the estimated power of the HOT coefficients and is updated using the recursion

Λ(n) = Λ(n− 1) +
1

n

(
U∗

H(n− 1)UH(n− 1)−Λ(n− 1)
)
, (5.2)

where α is a constant given by 1/2K2, K2 is the filter length, and UH(n) is a diagonal

matrix that contains the elements of uH(n). We found that the HOT of the tap-input

vector can be calculated efficiently using the following sliding HOT recursion:

uH(n) = IK




DIK−1uH(n− 1) +
(
u(n)− u(n−K2)

)
IK×K

I0uH(n− 1)

I1uH(n− 1)

...

IK−2uH(n− 1)




, (5.3)

where

D = Diag
{

1, e−j 2π
K , . . . , e−j 2π

K
(K−1)

}
. (5.4)

36

Since the rows of
{
Ii

}
are taken from the K2 ×K2 identity matrix, multiplications

with such matrices do not impose any computational burden. The sliding HOT

requires only K multiplications; it is K times more efficient than the sliding DFT,

which requires N = K2 multiplications [31].

5.2 Asymptotic Autocorrelation Matrix in the HOT

Domain

The DFT perfectly diagonalizes circulant autocorrelation matrices. In general, only

a periodic wide-sense stationary (WSS) process has such an autocorrelation matrix.

Asymptotically however, the input autocorrelation matrix in most application can be

approximated by a circulant matrix in the sense that both matrices have the same

eigenvalue distribution [8]. This result was proven by many researchers [17, 8, 22, 12],

each with a different approach. Pearl [17], for example, formed a diagonal matrix from

the diagonal elements of the DFT autocorrelation matrix and then inverse trans-

formed the resulting matrix. The resulting matrix is called the DFT autocorrelation

matrix approximation. The Hilbert-Schmidt norm1 of the difference between the au-

tocorrelation matrix and the DFT autocorrelation matrix approximation was used as

measure for the diagonalizing power of the DFT. Pearl showed that as N → ∞ this

norm goes to zero as O(1/N) for square summable autocorrelation sequences.

To investigate the decorrelation power of the HOT basis, we used the same mea-

sure. Let u(n) be a WSS random process with autocorrelation sequence r(n) and

autocorrelation matrix R. The HOT autocorrelation matrix approximation is de-

1The Hilbert-Schmidt norm of a square matrix is defined as |T|2 = 1
N

∑N−1
i=0

∑N−1
j=0 |Tij |2.

37

noted by R̃ and defined as [17]

R̃ = HSHH , (5.5)

where S is the diagonal matrix that contains the diagonal elements of the HOT

autocorrelation matrix HHRH, i.e.,

Sij =





[
HHRH

]
ij

if i = j,

0 if i 6= j,

(5.6)

where H is the HOT matrix. The (i, j)th element of R̃ is given by

R̃ij =
[
HHRH

]
ij

=
N−1∑

k=0

N−1∑

l=0

HikSklH
H
lj . (5.7)

Since the matrix S is diagonal,

R̃ij =
N−1∑

k=0

HikSkkH
H
kj. (5.8)

Substituting equation (5.6) into equation (5.8), we have that

R̃ij =
N−1∑

k=0

Hik

[
HHRH

]
kk

HH
kj. (5.9)

The diagonal elements of the HOT autocorrelation matrix are given by

[
HHRH

]
kk

=
N−1∑

l=0

N−1∑
m=0

HH
kl r(l −m) Hmk. (5.10)

38

Substituting this result in equation (5.9) gives

R̃ij =
N−1∑

k=0

N−1∑

l=0

N−1∑
m=0

HikH
H
kl r(l −m) HmkH

H
kj. (5.11)

Since the HOT matrix is symmetric, we have then that

R̃ij =
N−1∑

l=0

N−1∑
m=0

r(l −m)
N−1∑

k=0

HikH
∗
klHmkH

∗
kj. (5.12)

To find a functional form for the HOT basis, we used the periodic Kronecker delta

and periodic ramp sequences, which are defined by (0 ≤ n <
√

N)

δ(n) =





1 if n = 0,

0 otherwise,

(5.13)

s(n) = n. (5.14)

The kth HOT basis signal is given by

hk(n) =
1

4
√

N
δ(n− k) e

j 2π
N

(n−s(n))
[

k√
N

]
, (5.15)

where [x] is the largest integer function. Using equation (5.15) in equation (5.12), we

obtain

R̃ij =
1

N

N−1∑

l=0

N−1∑
m=0

r(l −m)
N−1∑

k=0

δ(i− k) e
j 2π

N
(i−s(i))

[
k√
N

]
δ(l − k) e

−j 2π
N

(l−s(l))
[

k√
N

]

× δ(m− k) e
j 2π

N
(m−s(m))

[
k√
N

]
δ(j − k) e

−j 2π
N

(j−s(j))
[

k√
N

]
, (5.16)

39

which, after routine algebra may be simplified as

R̃ij =
1

N

N−1∑

l=0

N−1∑
m=0

N−1∑

k=0

r(l −m)δ(i− k)δ(l − k)δ(m− k)

×δ(j − k) e
j 2π

N
(i−s(i)−l+s(l)+m−s(m)−j+s(j))

[
k√
N

]
. (5.17)

Since R̃ is Toeplitz and symmetric, only the first row is needed, which is given by

R̃0j =
1

N

N−1∑

l=0

N−1∑
m=0

N−1∑

k=0

r(l −m)δ(k)δ(l − k)δ(m− k)

×δ(j − k)e
j 2π

N
(−l+s(l)+m−s(m)−j+s(j))

[
k√
N

]
. (5.18)

After the change of variable k → k
√

N , equation (5.18) simplifies to

R̃0j =
1

N

N−1∑

l=0

N−1∑
m=0

r(l −m)

√
N−1∑

k=0

δ(l − k
√

N)δ(m− k
√

N)

×δ(j − k
√

N) ej 2π
N

(−l+s(l)+m−s(m)−j+s(j))k. (5.19)

But we have δ(j − k
√

N) = δ(j), so

R̃0j =
1

N
δ(j)

N−1∑

l=0

N−1∑
m=0

δ(l)δ(m)r(l −m)

√
N−1∑

k=0

ej 2π
N

(−l+s(l)+m−s(m)−j+s(j)k. (5.20)

Using the property which is only valid for periodic Kronecker delta,

δ(l)δ(m) = δ(l −m), (5.21)

40

we have that

R̃0j =
1

N
δ(j)

N−1∑

l=0

N−1∑
m=0

δ(l −m)r(l −m)

√
N−1∑

k=0

e
j 2π√

N

(m−l−j)√
N

k
. (5.22)

Using the orthogonality of the DFT basis, e.g.,

√
N−1∑

k=0

e
j 2π√

N

(m−l−j)√
N

k
=
√

N δ

(
m− l − j√

N

)
, (5.23)

the first row of R̃ is given by

R̃0j =
1√
N

δ(j)
N−1∑

l=0

N−1∑
m=0

δ(l −m)r(l −m)δ

(
m− l − j√

N

)
. (5.24)

Then equation (5.24) can be simplified as

R̃0j =
1√
N

δ(j)

{
r(−j)

(
N − j√

N

)
+ r(N − j)

(
j√
N

) }
. (5.25)

Since R̃ is Toeplitz, it follows that

R̃ii+j = R̃0j,

=
1√
N

δ(j)

{
r(−j)

(
N − j√

N

)
+ r(N − j)

(
j√
N

) }
, (5.26)

and

R̃ik =
1√
N

δ(k− i)

{
r(−(k− i))

(
N − (k − i)√

N

)
+ r(N − (k− i))

(
k − i√

N

) }
, (5.27)

41

provided that k − i ≥ 0. Since R̃ is also symmetric for real signals, we have

R̃ik = δ(k − i)

{
r(k − i) +

|k − i|
N

(
r(N − |k − i|)− r(k − i)

)}
(5.28)

for any 0 ≤ k ≤ N − 1 and 0 ≤ i ≤ N − 1. Equation (5.28) shows that the

autocorrelation matrix R̃ has many zero entries. In fact, each row has only
√

N

non-zero entries. This result is inherited from the HOT basis (where each basis signal

has the same number of zero valued samples). For N = 9, R̃ is shown explicitly in

equation (5.29).

R̃ =




r0 0 0 r−1 0 0 r−2 0 0

0 r0 0 0 r−1 0 0 r−2 0

0 0 r0 0 0 r−1 0 0 r−2

r1 0 0 r0 0 0 r−1 0 0

0 r1 0 0 r0 0 0 r−1 0

0 0 r1 0 0 r0 0 0 r−1

r2 0 0 r1 0 0 r0 0 0

0 r2 0 0 r1 0 0 r0 0

0 0 r2 0 0 r1 0 0 r0




, (5.29)

where

r0 = r(0), (5.30)

r±1 =
2r(±3) + r(∓6)

3
, (5.31)

r±2 =
2r(∓3) + r(±6)

3
. (5.32)

42

We are interested in calculating the Hilbert-Schmidt norm of R− R̃. Since Ri,j =

r(i− j), it follows that

Ri,j − R̃i,j = r(i− j)− δ(i− j)

{
r(i− j) +

|i− j|
N

(
r(N − |i− j|)− r(i− j)

)}

=
(
1− δ(i− j)

)
r(i− j)− δ(i− j)

|i− j|
N

(
r(N − |i− j|)− r(i− j)

)
.

(5.33)

Equation (5.33) is used to calculate the Hilbert-Schmidt norm of R− R̃ according to

∣∣∣R− R̃
∣∣∣
2

=
1

N

N−1∑
i=0

N−1∑
j=0

∣∣∣∣∣
(
1− δ(i− j)

)
r(i− j)−

δ(i− j)
|i− j|

N

(
r(N − |i− j|)− r(i− j)

)∣∣∣∣∣

2

. (5.34)

It can be shown that

∣∣∣∣∣
(
1− δ(i− j)

)
r(i− j)− δ(i− j)

|i− j|
N

(
r(N − |i− j|)− r(i− j)

)∣∣∣∣∣

2

=
(
1− δ(i− j)

)∣∣∣r(i− j)
∣∣∣
2

+δ(i− j)

∣∣∣∣∣
|i− j|

N

(
r(N − |i− j|)− r(i− j)

)∣∣∣∣∣

2

. (5.35)

Using equation (5.35) in equation (5.34), we obtain

∣∣∣R− R̃
∣∣∣
2

=
1

N

N−1∑
i=0

N−1∑
j=0

(
1− δ(i− j)

)∣∣∣r(i− j)
∣∣∣
2

+
1

N

N−1∑
i=0

N−1∑
j=0

δ(i− j)

∣∣∣∣∣
|i− j|

N

(
r(N − |i− j|)− r(i− j)

)∣∣∣∣∣

2

. (5.36)

43

The second term in equation (5.36) can be split into two terms according to

∣∣∣R− R̃
∣∣∣
2

=
1

N

N−1∑
i=0

N−1∑
j=0

(
1− δ(i− j)

)∣∣∣r(i− j)
∣∣∣
2

+
1

N3

N−1∑
i=0

N−1∑
j=0
j< i

δ(i− j)

∣∣∣∣∣
|i− j|

N

(
r(N − |i− j|)− r(i− j)

)∣∣∣∣∣

2

+
1

N3

N−1∑
i=0

N−1∑
j> i

δ(i− j)

∣∣∣∣∣
|i− j|

N

(
r(N − |i− j|)− r(i− j)

)∣∣∣∣∣

2

. (5.37)

By a change of variable, equation (5.37) may be further simplified as

∣∣∣R− R̃
∣∣∣
2

=
1

N

N−1∑

k=−(N−1)

(N − k)
(
1− δ(k)

)∣∣∣r(k)
∣∣∣
2

+
1

N3

N−1∑

k=0

δ(k)k2(N − k)
(
r(N − k)− r(k)

)2

+
1

N3

N−1∑

k=0

δ(k)k2(N − k)
(
r(N − k)− r(k)

)2

. (5.38)

The third term in equation (5.38) can be shown to be equal to

1

N3

N−1∑

k=0

δ(k)k2(N − k)
(
r(N − k)− r(k)

)2

=
1

N3

N−1∑

k=0

δ(k)k(N − k)2
(
r(N − k)− r(k)

)2

. (5.39)

Therefore, equation (5.38) may be rewritten as

∣∣∣R− R̃
∣∣∣
2

=
1

N

N−1∑

k=−(N−1)

(N − k)
(
1− δ(k)

)∣∣∣r(k)
∣∣∣
2

+
1

N2

N−1∑

k=0

δ(k)k(N − k)
(
r(N − k)− r(k)

)2

. (5.40)

44

The corresponding Hilbert-Schmidt norm for the DFT case is given by [17]

∣∣∣R− R̃
∣∣∣
2

=
1

N2

N−1∑

k=0

k(N − k)
(
r(k)− r(N − k)

)2

. (5.41)

The second term in equation (5.40) is almost the same as the result in equation

(5.41), except for the appearance of δ(k) in the former. Therefore, the second term

in equation (5.40) converges to zero faster than the result in equation 5.41 for square

summable autocorrelation sequences. However, the first term in equation (5.40) does

not converge to zero as N →∞. This term is plotted in Figure 5.1 for r(k) = 1/k2.

Also, we found that for the same autocorrelation sequence,

lim
N→∞

1

N

N−1∑

k=−(N−1)

(N − k)
(
1− δ(k)

)∣∣∣r(k)
∣∣∣
2

=
π4

45
. (5.42)

The reason for this nonvanishing Hilbert-Schmidt norm is the zeros in the HOT basis

which leads to many zeros in R̃ (see equation (5.29) for the case of N = 9).

The HOT does not diagonalize the autocorrelation matrix even for large filter

lengths. This result shows that the effect of the HOT on the autocorrelation matrix

is more subtle and more analysis is needed to fully understand the convergence modes

of the HOT LMS algorithm.

5.3 Convergence Analysis of the HOT LMS Adap-

tive Filter

More information can be obtained about the performance of the HOT LMS filter by

looking directly at the input autocorrelation in the HOT domain. In this section, we

45

Figure 5.1: Plot of the second term of the Hilbert-Schmidt norm of R− R̃ versus N
for r(k) = 1/k2.

present a detailed convergence analysis of the HOT LMS algorithm. we show that

the autocorrelation matrix in the HOT domain is asymptotically block diagonal and

that the HOT LMS algorithm adjusts the learning rate of each block to improve the

convergence speed of the adaptive filter as compared to the standard LMS algorithm.

The filter weight recursion can be written as

wH(n + 1) = wH(n) + αΛ−1
(
d(n)− uT

H(n)wH(n)
)

u∗H(n), (5.43)

or equivalently

εH(n + 1) =
(
IK2×K2 − αΛ−1u∗H(n)uT

H(n)
)
εH(n)− αΛ−1u∗H(n)eo(n), (5.44)

where εH(n) = wo
H−wH(n) and wo

H is the Wiener optimal filter in the HOT domain.

46

Taking the expectation of equation (5.44) and assuming that the filter weights and

the input are statistically independent (this assumption directly follow from the small

step size statistical LMS theory presented in chapter 2), the convergence of the weight

vector in the mean is governed by the recursion

EεH(n + 1) =
(
IK2×K2 − αΛ−1Eu∗H(n)uT

H(n)
)
EεH(n). (5.45)

Let H be the HOT matrix. It can be easily shown that

RH = Eu∗H(n)uT
H(n) = HHRH, (5.46)

where R = Eu∗(n)uT (n) is the autocorrelation matrix of the tap-input vector. Now

we look at the structure of RH . Let FK be the K-point DFT matrix. Then

H = IK




FK 0 · · · 0

0 FK · · · 0

...
...

. . .
...

0 0 · · · FK




IK . (5.47)

The HOT autocorrelation matrix RH can be written as

RH = IK




FH
K 0 · · · 0

0 FH
K · · · 0

...
...

. . .
...

0 0 · · · FH
K




IKRIK




FK 0 · · · 0

0 FK · · · 0

...
...

. . .
...

0 0 · · · FK




IK . (5.48)

47

Let ui(n) be the ith polyphase component of the tap-input vector. Then

u = IK




u0

u1

...

uK−1




(5.49)

and

R = IK




Eu∗0u0 Eu∗0u
T
1 · · · Eu∗0u

T
K−1

Eu∗1u
T
0 Eu∗1u

T
1 · · · Eu∗1u

T
K−1

...
...

. . .
...

Eu∗K−1u
T
0 Eu∗K−1u

T
1 · · · Eu∗K−1u

T
K−1




IK . (5.50)

Substituting equation (5.50) into equation (5.48) gives

RH = IK




FH
K 0 · · · 0

0 FH
K · · · 0

...
...

. . .
...

0 0 · · · FH
K







Eu∗0u
T
0 Eu∗0u

T
1 · · · Eu∗0u

T
K−1

Eu∗1u
T
0 Eu∗1u

T
1 · · · Eu∗1u

T
K−1

...
...

. . .
...

Eu∗K−1u
T
0 Eu∗K−1u

T
1 · · · Eu∗K−1u

T
K−1




×




FK 0 · · · 0

0 FK · · · 0

...
...

. . .
...

0 0 · · · FK




IK , (5.51)

48

or equivalently

RH = IK




FH
KEu∗0u

T
0 FK FH

KEu∗0u
T
1 FK · · · FH

KEu∗0u
T
K−1FK

FH
KEu∗1u

T
0 FK FH

KEu∗1u
T
1 FK · · · FH

KEu∗1u
T
K−1FK

...
...

. . .
...

FH
KEu∗K−1u

T
0 FK FH

KEu∗K−1u
T
1 FK · · · FH

KEu∗K−1u
T
K−1FK




IK .

(5.52)

Looking at the (i,j)th block in equation (5.52), it follows that

FH
KEu∗i u

T
j FK = FH

K

×




r(i− j) r(i− j −K) · · · r(i− j − (K − 1)K)

r(i− j + K) r(i− j) · · · r(i− j − (K − 2)K)

...
...

. . .
...

r(i− j + (K − 1)K) r(i− j + (K − 1)K) · · · r(i− j)




FK ,

which is a Toeplitz matrix asymptotically diagonalized by the DFT matrix [17]. It can

be easily verified that if each of these blocks is perfectly diagonal, then the autocor-

relation matrix RH is block diagonal. Asymptotically, the HOT LMS adaptive filter

transforms the K2 modes into K decoupled sets of modes. This result is summarized

in equation (5.53) —
{
Λi

}
contains the diagonal elements of RH :

EεH(n + 1) = EεH(n)− α




Λ−1
0 R0

H 0 · · · 0

0 Λ−1
1 R1

H · · · 0

...
...

. . .
...

0 0 · · · Λ−1
K−1R

K−1
H




EεH(n). (5.53)

49

The HOT adaptive filter is expected to have an increased convergence rate, since

it equalizes the learning rates of each block. This expectation was confirmed by

simulations. Furthermore, the diagonal elements of Λi are identical; a formal proof

of this fact is presented in the next section. This induces further reduction in the

computational complexity of the HOT adaptive filter compared to the DFT adaptive

filter since one need only to estimate the power of K HOT coefficients, whereas the

DFT adaptive filter requires estimation of the power of all the K2 DFT coefficients.

The total number of multiplications required for the HOT LMS adaptive filter is

2K2 +3K +1. For comparison, the computational complexities of the LMS and DFT

LMS adaptive filters are 2N + 1 and 5N + 1, respectively. The HOT LMS algorithm

requires less than half the number of multiplications required for the HOT LMS

algorithm and “almost” the same number of multiplications as the LMS algorithm.

The computational improvement of the HOT LMS algorithm over the DFT algorithm

comes at the cost of a reduction in performance.

The previous theoretical predictions were verified through the following simula-

tions. The matrix RH was computed for first-order Markov signals with autocorre-

lation functions given by r(k) = 0.9|k|. Figures 5.2 and 5.3 show the image repre-

sentations for RH with K = 8 and K = 16, respectively. It is evident that RH is

asymptotically block diagonal. Figures 5.2 and 5.3 indicate that the blocks of RH

are both symmetric and Toeplitz. The first property is easy to verify. The second

property is proved in the next section.

The performance of the HOT LMS adaptive filer was simulated and compared

with the performance of the standard LMS adaptive filter. The desired input was

generated using the linear model d(n) = wo(n) ∗ u(n) + eo(n), where eo(n) is the

50

Figure 5.2: Image representation of the HOT autocorrelation matrix RH with K = 8.

measurement white gaussian noise with variance 10−8. The input was a first-order

Markov signal with autocorrelation functions given by r(k) = 0.9|k|. The filter was

a 64-point lowpass filter with a cutoff frequency of π/2 rad. The learning curves of

both the LMS and HOT LMS adaptive filters are shown in Figure 5.4. It is evident

that the speed of convergence of the HOT LMS algorithm is higher than that of the

LMS algorithm.

51

Figure 5.3: Image representation of the HOT autocorrelation matrix RH with K = 16.

5.4 Self-Orthogonalizing HOT Adaptive Filter

The HOT LMS algorithm can be improved if the blocks of the HOT autocorrelation

matrix can be efficiently diagonalized. Each block in the autocorrelation matrix is

symmetric and Toeplitz. A formal proof of this fact is presented in Theorem 1

on page 54. Therefore, each block of the HOT autocorrelation matrix can be effi-

ciently diagonalized using a Levinson recursion that requires O(K2) operations or

using the technique given in [27] that requires O(K log K) operations. With this

modification, the HOT LMS algorithm becomes the self-orthogonalizing HOT LMS

algorithm. Therefore, the self-orthogonalizing HOT LMS algorithm implements the

52

Figure 5.4: Learning curves for the LMS and HOT LMS algorithms.

HOT to block-wise diagonalize the autocorrelation matrix and then uses K self-

orthogonalizing LMS sections [40] to diagonalize the blocks of the HOT autocorrela-

tion matrix. Since there are K blocks in RH , it can be efficiently diagonalized with

O(K3) or O(K2 log2 K) operations. The details of this new algorithm are described

next.

Since the HOT autocorrelation matrix RH of the tap-input vector is asymptoti-

cally block diagonal, the HOT adaptive filter convergence speed can be increased if

the step size in equation (5.1) is replaced by the inverse of RH :

wH(n + 1) = wH(n) + αR−1
H u∗H(n) e(n). (5.54)

53

Computing R−1
H is computationally expensive and is replaced by the inverse of

R̃H =




RH0 0 · · · 0

0 RH1 · · · 0

...
...

. . .
...

0 0 · · · RHK−1




, (5.55)

where RHi is the ith diagonal block of RH .

Theorem 1. The set
{
RH0,RH1, . . . ,RHK−1

}
is a set of Hermitian Toeplitz matri-

ces.

Proof: That RHi is Hermitian follows directly from the fact that RH is Hermitian.

The second part can be proved by explicitly calculating the elements of RHi. We

have

[RHi]lm = E

N−1∑

k=0

h∗iK+l(k)u(n− k)
N−1∑

k=0

hiK+m(k)u(n− k), (5.56)

where 0 ≤ l < K, 0 ≤ m < K, and hiK+l(k) is the (iK +m)th HOT basis signal given

in equation (5.15). Equation (5.56) can be simplified to

[RHi]lm =
N−1∑

k=0

N−1∑

k′=0

h∗iK+l(k)hiK+m(k′)r(k − k′). (5.57)

Substituting the HOT basis signal in equation (5.57),

[RHi]lm =
N−1∑

k=0

N−1∑

k′=0

δ(k − iK − l)e
−j 2π

N
(k−s(k))

[
iK+l√

N

]
δ(k′ − iK −m)

×e
j 2π

N
(k′−s(k′))

[
iK+m√

N

]
r(k − k′)

=
N−1∑

k=0

N−1∑

k′=0

δ(k − l)δ(k′ −m)ej 2π
N

(k′−k−s(k′)+s(k))ir(k − k′). (5.58)

54

The sums over k and k′ can be broken into four sums using k = k1K + k2 and

k′ = k′1K + k′2, where 0 ≤ k1 < K, 0 ≤ k2 < K, 0 ≤ k′1 < K, and 0 ≤ k′2 < K:

[RHi]lm =
K−1∑

k1=0

K−1∑

k2=0

K−1∑

k′1=0

K−1∑

k′2=0

δ(k1K + k2 − l)δ(k′1K + k′2 −m)

× ej 2π
N

((k′1−k1)K+k′2−k2−s(k′1K+k′2)+s(k1K+k2))ir(k − k′). (5.59)

It can easily be verified that

(k′1 − k1)K + k′2 − k2 − s(k′1K + k′2) + s(k1K + k2) = (k′1 − k1)K. (5.60)

Therefore, equation (5.59) simplifies to

[RHi]lm =
K−1∑

k1=0

K−1∑

k2=0

K−1∑

k′1=0

K−1∑

k′2=0

δ(k2 − l)δ(k′2 −m)ej 2π
K

(k′1−k1)i

× r((k1 − k′1)K + k2 − k′2)

=
K−1∑

k1=0

K−1∑

k′1=0

ej 2π
K

(k′1−k1)ir((k1 − k′1)K + l −m). (5.61)

Equation (5.61) shows that [RHi]lm depends only on l − m, or equivalently RHi is

Toeplitz. Q.E.D.

The matrices
{
RH0,RH1, . . . ,RHK−1

}
are not directly available and should be

estimated from the data. Each autocorrelation matrix is Toeplitz and estimating

its first column is not only sufficient but also computationally less expensive than

estimating all of the other columns. Let us divide uH(n) into K sections, where each

55

section corresponds to one of the K modes of the HOT adaptive filter. Thus,

uH(n) =

[
uT

H0(n) uT
H1(n) · · · uT

HK−1(n)

]T

. (5.62)

Then the first column of RHi can be estimated recursively using

pHi(n) =
n− 1

n
pHi +

1

n
u∗Hi(n)[uHi(n)]0, (5.63)

where [uHi(n)]0 is the first element of uHi(n). Each recursion requires 2K + 1 mul-

tiplications. Since there are K recursions, 2K2 + K multiplications are required

to estimates all of the K autocorrelation matrices. Each matrix can be efficiently

inverted using a Levinson recursion with K2 multiplications. The total number of

multiplications required for the self-orthogonalizing HOT LMS adaptive filter is there-

fore 2K3 + 4K2 + 2K + 1. For comparison, the computational complexities of the

LMS, DFT LMS, and HOT LMS algorithms are 2N + 1, 5N + 1, and 2K2 + 3K + 1,

respectively.

To verify the predictions in this section, the self-orthogonalizing HOT LMS al-

gorithm was simulated. The simulation was identical to the simulation of the LMS

and HOT LMS algorithms in the previous section, except that the HOT LMS al-

gorithm was replaced by the self-orthogonalizing HOT LMS algorithm. Figure 5.5,

which shows the learning curves of both the LMS and self-orthogonalizing HOT LMS

adaptive filters, depicts the substantial improvement of the self-orthogonalizing HOT

LMS algorithm as compared to the basic HOT LMS algorithm. Although the per-

formance of the self-orthogonalizing HOT LMS algorithm is greatly improved com-

pared to the HOT LMS algorithm, the self-orthogonalizing HOT LMS algorithm is

56

not computationally efficient. This is because it requires O(K3) operations and any

other transform domain LMS algorithm requires at most O(K2) operations. To im-

prove the computational efficiency of the self-orthogonalizing HOT LMS algorithm,

the block LMS algorithm [2] can be used as shown in the next section.

Figure 5.5: learning curves for the LMS and self-orthogonalizing HOT LMS algo-
rithms.

57

5.5 Self-Orthogonalizing HOT Block Adaptive Fil-

ter

To reduce the computational complexity of the self-orthogonalizing HOT LMS al-

gorithm, the computations are carried out block-by-block. This algorithm is called

the self-orthogonalizing HOT block adaptive filter (SOHBAF). Let wH(k) be the

tap-weight vector in the kth block and define the matrix

UH(k) =

[
uH(kL) uH(kL + 1) · · · uH(kL + L− 1)

]
, (5.64)

which contains the tap-input vectors in the kth block, where L is the block length.

The output of the filter in the kth block is given by

y(k) =

[
y(kL) y(kL + 1) · · · y(kL + L− 1)

]T

, (5.65)

while the filter weight vector in the kth block is given by

wH(k) =

[
wH(kL) wH(kL + 1) · · · wH(kL + L− 1)

]T

. (5.66)

We have then that

y(k) = UT
H(k)wH(k). (5.67)

Since UH(k) contains the transformed input vectors in the kth block rather than the

the input vectors in the time domain, equation (5.67) is not a convolution and hence

can not be efficiently calculated using the DFT. Let us divide UH(k) into K sections

58

that correspond to the K blocks of the HOT LMS algorithm as follows:

UH(k) =




uH0(kL) uH0(kL + 1) · · · uH0(kL + L− 1)

uH1(kL) uH1(kL + 1) · · · uH1(kL + L− 1)

...
...

. . .
...

uHK−1(kL) uHK−1(kL + 1) · · · uHK−1(kL + L− 1)




. (5.68)

Then the output is given by

y(k) =




uT
H0(kL) uT

H1(kL) · · · uT
HK−1(kL)

uT
H0(kL + 1) uT

H1(kL + 1) · · · uT
HK−1(kL + 1)

...
...

. . .
...

uT
H0(kL + L− 1) uT

H1(kL + L− 1) · · · uT
HK−1(kL + L− 1)







wH0(k)

wH1(k)

...

wHK−1(k)




,

or

y(k) =
K−1∑
i=0

[
uHi(kL) uHi(kL + 1) · · · uHi(kL + L− 1)

]T

wHi(k). (5.69)

Fortunately, each term in equation (5.69) is a convolution and can be efficiently

calculated using the DFT with 6L log2 2L + 2L multiplications and the output of

the filter can be calculated with 6KL log2 2L + 2LK multiplications. Let the ith

autocorrelation matrix in the kth block be given by RHi(k). Then the first column of

RHi(k) can be estimated by the recursion

pHi(k) =
k − 1

k
pHi(k − 1) +

1

kL

L−1∑

l=0

u∗Hi(kL + l)[uHi(kL + l)]0, (5.70)

59

or

pHi(k) =
k − 1

k
pHi(k − 1) +

1

kL

×
[

u∗Hi(kL) u∗Hi(kL + 1) · · · u∗Hi(kL + L− 1)

]




[uHi(kL)]0

[uHi(kL + 1)]0
...

[uHi(kL + L− 1)]0




. (5.71)

The second term in equation (5.71) is a convolution and can be efficiently calculated

using the DFT with 6L log2 2L + 2L multiplications. All of the K recursions can be

calculated with 6KL log2 2L + 2KL + 2K2 multiplications.

The filter weight vectors in the kth block are updated by the recursion

wH(k + 1) = wH(k) + αR̃−1
H (k)U∗

H(k)e(k), (5.72)

where e(k) is the error vector in the kth block and

R̃H(k) =




RH0(k) 0 · · · 0

0 RH1(k) · · · 0

...
...

. . .
...

0 0 · · · RHK−1(k)




. (5.73)

The recursion in equation (5.72) requires 2K3 + 6KL log2 2L + 2KL + 2K2 multipli-

cations. Therefore, the computational complexity of the SOHBAF depends on the

block length. If the block length is chosen to be K2, then the computational com-

plexity per sample is O(K log2 K). Therefore, the SOHBAF is computationally more

60

efficient than the SOBAF, which requires O(K2) operations per sample. On the other

hand, if the block length is chosen to be K, then the computational complexity per

sample is O(K2) and both algorithms have similar computational complexities.

The total number of multiplications required for the SOHBAF is found by adding

the number of multiplications required for each step. Keeping in mind that we need

to calculate the DFT of UH(k) only once and the convolutions in equation (5.69) are

convolutions between long and short sequences 2, the total number of multiplications

required for the SOHBAF is 2K3 +12.2KL log2 2L+5.4KL+4K2. The total number

of multiplications required for the SOBAF is 2K4 + 4K2 + 14L log2 2L + 6L. The

multiplication counts per sample for the SOBAF and SOHBAF are plotted in Figure

5.10. The figure shows that the filter length at which the SOHBAF becomes more

efficient than the SOBAF is about 7000.

To investigate the convergence speed of the SOHBAF algorithm, the learning

curves of the LMS, SOBAF, SOHBAF, and DFT block LMS algorithms were sim-

ulated. The desired input was generated using the linear model d(n) = wo(n) ∗
u(n) + eo(n), where eo(n) is the measurement white gaussian noise with variance

10−8. The input was a first-order Markov signal with autocorrelation function given

by r(k) = 0.9|k|. Two filter lengths were used in the simulation, 64-point and 256-

point, both lowpass with cutoff frequency π/2 rad.

Figure 5.7 shows the learning curves for the LMS, SOBAF, SOHBAF, and DFT

block LMS algorithms for the 64-point filter. It is clear that the LMS algorithm con-

verges much slower than the other algorithms. The learning curves that correspond to

the 256-point filter are shown in Figure 5.8. In both Figures, the block length used for

2This convolution can be calculated using the algorithm developed in [15] which is about 30%
more efficient than the convolution using the DFT.

61

Figure 5.6: Multiplication counts per sample for the SOBAF and SOHBAF. The filter
length at which the SOHBAF becomes more efficient than the SOBAF is about 7000.

the SOHBAF is K2. The learning curves in both figures show that the convergence

speed of the SOHBAF filter lies between that of the DFT block and SOBAF filters.

Noting that the computational complexities per sample of the SOHBAF, SOBAF,

and block DFT algorithms are O(K log2 K), O(K2), and O(log2 K), respectively,

the SOHBAF filter represents an LMS algorithm with computational complexity and

convergence speed performance lying between the SOBAF and DFT block LMS al-

gorithms.

The above simulations were repeated with r(k) = 0.8|k|. The corresponding learn-

ing curves are shown in Figure 5.9. As expected, the convergence of the LMS al-

62

Figure 5.7: Learning curves for the LMS, SOBAF, SOHBAF, and DFT block LMS
algorithms. The filter length was 64 and the block length for the SOHBAF filter was
64.

gorithm improved since the input is now less correlated. The convergence speed of

the SOBAF did not change because the SOBAF does not depend on the filter input

statistics. The convergence speed of the DFT block LMS algorithm improved a little

more than how much the convergence speed of the SOHBAF did. Therefore, the

SOHBAF also represents an LMS algorithm with sensitivity to the input statistics

lying between the SOBAF and DFT block LMS algorithms.

Another set of simulations were run with input colored by the coloring filter whose

impulse response listed in Table 5.1. The frequency response of the coloring filter

63

Figure 5.8: Learning curves for the LMS, SOBAF, SOHBAF, and DFT block LMS
algorithms. The filter length was 256 and the block length for the SOHBAF filter
was 256.

is shown in Figure 5.10.The filter was a 256-point lowpass filter with a cutoff fre-

quency of 0.8π rad. The corresponding learning curves are shown in Figure 5.11.

The SOBAF converged way much faster than the other algorithms. However, the

SOHBAF converged much better than the DFT block LMS adaptive filter with such

highly correlated input.

64

Figure 5.9: Learning curves for the LMS, SOBAF, SOHBAF, and DFT block LMS
algorithms after the correlation parameter ρ was changed to 0.8. The filter length
was 256 and the block length for the SOHBAF filter was 256.

65

Table 5.1: Coloring filter impulse response

h(1) = -0.07390498507667 = h(32)
h(2) = -0.08979904880683 = h(31)
h(3) = 0.1697858570223 = h(30)
h(4) = 0.1322851634558 = h(29)
h(5) = -0.2619159234493 = h(28)
h(6) = 0.1505798251251 = h(27)
h(7) = 0.4151743979132 = h(26)
h(8) = -0.5751693227394 = h(25)
h(9) = -0.2779895539074 = h(24)
h(10) = 0.8359508110275 = h(23)
h(11) = -0.4144632502419 = h(22)
h(12) = -0.7776864201642 = h(21)
h(13) = 1.126049898253 = h(20)
h(14) = 0.1606359395014 = h(19)
h(15) = -1.286906985691 = h(18)
h(16) = 0.7597038107278 = h(17)

Figure 5.10: Frequency response of the coloring filter.

66

Figure 5.11: Learning curves for the SOBAF, SOHBAF, and DFT block LMS algo-
rithms. The filter length was 256 and the block length for the SOHBAF filter was
256.

67

Chapter 6

Hirschman Optimal Transform

Block LMS Algorithm

In this chapter, a “HOT convolution” is derived. The result is used to develop a fast

block LMS adaptive filter, which is called the HOT block LMS adaptive filter. This

filter requires slightly less than half of the computations that are required for the

DFT block LMS adaptive filter. The convergence of the HOT block LMS adaptive

filter is investigated in both the the time and HOT domains.

6.1 Convolution Using the HOT

In this section, the “HOT convolution,” a relation between the HOT of two signals and

their circular convolution, is derived. Let u and w be two signals of length K2. The

circular convolution of the signals is y = w ? u. In the DFT domain, the convolution

is given by the pointwise multiplication of the respective DFTs of the signals, i.e.,

yF (k) = wF (k)uF (k). A similar relation in the HOT domain can be readily found

68

through the relation between the DFT and HOT. The DFT of u can be written as

uF (k) =
K2−1∑
n=0

u(n) e−j 2π
K2 kn

=
K−1∑
i=0

e−j 2π
K2 ki

K−1∑

l=0

u(lK + i) e−j 2π
K

kl. (6.1)

The signal u(lK + i), denoted by ui(l), is the ith polyphase component of u(n) with

DFT given by

uiF (k) =
K−1∑

l=0

ui(l) e−j 2π
K

kl. (6.2)

Therefore, the DFT of the signal u can be written in terms of the DFTs of the

polyphase components, or the HOT of u. The relation between the HOT and the

DFTs of the polyphase components is descried in Figure 4.1. Equation (6.1) may be

written as

uF (k) =
K−1∑
i=0

e−j 2π
K2 kiuiF (k). (6.3)

Define the diagonal matrix

Di,j(k) = Diag
{

e−j 2π
K2 ki, e−j 2π

K2 k(i+1), . . . , e−j 2π
K2 kj

}
. (6.4)

Then the DFT of the signal can be written in a matrix form

uF =
K−1∑
i=0

D0,K2−1(i)




FK

FK

...

FK




ui. (6.5)

69

The above is the desired relation between the DFT and HOT. It should be noted that

equation (6.5) represents a radix-K FFT algorithm which is less efficient than the

radix-2 FFT algorithm. Therefore, HOT convolution is expected to be less efficient

than DFT convolution. Now, we can use equation (6.5) to transform yF = wF ⊗ uF

into the HOT domain. The symbol ⊗ indicates pointwise matrix multiplication and,

throughout this discussion, pointwise matrix multiplication takes a higher precedence

than conventional matrix multiplication. We have that

K−1∑
i=0

D0,K2−1(i)




FK

FK

...

FK




yi

=
K−1∑
i=0

K−1∑
j=0

D0,K2−1(i + j)




FKwi

FKwi

...

FKwi




⊗




FKuj

FKuj

...

FKuj




. (6.6)

The above matrix equation can be separated into a system of K equations

K−1∑
i=0

DrK,(r+1)K−1(i)FKyi =
K−1∑
i=0

K−1∑
j=0

DrK,(r+1)K−1(i + j) (FKwi)⊗ (FKwj) , (6.7)

where r = 0, 1, . . . , K − 1. Since

DrK,(r+1)K−1(i) = e−j 2π
K

riD0,K−1(i), (6.8)

70

the HOT of the output can be obtained by solving the following set of K matrix

equations:

K−1∑
i=0

e−j 2π
K

riD0,K−1(i)FKyi =
K−1∑
i=0

K−1∑
j=0

e−j 2π
K

r(i+j)D0,K−1(i+j) (FKwi)⊗(FKuj) . (6.9)

Since the DFT matrix is unitary, the solution of equation (6.9) can be expressed as

D0,K−1(s)FKys =
1

K

K−1∑
r=0

K−1∑
i=0

K−1∑
j=0

ej 2π
K

r(s−(i+j))D0,K−1(i+j) (FKwi)⊗(FKuj) , (6.10)

where

FKys =
1

K

K−1∑
r=0

K−1∑
i=0

K−1∑
j=0

ej 2π
K

r(i+j−s)D0,K−1(i + j − s) (FKwi)⊗ (FKuj) . (6.11)

Moreover, as
K−1∑
r=0

ej 2π
K

r(i+j−s) = Kδ(i + j − s), (6.12)

where δ(n) denotes the periodic Kronecker delta of periodicity K, equation (6.11) can

be simplified to

FKys =
K−1∑
i=0

K−1∑
j=0

δ(i + j − s)D0,K−1(i + j − s) (FKwi)⊗ (FKuj) , (6.13)

where s = 0, 1, 2, . . . , K−1. The pointwise matrix multiplication in equation equation

(6.13) can be converted into conventional matrix multiplication if we define Wi as

the diagonal matrix for FKwi. We have then that

FKys =
K−1∑
i=0

K−1∑
j=0

δ(i + j − s)D0,K−1(i + j − s)WiFKuj. (6.14)

71

Combining the above K equations into one matrix equation, the HOT convolution

can be written as




FKy0

FKy1

FKy2

...

FKyK−2

FKyK−1




=




W0 DWK−1 DWK−2 · · · DW2 DW1

W1 W0 WK−1 · · · DW3 DW2

W2 W1 W0 · · · DW4 DW3

...
...

...
. . .

...
...

WK−2 WK−3 WK−4 · · · W0 DWK−1

WK−1 WK−2 WK−3 · · · W1 W0







FKu0

FKu1

FKu2

...

FKuK−2

FKuK−1




(6.15)

where

D = Diag
{

1, e−j 2π
K , . . . , e−j 2π

K
(K−1)

}
. (6.16)

Notice that the square matrix in equation (6.15) is arranged in a block Toeplitz

structure.

A better understanding of this result may be obtained by comparing equation

(6.15) with the K-point circular convolution




y0

y1

y2

...

yK−2

yK−1




=




w0 wK−1 wK−2 · · · w2 w1

w1 w0 wK−1 · · · w3 w2

w2 w1 w0 · · · w4 w3

...
...

...
. . .

...
...

wK−2 wK−3 wK−4 · · · w0 wK−1

wK−1 wK−2 wK−3 · · · w1 w0







u0

u1

u2

...

uK−2

uK−1




. (6.17)

The square matrix in equation (6.17) is also Toeplitz. However, equation (6.17) is

72

a pure time domain result, whereas equation (6.15) is a pure HOT domain relation,

which may be interpreted in terms of both the time domain and the DFT domain

features. This fact can be explained in terms of fact that the HOT basis is optimal in

the sense of the entropic joint time-frequency uncertainty measure Hp(u) = pH(u) +

(1 − p)H(uF) for all 0 ≤ p ≤ 1. Before moving on to the computational complexity

analysis of HOT convolution, we make the same observations about the term DFKwi

appearing in equation (6.15). This term is the complex conjugate of the DFT of the

upside down flipped ith polyphase component of w.

It should be noted that equation (6.15) does not show explicitly the HOT of u(n)

and w(n). However, the DFT of the polyphase components that are shown explicitly

in equation (6.15) are related to the HOT of the corresponding signal as shown in

Figure. 4.1. For example, the 0th polyphase component of the output is given by

y0(k) = F−1
K I0wH(k)⊗ I0uH(k) + F−1

K D
K−1∑
i=1

IK−iwH(k)⊗ IiuH(k). (6.18)

Next, we examine the computational complexity of HOT convolution. To find the

HOT of the two signals w and u, 2K2log2K multiplications are required. Multipli-

cation with the diagonal matrix D requires K(K − 1) multiplications. Finally, the

matrix multiplication requires K3 scalar multiplications. Therefore, the total number

of multiplications required is 2K2log2K + K3 + K2 −K. Thus, computation of the

output y using the HOT requires K3 + 3K2log2K + K3 + K2 − K multiplications,

which is more than 6K2log2K + K2 as required by the DFT. When it is required to

calculate only one polyphase component of the output, only K2+2K2log2K+Klog2K

multiplications are necessary. Asymptotically in K, we see that the HOT could be

three times more efficient than the DFT.

73

6.2 Development of the Basic Algorithm

In the block adaptive filter, the adaptation proceeds block-by-block with the weight

update equation

w(k + 1) = w(k) +
µ

L

L−1∑
i=0

u(kL + i)e(kL + i), (6.19)

where d(n) and y(n) are the desired and output signals, respectively, u(n) is the

tap-input vector, L is the block length or the filter length, and e(n) = d(n)− y(n) is

the filter error. The DFT is commonly used to efficiently calculate the output of the

filter and the sum in the update equation. Since the HOT is more efficient than the

DFT when it is only required to calculate one polyphase component of the output,

the block LMS algorithm equation (6.19) is modified such that only one polyphase

component of the error in the kth block is used to update the filter weights. For

reasons that will become clear later, the filter length L is chosen such that L = K2/2.

With this modification, equation (6.19) becomes

w(k + 1) = w(k) +
2µ

K

K/2−1∑
i=0

u(kL + iK + j)e(kL + iK + j). (6.20)

Since the DFT is most efficient when the length of the filter is equal to the block

length [2], this will be assumed in equation (6.20). The parameter j determines

which polyphase component of the error signal is being used in the adaptation. This

parameter can be changed from block to block. If j = 0, the output can be computed

using the HOT as in equation (6.18). A second convolution is needed to compute

the sum in equation (6.20). This sum contains only one polyphase component of the

74

error. If this vector is up-sampled by K, the sum is just a convolution between the

input vector and the up-sampled error vector. Although all the polyphase components

are needed in the sum, the convolution can be computed by the HOT with the same

computational complexity as the first convolution since only one polyphase component

of the error vector is non-zero.

The block adaptive filter that implements the above algorithm is called the HOT

block LMS adaptive filter and is shown in Figure 6.1. The complete steps of this new,

efficient, adaptive algorithm are summarized below:

(a) Append the weight vector with K2/2 zeros (the resulting vector is now K2

points long as required in the HOT definition) and find its HOT.

(b) Compute the HOT of the input vector

[
u

(
(k − 1)K2

2

)
· · · u

(
kK2

2

)
u

(
kK2

2
+ 1

)
· · · u

(
(k + 1)K2

2
− 1

)]T

.

(6.21)

Note that this vector contains the input samples for the current and previous

blocks.

(c) Use the inverse HOT and equation (6.15) to calculate the jth polyphase com-

ponent of the circular convolution. The jth polyphase component of the output

can be found by discarding the first half of the jth polyphase component of the

circular convolution.

(d) Calculate the jth polyphase component of the error, insert a block of K/2 zeros,

up-sample by K, then calculate its HOT.

(e) Circularly flip the vector in (b) and then compute its HOT.

75

(f) Compute the sum in the update equation using equation (6.15). This sum is

the first half of the elements of the circular convolution between the vectors in

parts (e) and (d).

Figure 6.1: HOT block LMS adaptive filter.

76

6.3 Computational Complexity Analysis

In this section, we analyze the computational cost of the algorithm and compare it to

that of the DFT block adaptive algorithm. Parts (a), (b), and (e) require 3K2 log2 K

multiplications. Part (c) requires K log2 K + K2. Part (d) requires K log2 K multi-

plications, and part (f) requires K2 + K2 log2 K multiplications. The total number

of multiplications is thus 4K2 log2 K + 2K log2 K + 2K2. The corresponding DFT

block adaptive algorithm requires 10K2 log2 K + 2K2 multiplications — asymptoti-

cally more than twice as many. Therefore, by using only one polyphase component

for the adaptation in a block, the computational cost can be reduced by a factor

of 2.5. While this complexity reduction comes at the cost of not using all available

information, the proposed algorithm provides better estimates than the LMS filter.

The reduction of the computational complexity in this algorithm comes from using

the polyphase components of the input signal to calculate one polyphase component

of the output via the HOT.

It is worth mentioning that the fast exact LMS (FELMS) adaptive algorithm

[18] also reduces the computational complexity by finding the output by process-

ing the polyphase components of the input. However, the computational complexity

reduction of the FELMS algorithm is less than that found in the DFT and HOT

block adaptive algorithms because the FELMS algorithm is designed to have exact

mathematical equivalence to, and hence the same convergence properties as, the con-

ventional LMS algorithm. Comparing the HOT block LMS algorithm with the block

LMS algorithms described in Chapter 3, the HOT filter performs computationally

better.

The multiplication counts for both the DFT block and HOT block LMS algo-

77

rithms are plotted in Figure 6.2. The HOT block LMS adaptive filter is always more

efficient than the DFT block LMS adaptive filter and the asymptotic ratio between

their computational cost is almost reached at small filter lengths. The computational

complexity of the HOT filter can be further improved by relating the HOT of the

circularly flipped vector in step (e) to the HOT of the vector in step (b). Another

possibility to reduce the computational cost of the HOT block algorithm is by remov-

ing the gradient constraint in the filter weight update equation as has been done in

the unconstrained DFT block LMS algorithm [24].

Figure 6.2: Multiplication counts for both the DFT block and HOT block LMS
algorithms.

78

6.4 Convergence Analysis in the Time Domain

In this section, we analyze the convergence of the HOT block LMS algorithm in the

time domain. we assume throughout that the step size is small. The HOT block LMS

filter minimizes the cost

ξ̂ =
2

K

K
2
−1∑

i=0

∣∣∣e(kL + iK + j)
∣∣∣
2

, (6.22)

which is the average of the squared errors in the jth polyphase error component.

From statistical LMS theory [4], the block LMS algorithm can be analyzed using the

stochastic difference equation [4]

εT (k + 1) =
(
I− µΛ

)
εT (k) + φ(k), (6.23)

where

φ(k) = −µ

L
VH

L−1∑
i=0

u(kL + i) eo(kL + i) (6.24)

is the driving force of for the block LMS algorithm [4]. we found that the HOT block

LMS algorithm has the following driving force

φHOT(k) = −2µ

K
VH

K
2
−1∑

i=0

u(kL + iK + j) eo(kL + iK + j). (6.25)

It is easily shown that

EφHOT(k) = 0, (6.26)

EφHOT(k)φH
HOT(k) =

2µ2JminΛ

K
. (6.27)

79

The mean square of the lth component of equation (6.27) is given by

E |εl(k)|2 =
2µJmin

K

2− µλl

+ (1− µλl)
2k

(
|εl(0)|2 − 2µJmin

K

2− µλl

)
, (6.28)

where λl is the lth eigenvalue of the input autocorrelation matrix. Therefore, the

average time constant of the HOT block LMS algorithm is given by

τ =
L2

2µ
∑L

l=1 λl

. (6.29)

The misadjustment can be calculated directly and is given by

M =

∑L
l=1 λlE |εl(∞)|2

Jmin

. (6.30)

Using equation (6.23), one may find E|εl(∞)|2 and substitute the result into equation

(6.30). The misadjustment of the HOT block LMS filter is then given by

M =
µ

K

L∑

l=1

λl. (6.31)

Thus, the average time constant of the HOT block LMS filter is the same as that of

the DFT block LMS filter 1. However, the HOT block LMS filter has K times higher

misadjustment than the DFT block LMS algorithm 2.

The HOT and DFT block LMS algorithms were simulated using white noise in-

puts. The desired signal was generated using the linear model d(n) = wo(n) ∗ u(n) +

eo(n), where eo(n) is the measurement white gaussian noise with variance 10−4 and

1The average time constant of the DFT block LMS filter is [4] τ = L2/2µ
∑L

l=1 λl.
2The misadjustment of the DFT block LMS algorithm is [4] M = µ

K2

∑L
l=1 λl.

80

W o(z) = 1+0.5z−1−0.25z−2 +0.03z−3 +0.1z−4 +0.002z−5−0.01z−6 +0.007z−7. The

learning curves are shown in Figure 6.3 with the learning curve of the conventional

LMS algorithm. The step sizes of all algorithms were chosen to be the same. The

higher mean square error of the HOT algorithm, compared to the DFT algorithm,

shows the trade-off for complexity reduction by more than half. As expected the

HOT and DFT block LMS algorithms converge at the same rate.

Figure 6.3: Learning curves of the DFT and HOT block LMS algorithms with the
conventional LMS filter.

81

6.5 Convergence Analysis in the HOT Domain

Let u(n) be the input to the adaptive filter and

ŵ(k) =

[
w0(k) w1(k) · · · wK2

2
−1

(k)

]T

(6.32)

be the tap-weight vector of the adaptive filter, where k is the block index. Define the

extended tap-weight vector

w(k) =

[
ŵT (k) 0 0 · · · 0

]T

(6.33)

and the tap-input vector

u(k) =

[
u

(
(k − 1)K2

2

)
· · · u

(
kK2

2

)
u

(
kK2

2
+ 1

)
· · · u

(
(k + 1)K2

2
− 1

)]T

.

(6.34)

Denote the HOT transforms of u(k) and w(k) by uH(k) = Hu(k) and wH(k) =

Hw(k), respectively, where H is the HOT matrix. The 0th polyphase component of

the circular convolution of u(k) and w(k) is given by

FKy0(k) = FKw0(k)⊗ FKu0(k) + D
K−1∑
i=1

FKwK−i(k)⊗ FKui(k). (6.35)

Using FKui(k) = IiHu(k) = IiuH(k), equation (6.35) can be written in terms of the

HOT of u(k) and w(k). The result is given by

FKy0(k) = I0wH(k)⊗ I0uH(k) + D
K−1∑
i=1

IK−iwH(k)⊗ IiuH(k). (6.36)

82

The 0th polyphase component of the linear convolution of ŵ(k) and u(n), the output

of the adaptive filter in the kth block, is given by the last K/2 elements of y0(k). Let

the desired signal be d(n) and define the extended 0th polyphase component of the

desired signal in the kth block as

d0(k) =




0K
2

d̂0(k)


 . (6.37)

The extended 0th polyphase component of error signal in the kth block is given by

e0(k) =




0K
2

ê0(k)


 =




0K
2

d̂0(k)


−




0K
2
×K

2
0K

2
×K

2

0K
2
×K

2
IK

2
×K

2


F−1

K

×
[
I0wH(k)⊗ I0uH(k) + D

K−1∑
i=1

IK−iwH(k)⊗ IiuH(k)

]
. (6.38)

Multiplying equation (6.38) by the DFT matrix yields

FKe0(k) = FK




0K
2

d̂0(k)


− FK




0K
2
×K

2
0K

2
×K

2

0K
2
×K

2
IK

2
×K

2


F−1

K

×
[
I0wH(k)⊗ I0uH(k) + D

K−1∑
i=1

IK−iwH(k)⊗ IiuH(k)

]
. (6.39)

Define uc
H(k) = Huc(k), where uc(k) is the circularly shifted version of u(k). The

adaptive filter update equation in the kth block is given by

wH(k + 1) = wH(k) + µH




IK2

2
×K2

2

0K2

2
×K2

2

0K2

2
×K2

2

0K2

2
×K2

2


H−1φH(k), (6.40)

83

where φH(k) is found from




I0φH(k)

I1φH(k)

I2φH(k)

...

IK−2φH(k)

IK−1φH(k)




=




FKe0(k)

FKe0(k)

FKe0(k)

...

FKe0(k)

FKe0(k)




⊗




I0u
c
H(k)

I1u
c
H(k)

I2u
c
H(k)

...

IK−2u
c
H(k)

IK−1u
c
H(k)




, (6.41)

as

φH(k) = I−1
K




FKe0(k)

FKe0(k)

FKe0(k)

...

FKe0(k)

FKe0(k)




⊗




I0u
c
H(k)

I1u
c
H(k)

I2u
c
H(k)

...

IK−2u
c
H(k)

IK−1u
c
H(k)




. (6.42)

Finally, the HOT block LMS filter in the HOT domain can be written as

wH(k + 1) = wH(k)

+ µH




IK2

2
×K2

2

0K2

2
×K2

2

0K2

2
×K2

2

0K2

2
×K2

2


H−1I−1

K




FKe0(k)

FKe0(k)

FKe0(k)

...

IK−1e0(k)

IK−1e0(k)




⊗




I0u
c
H(k)

I1u
c
H(k)

I2u
c
H(k)

...

IK−2u
c
H(k)

IK−1u
c
H(k)




. (6.43)

84

Next, we investigate the convergence properties of equation (6.43). we assume the

following linear statistical model for the desired signal:

d(n) = wo(n) ∗ u(n) + eo(n), (6.44)

where wo is the impulse response of the Wiener optimal filter and eo(n) is the ir-

reducible estimation error, which is white noise and statistically independent of the

adaptive filter input. The above equation can be written in the HOT domain form




0K
2

d̂0(k)


 =




0K
2
×K

2
0K

2
×K

2

0K
2
×K

2
IK

2
×K

2


F−1

K

×
[
I0w

o
H(k)⊗ I0uH(k) + D

K−1∑
i=1

IK−iw
o
H(k)⊗ IiuH(k) + FKeo

0(k)

]
. (6.45)

This form will be useful to obtain the stochastic difference equation that describes

the convergence of the adaptive algorithm. Using the above equation to replace the

desired signal in equation (6.39), we have

FKe0(k) = FK




0K
2
×K

2
0K

2
×K

2

0K
2
×K

2
IK

2
×K

2


F−1

K

×
[
I0εH(k)⊗ I0uH(k) + D

K−1∑
i=1

IK−iεH(k)⊗ IiuH(k) + FKeo
0(k)

]
, (6.46)

where εH(k) is the error in the estimation of the adaptive filter weight vector, i.e.,

85

εH(k) = wo
H −wH(k). The ith block in equation (6.43) is given by

FKe0(k)⊗ Iiu
c
H(k) = Diag [Iiu

c
H(k)]FKe0(k). (6.47)

Substituting equation (6.46) into equation (6.47) yields

FKe0(k)⊗ Iiu
c
H(k) = Diag [Iiu

c
H(k)]FK




0K
2
×K

2
0K

2
×K

2

0K
2
×K

2
IK

2
×K

2


F−1

K ×

[
Diag [I0uH(k)] I0εH(k) + D

K−1∑
i=1

Diag [IK−iuH(k)] IiεH(k) + FKeo(k)

]
.(6.48)

Upon defining

Ti,j = Diag [Iiu
c
H(k)]LKDiag [IjuH(k)] , (6.49)

where

LK = FK




0K
2
×K

2
0K

2
×K

2

0K
2
×K

2
IK

2
×K

2


F−1

K , (6.50)

the ith block of equation (6.43) can be written as

FKeo(k)⊗ Iiu
c
H(k) =

[
Ti,0 Ti,K−1 Ti,K−2 · · · Ti,1

]




I0εH(k)

DI1εH(k)

DI2εH(k)

...

DIK−1εH(k)




+ Diag [Iiu
c
H(k)]LKeo(k). (6.51)

86

Using the fact that

Diag [v]RDiag [u] =
(
vuT

)⊗R, (6.52)

equation (6.49) can be written as

Ti,j =
(
Iiu

c
H(k) (IjuH(k))T

)
⊗ LK . (6.53)

Define

UK2 = H




IK2

2
×K2

2

0K2

2
×K2

2

0K2

2
×K2

2

0K2

2
×K2

2


H−1. (6.54)

Then

wH(k + 1) = wH(k)

+ µUK2I−1
K T




I0εH(k)

DI1εH(k)

DI2εH(k)

...

DIK−1εH(k)




+ µUK2I−1
K




Diag [I0u
c
H(k)]

Diag [I1u
c
H(k)]

Diag [I2u
c
H(k)]

...

Diag [IK−1u
c
H(k)]




LKeo(k).(6.55)

The matrix T can be written as

T =
(
1K×K × LK

)⊗



I0u
c
H(k) [I0uH(k)]T I0u

c
H(k) [IK−1uH(k)]T · · · I0u

c
H(k) [I1uH(k)]T

I1u
c
H(k) [I0uH(k)]T I1u

c
H(k) [IK−1uH(k)]T · · · I1u

c
H(k) [I1uH(k)]T

...
...

. . .
...

IK−1u
c
H(k) [I0uH(k)]T IK−1u

c
H(k) [IK−1uH(k)]T · · · IK−1u

c
H(k) [I1uH(k)]T




,

87

where × denotes the Kronecker product and 1K×K is the K × K matrix with all

element being equal to one. The matrix T can be written as

T =




I0u
c
H(k)

I1u
c
H(k)

...

IK−2u
c
H(k)

IK−1u
c
H(k)







I0uH(k)

IK−1uH(k)

...

I2uH(k)

I1uH(k)




T

⊗
(
1K×K × LK

)

=
(
IKuc

H(k)uT
H(k)Ic

K
T
)
⊗

(
1K×K × LK

)
, (6.56)

where

Ic
K =




I0

IK−1

...

I1




. (6.57)

Finally, the error in the estimation of the adaptive filter is given by

εH(k + 1) =

(
I− µUK2I−1

K

(
IKuc

H(k)uT
H(k)Ic

K
T
)
⊗

(
1K×K × LK

)
ID
K

)
εH(k)

−µUK2I−1
K




Diag[I0u
c
H(k)]

Diag[I1u
c
H(k)]

...

Diag[IK−2u
c
H(k)]

Diag[IK−1u
c
H(k)]




LKeo(k), (6.58)

88

where

ID
K =




I0

DI1

DI2

...

DIK−2

DIK−1




. (6.59)

Therefore, the adaptive block HOT filter convergence is governed by the matrix

Ψ = H




IK2

2
×K2

2

0K2

2
×K2

2

0K2

2
×K2

2

0K2

2
×K2

2


H−1I−1

K

(
IKEuc

H(k)uT
H(k)IcT

K

)
⊗

(
1K×K × LK

)
ID
K .

(6.60)

The structure of Ψ is now analyzed. Using the relation between the HOT and the

DFT transforms, we can write

IKuc
H =




FKuc
0

FKuc
1

...

FKuc
K−2

FKuc
K−1




. (6.61)

It can be easily shown that

FKuc
i =





FH
Kui if i = 0,

D∗FH
KuK−i if i 6= 0.

(6.62)

89

Then we have

IKuc
K =




FH
Ku0

D∗FH
KuK−1

...

D∗FH
Ku2

D∗FH
Ku1




(6.63)

and

IKuc
H(k)uT

H(k)IcT
K =




FH
Ku0

D∗FH
KuK−1

...

D∗FH
Ku2

D∗FH
Ku1







FKu0

FKuK−1

...

FKu2

FKu1




T

. (6.64)

Taking the expectation of equation (6.64) yields

IKEuc
H(k)uT

H(k)IcT
K =




FH
KEu0u

T
0 FK FH

KEu0u
T
K−1FK . . . FH

KEu0u
T
1 FK

D∗FH
KEuK−1u

T
0 FK D∗FH

KEuK−1u
T
K−1FK . . . D∗FH

KEuK−1u
T
1 FK

...
...

. . .
...

D∗FH
KEu1u

T
0 FK D∗FH

KEu1u
T
K−1FK . . . D∗FH

KEu1u
T
1 FK




.

Each block in the above equation is an autocorrelation matrix that is asymptoti-

cally diagonalized by the DFT matrix. Each block will be also pointwise multiplied

by LK . Three-dimensional representations of LK for K = 16 and K = 32 are shown

in Figures 6.4 and 6.5, respectively. The diagonal elements of LK are much higher

than the off diagonal elements. Therefore, pointwise multiplying each block in the

90

previous equation with LK makes it more diagonal. If each block is perfectly diagonal,

then IK

(
IKEuc

H(k)uT
H(k)IcT

K

)⊗ (1K×K × LK)ID
K will be block diagonal. Asymptoti-

cally the HOT block LMS adaptive filter transforms the K2 modes into K decoupled

sets of modes. The convergence rate of the HOT block LMS adaptive filter can be

increased if each block is given an individual step size that is inversely proportional

the diagonal elements of IK

(
IKEuc

H(k)uT
H(k)IcT

K

)
ID
K .

Figure 6.4: Three-dimensional representation of L16.

To numerically verify the above theoretical predictions, the performance of the

HOT block LMS adaptive filter was simulated with colored input. The input of the

adaptive filter was generated by coloring unit variance white noise using the FIR filter

91

Figure 6.5: Three-dimensional representation of L32.

H(z) = 0.1 + 0.2z−1 + 0.3z−2 + 0.4z−3 + 0.4z−4 + 0.2z−5 + 0.1z−6. The desired input

was generated using the linear model d(n) = wo(n) ∗ u(n) + eo(n), where eo(n) is the

measurement white noise with variance 10−4. The filter length was 256. The learning

curves of the LMS, DFT block LMS, and HOT block LMS algorithms are shown in

Figure 6.6. The learning curves show that the convergence rate of the HOT block

LMS filter is close to that of the DFT block LMS filter.

92

Figure 6.6: Learning curves of the LMS, DFT block LMS, and HOT block LMS
algorithms. K = 16.

93

Chapter 7

HOT DFT Block LMS Algorithm

Based on a fast HOT convolution developed by Matusiak and DeBrunner [15], another

block LMS algorithm is developed. This new block LMS algorithm is called the HOT

DFT block LMS algorithm. This new LMS algorithm assumes that the filter length is

much smaller than the block length. The computational efficiency of the HOT DFT

block LMS algorithm is verified and its convergence is analyzed.

7.1 Development of the HOT DFT Block LMS Al-

gorithm

Recall that in the block LMS algorithm there are two convolutions needed. The first

convolution is a convolution between the filter impulse response and the filter input

and needed to calculate the output of the filter in each block. The second convolution

is a convolution between the filter input and error and is needed to estimate the

gradient in the filter weight update equation. If the block length is much larger

than the filter length, then the fast convolution in [15] can be used to calculate the

94

first convolution. However, the second convolution is a convolution between two

signals of the same length and the method in [15] can not be used directly without

modification. The fast convolution in [15] is based on the overlap-add method [45].

Since the overlap-save method is more convenient in the block LMS algorithm, the

fast convolution in [15] is developed with the overlap-save method here and then

applied to the block LMS algorithm.

Let N be the filer length and L = NK be the block length, where N , L, and K

are all integers. Let

ŵ(k) =




w0(k)

w1(k)

...

wN−2(k)

wN−1(k)




(7.1)

be the filter tap-weight vector in the kth block and

u(k) =




u (kL−N + 1)

...

u (kL)

u (kL + 1)

...

u (kL + L− 1)




(7.2)

be the vector of input samples needed in the kth block. The overlap-save method

divides this vector is into K N -overlapping sections. Such sections can be formed by

95

multiplying u(k) with the following matrix:

J =




IN×N 0 0 · · · 0 0

0 IN×N 0 · · · 0 0

0 IN×N 0 · · · 0 0

0 0 IN×N · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · IN×N 0

0 0 0 · · · IN×N 0

0 0 0 · · · 0 IN×N




. (7.3)

The vector z(k) = Ju(k) will be then of length 2NK. Let zi(k) be the ith polyphase

component of z(k). Then




z0(k)

z1(k)

...

zK−2(k)

zK−1(k)




= I2NKJu(k). (7.4)

Define the extended tap-weight vector (post appended with N zeros)

w(k) =




ŵ(k)

0

...

0




. (7.5)

96

The DFT of w(k) is given by

wF (k) = F2Nw(k). (7.6)

Let eK×1 be a column vector of all ones, i.e.,

eK×1 =




1

1

...

1




. (7.7)

Then the 2NK × 2N matrix E is given by

E =




eK×1 0 · · · 0

0 eK×1 · · · 0

...
...

. . .
...

0 0 · · · eK×1




. (7.8)

Define the matrices

A =

[
0N×N IN×N

]
, (7.9)

and

G =




A 0 · · · 0

0 A · · · 0

...
...

. . .
...

0 0 · · · A




. (7.10)

According to the overlap-save method, the output of the adaptive filter in the kth

97

block

y(k) =

[
y(kL) y(kL + 1) · · · y(kL + L− 2) y(kL + L− 1)

]T

(7.11)

is given by

y(k) = GI2NKH−1
(
EwF (k)

)
⊗

(
HI2NKJu(k)

)
. (7.12)

The desired signal vector and the filter error in the kth block are given by

d(k) =

[
d(kL) d(kL + 1) · · · d(kL + L− 2) d(kL + L− 1)

]T

(7.13)

and

e(k) =

[
e(kL) e(kL + 1) · · · e(kL + L− 2) e(kL + L− 1)

]T

, (7.14)

respectively, where

e(k) = d(k)− y(k). (7.15)

The filter update equation is given by

ŵ(k + 1) = ŵ(k) +
µ

L

L−1∑
i=0




u (kL + i)

u (kL + i− 1)

...

u (kL + i−N + 2)

u (kL + i−N + 1)




e(kL + i). (7.16)

The sum in equation (7.16) can be efficiently calculated using the L-point DFTs of

98

the error vector e(k) and input vector u(k). However, the L-point DFT of u(k) is

not available and only the 2N -point DFTs of the K sections of u(k) are available.

Therefore, the sum in equation (7.16) should be divided into K sections as follows:

L−1∑
i=0




u (kL + i)

u (kL + i− 1)

...

u (kL + i−N + 2)

u (kL + i−N + 1)




e(kL + i) =

K−1∑

l=0

N−1∑
i=0




u (kL + lN + i)

u (kL + lN + i− 1)

...

u (kL + lN + i−N + 2)

u (kL + lN + i−N + 1)




e(kL + lK + i). (7.17)

For each l, the sum over i can be calculated as follows. First, form the vectors

ul(k) =

[
u(kL + lN −N) · · · u(kL + lN + N − 2) u(kL + lN + N − 1)

]T

,

(7.18)

el(k) =

[
0N×1 e(kL + lN) · · · e(kL + lN + N − 2) e(kL + lN + N − 1)

]T

.

(7.19)

Then the sum over i is just the first N elements of the circular convolution of el(k)

and circularly shifted ul(k). Therefore, the filter update equation for the HOT DFT

99

block LMS algorithm can be written as

w(k +1) = w(k)+
µ

L

K−1∑

l=0




IN×N 0N×N

0N×N 0N×N


F−1

2N

(
F2Nul(k)

)∗
⊗

(
F2Nel(k)

)
. (7.20)

7.2 Computational Cost of the HOT DFT Block

LMS Algorithm

Before looking at the convergence analysis of the new adaptive filter, we look at its

computational cost. To calculate the the output of the kth block, 2K + 1 2N -point

DFTs are needed. Therefore, (2K+1)2N log2 2N+2NK multiplications are needed to

calculate the output. To calculate the gradient estimate in the filter update equation,

2K 2N -point DFTs are required. Therefore, 6KN log2 2N + 2NK multiplications

are needed. The total multiplication count of the new algorithm is then (4K +

1)2N log2 2N + 4NK. The multiplication count for the DFT block LMS algorithm

is 10KN log2 2NK + 4NK. Therefore, as K gets larger the HOT DFT block LMS

algorithm becomes more efficient than the DFT block LMS algorithm. For example,

for N = 100 and K = 10, the HOT DFT LMS algorithm is about 30% more efficient

and for for N = 50 and K = 20 the HOT DFT LMS algorithm is about 40% more

efficient.

The ratio between the number of multiplications required for the HOT DFT block

LMS algorithm and the number of multiplications required for the DFT block LMS

algorithm is plotted in Figure 7.1 for different filter lengths. The HOT DFT block

LMS filter is always more efficient than the DFT block LMS filter and the efficiency

increases as the block length increases.

100

Figure 7.1: Ratio between the number of multiplications required for the HOT DFT
and the DFT block LMS algorithms.

7.3 Convergence Analysis of the HOT DFT LMS

Algorithm

Now the convergence of the new algorithm is analyzed. The analysis is performed in

the DFT domain. The adaptive filter update equation in the DFT domain is given

by

wF (k + 1) = wF (k) +
µ

L

K−1∑

l=0

F2N




IN×N 0N×N

0N×N 0N×N


F−1

2N

(
F2Nul(k)

)∗
⊗

(
F2Nel(k)

)
.

(7.21)

101

Let the desired signal be generated using the linear regression model

d(n) = wo(n) ∗ u(n) + eo(n), (7.22)

where wo(n) is the impulse response of the Wiener optimal filter and eo(n) is the

irreducible estimation error, which is white noise and statistically independent of the

adaptive filter input. In the kth block, the lth section of the desired signal in the DFT

domain is given by

dl(k) =

[
0N×N IN×N

]
F−1

2Nwo
F (k)⊗

(
F2Nul(k)

)
+ êo

l (k). (7.23)

Therefore, the lth section of the error is given by

el(k) =




0N×N 0N×N

0N×N IN×N


F−1

2N

(
wo

F (k)−wF (k)
)
⊗

(
F2Nul(k)

)
+ eo

l (k). (7.24)

Using equation (7.21), the error in the estimation of the adaptive filter weight vector

εF (k) = wo
F −wF (k) is updated according to

εF (k + 1) = εF (k)− µ

L

K−1∑

l=0

U
(
F2Nul(k)

)∗
⊗

(
F2Nel(k)

)
, (7.25)

where

U = F2N




IN×N 0N×N

0N×N 0N×N


F−1

2N . (7.26)

102

Taking the DFT of equation (7.24), we have that

F2Nel(k) = LεF (k)⊗
(
F2Nul(k)

)
+ F2Neo

l (k), (7.27)

where

L = F2N




0N×N 0N×N

0N×N IN×N


F−1

2N . (7.28)

Using equation (7.27), we can write

(
Ful(k)

)∗
⊗

(
Fel(k)

)
= Diag [Ful(k)]∗

(
LDiag [Ful(k)] εF (k) + Feo

l (k)
)
. (7.29)

With equation (6.52), the above equation can be simplified to

(
Ful(k)

)∗
⊗

(
Fel(k)

)
=

(
Ful(k)

)∗(
Ful(k)

)T

⊗ LεF (k) + Diag [Ful(k)]∗Feo
l (k).

(7.30)

Substituting equation (7.30) into equation (7.25), we have that

εF (k+1) =
(
I−µ

L

K−1∑

l=0

U
(
Ful(k)

)∗(
Ful(k)

)T

⊗L
)
εF (k)−µ

L

K−1∑

l=0

UDiag [Ful(k)]∗Feo
l (k).

(7.31)

Taking the expectation of the above equation

EεF (k + 1) =
(
I− µ

N
U

(
FH

2NRF2N

)⊗ L
)
EεF (k), (7.32)

which is similar to the result that corresponds to the DFT block LMS algorithm [22].

The convergence speed of the HOT DFT LMS algorithm can be increased if the

convergence moods are normalized using the estimated power of the tap-input vector

103

in the DFT domain. The complete HOT DFT block LMS weight update equation is

given by

w(k + 1) = w(k) +
µ

L

K−1∑

l=0




IN×N 0N×N

0N×N 0N×N


F−1

2NΛ−1
l (k)

(
F2Nul(k)

)∗
⊗

(
F2Nel(k)

)

(7.33)

and

Λl(k + 1) =
k − 1

k
Λl(k) +

1

kL
Diag

[(
F2Nul(k)

)∗
⊗

(
F2Nul(k)

)]
. (7.34)

7.4 Simulation of the HOT DFT Block LMS Al-

gorithm

The learning curves of the HOT DFT block LMS algorithm were simulated. The

desired input was generated using the linear model d(n) = wo(n) ∗ u(n) + eo(n),

where eo(n) is the measurement white gaussian noise with variance 10−8. The input

was a first-order Markov signal with autocorrelation function given by r(k) = ρ|k|.

The filter was lowpass with a cutoff frequency π/2 rad.

Figure 7.2 shows the learning curves for the HOT DFT block LMS filter with

those for the LMS and DFT block LMS filters for N = 4, K = 3, and ρ = 0.9. Figure

7.3 shows similar curves for N = 50, K = 10, and ρ = 0.9. Both figures show that

the HOT DFT block LMS algorithm converges at the same rate as the DFT block

LMS algorithm and yet is computationally more efficient. Figure 7.4 shows similar

curves for N = 50 and K = 10 and ρ = 0.8. As the correlation coefficient decreases

the algorithms converges faster and the HOT DFT block LMS algorithm converges

104

at the same rate as the DFT block LMS algorithm.

Figure 7.2: Learning curves for the LMS, HOT DFT block LMS, and DFT block
LMS algorithms. N = 4 and K = 3. ρ = 0.9.

Another coloring filter was also used to simulate the learning curves of the algo-

rithms. The coloring filter was a bandpass filter with H(z) = 0.1− 0.2z−1− 0.3z−2 +

0.4z−3 + 0.4z−4 − 0.2z−5 − 0.1z−6. The frequency response of the coloring filter is

shown in Figure 7.5. The learning curves are shown in Figure 7.6. The simulations

are again consistent with the theoretical predictions presented in this chapter.

105

Figure 7.3: Learning curves for the LMS, HOT DFT block LMS, and DFT block
LMS algorithms. N = 50 and K = 10. ρ = 0.9.

106

Figure 7.4: Learning curves for the LMS, HOT DFT block LMS, and DFT block
LMS algorithms. N = 50 and K = 10. ρ = 0.8.

107

Figure 7.5: Frequency response of the coloring filter.

108

Figure 7.6: Learning curves for the LMS, HOT DFT block LMS, and DFT block
LMS algorithms. N = 50 and K = 10.

109

Chapter 8

Conclusions and Recommendations

for Future Research

8.1 Conclusions

Real time implementation of LMS adaptive filters are restricted due to the high

computational cost for large filter lengths and slow convergence speed. The HOT is a

recently developed discrete unitary transform that uses the orthonormal minimizers

of the entropy-based Hirschman uncertainty measure. The fact that the HOT basis

sequences have many zero-valued samples, along with their resemblance to the DFT

basis sequences, makes the computationally efficient HOT an attractive alternative

for the DFT to improve the performance of LMS adaptive filters. This dissertation

introduces new transform domain LMS algorithms based on the HOT, the HOT LMS

algorithm, the self-orthogonalizing HOT block adaptive filter, the HOT block LMS

algorithm, and the HOT DFT LMS algorithm.

The performance of these algorithms was analyzed in detail. Since the convergence

110

speed of the HOT LMS algorithm depends directly on the HOT autocorrelation ma-

trix of the filter input, it was thoroughly investigated. The Hilbert-Schmidt norm of

the difference between the input autocorrelation matrix and the HOT autocorrela-

tion matrices approximation was calculated and used as measure for the diagonalizing

power of the HOT. This measure does not vanish as the filter length approaches in-

finity. Therefore, the HOT does not diagonalize the autocorrelation matrix even for

large filter lengths.

By looking directly at the input autocorrelation in the HOT domain, it was found

that the autocorrelation matrix in the HOT domain is asymptotically block diagonal

and that the HOT LMS algorithm adjust the learning rate of each block to improve the

convergence speed of the adaptive filter as compared to the standard LMS algorithm.

This expectation was confirmed by simulations. The total number of multiplications

required for the HOT LMS adaptive filter is 2K2 + 3K + 1, which is less than half

the multiplications required for the DFT LMS algorithm (which requires 5N + 1

multiplications) and “almost” the same as number of multiplications required for the

LMS algorithm.

It was found that each block in the HOT autocorrelation matrix is symmetric

and Toeplitz. Each block of the HOT autocorrelation matrix can be efficiently di-

agonalized using a Levinson recursion. With this modification, the HOT LMS al-

gorithm becomes the self-orthogonalizing HOT LMS algorithm. Therefore, the self-

orthogonalizing HOT LMS algorithm implements the HOT to block-wise diagonalize

the autocorrelation matrix and then uses K self-orthogonalizing LMS sections to diag-

onalize the blocks of the HOT autocorrelation matrix. Simulations showed a substan-

tial improvement of the self-orthogonalizing HOT LMS filter compared to the basic

111

HOT LMS filter. Although the performance of the self-orthogonalizing HOT LMS fil-

ter is greatly improved compared to the HOT LMS algorithm, the self-orthogonalizing

HOT LMS filter is not computationally efficient. To reduce the computational com-

plexity of the self-orthogonalzing HOT LMS algorithm, the computations are done

block-by-block. With this modification, the self-orthogonalizing HOT LMS algorithm

becomes the self-orthogonalizing HOT block adaptive filter (SOHBAF). The compu-

tational complexity of the SOHBAF depends on the block length. If the block length

is chosen to be K2, then the computational complexity per sample is O(K log2 K).

Therefore, SOHBAF is computationally more efficient than SOBAF, which requires

O(K2) operations per sample. The SOHBAF represents an LMS algorithm with com-

putational complexity, convergence speed, and sensitivity to the input statistics lying

between the SOBAF and DFT block LMS algorithms.

The “HOT convolution,” a relation between the HOT of two signals and their

circular convolution was derived. The result was used to develop a fast block LMS

adaptive filter called the HOT block LMS adaptive filter. This filter requires slightly

less than half of the multiplications that are required for the DFT block LMS adaptive

filter. The reduction in the computational complexity of the HOT block LMS comes

from using only one polyphase component of the filter error used to update the filter

weights. Convergence analysis of the HOT block LMS algorithm showed that the

average time constant is the same as that of the DFT block LMS algorithm and that

the misadjustment is K times greater than that of the DFT block LMS algorithm.

The HOT block algorithm assumes that the filter and block lengths are the same.

Based on a fast HOT convolution developed by Matusiak and DeBrunner [15], another

block HOT LMS algorithm was developed. This new block LMS algorithm assumes

112

that the filter length is much smaller than the block length. This algorithm is very

similar to the block DFT LMS algorithm and reduces the computational complexity

by about 30% when the filter length is much smaller than the block length.

The adaptive LMS algorithms presented in this dissertation and their computa-

tional complexities are summarized in Table 8.1. The third column lists the values of

K at which the corresponding algorithm becomes more efficient than the one above.

8.2 Recommendations for Future Research

Throughout the analysis and development of the HOT LMS and HOT block LMS

algorithms, it was obvious that the HOT transforms the filter input random signal

into a midpoint between the time and DFT domains, i.e., the K2-point HOT divides

a K2-point random vector into K K-point sections, where each section is transformed

to the DFT domain. This property of the HOT allowed the HOT adaptive filers to use

efficient time domain algorithms such as fast convolution and the Levinson recursion

and the DFT. Recall that the HOT basis functions are minimizers of the Hirschman

uncertainty principle with H1/2 = 1
2
log K2 for all 0 ≤ p ≤ 1. Hence they are the

most compact bases in the phase plane. There should be a connection between this

fact and the structure of random vectors in the HOT domain. This connection is

worthy of being investigated explicitly and analytically. With this investigation, the

performance of the HOT LMS algorithms could be improved or optimized for specific

applications.

The proposed transform domain LMS algorithms in this dissertation can be im-

plemented to improve the performance of many communication and control systems

where the adaptive filter is required to be large. These systems can be simulated

113

Table 8.1: Adaptive LMS algorithms and their computational complexities.

HOT LMS Filter and SOHBAF
N = K2 (filter length)
L = N (block length)

Algorithm Number of Multiplies K Comparison to the DFT block LMS
LMS 2K2 + 1
DFT LMS 5K2 + 1
HOT LMS 2K2 + 3K + 1 all K Converges faster than the LMS.

Requires less than half the multiplies.
DFT block- 20K2 log2(2K)
LMS +4K2

SOBAF 2K4 + 4K2+
14L log2(2L) + 6L

SOHBAF 2K3 + 4K2 + 5.4KL 85 Converges faster.
+12.2KL log2(2L) Requires more multiplies.

HOT Block LMS Filter
N = K2/2 (filter length)
L = K2 (block length)

Algorithm Number of Multiplies K Comparison to the DFT block LMS
LMS K2 + 1
DFT Block- 10K2 log2 K + 2K2 all K
LMS
HOT Block- 4K2 log2 K all K Requires less than half the multiplies.
LMS +2K log2 K + 2K2 K times higher misadjustment.

HOT DFT LMS Filter
N (filter length)

L = KN (block length)
Algorithm Number of Multiplies K Comparison to the DFT block LMS
LMS 2N + 1
DFT block- 10KN log2(2NK)
LMS +4NK

HOT DFT- (4K + 1)2N log2(2N) all K Converges at the same rate.
block LMS +4NK

114

with the HOT adaptive filter presented in this dissertation to explicitly verify the

performance improvement.

115

Bibliography

[1] B. Widrow and M. E. Hoff, Jr. “Adaptive switching circuit,” IRE WESCON

Conv. Rec., pt. 4 pp. 96-104, 1980.

[2] E. R. Ferrara, “Fast implementation of LMS adaptive filters,” IEEE Trans.

ASSP, vol. ASSP-28, NO. 4, Aug 1980.

[3] G. Clark, S. Mitra, and S Parker, “Block implementation of adaptive digital

filters,” IEEE Trans. ASSP, pp. 744-752,Jun 1981.

[4] Simon Haykin, Adaptive Filter Theory. Prentice Hall information and system

sciences series, Fourth edition, 2002.

[5] B. Widrow, “Stationary and nonstationary learning characteristics of the LMS

adaptive filter,” Proc. IEEE, vol. 64, pp. 1151-1162, Aug. 1976.

[6] S. Narayan, A. Peterson, M. Narasimha, “Frequency domain least-square algo-

rithm,” Proc. IEEE, vol. 69, NO. 1, pp. 124-126, Jan 1981.

[7] S. Narayan, A. Peterson, and M. Narasimha, “Transform domain LMS algo-

rithm,” IEEE Trans. ASSP, pp. 609-615, Jun 1983.

[8] J. Lee and C. K. Un, “Performance of transform-domain LMS adaptive digital

filters,” IEEE Trans. ASSP, pp. 499-510, June 1986.

116

[9] P. K. Bondyopadhyay, “Application of running Hartley transform in adaptive

digital Filtering,” Proc. IEEE, vol. 76, No. 10, pp. 1370-1372, Oct. 1988.

[10] R. N. Bracwell, “The discrete Hartley transform,” J. Opt. Soc. Amr., vol. 73,

pp. 1832-1835, Dec. 1983.

[11] D. F. Marshall, W. K. Jenkins, and J. J. Murphy, “The use of orthogonal trans-

forms for improving performance of adaptive filters,” IEEE Trans. Cir. and Sys.,

pp. 474-484, Apr 1989.

[12] F. Beaufays, “Transform-domain adaptive filters: An Analytical Approach,”

IEEE Trans. ASSP, vol. 43, NO. 2, pp. 422-431, Feb. 1995.

[13] H T. Przebinda, V. DeBrunner, and M. Özaydin, “The optimal transform for

the discrete Hirschman uncertainty principle,” IEEE Trans. Infor. Theory, pp.

2086-2090, Jul 2001.

[14] V. DeBrunner, M. Özaydin, and T. Przebinda, “Resolution in time-frequency,”

IEEE Trans. ASSP, pp. 783-788, Mar 1999.

[15] V. DeBrunner and E. Matusiak, “An algorithm to reduce the complexity re-

quired to convolve finite length sequences using the Hirschman optimal transform

(HOT),” ICASSP 2003, Hong Kong, China, pp. II-577-580, Apr 2003.

[16] E. Jacobsen and R. Lyons, “The sliding DFT,” IEEE Signal Processing Mag.,

pp. 74-80, Mar 2003.

[17] J. Pearl, “On coding and filtering stationary signals by discrete Fourier trans-

forms,” IEEE Trans. Infor. Theory, pp. 229-232, Mar 1973.

117

[18] J. Benesty and P. Duhamel, “A fast exact least mean square adaptive algorithm,”

IEEE Trans. ASSP, pp. 2904-2920, Dec 1992.

[19] Sommen, P.; van Gerwen, P.; Kotmans, H.; Janssen, A.; “Convergence analysis

of a frequency-domain adaptive filter with exponential power averaging and gen-

eralized window function,” Circuits and Systems, IEEE Transactions on, Volume

34, Issue 7, Page(s):788-798, Jul 1987.

[20] J. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal

Processing Mag., vol. 9, no. 1, pp. 14-37, Jan. 1992.

[21] I. I. Hirschman, “A note on entropy,” Amer. J. Math., vol. 79, pp. 152-156, 1957.

[22] B. Farhang-Boroujeny and Kheong Sann Chan, “Analysis of the frequency-

domain block LMS algorithm,” IEEE Trans. ASSP, pp. 2332, Aug. 2000.

[23] E. Jacobsen and R. Lyons, “The sliding DFT,” IEEE SP Mag., pp. 74-80, Mar

2003.

[24] D. Mansour and A. H. Gray, “Unconstrained frequency-domain adaptive filter,”

IEEE Trans. ASSP, pp. 726-734, Oct 1982.

[25] Jae Chon Lee; Chong Kwan Un; “Performance analysis of frequency-domain

block LMS adaptive digital filters,” Circuits and Systems, IEEE Transactions

on, Volume 36, Issue 2, Page(s):173-189, Feb. 1989.

[26] G. Panda, B. Mulgrew, C. F. N. Cowan, P. M. Grant, “A self-orthogonalizing

efficient block adaptive filter,” IEEE Trans. ASSP, VOL. ASSP-34, NO. 6, pp.

1573-1582, Dec. 1986.

118

[27] R. Kumar, “A fast algorithm for solving Toeplitz system of equations,” IEEE

Trans. ASSP, VOL. ASSP-33,pp. 254-267, Feb 1985.

[28] G. Panda, A. M. Alvarez, P. M. Grant, C. F. N. Cowan, “A transform domain

circular convolution algorithm for adaptive filtering,” IEEE Trans. ASSP, VOL.

ASSP-35, NO. 8,pp. 1217-1220, Aug. 1987.

[29] R. C. Agarwal and J. W. Cooley, “New algorithms for digital convolution,” IEEE

Trans. ASSP, VOL. ASSP-25, pp. 392-410, Oct. 1977.

[30] T. W. Wong and C. B. Kwong, “Adaptive filtering using Hartley transform and

overlap-save method,” IEEE Trans. ASSP, VOL. 39. NO. 7, July 1991.

[31] L. R. Rabiner and B. Gold, Theory and applications of Digital Signal Processing.

Englewood Cliffs, NJ: Prentice Hall, 1975.

[32] B. Farhang-Boroujeny and S. Gazor, “Generalized sliding FFT and its applica-

tions to implementation of block LMS adaptive filters,” IEEE Trans. ASSP,VOL.

42, NO. 3, pp. 532-538 March 1994.

[33] M. Narasimha,“Block adaptive filter with time-domain update using three trans-

forms,” IEEE Signal Processing Letters, VOL. 14, NO. 1, pp. 51-53, Jan 2007.

[34] A. O. Ogunfunmi and A. M. Peterson, “On the implementation of the frequency-

domain LMS adaptive filter,” IEEE Trans. ASSP, VOL. 39, NO. 5, pp. 532-538,

May 1992.

[35] J. Chao, and H. Perez, S. Tsujii, “A fast adaptive filter algorithm using eigenvalue

reciprocals,” IEEE Trans. ASSP, VOL. 38, NO. 8, pp. 1343-1352, Aug. 1990.

119

[36] S. Hosur and A. Tewfik “Wavelet transform domain adaptive FIR filtering,”

IEEE Trans. ASSP,VOL. 45, NO. 3, pp. 617-630, March 1997.

[37] R. C. Bilcu, P. Kuosmanen, K. Egiazarian. “A transformd domain LMS adaptive

filter with variable step-size,” IEEE Signal Processing Letters, vol. 9, NO. 2, pp.

51-53, Feb. 2002.

[38] S. Hosur and A. Tewfik “Wavelet transform domain adaptive FIR filtering,”

IEEE Trans. ASSP, vol. 45, NO. 3, pp. 617-630, March 1997.

[39] V. DeBrunner, M. Özaydin, and T. Przebinda, “Analysis in a finite time-

frequency plane,” IEEE Trans. ASSP, pp. 1831-1832, June 2000.

[40] Chang R. W. “A new equalizer structure for fast start-up digital communica-

tions,” Bell Syst. Tech. J., vol.50, pp. 169-2014, 1971.

[41] Monson H. Hayes, Statistical Digital Signal Processing and Modeling. Wiley

Fourth edition, 1996.

[42] K. Sam Shanmugan and A. M. Breipohl, Random Signals: Detection, Estimation

and Data Analysis. John Wiley and Sons, Fourth edition, 1988.

[43] G. C. Goodwin and R. L. Payne, Dynamic System Identification: Experiment

Design and Data Analysis. New York: Academic, 1977.

[44] P. Tay, J.P. Havlicek, and V. DeBrunner, “A novel translation and modula-

tion invariant discrete-discrete uncertainty measure,” in Proc. IEEE Int’l. Conf.

Acoust., Speech, Signal Proc., Orlando, FL, May 13-17, 2002, vol. 2, pp. 1461-

1464.

120

[45] S. Mitra, Digital Signal Processing. Mc Graw Hill, Second edition, 2000.

[46] V. DeBrunner, J. Havlicek, T. Przebinda, and M. Özaydin, “Entropy-based un-

certainty measures for L2(R)n, `2(Z), and `2(Z/NZ) with a Hirschman optimal

transform for `2(Z/NZ) ,” IEEE Trans. ASSP, pp. 2690-2696, August 2005.

121

