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CHAPTER I 
 

INTRODUCTION 

1.1 Overview 

Evolutionary algorithms (EAs) have been successfully applied to solve optimization 

problems in the fields of science and engineering. These algorithms are zero-order 

stochastic search approaches that mimic the process of natural selection to arrive at the 

optimal solutions. EAs have been an active research topic during the past few years and 

are gaining more attention especially in solving high dimensional, multimodal, 

discontinuous and/or NP-complete optimization problems. 

Generally, evolutionary algorithms are implemented as computer programs in which 

a population of candidate solutions (called individuals) evolves from generation to 

generation toward finding better solutions for a given optimization problem [1]. The first 

step in a typical evolutionary algorithm is random initialization of individuals in the 

population. This population is evaluated using the objective function(s) and a 

corresponding fitness value is assigned to each individual. The fitness of an individual 

measures how well the individual satisfies the optimality condition. Based on their fitness 

values, a number of individuals, so-called parent individuals, are selected from the 

current population. The selection can be done in several ways. One of the popular 

designs, called tournament selection, is achieved by first choosing several individuals 

randomly from the current population and then by picking the best individual out of the 

selection. The chosen parent individuals are then modified by applying genetic operators 

to form a new population called the offspring population. There are two kinds of genetic 

operators that are commonly used in evolutionary algorithms. These are crossover and 

mutation operators. In crossover operation, two parent individuals recombine to produce 

an offspring individual whose genetic information is obtained partly from the first parent 

and the remaining from the second parent. On the other hand, a mutation operator alters a 
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single individual to form an offspring individual. The new population created by applying 

genetic operations will then replace some of the poorly fit solutions in the original 

population. This process is repeated until the termination condition, which is usually the 

maximum generation number, is reached. Finally, the best found individual will be 

reported as the optimal solution. The pseudo-code for a typical evolutionary algorithm is 

shown below in Figure 1.1. 

 

Figure 1.1 Pseudo-code for a typical evolutionary algorithm 

Evolutionary algorithms are preferred than traditional search techniques as global 

optimization techniques for several reasons. The main reasons include [2]: 

A. EAs don’t require prior knowledge of the problem in order to carry out the search. 

They make random changes to their candidate solutions and then use the fitness 

function to determine whether those changes produce an improvement or not. 

Procedure for Evolutionary Algorithm 

Begin 

 0nGen ←

Initialize population 

Evaluate Population 

While (not termination_condition) do 

Begin 

Selection 

Recombination and/or Mutation 

Evaluation 

Replacement 

1nGen  nGen +←

End  

End  
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B. EAs use stochastic instead of deterministic operators and appear to be robust in 

problems where the fitness function is complex, discontinuous, noisy, time 

varying, or has many local optima.  

C. EAs operate on multiple solutions simultaneously, gathering information from a 

population of search points to direct subsequent search effort. This will make EAs 

less susceptible to the problems of local optima and noise. Most algorithms can 

only explore the solution space to a problem in only one direction at a time; and if 

the solution they discover is suboptimal the search should be repeated again.  

D. EAs are suitable for parallel evaluation of many solutions at once. As a result, 

they are particularly well-suited to solving nonlinear problems where the search 

space is very large.  

However the price to pay when using EAs is twofold. First because of their stochastic 

nature, EAs can not guarantee finding the optimal solution in every run. Secondly, the 

computational cost associated with EAs is generally very high, and a large number of 

function evaluations must be performed for a satisfying result to be found. Therefore it is 

usually advised not to use EAs whenever a deterministic optimization method can 

provide quality solutions.  

Evolutionary algorithms have been successfully applied to solve many real-world 

optimization problems. However, a significant number of these optimization problems 

have to be performed under the presence of various uncertainties and constraints and it 

has become a recent trend to devise techniques to handle these features in the 

evolutionary algorithm. 

Uncertainties are one of the two most common features in real-world optimization. In 

general, four major categories of uncertainties have been dealt with using evolutionary 

approaches. These are noise in the fitness function, perturbations in the design variables, 

approximation in the fitness function, and dynamism in the optimal solutions [3]. Noise 

and approximation introduce uncertainty in the fitness function, while perturbation brings 

uncertainty in the decision space. On the other hand, dynamic optima result in uncertainty 

in the location, height, and width of the optimal solutions through time. A significant 

number of uncertainty problems have dynamism in their optimal solutions and one focus 

of this thesis is on these types of problems.  
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Constraints are the second most common features in real-world optimization 

problems. Constraints restrict the usable regions of the decision space and impose greater 

difficulty on the optimization process. Constrained evolutionary algorithms not only have 

to find optimal solutions but also have to make sure that these solutions satisfy the 

constraints. Several researches have been done to handle constraints in evolutionary 

algorithms for single objective optimization problems. However, few researches have 

been devoted to handle constraints in multi-objective evolutionary algorithms. 

In this paper, we discuss about two major types of optimization problems - dynamic 

optimization problems (DOPs), which are common uncertainty problems in which the 

fitness function changes through time, and constrained multi-objective optimization 

problems (CMOPs), which are constrained optimization problems with a set of 

competing objectives. For each set of problems, we propose state-of-the-art evolutionary 

algorithm that will be shown to possess very promising performance.  

 

1.2 Problem Definitions 

1.2.1 Dynamic optimization problem 

A dynamic optimization problem (DOP) can be formulated as:  

 Minimize / Maximize  

 ),,...,,(),( 21 exxxfeXf n= (1.1) 

where each dimension of the search space is defined between maxmin
jjj xxx ≤≤ for 

nj ,,2,1 L= . f is the objective function to be optimized; ),...,,( 21 nxxxX = is the n-

dimensional decision vector. 

e represents the environmental state whose variation can have either periodic or 

sporadic nature. This variable can be modeled in different ways. The common method is 

to use a counter that counts the environmental state. We can also use the time variable as 

the counter for the environment. The dynamics of change can have deterministic or 

stochastic nature. So, it is common to assume stochastic nature at first and then possibly 

pick up any recurrent pattern along the evolutionary process. The use of memory also 

increases the probability of locating the optimal solution in cyclic changes.  
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1.2.2 Constrained multi-objective optimization problem 

A constrained multi-objective optimization problem (CMOP) can be mathematically 

formulated as:  

 
Minimize / Maximize  

 pixxxfxf nii ,...,2,1,),...,,()( 21 == (1.2) 

 Subject to        qixxxgxg nii ,...,1,0),...,,()( 21 =<=

mqixxxhxh nii ,...,1,0),...,,()( 21 +===

njxxx jjj ,...,2,1,maxmin =≤≤ .

There are p objective functions that are required to be optimized simultaneously. 

Each objective function )(xf i is defined on the search space nS ℜ⊆ . Usually the search 

space is an n-dimensional hyperbox in nℜ . Each dimension of the search space is 

bounded by its upper ( max
jx ) and lower ( min

jx ) limits.  

)(xgi is the ith-inequality constraint, and )(xhi is the ith-equality constraint. There are 

a total of m constraints, q inequality and m - q equality, which are required to be satisfied 

by the optimum solution. The presence of equality and inequality constraints will restrict 

our search space to a feasible region SF ⊆ , where a usable solution can be found. 

 

1.3 Research Goal and Approach 

The goal of this study is to propose two state-of-the-art evolutionary algorithms-one 

for dynamic optimization problems and another for constrained multi-objective 

optimization problems. These algorithms exploit as much information as possible from 

the previous generations to facilitate the evolutionary process. The dynamic evolutionary 

algorithm is further designed to have higher reusability, quicker adaptation, faster 

convergence, easier implementation, better accuracy, and ability to work under drastic 

changes and higher frequencies of change. On the other hand, the proposed constraint 

handling technique for multi-objective evolutionary algorithms is designed to provide a 

reliable algorithm that obtains accurate and diverse solutions with comparatively less 
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computational cost. The algorithm not only exploits the evolutionary information 

contained in feasible individuals, but also from infeasible individuals. 

The proposed algorithms are implemented as computer programs and are then 

evaluated on several benchmark test problems. The simulation results are studied and 

compared with the results reported for some state-of-the-art designs. 

 

1.4 Document Organization 

The remaining part of this thesis is organized as follows. In Chapter II, dynamic 

optimization problems are discussed in further detail. The chapter presents the different 

approaches used so far, the various performance indexes used to measure performance, 

and the different types of benchmark problems used to test dynamic evolutionary 

algorithms. Finally in this chapter, a dynamic evolutionary algorithm is proposed and 

analyzed at length. Chapter III provides a review of constrained multi-objective 

optimization problems, different kinds of approaches proposed so far to solve such 

problems, and various performance indexes used to measure performance of these 

algorithms. Finally, a constraint handling technique for multi-objective evolutionary 

algorithms is proposed and discussed in detail. In Chapter IV, the two proposed 

algorithms are tested on different standard benchmark suites. The empirical data are 

numerically analyzed and the results are presented and discussed in detail. Chapter V 

concludes this thesis with relevant observations and remarks and provides 

recommendations for future work. 
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CHAPTER II 
 

DYNAMIC EVOLUTIONARY OPTIMIZATION 

2.1 Introduction 

Many real world optimization problems sporadically change over time. These 

problems are collectively termed as dynamic optimization problems. The location of the 

optimal solution in these problems changes over time. These changes can result from 

changes in the environmental parameters, changes in the constraints, changes in the 

objectives or changes in the problem representations and settings [4]. These changes may 

then be reflected on the landscapes as changes in the optimal peak heights, peak shapes or 

peak locations or combination of these three [5]. 

A dynamic optimization problem (DOP) can be formulated as:  

 Minimize / Maximize  

 ),,...,,(),( 21 exxxfeXf n= (2.1) 

where each dimension of the search space is defined between maxmin
jjj xxx ≤≤ for 

nj ,,2,1 L= . f is the objective function to be optimized; ),...,,( 21 nxxxX = is the n-

dimensional decision vector and e represents the environmental state whose variation 

can have either periodic or sporadic nature. 

There are several practical applications as dynamic optimization problems. A very 

good example is dynamic portfolio optimization which is a common optimization 

problem in modern finance [6]. This problem aims to obtain an optimal set of assets that 

maximize profit while minimizing risk of investment. In engineering, dynamic portfolio 

optimization problems are common in deregulated electricity markets in which the 

operations of different power stations are controlled and coordinated to maximize profit 

while minimizing risk. There are various uncertainties in a deregulated electricity market,  
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such as spot market prices, load obligations, and strip/option prices [7]. The values for 

some of these factors change over time and it is not unusual to optimize for the market 

price at each hour. 

Another good example of real-world dynamic optimization problem is the dynamic 

job shop scheduling problem [8]. This problem is a variation of the job shop scheduling 

problem in which new jobs arrive over time after the scheduling process has started. The 

dynamism in the problem can also arise due to cases where some machines break down 

or wear out slowly, cases where the quality of the raw material changes; or cases where 

the production tolerances are required to be taken into account. Therefore, the job 

schedules should be dynamically modified to accommodate the changes over time. 

In general, a good dynamic evolutionary algorithm (DEA) must be able to track the 

changing optimal solution irrespective of the severity and frequency of change. It must be 

able to reuse as much information as possible from previous generations to speedup the 

optimization search. Furthermore, the extra computational cost incurred should be 

reasonably comparable to its performance improvement. 

The challenges in solving DEAs arise from the occurrence of changes in the location, 

number, and properties of the optimal solutions. When a standard evolutionary algorithm 

converges for a certain problem setting, the diversity and exploration capability of the 

population are greatly diminished. As a result, continuing the evolutionary process from 

the converged population without any adaptation scheme or facilitation of exploration 

creates a higher probability of being unable to find the new optimal solutions or of being 

stuck with local optima. Therefore, it is necessary to implement certain scheme in the 

evolutionary algorithm to account for the dynamism of the optimization problem. 

There are several important aspects of dynamic optimization problems (DOPs) and 

these include severity, frequency, observability, detectability, and dynamics of change 

[8]. While higher severity of change necessitates the DEA to increase diversity and 

exploration, higher frequency of change requires a faster convergence after a change has 

occurred. If the severity of change is too high for the DEA, the algorithm may not locate 

the new optima or might get stuck in local optima. Similarly, if the frequency of change 

is faster than the adaptation speed of the DEA, the algorithm will not reach the optimal 

solutions before another change occurs. 
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On the other hand, detection of change can be made in several ways assuming that the 

change is observable. Some of the common practices include checking if the time 

averaged best performance of DEA deteriorates and checking if the fitness of at least one 

of the reevaluated individuals has changed appreciably [8]. It is also a common practice 

to assume that a change is explicitly known to the system and that the system will 

observe and detect a change instantly. For the discussion of this study, the authors assume 

that the change is explicitly known to the system.  

Furthermore, the DOP may involve different dynamics changes and these include 

constant, linear, circular/revolving, reshaping, and random modes [8], [9], [10]. In most 

cases, the type of dynamics is not explicitly known to the system and the algorithm is 

expected to work without knowing it. In this chapter, we present a dynamic evolutionary 

algorithm that adapts all individuals of the previous population when a change occurs 

based on evolutionary history. The adaptation is carried out by relocation vectors that 

introduce shifts in the individuals’ decision variables to enhance the population’s 

diversity. 

Some sought qualities in dynamic evolutionary algorithms include reusability, faster 

convergence, higher accuracy, faster adaptation, easier implementation, and better 

performance. Reusability refers to the ability to reuse as much information as possible 

from the previous evolutionary process. Reusability normally provides faster 

convergence and allows the algorithm to adapt to the new environmental condition 

quickly. Higher severity of change reduces reusability of previous evolutionary data and 

demands greater exploration capability. Higher frequency of change demands faster 

convergence and adaptation to the new environment. Accuracy, on the other hand, refers 

to how close the best individual found is to the actual optimal solution. Improvement in 

the accuracy of the optimal solution may compromise the speed of convergence and 

hence, the algorithm should be equipped to balance between the additional computational 

cost and the observed performance improvement. Adaptation, alternatively, refers to 

adjusting the current population to the new environmental condition. Adaptation can be 

done by modifying the level of evolutionary operators, like mutation, to encourage 

exploration or by modifying the evolutionary process based on the previous evolutionary 

history. 



10

In this chapter, the above qualities are achieved by using variable relocation vectors 

that adapt already converged or currently evolving individuals to the new environmental 

condition. The proposed algorithm relocates the individuals based on their change in 

functional value due to the change in the environment and the average sensitivities of 

their decision variables to the corresponding change in the objective space. The 

relocation vectors introduce a certain radius of uncertainty to be applied to each 

individual and restore diversity and accelerating exploration. Furthermore, because the 

population is adapted from the previous population, there is a higher reuse of previous 

evolutionary material, which often provides faster convergence. The relocation vectors 

are specific to each individual, and this gives the algorithm better adaptation than those 

approaches that use a single adaptation value for the whole population. As a technique to 

be used at transient periods, the proposed algorithm provides the next evolutionary cycle 

with better initial population than any other randomly generated population. As a result, 

there will be a considerable progress jump for the upcoming evolutionary process, and 

this gives the proposed algorithm faster adaptation and convergence. 

This chapter is structured as follows. Section 2.2 provides a brief summary of the 

various types of fitness landscapes. Section 2.3 discusses various aspects of dynamic 

optimization problems. Then Section 2.4 presents a review of the various evolutionary 

approaches proposed so far for dynamic optimization problems. Next in Section 2.5, two 

performance metrics used for measuring the performance of dynamic evolutionary 

algorithms are presented. In Section 2.6, various dynamic benchmark test problems are 

discussed. In Section 2.7, the proposed relocation vector based dynamic evolutionary 

algorithm (RVDEA) is elaborated and analyzed. Finally, we conclude with a summary in 

Section 2.8. 

 

2.2 Types of Fitness Landscapes 

Depending on the changes over the whole landscape through time, Weicker et al [10] 

classified fitness landscapes into various groups. The first category is that of stationary or 

static landscapes where there is no change or movement in the landscape. These types of 

landscapes are the ones that are commonly used in most EA studies. The second type of 
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fitness landscape has changes over the landscape that is constant every period of time. A

good dynamic evolutionary algorithm should be able to pick up the recurrent similarity in 

the amount of change and use it in the upcoming change period. These types of problems 

are comparatively easy and impose very small difficulty to the dynamic evolutionary 

algorithm. The third type of fitness landscapes has periodic changes in which the 

landscape returns to its original state at certain intervals. The challenge in this type of 

landscapes is predicting the length of the period and most of the time this is difficult to 

do. Most algorithms implement a small-sized memory to hold the latest optimum 

solutions from few of the past changes. This allows possible re-usage of the optimum 

solutions found so far in future fitness landscapes that resemble any of the past 

landscapes. The fourth type of fitness landscape is called homogenous landscape where 

the whole landscape moves coherently, as opposed to various parts behaving 

heterogeneously. The last type of landscapes is alternating landscape where the optimum 

point jumps from one component or peak of the landscape to another. The changes in the 

overall landscape are stochastic and heterogeneous. These types of problems impose the 

greatest difficulty to the dynamic evolutionary algorithm because the nature of the change 

can not be modeled accurately. Hence, it is important to implement a certain kind of 

dynamic adaptation scheme in the evolutionary algorithm to cope with the sporadic 

changes in the landscape. 

 

2.3 Aspects of Dynamic Optimization Problems  

There are several important aspects of dynamic optimization problems (DOP). Some 

of these are severity, frequency, observability, detectability and dynamics of change [8].  

 

2.3.1 Severity of change - Severity of change indicates the strength of change that 

occurred in the landscape. Higher severity of change means that the current fitness 

landscape has lesser correlation with the previous one and this necessitates the dynamic 

evolutionary algorithm to increase diversity and exploration. If the severity of change is 

too high for the DEA, the algorithm may not locate the new optima or might get stuck in 
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local optima.  Hence, this aspect of change demands a dynamic evolutionary algorithm 

that is capable of performing well under drastic changes in landscape. 

 

2.3.2 Frequency of change - The frequency of change indicates how fast the 

landscape changes. A higher value of frequency means that the landscape changes quite 

frequently and the corresponding evolutionary algorithm is expected to act upon these 

changes very quickly. If the frequency of change is too high for the DEA, the algorithm 

will not reach the new optimum solution before another change occurs. Hence, a good 

dynamic evolutionary algorithm should have a high adaptation frequency and faster 

convergence so as adapt to changes even at high frequencies.  

 

2.3.3 Observability and detectability - The next two closely related aspects of 

changes are observability and detectability. Most of the time the change is assumed to be 

observable and detectable. On the other hand, several methods have been proposed to 

detect changes. Some of these techniques detect changes by checking whether the time 

averaged best performance of the algorithm deteriorates or by checking whether the 

fitness of at least one of the re-evaluated individuals has changed or by constantly 

monitoring whether an explicit model of the environment is still consistent with the 

current environment. It is also a common practice to assume that the change is explicitly 

known to the system and that the system will detect the changes instantly. This 

assumption is useful for certain researchers to focus only on the development of a 

dynamic evolutionary algorithm, while other researchers study the issue of observability 

and detectabilty of change. 

 

2.3.4 Dynamics of change - The dynamics of change represent the way the 

landscape moves when a change occurs. A drifting motion dynamics has a drifting 

motion in the landscape. An oscillatory motion dynamics has an optimum that oscillates 

periodically. A reshaping dynamics has a fitness landscape that changes its morphology 

when a change occurs. A revolving landscape dynamics has a landscape that rotates at 

each occurrence of change [9]. A random jump or stochastic landscape dynamics has an 

optimum that changes randomly. In most cases, the type of dynamics mode is not 
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explicitly known to the system and the DEA is expected to work without explicitly 

knowing it. 

 

2.4 Literature Review 

The following subsections provide a brief review of evolutionary approaches 

developed for dynamic optimization problems. For more detailed reviews, the readers are 

referred to references cited in [3], [4], and [8].  

 

2.4.1 Re-initialization - The most naïve approach ever conceived for solving DOPs 

is to reinitialize the evolutionary process when a change occurs. A similar approach 

restarts the population based on evolutionary algorithm convergence [11]. The deficiency 

of these approaches is that almost none of the past evolutionary materials are ever used 

and this unavoidably hinders any possible speedup in convergence. 

 

2.4.2 Maintaining diversity - The basic idea behind maintaining diversity in DEAs 

is to prevent the algorithm from premature convergence. Grefenstette [12] proposed the 

idea of introducing randomly generated individuals when a change occurs. The 

introduction of random immigrants allows the algorithm to keep a certain level of 

diversity for exploration. The algorithm is easy to understand and implement, but 

provides little means of adapting the current individuals to the new environment. 

Furthermore, when the changes are severe, the algorithm requires a larger number of 

random immigrants which will compromise the algorithm’s performance. In this study, 

we used a similar implementation as in [8] in which 25 random immigrants are migrated 

into current population when a change occurs. This implementation of random 

immigrants will be referred to as RI25 and when a memory is used, it will be referred to 

as RI25mem.

Meanwhile, Andersen [13] approached the issue of diversity maintenance by using 

fitness sharing as a means to favor less populated area. When a region is highly 

populated, fitness is shared by a large number of individuals and in effect reducing or 

penalizing their fitness. On the other hand, if a region is less populated, the fitness is 

shared between few individuals and hence their fitness is less affected and un-penalized. 
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As a result, less populated areas will be more favored than highly populated areas and in 

effect preserving diversity. 

On the other hand, Ghosh and colleagues [14] used the age of an individual to favor 

the fitness of middle aged individuals which in effect will maintain the diversity of the 

overall population. On the other hand, Jin and colleagues [15] suggested imposing a 

lower threshold on step-size to maintain diversity in evolutionary strategies. 

Although most researchers agree that having a diversified population is a good idea 

for DOPs, the fact remains that maintaining diversity may impose greater computation 

and may also slow down the evolutionary process.  

 

2.4.3 Memory based approaches - Memory based approaches are commonly 

divided into two groups: explicit and implicit memory approaches. Explicit memory 

approaches are memory based approaches that uses external memory to store previous 

evolutionary information that may be helpful in future stages of the evolutionary process. 

The common approaches under this category use a small-sized memory to store the best 

solutions and add them back to the population if they are better fit than the current 

individuals [16], [17]. In [18], Acan and Tekol used a “gene library” to store promising 

genetic materials for reuse later in the evolutionary process. In [19], Trojanowski and 

Michalewicz used a short term memory to remember some of the solutions of an 

individual’s ancestors so as to increase the diversity by reintroducing individuals that 

have been considered good in recent generations. Lastly, Bendtsen and Krink [20] used 

dynamic memory model that is updated during the evolutionary process. They used the 

memory to store best individuals for each change period, but at the same time allowed the 

stored individuals to be evolved by small amounts of Gaussian mutation in the direction 

of the current best individual.  

On the other hand, implicit memory approaches do not use an explicitly defined 

external memory but some implicit form of memory exists in the system representation. 

One form of implicit memory is redundant representation which is commonly used to 

slow down convergence and favor diversity. Diploidy is a common approach in 

redundant representations. In [21, 22], Smith and Goldberg used tri-allelic scheme where 

an allele can take one of the three values “0”, “1 recessive”, and “1 dominant”. In [23], 
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Ng and Wong proposed using a diploid scheme with four possible alleles (“0 recessive”, 

“0 dominant”, “1 recessive”, and “1 dominant”). In [24], a multi-level structured gene-

representation was used so that each level can activate or deactivate genes at the next 

lower level. In [25], the diploidy scheme proposed in [24] was extended by a dominance 

change mechanism. In [26], an additive diploidy scheme was used where the genes 

determining one trait are added in order to determine the phenotypic trait. The phenotypic 

trait becomes 1 when a certain threshold is exceeded, and is 0 otherwise. 

The basic assumption in memory approaches is that out of the stored information in 

the memory, there might be some individuals that fall in the vicinity of the new optimal 

solution. This kind of assumption becomes inappropriate when there is non-cyclic 

stochastic dynamism in the optimal solution.  In general, however, enhancing any of the 

other uncertainty handling techniques by memory is a good practice.   

 

2.4.4 Multiple population approaches - Multiple population approaches use several 

subpopulations to track multiple peaks in the landscape. The method proposed in [27], 

called shifting balance genetic algorithm, uses one core population to exploit the best 

optimum found so far and several colonies to explore the search space. A diversity 

measure, distance to the core population, was included in fitness evaluations of the 

colonies. Another method proposed in [28], called self-organizing scouts (SOS), uses a 

small fraction of the population called “child population” to watch over the peaks while 

the rest of the population searches for other peaks. The size of parent and child 

population is adaptively adjusted depending on the performance of the population. 

Another method proposed in [29] is called multi-nationals genetic algorithm and uses a 

“hill valley detection procedure” that defines the borders of the subpopulations. A valley 

is detected if the fitness in a sample point is lower than the fitness of both end points. 

This method requires a large number of fitness evaluations. 

The challenge in this type of approaches is that the algorithm should coordinate the 

operation of each sub-population. As a result, these approaches tend to incur large 

computational cost compared to single population approaches. 

The multi-population implementations used in this study follow that of [8]. The first 

implementation is called P3 which is a standard evolutionary algorithm with three 
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independent sub-populations. Similarly, P3mem is the variation of this implementation 

with memory. Another multi-population implementation divides the population into 

memory and search subpopulations and is denoted as Mem/search.

2.4.5 Mutation and self-adaptation - When a change occurs, the population 

undergoes a transient state where the values of the evolution operators are changed so as 

to enhance diversity and performance. Cobb and Grefenstette [30] introduced the idea of 

hyper-mutation in which mutation probability is increased immediately after a change has 

occurred. In this method, the individuals undergo a drastic increase in the mutation level 

when a change occurs, which in effect improves the diversity of the population. Vavak 

and colleagues [31] introduced the idea of variable local search (VLS) that uses a step-

by-step increase in the mutation level based on the performance of the population. In 

[10], different self adaptation schemes were compared and these include uniform self 

adaptation, different mutation level for each dimension, mutation with covariance matrix 

adaptation and sphere mutation which learns the upper and lower limits of the required 

mutation level. In [32], multiplicative update rule is compared against self-adaptation 

mutation; while in [33] lognormal adaptation is compared against self-adaptation 

mutation. Other suggested techniques include life-time learning [34] and adaptive chaotic 

mutation [35]. 

The assumption in this type of approaches is that the changes are in the reach of the 

algorithm’s adaptation capability. If this is not the case, the adapted population might not 

locate the new optimal solutions.  

In general, memory based approaches are suitable for periodical optima; multi-

population approaches are suitable for competing peaks; mutation and self-adaptation 

techniques are appropriate for landscapes with very fast but less drastic changes; and 

maintaining diversity is suitable for continuously moving optima [4]. 

The proposed algorithm is inspired from the comparatively small computational cost 

of self-adaptation schemes and also from the idea to have a better technique that can be 

used alongside other approaches for solving dynamic optimization problems. In this 

spirit, it can be categorized under self-adaptation schemes. The algorithm also utilizes a 

small memory to further improve its performance in cyclic changes. The unique attribute 
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about this algorithm is that the self-adaptation scheme and the relocation amount are 

specific to each individual, and this allows the algorithm to provide better adapted initial 

population to the new environment. There are two variations of the proposed algorithm – 

the first is RVDEAmem which is a relocation vector dynamic evolutionary algorithm 

enhanced with memory, and the second is RVDEAclusters which is a relocation vector 

based dynamic evolutionary algorithm enhanced with memory and several clusters to 

provide superior performance over a relative increase in the computational cost. 

 

2.5 Performance Indexes for Dynamic Evolutionary Algorithms 

There are several performance indexes that have been used to measure the 

performance of dynamic evolutionary algorithms. In this chapter, we used offline error 

performance [36] and adaptation performance [16] as a means to measure the 

performance of the proposed dynamic evolutionary algorithm.  

 

2.5.1 Offline error performance - Off-line error performance index [36] is the most 

common performance index and it is obtained as the average of the error between the true 

optimal point and the best fitness at each evaluation. It is mathematically expressed as: 
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where i is the evaluation counter; T is the total number of evaluations considered; truef is 

the true optimum solution which is updated whenever a change occurs; and finally i
bestf is 

the best individual out of the evaluations starting from the most recent occurrence of 

change until the current evaluation. This form of error formulation may not provide a 

good insight on how well the algorithm is performing when the optimal function values 

are very large. 

 

2.5.2 Adaptation performance - Adaptation performance [16] is the average ratio 

between the best fitness and the true optimum at each evaluation. It is mathematically 

expressed as: 
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where i is the evaluation counter; T is the total number of evaluations considered; truef is 

the true optimum solution which is updated whenever a change occurs; and finally i
bestf is 

the best individual out of the evaluations starting from the most recent occurrence of 

change until the current evaluation. This way of error formulation is not a good indicator 

of performance when the optimal function values are very small. 

2.6 Dynamic Optimization Problems 

There are various dynamic optimization test functions proposed by researchers. In 

general, these functions are able to simulate real-world optimization problems and 

provide a simple mechanism to control the type of landscape dynamics. One of the 

earliest forms of dynamic optimization test problems use a number of standard static 

optimization problems and switch back and forth between these landscapes through the 

run of the evolutionary process [30]. 

Other forms of dynamic optimization problems use a number of competing peaks that 

are independently specified by their width, height, and location. Branke [17] suggested a 

general platform on which such type of test problems can be implemented. This platform 

is called moving peaks problem and is mathematically expressed as: 

)))(),(),(,(max),(max(),(
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= (2.4) 

where )(xB r is a time-invariant “basis” landscape and P is the function defining the peak 

shape, where each of the m peaks has its own time-varying parameters: height (h), width 

(w), and location ( )(tpi
r ). When the peaks have a ‘cone’ shape, then the moving peaks 

problem will become competing cones problem (DF1 [5]). On the other hand, if the peaks 

have a ‘Gaussian’ shape, then the moving peaks problem becomes time-varying Gaussian 

peaks problem (DF2 [37]).  

The most frequently used moving peaks problem was proposed by Morrison and De 

Jong [5]. They proposed using a number of competing cones each explicitly defined by 

its height, center, and width. These cone peaks are not differentiable at their peaks and 
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mimic real-world optimization problems that are justifiable for using evolutionary 

algorithms. They called their function DF1 (Dynamic Function 1) and it is expressed as:  
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where ),...,( 1 nxxx =r is a point in the landscape, m specifies the number of cones in the 

environment, and each cone i is independently specified by its height iH , its slope iR , and 

its center ).,...,( 1 inii XXX =
r

For the remainder of this paper, we assigned similar nomenclature (DF2, DF3, etc) 

for the remaining test functions that we used to test the proposed dynamic evolutionary 

algorithm.  

Another common moving peaks problem is the time-varying n-dimensional Gaussian 

peaks problem proposed by Grefenstette [37]. This problem is similar to that of the 

competing cones problem, but has ‘Gaussian’ peaks and is differentiable at the apex of 

the peaks. However, this problem becomes very challenging when the number of peaks is 

increased and provides a good benchmark evaluation for dynamic evolutionary 

algorithms. For the context of this chapter, this problem will be referred as DF2 and is 

mathematically expressed as: 
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where )(tAi is the amplitude, )(tCi denotes the center and )(tiσ represents the width of 

the n-dimensional Gaussian peak. 

Other forms of DOP test problems shift stationary optimization test problems using 

various dynamics of change. The common form of such types of problems is the moving 

parabola problem ([32, 33]). This problem has an objective function which has a general 

form as given below. 
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The amount of shift in the landscape, )(tiδ , can have different dynamics of change 

and the common types are linear, random, and circular dynamics of change. In the 



20

remainder of this chapter, moving parabola problems with these dynamics of change are 

referred to as DF3, DF4, and DF5 test problems respectively and are mathematically 

expressed as:  

 

Linear translation [DF3] 
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Random dynamics [DF4] 
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Circular dynamics [DF5] 
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γ determines the cycle length of the problem in moving parabola benchmark 

problems with circular dynamics. Since sinusoidal functions repeat themselves exactly at 

every period, DF5 will have a cycle accuracy of 100%. t is used as index for the 

environmental state. Whenever the environment state changes, t is incremented by 1. 

Another function that was used in Branke [8] is oscillating peaks function. This 

function has an oscillating weight function that causes oscillation in the base objective 

function. Due to this oscillation in the fitness landscape, the location of the optima also 

oscillates between various points. This test function has two landscapes with 10 peaks 

each. The parameters of each peak can be varied independently.  In the remainder of this 

paper, this function will be referred as DF6 and is mathematically expressed as: 
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where l is number of different landscapes that will be obtained from the base landscape  

)0(if by multiplying with an oscillating weight function w(t).

2.7 Proposed Dynamic Evolutionary Algorithm 

The proposed dynamic evolutionary algorithm uses variable relocation vectors to 

adapt already converged or currently evolving individuals to the new environmental 

condition. The proposed algorithm relocates those individuals based on their change in 

function value due to the change in the environment and the average sensitivities of their 

decision variables to the corresponding change in the objective space. The relocation 

occurs during the transient stage of the evolutionary process and the algorithm reuses as 

much information as possible from the previous evolutionary history. As a result, the 

algorithm will have faster adaptation and convergence. In addition, the design is easier to 

implement and can be incorporated into standard evolutionary algorithms. A complete 

description of the proposed algorithm is presented in detail below. 

Let ),( eXff = represent the dynamic optimization problem to be optimized; X

represents the n-dimensional decision space vector and dx represents the dth-dimension 

decision variable.  For the discussion of this section, a minimization dynamic 

optimization problem is assumed. Note that a maximization problem can be converted 

into a minimization problem by multiplying with -1.  
d
childx∆ denotes the child’s evolutionary progress in the dth-dimension of the decision 

variable with respect to its parents. It is measured as the difference between the dth-

dimension decision variable of a child ( d
childx ) and that of the centroid of its parents. This 

can be mathematically expressed as: 
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childf∆ is the evolutionary fitness progress of a child with respect to its parents and is 

measured as the difference between a child’s fitness ( childf ) and the interpolated fitness of 
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its parents. The interpolation is based on the distance between a child and its parents 

( 1X∆ and 2X∆ ).  The farther a parent is away from its child, the lesser is its contribution 

to the interpolated fitness.   
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The child’s average evolutionary progress in the dth-dimension decision variable 

( d
avx∆ ) can be obtained as the weighted sum of the child’s d

childx∆ and its parents’ average 

decision progress ( av
parentd x∆ ). The same is true for the child’s average evolutionary fitness 

progress ( avf∆ ) except that we use the interpolated value of its parents’ average fitness 

progress.  
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where nGen denotes the total number of generations either from the start of an 

evolutionary process or the last occurrence of change, whichever is recent, up to the 

current generation. On the other hand, w represents the inertia given to previous 

evolutionary progresses relative to the current one.  If all evolutionary progresses have 

equal weight, w = 1. Otherwise, w is set between 0 and 1. av
parentd x 1∆ is d

avx∆ of the first 

parent which was calculated in the previous generation. Similarly, av
parentf 1∆ is avf∆ of the 

first parent which was calculated in the previous generation. The same is true for 
av
parentd x 2∆ and av

parentf 2∆ of the second parent. 
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The total average evolutionary progress in the decision space of an individual can 

then be obtained as 

 ( )∑
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The average sensitivity of the decision space to change in the objective space is 

defined as the ratio of the average evolutionary fitness progress and the average 

evolutionary progress in decision space. Mathematically:  
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The average sensitivity of the dth-dimension of the decision space to change in the 

objective space can then be obtained as: 
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In dynamic optimization problems, the evolutionary fitness progress, if∆ , can arise 

from changes in the decision space of an individual or changes in the environmental 

parameter. This can be approximately formulated as 
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where av
xd S is the average sensitivity of the fitness to change in the dth-dimension of the 

decision space; eS is the average sensitivity of the individual’s fitness to change in the 

environment; dx∆ and e∆ are the corresponding changes in the dth-dimension decision 

variable and the environmental parameter, respectively. 

Under normal evolutionary process, the environmental parameter is constant, i.e., 

0=∆e . Under such cases, the above equation reduces to 
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where iX∆ is the average evolutionary progress in the decision space ( avX∆ ) for 

individual i.
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The equality of the last and middle terms in equation (2.19) can be proved by 

substituting equation (2.17) in the middle term and performing the summation.  

e∆ is different from zero during the transition period. But if we re-evaluate all the 

previous individuals, then all the changes in the decision variables become zero 

( 0=∆ dx ).  In this case, equation (2.18) can be written as: 

 eSfff e
e

i
e

ii ∆⋅=−=∆ 12 (2.20) 

where 12 e
i

e
i ff − represents the difference between the functional values of an individual 

in the new (with superscript, 2e ) and old (with superscript 1e ) environment, 

respectively.  

The proposed algorithm estimates the required offsets in the decision variables that 

will match the fitness changes caused by the environment. This is done through the 

relocation vector, which is the anticipated uncertainty in the decision space of an 

individual. The relocation vector will relocate all individuals so that their fitness is 

restored or is further enhanced. It can be expressed as 
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where 2e
bestf is the best fitness in the new environment. 

The relocation offsets in each dimensions of the decision space can then be obtained 

as: 
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If ddd
i xxx minmax −>∆ , then d

ix∆ is trimmed down to: 

 )()( minmax
ddd

i
d
i xxxsignx −⋅∆=∆ (2.23) 

where dxmax and dxmin  are the maximum and minimum limits of the dth-dimension decision 

variable respectively; and sign (z) is a function that returns the sign of z.

On the other hand, if d
ix∆ is less than dxmin∆ (minimum allowable relocation offset in 

the dth-dimension decision variable), then  
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If dd
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The variable dxmin∆ is varied based on the diversity of the population just before 

change. After validation of d
ix∆ , the relocation algorithm will generate a number of 

offsprings as: 

 d
i

d
oldi

d
newi xrxx ∆⋅+= ,, (2.25) 

where r is a random number between 0 and 1. 

If the value of d
newix , lies outside the interval [ dd xx maxmin , ], then the algorithm re-assigns 

d
newix , as:     

 

Figure 2.1 Re-assignment of d
newix , when it lies outside the interval [ dd xx maxmin , ]

The best-fit individual out of a parent and its offsprings will then be passed on to the 

initial population of the new environment. This new initial population will be better 

adapted to the change and is claimed to converge quickly. After this initial population is 

obtained, the evolutionary process will proceed with its normal operation. In addition to 

the relocation vectors, the algorithm uses a small archive to store the best individuals 

obtained so far. When the archive is full, the oldest best individual will be replaced by the 

most recent one. The pseudo-code for the proposed dynamic evolutionary algorithm 

using variable relocation vector is given in Figures 2.2 and Figure 2.3.  
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Procedure RVDEA 
Begin 
 k = 1

nGen = 1 
 Initialization 
 Clear archive 
 Evaluation 
 While (not exit_condition) Do 

Begin 
 Detection of change 
 If change is detected 
 Begin 
 Transient_EA 
 nGen = 1 
 k = k + 1

End 
 Else 
 Begin 
 Selection 
 Recombination 
 Mutation 
 Evaluation 
 Replacement 
 k = k + 1

nGen = nGen + 1 
 End 
 End 
 End 

Figure 2.2. Pseudo-code for the proposed dynamic evolutionary algorithm using 
variable relocation vectors 

 

The exit_condition in the pseudo-code can be defined in several ways. Some of these 

are reaching maximum number of fitness evaluations, maximum number of generations 

and maximum number of changes. On the other hand, the counter k in the pseudo-code is 

used to keep track of the total number of generations. Similarly, nGen counts the number 

of generations but it is restarted from 1 every time a change occurs. 
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Procedure Transient_EA 
Begin 
 obtain average sensitivities of the decision variables to change in the 

landscape 
 update archive (archive ← best individual) 
 re-evaluate all individuals and obtain their functional changes due to 

the environment  
 obtain relocation vectors for all individuals 
 relocate all individuals a number of times 
 select the best individual from a parent and its relocated offsprings 

and put it in the initial population of the new environment 
 reset avf∆ and d

avx∆ values of all individuals 
 reset change flag 
End

Figure 2.3. Pseudo-code for the transient evolutionary algorithm using variable 
relocation vectors 

 

In general, a relocation vector lies between the minimum and maximum allowable 

shifts in the decision variables. Minimum relocation refers to cases where the fitness 

landscape is almost insensitive to shifts in the decision space. Maximum relocation, on 

the other hand, refers to cases where the fitness landscape is extremely sensitive to shifts 

in the decision space and corresponds to random initialization since the designated 

relocation can pick up any of the allowable values in the decision space. Other 

intermediate values of relocation vectors will try to introduce certain radius of uncertainty 

over the decision space in which the proposed algorithm will look for better individuals. 

This way of relocation formulation will allow the algorithm to treat dynamic optimization 

problems without regard to their dynamics of change. If the dynamics of change is 

homogenous, then the relocation values of all individuals will have the same value. If the 

dynamics of change is heterogeneous and deterministic, the relocation values will vary 

from individual to individual and the relocation amount will have a deterministic nature. 

Lastly, if the dynamics of change have a random nature, the relocation vectors will 

account for the changes in the fitness landscape by taking average sensitivity values over 

the evolutionary run and this will allow treating the changes stochastically.  

Furthermore, since the population is adapted from the previous population, there is a 

higher reuse of previous evolutionary data which provides faster convergence. The 
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relocation vectors are specific to each individual and this gives the algorithm better 

adaptation than those approaches that use a single adaptation value for the whole 

population, such as [30]. As a technique to be used at transient periods, the proposed 

algorithm provides the next evolutionary cycle with better initial population than any 

other randomly generated population. As a result, there will be a considerable progress 

jump for the upcoming evolutionary process and this gives the proposed algorithm faster 

adaptation and convergence. 

 

2.8 Summary 

Dynamic optimization problems are common types of uncertainty problems in real-

world optimization problems. In recent years, it has become a critical need to account for 

the dynamism of the evolutionary optimization problems in the evolutionary algorithm. 

Various methodologies have been suggested to adapt stationary evolutionary algorithms 

into dynamic evolutionary algorithms. In earliest researches, a complete restart of the 

evolutionary process is invoked when a change occurs. Other techniques try to maintain 

the diversity of the population in the entire run and thus allow the population to explore 

and adapt to the new environment whenever a change occurs. Allocating some memory 

to store the best individuals found so far in the recent periods of change is also a 

commonly used approach in dynamic evolutionary algorithms. Multiple population 

approaches are also used to solve DOPs. They use several sub-populations to adapt to the 

new environment and there are different variations under this type of approaches. The last 

commonly used technique adapts the population to the new environment by using either 

increased levels of mutation or self-adaptation mechanisms. 

The proposed algorithm in this chapter is inspired from the comparatively small 

computational cost of self-adaptation schemes and also from the idea to have a better 

technique that can be used alongside other approaches for solving dynamic optimization 

problems. In this spirit, it can be categorized under self-adaptation schemes. The 

algorithm also utilizes a small memory to further improve its performance in cyclic 

changes. The unique attribute about this algorithm is that the self-adaptation scheme and 

the relocation amount are specific to each individual, and this allows the algorithm to 
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provide better adapted initial population to the new environment. There are two 

variations of the proposed algorithm – the first is RVDEAmem which is a relocation 

vector dynamic evolutionary algorithm enhanced with memory, and the second is 

RVDEAclusters which is a relocation vector based dynamic evolutionary algorithm which 

is enhanced with memory and several clusters to provide superior performance over a 

relative increase in the computational cost. 

The relocation vectors are specific to each individual and this gives the algorithm 

better adaptation than those approaches that use a single adaptation value for the whole 

population. As a technique to be used at transient periods, the proposed algorithm 

provides the next evolutionary cycle with better initial population which results in faster 

convergence. Furthermore, the extra computational cost of the proposed algorithm is 

comparable to its performance improvement as the additional calculations are basic 

arithmetic operations. 

There are several performance indexes suggested to measure the performance of 

dynamic evolutionary algorithms and in this study, we use offline error performance 

index and adaptation error performance index. 

There are a number of dynamic evolutionary test problems that have been used for 

testing dynamic evolutionary algorithms. These problems try to introduce dynamism in 

the location, width, and height of the optimal solutions. Some of the common types of 

problems include competing cones problem [5], time-varying Gaussian peaks problem 

[37], moving parabola problems [32, 33] and oscillating peaks problem [8]. 
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CHAPTER III 
 

CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION 

3.1 Introduction 

Evolutionary algorithms were originally designed for solving unconstrained 

optimization problems, but in recent years, researchers have been able to tailor constraint 

handling techniques into these algorithms. The great challenges in constrained 

optimization problems arise from the various limits on the decision variables, the 

constraints involved, the interference among constraints, and the interrelationship 

between the constraints and the objective functions. In the mean time, researchers were 

also developing evolutionary approaches for solving multi-objective optimization 

problems (MOPs). These multi-objective evolutionary algorithms (MOEAs) are capable 

of simultaneously optimizing a set of competing objectives. Nevertheless, little research 

was conducted in the area of constrained multi-objective optimization (CMOP). Such 

problems involve multiple competing objectives that are subject to various equality and 

inequality constraints. 

A constrained multi-objective optimization problem (CMOP) can be mathematically 

formulated as:  

 
Minimize / Maximize  

 pixxxfxf nii ,...,2,1,),...,,()( 21 == (3.1a) 

 Subject to        qixxxgxg nii ,...,1,0),...,,()( 21 =<= (3.1b) 

mqixxxhxh nii ,...,1,0),...,,()( 21 +=== (3.1c) 

njxxx jjj ,...,2,1,maxmin =≤≤ (3.1d) 

There are p objective functions that are required to be optimized simultaneously. 

Each objective function )(xf i is defined on the search space nS ℜ⊆ . Usually the search  
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space is an n-dimensional hyperbox in nℜ . Each dimension of the search space is 

bounded by its upper ( max
jx ) and lower ( min

jx ) limits.  

)(xgi is the ith-inequality constraint, and )(xhi is the ith-equality constraint. There are 

a total of m constraints: q inequality and m - q equality, which are required to be satisfied 

by the optimum solution. The presence of equality and inequality constraints will restrict 

our search space to a feasible space SF ⊆ , where a usable solution can be found. 

This chapter extends the single-objective constrained evolutionary algorithm 

proposed by Tessema and Yen [38] to CMOPs. The proposed algorithm basically 

modifies the objective function of an individual using its distance measure and penalty 

value. These modified objective function values are ranked through the non-dominance 

sorting of the multi-objective optimization. Distance measures are found for each 

dimension of the objective space by incorporating the effect of an individual’s constraint 

violation into its objective function. The penalty function, on the other hand, introduces 

additional penalty for infeasible individuals based on their objective values and constraint 

violations. The balance between the two components, one based on objective function 

and the other on constraint violation, is controlled by the number of feasible individuals 

currently present in the population. If few feasible individuals are present, then those 

infeasible individuals with higher constraint violations are more penalized than those 

with lower constraint violations. On the other hand, if sufficient number of feasible 

individuals exist, then those infeasible individuals with worse objective values are more 

penalized than those with better objective values. However, if the number of feasible 

individuals is in the middle of the two extremes, then the individual with lower constraint 

violation and better objective function is less penalized. The two components of the 

penalty function allow the algorithm to switch between feasibility and optimality at 

anytime during the evolutionary process. Furthermore, since priority is initially given to 

finding feasible individuals before searching for optimal solutions, the algorithm is 

capable of finding feasible solutions in cases where the feasible space is very small 

compared to the search space. 

This chapter is structured as follows: Section 3.2 provides a brief overview of the 

various evolutionary approaches developed so far for constrained multi-objective 
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optimization problems. Next, in Section 3.3, the various performance indexes used to 

measure the performance of multi-objective evolutionary algorithms are presented. In 

Section 3.4, the various CMOP test problems are discussed and are used to evaluate the 

proposed algorithm. In Section 3.5, the proposed CMOP evolutionary algorithm is 

presented and analyzed in detail. Finally, we conclude with a summary of this chapter. 

 

3.2 Literature Review 

Over the last decade several MOEAs have been developed to solve multi-objective 

optimization problems. The earlier MOEAs are non-elitism based methods that assign 

fitness to population members based on non-dominated sorting. In addition, they exploit 

different techniques to preserve diversity among solutions of the same non-dominated 

front. Of these types, the Multi-Objective Genetic Algorithm (MOGA) [39] by Fonseca 

and Fleming’s and the Non-dominated Sorting Genetic Algorithm (NSGA) [40] by 

Srinivas and Deb are very popular. MOGA uses the niche-formation technique to 

preserve diversity over the Pareto optimal region and sharing is performed on the 

objective function values. On the other hand, sharing is performed on the decision 

variable space for NSGA. 

More recently, elitism based algorithms have been suggested to enhance the 

convergence properties of MOEAs. The Pareto Archived Evolution Strategy (PAES) [41] 

by Knowles and Corne uses a (1+1) evolution strategy together with a historical archive 

that records all the non-dominated solutions found until the current generation. It also 

designs a novel approach to maintain diversity which consists of a crowding procedure 

that divides objective space in a recursive manner into several grids. This procedure is 

adaptive and has lower computational complexity than the traditional niching based 

approaches. Zitzler and Thiele introduce the Strength Pareto Evolutionary Algorithm 

(SPEA) [42] that uses an external archive to preserve non-dominated solutions. In each 

generation, the non-dominated solutions in the external set will be given a strength value 

which is proportional to the number of individuals they dominate. Fitness of individuals 

in the main population will be computed according to the strengths of all external non-

dominated solutions that dominated it. In addition, a clustering technique is used to 
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preserve diversity. Today, many advanced version of MOEAs have been constantly made 

available in literature in continually pursuing the performance frontier. 

On the other hand, constraint handling for single objective optimization problems has 

also been actively researched over the past two decades. Penalty functions are the 

simplest and the most commonly used methods for handling constraints using EAs. In 

death penalty function methods such as [43], individuals that violate any one of the 

constraints are completely rejected and no information is extracted from infeasible 

individuals. If the penalties added do not depend on the current generation number and 

remain constant during the entire evolutionary process, then the penalty function is called 

static penalty function. In static penalty function methods, the penalties are the weighted 

sum of the constraint violations. If, alternatively, the current generation number is 

considered in determining the penalties, then the method is called dynamic penalty 

function method [44]. In adaptive penalty function methods [45-47], information 

gathered from the search process will be used to control the amount of penalty added to 

infeasible individuals. 

In [44, 48], methods based on preference of feasible solutions over infeasible 

solutions are employed. In these types of techniques, feasible solutions are always 

considered better than infeasible ones. Therefore, when population fitness ranking is 

performed, feasible individuals will come first followed by infeasible individuals with 

low constraint violation. In [49], Runarsson and Yao introduce the stochastic ranking 

method to achieve a balance between objective and penalty functions stochastically. A 

probability factor is used to determine whether the objective function value or the 

constraint violation value determines the rank of each individual. In [50-51], similar 

algorithms are proposed where constraint violation and objective function are optimized 

separately. 

More recently, multi-objective optimization techniques have been used to solve 

constrained optimization problems. In [52], a multi-objective optimization technique that 

uses population-based algorithm generator and infeasible solutions archiving and 

replacement mechanism is introduced. In [53], a two-phase algorithm that is based on 

multi-objective optimization technique is proposed. In the first phase of the algorithm, the 

objective function is completely disregarded and the constraint optimization problem is 
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treated as a constraint satisfaction problem. In the second phase, both constraint 

satisfaction and objective optimization are treated as a bi-objective optimization problem. 

An algorithm that combines penalty function approach and multi-objective optimization 

technique is also proposed in [54]. The algorithm has a similar structure as the penalty-

based approach but borrows the ranking scheme from multi-objective optimization 

techniques. 

Although multi-objective optimization and constraint handling have received a lot of 

attention individually, very little research has been done in solving constrained multi-

objective optimization problems. Coello and Christiansen [55] propose a naïve approach 

to solve CMOPs by ignoring any solution that violates any of the assigned constraints. 

This method is very easy to implement but it often experiences difficulty in searching for 

even a single feasible solution. 

In [56], Binh and Korn propose the Multi-objective Evolution Strategy (MOBES), 

which takes into account the objective function vector as well as the degree of constraint 

violation of infeasible solutions in order to evaluate their fitness. Infeasible individuals 

will be divided into different classes according to their “nearness” to the feasible region 

and ranking will be performed based on the class. In addition, a mechanism to maintain a 

feasible Pareto optimal set is employed. 

In [57], Deb, et al. propose a constrained multi-objective algorithm based on 

constrained dominance of individuals. According to their algorithm, a solution i is said 

to constrained-dominate a solution j if (1) i is feasible while j is infeasible; (2) both are 

infeasible and i has less constraint violation; or 3) both are feasible and i dominates j .

Feasible solutions constrained-dominate all infeasible solutions. However, when two 

feasible individuals are compared, the usual dominance relationship is used. The level of 

constraint violation is used to compare two infeasible individuals. 

In [58], Jimenez, et al. propose the Evolutionary algorithm of Non-dominated Sorting 

with Radial Slots (ENORA), which employs the min-max formulation for constraint 

handling. Feasible individuals evolve towards optimality, while infeasible individuals 

evolve towards feasibility. In addition, a diversity technique based on partitioning the 

search space in a set of radial slots along which the successive populations generated by 

the algorithm are positioned is introduced. 
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In [59], Ray, et al. suggest using three different non-dominated rankings of the 

population. The first ranking is performed using the objective function values, the second 

is performed using the different constraints, and the last ranking is based on the 

combination of all objective functions and constraints. Depending on these rankings, the 

algorithm performs according to the predefined rules. 

In [60], Chafekar, et al. propose two novel approaches for solving constrained multi-

objective optimization problems. One method, called Objective Exchange Genetic 

Algorithm of Design Optimization (OEGADO), runs several GAs concurrently with each 

GA optimizing one objective and exchanging information about its objective with others. 

The other method, called Objective Switching Genetic Algorithm for Design 

Optimization (OSGADO), runs each objective sequentially with a common population 

for all objectives. 

In light of superior performance achieved in [38] for the single objective constraint 

optimization, a similar idea is extended in this chapter into the uses of multi-objective 

constraint optimization. In the next section, we introduce the proposed constrained multi-

objective evolutionary algorithm. 

 

3.3 Performance Indexes for Multi-Objective Evolutionary Algorithms 

The performance of the algorithm is measured using the convergence and diversity 

metrics. These metrics can be obtained as follows [57]. 

 

3.3.1 Convergence metric - The convergence metric can be obtained by calculating 

the smallest normalized Euclidean distance between the non-dominated set and the true 

Pareto-front [57]. In actual implementation, a set of uniformly distributed sample points 

are taken from the true Pareto-front and then for each point k in the non-dominated set, 

the smallest distance from the true Pareto-front to point k is calculated as follows.  
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Here, T is the set of points in the true Pareto-front and max
if and min

if are the maximum 

and minimum function values of the ith objective function in the true Pareto-front. p is the 
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total number of objective functions in the problem. The convergence metric will then 

equals to the normalized average of minimum distances to the true Pareto-front from all 

individuals in the non-dominated set. Mathematically,  

*
*

P

L
Pk

k∑
∈=γ (3.3) 

where P* is the non-dominated set, *P denotes the total number of individuals in the set 

P* and γ is the convergence metric for the set P*.

3.3.2 Diversity Metric - The diversity metric measures the extent of spread achieved 

among the obtained solutions. This metric is calculated as [57]: 
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where fL and lL are the extreme solutions in the non-dominated set, and L is the 

average of all distances )1(,...,2,1, −= NiLi assuming that there are (N-1) consecutive 

distances. 

 

3.4 Constrained Multi-Objective Optimization Test Problems 

Several constrained multi-objective test problems that have been proposed by 

researchers. Those test problems used in this thesis are presented below. Note that all the 

test problems given below are minimization problems. 
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Test Problem BNH [56]
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Test Problem SRN [40] [62]
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Test Problem TNK [63]

Minimize     
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Test Problem CTP1 [64]
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Test Problem CTP2-CTP8 [64]

Minimize     
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CTP2  
1,6,1,10,2.0,2.0:1 =====−= edcbaC πθ (3.17a) 

 
CTP3  
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1,5.0,1,10,1.0,2.0:1 =====−= edcbaC πθ (3.17b) 
 

CTP4  
1,6,1,10,75.0,2.0:1 =====−= edcbaC πθ (3.17c) 

 
CTP5  

1,5.0,2,10,1.0,2.0:1 =====−= edcbaC πθ (3.17d) 
 

CTP6  
2,2,1,5.0,40,1.0:1 −====== edcbaC πθ (3.17e) 

 
CTP7  

0,6,1,5,40,05.0:1 =====−= edcbaC πθ (3.17f) 
 

CTP8  
 2,2,1,5.0,40,1.0:1 −====== edcbaC πθ

0,6,1,2,40,05.0:2 =====−= edcbaC πθ (3.17g) 
 

Test Problem CONSTR [64]

Minimize    
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Test Problem Welded Beam [60]
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3.5 Proposed Constrained Multi-Objective Evolutionary Algorithm 

The proposed algorithm extends the single-objective constrained evolutionary 

algorithm proposed by Tessema and Yen [38] into the multi-objective case. The major 

difference in various constraint handling techniques used in multi-objective optimization 

arises from the variations in the involvement of infeasible individuals in the evolutionary 

process. The main purpose of involving infeasible individuals in the search process is to 

exploit the information they carry. Since EAs are stochastic search techniques, discarding 

infeasible individuals might lead to the EA being stuck in local optima, especially in 

problems with discontinuous search space. In addition, in some highly constrained 

optimization problems, finding a single feasible individual by itself might be a daunting 

challenge when the algorithm has to be able to extract information from the previous 

infeasible individuals. 

The proposed algorithm uses modified objective function values for checking 

dominance in the population. The modification is based on the constraint violation of the 
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individual and its objective performance. The modified objective value has two 

components: distance measure and adaptive penalty function. The two components are 

discussed below in detail. Without loss of generality, the discussion of this chapter 

assumes minimization problems. A maximization problem can be easily converted into 

minimization problem by multiplying with -1. 

 
3.5.1 Distance Values - Distance measures are found for each dimension of the 

objective space by including the effect of an individual’s constraint violation into its 

objective function. The major steps in calculating the distance measure are discussed 

below. First, obtain the minimum and maximum values of each objective function in the 

population.  

 
)(minmin xff ix

i = (3.22a) 

and  

)(maxmax xff ix

i = (3.22b) 

Then using these values, normalize each objective function i for every individual k.
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where )(~ xf i
k is the normalized ith-objective value of individual k with decision variable 

x.

Constraint violation, )(xvk , of each individual k is then calculated as the summation 

of the normalized violations of each constraint divided by the total number of constraints, 
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δ is a tolerance value for equality constraints (usually 0.001 or 0.0001).  q is the number 

of inequality constraints, and m – q is the number of equality constraints. If the constraint 

violation )(xc j
k is greater than zero, then individual k violates the jth-constraint. On the 

other hand, if the constraint violation )(xc j
k is equal to zero, then the individual k 

satisfies the jth-constraint and the constraint violation )(xc j
k is set to zero.  

Then the “distance” value of individual k in each objective function dimension i is 

formulated as follows: 
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where  

 
size population

populationcurrent insindividual feasible ofnumber 
=fr . (3.27) 

 
The pseudo-code for calculating the distance value is given in Figure 3.1.From 

Equation (3.26), we can observe that if there is no feasible individual in the current 

population, then the distance values are equal to the constraint violation of the individual. 

In this case, according to the distance values, an infeasible individual with smaller 

constraint violation will dominate another infeasible individual with higher constraint 

violation irrespective of their objective function values. This is an intuitively reasonable 

way to compare infeasible individuals in the absence of feasible individuals and it will 

help us approach the feasible space very quickly. 

On the other hand, if there is more than one feasible solution in the population, then 

the distance values will have the properties summarized below:  

A. For a feasible individual k, the distance value in a given objective function 

dimension i is equal to )(~ xf i
k . Hence, those feasible individuals with smaller 

objective function value will have smaller distance value in that given dimension. 

B. For infeasible individuals, the distance value has two components: the objective 

function value and the constraint violation. Hence, individuals closer to the origin 

in the )()(~ xvxf i − space would have lower distance value in that objective 

function dimension than those farther away from the origin.  
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Input: )(xf i
k , )(xvk , ifmin , ifmax , fr

SizePopulationkk ,,1, K=∀
objectivesofnumberii ,,1, K=∀

Output: )(xd i
k SizePopulationkk ,,1, K=∀

objectivesofnumberii ,,1, K=∀

Begin 
 If 0=fr then 
 For 1=i to number of objectives Do  

For 1=k to Population Size Do 
)(xd i

k ← )(xvk

End For  
 End For 

Else 
 For 1=i to number of objectives Do  

For 1=k to Population Size Do 

ii

ii
ki

k ff
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xf
minmax

min)(
)(~

−
−

←

)(xd i
k ← 22 )()(~ xvxf k

i
k +

End For  
 End For 

End If 
End 

Figure 3.1.  Pseudo code for finding distance value 

 

C. If we compare the distance values of infeasible and feasible individuals, then 

either one may have a smaller value. But if the two individuals have similar 

objective function value, then the feasible individual will have smaller distance 

value in the corresponding objective dimension.  
 

3.5.2 Two Penalties - In addition to the penalty imposed upon infeasible individuals 

by the distance measure, two other penalty functions are also added. These functions 

introduce additional penalty for infeasible individuals based on their corresponding 

objective value and constraint violation. The first penalty function is based on the 

objective functions and the second one is based on the constraint violation. The balance 
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between the two components is controlled by the number of feasible individuals currently 

present in the population. 

These penalties have two major purposes:  

A. To further reduce the fitness of infeasible individuals as the penalty imposed by 

the distance formulation alone is small. 

B. To identify the best infeasible individuals in the population by adding different 

amount of penalty to each infeasible individual’s fitness. 

The two penalties are formulated for individual k in the ith-objective function 

dimension as follows: 
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From the penalty function definition in Equations (3.28-3.29), we can observe that if 

the feasibility ratio of the population is small (but not zero), then the first penalty 

( )(xX k ) will have more impact than the second penalty ( )(xY i
k ). The first penalty is 

formulated to have large value for individuals with large amount of constraint violation. 

Hence in the case when there are few feasible individuals present in the population ( fr is 

small), infeasible individuals with higher constraint violation will be more penalized than 

those with lower constraint violation. On the other hand if there are many feasible 

solutions in the population ( fr is large), the second penalty will have more effect than the 

first one. In this case, infeasible individuals with larger objective function value will be 

more penalized than infeasible individuals with smaller objective function value. If there 

are no feasible individuals in the population ( 0=fr ), both penalties will be zero. 
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The two components of the penalty function allow the algorithm to switch between 

finding more feasible solutions and finding better solutions at anytime during the 

evolutionary process. Furthermore, since priority is initially given to searching for 

feasible individuals, the algorithm is capable of finding feasible solutions in cases where 

the feasible space is small or discontinuous compared to the search space. 

The pseudo-code for calculating the penalty value is given below in Figure 3.2.  

 

Figure 3.2.  Pseudo code for finding penalty value 
 
3.5.3 Final modified objective value formulation - The final modified objective 

value of individual k, using which non-dominance sorting is performed, is formulated as 

the sum of the distance measure and penalty function in the ith-objective dimension. 

Input: )(xf i
k , )(xvk , fr

SizePopulationkk ,,1, K=∀
objectivesofnumberii ,,1, K=∀

Output: )(xp i
k SizePopulationkk ,,1, K=∀

objectivesofnumberii ,,1, K=∀

Begin 
 For 1=i to number of objectives Do  

For 1=k to Population Size Do 
If 0=fr then 

)(xX k ← 0
Else 

)(xX k ← )(xvk

End If 
 
If 0)( =xvk then 

)(xY i
k ← 0

Else 
)(xY i

k ← )(~ xf i
k

End If 
)()()1()( xYrxXrxp i

kfkf
i
k +−←

End For 
 End For 
End 
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)()()( xpxdxF i
k

i
k

i
k += (3.30) 

 
This modified objective value formulation is very flexible and will allow us to utilize 

infeasible individuals efficiently. Most constraint optimization algorithms in literature are 

“rigid” in a sense that they always prefer certain types of infeasible individuals. For 

example, they might always give priority to those individuals with small constraint 

violation only or those individuals with low objective value only. But according to our 

new fitness formulation, the infeasible individuals that are considered valuable are not 

always similar. Here are some of the interesting properties of this modified objective 

value formulation: 

A. If there is no feasible individual in the current population, each )(xd i
k will be 

equal to the constraint violation ( )(xvk ) and each )(xpi
k term will be zero. In this 

case, the objective values of the individuals will be totally disregarded, and all 

individuals will be compared based only on their constraint violation. This will 

help us find feasible individuals before looking for optimal solutions.  

B. If there are feasible individuals in the population, then individuals with both low 

objective function values and low constraint violation value will be preferred than 

those individuals with high objective function values or high constraint violation 

or both.  

C. If two individuals have equal or very close distance values, then the penalty value 

( )(xpi ) determines the dominant individual. According to our penalty function, if 

the feasibility ratio ( fr ) in the population is small, then the individual closer to 

the feasible space will be dominant. In the other case, the individual with smaller 

objective function values will be dominant. Otherwise, the two individuals will be 

non-dominant solutions. 

D. If there is no infeasible individual in the population ( 1=fr ), then individuals will 

be compared based on their objective function values alone.  

The general pseudo-code for the proposed algorithm is given in Figure 3.3. 
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Figure 3.3.  Pseudo-code of proposed algorithm 

/* Proposed Constrained Multi-Objective Evolutionary Algorithm */ 

Begin 

Initialize N solutions 

Evaluate all individuals 

/* Constraint satisfaction */ 

Do While (“no feasible solution is found” or “maximum generation is 

reached”) 

 1) Give fitness to individuals based on their sum of constraint violations 

 2) Rank individuals based on fitness in 1 

 3) Selection, Recombination, Mutation and Replacement 

 4) Archive if any feasible solutions is found 

End Do       /* Feasible solutions have been found */ 

/* Constraint satisfaction and objective optimization */  

Do While (“maximum generation is reached”) 

 5) Calculate modified objective function values using distance measures 

and penalty functions for all individuals 

 6) Pareto sort individuals according to their modified objective function 

values 

 7) Give fitness to individuals according to Pareto ranking and crowding 

distance 

 8) Use tournament selection to select N parents 

 9) Generate N offspring solutions 

 10) Calculate fitness of offspring solutions 

 11) Update archive. If a feasible offspring dominates a solution in the 

archive, then it will replace that solution. 

 12) Trim the main population to N individuals based on the fitness of the 

individuals 

 End Do 

End 

Output archive
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After the computation of the modified objective values, the standard features of 

NSGA-II, such as non-dominant ranking and diversity through crowding distances, will 

be used based on these modified values. During the archiving process, the best-feasible 

individuals are given priority than any infeasible individuals as the goal of constrained 

multi-objective optimization is eventually to find feasible optimal solutions.  

 

3.6 Summary 

This chapter focuses on the issue of constrained multi-objective optimization. First, 

the problem definition is presented in Section 3.1. Following that in Section 3.2, a review 

of the various evolutionary algorithms suggested to solve constrained multi-objective 

optimization problems is presented. The literature review is followed by the discussion 

about the performance indexes often used to measure the performance of multi-objective 

problems. There are two commonly used performance indexes: diversity and 

convergence metrics. The diversity metric measures how well the resulting solution is 

distributed over the Pareto front. The convergence metric, on the other hand, measures 

how close the resulting solutions are to the true Pareto-optimal solutions. Then in Section 

3.4, the different constrained multi-objective optimization problems are presented. The 

test problems used in this paper include CONSTR [64], SRN [40, 62], BNH [56], OSY 

[61], TNK [63], CTP1-CTP8 [64], and Welded-beam problems [60].Finally in this 

chapter, we propose a constraint handling technique for solving constrained multi-

objective optimization problems. The proposed algorithm is based on adaptive penalty 

functions and distance measures. These two functions are dependent upon the objective 

function values and the sum of constraint violations of an individual. Through this 

design, the objective space is modified to account for the performance and constraint 

violation of each individual. The modified objective functions are used in the non-

dominance sorting to facilitate in evolution of optimal solutions not only in the feasible 

space but also in the infeasible space. The search in the infeasible space is designed to 

exploit those individuals with better objective values and lower constraint violations. The 

number of feasible individuals in the population is used to guide the search process either 

toward finding more feasible solutions or favor in search for optimal solutions. The 

proposed method is simple to implement and does not need any parameter tuning. 
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CHAPTER IV 
 

EXPERIMENTAL SIMULATIONS AND RESULTS 

4.1 Proposed Dynamic Evolutionary Algorithm 

4.1.1 Experimental setup - The first set of experiments were conducted on dynamic 

benchmark problems, DF1 – DF6. Each test is run 50 times. We use a population size of 

100, a crossover rate of 0.6, a mutation rate of 0.2, and a maximum fitness evaluation of 

500,000 for all implementations. Each decision dimension is bounded between 0 and 100. 

In addition, we use SBX crossover and mutation. Tournament selection is adopted in 

recombination and replacement scheme. Elitism is also used to improve performance.  

The proposed dynamic evolutionary algorithm is compared at least once against the 

following approaches for solving dynamic optimization problems. The first is standard 

evolutionary algorithm which is abbreviated as SEA. A variation of this algorithm with 

memory is denoted as SEAmem. The other algorithms that are used include introducing 

25 random immigrants when a change occurs (RI25 [12], RI25mem), self-organizing 

scouts (SOS [28]), standard evolutionary algorithm with three independent sub-

populations (P3 [8], P3mem), and finally dividing the population into memory and search 

subpopulations (Mem/Search [8]). In addition, a combination of P3 and RI25 approaches 

enhanced with memory, denoted as P3RI25mem, is also compared against the proposed 

algorithm. We used two variations of the proposed algorithm, RVDEA-one enhanced 

with memory (RVDEAmem) and another using several clusters to preserve diversity 

(RVDEAcluster). 

Due to the lack of reported data for some of the algorithms under certain benchmark 

test functions, different test functions are compared against different sets of algorithms. 

DF1 test problem was tested on all of above listed algorithms. On the other hand, DF6 

was tested for SEAmem, RI25mem, P3mem, P3RI25mem, Mem/search, and the two 

variations of the proposed algorithm. All the other test functions were tested on SEAmem,
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RVDEAmem and RVDEAcluster. The first test was conducted on DF1 test problem with 

default parameter settings given in Table 4.1. Some of these values that apply were also 

used for the other test problems unless stated otherwise. 

 

4.1.2 Results and discussions - Table 4.2 compares the performance of the proposed 

RVDEA with other state-of-the-art algorithms based on the number of peaks. As can be 

seen from Table 4.2, the proposed algorithm performs much better than the other 

dynamic algorithms except SOS. In the case of SOS, the proposed algorithm performed 

better only for a single peak DF1 problem. For the other cases, RVDEA provided 

comparable or lesser result. As RVDEA is a an adaptation scheme performed at the 

transient stage, other evolutionary techniques that enhance performance of algorithm, like 

diversity preservation, can be applied to further improve the steady state performance of 

RVDEA keeping the computational cost the same as SOS.  Since the number of fitness 

evaluation is fixed when comparing algorithms, by computational cost we refer to the 

additional calculations required by the algorithm for its proper operation. For example, in 

the case of SOS, additional computation is required for forming and organizing the 

scouts. On the contrary, the additional evaluations required by RVDEA are simple 

averaging operations that are linearly dependent on the number of individuals in the 

population. This allows RVDEA to be used in conjunction with other techniques like 

steady state diversity preservation to further enhance the algorithm’s performance.  In 

this notion, we tested a modified RVDEA with clustering technique that has a 

comparable or less computational cost as that of SOS. In Table 4.2, it can be seen how 

well the modified algorithm’s performance exceeded that of SOS in all different numbers 

of peak.  

In Table 4.3, RVDEA was compared with the other algorithms based on frequency of 

change. RVDEA provides very good results at higher frequency of change and a 

comparable result as SOS when frequency is decreased. Due to the structure of the 

algorithm, the maximum allowable change frequency is two generations – one for re-

evaluation and one for relocation. Lower frequencies less than two generations can be 

analyzed by reducing the size of the original population so that RVDEA will have a 
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minimum change frequency of at least two while maintaining the number of evaluations 

constant.  

Figures 4.1 and 4.2 provide a graphical presentation of the offline errors of the 

different dynamic EAs at varying peak number and varying frequency of change, 

respectively.  

In Table 4.4, we present the outputs of RVDEA as the memory size is changed. Even 

though having memory is generally recommended in dynamic EAs, the algorithm still 

performs well without the support of memory.  

We also have tested the algorithm using time-varying Gaussian peaks [DF2]. We 

used the same setting as in Table 4.1 for this problem. The results were compared with 

standard evolutionary algorithm with memory in Table 4.5. As can be clearly seen from 

the table, the proposed algorithm has better adaptation and performance even in higher 

number of peaks. RVDEA with memory provides very good results, but further 

improvements in performance can be obtained by using RVDEA with clusters. We also 

tested DF2 by varying the number of generations between changes. As can be seen from 

Table 4.6, the proposed algorithm provides better results at higher frequencies of change. 

As in the previous case, RVDEA with memory provides very good performance, but 

RVDEA with clusters provides much better results even though it involves more 

computation.  

The algorithm is also tested for moving parabola test problem with linear [DF3], 

random [DF4], and circular [DF5] dynamics. We run the problems with different cycle 

length. The results show that the proposed algorithm performs very well both in lower 

and higher frequencies of change. The results are summarized in Table 4.7. Furthermore, 

the algorithm performs well in higher number of peaks as shown in Table 4.8.  

The proposed algorithm was also tested on oscillating peaks function [DF6]. We used 

two landscapes with 10 peaks each. The minimum and maximum peak widths parameters 

are set to 0.001 and 0.08, respectively. The rest of the parameters are kept the same as in 

Table 4.1. In Table 4.9, the algorithm’s performance under different cycle lengths is 

presented. As can be seen from the results, the algorithm has better performance both in 

lower and higher frequencies of change and the algorithm’s performance was intact even 

with large variations in cycle lengths. 
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In Tables 4.10 and 4.11, we presented a summary of the adaptation performance for 

RVDEA with memory in the test problems DF1-DF6. As can be seen from the tables, the 

proposed algorithm adapts to the new environment effectively and quickly. This 

combination of qualities makes the proposed algorithm attractive to be used in 

environment with severe changes and higher frequencies of changes.  

Similarly, in Tables 4.12 and 4.13, we presented the adaptation performance for 

RVDEA with clusters. The results obtained were better than those of RVDEA with 

memory, but as previously pointed out RVDEA with clusters involves more computation 

than RVDEA with memory alone. Generally speaking, the adaptation performance of 

RVDEA with memory and RVDEA with clusters are better and indicate the effectiveness 

of the adaptation scheme used by the proposed algorithm. 

 

TABLE 4.1 

DEFAULT EXPERIMENTAL PARAMETER SETTINGS FOR DYNAMIC BENCHMARK 

PROBLEMS 

 
Default number of peaks 10 
Default change frequency Every 50 generation 

Peak shape 
Cone [DF1], Gaussian [DF2], 

Parabola [DF3-DF5], 
Bell Curve [DF6] 

Dimension 5 
Min and Max limit of each 

decision dimension [0,100] 

Height severity 7.0 
Width severity 1.0 

Min and Max peak height [30,70] 
Min and Max peak width [1,12] 

Peak shift length 1.0 
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TABLE 4.2 

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF PEAK 

NUMBER ON MOVING CONE PEAKS BENCHMARK PROBLEM [DF1] 

 

TABLE 4.3 

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF 

GENERATION BETWEEN CHANGES ON MOVING CONE PEAKS BENCHMARK PROBLEM 

WITH 10 PEAKS [DF1] 

 

Peak 
no. SEA RI25 

[12] P3 [8] SOS 
[28] 

RVDEA 
mem 

RVDEA 
clusters 

1 3.69 9.29 3.45 2.06 1.23 1.02 
10 17.98 14.67 14.47 4.01 4.88 3.54 
20 20.06 13.93 15.62 4.43 5.68 3.87 
30 20.27 12.93 14.39 4.20 5.86 3.92 
40 19.50 12.45 14.57 4.06 5.65 3.49 
50 19.70 12.74 13.78 4.12 5.21 3.78 
100 17.91 11.21 11.49 3.75 4.98 3.37 
200 18.13 10.85 10.66 3.62 4.92 3.54 

Results for SEA, RI25, P3, SOS as reported in [8]

Gen. 
no. SEA SEA 

mem 
Mem/ 
search 

SOS 
[28] 

RVDEA 
mem 

RVDEA 
clusters 

2 24.59 25.22 18.74 15.62 15.82 12.91 
5 22.44 22.16 14.54 8.59 8.89 7.67 
10 21.07 20.81 11.95 6.51 7.21 6.048 
25 19.12 19.79 9.41 4.93 5.35 4.28 
50 17.93 18.23 7.74 4.01 4.88 3.54 
100 17.06 17.53 6.58 3.62 4.12 3.14 

Results for SEA, SEAmem, Mem/search and SOS as reported in [8] 
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TABLE 4.4 

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF MEMORY 

SIZE ON MOVING CONE PEAKS BENCHMARK PROBLEM WITH 10 PEAKS [DF1] 

 

.

.

Figure 4.1. Offline error vs. peak number for some DEAs on a moving cone peaks 
benchmark problem [DF1] 

 

Mem 
size 

SEA 
mem 

RI25 
mem 

P3 
mem 
[8] 

P3RI25
mem 
[8] 

Mem/ 
search 

RVDEA 
mem 

0 n/a n/a n/a n/a n/a 4.90 
4 17.94 13.27 14.53 17.88 7.76 5.15 
10 18.23 13.60 14.45 18.73 7.34 4.88 
16 17.91 13.64 14.49 21.21 7.46 5.06 

Results for SEAmem, RI25mem, P3mem, P3RI25mem and Mem/search as reported in [8] 
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Figure 4.2. Offline error vs. change frequency for some DEAs on a moving cone 
peaks benchmark problem [DF1] 

 

TABLE 4.5 

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF PEAK 

NUMBER ON TIME VARYING GAUSSIAN PEAKS BENCHMARK PROBLEM [DF2] 

 
Peak no. SEA 

mem 
RVDEA  

mem 
RVDEA 
clusters 

1 16.15 1.79 0.302 
5 24.49 4.20 2.653 
10 28.67 6.36 3.871 
50 29.19 7.54 3.322 
100 29.75 8.06 3.713 
200 31.32 11.59 3.755 
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TABLE 4.6 

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF 

GENERATION BETWEEN CHANGES ON TIME VARYING GAUSSIAN PEAKS BENCHMARK 

PROBLEM WITH 10 PEAKS [DF2] 

 

TABLE 4.7 

OFFLINE ERROR VARIATION  AFTER 500,000 EVALUATIONS AS FUNCTION OF CYCLE 

LENGTH ON MOVING PARABOLA BENCHMARK PROBLEMS WITH 10 PEAKS [DF3-DF5] 

 

Moving 
parabola type

Cycle 
length  
(eval) 

SEA 
mem 

RVDEA 
mem 

RVDEA 
clusters 

1,000 10.893 2.334 0.881 
2,500 10.821 2.125 0.755 
5,000 10.865 2.082 0.609 
10,000 10.944 1.781 0.483 
20,000 11.291 1.622 0.299 

Linear  
[DF3] 

100,000 11.033 1.413 0.177 
1,000 11.126 2.752 1.026 
2,500 11.065 2.611 0.982 
5,000 10.877 2.303 0.891 
10,000 10.531 2.142 0.769 
20,000 10.218 1.897 0.536 

Random 
[DF4] 

100,000 9.893 1.662 0.247 
1,000 12.844 2.989 1.583 
2,500 12.815 2.788 1.457 
5,000 12.663 2.445 1.162 
10,000 12.587 2.121 0.783 
20,000 12.499 1.965 0.607 

Circular 
[DF5] 

100,000 12.431 1.792 0.340 

Gen. no. RVDEA  
mem 

RVDEA 
clusters 

2 14.41 10.11 
5 8.83 7.55 
10 6.98 4.41 
25 6.44 4.12 
50 6.36 3.87 
100 5.95 3.34 
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TABLE 4.8 

OFFLINE ERROR VARIATION  AFTER 500,000 EVALUATIONS AS FUNCTION OF PEAKS 

NUMBER ON MOVING PARABOLA BENCHMARK PROBLEMS WITH CYCLE LENGTH 

5,000 EVALUATIONS [DF3-DF5] 

 

TABLE 4.9 

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF CYCLE 

LENGTH ON OSCILLATING PEAKS BENCHMARK PROBLEM [DF6] 

 
Cycle 
length 
(eval) 

SEA 
mem 

RI25 
mem 

P3 
mem 

P3RI25 
mem 
[8] 

Mem/ 
search 

RVDEA 
mem 

RVDEA 
clusters 

1,000 11.93 9.01 10.07 9.87 7.19 4.252 2.648 
5,000 n/a n/a n/a n/a n/a 4.132 2.411 
10,000 n/a n/a n/a n/a n/a 3.978 2.342 
100,000 17.66 7.26 12.00 9.27 4.71 3.821 2.025 

Results for SEAmem, RI25mem, P3mem, P3RI25mem and Mem/search as reported in [8] 

Moving 
parabola type Peaks no. RVDEA  

mem 
RVDEA 
clusters 

1 1.517 0.081 
5 1.892 1.122 
10 2.082 1.609 
50 2.367 1.756 
100 2.688 2.186 

Linear  
[DF3] 

200 2.850 2.377 
1 1.268 0.106 
5 1.764 1.446 
10 2.303 1.791 
50 2.675 1.862 
100 2.904 1.985 

Random 
[DF4] 

200 3.023 2.149 
1 1.687 0.158 
5 2.022 0.967 
10 2.445 1.162 
50 2.664 1.368 
100 2.864 1.743 

Circular 
[DF5] 

200 3.191 2.040 
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TABLE 4.10 

ADAPTATION PERFORMANCE FOR RVDEAMEM AFTER 500,000 EVALUATIONS AS 

FUNCTION OF PEAK NUMBER 

 

TABLE 4.11 

ADAPTATION PERFORMANCE FOR RVDEAMEM AFTER 500,000 EVALUATIONS AS 

FUNCTION OF GENERATION BETWEEN CHANGES  
 

TABLE 4.12 

ADAPTATION PERFORMANCE FOR RVDEACLUSTER AFTER 500,000 EVALUATIONS AS 

FUNCTION OF PEAK NUMBER 

 

Gen. 
no. DF1 DF2 DF3 DF4 DF5 DF6 

2 0.7707 0.7912 0.9538 0.9486 0.9455 0.9293 
5 0.8712 0.8720 0.9573 0.9535 0.9521 0.9343 
10 0.8955 0.8988 0.9662 0.9601 0.9567 0.9384 
25 0.9225 0.9067 0.9692 0.9622 0.9596 0.9391 
50 0.9293 0.9078 0.9698 0.9666 0.9646 0.9401 
100 0.9403 0.9138 0.9742 0.9690 0.9693 0.9423 

Peak 
no. DF1 DF2 DF3 DF4 DF5 DF6 

1 0.9822 0.9741 0.9780 0.9816 0.9756 0.9382 
5 0.9329 0.9391 0.9726 0.9744 0.9707 0.9394 
10 0.9293 0.9078 0.9699 0.9666 0.9646 0.9411 
25 0.9309 0.8907 0.9679 0.9644 0.9634 0.9415 
50 0.9245 0.8832 0.9657 0.9612 0.9614 0.9431 
100 0.9278 0.8320 0.9610 0.9579 0.9585 0.9438 

Peak 
no. DF1 DF2 DF3 DF4 DF5 DF6 

1 0.9852 0.9956 0.9988 0.9985 0.9977 0.9570 
5 0.9612 0.9616 0.9837 0.9790 0.9860 0.9846 
10 0.9487 0.9439 0.9767 0.9740 0.9832 0.9625 
25 0.9436 0.9480 0.9756 0.9734 0.9818 0.9653 
50 0.9452 0.9519 0.9746 0.9730 0.9802 0.9659 
100 0.9516 0.9462 0.9683 0.9712 0.9747 9.9677 
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TABLE 4.13 

ADAPTATION PERFORMANCE FOR RVDEACLUSTER AFTER 500,000 EVALUATIONS AS 

FUNCTION OF GENERATION BETWEEN CHANGES  
 

The effect of increasing number of peaks on the output of the algorithm is more or 

less equivalent to an increase in problem difficulty and decrease in performance. But as 

can be seen from the results given in some of the tables, at some values of peak number 

there are discrepancies and this is mainly due to the fact that the operation of the 

algorithm is stochastic and the output may not always follow a given pattern. A similar 

argument also applies to increase in the number of generations between changes. In such 

cases, the output of the algorithm generally decreases with increase in change frequency 

with the exception of some discrepancies. However, the output of the algorithm is still 

better than most chosen algorithms. 

 
TABLE 4.14 

OFFLINE ERROR PERFORMANCE FOR RVDEA WITOUT MEMORY AFTER 500,000 

EVALUATIONS ON TEST PROBLEMS DF1-DF6 WITH 10 PEAKS 

 DF1 DF2 DF3 DF4 DF5 DF6 
RVDEA 4.90 6.42 2.11 2.35 2.51 4.35 

RVDEAmem 4.88 6.36 2.082 2.303 2.445 4.132 
RVDEAcluster 3.54 3.877 1.609 1.791 1.162 2.411 

Lastly, the proposed algorithm, RVDEA, is analyzed without memory to see how 

much of the observed performance can be attributed to the proposed algorithm in contrast 

to the use of memory or clusters. The results clearly suggest that RVDEA contributes to 

most part of the observed performances. The results are presented in Table 4.14. 

Gen. 
no. DF1 DF2 DF3 DF4 DF5 DF6 

2 0.8129 0.8535 0.9819 0.9796 0.9709 0.9558 
5 0.8888 0.8906 0.9851 0.9824 0.9737 0.9573 
10 0.9123 0.9361 0.9872 0.9851 0.9771 0.9616 
25 0.9380 0.9403 0.9891 0.9858 0.9789 0.9630 
50 0.9487 0.9439 0.9912 0.9871 0.9832 0.9651 
100 0.9545 0.9516 0.9930 0.9889 0.9887 0.9661 
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In general, the results show that RVDEA is capable of solving dynamic optimization 

problems. The proposed algorithm is very easy to implement and the additional 

computational cost is very cheap. The proposed algorithm uses the evolutionary progress 

of each individual to arrive at the optimal relocation needed specifically for that 

individual to adapt to the new environment. Hence, it is a fast and effective adaptation 

scheme that occurs at the transient stages of a change. Furthermore, since the algorithm is 

fast and simple, additional enhancements in population diversity can be included at each 

steady state operation without bypassing the acceptable computational cost limit. In this 

paper, we implemented multiple clusters as a means to maintain steady state diversity. By 

using this simple clustering scheme, the algorithm performed better than all other 

dynamic evolutionary algorithms tested in this study. This performance improvement 

shows that RVDEA has a great potential to be used alongside other dynamic evolutionary 

techniques. Furthermore, the ease of implementing the algorithm makes the proposed 

algorithm very attractive. It should be noted that the algorithm still performs much better 

than most of the other algorithms cited in this chapter without any performance 

enhancement techniques. 

 

4.2 Constrained Multi-Objective Evolutionary Algorithm 

4.2.1 Experimental setup - The second set of experiments were conducted on the 

proposed constrained multi-objective evolutionary algorithm. The algorithm is tested on 

several constrained multi-objective benchmark problems available from literature. The 

results are summarized below. We use a population size of 100, crossover rate of 0.8, 

mutation rate of 0.2, and maximum generation number of 100 for all implementations. 

These values are chosen in consistent with the other algorithms to be compared with. In 

addition, we use SBX crossover and mutation. Tournament selection is adopted in 

recombination and replacement scheme. The test problems are denoted as BNH [56], 

SRN [40, 62], OSY [61], TNK [63], CTP1 [64], CTP2 [64], CTP3 [64], CTP4 [64], 

CTP5 [64], CTP6 [64], CTP7 [64], CTP8 [64], CONSTR [64], and Welded Beam 

Problem [60]. Each test is run 50 times and the performance metrics are measured 

statistically. 
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4.2.2 Results and discussions - The algorithm was able to find very accurate Pareto 

optimal solutions for all the benchmark test problems. The convergence metric with 

respect to the true Pareto front is given in TABLE 4.15. As can be noticed from the table, 

the proposed algorithm has an average accuracy in the order of 0.0165. Furthermore, we 

have presented the diversity metric for the Pareto front obtained in TABLE 4.16. As can 

be observed from the table, the proposed algorithm consistently provides diversified non-

dominant individuals in the resulted Pareto front. Moreover, the lower and upper limits of 

the objective functions of the Pareto front attained are covered to the possible extent. 

TABLE 4.17 provides the upper and lower extreme values of the objective functions in 

the non-dominated set. These values represent the extent to which the Pareto front 

extends and this indicates how far in the Pareto-front the proposed algorithm is able to 

find optimal feasible solutions in each test problem.  

The test problem, OSY [61], has two second-order nonlinear objective functions, four 

linear inequality constraints, and two nonlinear second-order inequality constraints.  The 

resulting Pareto front obtained by the proposed algorithm is shown in Figure 4.3a. The 

Pareto front is known to be piece-wise continuous and as can be seen from the plot, the 

proposed algorithm is able to provide better-fit feasible individuals well distributed over 

the Pareto front (with convergence metric (0.0056) and diversity metric (0.6879) over 50 

runs). The Pareto-front extends well between -273 and -49 in the first objective function, 

and between 4.05 and 75.2 in the second objective function. The convergence and 

diversity metric plots over 100 generations for OSY test problem are given in Figure 

4.6a. 

The next test problem, BNH [56], has two second-order nonlinear objective functions 

and two nonlinear second-order inequality constraints. The resulting Pareto front 

generated by the proposed algorithm is given in Figure 4.3b. As can be noted from the 

figure and also from the convergence (0.0038) and diversity (0.6162) metrics, the 

proposed algorithm provides feasible optimal solutions that are diversely distributed on 

the true Pareto front. Furthermore, the resulting allowable feasible limits in the Pareto 

front extends to as low as 1.6e-3 and as high as 136 in the first objective function, and as 

low as 4.0 and as high as 49.8 in the second objective function. The convergence and 
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diversity metric plots over 100 generations for BNH test problem are given in Figure 

4.6b. 

The following test is conducted using CTP1 test problem [64]. This problem has one 

linear objective function, one exponentially nonlinear objective function, and two 

exponentially nonlinear inequality constraints. The generated Pareto front is given in 

Figure 4.3c. As can be noted from the plot and the convergence metric (0.0014) and the 

diversity metric (0.5827) obtained over 50 runs, the proposed algorithm provides better-

fit feasible individuals well distributed over the Pareto front. The first objective function 

extends between 7.5e-13 and 0.995, while the second objective function extends between 

0.543 and 1.05. The convergence and diversity metric plots over 100 generations for 

CTP1 test problem are given in Figure 4.6c. 

The next consecutive experiments are conducted on six test problems starting from 

CTP2 up to CTP7 [64]. These problems have one linear objective function, one nonlinear 

objective function, and a single highly nonlinear inequality constraint.  The problems 

have different parameter values which results in varying degrees of difficulties and 

varying feasible optimal solutions. The resulting Pareto fronts are shown in Figures 4.3d-

4.3i. As can be seen from the plots and the resulted convergence metrics and the diversity 

metrics from Tables 4.14 and 4.15, the proposed algorithm provides better-fit feasible 

individuals over the discontinuous Pareto front. For the test problem CTP2, the algorithm 

is able to provide a convergence metric value of 9.3e-4 and a diversity metric value of 

0.6389. The Pareto front obtained extends between 6.2e-4 and 0.981 for the first 

objective function and between 0.288 and 1.0 for the second objective function. For the 

case of CTP3 test problem, a convergence metric value of 0.0074 and a diversity metric 

value of 0.9032 are obtained. For this problem, the Pareto front extends between 0 and 

0.976 for the first objective function and between 0.301 and 1.11 for the second objective 

function. Similarly for CTP4, a convergence metric value of 0.0259 and a diversity 

metric value of 0.8993 are obtained and the resulting Pareto front extends between 0 and 

0.824 for the first objective function and between 0.433 and 1.17 for the second objective 

function. In test problem CTP5, the convergence metric is found to be 0.0017 and the 

diversity metric is found to be 0.9182. In this problem, the resulted Pareto front extends 

between 5.3e-17 and 0.974 in the first objective function and between 0.329 and 1.0 in 
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the second objective function. Similarly for CTP6, a convergence metric value of 0.0039 

and a diversity metric value of 0.5632 are obtained and the resulting Pareto front is found 

to extend between 1.7e-16 and 1.0 in the first objective function and 0.884 and 3.81 in the 

second objective function. Finally for test problem CTP7, a convergence metric value of 

9.6e-4 and a diversity metric value of 0.6602 are obtained. The Pareto front for this 

problem extends between 1.5e-16 and 1.0 for the first objective function and between 

3.1e-9 and 1.09 for the second objective function. The convergence and diversity metric 

plots over 100 generations for test problems CTP2-CTP7 are given in Figures 4.6d – 4.6i.  

The next test is conducted on CTP8 test problem [64] which has one linear objective 

function, one nonlinear objective function, and two highly nonlinear inequality 

constraints. The resulted Pareto front is shown in Figure 4.3j. As can be observed from 

the plot and the convergence metric (7.6e-4) and the diversity metric (0.6368), the 

proposed algorithm provides better-fit feasible individuals over the discontinuous Pareto 

front. The resulting Pareto front extends between 6.1e-17 and 0.822 in the first objective 

function and between 1.38 and 3.71 in the second objective function. The convergence 

and diversity metric plots over 100 generations for CTP8 test problem are given in Figure 

4.6j. 

The next test is conducted on CONSTR [64] which has one linear objective function, 

one nonlinear objective function, and two linear inequality constraints. The resulted 

Pareto front by the proposed algorithm is shown in Figure 4.4c. This problem is relatively 

easy compared to the other test problems. As can be noted from the plot and the 

convergence (0.0049) and diversity (0.6841) metrics, the proposed algorithm produces a 

very good Pareto front. This Pareto front extends between 0.398 and 0.98 for the first 

objective function and between 1.00 and 8.79 for the second objective function. The 

convergence and diversity metric plots over 100 generations for CONSTR test problem 

are given in Figure 4.6k. 

The next experiment applies to SRN test problem [40, 62]. This problem has two 

second-order nonlinear objective functions, one linear inequality constraint, and one 

nonlinear second-order inequality constraint.  The resulted Pareto front by the proposed 

algorithm is displayed in Figure 4.4f. As can be seen from the plot and the convergence 

metric (0.0016) and the diversity metric (0.5792), the proposed algorithm provides very 
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OSY BNH CTP1 CTP2 CTP3 CTP4 CTP5 
Avg 0.0056 0.0038 0.0014 9.3e-4 0.0074 0.0259 0.0017 
Var 9.7e-6 2.5e-5 3.5e-5 4.3e-4 3.4e-4 4.1e-4 3.6e-4 

CTP6 CTP7 CTP8 CONSTR SRN TNK 
Avg 0.0039 9.6e-4 7.6e-4 0.0049 0.0016 0.0053 
Var 4.2e-4 4.6e-4 4.9e-4 3.3e-5 3.1e-5 2.9e-4 

good and diversified feasible individuals over the Pareto front. This Pareto front extends 

between 10.3 and 219 for the first objective function and between -216 and 3.97 for the 

second objective function. The convergence and diversity metric plots over 100 

generations for SRN test problem are given in Figure 4.6l. 

The next experiment is conducted on TNK test problem [63]. This problem has two 

linear objective functions, one second-order nonlinear inequality constraint, and one 

highly nonlinear trigonometric inequality constraint. The converged Pareto front by the 

proposed algorithm is shown in Figure 4.4i. The Pareto front is known to be 

discontinuous and as can be seen from the plot, the proposed algorithm still provides 

better-fit feasible individuals that are well distributed over the Pareto front (with 

convergence metric 0.0053 and diversity metric 0.7461); first objective function extends 

between 2.9e-6 and 1.05; second objective function extends between 1.3e-7 and 1.05). 

The convergence and diversity metric plots over 100 generations for TNK test problem 

are given in Figure 4.6m. 

 
TABLE 4.15 

CONVERGENCE METRIC 
MEAN (FIRST ROW) AND VARIANCE (SECOND ROW) OF THE CONVERGENCE METRIC 

γ AFTER 100 GENERATIONS 
 

The plots of the obtained Pareto fronts for the constrained multi-objective test 

problems meet our expectation. Not only are we able to find feasible individuals, but also 

we are able to find better-fit individuals that are on or very close to the true Pareto front. 

In addition, the infeasible individuals are fully exploited during the evolutionary process 

to allow the algorithm to have an evenly distributed and well extended Pareto front. For 

comparison with other algorithms, we have reproduced the results reported in [57] for 



65

OSY BNH CTP1 CTP2 CTP3 CTP4 CTP5 
Avg 0.6879 0.6162 0.5827 0.6389 0.9032 0.8993 0.9182 
Var 0.0422 0.0502 0.0459 0.0479 0.0497 0.0508 0.0517 

CTP6 CTP7 CTP8 CONSTR SRN TNK 
Avg 0.5632 0.6602 0.6368 0.6841 0.5792 0.7461 
Var 0.0513 0.0534 0.0595 0.0224 0.0381 0.0529 

OSY BNH CTP1 CTP2 CTP3 CTP4 CTP5 
Lower -273 1.6e-3 7.5e-13 6.2e-4 0.0 0.0 5.3e-17 

f1 Upper -49 136 0.995 0.981 0.976 0.824 0.974 
Lower 4.05 4.0 0.543 0.288 0.301 0.433 0.329 

f2 Upper 75.2 49.8 1.05 1.0 1.11 1.17 1.0 
CTP6 CTP7 CTP8 CONSTR SRN TNK 

Lower 1.7e-16 1.5e-16 6.1e-17 0.398 10.3 2.9e-6 
f1 Upper 1.0 1.0 0.822 0.98 219 1.05 

Lower 0.884 3.1e-9 1.38 1.0 -216 1.3e-7 
f2 Upper 3.81 1.09 3.71 8.79 3.97 1.05 

CONSTR, SRN, and TNK test problems in Figure 4.4. Clearly, the proposed algorithm 

performs better than Ray-Tai-Seow’s algorithm in all of the three test problems. The 

uniformity and the extent of the Pareto fronts obtained from the proposed algorithm are 

also better than those of NSGA-II even though subtle. The reason is that the proposed 

algorithm not only searches in the feasible space but also exploits the evolutionary 

information contained in individuals with low objective value and low constraint 

violation.  

 

TABLE 4.16 
DIVERSITY METRIC 

MEAN (FIRST ROW) AND VARIANCE (SECOND ROW) OF THE DIVERSITY METRIC ∆
AFTER 100 GENERATIONS 

 

TABLE 4.17 
 LOWER AND UPPER BOUNDS OF THE OBJECTIVE FUNCTIONS IN THE NON-

DOMINANT SOLUTIONS AFTER 100 GENERATIONS 
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Figure 4.3. The Pareto fronts for different constraint multi-objective test problems 
obtained by the proposed algorithm 

 

A more notable performance difference is obtained for welded beam problem 

presented in [60]. The proposed algorithm is able to provide a much better diversity in the 

Pareto front within the same (i.e., 8,000) objective function evaluations as shown in 

Figure 4.5. The convergence metric for this problem is found to be 0.0062 while the 

diversity metric is found to be 0.7581. The Pareto front extends between 2.2 and 35.7 in 

the first objective function and between 4.39e-4 and 8.56e-3 in the second objective 

function. The convergence and diversity metric plots over 100 generations for the welded 

beam test problem are given in Figure 4.6n. 
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Figure 4.4. The Pareto fronts for three constraint multi-objective test problems, 
CONSTR, SRN and TNK (from top to bottom) obtained by Ray-Tai-Seow 
algorithm (left), NSGA-II (middle) [57] and the proposed algorithm (right). 
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Figure 4.5. The obtained Pareto front of welded beam problem for (a) NSGA-II 
(as reported in [60]) and (b) the proposed algorithm. 
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Figure 4.6. The diversity and convergence metric plots for all test problems over 
100 generations 
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diversity plots indicate that a continuous convergence and diversified population is 

achieved in the proposed algorithm 
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CHAPTER V 
 

CONCLUSIONS AND RECOMMENDATIONS 

Many real-world optimization problems have to be performed under the presence of 

various uncertainties and constraints. In this thesis, two common optimization problems 

are studied using evolutionary algorithms. These are dynamic optimization problems and 

constrained multi-objective optimization problems. 

Dynamic optimization problems are common optimization problems with a fitness 

landscape that undergoes various changes during the optimization. In this thesis, we 

proposed a dynamic evolutionary algorithm that uses variable relocation vectors to adapt 

already converged or currently evolving individuals to the changing landscape. The 

proposed algorithm relocates the individuals based on their change in function value due 

to the change in the environment and the average sensitivities of their decision variables 

to the corresponding change in the objective space. The relocation vectors introduce a 

certain radius of uncertainty to be applied specifically to each individual and in effect 

restoring diversity and accelerating exploration. Since the adaptation is conducted on the 

previous population, the proposed algorithm provides higher reusability of previous 

evolutionary information. Furthermore, the algorithm provides faster convergence and 

better adaptation and this makes it attractive for optimizing fitness landscapes with higher 

frequency of change. In addition, the algorithm is able to find optimal solutions in higher 

severities of change. Severe changes require higher diversity restoration and the proposed 

algorithm uses larger relocation vectors to do so. The relocated population is shown to be 

better fit to the new environment than the original or any other randomly generated 

population. The algorithm has been tested for several dynamic benchmark problems and 

has shown better results compared to some chosen state-of-the-art dynamic evolutionary 

approaches. 
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The relocation vectors are specific to each individual and this gives the algorithm 

better adaptation than those approaches that use a single adaptation value for the whole 

population. Furthermore, using specific sensitivities and relocation vectors allow the 

algorithm to provide a considerable progress jump for the next evolutionary process. As a 

technique to be used during transient periods, the proposed algorithm provides the next 

evolutionary cycle with better initial population than any other randomly generated 

population. Furthermore, the extra computational cost of the proposed algorithm is 

comparable to its performance improvement since the additional calculations are basic 

arithmetic operations. Hence, the performance improvement per extra computational cost 

is higher in the proposed algorithm than the other dynamic evolutionary algorithms used 

in this thesis. The algorithm can be easily integrated into standard evolutionary 

algorithms and other uncertainty handling techniques like multi-population and diversity 

preservation. This fast adaptation scheme when enhanced with diversity perseveration 

techniques provides much better overall performance. The authors believe that better 

results can also be obtained by implementing the relocation scheme on multi-population 

approaches. For future work, the authors recommend applying the variable relocation 

scheme to multi-population approaches for solving dynamic optimization problems. 

This thesis also studies constrained multi-objective optimization problems which are 

common multi-objective optimization problems with constraints limiting their feasible 

space. In this thesis, we proposed an adaptive constraint handling technique for solving 

constrained multi-objective optimization problems. Beside the search for optimal 

solutions in the feasible region, the algorithm also exploits the information hidden in 

infeasible individuals with better objectives and lower constraint violation. This is 

achieved by using the modified objective values in the non-dominance ranking of the 

multi-objective evolutionary algorithm. The modified objective values are the 

modifications of the objective functions to incorporate the effects of the individuals’ 

constraint violation. They are composed of distance measures and penalty functions. 

These values are associated with how well an individual performs and how much it 

violates the constraints. They are obtained for every objective function dimension. For 

feasible individuals, the distance values are just the normalized objective function values. 

For infeasible individuals, the distance values are obtained from the normalized objective 
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function values and their constraint violation. The penalty function, on the other hand, 

will be applied to infeasible individuals in order to further decrease their fitness 

compared to feasible individuals. The number of feasible individuals in the population 

adaptively controls the emphasis given to objective values or constraint violation in the 

modified objective function formulation. If there is no feasible individual in the 

population, the algorithm uses the constraint violations as the primary means to rank the 

individuals. This adaptive formulation allows further exploitation of the evolutionary 

information possessed by infeasible individuals with low objective values and low 

constraint violation. Involving the infeasible individuals in the evolutionary process helps 

the algorithm to find additional feasible individuals even in cases where the feasible 

space is very small or discontinuous. Furthermore, since there is no parameter tuning in 

the design of constraint handling, this makes the algorithm easy to implement. Moreover, 

the additional evaluations are simple arithmetic operations and do not impose any 

significant increase in the computational cost. 

The performance of the algorithm is tested on fourteen constrained multi-objective 

test problems. From the simulation results, it is observed that the algorithm is capable of 

finding better-fit feasible solutions that are well spread over the Pareto front in all the 

runs of the test problems. In addition, the results of the algorithm are compared with 

some of the constrained multi-objective algorithms suggested so far. The comparison 

results indicate that the proposed algorithm performs better than the other algorithms in 

that it is able to provide a well distributed Pareto front that has optimal individuals. 

Moreover, the proposed algorithm provides solutions that extend very well to the 

maximum allowable limits over the Pareto front. For future work, the authors recommend 

applying the proposed constraint handling technique using modified objective function 

formulation (“distance” and “penalty”) for other multi-objective evolutionary approaches 

other than NSGA-II. 

Lastly, the authors recommend further work on combining the two proposed 

evolutionary algorithms into a single algorithm to provide an optimization approach for 

solving the more general dynamic, constrained multi-objective optimization problems. 
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