
UNCERTAINTY AND CONSTRAINT HANDLING IN

EVOLUTIONARY ALGORITHMS

By

 YONAS GEBRE WOLDESENBET

 Bachelor of Science in Electrical Engineering

 Bahir Dar University

 Bahir Dar, Ethiopia

 2004

Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 July, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215194697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

UNCERTAINTY AND CONSTRAINT HANDLING IN

EVOLUTIONARY ALGORITHMS

Thesis Approved:

Dr. Gary Yen

 Advisor

Dr. Martin Hagan

Dr. Louis Johnson

Dr. A. Gordon Emslie

Dean of the Graduate College

iii

ACKNOWLEDGMENTS

I am very grateful to my advisor, Dr. Gary Yen, for his constant guide and support

both in my academic and social endeavors. He has allowed me to further exploit my

potentials and has motivated me with his deep knowledge and experience in the subject

matter. This work wouldn’t have been possible without his exceptional mentorship and

dedication.

I am very blessed to have a loving and supporting family –Mom, Dawit, Meaza,

Mintewab, Girum, Elisabeth, Helen, Eden, and Bethlehem. It is their constant love and

prayers that gives me hope and strength. I will not be where I am right now without their

love and support. And dad, it is because of your kindness and good deeds that God has

overwhelmingly blessed our family. May God rest your soul.

I am also very grateful to Beka Hailu and his family; Biruk Tessema and his

family; my uncle Tadesse Woldesenbet and all other people who have been there for me

both in good and bad times. I am also thankful to my fellow graduate students, Wen-Fung

Leong and Moayed Daneshyari; my roommates, Kumlachew Woldemariam and Amanuel

Assefa; and the Ethiopian community in Stillwater for their encouragement and support.

I would also like to thank my professors and committee members, Dr. Martin

Hagan and Dr. Louis G. Johnson, for attending my defense.

Above all, I will like to thank God for blessing my life and that of my beloved

ones.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION..1

1.1 Overview..1

 1.2 Problem Definitions ...4
 1.2.1 Dynamic optimization problem ..4
 1.2.2 Constrained multi-objective optimization problem5
 1.3 Research Goal and Approach...5
 1.4 Document Organization ...6

II. DYNAMIC EVOLUTIONARY OPTIMIZATION..7

2.1 Introduction..7
 2.2 Types of Fitness Landscapes ...10
 2.3 Aspects of Dynamic Optimization Problems...11
 2.3.1 Severity of change...11
 2.3.2 Frequency of change ...12
 2.3.3 Observability and detectability ...12
 2.3.4 Dynamic of change ...12
 2.4 Literature Review...13
 2.4.1 Re-initialization...13
 2.4.2 Maintaining diversity ..13
 2.4.3 Memory based approaches..14
 2.4.4 Multiple population approaches..15
 2.4.5 Mutation and self-adaptation ..16
 2.5 Performance Indexes for Dynamic Evolutionary Algorithms17
 2.5.1 Offline error performance ...17
 2.5.2 Adaptation performance..17
 2.6 Dynamic Optimization Problems...18
 2.7 Proposed Dynamic Evolutionary Algorithm ...21
 2.8 Summary..28

III. CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION30

3.1 Introduction..30
 3.2 Literature Review...32

v

Chapter Page

3.3 Performance Indexes for Multi-Objective Evolutionary Algorithms35
 3.3.1 Convergence metric ..35
 3.3.2 Diversity metric ..36
 3.4 Constrained Multi-Objective Optimization Test Problems36
 3.5 Proposed Constrained Multi-Objective Evolutionary Algorithm....................40
 3.5.1 Distance values ...40
 3.5.2 Two penalties ..43
 3.5.3 Final modified objective value formulation..45
 3.6 Summary..48

IV. EXPERIMENTAL SIMULATIONS AND RESULTS ..49

4.1 Proposed Dynamic Evolutionary Algorithm ...49
 4.1.1 Experimental setup..49
 4.1.2 Results and discussions...50
 4.2 Proposed Constrained Multi-Objective Evolutionary Algorithm....................60
 4.2.1 Experimental setup..60
 4.2.2 Results and discussions...60

V. CONCLUSIONS AND RECOMMENDATIONS ...73

REFERENCES ..77

vi

LIST OF TABLES

Table Page

4.1 Default experimental parameter settings for dynamic benchmark problems 52

4.2 Offline error variation after 500,000 evaluations as function of peak number on

moving cone peaks benchmark problem [DF1].. 53

4.3 Offline error variation after 500,000 evaluations as function of generation

between changes on moving cone peaks benchmark problem with 50 peaks

[DF1] .. 53

4.4 Offline error variations after 500,000 evaluations as function of memory size on

moving cone peaks benchmark problem with 50 peaks [DF1]............................. 54

4.5 Offline error variations after 500,000 evaluations as function of peak number on

time varying Gaussian peaks benchmark problem [DF2]..................................... 55

4.6 Offline error variations after 500,000 evaluations as function of generation

between changes on time varying Gaussian peaks benchmark problem with 10

peaks [DF2]... 56

4.7 Offline error variations after 500,000 evaluations as function of cycle length on

moving parabola benchmark problems with 10 peaks [DF3-DF5] 56

4.8 Offline error variation after 500,000 evaluations as function of peaks number on

moving parabola benchmark problems with cycle length 5,000 evaluations [DF3-

DF5] .. 57

vii

Table Page

4.9 Offline error variations after 500,000 evaluations as function of cycle length on

oscillating peaks benchmark problem [DF6].. 57

4.10 Adaptation performances for RVDEAmem after 500,000 evaluations as function

of peak number ... 58

4.11 Adaptation performances for RVDEAmem after 500,000 evaluations as function

of generation between changes ... 58

4.12 Adaptation performances for RVDEAcluster after 500,000 evaluations as function

of peak number ... 58

4.13 Adaptation performances for RVDEAcluster after 500,000 evaluations as function

of generation between changes ... 59

4.14 Offline error performance for RVDEA without memory after 500,000 evaluations

on test problems DF1-DF6 with 10 peaks .. 59

4.15 Convergence metric: mean (first row) and variance (second row) of the

convergence metric γ after 100 generations... 64

4.16 Diversity metric: mean (first row) and variance (second row) of the diversity

metric δ after 100 generations... 65

4.17 Lower and upper bounds of the objective functions in the non-dominant solutions

after 100 generations... 65

viii

LIST OF FIGURES

Figures Page

1.1 Pseudo-code for a typical evolutionary algorithm... 2

2.1 Re-assignment of d
newix , when it lies outside the interval [dd xx maxmin ,]...................... 25

2.2 Pseudo-code for the proposed dynamic evolutionary algorithm using variable

relocation vectors ... 26

2.3 Pseudo-code for the transient evolutionary algorithm using variable relocation

vectors .. 27

3.1 Pseudo code for finding distance value ... 43

3.2 Pseudo code for finding penalty value... 45

3.3 Pseudo code of proposed algorithm... 47

4.1 Offline error vs. peak number for some DEAs on a moving cone peaks benchmark

problem [DF1] ... 54

4.2 Offline error vs. change frequency for some DEAs on a moving cone peaks

benchmark problem [DF1]... 55

4.3 The Pareto fronts for different constraint multi-objective test problems obtained by

the proposed algorithm .. 66-67

4.4 The Pareto fronts for three constraint multi-objective test problems, CONSTR, SRN

and TNK obtained by Ray-Tai-Seow’s algorithm, NSGA-II and the proposed

algorithm. ... 68

ix

Figures Page

4.5 The obtained Pareto front of welded beam problem for (a) NSGA-II and (b) the

proposed algorithm. ... 69

4.6 The diversity and convergence metric plots for all test problems over 100

generations ... 69-72

1

CHAPTER I

INTRODUCTION

1.1 Overview

Evolutionary algorithms (EAs) have been successfully applied to solve optimization

problems in the fields of science and engineering. These algorithms are zero-order

stochastic search approaches that mimic the process of natural selection to arrive at the

optimal solutions. EAs have been an active research topic during the past few years and

are gaining more attention especially in solving high dimensional, multimodal,

discontinuous and/or NP-complete optimization problems.

Generally, evolutionary algorithms are implemented as computer programs in which

a population of candidate solutions (called individuals) evolves from generation to

generation toward finding better solutions for a given optimization problem [1]. The first

step in a typical evolutionary algorithm is random initialization of individuals in the

population. This population is evaluated using the objective function(s) and a

corresponding fitness value is assigned to each individual. The fitness of an individual

measures how well the individual satisfies the optimality condition. Based on their fitness

values, a number of individuals, so-called parent individuals, are selected from the

current population. The selection can be done in several ways. One of the popular

designs, called tournament selection, is achieved by first choosing several individuals

randomly from the current population and then by picking the best individual out of the

selection. The chosen parent individuals are then modified by applying genetic operators

to form a new population called the offspring population. There are two kinds of genetic

operators that are commonly used in evolutionary algorithms. These are crossover and

mutation operators. In crossover operation, two parent individuals recombine to produce

an offspring individual whose genetic information is obtained partly from the first parent

and the remaining from the second parent. On the other hand, a mutation operator alters a

2

single individual to form an offspring individual. The new population created by applying

genetic operations will then replace some of the poorly fit solutions in the original

population. This process is repeated until the termination condition, which is usually the

maximum generation number, is reached. Finally, the best found individual will be

reported as the optimal solution. The pseudo-code for a typical evolutionary algorithm is

shown below in Figure 1.1.

Figure 1.1 Pseudo-code for a typical evolutionary algorithm

Evolutionary algorithms are preferred than traditional search techniques as global

optimization techniques for several reasons. The main reasons include [2]:

A. EAs don’t require prior knowledge of the problem in order to carry out the search.

They make random changes to their candidate solutions and then use the fitness

function to determine whether those changes produce an improvement or not.

Procedure for Evolutionary Algorithm

Begin

 0nGen ←

Initialize population

Evaluate Population

While (not termination_condition) do

Begin

Selection

Recombination and/or Mutation

Evaluation

Replacement

1nGen nGen +←

End

End

3

B. EAs use stochastic instead of deterministic operators and appear to be robust in

problems where the fitness function is complex, discontinuous, noisy, time

varying, or has many local optima.

C. EAs operate on multiple solutions simultaneously, gathering information from a

population of search points to direct subsequent search effort. This will make EAs

less susceptible to the problems of local optima and noise. Most algorithms can

only explore the solution space to a problem in only one direction at a time; and if

the solution they discover is suboptimal the search should be repeated again.

D. EAs are suitable for parallel evaluation of many solutions at once. As a result,

they are particularly well-suited to solving nonlinear problems where the search

space is very large.

However the price to pay when using EAs is twofold. First because of their stochastic

nature, EAs can not guarantee finding the optimal solution in every run. Secondly, the

computational cost associated with EAs is generally very high, and a large number of

function evaluations must be performed for a satisfying result to be found. Therefore it is

usually advised not to use EAs whenever a deterministic optimization method can

provide quality solutions.

Evolutionary algorithms have been successfully applied to solve many real-world

optimization problems. However, a significant number of these optimization problems

have to be performed under the presence of various uncertainties and constraints and it

has become a recent trend to devise techniques to handle these features in the

evolutionary algorithm.

Uncertainties are one of the two most common features in real-world optimization. In

general, four major categories of uncertainties have been dealt with using evolutionary

approaches. These are noise in the fitness function, perturbations in the design variables,

approximation in the fitness function, and dynamism in the optimal solutions [3]. Noise

and approximation introduce uncertainty in the fitness function, while perturbation brings

uncertainty in the decision space. On the other hand, dynamic optima result in uncertainty

in the location, height, and width of the optimal solutions through time. A significant

number of uncertainty problems have dynamism in their optimal solutions and one focus

of this thesis is on these types of problems.

4

Constraints are the second most common features in real-world optimization

problems. Constraints restrict the usable regions of the decision space and impose greater

difficulty on the optimization process. Constrained evolutionary algorithms not only have

to find optimal solutions but also have to make sure that these solutions satisfy the

constraints. Several researches have been done to handle constraints in evolutionary

algorithms for single objective optimization problems. However, few researches have

been devoted to handle constraints in multi-objective evolutionary algorithms.

In this paper, we discuss about two major types of optimization problems - dynamic

optimization problems (DOPs), which are common uncertainty problems in which the

fitness function changes through time, and constrained multi-objective optimization

problems (CMOPs), which are constrained optimization problems with a set of

competing objectives. For each set of problems, we propose state-of-the-art evolutionary

algorithm that will be shown to possess very promising performance.

1.2 Problem Definitions

1.2.1 Dynamic optimization problem

A dynamic optimization problem (DOP) can be formulated as:

 Minimize / Maximize

),,...,,(),(21 exxxfeXf n= (1.1)

where each dimension of the search space is defined between maxmin
jjj xxx ≤≤ for

nj ,,2,1 L= . f is the objective function to be optimized;),...,,(21 nxxxX = is the n-

dimensional decision vector.

e represents the environmental state whose variation can have either periodic or

sporadic nature. This variable can be modeled in different ways. The common method is

to use a counter that counts the environmental state. We can also use the time variable as

the counter for the environment. The dynamics of change can have deterministic or

stochastic nature. So, it is common to assume stochastic nature at first and then possibly

pick up any recurrent pattern along the evolutionary process. The use of memory also

increases the probability of locating the optimal solution in cyclic changes.

5

1.2.2 Constrained multi-objective optimization problem

A constrained multi-objective optimization problem (CMOP) can be mathematically

formulated as:

Minimize / Maximize

 pixxxfxf nii ,...,2,1,),...,,()(21 == (1.2)

 Subject to qixxxgxg nii ,...,1,0),...,,()(21 =<=

mqixxxhxh nii ,...,1,0),...,,()(21 +===

njxxx jjj ,...,2,1,maxmin =≤≤ .

There are p objective functions that are required to be optimized simultaneously.

Each objective function)(xf i is defined on the search space nS ℜ⊆ . Usually the search

space is an n-dimensional hyperbox in nℜ . Each dimension of the search space is

bounded by its upper (max
jx) and lower (min

jx) limits.

)(xgi is the ith-inequality constraint, and)(xhi is the ith-equality constraint. There are

a total of m constraints, q inequality and m - q equality, which are required to be satisfied

by the optimum solution. The presence of equality and inequality constraints will restrict

our search space to a feasible region SF ⊆ , where a usable solution can be found.

1.3 Research Goal and Approach

The goal of this study is to propose two state-of-the-art evolutionary algorithms-one

for dynamic optimization problems and another for constrained multi-objective

optimization problems. These algorithms exploit as much information as possible from

the previous generations to facilitate the evolutionary process. The dynamic evolutionary

algorithm is further designed to have higher reusability, quicker adaptation, faster

convergence, easier implementation, better accuracy, and ability to work under drastic

changes and higher frequencies of change. On the other hand, the proposed constraint

handling technique for multi-objective evolutionary algorithms is designed to provide a

reliable algorithm that obtains accurate and diverse solutions with comparatively less

6

computational cost. The algorithm not only exploits the evolutionary information

contained in feasible individuals, but also from infeasible individuals.

The proposed algorithms are implemented as computer programs and are then

evaluated on several benchmark test problems. The simulation results are studied and

compared with the results reported for some state-of-the-art designs.

1.4 Document Organization

The remaining part of this thesis is organized as follows. In Chapter II, dynamic

optimization problems are discussed in further detail. The chapter presents the different

approaches used so far, the various performance indexes used to measure performance,

and the different types of benchmark problems used to test dynamic evolutionary

algorithms. Finally in this chapter, a dynamic evolutionary algorithm is proposed and

analyzed at length. Chapter III provides a review of constrained multi-objective

optimization problems, different kinds of approaches proposed so far to solve such

problems, and various performance indexes used to measure performance of these

algorithms. Finally, a constraint handling technique for multi-objective evolutionary

algorithms is proposed and discussed in detail. In Chapter IV, the two proposed

algorithms are tested on different standard benchmark suites. The empirical data are

numerically analyzed and the results are presented and discussed in detail. Chapter V

concludes this thesis with relevant observations and remarks and provides

recommendations for future work.

7

CHAPTER II

DYNAMIC EVOLUTIONARY OPTIMIZATION

2.1 Introduction

Many real world optimization problems sporadically change over time. These

problems are collectively termed as dynamic optimization problems. The location of the

optimal solution in these problems changes over time. These changes can result from

changes in the environmental parameters, changes in the constraints, changes in the

objectives or changes in the problem representations and settings [4]. These changes may

then be reflected on the landscapes as changes in the optimal peak heights, peak shapes or

peak locations or combination of these three [5].

A dynamic optimization problem (DOP) can be formulated as:

 Minimize / Maximize

),,...,,(),(21 exxxfeXf n= (2.1)

where each dimension of the search space is defined between maxmin
jjj xxx ≤≤ for

nj ,,2,1 L= . f is the objective function to be optimized;),...,,(21 nxxxX = is the n-

dimensional decision vector and e represents the environmental state whose variation

can have either periodic or sporadic nature.

There are several practical applications as dynamic optimization problems. A very

good example is dynamic portfolio optimization which is a common optimization

problem in modern finance [6]. This problem aims to obtain an optimal set of assets that

maximize profit while minimizing risk of investment. In engineering, dynamic portfolio

optimization problems are common in deregulated electricity markets in which the

operations of different power stations are controlled and coordinated to maximize profit

while minimizing risk. There are various uncertainties in a deregulated electricity market,

8

such as spot market prices, load obligations, and strip/option prices [7]. The values for

some of these factors change over time and it is not unusual to optimize for the market

price at each hour.

Another good example of real-world dynamic optimization problem is the dynamic

job shop scheduling problem [8]. This problem is a variation of the job shop scheduling

problem in which new jobs arrive over time after the scheduling process has started. The

dynamism in the problem can also arise due to cases where some machines break down

or wear out slowly, cases where the quality of the raw material changes; or cases where

the production tolerances are required to be taken into account. Therefore, the job

schedules should be dynamically modified to accommodate the changes over time.

In general, a good dynamic evolutionary algorithm (DEA) must be able to track the

changing optimal solution irrespective of the severity and frequency of change. It must be

able to reuse as much information as possible from previous generations to speedup the

optimization search. Furthermore, the extra computational cost incurred should be

reasonably comparable to its performance improvement.

The challenges in solving DEAs arise from the occurrence of changes in the location,

number, and properties of the optimal solutions. When a standard evolutionary algorithm

converges for a certain problem setting, the diversity and exploration capability of the

population are greatly diminished. As a result, continuing the evolutionary process from

the converged population without any adaptation scheme or facilitation of exploration

creates a higher probability of being unable to find the new optimal solutions or of being

stuck with local optima. Therefore, it is necessary to implement certain scheme in the

evolutionary algorithm to account for the dynamism of the optimization problem.

There are several important aspects of dynamic optimization problems (DOPs) and

these include severity, frequency, observability, detectability, and dynamics of change

[8]. While higher severity of change necessitates the DEA to increase diversity and

exploration, higher frequency of change requires a faster convergence after a change has

occurred. If the severity of change is too high for the DEA, the algorithm may not locate

the new optima or might get stuck in local optima. Similarly, if the frequency of change

is faster than the adaptation speed of the DEA, the algorithm will not reach the optimal

solutions before another change occurs.

9

On the other hand, detection of change can be made in several ways assuming that the

change is observable. Some of the common practices include checking if the time

averaged best performance of DEA deteriorates and checking if the fitness of at least one

of the reevaluated individuals has changed appreciably [8]. It is also a common practice

to assume that a change is explicitly known to the system and that the system will

observe and detect a change instantly. For the discussion of this study, the authors assume

that the change is explicitly known to the system.

Furthermore, the DOP may involve different dynamics changes and these include

constant, linear, circular/revolving, reshaping, and random modes [8], [9], [10]. In most

cases, the type of dynamics is not explicitly known to the system and the algorithm is

expected to work without knowing it. In this chapter, we present a dynamic evolutionary

algorithm that adapts all individuals of the previous population when a change occurs

based on evolutionary history. The adaptation is carried out by relocation vectors that

introduce shifts in the individuals’ decision variables to enhance the population’s

diversity.

Some sought qualities in dynamic evolutionary algorithms include reusability, faster

convergence, higher accuracy, faster adaptation, easier implementation, and better

performance. Reusability refers to the ability to reuse as much information as possible

from the previous evolutionary process. Reusability normally provides faster

convergence and allows the algorithm to adapt to the new environmental condition

quickly. Higher severity of change reduces reusability of previous evolutionary data and

demands greater exploration capability. Higher frequency of change demands faster

convergence and adaptation to the new environment. Accuracy, on the other hand, refers

to how close the best individual found is to the actual optimal solution. Improvement in

the accuracy of the optimal solution may compromise the speed of convergence and

hence, the algorithm should be equipped to balance between the additional computational

cost and the observed performance improvement. Adaptation, alternatively, refers to

adjusting the current population to the new environmental condition. Adaptation can be

done by modifying the level of evolutionary operators, like mutation, to encourage

exploration or by modifying the evolutionary process based on the previous evolutionary

history.

10

In this chapter, the above qualities are achieved by using variable relocation vectors

that adapt already converged or currently evolving individuals to the new environmental

condition. The proposed algorithm relocates the individuals based on their change in

functional value due to the change in the environment and the average sensitivities of

their decision variables to the corresponding change in the objective space. The

relocation vectors introduce a certain radius of uncertainty to be applied to each

individual and restore diversity and accelerating exploration. Furthermore, because the

population is adapted from the previous population, there is a higher reuse of previous

evolutionary material, which often provides faster convergence. The relocation vectors

are specific to each individual, and this gives the algorithm better adaptation than those

approaches that use a single adaptation value for the whole population. As a technique to

be used at transient periods, the proposed algorithm provides the next evolutionary cycle

with better initial population than any other randomly generated population. As a result,

there will be a considerable progress jump for the upcoming evolutionary process, and

this gives the proposed algorithm faster adaptation and convergence.

This chapter is structured as follows. Section 2.2 provides a brief summary of the

various types of fitness landscapes. Section 2.3 discusses various aspects of dynamic

optimization problems. Then Section 2.4 presents a review of the various evolutionary

approaches proposed so far for dynamic optimization problems. Next in Section 2.5, two

performance metrics used for measuring the performance of dynamic evolutionary

algorithms are presented. In Section 2.6, various dynamic benchmark test problems are

discussed. In Section 2.7, the proposed relocation vector based dynamic evolutionary

algorithm (RVDEA) is elaborated and analyzed. Finally, we conclude with a summary in

Section 2.8.

2.2 Types of Fitness Landscapes

Depending on the changes over the whole landscape through time, Weicker et al [10]

classified fitness landscapes into various groups. The first category is that of stationary or

static landscapes where there is no change or movement in the landscape. These types of

landscapes are the ones that are commonly used in most EA studies. The second type of

11

fitness landscape has changes over the landscape that is constant every period of time. A

good dynamic evolutionary algorithm should be able to pick up the recurrent similarity in

the amount of change and use it in the upcoming change period. These types of problems

are comparatively easy and impose very small difficulty to the dynamic evolutionary

algorithm. The third type of fitness landscapes has periodic changes in which the

landscape returns to its original state at certain intervals. The challenge in this type of

landscapes is predicting the length of the period and most of the time this is difficult to

do. Most algorithms implement a small-sized memory to hold the latest optimum

solutions from few of the past changes. This allows possible re-usage of the optimum

solutions found so far in future fitness landscapes that resemble any of the past

landscapes. The fourth type of fitness landscape is called homogenous landscape where

the whole landscape moves coherently, as opposed to various parts behaving

heterogeneously. The last type of landscapes is alternating landscape where the optimum

point jumps from one component or peak of the landscape to another. The changes in the

overall landscape are stochastic and heterogeneous. These types of problems impose the

greatest difficulty to the dynamic evolutionary algorithm because the nature of the change

can not be modeled accurately. Hence, it is important to implement a certain kind of

dynamic adaptation scheme in the evolutionary algorithm to cope with the sporadic

changes in the landscape.

2.3 Aspects of Dynamic Optimization Problems

There are several important aspects of dynamic optimization problems (DOP). Some

of these are severity, frequency, observability, detectability and dynamics of change [8].

2.3.1 Severity of change - Severity of change indicates the strength of change that

occurred in the landscape. Higher severity of change means that the current fitness

landscape has lesser correlation with the previous one and this necessitates the dynamic

evolutionary algorithm to increase diversity and exploration. If the severity of change is

too high for the DEA, the algorithm may not locate the new optima or might get stuck in

12

local optima. Hence, this aspect of change demands a dynamic evolutionary algorithm

that is capable of performing well under drastic changes in landscape.

2.3.2 Frequency of change - The frequency of change indicates how fast the

landscape changes. A higher value of frequency means that the landscape changes quite

frequently and the corresponding evolutionary algorithm is expected to act upon these

changes very quickly. If the frequency of change is too high for the DEA, the algorithm

will not reach the new optimum solution before another change occurs. Hence, a good

dynamic evolutionary algorithm should have a high adaptation frequency and faster

convergence so as adapt to changes even at high frequencies.

2.3.3 Observability and detectability - The next two closely related aspects of

changes are observability and detectability. Most of the time the change is assumed to be

observable and detectable. On the other hand, several methods have been proposed to

detect changes. Some of these techniques detect changes by checking whether the time

averaged best performance of the algorithm deteriorates or by checking whether the

fitness of at least one of the re-evaluated individuals has changed or by constantly

monitoring whether an explicit model of the environment is still consistent with the

current environment. It is also a common practice to assume that the change is explicitly

known to the system and that the system will detect the changes instantly. This

assumption is useful for certain researchers to focus only on the development of a

dynamic evolutionary algorithm, while other researchers study the issue of observability

and detectabilty of change.

2.3.4 Dynamics of change - The dynamics of change represent the way the

landscape moves when a change occurs. A drifting motion dynamics has a drifting

motion in the landscape. An oscillatory motion dynamics has an optimum that oscillates

periodically. A reshaping dynamics has a fitness landscape that changes its morphology

when a change occurs. A revolving landscape dynamics has a landscape that rotates at

each occurrence of change [9]. A random jump or stochastic landscape dynamics has an

optimum that changes randomly. In most cases, the type of dynamics mode is not

13

explicitly known to the system and the DEA is expected to work without explicitly

knowing it.

2.4 Literature Review

The following subsections provide a brief review of evolutionary approaches

developed for dynamic optimization problems. For more detailed reviews, the readers are

referred to references cited in [3], [4], and [8].

2.4.1 Re-initialization - The most naïve approach ever conceived for solving DOPs

is to reinitialize the evolutionary process when a change occurs. A similar approach

restarts the population based on evolutionary algorithm convergence [11]. The deficiency

of these approaches is that almost none of the past evolutionary materials are ever used

and this unavoidably hinders any possible speedup in convergence.

2.4.2 Maintaining diversity - The basic idea behind maintaining diversity in DEAs

is to prevent the algorithm from premature convergence. Grefenstette [12] proposed the

idea of introducing randomly generated individuals when a change occurs. The

introduction of random immigrants allows the algorithm to keep a certain level of

diversity for exploration. The algorithm is easy to understand and implement, but

provides little means of adapting the current individuals to the new environment.

Furthermore, when the changes are severe, the algorithm requires a larger number of

random immigrants which will compromise the algorithm’s performance. In this study,

we used a similar implementation as in [8] in which 25 random immigrants are migrated

into current population when a change occurs. This implementation of random

immigrants will be referred to as RI25 and when a memory is used, it will be referred to

as RI25mem.

Meanwhile, Andersen [13] approached the issue of diversity maintenance by using

fitness sharing as a means to favor less populated area. When a region is highly

populated, fitness is shared by a large number of individuals and in effect reducing or

penalizing their fitness. On the other hand, if a region is less populated, the fitness is

shared between few individuals and hence their fitness is less affected and un-penalized.

14

As a result, less populated areas will be more favored than highly populated areas and in

effect preserving diversity.

On the other hand, Ghosh and colleagues [14] used the age of an individual to favor

the fitness of middle aged individuals which in effect will maintain the diversity of the

overall population. On the other hand, Jin and colleagues [15] suggested imposing a

lower threshold on step-size to maintain diversity in evolutionary strategies.

Although most researchers agree that having a diversified population is a good idea

for DOPs, the fact remains that maintaining diversity may impose greater computation

and may also slow down the evolutionary process.

2.4.3 Memory based approaches - Memory based approaches are commonly

divided into two groups: explicit and implicit memory approaches. Explicit memory

approaches are memory based approaches that uses external memory to store previous

evolutionary information that may be helpful in future stages of the evolutionary process.

The common approaches under this category use a small-sized memory to store the best

solutions and add them back to the population if they are better fit than the current

individuals [16], [17]. In [18], Acan and Tekol used a “gene library” to store promising

genetic materials for reuse later in the evolutionary process. In [19], Trojanowski and

Michalewicz used a short term memory to remember some of the solutions of an

individual’s ancestors so as to increase the diversity by reintroducing individuals that

have been considered good in recent generations. Lastly, Bendtsen and Krink [20] used

dynamic memory model that is updated during the evolutionary process. They used the

memory to store best individuals for each change period, but at the same time allowed the

stored individuals to be evolved by small amounts of Gaussian mutation in the direction

of the current best individual.

On the other hand, implicit memory approaches do not use an explicitly defined

external memory but some implicit form of memory exists in the system representation.

One form of implicit memory is redundant representation which is commonly used to

slow down convergence and favor diversity. Diploidy is a common approach in

redundant representations. In [21, 22], Smith and Goldberg used tri-allelic scheme where

an allele can take one of the three values “0”, “1 recessive”, and “1 dominant”. In [23],

15

Ng and Wong proposed using a diploid scheme with four possible alleles (“0 recessive”,

“0 dominant”, “1 recessive”, and “1 dominant”). In [24], a multi-level structured gene-

representation was used so that each level can activate or deactivate genes at the next

lower level. In [25], the diploidy scheme proposed in [24] was extended by a dominance

change mechanism. In [26], an additive diploidy scheme was used where the genes

determining one trait are added in order to determine the phenotypic trait. The phenotypic

trait becomes 1 when a certain threshold is exceeded, and is 0 otherwise.

The basic assumption in memory approaches is that out of the stored information in

the memory, there might be some individuals that fall in the vicinity of the new optimal

solution. This kind of assumption becomes inappropriate when there is non-cyclic

stochastic dynamism in the optimal solution. In general, however, enhancing any of the

other uncertainty handling techniques by memory is a good practice.

2.4.4 Multiple population approaches - Multiple population approaches use several

subpopulations to track multiple peaks in the landscape. The method proposed in [27],

called shifting balance genetic algorithm, uses one core population to exploit the best

optimum found so far and several colonies to explore the search space. A diversity

measure, distance to the core population, was included in fitness evaluations of the

colonies. Another method proposed in [28], called self-organizing scouts (SOS), uses a

small fraction of the population called “child population” to watch over the peaks while

the rest of the population searches for other peaks. The size of parent and child

population is adaptively adjusted depending on the performance of the population.

Another method proposed in [29] is called multi-nationals genetic algorithm and uses a

“hill valley detection procedure” that defines the borders of the subpopulations. A valley

is detected if the fitness in a sample point is lower than the fitness of both end points.

This method requires a large number of fitness evaluations.

The challenge in this type of approaches is that the algorithm should coordinate the

operation of each sub-population. As a result, these approaches tend to incur large

computational cost compared to single population approaches.

The multi-population implementations used in this study follow that of [8]. The first

implementation is called P3 which is a standard evolutionary algorithm with three

16

independent sub-populations. Similarly, P3mem is the variation of this implementation

with memory. Another multi-population implementation divides the population into

memory and search subpopulations and is denoted as Mem/search.

2.4.5 Mutation and self-adaptation - When a change occurs, the population

undergoes a transient state where the values of the evolution operators are changed so as

to enhance diversity and performance. Cobb and Grefenstette [30] introduced the idea of

hyper-mutation in which mutation probability is increased immediately after a change has

occurred. In this method, the individuals undergo a drastic increase in the mutation level

when a change occurs, which in effect improves the diversity of the population. Vavak

and colleagues [31] introduced the idea of variable local search (VLS) that uses a step-

by-step increase in the mutation level based on the performance of the population. In

[10], different self adaptation schemes were compared and these include uniform self

adaptation, different mutation level for each dimension, mutation with covariance matrix

adaptation and sphere mutation which learns the upper and lower limits of the required

mutation level. In [32], multiplicative update rule is compared against self-adaptation

mutation; while in [33] lognormal adaptation is compared against self-adaptation

mutation. Other suggested techniques include life-time learning [34] and adaptive chaotic

mutation [35].

The assumption in this type of approaches is that the changes are in the reach of the

algorithm’s adaptation capability. If this is not the case, the adapted population might not

locate the new optimal solutions.

In general, memory based approaches are suitable for periodical optima; multi-

population approaches are suitable for competing peaks; mutation and self-adaptation

techniques are appropriate for landscapes with very fast but less drastic changes; and

maintaining diversity is suitable for continuously moving optima [4].

The proposed algorithm is inspired from the comparatively small computational cost

of self-adaptation schemes and also from the idea to have a better technique that can be

used alongside other approaches for solving dynamic optimization problems. In this

spirit, it can be categorized under self-adaptation schemes. The algorithm also utilizes a

small memory to further improve its performance in cyclic changes. The unique attribute

17

about this algorithm is that the self-adaptation scheme and the relocation amount are

specific to each individual, and this allows the algorithm to provide better adapted initial

population to the new environment. There are two variations of the proposed algorithm –

the first is RVDEAmem which is a relocation vector dynamic evolutionary algorithm

enhanced with memory, and the second is RVDEAclusters which is a relocation vector

based dynamic evolutionary algorithm enhanced with memory and several clusters to

provide superior performance over a relative increase in the computational cost.

2.5 Performance Indexes for Dynamic Evolutionary Algorithms

There are several performance indexes that have been used to measure the

performance of dynamic evolutionary algorithms. In this chapter, we used offline error

performance [36] and adaptation performance [16] as a means to measure the

performance of the proposed dynamic evolutionary algorithm.

2.5.1 Offline error performance - Off-line error performance index [36] is the most

common performance index and it is obtained as the average of the error between the true

optimal point and the best fitness at each evaluation. It is mathematically expressed as:

∑
=

−=
T

i

i
besttrue

av
offline ff

T
e

1
)(1 (2.2)

where i is the evaluation counter; T is the total number of evaluations considered; truef is

the true optimum solution which is updated whenever a change occurs; and finally i
bestf is

the best individual out of the evaluations starting from the most recent occurrence of

change until the current evaluation. This form of error formulation may not provide a

good insight on how well the algorithm is performing when the optimal function values

are very large.

2.5.2 Adaptation performance - Adaptation performance [16] is the average ratio

between the best fitness and the true optimum at each evaluation. It is mathematically

expressed as:

18

∑
=

=
T

i true

i
best

f
f

T
I

1

1 (2.3)

where i is the evaluation counter; T is the total number of evaluations considered; truef is

the true optimum solution which is updated whenever a change occurs; and finally i
bestf is

the best individual out of the evaluations starting from the most recent occurrence of

change until the current evaluation. This way of error formulation is not a good indicator

of performance when the optimal function values are very small.

2.6 Dynamic Optimization Problems

There are various dynamic optimization test functions proposed by researchers. In

general, these functions are able to simulate real-world optimization problems and

provide a simple mechanism to control the type of landscape dynamics. One of the

earliest forms of dynamic optimization test problems use a number of standard static

optimization problems and switch back and forth between these landscapes through the

run of the evolutionary process [30].

Other forms of dynamic optimization problems use a number of competing peaks that

are independently specified by their width, height, and location. Branke [17] suggested a

general platform on which such type of test problems can be implemented. This platform

is called moving peaks problem and is mathematically expressed as:

)))(),(),(,(max),(max(),(
,...,1

tptwthxPxBtxF iiiMi

rrrr
=

= (2.4)

where)(xB r is a time-invariant “basis” landscape and P is the function defining the peak

shape, where each of the m peaks has its own time-varying parameters: height (h), width

(w), and location ()(tpi
r). When the peaks have a ‘cone’ shape, then the moving peaks

problem will become competing cones problem (DF1 [5]). On the other hand, if the peaks

have a ‘Gaussian’ shape, then the moving peaks problem becomes time-varying Gaussian

peaks problem (DF2 [37]).

The most frequently used moving peaks problem was proposed by Morrison and De

Jong [5]. They proposed using a number of competing cones each explicitly defined by

its height, center, and width. These cone peaks are not differentiable at their peaks and

19

mimic real-world optimization problems that are justifiable for using evolutionary

algorithms. They called their function DF1 (Dynamic Function 1) and it is expressed as:












−×−= ∑

=
=

n

j
ijjiimi XxRHxf

1

2
,1)(max)(r (2.5)

where),...,(1 nxxx =r is a point in the landscape, m specifies the number of cones in the

environment, and each cone i is independently specified by its height iH , its slope iR , and

its center).,...,(1 inii XXX =
r

For the remainder of this paper, we assigned similar nomenclature (DF2, DF3, etc)

for the remaining test functions that we used to test the proposed dynamic evolutionary

algorithm.

Another common moving peaks problem is the time-varying n-dimensional Gaussian

peaks problem proposed by Grefenstette [37]. This problem is similar to that of the

competing cones problem, but has ‘Gaussian’ peaks and is differentiable at the apex of

the peaks. However, this problem becomes very challenging when the number of peaks is

increased and provides a good benchmark evaluation for dynamic evolutionary

algorithms. For the context of this chapter, this problem will be referred as DF2 and is

mathematically expressed as:





















 −
= =)(2

))(,(
exp)(max),(2

2

,1 t
tCXd

tAtXf
i

i
iNi σ

(2.6)

where)(tAi is the amplitude,)(tCi denotes the center and)(tiσ represents the width of

the n-dimensional Gaussian peak.

Other forms of DOP test problems shift stationary optimization test problems using

various dynamics of change. The common form of such types of problems is the moving

parabola problem ([32, 33]). This problem has an objective function which has a general

form as given below.

∑
=

+=
n

i
ii txMintxf

1

2))((),(δ (2.7)

The amount of shift in the landscape,)(tiδ , can have different dynamics of change

and the common types are linear, random, and circular dynamics of change. In the

20

remainder of this chapter, moving parabola problems with these dynamics of change are

referred to as DF3, DF4, and DF5 test problems respectively and are mathematically

expressed as:

Linear translation [DF3]

{ }
stt

ni

ii

i

+−=
∈∀=

)1()(
,...,10)0(

δδ
δ

(2.8a)

Random dynamics [DF4]

{ }
)1,0()1()(

,...,10)0(

iii

i

Nstt
ni

×+−=
∈∀=

δδ
δ

(2.8b)

Circular dynamics [DF5]

),()1()(
:
:0

)0(

ticstt
evenis
oddi

ii

i

×+−=




=

δδ

δ
(2.8c)

where




























=
evenit

oddit

tic
:..2cos

:..2sin
),(

γ
π
γ
π

(2.8d)

γ determines the cycle length of the problem in moving parabola benchmark

problems with circular dynamics. Since sinusoidal functions repeat themselves exactly at

every period, DF5 will have a cycle accuracy of 100%. t is used as index for the

environmental state. Whenever the environment state changes, t is incremented by 1.

Another function that was used in Branke [8] is oscillating peaks function. This

function has an oscillating weight function that causes oscillation in the base objective

function. Due to this oscillation in the fitness landscape, the location of the optima also

oscillates between various points. This test function has two landscapes with 10 peaks

each. The parameters of each peak can be varied independently. In the remainder of this

paper, this function will be referred as DF6 and is mathematically expressed as:

21

li
l

i
steps

ttw

ftwMaxtf ii

,...,1,
3
2)122cos(

3
1)(

)0()()(

=+
−

+=

=

ππ (2.9)

where l is number of different landscapes that will be obtained from the base landscape

)0(if by multiplying with an oscillating weight function w(t).

2.7 Proposed Dynamic Evolutionary Algorithm

The proposed dynamic evolutionary algorithm uses variable relocation vectors to

adapt already converged or currently evolving individuals to the new environmental

condition. The proposed algorithm relocates those individuals based on their change in

function value due to the change in the environment and the average sensitivities of their

decision variables to the corresponding change in the objective space. The relocation

occurs during the transient stage of the evolutionary process and the algorithm reuses as

much information as possible from the previous evolutionary history. As a result, the

algorithm will have faster adaptation and convergence. In addition, the design is easier to

implement and can be incorporated into standard evolutionary algorithms. A complete

description of the proposed algorithm is presented in detail below.

Let),(eXff = represent the dynamic optimization problem to be optimized; X

represents the n-dimensional decision space vector and dx represents the dth-dimension

decision variable. For the discussion of this section, a minimization dynamic

optimization problem is assumed. Note that a maximization problem can be converted

into a minimization problem by multiplying with -1.
d
childx∆ denotes the child’s evolutionary progress in the dth-dimension of the decision

variable with respect to its parents. It is measured as the difference between the dth-

dimension decision variable of a child (d
childx) and that of the centroid of its parents. This

can be mathematically expressed as:

()

2
21

d
parent

d
parentd

child
d
child

xx
xx

+
−=∆ (2.10)

childf∆ is the evolutionary fitness progress of a child with respect to its parents and is

measured as the difference between a child’s fitness (childf) and the interpolated fitness of

22

its parents. The interpolation is based on the distance between a child and its parents

(1X∆ and 2X∆). The farther a parent is away from its child, the lesser is its contribution

to the interpolated fitness.

 ()∑
=

−=−=∆
n

d

d
parent

d
childparentchild xxXXX

1

2
111 (2.11a)

 ()∑
=

−=−=∆
n

d

d
parent

d
childparentchild xxXXX

1

2
222 (2.11b)

 







∆+∆

⋅∆+⋅∆
−=∆

21

2112

XX
fXfX

ff parentparent
childchild (2.12)

The child’s average evolutionary progress in the dth-dimension decision variable

(d
avx∆) can be obtained as the weighted sum of the child’s d

childx∆ and its parents’ average

decision progress (av
parentd x∆). The same is true for the child’s average evolutionary fitness

progress (avf∆) except that we use the interpolated value of its parents’ average fitness

progress.

1

2
21

+⋅










 ∆+∆
⋅⋅+∆

=∆
nGenw

xx
nGenwx

x

av
parentd

av
parentdd

child

d
av (2.13)

1
21

2112

+⋅












∆+∆

∆⋅∆+∆⋅∆
⋅⋅+∆

=∆
nGenw

XX
fXfX

nGenwf

f

av
parent

av
parent

child

av (2.14)

where nGen denotes the total number of generations either from the start of an

evolutionary process or the last occurrence of change, whichever is recent, up to the

current generation. On the other hand, w represents the inertia given to previous

evolutionary progresses relative to the current one. If all evolutionary progresses have

equal weight, w = 1. Otherwise, w is set between 0 and 1. av
parentd x 1∆ is d

avx∆ of the first

parent which was calculated in the previous generation. Similarly, av
parentf 1∆ is avf∆ of the

first parent which was calculated in the previous generation. The same is true for
av
parentd x 2∆ and av

parentf 2∆ of the second parent.

23

The total average evolutionary progress in the decision space of an individual can

then be obtained as

 ()∑
=

∆=∆
n

d

d
avav xX

1

2 (2.15)

The average sensitivity of the decision space to change in the objective space is

defined as the ratio of the average evolutionary fitness progress and the average

evolutionary progress in decision space. Mathematically:

av

avav
X X

f
S

∆
∆

= (2.16)

The average sensitivity of the dth-dimension of the decision space to change in the

objective space can then be obtained as:

()∑

=

∆

∆
⋅∆=

∆
∆

⋅= n

q

d
av

avd
av

av

d
avav

X
av
xd

x

f
x

X
x

SS

1

2
(2.17)

In dynamic optimization problems, the evolutionary fitness progress, if∆ , can arise

from changes in the decision space of an individual or changes in the environmental

parameter. This can be approximately formulated as

() eSxSf e

n

d

dav
xdi ∆⋅+∆⋅=∆ ∑

=1

(2.18)

where av
xd S is the average sensitivity of the fitness to change in the dth-dimension of the

decision space; eS is the average sensitivity of the individual’s fitness to change in the

environment; dx∆ and e∆ are the corresponding changes in the dth-dimension decision

variable and the environmental parameter, respectively.

Under normal evolutionary process, the environmental parameter is constant, i.e.,

0=∆e . Under such cases, the above equation reduces to

 () i
av
X

n

d

d
i

av
xdi XSxSf ∆⋅=∆⋅=∆ ∑

=1

(2.19)

where iX∆ is the average evolutionary progress in the decision space (avX∆) for

individual i.

24

The equality of the last and middle terms in equation (2.19) can be proved by

substituting equation (2.17) in the middle term and performing the summation.

e∆ is different from zero during the transition period. But if we re-evaluate all the

previous individuals, then all the changes in the decision variables become zero

(0=∆ dx). In this case, equation (2.18) can be written as:

 eSfff e
e

i
e

ii ∆⋅=−=∆ 12 (2.20)

where 12 e
i

e
i ff − represents the difference between the functional values of an individual

in the new (with superscript, 2e) and old (with superscript 1e) environment,

respectively.

The proposed algorithm estimates the required offsets in the decision variables that

will match the fitness changes caused by the environment. This is done through the

relocation vector, which is the anticipated uncertainty in the decision space of an

individual. The relocation vector will relocate all individuals so that their fitness is

restored or is further enhanced. It can be expressed as











<






 −

−
−

−

≥
−

=∆
12

1212

12
12

,,min

,

e
i

e
iav

X

e
i

e
i

av
X

e
i

e
best

e
i

e
iav

X

e
i

e
i

i

ff
S

ff
S

ff

ff
S

ff

X (2.21)

where 2e
bestf is the best fitness in the new environment.

The relocation offsets in each dimensions of the decision space can then be obtained

as:

av

d
av

iav
X

av
xdid

i X
x

X
S

SX
x

∆
∆

⋅∆=
⋅∆

=∆ (2.22)

If ddd
i xxx minmax −>∆ , then d

ix∆ is trimmed down to:

)()(minmax
ddd

i
d
i xxxsignx −⋅∆=∆ (2.23)

where dxmax and dxmin are the maximum and minimum limits of the dth-dimension decision

variable respectively; and sign (z) is a function that returns the sign of z.

On the other hand, if d
ix∆ is less than dxmin∆ (minimum allowable relocation offset in

the dth-dimension decision variable), then

25

If dd
newi xx max, > ,

d
i

dd
newi

d
oldi

dd
newi xrxxxxx ∆⋅+=−+= max,,max,

Else if dd
newi xx min, < ,

d
i

dd
newi

d
oldi

dd
newi xrxxxxx ∆⋅+=−+= min,,min,

End

 dd
i xx min∆=∆ (2.24)

The variable dxmin∆ is varied based on the diversity of the population just before

change. After validation of d
ix∆ , the relocation algorithm will generate a number of

offsprings as:

 d
i

d
oldi

d
newi xrxx ∆⋅+= ,, (2.25)

where r is a random number between 0 and 1.

If the value of d
newix , lies outside the interval [dd xx maxmin ,], then the algorithm re-assigns

d
newix , as:

Figure 2.1 Re-assignment of d
newix , when it lies outside the interval [dd xx maxmin ,]

The best-fit individual out of a parent and its offsprings will then be passed on to the

initial population of the new environment. This new initial population will be better

adapted to the change and is claimed to converge quickly. After this initial population is

obtained, the evolutionary process will proceed with its normal operation. In addition to

the relocation vectors, the algorithm uses a small archive to store the best individuals

obtained so far. When the archive is full, the oldest best individual will be replaced by the

most recent one. The pseudo-code for the proposed dynamic evolutionary algorithm

using variable relocation vector is given in Figures 2.2 and Figure 2.3.

26

Procedure RVDEA
Begin
 k = 1

nGen = 1
 Initialization
 Clear archive
 Evaluation
 While (not exit_condition) Do

Begin
 Detection of change
 If change is detected
 Begin
 Transient_EA
 nGen = 1
 k = k + 1

End
 Else
 Begin
 Selection
 Recombination
 Mutation
 Evaluation
 Replacement
 k = k + 1

nGen = nGen + 1
 End
 End
 End

Figure 2.2. Pseudo-code for the proposed dynamic evolutionary algorithm using
variable relocation vectors

The exit_condition in the pseudo-code can be defined in several ways. Some of these

are reaching maximum number of fitness evaluations, maximum number of generations

and maximum number of changes. On the other hand, the counter k in the pseudo-code is

used to keep track of the total number of generations. Similarly, nGen counts the number

of generations but it is restarted from 1 every time a change occurs.

27

Procedure Transient_EA
Begin
 obtain average sensitivities of the decision variables to change in the

landscape
 update archive (archive ← best individual)
 re-evaluate all individuals and obtain their functional changes due to

the environment
 obtain relocation vectors for all individuals
 relocate all individuals a number of times
 select the best individual from a parent and its relocated offsprings

and put it in the initial population of the new environment
 reset avf∆ and d

avx∆ values of all individuals
 reset change flag
End

Figure 2.3. Pseudo-code for the transient evolutionary algorithm using variable
relocation vectors

In general, a relocation vector lies between the minimum and maximum allowable

shifts in the decision variables. Minimum relocation refers to cases where the fitness

landscape is almost insensitive to shifts in the decision space. Maximum relocation, on

the other hand, refers to cases where the fitness landscape is extremely sensitive to shifts

in the decision space and corresponds to random initialization since the designated

relocation can pick up any of the allowable values in the decision space. Other

intermediate values of relocation vectors will try to introduce certain radius of uncertainty

over the decision space in which the proposed algorithm will look for better individuals.

This way of relocation formulation will allow the algorithm to treat dynamic optimization

problems without regard to their dynamics of change. If the dynamics of change is

homogenous, then the relocation values of all individuals will have the same value. If the

dynamics of change is heterogeneous and deterministic, the relocation values will vary

from individual to individual and the relocation amount will have a deterministic nature.

Lastly, if the dynamics of change have a random nature, the relocation vectors will

account for the changes in the fitness landscape by taking average sensitivity values over

the evolutionary run and this will allow treating the changes stochastically.

Furthermore, since the population is adapted from the previous population, there is a

higher reuse of previous evolutionary data which provides faster convergence. The

28

relocation vectors are specific to each individual and this gives the algorithm better

adaptation than those approaches that use a single adaptation value for the whole

population, such as [30]. As a technique to be used at transient periods, the proposed

algorithm provides the next evolutionary cycle with better initial population than any

other randomly generated population. As a result, there will be a considerable progress

jump for the upcoming evolutionary process and this gives the proposed algorithm faster

adaptation and convergence.

2.8 Summary

Dynamic optimization problems are common types of uncertainty problems in real-

world optimization problems. In recent years, it has become a critical need to account for

the dynamism of the evolutionary optimization problems in the evolutionary algorithm.

Various methodologies have been suggested to adapt stationary evolutionary algorithms

into dynamic evolutionary algorithms. In earliest researches, a complete restart of the

evolutionary process is invoked when a change occurs. Other techniques try to maintain

the diversity of the population in the entire run and thus allow the population to explore

and adapt to the new environment whenever a change occurs. Allocating some memory

to store the best individuals found so far in the recent periods of change is also a

commonly used approach in dynamic evolutionary algorithms. Multiple population

approaches are also used to solve DOPs. They use several sub-populations to adapt to the

new environment and there are different variations under this type of approaches. The last

commonly used technique adapts the population to the new environment by using either

increased levels of mutation or self-adaptation mechanisms.

The proposed algorithm in this chapter is inspired from the comparatively small

computational cost of self-adaptation schemes and also from the idea to have a better

technique that can be used alongside other approaches for solving dynamic optimization

problems. In this spirit, it can be categorized under self-adaptation schemes. The

algorithm also utilizes a small memory to further improve its performance in cyclic

changes. The unique attribute about this algorithm is that the self-adaptation scheme and

the relocation amount are specific to each individual, and this allows the algorithm to

29

provide better adapted initial population to the new environment. There are two

variations of the proposed algorithm – the first is RVDEAmem which is a relocation

vector dynamic evolutionary algorithm enhanced with memory, and the second is

RVDEAclusters which is a relocation vector based dynamic evolutionary algorithm which

is enhanced with memory and several clusters to provide superior performance over a

relative increase in the computational cost.

The relocation vectors are specific to each individual and this gives the algorithm

better adaptation than those approaches that use a single adaptation value for the whole

population. As a technique to be used at transient periods, the proposed algorithm

provides the next evolutionary cycle with better initial population which results in faster

convergence. Furthermore, the extra computational cost of the proposed algorithm is

comparable to its performance improvement as the additional calculations are basic

arithmetic operations.

There are several performance indexes suggested to measure the performance of

dynamic evolutionary algorithms and in this study, we use offline error performance

index and adaptation error performance index.

There are a number of dynamic evolutionary test problems that have been used for

testing dynamic evolutionary algorithms. These problems try to introduce dynamism in

the location, width, and height of the optimal solutions. Some of the common types of

problems include competing cones problem [5], time-varying Gaussian peaks problem

[37], moving parabola problems [32, 33] and oscillating peaks problem [8].

30

CHAPTER III

CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION

3.1 Introduction

Evolutionary algorithms were originally designed for solving unconstrained

optimization problems, but in recent years, researchers have been able to tailor constraint

handling techniques into these algorithms. The great challenges in constrained

optimization problems arise from the various limits on the decision variables, the

constraints involved, the interference among constraints, and the interrelationship

between the constraints and the objective functions. In the mean time, researchers were

also developing evolutionary approaches for solving multi-objective optimization

problems (MOPs). These multi-objective evolutionary algorithms (MOEAs) are capable

of simultaneously optimizing a set of competing objectives. Nevertheless, little research

was conducted in the area of constrained multi-objective optimization (CMOP). Such

problems involve multiple competing objectives that are subject to various equality and

inequality constraints.

A constrained multi-objective optimization problem (CMOP) can be mathematically

formulated as:

Minimize / Maximize

 pixxxfxf nii ,...,2,1,),...,,()(21 == (3.1a)

 Subject to qixxxgxg nii ,...,1,0),...,,()(21 =<= (3.1b)

mqixxxhxh nii ,...,1,0),...,,()(21 +=== (3.1c)

njxxx jjj ,...,2,1,maxmin =≤≤ (3.1d)

There are p objective functions that are required to be optimized simultaneously.

Each objective function)(xf i is defined on the search space nS ℜ⊆ . Usually the search

31

space is an n-dimensional hyperbox in nℜ . Each dimension of the search space is

bounded by its upper (max
jx) and lower (min

jx) limits.

)(xgi is the ith-inequality constraint, and)(xhi is the ith-equality constraint. There are

a total of m constraints: q inequality and m - q equality, which are required to be satisfied

by the optimum solution. The presence of equality and inequality constraints will restrict

our search space to a feasible space SF ⊆ , where a usable solution can be found.

This chapter extends the single-objective constrained evolutionary algorithm

proposed by Tessema and Yen [38] to CMOPs. The proposed algorithm basically

modifies the objective function of an individual using its distance measure and penalty

value. These modified objective function values are ranked through the non-dominance

sorting of the multi-objective optimization. Distance measures are found for each

dimension of the objective space by incorporating the effect of an individual’s constraint

violation into its objective function. The penalty function, on the other hand, introduces

additional penalty for infeasible individuals based on their objective values and constraint

violations. The balance between the two components, one based on objective function

and the other on constraint violation, is controlled by the number of feasible individuals

currently present in the population. If few feasible individuals are present, then those

infeasible individuals with higher constraint violations are more penalized than those

with lower constraint violations. On the other hand, if sufficient number of feasible

individuals exist, then those infeasible individuals with worse objective values are more

penalized than those with better objective values. However, if the number of feasible

individuals is in the middle of the two extremes, then the individual with lower constraint

violation and better objective function is less penalized. The two components of the

penalty function allow the algorithm to switch between feasibility and optimality at

anytime during the evolutionary process. Furthermore, since priority is initially given to

finding feasible individuals before searching for optimal solutions, the algorithm is

capable of finding feasible solutions in cases where the feasible space is very small

compared to the search space.

This chapter is structured as follows: Section 3.2 provides a brief overview of the

various evolutionary approaches developed so far for constrained multi-objective

32

optimization problems. Next, in Section 3.3, the various performance indexes used to

measure the performance of multi-objective evolutionary algorithms are presented. In

Section 3.4, the various CMOP test problems are discussed and are used to evaluate the

proposed algorithm. In Section 3.5, the proposed CMOP evolutionary algorithm is

presented and analyzed in detail. Finally, we conclude with a summary of this chapter.

3.2 Literature Review

Over the last decade several MOEAs have been developed to solve multi-objective

optimization problems. The earlier MOEAs are non-elitism based methods that assign

fitness to population members based on non-dominated sorting. In addition, they exploit

different techniques to preserve diversity among solutions of the same non-dominated

front. Of these types, the Multi-Objective Genetic Algorithm (MOGA) [39] by Fonseca

and Fleming’s and the Non-dominated Sorting Genetic Algorithm (NSGA) [40] by

Srinivas and Deb are very popular. MOGA uses the niche-formation technique to

preserve diversity over the Pareto optimal region and sharing is performed on the

objective function values. On the other hand, sharing is performed on the decision

variable space for NSGA.

More recently, elitism based algorithms have been suggested to enhance the

convergence properties of MOEAs. The Pareto Archived Evolution Strategy (PAES) [41]

by Knowles and Corne uses a (1+1) evolution strategy together with a historical archive

that records all the non-dominated solutions found until the current generation. It also

designs a novel approach to maintain diversity which consists of a crowding procedure

that divides objective space in a recursive manner into several grids. This procedure is

adaptive and has lower computational complexity than the traditional niching based

approaches. Zitzler and Thiele introduce the Strength Pareto Evolutionary Algorithm

(SPEA) [42] that uses an external archive to preserve non-dominated solutions. In each

generation, the non-dominated solutions in the external set will be given a strength value

which is proportional to the number of individuals they dominate. Fitness of individuals

in the main population will be computed according to the strengths of all external non-

dominated solutions that dominated it. In addition, a clustering technique is used to

33

preserve diversity. Today, many advanced version of MOEAs have been constantly made

available in literature in continually pursuing the performance frontier.

On the other hand, constraint handling for single objective optimization problems has

also been actively researched over the past two decades. Penalty functions are the

simplest and the most commonly used methods for handling constraints using EAs. In

death penalty function methods such as [43], individuals that violate any one of the

constraints are completely rejected and no information is extracted from infeasible

individuals. If the penalties added do not depend on the current generation number and

remain constant during the entire evolutionary process, then the penalty function is called

static penalty function. In static penalty function methods, the penalties are the weighted

sum of the constraint violations. If, alternatively, the current generation number is

considered in determining the penalties, then the method is called dynamic penalty

function method [44]. In adaptive penalty function methods [45-47], information

gathered from the search process will be used to control the amount of penalty added to

infeasible individuals.

In [44, 48], methods based on preference of feasible solutions over infeasible

solutions are employed. In these types of techniques, feasible solutions are always

considered better than infeasible ones. Therefore, when population fitness ranking is

performed, feasible individuals will come first followed by infeasible individuals with

low constraint violation. In [49], Runarsson and Yao introduce the stochastic ranking

method to achieve a balance between objective and penalty functions stochastically. A

probability factor is used to determine whether the objective function value or the

constraint violation value determines the rank of each individual. In [50-51], similar

algorithms are proposed where constraint violation and objective function are optimized

separately.

More recently, multi-objective optimization techniques have been used to solve

constrained optimization problems. In [52], a multi-objective optimization technique that

uses population-based algorithm generator and infeasible solutions archiving and

replacement mechanism is introduced. In [53], a two-phase algorithm that is based on

multi-objective optimization technique is proposed. In the first phase of the algorithm, the

objective function is completely disregarded and the constraint optimization problem is

34

treated as a constraint satisfaction problem. In the second phase, both constraint

satisfaction and objective optimization are treated as a bi-objective optimization problem.

An algorithm that combines penalty function approach and multi-objective optimization

technique is also proposed in [54]. The algorithm has a similar structure as the penalty-

based approach but borrows the ranking scheme from multi-objective optimization

techniques.

Although multi-objective optimization and constraint handling have received a lot of

attention individually, very little research has been done in solving constrained multi-

objective optimization problems. Coello and Christiansen [55] propose a naïve approach

to solve CMOPs by ignoring any solution that violates any of the assigned constraints.

This method is very easy to implement but it often experiences difficulty in searching for

even a single feasible solution.

In [56], Binh and Korn propose the Multi-objective Evolution Strategy (MOBES),

which takes into account the objective function vector as well as the degree of constraint

violation of infeasible solutions in order to evaluate their fitness. Infeasible individuals

will be divided into different classes according to their “nearness” to the feasible region

and ranking will be performed based on the class. In addition, a mechanism to maintain a

feasible Pareto optimal set is employed.

In [57], Deb, et al. propose a constrained multi-objective algorithm based on

constrained dominance of individuals. According to their algorithm, a solution i is said

to constrained-dominate a solution j if (1) i is feasible while j is infeasible; (2) both are

infeasible and i has less constraint violation; or 3) both are feasible and i dominates j .

Feasible solutions constrained-dominate all infeasible solutions. However, when two

feasible individuals are compared, the usual dominance relationship is used. The level of

constraint violation is used to compare two infeasible individuals.

In [58], Jimenez, et al. propose the Evolutionary algorithm of Non-dominated Sorting

with Radial Slots (ENORA), which employs the min-max formulation for constraint

handling. Feasible individuals evolve towards optimality, while infeasible individuals

evolve towards feasibility. In addition, a diversity technique based on partitioning the

search space in a set of radial slots along which the successive populations generated by

the algorithm are positioned is introduced.

35

In [59], Ray, et al. suggest using three different non-dominated rankings of the

population. The first ranking is performed using the objective function values, the second

is performed using the different constraints, and the last ranking is based on the

combination of all objective functions and constraints. Depending on these rankings, the

algorithm performs according to the predefined rules.

In [60], Chafekar, et al. propose two novel approaches for solving constrained multi-

objective optimization problems. One method, called Objective Exchange Genetic

Algorithm of Design Optimization (OEGADO), runs several GAs concurrently with each

GA optimizing one objective and exchanging information about its objective with others.

The other method, called Objective Switching Genetic Algorithm for Design

Optimization (OSGADO), runs each objective sequentially with a common population

for all objectives.

In light of superior performance achieved in [38] for the single objective constraint

optimization, a similar idea is extended in this chapter into the uses of multi-objective

constraint optimization. In the next section, we introduce the proposed constrained multi-

objective evolutionary algorithm.

3.3 Performance Indexes for Multi-Objective Evolutionary Algorithms

The performance of the algorithm is measured using the convergence and diversity

metrics. These metrics can be obtained as follows [57].

3.3.1 Convergence metric - The convergence metric can be obtained by calculating

the smallest normalized Euclidean distance between the non-dominated set and the true

Pareto-front [57]. In actual implementation, a set of uniformly distributed sample points

are taken from the true Pareto-front and then for each point k in the non-dominated set,

the smallest distance from the true Pareto-front to point k is calculated as follows.

2

1
minmax

)()(
min ∑

=
∈ 









−
−

=
p

i ii

ii

Tjk ff
jfkf

L (3.2)

Here, T is the set of points in the true Pareto-front and max
if and min

if are the maximum

and minimum function values of the ith objective function in the true Pareto-front. p is the

36

total number of objective functions in the problem. The convergence metric will then

equals to the normalized average of minimum distances to the true Pareto-front from all

individuals in the non-dominated set. Mathematically,

*
*

P

L
Pk

k∑
∈=γ (3.3)

where P* is the non-dominated set, *P denotes the total number of individuals in the set

P* and γ is the convergence metric for the set P*.

3.3.2 Diversity Metric - The diversity metric measures the extent of spread achieved

among the obtained solutions. This metric is calculated as [57]:

LNLL

LLLL

lf

N

k
ilf

)1(

1

1

−++

−++
=∆

∑
−

= (3.4)

where fL and lL are the extreme solutions in the non-dominated set, and L is the

average of all distances)1(,...,2,1, −= NiLi assuming that there are (N-1) consecutive

distances.

3.4 Constrained Multi-Objective Optimization Test Problems

Several constrained multi-objective test problems that have been proposed by

researchers. Those test problems used in this thesis are presented below. Note that all the

test problems given below are minimization problems.

Test Problem OSY [61]

Minimize

,)(

],)1()4()1()2()2(25[)(
2
6

2
5

2
4

2
3

2
2

2
12

2
5

2
4

2
3

2
2

2
11

xxxxxxXf
xxxxxXf

+++++=

−+−+−+−+−−=

(3.5)
 subject to

37

,04)3()(

,0)3(4)(

,032)(
,02)(
,06)(
,02)(

6
2

56

4
2

35

214

123

212

211

≥−+−≡

≥−−−≡

≥+−≡
≥+−≡
≥−−≡
≥−+≡

xxXC
xxXC

xxXC
xxXC
xxXC

xxXC

(3.6a)

 and

.60
,5,1

10,,0

4

53

621

≤≤
≤≤

≤≤

x
xx

xxx
(3.6b)

Test Problem BNH [56]

Minimize

,)5()5()(

,44)(
2

2
2

12

2
2

2
11

−+−=

+=

xxXf
xxXf

(3.7)

 subject to

,7.7)3()8()(

,25)5()(
2

2
2

12

2
2

2
11

≥++−≡

≤+−≡

xxXC
xxXC

(3.8a)

 and

.30
,50

2

1

≤≤
≤≤

x
x

(3.8b)

Test Problem SRN [40] [62]

Minimize

,)1(9)(

,)1()2(2)(
2

212

2
2

2
11

−−=

−+−+=

xxXf
xxXf

(3.9)

 subject to

,0103)(
,225)(

212

2
2

2
11

≤+−≡
≤+≡

xxXC
xxXC

(3.10a)

 and

.2020
,2020

2

1

≤≤−
≤≤−

x
x

(3.10b)

Test Problem TNK [63]

Minimize

38

,)(
,)(

22

11

xXf
xXf

=
=

(3.11)

 subject to

,5.0)5.0()5.0()(

0arctan16cos1.01)(

2
2

2
12

2

12
2

2
11

≤−+−≡

≥







−−+≡

xxXC

x
x

xxXC
(3.12a)

 and

.0
,0

2

1

π
π

≤≤
≤≤

x
x

(3.12b)

Test Problem CTP1 [64]

Minimize

,)1()(

,)(

2

1

1
)(

22

11

x
Xf

exXf

xXf

+
−

⋅+=

=
(3.13)

subject to

,0728.0)()(

,0858.0)()(
)(295.0

22

)(541.0
21

1

1

≥⋅−≡

≥⋅−≡
−

−

Xf

Xf

eXfXC
eXfXC

(3.14a)

 and

.10
,10

2

1

≤≤
≤≤

x
x

(3.14b)

Test Problem CTP2-CTP8 [64]

Minimize









+

−⋅+=

=

2

1
22

11

1
)(

1)1()(

,)(

x
Xf

xXf

xXf
(3.15)

 subject to

{ }dcXfeXfba

XfeXfXC

)]().cos())().([sin(sin

)()sin(])()[cos()(

12

121

θθπ

θθ

+−≥

−−≡
(3.16a)

 and

.10
,10

2

1

≤≤
≤≤

x
x

(3.16b)

CTP2
1,6,1,10,2.0,2.0:1 =====−= edcbaC πθ (3.17a)

CTP3

39

1,5.0,1,10,1.0,2.0:1 =====−= edcbaC πθ (3.17b)

CTP4
1,6,1,10,75.0,2.0:1 =====−= edcbaC πθ (3.17c)

CTP5

1,5.0,2,10,1.0,2.0:1 =====−= edcbaC πθ (3.17d)

CTP6
2,2,1,5.0,40,1.0:1 −====== edcbaC πθ (3.17e)

CTP7

0,6,1,5,40,05.0:1 =====−= edcbaC πθ (3.17f)

CTP8
 2,2,1,5.0,40,1.0:1 −====== edcbaC πθ

0,6,1,2,40,05.0:2 =====−= edcbaC πθ (3.17g)

Test Problem CONSTR [64]

Minimize

,

1
)(

,)(

1

2
2

11

x
x

Xf

xXf
+

=

=
(3.18)

 subject to

.50
,11.0

,19)(
,69)(

2

1

122

121

≤≤
≤≤

≥+−≡
≥+≡

x
x

xxXC
xxXC

(3.19)

Test Problem Welded Beam [60]

Minimize

,1952.2)(

),14(04811.010471.1)(

2
3
4

2

3243
2
11

xx
Xf

xxxxxXf

=

++=
(3.20)

 subject to

40

,10,1.0
,5,125.0

,06000)(
0)(

,,030000)(
,013600)(

43

21

4

123

2

1

≤≤
≤≤

≥−≡
≥−≡

≥−≡
≥−≡

xx
xx

PXC
xxXC

XC
XC

c

σ
τ

(3.21a)

 where

()

()

.)0282346.01(022.64746

,504000

,

)(25.012
22

)(25.0)5.014(6000
''

,
2
6000'

,
)(25.0

'''
)''()'(

3
244

2
2
4

2
41

2
3

31

2
41

2
33

31

2
41

2
3

322

xxxP
xx

xx
x

xx

xxxx

xx

xxx

x

c −=

=

++

+++
=

=

++
++=

σ

τ

τ

ττ
τττ

(3.21b)

3.5 Proposed Constrained Multi-Objective Evolutionary Algorithm

The proposed algorithm extends the single-objective constrained evolutionary

algorithm proposed by Tessema and Yen [38] into the multi-objective case. The major

difference in various constraint handling techniques used in multi-objective optimization

arises from the variations in the involvement of infeasible individuals in the evolutionary

process. The main purpose of involving infeasible individuals in the search process is to

exploit the information they carry. Since EAs are stochastic search techniques, discarding

infeasible individuals might lead to the EA being stuck in local optima, especially in

problems with discontinuous search space. In addition, in some highly constrained

optimization problems, finding a single feasible individual by itself might be a daunting

challenge when the algorithm has to be able to extract information from the previous

infeasible individuals.

The proposed algorithm uses modified objective function values for checking

dominance in the population. The modification is based on the constraint violation of the

41

individual and its objective performance. The modified objective value has two

components: distance measure and adaptive penalty function. The two components are

discussed below in detail. Without loss of generality, the discussion of this chapter

assumes minimization problems. A maximization problem can be easily converted into

minimization problem by multiplying with -1.

3.5.1 Distance Values - Distance measures are found for each dimension of the

objective space by including the effect of an individual’s constraint violation into its

objective function. The major steps in calculating the distance measure are discussed

below. First, obtain the minimum and maximum values of each objective function in the

population.

)(minmin xff ix

i = (3.22a)

and

)(maxmax xff ix

i = (3.22b)

Then using these values, normalize each objective function i for every individual k.

ii

ii
ki

k ff
fxf

xf
minmax

min)(
)(~

−
−

= (3.23)

where)(~ xf i
k is the normalized ith-objective value of individual k with decision variable

x.

Constraint violation,)(xvk , of each individual k is then calculated as the summation

of the normalized violations of each constraint divided by the total number of constraints,

 ∑
=

=
m

j
j

j
k

k c
xc

m
xv

1 max

)(1)(, (3.24)

where





+=−
=

=
mqjxh
qjxg

xc
kj

kjj
k ,,1)|)(|,0max(

,,1))(,0max(
)(

L

L

δ
(3.25a)

)(maxmax xcc j
kx

j = . (3.25b)

42

δ is a tolerance value for equality constraints (usually 0.001 or 0.0001). q is the number

of inequality constraints, and m – q is the number of equality constraints. If the constraint

violation)(xc j
k is greater than zero, then individual k violates the jth-constraint. On the

other hand, if the constraint violation)(xc j
k is equal to zero, then the individual k

satisfies the jth-constraint and the constraint violation)(xc j
k is set to zero.

Then the “distance” value of individual k in each objective function dimension i is

formulated as follows:







+

=
=

otherwise,)()(~
0if),(

)(22 xvxf

rxv
xd

k
i

k

fki
k , (3.26)

where

size population

populationcurrent insindividual feasible ofnumber
=fr . (3.27)

The pseudo-code for calculating the distance value is given in Figure 3.1.From

Equation (3.26), we can observe that if there is no feasible individual in the current

population, then the distance values are equal to the constraint violation of the individual.

In this case, according to the distance values, an infeasible individual with smaller

constraint violation will dominate another infeasible individual with higher constraint

violation irrespective of their objective function values. This is an intuitively reasonable

way to compare infeasible individuals in the absence of feasible individuals and it will

help us approach the feasible space very quickly.

On the other hand, if there is more than one feasible solution in the population, then

the distance values will have the properties summarized below:

A. For a feasible individual k, the distance value in a given objective function

dimension i is equal to)(~ xf i
k . Hence, those feasible individuals with smaller

objective function value will have smaller distance value in that given dimension.

B. For infeasible individuals, the distance value has two components: the objective

function value and the constraint violation. Hence, individuals closer to the origin

in the)()(~ xvxf i − space would have lower distance value in that objective

function dimension than those farther away from the origin.

43

Input:)(xf i
k ,)(xvk , ifmin , ifmax , fr

SizePopulationkk ,,1, K=∀
objectivesofnumberii ,,1, K=∀

Output:)(xd i
k SizePopulationkk ,,1, K=∀

objectivesofnumberii ,,1, K=∀

Begin
 If 0=fr then
 For 1=i to number of objectives Do

For 1=k to Population Size Do
)(xd i

k ←)(xvk

End For
 End For

Else
 For 1=i to number of objectives Do

For 1=k to Population Size Do

ii

ii
ki

k ff
fxf

xf
minmax

min)(
)(~

−
−

←

)(xd i
k ← 22)()(~ xvxf k

i
k +

End For
 End For

End If
End

Figure 3.1. Pseudo code for finding distance value

C. If we compare the distance values of infeasible and feasible individuals, then

either one may have a smaller value. But if the two individuals have similar

objective function value, then the feasible individual will have smaller distance

value in the corresponding objective dimension.

3.5.2 Two Penalties - In addition to the penalty imposed upon infeasible individuals

by the distance measure, two other penalty functions are also added. These functions

introduce additional penalty for infeasible individuals based on their corresponding

objective value and constraint violation. The first penalty function is based on the

objective functions and the second one is based on the constraint violation. The balance

44

between the two components is controlled by the number of feasible individuals currently

present in the population.

These penalties have two major purposes:

A. To further reduce the fitness of infeasible individuals as the penalty imposed by

the distance formulation alone is small.

B. To identify the best infeasible individuals in the population by adding different

amount of penalty to each infeasible individual’s fitness.

The two penalties are formulated for individual k in the ith-objective function

dimension as follows:

)()()1()(xYrxXrxp i

kfkf
i
k +−= , (3.28)

where



 =

=
otherwise),(

0if,0
)(

xv
r

xX
k

f
k , (3.29a)

and





=
individual infeasibleanisif),(~

individual feasible aisif,0
)(

k
i

k

ki
k xxf

x
xY . (3.29b)

From the penalty function definition in Equations (3.28-3.29), we can observe that if

the feasibility ratio of the population is small (but not zero), then the first penalty

()(xX k) will have more impact than the second penalty ()(xY i
k). The first penalty is

formulated to have large value for individuals with large amount of constraint violation.

Hence in the case when there are few feasible individuals present in the population (fr is

small), infeasible individuals with higher constraint violation will be more penalized than

those with lower constraint violation. On the other hand if there are many feasible

solutions in the population (fr is large), the second penalty will have more effect than the

first one. In this case, infeasible individuals with larger objective function value will be

more penalized than infeasible individuals with smaller objective function value. If there

are no feasible individuals in the population (0=fr), both penalties will be zero.

45

The two components of the penalty function allow the algorithm to switch between

finding more feasible solutions and finding better solutions at anytime during the

evolutionary process. Furthermore, since priority is initially given to searching for

feasible individuals, the algorithm is capable of finding feasible solutions in cases where

the feasible space is small or discontinuous compared to the search space.

The pseudo-code for calculating the penalty value is given below in Figure 3.2.

Figure 3.2. Pseudo code for finding penalty value

3.5.3 Final modified objective value formulation - The final modified objective

value of individual k, using which non-dominance sorting is performed, is formulated as

the sum of the distance measure and penalty function in the ith-objective dimension.

Input:)(xf i
k ,)(xvk , fr

SizePopulationkk ,,1, K=∀
objectivesofnumberii ,,1, K=∀

Output:)(xp i
k SizePopulationkk ,,1, K=∀

objectivesofnumberii ,,1, K=∀

Begin
 For 1=i to number of objectives Do

For 1=k to Population Size Do
If 0=fr then

)(xX k ← 0
Else

)(xX k ←)(xvk

End If

If 0)(=xvk then

)(xY i
k ← 0

Else
)(xY i

k ←)(~ xf i
k

End If
)()()1()(xYrxXrxp i

kfkf
i
k +−←

End For
 End For
End

46

)()()(xpxdxF i
k

i
k

i
k += (3.30)

This modified objective value formulation is very flexible and will allow us to utilize

infeasible individuals efficiently. Most constraint optimization algorithms in literature are

“rigid” in a sense that they always prefer certain types of infeasible individuals. For

example, they might always give priority to those individuals with small constraint

violation only or those individuals with low objective value only. But according to our

new fitness formulation, the infeasible individuals that are considered valuable are not

always similar. Here are some of the interesting properties of this modified objective

value formulation:

A. If there is no feasible individual in the current population, each)(xd i
k will be

equal to the constraint violation ()(xvk) and each)(xpi
k term will be zero. In this

case, the objective values of the individuals will be totally disregarded, and all

individuals will be compared based only on their constraint violation. This will

help us find feasible individuals before looking for optimal solutions.

B. If there are feasible individuals in the population, then individuals with both low

objective function values and low constraint violation value will be preferred than

those individuals with high objective function values or high constraint violation

or both.

C. If two individuals have equal or very close distance values, then the penalty value

()(xpi) determines the dominant individual. According to our penalty function, if

the feasibility ratio (fr) in the population is small, then the individual closer to

the feasible space will be dominant. In the other case, the individual with smaller

objective function values will be dominant. Otherwise, the two individuals will be

non-dominant solutions.

D. If there is no infeasible individual in the population (1=fr), then individuals will

be compared based on their objective function values alone.

The general pseudo-code for the proposed algorithm is given in Figure 3.3.

47

Figure 3.3. Pseudo-code of proposed algorithm

/* Proposed Constrained Multi-Objective Evolutionary Algorithm */

Begin

Initialize N solutions

Evaluate all individuals

/* Constraint satisfaction */

Do While (“no feasible solution is found” or “maximum generation is

reached”)

 1) Give fitness to individuals based on their sum of constraint violations

 2) Rank individuals based on fitness in 1

 3) Selection, Recombination, Mutation and Replacement

 4) Archive if any feasible solutions is found

End Do /* Feasible solutions have been found */

/* Constraint satisfaction and objective optimization */

Do While (“maximum generation is reached”)

 5) Calculate modified objective function values using distance measures

and penalty functions for all individuals

 6) Pareto sort individuals according to their modified objective function

values

 7) Give fitness to individuals according to Pareto ranking and crowding

distance

 8) Use tournament selection to select N parents

 9) Generate N offspring solutions

 10) Calculate fitness of offspring solutions

 11) Update archive. If a feasible offspring dominates a solution in the

archive, then it will replace that solution.

 12) Trim the main population to N individuals based on the fitness of the

individuals

 End Do

End

Output archive

48

After the computation of the modified objective values, the standard features of

NSGA-II, such as non-dominant ranking and diversity through crowding distances, will

be used based on these modified values. During the archiving process, the best-feasible

individuals are given priority than any infeasible individuals as the goal of constrained

multi-objective optimization is eventually to find feasible optimal solutions.

3.6 Summary

This chapter focuses on the issue of constrained multi-objective optimization. First,

the problem definition is presented in Section 3.1. Following that in Section 3.2, a review

of the various evolutionary algorithms suggested to solve constrained multi-objective

optimization problems is presented. The literature review is followed by the discussion

about the performance indexes often used to measure the performance of multi-objective

problems. There are two commonly used performance indexes: diversity and

convergence metrics. The diversity metric measures how well the resulting solution is

distributed over the Pareto front. The convergence metric, on the other hand, measures

how close the resulting solutions are to the true Pareto-optimal solutions. Then in Section

3.4, the different constrained multi-objective optimization problems are presented. The

test problems used in this paper include CONSTR [64], SRN [40, 62], BNH [56], OSY

[61], TNK [63], CTP1-CTP8 [64], and Welded-beam problems [60].Finally in this

chapter, we propose a constraint handling technique for solving constrained multi-

objective optimization problems. The proposed algorithm is based on adaptive penalty

functions and distance measures. These two functions are dependent upon the objective

function values and the sum of constraint violations of an individual. Through this

design, the objective space is modified to account for the performance and constraint

violation of each individual. The modified objective functions are used in the non-

dominance sorting to facilitate in evolution of optimal solutions not only in the feasible

space but also in the infeasible space. The search in the infeasible space is designed to

exploit those individuals with better objective values and lower constraint violations. The

number of feasible individuals in the population is used to guide the search process either

toward finding more feasible solutions or favor in search for optimal solutions. The

proposed method is simple to implement and does not need any parameter tuning.

49

CHAPTER IV

EXPERIMENTAL SIMULATIONS AND RESULTS

4.1 Proposed Dynamic Evolutionary Algorithm

4.1.1 Experimental setup - The first set of experiments were conducted on dynamic

benchmark problems, DF1 – DF6. Each test is run 50 times. We use a population size of

100, a crossover rate of 0.6, a mutation rate of 0.2, and a maximum fitness evaluation of

500,000 for all implementations. Each decision dimension is bounded between 0 and 100.

In addition, we use SBX crossover and mutation. Tournament selection is adopted in

recombination and replacement scheme. Elitism is also used to improve performance.

The proposed dynamic evolutionary algorithm is compared at least once against the

following approaches for solving dynamic optimization problems. The first is standard

evolutionary algorithm which is abbreviated as SEA. A variation of this algorithm with

memory is denoted as SEAmem. The other algorithms that are used include introducing

25 random immigrants when a change occurs (RI25 [12], RI25mem), self-organizing

scouts (SOS [28]), standard evolutionary algorithm with three independent sub-

populations (P3 [8], P3mem), and finally dividing the population into memory and search

subpopulations (Mem/Search [8]). In addition, a combination of P3 and RI25 approaches

enhanced with memory, denoted as P3RI25mem, is also compared against the proposed

algorithm. We used two variations of the proposed algorithm, RVDEA-one enhanced

with memory (RVDEAmem) and another using several clusters to preserve diversity

(RVDEAcluster).

Due to the lack of reported data for some of the algorithms under certain benchmark

test functions, different test functions are compared against different sets of algorithms.

DF1 test problem was tested on all of above listed algorithms. On the other hand, DF6

was tested for SEAmem, RI25mem, P3mem, P3RI25mem, Mem/search, and the two

variations of the proposed algorithm. All the other test functions were tested on SEAmem,

50

RVDEAmem and RVDEAcluster. The first test was conducted on DF1 test problem with

default parameter settings given in Table 4.1. Some of these values that apply were also

used for the other test problems unless stated otherwise.

4.1.2 Results and discussions - Table 4.2 compares the performance of the proposed

RVDEA with other state-of-the-art algorithms based on the number of peaks. As can be

seen from Table 4.2, the proposed algorithm performs much better than the other

dynamic algorithms except SOS. In the case of SOS, the proposed algorithm performed

better only for a single peak DF1 problem. For the other cases, RVDEA provided

comparable or lesser result. As RVDEA is a an adaptation scheme performed at the

transient stage, other evolutionary techniques that enhance performance of algorithm, like

diversity preservation, can be applied to further improve the steady state performance of

RVDEA keeping the computational cost the same as SOS. Since the number of fitness

evaluation is fixed when comparing algorithms, by computational cost we refer to the

additional calculations required by the algorithm for its proper operation. For example, in

the case of SOS, additional computation is required for forming and organizing the

scouts. On the contrary, the additional evaluations required by RVDEA are simple

averaging operations that are linearly dependent on the number of individuals in the

population. This allows RVDEA to be used in conjunction with other techniques like

steady state diversity preservation to further enhance the algorithm’s performance. In

this notion, we tested a modified RVDEA with clustering technique that has a

comparable or less computational cost as that of SOS. In Table 4.2, it can be seen how

well the modified algorithm’s performance exceeded that of SOS in all different numbers

of peak.

In Table 4.3, RVDEA was compared with the other algorithms based on frequency of

change. RVDEA provides very good results at higher frequency of change and a

comparable result as SOS when frequency is decreased. Due to the structure of the

algorithm, the maximum allowable change frequency is two generations – one for re-

evaluation and one for relocation. Lower frequencies less than two generations can be

analyzed by reducing the size of the original population so that RVDEA will have a

51

minimum change frequency of at least two while maintaining the number of evaluations

constant.

Figures 4.1 and 4.2 provide a graphical presentation of the offline errors of the

different dynamic EAs at varying peak number and varying frequency of change,

respectively.

In Table 4.4, we present the outputs of RVDEA as the memory size is changed. Even

though having memory is generally recommended in dynamic EAs, the algorithm still

performs well without the support of memory.

We also have tested the algorithm using time-varying Gaussian peaks [DF2]. We

used the same setting as in Table 4.1 for this problem. The results were compared with

standard evolutionary algorithm with memory in Table 4.5. As can be clearly seen from

the table, the proposed algorithm has better adaptation and performance even in higher

number of peaks. RVDEA with memory provides very good results, but further

improvements in performance can be obtained by using RVDEA with clusters. We also

tested DF2 by varying the number of generations between changes. As can be seen from

Table 4.6, the proposed algorithm provides better results at higher frequencies of change.

As in the previous case, RVDEA with memory provides very good performance, but

RVDEA with clusters provides much better results even though it involves more

computation.

The algorithm is also tested for moving parabola test problem with linear [DF3],

random [DF4], and circular [DF5] dynamics. We run the problems with different cycle

length. The results show that the proposed algorithm performs very well both in lower

and higher frequencies of change. The results are summarized in Table 4.7. Furthermore,

the algorithm performs well in higher number of peaks as shown in Table 4.8.

The proposed algorithm was also tested on oscillating peaks function [DF6]. We used

two landscapes with 10 peaks each. The minimum and maximum peak widths parameters

are set to 0.001 and 0.08, respectively. The rest of the parameters are kept the same as in

Table 4.1. In Table 4.9, the algorithm’s performance under different cycle lengths is

presented. As can be seen from the results, the algorithm has better performance both in

lower and higher frequencies of change and the algorithm’s performance was intact even

with large variations in cycle lengths.

52

In Tables 4.10 and 4.11, we presented a summary of the adaptation performance for

RVDEA with memory in the test problems DF1-DF6. As can be seen from the tables, the

proposed algorithm adapts to the new environment effectively and quickly. This

combination of qualities makes the proposed algorithm attractive to be used in

environment with severe changes and higher frequencies of changes.

Similarly, in Tables 4.12 and 4.13, we presented the adaptation performance for

RVDEA with clusters. The results obtained were better than those of RVDEA with

memory, but as previously pointed out RVDEA with clusters involves more computation

than RVDEA with memory alone. Generally speaking, the adaptation performance of

RVDEA with memory and RVDEA with clusters are better and indicate the effectiveness

of the adaptation scheme used by the proposed algorithm.

TABLE 4.1

DEFAULT EXPERIMENTAL PARAMETER SETTINGS FOR DYNAMIC BENCHMARK

PROBLEMS

Default number of peaks 10
Default change frequency Every 50 generation

Peak shape
Cone [DF1], Gaussian [DF2],

Parabola [DF3-DF5],
Bell Curve [DF6]

Dimension 5
Min and Max limit of each

decision dimension [0,100]

Height severity 7.0
Width severity 1.0

Min and Max peak height [30,70]
Min and Max peak width [1,12]

Peak shift length 1.0

53

TABLE 4.2

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF PEAK

NUMBER ON MOVING CONE PEAKS BENCHMARK PROBLEM [DF1]

TABLE 4.3

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF

GENERATION BETWEEN CHANGES ON MOVING CONE PEAKS BENCHMARK PROBLEM

WITH 10 PEAKS [DF1]

Peak
no. SEA RI25

[12] P3 [8] SOS
[28]

RVDEA
mem

RVDEA
clusters

1 3.69 9.29 3.45 2.06 1.23 1.02
10 17.98 14.67 14.47 4.01 4.88 3.54
20 20.06 13.93 15.62 4.43 5.68 3.87
30 20.27 12.93 14.39 4.20 5.86 3.92
40 19.50 12.45 14.57 4.06 5.65 3.49
50 19.70 12.74 13.78 4.12 5.21 3.78
100 17.91 11.21 11.49 3.75 4.98 3.37
200 18.13 10.85 10.66 3.62 4.92 3.54

Results for SEA, RI25, P3, SOS as reported in [8]

Gen.
no. SEA SEA

mem
Mem/
search

SOS
[28]

RVDEA
mem

RVDEA
clusters

2 24.59 25.22 18.74 15.62 15.82 12.91
5 22.44 22.16 14.54 8.59 8.89 7.67
10 21.07 20.81 11.95 6.51 7.21 6.048
25 19.12 19.79 9.41 4.93 5.35 4.28
50 17.93 18.23 7.74 4.01 4.88 3.54
100 17.06 17.53 6.58 3.62 4.12 3.14

Results for SEA, SEAmem, Mem/search and SOS as reported in [8]

54

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

peak no.

offline error

SEA
RI25
P3
SOS
RVDEAmem
RVDEAclusters

TABLE 4.4

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF MEMORY

SIZE ON MOVING CONE PEAKS BENCHMARK PROBLEM WITH 10 PEAKS [DF1]

.

.

Figure 4.1. Offline error vs. peak number for some DEAs on a moving cone peaks
benchmark problem [DF1]

Mem
size

SEA
mem

RI25
mem

P3
mem
[8]

P3RI25
mem
[8]

Mem/
search

RVDEA
mem

0 n/a n/a n/a n/a n/a 4.90
4 17.94 13.27 14.53 17.88 7.76 5.15
10 18.23 13.60 14.45 18.73 7.34 4.88
16 17.91 13.64 14.49 21.21 7.46 5.06

Results for SEAmem, RI25mem, P3mem, P3RI25mem and Mem/search as reported in [8]

55

Figure 4.2. Offline error vs. change frequency for some DEAs on a moving cone
peaks benchmark problem [DF1]

TABLE 4.5

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF PEAK

NUMBER ON TIME VARYING GAUSSIAN PEAKS BENCHMARK PROBLEM [DF2]

Peak no. SEA

mem
RVDEA

mem
RVDEA
clusters

1 16.15 1.79 0.302
5 24.49 4.20 2.653
10 28.67 6.36 3.871
50 29.19 7.54 3.322
100 29.75 8.06 3.713
200 31.32 11.59 3.755

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

gen. no.

offline error

SEA

SEAmem

SOS
RVDEAmem

RVDEAclusters

56

TABLE 4.6

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF

GENERATION BETWEEN CHANGES ON TIME VARYING GAUSSIAN PEAKS BENCHMARK

PROBLEM WITH 10 PEAKS [DF2]

TABLE 4.7

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF CYCLE

LENGTH ON MOVING PARABOLA BENCHMARK PROBLEMS WITH 10 PEAKS [DF3-DF5]

Moving
parabola type

Cycle
length
(eval)

SEA
mem

RVDEA
mem

RVDEA
clusters

1,000 10.893 2.334 0.881
2,500 10.821 2.125 0.755
5,000 10.865 2.082 0.609
10,000 10.944 1.781 0.483
20,000 11.291 1.622 0.299

Linear
[DF3]

100,000 11.033 1.413 0.177
1,000 11.126 2.752 1.026
2,500 11.065 2.611 0.982
5,000 10.877 2.303 0.891
10,000 10.531 2.142 0.769
20,000 10.218 1.897 0.536

Random
[DF4]

100,000 9.893 1.662 0.247
1,000 12.844 2.989 1.583
2,500 12.815 2.788 1.457
5,000 12.663 2.445 1.162
10,000 12.587 2.121 0.783
20,000 12.499 1.965 0.607

Circular
[DF5]

100,000 12.431 1.792 0.340

Gen. no. RVDEA
mem

RVDEA
clusters

2 14.41 10.11
5 8.83 7.55
10 6.98 4.41
25 6.44 4.12
50 6.36 3.87
100 5.95 3.34

57

TABLE 4.8

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF PEAKS

NUMBER ON MOVING PARABOLA BENCHMARK PROBLEMS WITH CYCLE LENGTH

5,000 EVALUATIONS [DF3-DF5]

TABLE 4.9

OFFLINE ERROR VARIATION AFTER 500,000 EVALUATIONS AS FUNCTION OF CYCLE

LENGTH ON OSCILLATING PEAKS BENCHMARK PROBLEM [DF6]

Cycle
length
(eval)

SEA
mem

RI25
mem

P3
mem

P3RI25
mem
[8]

Mem/
search

RVDEA
mem

RVDEA
clusters

1,000 11.93 9.01 10.07 9.87 7.19 4.252 2.648
5,000 n/a n/a n/a n/a n/a 4.132 2.411
10,000 n/a n/a n/a n/a n/a 3.978 2.342
100,000 17.66 7.26 12.00 9.27 4.71 3.821 2.025

Results for SEAmem, RI25mem, P3mem, P3RI25mem and Mem/search as reported in [8]

Moving
parabola type Peaks no. RVDEA

mem
RVDEA
clusters

1 1.517 0.081
5 1.892 1.122
10 2.082 1.609
50 2.367 1.756
100 2.688 2.186

Linear
[DF3]

200 2.850 2.377
1 1.268 0.106
5 1.764 1.446
10 2.303 1.791
50 2.675 1.862
100 2.904 1.985

Random
[DF4]

200 3.023 2.149
1 1.687 0.158
5 2.022 0.967
10 2.445 1.162
50 2.664 1.368
100 2.864 1.743

Circular
[DF5]

200 3.191 2.040

58

TABLE 4.10

ADAPTATION PERFORMANCE FOR RVDEAMEM AFTER 500,000 EVALUATIONS AS

FUNCTION OF PEAK NUMBER

TABLE 4.11

ADAPTATION PERFORMANCE FOR RVDEAMEM AFTER 500,000 EVALUATIONS AS

FUNCTION OF GENERATION BETWEEN CHANGES

TABLE 4.12

ADAPTATION PERFORMANCE FOR RVDEACLUSTER AFTER 500,000 EVALUATIONS AS

FUNCTION OF PEAK NUMBER

Gen.
no. DF1 DF2 DF3 DF4 DF5 DF6

2 0.7707 0.7912 0.9538 0.9486 0.9455 0.9293
5 0.8712 0.8720 0.9573 0.9535 0.9521 0.9343
10 0.8955 0.8988 0.9662 0.9601 0.9567 0.9384
25 0.9225 0.9067 0.9692 0.9622 0.9596 0.9391
50 0.9293 0.9078 0.9698 0.9666 0.9646 0.9401
100 0.9403 0.9138 0.9742 0.9690 0.9693 0.9423

Peak
no. DF1 DF2 DF3 DF4 DF5 DF6

1 0.9822 0.9741 0.9780 0.9816 0.9756 0.9382
5 0.9329 0.9391 0.9726 0.9744 0.9707 0.9394
10 0.9293 0.9078 0.9699 0.9666 0.9646 0.9411
25 0.9309 0.8907 0.9679 0.9644 0.9634 0.9415
50 0.9245 0.8832 0.9657 0.9612 0.9614 0.9431
100 0.9278 0.8320 0.9610 0.9579 0.9585 0.9438

Peak
no. DF1 DF2 DF3 DF4 DF5 DF6

1 0.9852 0.9956 0.9988 0.9985 0.9977 0.9570
5 0.9612 0.9616 0.9837 0.9790 0.9860 0.9846
10 0.9487 0.9439 0.9767 0.9740 0.9832 0.9625
25 0.9436 0.9480 0.9756 0.9734 0.9818 0.9653
50 0.9452 0.9519 0.9746 0.9730 0.9802 0.9659
100 0.9516 0.9462 0.9683 0.9712 0.9747 9.9677

59

TABLE 4.13

ADAPTATION PERFORMANCE FOR RVDEACLUSTER AFTER 500,000 EVALUATIONS AS

FUNCTION OF GENERATION BETWEEN CHANGES

The effect of increasing number of peaks on the output of the algorithm is more or

less equivalent to an increase in problem difficulty and decrease in performance. But as

can be seen from the results given in some of the tables, at some values of peak number

there are discrepancies and this is mainly due to the fact that the operation of the

algorithm is stochastic and the output may not always follow a given pattern. A similar

argument also applies to increase in the number of generations between changes. In such

cases, the output of the algorithm generally decreases with increase in change frequency

with the exception of some discrepancies. However, the output of the algorithm is still

better than most chosen algorithms.

TABLE 4.14

OFFLINE ERROR PERFORMANCE FOR RVDEA WITOUT MEMORY AFTER 500,000

EVALUATIONS ON TEST PROBLEMS DF1-DF6 WITH 10 PEAKS

 DF1 DF2 DF3 DF4 DF5 DF6
RVDEA 4.90 6.42 2.11 2.35 2.51 4.35

RVDEAmem 4.88 6.36 2.082 2.303 2.445 4.132
RVDEAcluster 3.54 3.877 1.609 1.791 1.162 2.411

Lastly, the proposed algorithm, RVDEA, is analyzed without memory to see how

much of the observed performance can be attributed to the proposed algorithm in contrast

to the use of memory or clusters. The results clearly suggest that RVDEA contributes to

most part of the observed performances. The results are presented in Table 4.14.

Gen.
no. DF1 DF2 DF3 DF4 DF5 DF6

2 0.8129 0.8535 0.9819 0.9796 0.9709 0.9558
5 0.8888 0.8906 0.9851 0.9824 0.9737 0.9573
10 0.9123 0.9361 0.9872 0.9851 0.9771 0.9616
25 0.9380 0.9403 0.9891 0.9858 0.9789 0.9630
50 0.9487 0.9439 0.9912 0.9871 0.9832 0.9651
100 0.9545 0.9516 0.9930 0.9889 0.9887 0.9661

60

In general, the results show that RVDEA is capable of solving dynamic optimization

problems. The proposed algorithm is very easy to implement and the additional

computational cost is very cheap. The proposed algorithm uses the evolutionary progress

of each individual to arrive at the optimal relocation needed specifically for that

individual to adapt to the new environment. Hence, it is a fast and effective adaptation

scheme that occurs at the transient stages of a change. Furthermore, since the algorithm is

fast and simple, additional enhancements in population diversity can be included at each

steady state operation without bypassing the acceptable computational cost limit. In this

paper, we implemented multiple clusters as a means to maintain steady state diversity. By

using this simple clustering scheme, the algorithm performed better than all other

dynamic evolutionary algorithms tested in this study. This performance improvement

shows that RVDEA has a great potential to be used alongside other dynamic evolutionary

techniques. Furthermore, the ease of implementing the algorithm makes the proposed

algorithm very attractive. It should be noted that the algorithm still performs much better

than most of the other algorithms cited in this chapter without any performance

enhancement techniques.

4.2 Constrained Multi-Objective Evolutionary Algorithm

4.2.1 Experimental setup - The second set of experiments were conducted on the

proposed constrained multi-objective evolutionary algorithm. The algorithm is tested on

several constrained multi-objective benchmark problems available from literature. The

results are summarized below. We use a population size of 100, crossover rate of 0.8,

mutation rate of 0.2, and maximum generation number of 100 for all implementations.

These values are chosen in consistent with the other algorithms to be compared with. In

addition, we use SBX crossover and mutation. Tournament selection is adopted in

recombination and replacement scheme. The test problems are denoted as BNH [56],

SRN [40, 62], OSY [61], TNK [63], CTP1 [64], CTP2 [64], CTP3 [64], CTP4 [64],

CTP5 [64], CTP6 [64], CTP7 [64], CTP8 [64], CONSTR [64], and Welded Beam

Problem [60]. Each test is run 50 times and the performance metrics are measured

statistically.

61

4.2.2 Results and discussions - The algorithm was able to find very accurate Pareto

optimal solutions for all the benchmark test problems. The convergence metric with

respect to the true Pareto front is given in TABLE 4.15. As can be noticed from the table,

the proposed algorithm has an average accuracy in the order of 0.0165. Furthermore, we

have presented the diversity metric for the Pareto front obtained in TABLE 4.16. As can

be observed from the table, the proposed algorithm consistently provides diversified non-

dominant individuals in the resulted Pareto front. Moreover, the lower and upper limits of

the objective functions of the Pareto front attained are covered to the possible extent.

TABLE 4.17 provides the upper and lower extreme values of the objective functions in

the non-dominated set. These values represent the extent to which the Pareto front

extends and this indicates how far in the Pareto-front the proposed algorithm is able to

find optimal feasible solutions in each test problem.

The test problem, OSY [61], has two second-order nonlinear objective functions, four

linear inequality constraints, and two nonlinear second-order inequality constraints. The

resulting Pareto front obtained by the proposed algorithm is shown in Figure 4.3a. The

Pareto front is known to be piece-wise continuous and as can be seen from the plot, the

proposed algorithm is able to provide better-fit feasible individuals well distributed over

the Pareto front (with convergence metric (0.0056) and diversity metric (0.6879) over 50

runs). The Pareto-front extends well between -273 and -49 in the first objective function,

and between 4.05 and 75.2 in the second objective function. The convergence and

diversity metric plots over 100 generations for OSY test problem are given in Figure

4.6a.

The next test problem, BNH [56], has two second-order nonlinear objective functions

and two nonlinear second-order inequality constraints. The resulting Pareto front

generated by the proposed algorithm is given in Figure 4.3b. As can be noted from the

figure and also from the convergence (0.0038) and diversity (0.6162) metrics, the

proposed algorithm provides feasible optimal solutions that are diversely distributed on

the true Pareto front. Furthermore, the resulting allowable feasible limits in the Pareto

front extends to as low as 1.6e-3 and as high as 136 in the first objective function, and as

low as 4.0 and as high as 49.8 in the second objective function. The convergence and

62

diversity metric plots over 100 generations for BNH test problem are given in Figure

4.6b.

The following test is conducted using CTP1 test problem [64]. This problem has one

linear objective function, one exponentially nonlinear objective function, and two

exponentially nonlinear inequality constraints. The generated Pareto front is given in

Figure 4.3c. As can be noted from the plot and the convergence metric (0.0014) and the

diversity metric (0.5827) obtained over 50 runs, the proposed algorithm provides better-

fit feasible individuals well distributed over the Pareto front. The first objective function

extends between 7.5e-13 and 0.995, while the second objective function extends between

0.543 and 1.05. The convergence and diversity metric plots over 100 generations for

CTP1 test problem are given in Figure 4.6c.

The next consecutive experiments are conducted on six test problems starting from

CTP2 up to CTP7 [64]. These problems have one linear objective function, one nonlinear

objective function, and a single highly nonlinear inequality constraint. The problems

have different parameter values which results in varying degrees of difficulties and

varying feasible optimal solutions. The resulting Pareto fronts are shown in Figures 4.3d-

4.3i. As can be seen from the plots and the resulted convergence metrics and the diversity

metrics from Tables 4.14 and 4.15, the proposed algorithm provides better-fit feasible

individuals over the discontinuous Pareto front. For the test problem CTP2, the algorithm

is able to provide a convergence metric value of 9.3e-4 and a diversity metric value of

0.6389. The Pareto front obtained extends between 6.2e-4 and 0.981 for the first

objective function and between 0.288 and 1.0 for the second objective function. For the

case of CTP3 test problem, a convergence metric value of 0.0074 and a diversity metric

value of 0.9032 are obtained. For this problem, the Pareto front extends between 0 and

0.976 for the first objective function and between 0.301 and 1.11 for the second objective

function. Similarly for CTP4, a convergence metric value of 0.0259 and a diversity

metric value of 0.8993 are obtained and the resulting Pareto front extends between 0 and

0.824 for the first objective function and between 0.433 and 1.17 for the second objective

function. In test problem CTP5, the convergence metric is found to be 0.0017 and the

diversity metric is found to be 0.9182. In this problem, the resulted Pareto front extends

between 5.3e-17 and 0.974 in the first objective function and between 0.329 and 1.0 in

63

the second objective function. Similarly for CTP6, a convergence metric value of 0.0039

and a diversity metric value of 0.5632 are obtained and the resulting Pareto front is found

to extend between 1.7e-16 and 1.0 in the first objective function and 0.884 and 3.81 in the

second objective function. Finally for test problem CTP7, a convergence metric value of

9.6e-4 and a diversity metric value of 0.6602 are obtained. The Pareto front for this

problem extends between 1.5e-16 and 1.0 for the first objective function and between

3.1e-9 and 1.09 for the second objective function. The convergence and diversity metric

plots over 100 generations for test problems CTP2-CTP7 are given in Figures 4.6d – 4.6i.

The next test is conducted on CTP8 test problem [64] which has one linear objective

function, one nonlinear objective function, and two highly nonlinear inequality

constraints. The resulted Pareto front is shown in Figure 4.3j. As can be observed from

the plot and the convergence metric (7.6e-4) and the diversity metric (0.6368), the

proposed algorithm provides better-fit feasible individuals over the discontinuous Pareto

front. The resulting Pareto front extends between 6.1e-17 and 0.822 in the first objective

function and between 1.38 and 3.71 in the second objective function. The convergence

and diversity metric plots over 100 generations for CTP8 test problem are given in Figure

4.6j.

The next test is conducted on CONSTR [64] which has one linear objective function,

one nonlinear objective function, and two linear inequality constraints. The resulted

Pareto front by the proposed algorithm is shown in Figure 4.4c. This problem is relatively

easy compared to the other test problems. As can be noted from the plot and the

convergence (0.0049) and diversity (0.6841) metrics, the proposed algorithm produces a

very good Pareto front. This Pareto front extends between 0.398 and 0.98 for the first

objective function and between 1.00 and 8.79 for the second objective function. The

convergence and diversity metric plots over 100 generations for CONSTR test problem

are given in Figure 4.6k.

The next experiment applies to SRN test problem [40, 62]. This problem has two

second-order nonlinear objective functions, one linear inequality constraint, and one

nonlinear second-order inequality constraint. The resulted Pareto front by the proposed

algorithm is displayed in Figure 4.4f. As can be seen from the plot and the convergence

metric (0.0016) and the diversity metric (0.5792), the proposed algorithm provides very

64

OSY BNH CTP1 CTP2 CTP3 CTP4 CTP5
Avg 0.0056 0.0038 0.0014 9.3e-4 0.0074 0.0259 0.0017
Var 9.7e-6 2.5e-5 3.5e-5 4.3e-4 3.4e-4 4.1e-4 3.6e-4

CTP6 CTP7 CTP8 CONSTR SRN TNK
Avg 0.0039 9.6e-4 7.6e-4 0.0049 0.0016 0.0053
Var 4.2e-4 4.6e-4 4.9e-4 3.3e-5 3.1e-5 2.9e-4

good and diversified feasible individuals over the Pareto front. This Pareto front extends

between 10.3 and 219 for the first objective function and between -216 and 3.97 for the

second objective function. The convergence and diversity metric plots over 100

generations for SRN test problem are given in Figure 4.6l.

The next experiment is conducted on TNK test problem [63]. This problem has two

linear objective functions, one second-order nonlinear inequality constraint, and one

highly nonlinear trigonometric inequality constraint. The converged Pareto front by the

proposed algorithm is shown in Figure 4.4i. The Pareto front is known to be

discontinuous and as can be seen from the plot, the proposed algorithm still provides

better-fit feasible individuals that are well distributed over the Pareto front (with

convergence metric 0.0053 and diversity metric 0.7461); first objective function extends

between 2.9e-6 and 1.05; second objective function extends between 1.3e-7 and 1.05).

The convergence and diversity metric plots over 100 generations for TNK test problem

are given in Figure 4.6m.

TABLE 4.15

CONVERGENCE METRIC
MEAN (FIRST ROW) AND VARIANCE (SECOND ROW) OF THE CONVERGENCE METRIC

γ AFTER 100 GENERATIONS

The plots of the obtained Pareto fronts for the constrained multi-objective test

problems meet our expectation. Not only are we able to find feasible individuals, but also

we are able to find better-fit individuals that are on or very close to the true Pareto front.

In addition, the infeasible individuals are fully exploited during the evolutionary process

to allow the algorithm to have an evenly distributed and well extended Pareto front. For

comparison with other algorithms, we have reproduced the results reported in [57] for

65

OSY BNH CTP1 CTP2 CTP3 CTP4 CTP5
Avg 0.6879 0.6162 0.5827 0.6389 0.9032 0.8993 0.9182
Var 0.0422 0.0502 0.0459 0.0479 0.0497 0.0508 0.0517

CTP6 CTP7 CTP8 CONSTR SRN TNK
Avg 0.5632 0.6602 0.6368 0.6841 0.5792 0.7461
Var 0.0513 0.0534 0.0595 0.0224 0.0381 0.0529

OSY BNH CTP1 CTP2 CTP3 CTP4 CTP5
Lower -273 1.6e-3 7.5e-13 6.2e-4 0.0 0.0 5.3e-17

f1 Upper -49 136 0.995 0.981 0.976 0.824 0.974
Lower 4.05 4.0 0.543 0.288 0.301 0.433 0.329

f2 Upper 75.2 49.8 1.05 1.0 1.11 1.17 1.0
CTP6 CTP7 CTP8 CONSTR SRN TNK

Lower 1.7e-16 1.5e-16 6.1e-17 0.398 10.3 2.9e-6
f1 Upper 1.0 1.0 0.822 0.98 219 1.05

Lower 0.884 3.1e-9 1.38 1.0 -216 1.3e-7
f2 Upper 3.81 1.09 3.71 8.79 3.97 1.05

CONSTR, SRN, and TNK test problems in Figure 4.4. Clearly, the proposed algorithm

performs better than Ray-Tai-Seow’s algorithm in all of the three test problems. The

uniformity and the extent of the Pareto fronts obtained from the proposed algorithm are

also better than those of NSGA-II even though subtle. The reason is that the proposed

algorithm not only searches in the feasible space but also exploits the evolutionary

information contained in individuals with low objective value and low constraint

violation.

TABLE 4.16
DIVERSITY METRIC

MEAN (FIRST ROW) AND VARIANCE (SECOND ROW) OF THE DIVERSITY METRIC ∆
AFTER 100 GENERATIONS

TABLE 4.17
 LOWER AND UPPER BOUNDS OF THE OBJECTIVE FUNCTIONS IN THE NON-

DOMINANT SOLUTIONS AFTER 100 GENERATIONS

66

-300 -250 -200 -150 -100 -50 0
0

10

20

30

40

50

60

70

80

f1

f2
OSY

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

f1

f2

CTP1

(c)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

f1

f2

CTP2

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

f1

f2

CTP3

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

f1

f2

CTP4

(f)

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

(b)

BNH

67

Figure 4.3. The Pareto fronts for different constraint multi-objective test problems
obtained by the proposed algorithm

A more notable performance difference is obtained for welded beam problem

presented in [60]. The proposed algorithm is able to provide a much better diversity in the

Pareto front within the same (i.e., 8,000) objective function evaluations as shown in

Figure 4.5. The convergence metric for this problem is found to be 0.0062 while the

diversity metric is found to be 0.7581. The Pareto front extends between 2.2 and 35.7 in

the first objective function and between 4.39e-4 and 8.56e-3 in the second objective

function. The convergence and diversity metric plots over 100 generations for the welded

beam test problem are given in Figure 4.6n.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f1

f2

CTP5

(g)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

CTP6

(h)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f2

CTP7

(i)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

f1

f2

CTP8

(j)

68

Figure 4.4. The Pareto fronts for three constraint multi-objective test problems,
CONSTR, SRN and TNK (from top to bottom) obtained by Ray-Tai-Seow
algorithm (left), NSGA-II (middle) [57] and the proposed algorithm (right).

(a) (b)
0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

6

7

8

9

f1

f2

CONSTR

(c)

(d) (e)

(g) (h)
0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

f1

f 2

TNK

(i)

(f)
0 50 100 150 200 250

-250

-200

-150

-100

-50

0

50

f1

f2

SRN

69

Figure 4.5. The obtained Pareto front of welded beam problem for (a) NSGA-II
(as reported in [60]) and (b) the proposed algorithm.

0 5 10 15 20 25 30 35 40
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

f1

f2

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

co
nv

er
ge

nc
e

m
et

ric

generation number

OSY

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

di
ve

rs
ity

m
et

ric

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

co
nv

er
ge

nc
e

m
et

ric

generation number

BNH

0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

di
ve

rs
ity

m
et

ric

(b)

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

co
nv

er
ge

nc
e

m
et

ric

generation number

CTP1

0 10 20 30 40 50 60 70 80 90 100
0.55

0.6

0.65

0.7

0.75

0.8

di
ve

rs
ity

m
et

ric

(c)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

co
nv

er
ge

nc
e

m
et

ric

generation number

CTP2

0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

di
ve

rs
ity

m
et

ric

(d)

70

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

co
nv

er
ge

nc
e

m
et

ric

generation number

CTP3

0 10 20 30 40 50 60 70 80 90 100
0.6

0.8

1

di
ve

rs
ity

m
et

ric
(e)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

co
nv

er
ge

nc
e

m
et

ric

generation number

CTP4

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

di
ve

rs
ity

m
et

ric

(f)

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

co
nv

er
ge

nc
e

m
et

ric

generation number

CTP5

0 10 20 30 40 50 60 70 80 90 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

di
ve

rs
ity

m
et

ric

(g)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

co
nv

er
ge

nc
e

m
et

ric

generation number

CTP6

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

di
ve

rs
ity

m
et

ric

(h)

71

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

co
nv

er
ge

nc
e

m
et

ric

generation number

SRN

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

di
ve

rs
ity

m
et

ric

(l)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

co
nv

er
ge

nc
e

m
et

ric

generation number

CTP7

0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1

di
ve

rs
ity

m
et

ric

(i)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

co
nv

er
ge

nc
e

m
et

ric
generation number

CTP8

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

di
ve

rs
ity

m
et

ric

(j)

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

co
nv

er
ge

nc
e

m
et

ric

generation number

CONSTR

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

di
ve

rs
ity

m
et

ric

(k)

72

Figure 4.6. The diversity and convergence metric plots for all test problems over
100 generations

The success of the proposed algorithm is mainly due to the exploitation of the

evolutionary information contained in infeasible individuals in addition to that contained

in feasible individuals. The constraint handling normally used in NSGA-II [57] compares

infeasible individuals solely based on their constraint violation. This way of non-

dominance ranking ignores how well each individual was performing in the objective

space and may result in the inefficient use of some evolutionary materials. The proposed

algorithm, on the other hand, uses a combined measure of constraint violation and

objective performance to arrive at the fitness of individuals which will govern the

evolutionary process. The number of feasible individuals available in the current

population is used to control the relative emphasis given to either constraint violation or

objective performance in the final fitness calculation. As can be observed from the test

results of the proposed algorithm, this way of fitness formulation provides better

solutions that extend well over the Pareto front. Furthermore, the convergence and

diversity plots indicate that a continuous convergence and diversified population is

achieved in the proposed algorithm

0 10 20 30 40 50 60 70 80 90 100
0

0.5
co

nv
er

ge
nc

e
m

et
ric

generation number

TNK

0 10 20 30 40 50 60 70 80 90 100
0.5

1

di
ve

rs
ity

m
et

ric

(m)

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

co
nv

er
ge

nc
e

m
et

ric

generation number

Welded Beam

0 10 20 30 40 50 60 70 80 90 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

di
ve

rs
ity

m
et

ric

(n)

73

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Many real-world optimization problems have to be performed under the presence of

various uncertainties and constraints. In this thesis, two common optimization problems

are studied using evolutionary algorithms. These are dynamic optimization problems and

constrained multi-objective optimization problems.

Dynamic optimization problems are common optimization problems with a fitness

landscape that undergoes various changes during the optimization. In this thesis, we

proposed a dynamic evolutionary algorithm that uses variable relocation vectors to adapt

already converged or currently evolving individuals to the changing landscape. The

proposed algorithm relocates the individuals based on their change in function value due

to the change in the environment and the average sensitivities of their decision variables

to the corresponding change in the objective space. The relocation vectors introduce a

certain radius of uncertainty to be applied specifically to each individual and in effect

restoring diversity and accelerating exploration. Since the adaptation is conducted on the

previous population, the proposed algorithm provides higher reusability of previous

evolutionary information. Furthermore, the algorithm provides faster convergence and

better adaptation and this makes it attractive for optimizing fitness landscapes with higher

frequency of change. In addition, the algorithm is able to find optimal solutions in higher

severities of change. Severe changes require higher diversity restoration and the proposed

algorithm uses larger relocation vectors to do so. The relocated population is shown to be

better fit to the new environment than the original or any other randomly generated

population. The algorithm has been tested for several dynamic benchmark problems and

has shown better results compared to some chosen state-of-the-art dynamic evolutionary

approaches.

74

The relocation vectors are specific to each individual and this gives the algorithm

better adaptation than those approaches that use a single adaptation value for the whole

population. Furthermore, using specific sensitivities and relocation vectors allow the

algorithm to provide a considerable progress jump for the next evolutionary process. As a

technique to be used during transient periods, the proposed algorithm provides the next

evolutionary cycle with better initial population than any other randomly generated

population. Furthermore, the extra computational cost of the proposed algorithm is

comparable to its performance improvement since the additional calculations are basic

arithmetic operations. Hence, the performance improvement per extra computational cost

is higher in the proposed algorithm than the other dynamic evolutionary algorithms used

in this thesis. The algorithm can be easily integrated into standard evolutionary

algorithms and other uncertainty handling techniques like multi-population and diversity

preservation. This fast adaptation scheme when enhanced with diversity perseveration

techniques provides much better overall performance. The authors believe that better

results can also be obtained by implementing the relocation scheme on multi-population

approaches. For future work, the authors recommend applying the variable relocation

scheme to multi-population approaches for solving dynamic optimization problems.

This thesis also studies constrained multi-objective optimization problems which are

common multi-objective optimization problems with constraints limiting their feasible

space. In this thesis, we proposed an adaptive constraint handling technique for solving

constrained multi-objective optimization problems. Beside the search for optimal

solutions in the feasible region, the algorithm also exploits the information hidden in

infeasible individuals with better objectives and lower constraint violation. This is

achieved by using the modified objective values in the non-dominance ranking of the

multi-objective evolutionary algorithm. The modified objective values are the

modifications of the objective functions to incorporate the effects of the individuals’

constraint violation. They are composed of distance measures and penalty functions.

These values are associated with how well an individual performs and how much it

violates the constraints. They are obtained for every objective function dimension. For

feasible individuals, the distance values are just the normalized objective function values.

For infeasible individuals, the distance values are obtained from the normalized objective

75

function values and their constraint violation. The penalty function, on the other hand,

will be applied to infeasible individuals in order to further decrease their fitness

compared to feasible individuals. The number of feasible individuals in the population

adaptively controls the emphasis given to objective values or constraint violation in the

modified objective function formulation. If there is no feasible individual in the

population, the algorithm uses the constraint violations as the primary means to rank the

individuals. This adaptive formulation allows further exploitation of the evolutionary

information possessed by infeasible individuals with low objective values and low

constraint violation. Involving the infeasible individuals in the evolutionary process helps

the algorithm to find additional feasible individuals even in cases where the feasible

space is very small or discontinuous. Furthermore, since there is no parameter tuning in

the design of constraint handling, this makes the algorithm easy to implement. Moreover,

the additional evaluations are simple arithmetic operations and do not impose any

significant increase in the computational cost.

The performance of the algorithm is tested on fourteen constrained multi-objective

test problems. From the simulation results, it is observed that the algorithm is capable of

finding better-fit feasible solutions that are well spread over the Pareto front in all the

runs of the test problems. In addition, the results of the algorithm are compared with

some of the constrained multi-objective algorithms suggested so far. The comparison

results indicate that the proposed algorithm performs better than the other algorithms in

that it is able to provide a well distributed Pareto front that has optimal individuals.

Moreover, the proposed algorithm provides solutions that extend very well to the

maximum allowable limits over the Pareto front. For future work, the authors recommend

applying the proposed constraint handling technique using modified objective function

formulation (“distance” and “penalty”) for other multi-objective evolutionary approaches

other than NSGA-II.

Lastly, the authors recommend further work on combining the two proposed

evolutionary algorithms into a single algorithm to provide an optimization approach for

solving the more general dynamic, constrained multi-objective optimization problems.

76

REFERENCES

[1] B. Tessema, “A self adaptive genetic algorithm for constrained optimization,”

Master’s Thesis, Oklahoma State University, Stillwater, OK, 2006.

[2] B. P. Buckles and F. E. Petry, “Genetic Algorithms,” Technology Series, IEEE

Computer Society Press, 1992.

[3] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments – a

survey,” IEEE Transaction on Evolution Computation, 9(6), pp. 303-317, 2005.

[4] Y. Jin, “Evolutionary computation in dynamic and uncertain environments,” in

IEEE Tutorial Evol. Comput. Conf., Honda Research Institute Europe, Germany,

2004.

[5] R. W. Morrison and K. A. De Jong, “A test problem generator for non-stationary

environments,” in Proceedings of Congress on Evolutionary Computation,

Washington, DC, pp. 2047-2053, 1999.

[6] R. Merton, “Continuous-Time Finance,” Basil Blackwell, Oxford, UK, 1990.

[7] J. Xu, P. B. Luh, F. B. White, E. Ni, and K. Kasiviswanathan, “Power portfolio

optimization in deregulated electricity markets with risk management,” IEEE

Transaction on Power Systems, 21(4), Nov. 2006.

[8] J. Branke, “Evolutionary Optimization in Dynamic Environments,” Norwell, MA:

Kluwer Publishing, 2001.

[9] S. Yang, “Constructing dynamic test environments for genetic algorithms based on

problem difficulty”, in Proceedings of IEEE Congress on Evolutionary

Computation, pp. 1262-1269, 2004.

[10] K. Weicker and N. Weicker, “Dynamic rotation and partial visibility,” in

Proceedings of IEEE Congress on Evolutionary Computation, La Jolla, CA, pp.

1125-1131, 2000.

77

[11] K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary

function optimization,” in Proceedings of SPIE Conference on Intelligent Control

and Adaptive Systems, vol. 1196, pp. 289-296, 1989.

[12] J. J. Grefenstette, “Genetic algorithms for changing environments,” in Proceedings

of International Conference on Parallel Problem Solving from Nature, Amsterdam,

The Netherlands: Elsevier, pp. 137-144, 1992.

[13] H. C. Andersen, “An investigation into genetic algorithms, and the relationship

between speciation and the tracking of optima in dynamic functions,” Honors

thesis, Queensland University of Technology, Brisbane, Australia, 1991.

[14] A. Ghosh, S. Tsutsui, and H. Tanaka, “Function optimization in non-stationary

environment using steady state genetic algorithms with aging of individuals,” in

Proceedings of IEEE Congress on Evolutionary Computation, pp. 666-671, 1998.

[15] Y. Jin, M. Husken, M. Olhofer, and B. Sendhoff, “Neural Networks for fitness

approximation in evolutionary optimizations,” in Knowledge Incorporation in

Evolutionary Optimization, Y. Jin, Ed., Berlin, Germany: Springer-Verlag, pp. 281-

306, 2004.

[16] N. Mori, H. Kita, and Y. Nishikawa, “Adaptation to a changing environment by

means of the feedback thermodynamical genetic algorithm,” in Proceedings of

International Conference on Parallel Problem Solving from Nature, Berlin,

Germany: Springer-Verlag, vol. 1498, pp. 149-158, 1998.

[17] J. Branke, “Memory enhanced evolutionary algorithms for changing optimization

problems,” in Proceedings of IEEE Congress on Evolutionary Computation,

Washington, DC, pp. 1875-1882, 1999.

[18] A. Acan and Y. Tekol, “Ants can play prisoner’s dilemma,” in Proceedings of IEEE

Congress on Evolutionary Computation, pp. 1348-1354, 2003.

[19] K. Trojanowski and Z. Michalewicz, “Searching for optima in non-stationary

environments,” in Proceedings of IEEE Congress on Evolutionary Computation,

Washington, DC, pp. 1843-1850, 1999.

[20] C. N. Bendtsen and T. Krink, “Dynamic memory model for non-stationary

optimization,” in Proceedings of IEEE Congress on Evolutionary Computation,

Honolulu, HI, pp. 145-150, 2002.

78

[21] R. E. Smith, “Diploid genetic algorithms for search in time varying environments,”

in Annual Southeast Regional Conference of the ACM, pp. 175-179, 1987.

[22] D. E. Goldberg and R. E. Smith, “Non-stationary function optimization using

genetic algorithms with dominance and diploidy,” in Proceedings of 2nd

International Conference on Genetic Algorithms, pp. 59-68, Lawrence Erlbaum

Associates, 1987.

[23] D. Dasgupta and D. R. McGregor, “Non-stationary function optimization using the

structured genetic algorithm,” in Proceedings of International Conference on

Parallel Problem Solving from Nature, pp. 145-154, Elsevier Science Publisher,

1992.

[24] K. P. Ng and K. C. Wong, “A new diploid scheme and dominance change

mechanism for non-stationary function optimization,” in Proceedings of 6th

International Conference on Genetic Algorithms, pp. 159-166, 1995.

[25] J. Lewis, E. Hart, and G. Ritchie, “A comparison of dominance mechanisms and

simple mutation on non-stationary problems,” in Proceedings of International

Conference on Parallel Problem Solving from Nature, vol. 1498, Springer, pp. 139-

148, 1998.

[26] C. Ryan, “Diploidy without dominance,” in Proceedings of 3rd Nordic Workshop

on Genetic Algorithms, pp. 63-70, 1997.

[27] F. Oppacher and M. Wineberg, “The shifting balance genetic algorithm: Improving

the GA in a dynamic environment,” in Proceedings of Conference on Genetic and

Evolutionary Computation, vol. 1, pp. 504-510, 1999.

[28] J. Branke, T. Kaubler, C. Schmidt, and H. Schmeck, “A multi-population approach

to dynamic optimization problems,” in Adaptive Computing in Design and

Manufacturing 2000, Berlin, Germany: Springer-Verlag, 2000.

[29] R. K. Ursem, “Multi-national GA optimization techniques in dynamic

environments,” in Proceedings of Conference on Genetic and Evolutionary

Computation., pp. 19-26, 2000.

[30] H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking changing

environments,” in Proceedings of 5th International Conference Genetic Algorithms,

pp. 523-530, 1993.

79

[31] F. Vavak, T. C. Fogarty, and K. Jukes, “A genetic algorithm with variable range of

local search for tracking changing environments,” in Proceedings of 4th

International Conference on Parallel Problem Solving from Nature, vol. 1141,

Berlin, Germany, pp. 376-385, 1996.

[32] P. J. Angeline, “Tracking extrema in dynamic environments,” in Proceedings of 6th

International Conference on Evolutionary Programming, Springer, vol. 1213, pp.

335-345, 1997.

[33] T. Back, “On the behavior of evolutionary algorithms in dynamic environments,” in

Proceedings of IEEE Congress on Evolutionary Computation, Anchorage, AK, pp.

446-451, 1998.

[34] T. Sasaki and M. Tokoro, “Adaptation under changing environments with various

rates of inheritance of acquired characters,” in Proceedings of Artificial Life and

Robotics, vol. 1585, pp. 34-41, 1998.

[35] T. Nanayakkara, K. Watanabe, and K. Izumi, “Evolving in dynamic environments

through adaptive chaotic mutation,” in Proceedings of 3rd International Symposium

on Artificial Life and Robotics, pp. 520-523, 1999.

[36] K. De Jong, “An analysis of the behavior of a class of genetic adaptive systems,”

PhD thesis, University of Michigan, Ann Arbor, MI, 1975.

[37] J. J. Grefenstette, “Evolvability in dynamic fitness landscapes: A genetic algorithm

approach,” in Proceedings of IEEE Congress on Evolutionary Computation,

Washington, DC, pp. 2031-2038, 1999.

[38] B. Tessema and G.G. Yen, “A self-adaptive constrained evolutionary algorithm,” in

Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, BC, pp.

246-253, 2006.

[39] C.M. Fonseca and P.J. Fleming, “Genetic algorithms for multi-objective

optimization: formulation, discussion, and generalization,” in Proceedings of

International Conference on Genetic Algorithms, Urbana-Champaign, IL, pp. 416-

423, 1993.

[40] N. Srinivas and K. Deb, “Multi-objective function optimization using non-

dominated sorting genetic algorithms,” Evolutionary Computation, 2(3), pp. 221-

248, 1994.

80

[41] J.D. Knowles and D.W. Corne, “Approximating the non-dominated front using the

Pareto archived evolution strategy,” Evolutionary Computation, 8(2), pp. 149-172,

2000.

[42] E. Zitzler and L. Thiele, “An evolutionary algorithm for multi-objective

optimization: the strength Pareto approach,” Technical Report, Switzerland

Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of

Technology (ETH), Munich, Switzerland, 1998.

[43] T. Bäck and F. Hoffmeister and H. Schwefel, “A survey of evolution strategies,” in

Proceedings of the International Conference on Genetic Algorithms, San Diego,

CA, pp. 2-9, 1991.

[44] J. Joines and C. Houck, “On the use of non-stationary penalty functions to solve

nonlinear constrained optimization problems with GAs,” in Proceedings of the

Congress on Evolutionary Computation, Orlando, FL, pp. 579-584, 1994.

[45] J.C. Bean and A.B. Alouane, “A dual genetic algorithm for bounded integer

programs,” Technical Report TR 92-53, Department of Industrial and Operations

Engineering, The University of Michigan, Ann Arbor, MI, 1992.

[46] R. Farmani and J. Wright, “Self-adaptive fitness formulation for constrained

optimization,” IEEE Transaction on Evolutionary Computation, 7(5), pp. 445-455,

2003.

[47] A.C.C. Lemonge and H.J.C. Barbosa, “An adaptive penalty scheme in genetic

algorithms for constrained optimization problems,” in Proceedings of Genetic and

Evolutionary Computation Conference, New York, NY, pp. 287-294, 2002.

[48] K. Deb, “An efficient constraint handling methods for genetic algorithms,”

Computer Methods in Applied Mechanics and Engineering, 186(2), pp. 311-338,

2000.

[49] T.P. Runarsson and X. Yao, “Stochastic ranking for constraint evolutionary

optimization,” IEEE Transaction on Evolutionary Computation, 4(3), pp. 344-354,

2000.

[50] T. Takahama and S. Sakai, “Constrained optimization by applying the α-

constrained method to the nonlinear simplex method with mutations,” IEEE

Transactions on Evolutionary Computation, 9(5), pp. 437-451, 2005.

81

[51] T. Takahama and S. Sakai, “Constrained optimization by the ε constrained

differential evolution with gradient-based mutation and feasible elite,” in

Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver,

Canada, pp. 308-315 , 2006.

[52] Y. Wang and Z. Cai, “A multi-objective optimization based evolutionary algorithm

for constrained optimization,” in Proceedings of the IEEE Congress on

Evolutionary Computation, Edinburgh, UK, pp. 1081-1087, 2005.

[53] S. Venkatraman and G.G. Yen, “A generic framework for constrained optimization

using genetic algorithms,” IEEE Transaction on Evolutionary Computation, 9(4),

pp. 424-435, 2005.

[54] J. Aidanpaa, J. Anderson and A. Angantyr, “Constrained optimization based on a

multi-objective evolutionary algorithm,” in Proceedings of Congress on

Evolutionary Computation, Canberra, Australia, pp. 1560-1567, 2003.

[55] C.A.C. Coello and A.D. Christiansen, “MOSES: a multi-objective optimization tool

for engineering design,” Engineering Optimization, 31(3), pp. 337-368, 1999.

[56] T.T. Binh and U. Korn, “MOBES: A multi-objective evolution strategy for

constrained optimization problems,” in Proceedings of International Conference on

Genetic Algorithms, East Lansing, MI, pp. 176-182, 1997.

[57] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist multi-objective

genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation,

6(2), pp. 182-197, 2002.

[58] F. Jimenez, A.F. Gomez-Skarmeta, G. Sanchez and K. Deb, “An evolutionary

algorithm for constrained multi-objective optimization,” in Proceedings of

Congress on Evolutionary Computation, Honolulu, HI, pp. 1133-1138, 2002.

[59] T. Ray, K. Tai and K.C. Seow, “An evolutionary algorithm for multi-objective

optimization,” Engineering Optimization, 33(3), pp. 399-424, 2001.

[60] D. Chafekar, J. Xuan and K. Rasheed, “Constrained multi-objective optimization

using steady state genetic algorithms,” in Proceedings of Genetic and Evolutionary

Computation Conference, Chicago, IL, pp. 813-824, 2003.

82

[61] A. Osyczka and S. Kundu, “A new method to solve generalized multi-criteria

optimization problems using the simple genetic algorithm,” Structural

Optimization, 10(2), pp. 94-99, 1995.

[62] V. Chankong and Y.Y. Haimes, “Multi-Objective Decision Making Theory and

Methodology,” New York: North-Holland, 1983.

[63] M. Tanaka, H. Watanabe; Y. Furukawa, and T. Tanino, “GA-based decision

support system for multi-criteria optimization,” in IEEE International Conference

on Systems, Man and Cybernetics, vol. 2, Vancouver, BC, pp.1556-1561, 1995.

[64] K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms,”

Chichester, UK: Wiley, 2001.

VITA

Yonas Gebre Woldesenbet

Candidate for the Degree of

Master of Science

Thesis: UNCERTAINITY AND CONSTRAINT HANDLING IN EVOLUTIONARY
ALGORITHMS

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Addis Ababa, Ethiopia, on February 25, 1982.
Current Address: 36 S University Pl, Apt 4, Stillwater, OK.

Education: Graduated as Valedictorian from St. Joseph High School, Addis

Ababa, Ethiopia, in June 1999.
Received Bachelors of Science degree in Electrical Engineering from

Bahir Dar University, Bahir Dar, Ethiopia, in July 2004 with a Gold-
Medal for outstanding academic achievement.

Completed the requirements for the Masters of Science degree with
major in Electrical Engineering at Oklahoma State University,
Stillwater, OK in July 2007.

Experience: CEAT Lab Assistant, Oklahoma State University, Stillwater, OK.

Teaching Assistant, Oklahoma State University, Stillwater, OK.
Simulation and Software Engineer, Danotek Motion Technologies,

Addis Ababa, Ethiopia.
Intern, City Business Computers, Addis Ababa, Ethiopia.

Professional Memberships: IEEE Computational Intelligence Society.

Name: Yonas Gebre Woldesenbet Date of Degree: July, 2007

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: UNCERTAINTY AND CONSTRAINT HANDLING IN

EVOLUTIONARY ALGORITHMS

Pages in Study: 82 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Scope and Method of Study: This paper proposes two evolutionary algorithms. Firstly, a

dynamic evolutionary algorithm is proposed that uses variable relocation vectors to

adapt the current population to the new environment. The relocation vectors

introduce a certain radius of uncertainty to be applied specifically to each individual

and in effect restoring diversity and accelerating exploration. Furthermore, the

algorithm provides higher re-usage, faster convergence and better adaptation. As a

technique to be used at transient periods, the proposed algorithm provides the next

evolutionary cycle with better initial population than any other randomly generated

population. The algorithm can be easily integrated into standard evolutionary

algorithms and other uncertainty handling techniques.

Secondly, this paper proposes a new constraint handling technique for multi-

objective evolutionary algorithms based on adaptive penalty functions and distance

measures. Through this design, the objective space is modified to account for the

performance and constraint violation of each individual. The modified objective

functions are used in the non-dominance sorting to facilitate in evolution of optimal

solutions not only in the feasible space but also in the infeasible space. The number

of feasible individuals in the population is used to guide the search process either

toward finding more feasible solutions or toward locating optimal solutions. The

proposed method is simple to implement and does not need any parameter tuning.

Findings and Conclusions: The performance of each proposed algorithm is tested on

several benchmark problems and both algorithms have shown superior results with

lesser computational cost.

ADVISER’S APPROVAL: Dr. Gary Yen

