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ABSTRACT 

Transition metal ions are essential for a wide range of biochemical 

transformations and are found in more than one half of all known enzymes.  Our interest 

in the bioinorganic chemistry of copper prompted us to develop new model complexes 

that more accurately mimic structural aspects of the copper-containing nitrite reductase 

(CuNiR) active site, which contains a type 1 (“blue”) electron transfer center that is 

coupled via a His-Cys bridge to a type 2 (“normal”) catalytic center.  Preliminary 

attempts to achieve this goal by covalently linking 1,4,7-triazacyclononane (TACN) and 

His were thwarted by synthetic challenges.  Using less reactive amino acids, however, the 

first structurally characterized copper(II) complexes of TACN-Ala, -Gly, and -Phe were 

obtained and studied.  These new complexes provide insight into the copper coordination 

chemistry of TACN, where one of its secondary amines has been converted to a tertiary 

amide.  As an offshoot of this project, mononuclear copper(II) complexes of a new 

N2S(thioether) ligand were also obtained and fully characterized.  The reactivity of these 

complexes with thiolates was investigated in an effort to produce new 

N2S(thioether)S(thiolate) type 1 copper center models.  Although stable copper(II)-

thiolate complexes could not be obtained, the redox decomposition of one of these 

proceeds by way of an unprecedented pathway that requires two equivalents of thiolate to 

fully reduce copper(II) to copper(I).  Finally, a related ligand that contains two thioethers 

was also prepared.  Attempts to produce copper(II) complexes of this ligand result in 

unanticipated redox decomposition that is dependent on the presence of both thioether 

sulfurs.  This work has direct relevance to a recent proposal implicating Met sulfur in 

Alzheimer’s Disease amyloid-β neurotoxicity. 
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By taking a long and thoughtful look at what God has created, people have 
always been able to see what their eyes, as such, cannot see; eternal power, for instance, 
and the mystery of his divine being… 
 
 

Romans 1:20 
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CHAPTER 1. 

 

INTRODUCTION AND BACKGROUND: 
COPPER-CONTAINING NITRITE REDUCTASE 

AND COPPER-MEDIATED NEUROTOXICITY IN 
ALZHEIMER’S DISEASE
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1.1 Introduction 

Redox-active transition metals are found in more than one half of all known 

enzymes and are essential for a wide range of biochemical transformations and 

processes.1, 2  Of these metals, copper plays a particularly interesting and diverse role in 

metalloenzyme electron transfer,2, 3 oxygen transport,4 and catalytic sites.5, 6  Regrettably, 

copper has also been directly implicated in a number of deleterious processes and is 

known to be central to several human disorders,7 including Alzheimer’s Disease (AD).8  

The diverse biological reactivity of copper can be directly attributed to two principal 

factors; (1) its inherent electronic structure and (2) its coordination environment. 

Although copper can form stable complexes in the 1+, 2+, or 3+ oxidation states, 

it is known to definitively exist only in the 1+ or 2+ oxidation states in biological 

systems.  The electronic structure and preferred coordination environment of the metal in 

these two oxidation states differ considerably from each other.9  Copper(I) has 

completely occupied d-orbitals (3d10), tends to adopt a flexible, but often tetrahedral, 

coordination geometry and is stabilized by relatively soft ligands.  Conversely, copper(II) 

has incompletely filled d-orbitals (3d9), prefers tetragonal or trigonal coordination 

geometries, and is stabilized by comparatively hard ligands.  Furthermore, as a 

consequence of unequal electron occupation of their degenerate d-orbitals, copper(II) 

complexes typically exhibit significant Jahn-Teller distortions,10 where the orbital 

degeneracy is broken and the complex is stabilized by axial metal-ligand bond elongation 

or compression.  While the coordination geometry of copper in small molecule 

complexes is principally dictated by the electronic structure of the metal and ligand 

constraints, the rigid protein structure of a metalloenzyme has the ability to effectively 
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impose a fixed geometry on its coordinated metal ion.  The ability of the protein to 

control both the coordination geometry of the metal ion and the identity of its 

coordinating ligands (amino acids) allows it to elegantly modulate the electronic 

properties and reactivity of copper. 

One method that is employed by chemists to gain a better understanding of the 

structure-function relationship occurring at the active site of metalloenzymes is the 

synthesis and characterization of small-molecule model complexes.  Such model 

complexes are usually designed to mimic specific aspects of the metal coordination site 

as it exists in the protein, including the structures and properties of proposed substrate-

bound reactive intermediates that are difficult to characterize in the actual enzyme.  By 

comparing the reactivity and/or spectroscopic features of the model complexes to that of 

the metalloenzyme, analogies can be drawn that provide insight into its structure and 

mechanism.  Furthermore, factors that promote substrate activation can often be probed 

in model complexes in ways that are not always possible or practical in the enzyme.  

Thus, the continual development of new and improved model systems is important to the 

pursuit of a deeper understanding of specific metalloenzyme function. 

Our efforts toward the synthesis and characterization of next-generation model 

complexes that more accurately mimic structural aspects of the dinuclear copper-

containing nitrite reductase (CuNiR) active site, which contains a copper electron transfer 

site and a copper catalytic site, are presented in chapters 2 and 3.  An extension of this 

project is presented in chapter 4 and deals with the debated mode of copper reduction and 

subsequent reactive oxygen species (ROS) generation in AD.  As a general background 

for each of these projects, the environmental role and structure of CuNiR are described in 
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section 1.2 of this chapter along with studies of several important CuNiR-related model 

complexes that have been reported to date.  Finally, section 1.3 of this chapter presents a 

brief background of some of the current AD research with respect to the role of copper. 

1.2 Copper-Containing Nitrite Reductase 

1.2.1. The Terrestrial Nitrogen Cycle 

Nitrogen exists in a large number of stable oxidation states, ranging from 3- to 

5+.11  The enzymatic interconversion of nitrogen between its many oxidation states is a 

vital part of the bioenergetic processes of many bacteria and fungi.12  As a consequence, 

these organisms collectively have direct control over the natural balance of nitrogen in 

the environment and, as such, a far-reaching influence over all life on earth.  Figure 1-1 

shows a schematic representation of the terrestrial nitrogen cycle.5  The cycle is presented 

Figure 1-1.  Schematic representation of the terrestrial nitrogen cycle adapted from 
reference 5.  The red arrows indicate areas of significant anthropogenic influence on 

the nitrogen cycle through the Haber-Bosch and Ostwald processes. 
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in terms of the principal environmental nitrogen species, nitrate (N5+), dinitrogen (N0), 

and ammonia (N3-), and is divided into three central processes; nitrogen fixation, 

nitrification, and denitrification. 

Because nitrogen is required for assimilation into the cells of all organisms, its 

availability in a biologically useful form generally limits organism growth.  This is 

particularly important in agriculture, where useful nitrogen is often depleted from the soil 

and must be artificially replenished with nitrogen-based fertilizers in order to achieve 

adequate crop yields.  The vast supply of dinitrogen (N2) in the atmosphere is of no use to 

most organisms because of the very high stability of the N2 triple bond.  While a few, 

namely nitrogen fixing bacteria and archaea, have the ability overcome this high 

energetic barrier and convert N2 directly to NH3,13 all others must obtain their cellular 

nitrogen requirements by converting nitrate and nitrite to ammonia through the process of 

nitrate assimilation or, alternatively, through the liberation of ammonia from the 

decomposition of organic material by oxidative deamination.14  Nitrification is the 

complimentary process to nitrate assimilation, where nitrifying bacteria use ammonia 

directly as an energy source under aerobic conditions and produce nitrate.15 

As a means of meeting the ever-increasing human demand for agricultural 

fertilizer (ammonium nitrate) the Haber-Bosch (fixation) and Ostwald (nitrification) 

processes, both developed in the early twentieth century, have also enabled the industrial-

scale production of large quantities of ammonium nitrate from atmospheric N2.16  The 

impact of the artificial introduction of huge quantities of nitrate, released into almost 

every ecosystem through agricultural runoff, is enormous and accounts for many 

emerging ecological problems including river, pond, and lake eutrofication.17  Thus, the 
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human-instigated imbalance of the nitrogen cycle, as indicated by the red arrows in 

Figure 1-1, is a growing concern. 

Completing the nitrogen cycle, denitrification is the dissimilatory process by 

which nitrate and nitrite are reduced to gaseous nitric oxide (NO), nitrous oxide (N2O), 

and ultimately N2.18  Denitrification is carried out in several steps (Figure 1-1, steps a-d) 

by denitrifying bacteria, which use reducible nitrogen species as terminal electron 

acceptors in their metabolic processes.19  In the first step (step a), nitrate reductase, an 

enzyme that contains Mo(VI)O, heme iron, and non-heme iron sites, mediates the two-

electron reversible reduction of nitrate to nitrite.20  In the second step, nitrite is then 

irreversibly reduced to nitric oxide by either heme iron (FeNiR)21 or copper-containing 

(CuNiR)5, 22 nitrite reductase (step b).  Nitric oxide reductase,23 also a heme iron enzyme, 

further reduces nitric oxide to nitrous oxide (step c).19, 24  In the final step of the 

denitrification pathway (step d), nitrous oxide reductase, which contains CuA and CuZ 

sites, catalyzes the reduction of nitrous oxide to dinitrogen.25 

Because they efficiently mediate the natural pathway by which nitrogen oxides 

can be converted into gaseous products, the enzymes and organisms that are involved in 

denitrification have received much attention.  It is hoped that a better understanding of 

the relationship between the structures of these enzymes and the details of their catalytic 

mechanisms will ultimately lead to the design of new synthetic catalysts that can be 

specifically implemented on a global scale to reverse increasing nitrate pollution.  Of 

these enzymes, the copper and iron nitrate reductases have received particular attention 

since they catalyze the first irreversible step in denitrification. 
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Our interest in the biological chemistry of copper, particularly with respect to 

denitrification, has prompted us to undertake the development of next-generation model 

complexes of the dinuclear CuNiR active site.  While the currently reported CuNiR-

related model complexes have provided much structural information about mononuclear 

copper-bound reactive intermediates (see section 1.2.2), at the inception of this work, no 

efforts to synthesize more complete models that could accurately mimic the dinuclear 

structure or reactivity of the CuNiR active site had been reported. 

1.2.2 CuNiR Structure and Proposed Mechanisms 

CuNiR has been isolated from several different bacteria and fungi.  The first 

reported crystal structure of the enzyme was obtained from Achrobacter cycloclastes in 

1991.26-28  Since then, the structures from Alcaligenes faecalis29, 30 and Alcaligenes 

xylosoxidans,31 as well as a number of related mutants, have also been reported.  In each 

case, the wild-type CuNiR protein and copper binding site structures are nearly identical 

to each other, differing only slightly in their spectroscopic features as a result of subtle 

variations in the copper ion coordination geometries. 

The 1.8 Å resolution crystal structure of NO2
--bound CuNiR from A. faecalis is 

shown in Figure 1-2.30  This 37 kDa enzyme is composed of three identical subunits, each 

containing two copper ions, and is representative of the known CuNiR enzyms.  Each of 

the subunits consists of two domains, I and II, that are joined to each other by a 12 amino 

acid loop.  Domain I is located toward the interior of the enzyme, forming a 4 – 6 Å 

channel around a 3-fold central axis, and interacts with domain II of its adjacent subunit.  

While the exterior surface of the protein is hydrophilic, the interior and subunit interface 

regions are largely hydrophobic. 
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A close-up of one of the binuclear copper sites is shown in Figure 1-3.  Buried 

within domain I is a single type 1 copper (Cu-I) electron transfer site, where the copper 

ion is bound by one cysteine (Cys), one methionine (Met), and two histidine (His) 

residues in a distorted trigonal planar geometry.  The second copper ion, separated by 

~12.5 Å from the Cu-I site via a His-Cys bridge and located at the subunit interface, 

forms a type 2 copper (Cu-II) site and is bound in a tetrahedral geometry by two His 

residues from domain I of one subunit, one His from domain II of its neighboring 

Figure 1-2.  Representation of the 37 kDa homotrimeric CuNiR protein structure from 
A. faecalis.  The copper ions are displayed as CPK spheres.  Water molecules and 

hydrogen atoms have been omitted for clarity. 
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subunit, and one exogenous ligand.  Prior to catalysis, the exogenous ligand, water or 

chloride depending on the source, is displaced by substrate, which diffuses into the active 

site between the subunits.  Accordingly, the accessible Cu-II site serves as the location of 

substrate binding and catalysis, while the His-Cys bridge connecting it to the Cu-I 

electron transfer site within the same subunit is believed to serve as the route of electron 

transfer to the catalytic site and ultimately to bound NO2
-, yielding NO.32 

 

 

Despite the fact that the function and structural aspects of CuNiR are now well 

understood, the details of its catalytic mechanism are still unfolding.  At the inception of 

this work, two very different mechanisms for NO2
- reduction by CuNiR had been 

proposed in the literature.  The first, and more simplistic of the two, was reported by 

Hulse and Averill (Figure 1-4).24, 33  This mechanism is centered on the η1-N coordination 

of NO2
- to the reduced catalytic site and does not specifically address potential 

interactions of the bound substrate with amino acid residues in the active site vicinity.  In 

His

His

His

HisHis

NO2
-

Cys

Met

Cu-II Cu-I

 

Figure 1-3.  Representation of the X-ray crystal structure of the NO2
--bound CuNiR 

active site from A. faecalis. 
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the presence of protons, the N-bound copper(I)-NO2 adduct eliminates water, forming a 

copper nitrosyl intermediate that subsequently evolves NO.  The copper ion is then 

reduced by an electron transfer event from the Cu-I site prior to the next cycle. 

The second mechanism, initially reported by Adman, et al., draws upon the 

involvement of His and aspartic acid (Asp) residues in the vicinity of the catalytic site, as 

suggested by X-ray crystallography (Figure 1-5).26, 30  In this mechanism, NO2
- binds to 

the oxidized copper ion at the catalytic site, thereby forcing the release of OH- in the first 

step.  Instead of an η1-N coordination mode as described in the previous mechanism, 

NO2
- is proposed to bind in an η2-O,O’ fashion via its oxygen atoms to the oxidized 

copper ion.  The binding of NO2
- has also been suggested to increase the redox potential 

of the copper ion and, as a result, to possibly facilitate electron transfer from the reduced 

Cu-I site.34  The copper(I)-NO2
- intermediate that is then generated at the catalytic site 

quickly reduces its bound NO2
- following electron transfer, releasing NO and dehydrating 

in a concerted step.  In the final step of the mechanism, the enzyme is reset by 

protonation of His and reduction of the Cu-I site.  Throughout the mechanism, the His 

and Asp residues serve as general acid-base catalysts and provide, or shuttle, the required 

Figure 1-4.  CuNiR catalytic mechanism proposed by Hulse and Averill. 
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protons.  Based on a very recent report of the first structurally characterized side-on 

copper nitrosyl coordination in CuNiR, a revision to this mechanism has also been 

proposed by Murphy, et al.,35 where the electron transfer step from the Cu-I site reduces 

the copper at the catalytic site and results in a coordination rearrangement of NO2
- from 

η2-O,O’ to η1-N prior to NO release, thus unifying aspects of both proposed 

mechanisms.35 

 

 Figure 1-5.  Proposed CuNiR catalytic mechanism by Adman, et al. 
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Each of the mechanisms described above involve the initial binding of NO2
- at the 

catalytic site, followed by dehydration and NO elimination.  In the first mechanism, an 

η1-N-bound NO2
- adduct is proposed, where the copper ion is suggested to, but not 

necessarily, be reduced prior to substrate coordination.  In the second mechanism, an 

asymmetric η2-O,O’-bound NO2
- adduct is proposed, where NO2

- coordination to 

copper(II) may also facilitate electron transfer from the Cu-I site.  Moreover, the second 

mechanism implies the formation of an O-bound copper-nitrosyl intermediate, which is 

unprecedented in the copper literature.  At the time these proposals were published, 

particularly that of Hulse and Averill, very little was known about the coordination 

chemistry of NO2
- or NO to mononuclear copper in either of its oxidation states.  The 

chemical feasibility of the different proposed reactive intermediates was, consequently, 

difficult to assess using precedent from synthetic chemistry.  This fact led to a 

considerable effort early on to synthesize and structurally characterize model complexes 

specifically designed to provide information about the coordination chemistry of copper-

NO2
- and copper-NO adducts. 

1.2.3. CuNiR Model Complexes 

The CuNiR-related model complexes that have been reported to date can be 

divided into three general categories.  First, there are those designed to model the 

structure and/or spectroscopic features of the Cu-I electron transfer site.36  Next, there are 

those that model the structure and/or properties of the Cu-II catalytic site, including 

proposed catalytic intermediates.37-41  Finally, there are functional models that mimic the 

reactivity of CuNiR.39, 42  A recent example of a binuclear copper complex that mimics 

structural aspects of the His-Cys bridge has also been reported.43  Since the Cu-I site is 
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not unique to CuNiR and is present in many other biological copper electron transfer 

systems, the focus of this section will be on the important mononuclear structural models 

of the Cu-II site that feature bound NO2
- or NO. 

Several examples of structurally characterized NO2
- and NO adducts for a number 

of metals had been reported prior to the time of the proposed CuNiR mechanism by 

Hulse and Averill.44  However, the coordination chemistry of NO2
- and NO in 

mononuclear copper(I) or copper(II) complexes reminiscent of the Cu-II site remained 

unknown.  To provide structural information for these and, in so doing, to investigate the 

viability of the proposed intermediates in the mechanism, model complexes of the Cu-II 

site with bound NO2
- and NO began to appear in the literature shortly after the first report 

of the CuNiR structure from A. cycloclastes.27  Since the Cu-II site, where substrate 

binding and catalysis occur, was known to contain a copper ion ligated by three His 

residues in an unusual tetrahedral motif, appropriate supporting ligands that could closely 

mimic the Cu-II site coordination environment were required. 

Using a pyrazole ligand, based on designs developed primarily by Kitajima,45 

Tolman reported the first structural characterization of a mononuclear copper-NO2
- 

complex with a His3-like ligand set.38  The anionic supporting ligand in the complex, 

[HB(t-Bupz)3]-, is composed of three tert-butyl substituted pyrazole groups around a 

central boron.  This arrangement creates a facially coordinating ligand, where a sterically 

protected pocket is formed by the tert-butyl groups after metal coordination.  The 

addition of K[HB(t-Bupz)3] to equimolar amounts of aqueous CuCl2 and NaNO2 in 

methanol results in the instantaneous formation of [HB(t-Bupz)3]Cu(NO2) (1).  The X-ray 

crystal structure of 1 shows the 5-coordinate copper(II) ion, around which the three 
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pyrazole nitrogens and the η2-O,O’-bound NO2
- form a distorted trigonal bipyramidal 

geometry (Figure 1-6).  Presuming the requirement for an η1-N bound copper-nitrosyl for 

NO elimination to occur (see Figure 1-4), it is speculated that substantial molecular 

rearrangements would be required to convert η2-O,O’-bound NO2
-, as in 1, to η1-N-bound 

NO.  The coordination mode of NO2
- in this copper(II) complex, thus, lends support to 

the notion that the copper is likely reduced prior to NO2
- coordination, where an N-bound 

arrangement should be preferred and the need for a rearrangement step would be 

circumvented altogether. 

The same pyrazole ligand system was later used by Tolman to produce the first 

structurally characterized mononuclear copper complex having a terminal nitrosyl 

Figure 1-6.  Representation of the X-ray crystal structure of [HB(t-Bupz)3]Cu(NO2) 
(1), adapted from reference 37, showing 40% thermal ellipsoids.  All hydrogen atoms 

have been omitted for clarity.
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ligand.40  In this case, Tl[HB(t-Bupz)3]46 is reacted with CuCl in THF, affording a 

colorless dimeric complex, {[HB(t-Bupz)3]Cu}2, that is composed of linear 2-coordinate 

copper(I) ions linked by η2-[HB(t-Bupz)3]- ligands.  Subsequent reaction of this dimeric 

species with NO at 1 atm in an aromatic solvent yields a deep red product, [HB(t-

Bupz)3]Cu(NO) (2), that forms X-ray quality crystals upon cooling of the reaction 

mixture to -20 oC.  The X-ray crystal structure of 2 is very similar to 1 with respect to the 

supporting ligand coordination and copper ion, but possesses η1-N-bound NO instead of 

η2-O,O’-bound NO2
- (Figure 1-7). 

 

Figure 1-7.  Representation of the X-ray crystal structure of [HB(t-Bupz)3]Cu(NO) 
(2), adapted from reference 39, showing 40% thermal ellipsoids.  All hydrogen atoms 

have been omitted for clarity. 
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In addition to the X-ray crystal structure, the assignment of the copper-NO 

coordination mode of 2 was further supported by FTIR and low temperature EPR 

experiments using 14NO and 15NO.  The FTIR spectra exhibit strong absorptions at 1712 

cm-1 and 1679 cm-1 assigned to v(14NO) and v(15NO), respectively.  The X- and S-band 

EPR spectra of these complexes clearly reveal the hyperfine coupling of the unpaired 

electron to copper and NO, providing conclusive evidence for the copper-NO interaction.  

While the similarity of 2 to the copper(I)-NO intermediate(s) of the proposed mechanism 

is obvious, evidence for the evolution of gaseous NO from the model complex has not 

been reported. 

Having successfully synthesized and structurally characterized the copper(II)-

NO2
- and copper(I)-NO model complexes, efforts ensued to prepare mononuclear 

copper(I)-NO2
- complexes that would be more representative of the proposed Cu-II 

catalytic site immediately after substrate coordination.  The first reported structurally 

characterized example was prepared by reaction of a copper(I) complex of the tridentate 

capping ligand 1,4,7-triisopropyl-1,4,7-triazacyclononane (iPr3TACN)47 with excess 

NaNO2 in methanol, affording the binuclear copper(I) complex [(iPr3TACN)2Cu2(μ2-(η1-

N:η1-O)-NO2)]PF6 (3).41  X-ray quality crystals of 3 were obtained by slow evaporation 

of the solvent from the reaction mixture.  The structure of 3 consists of two copper(I)-

iPr3TACN units, located at either end of the complex, with a single NO2
- ligand bridging 

between the copper(I) ions (Figure 1-8).  The NO2
- coordinates one copper(I) ion in an 

η1-N fashion and the other copper(I) ion weakly by the syn lone pair of one of its oxygen 

atoms (O2) in an η1-O mode.  This type of bridging arrangement had also been previously 
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reported for several polynuclear transition metal NO2
- species, but always through the 

anti oxygen lone pair.48 

In addition to the obvious precedent that 3 provides for copper(I)-NO2
- 

coordination, albeit in a binuclear complex, chemical oxidation of 3 with ferrocenium 

hexafluorophosphate also afforded the unprecedented mixed-valence complex, 

[(iPr3TACN)2Cu2(μ2-(η1-N:η2-O)-NO2)](PF6)2 (4), where the remaining copper(I) is η1-N-

bound and the copper(II) is η2-O,O’-bound.  The characterization of 4 was achieved by 

analytical, spectroscopic, and preliminary X-ray crystallographic experiments.  Most 

notably, the integration of the axial X-band EPR signal accounts for about 46% of the 

total copper in the system.  Furthermore, an intense (ε = 2500 M-1cm-1) visible transition 

Figure 1-8.  Representation of the X-ray crystal structure of [(iPr3TACN)2Cu2(μ2-(η1-
N:η1-O)-NO2)]PF6 (3), adapted from reference 40, showing 50% thermal ellipsoids.  

All hydrogen atoms have been omitted for clarity. 
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at λmax = 444 nm is observed, believed to arise from a CT transition involving the NO2
- 

bridge.  Thus, the preferred coordination mode of NO2
- to both copper(I) and copper(II) 

ions is established in the same model complex. 

Reaction of 3 with triphenylphosphine in THF is sufficient to regioselectively 

cleave the complex, affording the mononuclear copper(I)-NO2
- adduct 

[(iPr3TACN)Cu((η1-N)-NO2)] (5) and an equivalent of [(iPr3TACN)Cu(PPh3)]PF6.39  5 is 

the first well-defined model complex that represents the proposed reduced CuNiR 

catalytic site with bound substrate.  X-ray quality crystals of 5 were obtained by 

fractional crystallization directly from the reaction mixture.  The crystal structure 

Figure 1-9.  Representation of the X-ray crystal structure of [(iPr3TACN)Cu((η1-N)-
NO2)] (5), adapted from reference 38, showing 50% thermal ellipsoids.  All hydrogen 

atoms have been omitted for clarity. 
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conclusively establishes the η1-N coordination of NO2
- to the copper(I) ion and has 

essentially identical structural parameters as it did in the starting material, 3 (Figure 1-9). 

Interestingly, the addition of 2 equivalents of glacial acetic acid to a solution of 5 

in dichloromethane results in an instantaneous color change of the solution from yellow 

to blue with concomitant release of NO and, presumably, water.  The blue product was 

identified as the copper(II) product [(iPr3TACN)Cu(CH3CO2)2] by comparison of its UV-

vis and EPR parameters to those of the independently synthesized material.  The release 

of exactly one equivalent of NO from the complex upon addition of the acid was 

quantitatively established by GC.  As both a structural and functional model, the ability 

of the copper(I)-NO2
- complex, 5, to cleanly produce gaseous NO and become oxidized 

to the corresponding copper(II) species provides strong support for the involvement of an 

initial copper(I)-NO2
- species in the enzymatic mechanism. 

Small-molecule model complexes, such as those described above, have provided 

much information about the structure and chemistry of NO2
- and NO in mononuclear 

copper(I) and copper(II) complexes.  This information is particularly relevant to the 

structure-function relationship of the Cu-II catalytic site of CuNiR.  While analogies 

between these synthetic models and the proposed intermediates of the Hulse-Averill 

mechanism are obvious, the synthesis of model complexes that provide greater insight 

into the feasibility of the Adman mechanism or the influence of the Cu-I site on catalysis 

is far more challenging.  Nonetheless, efforts are currently underway to develop advanced 

model complexes that more accurately represent the structure and reactivity of the CuNiR 

active site. 
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As an example, the recently published X-ray crystal structure of a unique mixed-

valence CuNiR model complex, 6, is shown in figure 1-10.43  Here, two copper ions are 

connected by a pridyl-thiolate ligand, reminiscent of the His-Cys bridge of CuNiR.  In 

addition to the pyridyl nitrogen or thiolate sulfur donor atoms, monoanionic bidentate β-

diketiminate ligands cap each of the copper ions, forming a 3-coordinate trigonal planar 

coordination geometry at each.  Thus, the copper(I) and copper(II) ions possess N3 and 

N2S donor sets, respectively, in this neutral complex.  Although the authors compare the 

spectroscopic features of 6 to a previously reported Cu-I site model complex,49 it is 

primarily presented as a proof-of-concept in the pursuit of yet more complex systems.  

Our concurrent efforts to also develop more advanced CuNiR model complexes using 

similar approaches are described in chapters 2 and 3 of this thesis. 

  

Figure 1-10.  Representation of the X-ray crystal structure of 6, adapted from 
reference 42, showing 50% thermal ellipsoids.  All hydrogen atoms have been omitted 

for clarity. 
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1.3 Alzheimer’s Disease 

Alzheimer’s Disease (AD) is a terminal disorder that is characterized by the 

formation of neurofibrillary tangles and the aggregation of insoluble amyloid-β (Aβ) 

plaques in the brain, accompanied by elevated levels of oxidative stress.50  It is the most 

common form of dementia in people over 65 years of age and presents one of the largest 

health problems in industrialized countries, where life expectancies are comparatively 

high.  The most recognizable symptoms of the disease include problems with memory, 

cognition, and, in its latter stages, language and general motor function.  As the disease 

slowly progresses and the brain continues to be damaged, each of these symptoms 

gradually worsen and AD patients eventually become incapable of carrying out the 

simplest of daily tasks, functioning in society, or adequately caring for themselves. 

Although the full course of the disease can span 20 years or more, the current 

average survival time for AD patients after diagnosis is about 4 to 6 years.51  Its 

progression is so slow that behavioral differences are not readily noticeable until many 

years after its actual onset.  Early diagnosis using current technologies is practically 

impossible and, as such, the time of onset is usually estimated from family members’ 

recollections of when they first began to notice behavioral differences in the patient.  

Furthermore, because of the fact that most AD patients are bedridden in the latter stages 

of the disease, it is very common for them to develop secondary conditions that result in 

further deterioration of their health.  Pneumonia, in fact, is the leading cause of death for 

AD patients.52 

An estimated 4.5 million people currently suffer from AD worldwide, but this 

number is increasing with the number of people who are living into old age.53  Without 
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the simultaneous development of new diagnostic methods and treatments to combat AD, 

estimates for the number of people who will have AD in 2050 are as high as 13.2 million 

in the United States alone.  At the time of this writing, however, no effective methods 

exist to accurately predict AD onset and only a few drugs have been approved by the 

Food and Drug Administration (FDA) specifically for its treatment.54  Regrettably, these 

drugs are currently directed toward the control of symptoms rather than root causes of the 

disease itself. 

Two distinct types of AD have been identified to date.  The first type, and less 

common of the two, is called Familial, or “early-onset”, AD (FAD).55  FAD occurs in a 

very small number of families and is related to known inheritable genetic mutations.  In 

these cases, about half of the children of a parent with AD begin to show symptoms of 

the disease between 30 and 50 years of age.  While the specific genes associated with 

FAD have been identified, the factors that lead to its expression in early mid-life remain 

unclear. 

The second, and far more common type of AD, is called Sporadic, or “late-onset”, 

AD (SAD).56  SAD accounts for more than 90% of all known AD cases and appears 

indiscriminately in the general population in later life.  Unlike FAD, the specific causes 

of SAD remain almost entirely unknown.  It is widely believed, however, that 

environmental and lifestyle factors may play a large part in its onset because of the fact 

that no direct genetic links to it have conclusively been identified.57 

Even though AD symptoms and many details of its pathology have now been well 

described, the specific biochemical events that trigger the onset of the disease are not 

understood and remain a major focus of AD research.58  Through this work, it is 
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anticipated that new treatments can be developed that will either slow or altogether 

prevent the onset or progression of the disease.  With the same goals, as much research is 

also centered on deconvoluting the complex chemistry that results in neurofibrillary 

tangles and Aβ plaque formation.  Finally, efforts are also underway to determine the 

mechanism of neurotoxicity resulting from these species, Aβ peptides in particular, as 

they form and accumulates in the brain.59 

Neurofibrillary tangles are abnormal groups of twisted protein threads that are 

located inside neurons.60  The main component of the tangles is a protein called tau, 

which, in normal neurons, connects long structures called microtubes.  These microtubes 

normally run the entire length of the neuron and serve the function of providing a route of 

nourishment delivery to the cell.  In AD, however, tau becomes highly phosphorylated 

and the connections between it and the microtubes are disrupted.  As a consequence, tau 

coagulates in the neurons, forming tangles, and the unbound microtubes begin to 

decompose.  No longer capable of receiving adequate quantities of nutrients, the neuron 

eventually dies and communications to and from it and other neurons are disrupted.  As 

more neurons continue to die in a particular area, function is lost and atrophy of that 

portion of the brain occurs. 

In addition to the nerve damage that is indirectly caused by the phosphorylation of 

tau, postmortem analyses of AD brains consistently reveal the presence of insoluble 

deposits of Aβ peptides, which contain from 39 to 43 amino acid residues.61  Aβ peptides 

are proteolytically derived from the larger transmembrane amyloid precursor 

glycoprotein (APP), the function of which is not yet fully known.62  While the major 

form of Aβ peptide in the cerebrospinal fluid is Aβ(1-40), containing 40 amino acid 
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residues, the insoluble “senile” plaques found deposited on and between the neurons of 

an AD brain primarily consist of Aβ(1-42).63  In the case of FAD, it is now known that 

the characteristic genetic mutations associated with that form of the disease result in a 

significant increase in the production of Aβ(1-42).64  In addition to contributing to plaque 

formations, Aβ(1-42) peptide is also known to be neurotoxic in neuronal cultures at μM 

concentrations, generating reactive oxygen species (ROS) in the presence of copper ions, 

the concentration of which are also elevated in AD.65 

Because of their high prevalence in AD brain tissues, the Aβ plaques themselves 

were originally presumed to be the primary source of neuronal damage.  This notion has 

been increasingly challenged over the years, however, and theories about the deleterious 

effects of plaques in AD have evolved significantly.  Based on a preponderance of 

evidence, it is now more widely accepted that the neurotoxicity associated with Aβ likely 

results from soluble oligomers of the Aβ peptide that cluster in the early stages of the 

disease before plaques begin to form.66  Consequently, it has also been proposed that the 

process of plaque formation may, in fact, be a late-stage defense mechanism by the body 

aimed at segregating these harmful soluble forms of Aβ from intact neurons.67  These 

remain areas of active research. 

There are many interesting facets of AD pathology, of which only a few have 

briefly been mentioned here.  The Aβ peptide chemistry, in particular, has attracted our 

attention because of the participation of copper ions in its neurotoxicity.  Since copper(II) 

complexes are not capable of directly promoting ROS generation, vide infra, the copper 

must first be reduced to copper(I) for such reactivity to occur.  Presently, the identity of 

the reducing agent that promotes this process remains unclear, but several hypotheses 
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have been reported with respect to this problem.68, 69  One prevalent hypothesis suggests 

that the copper reduction and oxidative stress associated with Aβ neurotoxicity results 

from the one-electron oxidation of the unique methionine residue (Met-35) in Aβ(1-

42).70-72 

1.3.1 Proposed Role of Methionine in Amyloid-β Neurotoxicity 

The solution structure of Aβ(1-42), the principal form of Aβ found in insoluble 

plaques of AD brains, is shown in Figure 1-11.73  Aβ(1-42) is known to bind copper(II) 

with a high affinity through all three of its His residues (His-6, His-13, and His-14), 

Figure 1-11.  Representation of the solution structure of Aβ(1-42).  Met-35 and Ile-31 
are labeled and displayed as CPK spheres. 
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located toward the N-terminus of the peptide.74  The copper(II) binding site closely 

resembles that of CuZn superoxide dismutase (CuZn-SOD), an enzyme that, incidentally, 

catalyzes the conversion of superoxide anion radicals (O2
·-) to hydrogen peroxide 

(H2O2).74, 75 

Reduction of the Aβ(1-42)-bound copper(II) ion has been directly linked to its 

neurotoxicity, where the resulting Aβ(1-42)-copper(I) species promotes Fenton 

chemistry, generating ROS in the oxygen-rich environment of the brain (reactions 1 – 

4).68, 75  Notably, both Aβ neurotoxicity and its ability to reduce copper(II) are dependent 

on the simultaneous presence of its three His residues and Met-35.  While the full length 

peptide readily reduces copper(II), experiments have shown that neither the C-terminus 

truncated Aβ(1-28) peptide nor N-terminus truncated Aβ(25-35) peptide are capable of 

reducing copper(II).  Additionally, substitution of Met-35 in the full length Aβ(1-42) 

peptide with either methionine sulfoxide (MetO) or norleucine (Nle) also renders the 

peptide redox inactive and the Aβ(1-42)-copper(II) adduct is stable.70  These observations 

strongly support the possible role of the Met-35 sulfur as the copper(II) reductant, 

suggesting that it is also oxidized to a radical cation in the mechanism (reaction 5).70, 72, 76   

 

                                                   O2 + CuI  CuII + O2
·-  (1) 

                                                O2
·- + O2

·- + 2 H+  H2O2  (2) 

                                                   O2
·- + CuII  O2 + CuI  (3) 

                                            H2O2 + CuI  ·OH + CuII + OH-  (4) 

                                  (Aβ)Met(S) + CuII  (Aβ)Met(S+·) + CuI  (5) 
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The reduction potentials for copper and Met(S), or more generally thioethers, 

however, are not conducive for a thermodynamically spontaneous redox reaction between 

these species.77, 78  The Met(S+•)/Met(S) redox potential is between 1.2 to 1.5 V vs. 

Ag/AgCl,77 and typical copper(II)/copper(I)  redox potentials range from -0.6 to 0.6 V vs. 

Ag/AgCl, depending on solvent and ligand identity.79  While the reduction potential of 

copper(II) in Aβ(1-42) (~0.5 V vs. Ag/AgCl)68 is higher than it is in most other copper 

complexes, it is still too low to oxidize Met sulfur under normal circumstances.  In order 

for spontaneous reduction of copper(II) to occur by the oxidation of the Met-35 thioether 

sulfur, as proposed, the oxidation potential of the Met sulfur must be decreased to a value 

near or below the reduction potential of the bound copper(II) ion. 

In the same way that the copper redox potential is modulated by its ligand 

environment, the fact that the Met-35 sulfur is very closely oriented to the Ile-31 

backbone carbonyl oxygen (~3.5 Å) in the Aβ(1-42) peptide (see figure 1-11) has led to a 

provocative proposal that its redox potential may be sufficiently modulated, allowing a 

thermodynamically favorable pathway for its unusually facile oxidation by copper(II).80  

In fact, thermochemical and theoretical studies have both revealed that the reduction 

potential of sulfides can be significantly modulated in two-center three-electron, so-called 

σσ*, interactions between the sulfur cation radical and an electronegative partner such as 

an amide carbonyl oxygen.72, 77, 81  Aside from this proposal and the results of the Aβ(1-

42) peptide reactivity studies, however, no examples of spontaneous methylthioether 

oxidation by copper(II) have been reported in the synthetic literature.  Nonetheless, there 

is no doubt that copper(II) is reduced by Aβ(1-42) and that no reduction occurs without 

the Met-35 residue. 
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Chapter 4 of this thesis describes the synthesis and copper chemistry of a new 

family of ligands based on 2-Methyl-2-(2-pyridinyl)-1,3-propanediamine.82  Preliminary 

experiments suggest that one of these ligands promotes the spontaneous reduction of 

bound copper(II) by its amide-activated methylthioether sulfur.  The implication of this 

unprecedented reactivity on the proposed Met induced neurotoxicity of the Aβ(1-42) 

peptide is also addressed. 



 29

References 

1. (a) Messerschmidt, A., Handbook of Metalloproteins. Wiley: Chichester ; New 

York, 2001.  (b) Holm, R. H.; Kennepohl, P.; Solomon, E. I. Chem. Rev. 1996, 

96, 2239-2314.  (c) Cowan, J. A., Inorganic Biochemistry : An Introduction. 2nd 

ed.; Wiley-VCH: New York, 1997; p xiv, 440 p. 

2. Solomon, E. I.; Szilagyi, R. K.; DeBeer George, S.; Basumallick, L. Chem. Rev. 

2004, 104, 419-458. 

3. (a) Gray, H. B.; Malmstrom, B. G.; Williams, R. J. P. J. Biol. Inorg. Chem. 2000, 

5, 551-559.  (b) Solomon, E. I.; Randall, D. W.; Glaser, T. Coord. Chem. Rev. 

2000, 200, 595-632.  (c) Kroneck, P. M. H., Binuclear copper A. In Handbook of 

Metalloproteins, Messerschmidt, A., Ed. John Wiley & Sons Ltd.: Chichester, 

UK, 2001; Vol. 2, pp 1333-1341. 

4. Magnus, K. A., Hemocyanins from Arthropods and Molluscs. In Handbook of 

Metalloproteins, Messerschmidt, A., Ed. John Wiley & Sons Ltd.: Chichester, 

UK, 2001; Vol. 2, pp 1303-1318. 

5. Suzuki, S.; Kataoka, K.; Yamaguchi, K. Acc. Chem. Res. 2000, 33, 728-735. 

6. (a) Eicken, C.; Gerdemann, C.; Krebs, B., Catechol Oxidase. In Handbook of 

Metalloproteins, Messerschmidt, A., Ed. Wiley & Sons Ltd.: Chichester, UK, 

2001; Vol. 2, pp 1319-1329.  (b) Kannt, A.; Michel, H., Bacterial Cytochrome c 

Oxidase. In Handbook of Metalloproteins, Messerschmidt, A., Ed. John Wiley & 

Sons Ltd.: Chichester, UK, 2001; Vol. 1, pp 348-362. 

7. (a) Massaro, E. J., Handbook of Copper Pharmacology and Toxicology. Humana 

Press: Totowa, N.J., 2002; p xvi, 608 p.  (b) Fatemi, N.; Sarkar, B. Inorg. Chim. 



 30

Acta 2002, 339, 179-187.  (c) Aoki, T. Biomed. Res. Trace Elem. 2004, 15, 307-

315.  (d) Brewer, G. J. Curr. Op. Chem. Biol. 2003, 7, 207-212. 

8. (a) Valko, M.; Morris, H.; Cronin, M. T. D. Curr. Med. Chem. 2005, 12, 1161-

1208.  (b) Bush, A. I.; Masters, C. L.; Tanzi, R. E. Proc. Natl. Acad. Sci. U.S.A. 

2003, 100, 11193-11194. 

9. Greenwood, N. N.; Earnshaw, A., Copper, Silver and Gold. In Chemistry of the 

Elements, 2nd ed.; Butterworth-Heinemann: Oxford ; Boston, 1997; pp 1173-

1199. 

10. Jahn, H. A.; Teller, E. Proc. R. Soc. London A 1937, 161, 220-235. 

11. Greenwood, N. N.; Earnshaw, A., Nitrogen. In Chemistry of the Elements, 2nd 

ed.; Butterworth-Heinemann: Oxford ; Boston, 1997; pp 406-472. 

12. Rudolf, M.; Kroneck, P. M. H. Met. Ions Biol. Sys. 2004, 43, 75-103. 

13. Postgate, J. R., Nitrogen fixation. 3rd ed.; Cambridge University Press: 

Cambridge, U.K. ; New York, NY, USA, 1998; p vi, 112 p. 

14. Wray, J. L.; Kinghorn, J. R., Molecular and Genetic Aspects of Nitrate 

Assimilation. Oxford University Press: Oxford, 1989; p xv, 410 p. 

15. Richardson, D. J.; Watmough, N. J. Curr. Op. Chem. Biol. 1999, 3, 207-219. 

16. Travis, T. Chem. Indust. 1993, 581-585. 

17. (a) Kaiser, J. Science 2001, 294, 1268-1269.  (b) Smil, V. Sci. Am. 1997, 7, 58-63. 

18. Eady, R. R.; Hasnain, S. S. Comp. Coord. Chem. II 2004, 8, 759-786. 

19. Zumft, W. G. Microbiol. Mol. Biol. Rev. 1997, 61, 533-616. 

20. Hille, R. Chem. Rev. 1996, 96, 2757-2816. 



 31

21. (a) Fulop, V.; Moir, J. W. B.; Ferguson, S. J.; Hajdu, J. Cell 1995, 81, 369-377.  

(b) Nurizzo, D.; Silvestrini, M. C.; Mathieu, M.; Cutruzzola, F.; Bourgeois, D.; 

Fulop, V.; Hajdu, J.; Brunori, M.; Tegoni, M.; Cambillau, C. Structure 1997, 5, 

1157-1171.  (c) Baker, S. C.; Saunders, N. F. W.; Willis, A. C.; Ferguson, S. J.; 

Hajdu, J.; Fulop, V. J. Molec. Biol. 1997, 271, 294-295. 

22. Adman, E. T.; Murphy, M. E. P., Copper Nitrite Reductase. In Handbook of 

Metalloproteins, Wiley: Chichester ; New York, 2001; Vol. 2, pp 1381-1390. 

23. Sakurai, N.; Sakurai, T. Biochemistry 1997, 36, 13809-13815. 

24. Averill, B. A. Chem. Rev. 1996, 96, 2951-2964. 

25. (a) Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; 

Shinzawaitoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. Science 1995, 269, 

1069-1074.  (b) Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H. Nature 1995, 

376, 660-669. 

26. Adman, E. T.; Godden, J. W.; Turley, S. J. Biol. Chem. 1995, 270, 27458-27474. 

27. Godden, J. W.; Turley, S.; Teller, D. C.; Adman, E. T.; Liu, M. Y.; Payne, W. J.; 

Legall, J. Science 1991, 253, 438-442. 

28. Antonyuk, S. V.; Strange, R. W.; Sawers, G.; Eady, R. R.; Hasnain, S. S. PNAS 

2005, 102, 12041-12046. 

29. (a) Kukimoto, M.; Nishiyama, M.; Murphy, M. E.; Turley, S.; Adman, E. T.; 

Horinouchi, S.; Beppu, T. Biochemistry 1994, 33, 5246-5252.  (b) Murphy, M. E. 

P.; Turley, S.; Kukimoto, M.; Nishiyama, M.; Horinouchi, S.; Sasaki, H.; 

Tanokura, M.; Adman, E. T. Biochemistry 1995, 34, 12107-12117. 

30. Murphy, M. E.; Turley, S.; Adman, E. T. J. Biol. Chem. 1997, 272, 28455-28460. 



 32

31. (a) Dodd, F. E.; Hasnain, S. S.; Abraham, Z. H.; Eady, R. R.; Smith, B. E. Acta 

Cryst. Sec. D. Biol. Cryst. 1997, 53, 406-418.  (b) Dodd, F. E.; Van Beeumen, J.; 

Eady, R. R.; Hasnain, S. S. J. Mol. Biol. 1998, 282, 369-382.  (c) Inoue, T.; 

Gotowda, M.; Deligeer; Kataoka, K.; Yamaguchi, K.; Suzuki, S.; Watanabe, H.; 

Gohow, M.; Kai, Y. J. Biochem. 1998, 124, 876-879. 

32. (a) Suzuki, S.; Deligeer; Yamaguchi, K.; Kataoka, K.; Kobayashi, K.; Tagawa, S.; 

Kohzuma, T.; Shidara, S.; Iwasaki, H. J. Biol. Inorg. Chem. 1997, 2, 265-274.  (b) 

Farver, O.; Eady, R. R.; Abraham, Z. H.; Pecht, I. FEBS Lett. 1998, 436, 239-242.  

(c) Hough, M. A.; Ellis, M. J.; Antonyuk, S.; Strange, R. W.; Sawers, G.; Eady, R. 

R.; Hasnain, S. S. J. Mol. Biol. 2005, 350, 300-309.  (d) Kataoka, K.; Yamaguchi, 

K.; Sakai, S.; Takagi, K.; Suzuki, S. Biochem. Biophys. Res. Comm. 2003, 303, 

519-524.  (e) Suzuki, S.; Kohzuma, T.; Deligeer; Yamaguchi, K.; Nakamura, N.; 

Shidara, S.; Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc. 1994, 116, 11145-

11146.  (f) Suzuki, S.; Maetani, T.; Yamaguchi, K.; Kobayashi, K.; Tagawa, S. 

Chem. Lett. 2005, 34, 36-37.  (g) Yamaguchi, K.; Kataoka, K.; Kobayashi, M.; 

Itoh, K.; Fukui, A.; Suzuki, S. Biochemistry 2004, 43, 14180-14188. 

33. Hulse, C. L.; Averill, B. A.; Tiedje, J. M. J. Am. Chem. Soc. 1989, 111, 2322-

2323. 

34. (a) Olesen, K.; Veselov, A.; Zhao, Y. W.; Wang, Y. S.; Danner, B.; Scholes, C. 

P.; Shapleigh, J. P. Biochemistry 1998, 37, 6086-6094.  (b) Strange, R. W.; 

Murphy, L. M.; Dodd, F. E.; Abraham, Z. H. L.; Eady, R. R.; Smith, B. E.; 

Hasnain, S. S. J. Mol. Biol. 1999, 287, 1001-1009.  (c) Veselov, A.; Olesen, K.; 



 33

Sienkiewicz, A.; Shapleigh, J. P.; Scholes, C. P. Biochemistry 1998, 37, 6095-

6105. 

35. Tocheva, E. I.; Rosell, F. I.; Mauk, A. G.; Murphy, M. E. P. Science 2004, 304, 

867-870. 

36. (a) Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 2000, 122, 6331-6332.  (b) 

Kim, Y. J.; Kim, S. O.; Kim, Y. I.; Choi, S. N. Inorg. Chem. 2001, 40, 4481-4484. 

37. (a) Wasbotten, I. H.; Ghosh, A. J. Am. Chem. Soc. 2005, 127, 15384-15385.  (b) 

Yokoyama, H.; Yamaguchi, K.; Sugimoto, M.; Suzuki, S. Eur. J. Inorg. Chem. 

2005, 1435-1441.  (c) Scarpellini, M.; Neves, A.; Castellano, E. E.; Neves, E. F. 

D.; Franco, D. W. Polyhedron 2004, 23, 511-518.  (d) Beretta, M.; Bouwman, E.; 

Casella, L.; Douziech, B.; Driessen, W. L.; Gutierrez-Soto, L.; Monzani, E.; 

Reedijk, J. Inorg. Chim. Acta 2000, 310, 41-50.  (e) Casella, L.; Carugo, O.; 

Gullotti, M.; Doldi, S.; Frassoni, M. Inorg. Chem. 1996, 35, 1101-1113. 

38. Tolman, W. B. Inorg. Chem. 1991, 30, 4877-4880. 

39. Halfen, J. A.; Tolman, W. B. J. Am. Chem. Soc. 1994, 116, 5475-5476. 

40. (a) Ruggiero, C. E.; Carrier, S. M.; Antholine, W. E.; Whittaker, J. W.; Cramer, 

C. J.; Tolman, W. B. J. Am. Chem. Soc. 1993, 115, 11285-11298.  (b) Carrier, S. 

M.; Ruggiero, C. E.; Tolman, W. B.; Jameson, G. B. J. Am. Chem. Soc. 1992, 

114, 4407-4408. 

41. Halfen, J. A.; Mahapatra, S.; Olmstead, M. M.; Tolman, W. B. J. Am. Chem. Soc. 

1994, 116, 2173-2174. 

42. (a) Burg, A.; Lozinsky, E.; Cohen, H.; Meyerstein, D. Eur. J. Inorg. Chem. 2004, 

3675-3680.  (b) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Gengenbach, A. 



 34

J.; Young, V. G.; Que, L.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 763-776.  

(c) Paul, P. P.; Karlin, K. D. J. Am. Chem. Soc. 1991, 113, 6331-6332. 

43. Lee, W. Z.; Tolman, W. B. Inorg. Chem. 2002, 41, 5656-5658. 

44. (a) Godwin, J. B.; Meyer, T. J. Inorg. Chem. 1971, 10, 2150-2153.  (b) Rhodes, 

M. R.; Barley, M. H.; Meyer, T. J. Inorg. Chem. 1991, 30, 629-635.  (c) Zang, V.; 

Vaneldik, R. Inorg. Chem. 1990, 29, 4462-4468.  (d) Lancon, D.; Kadish, K. M. 

J. Am. Chem. Soc. 1983, 105, 5610-5617.  (e) Barley, M. H.; Takeuchi, K. J.; 

Meyer, T. J. J. Am. Chem. Soc. 1986, 108, 5876-5885.  (f) Barley, M. H.; Rhodes, 

M. R.; Meyer, T. J. Inorg. Chem. 1987, 26, 1746-1750.  (g) Choi, I. K.; Liu, Y. 

M.; Feng, D.; Paeng, K. J.; Ryan, M. D. Inorg. Chem. 1991, 30, 1832-1839.  (h) 

Finnegan, M. G.; Lappin, A. G.; Scheidt, W. R. Inorg. Chem. 1990, 29, 181-185.  

(i) Nasri, H.; Goodwin, J. A.; Scheidt, W. R. Inorg. Chem. 1990, 29, 185-191.  (j) 

Nasri, H.; Wang, Y.; Huynh, B. H.; Scheidt, W. R. J. Am. Chem. Soc. 1991, 113, 

717-719.  (k) Nasri, H.; Wang, Y. N.; Huynh, B. H.; Walker, F. A.; Scheidt, W. 

R. Inorg. Chem. 1991, 30, 1483-1489. 

45. (a) Kitajima, N.; Fujisawa, K.; Morooka, Y.; Toriumi, K. J. Am. Chem. Soc. 1989, 

111, 8975-8976.  (b) Kitajima, N.; Koda, T.; Iwata, Y.; Morooka, Y. J. Am. 

Chem. Soc. 1990, 112, 8833-8839.  (c) Kitajima, N.; Fujisawa, K.; Morooka, Y. J. 

Am. Chem. Soc. 1990, 112, 3210-3212.  (d) Kitajima, N.; Fujisawa, K.; Morooka, 

Y. Inorg. Chem. 1990, 29, 357-358. 

46. Trofimenko, S.; Calabrese, J. C.; Thompson, J. S. Inorg. Chem. 1987, 26, 1507-

1514. 



 35

47. Haselhorst, G.; Stoetzel, S.; Strassburger, A.; Walz, W.; Wieghardt, K.; Nuber, B. 

Dalt. Trans. 1993, 83-90. 

48. (a) Johnson, B. F. G.; Sieker, A.; Blake, A. J.; Winpenny, R. E. P. Chem. Comm. 

1993, 1345-1346.  (b) Thewalt, U.; Marsh, R. E. Inorg. Chem. 1970, 9, 1604-

1610.  (c) Goodgame, D. M.; Hitchman, M. A.; Marsham, D. F.; Phavanan.P; 

Rogers, D. Chem. Comm. 1969, 1383-1384. 

49. Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 1999, 121, 7270-7271. 

50. Caughey, B.; Lansbury, P. T. Annu. Rev. Neurosci. 2003, 26, 267-298. 

51. Larson, E. B.; Shadlen, M. F.; Wang, L.; McCormick, W. C.; Bowen, J. D.; Teri, 

L.; Kukull, W. A. Ann. Int. Med. 2004, 140, 501-509. 

52. Kalia, M. Metabolism 2003, 52, 36-38. 

53. Herbert, L. E.; Scherr, P. A.; Bienias, J. L.; Bennett, D. A. Arch. Neuro. 2003, 60, 

1119-1122. 

54. Suh, W. H.; Suslick, K. S.; Suh, Y.-H. Curr. Med. Chem. 2005, 5, 259-269. 

55. (a) Rademakers, R.; Cruts, M.; Van Broeckhoven, C. Sci. World 2003, 3, 497-

519.  (b) Lippa, C. F. Int. J. Molec. Med. 1999, 4, 529-536. 

56. Kamboh, M. I. Ann. Hum. Genet. 2004, 68, 381-404. 

57. Bertram, L.; Tanzi, R. E. J. Mol. Neurosci. 2001, 17, 127-136. 

58. (a) Uemura, K.; Kuzuya, A.; Shimohama, S. Curr. Alz. Res. 2004, 1, 1-10.  (b) 

Stege, G. J.; Bosman, G. J. Drugs Aging 1999, 14, 437-446. 

59. (a) Roy, S.; Rauk, A. Med. Hypotheses 2005, 65, 123-137.  (b) Lahiri, D. K.; 

Greig, N. H. Neurobiol. Aging 2004, 25, 581-587.  (c) Bishop, G. M.; Robinson, 

S. R. Drugs Aging 2004, 21, 621-630. 



 36

60. Gamblin, T. C.; Chen, F.; Zambrano, A.; Abraha, A.; Lagalwar, S.; Guillozet, A. 

L.; Lu, M.; Fu, Y.; Garcia-Sierra, F.; LaPointe, N.; Miller, R.; Berry, R. W.; 

Binder, L. I.; Cryns, V. L. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 10032-10037. 

61. (a) Delacourte, A. Ann. Biol. Clin. 1998, 56, 133-142.  (b) Wengenack, T. M.; 

Curran, G. L.; Poduslo, J. F. Nat. Biotechnol. 2000, 18, 868-872. 

62. Mattson, M. P. Physiol. Rev. 1997, 77, 1081-1132. 

63. (a) Haass, C.; Schlossmacher, M. G.; Hung, A. Y.; Vigo-Pelfrey, C.; Mellon, A.; 

Ostaszewski, B. L.; Lieberburg, I.; Koo, E. H.; Schenk, D.; Teplow, D. B.; et al. 

Nature 1992, 359, 322-325.  (b) Seubert, P.; Vigo-Pelfrey, C.; Esch, F.; Lee, M.; 

Dovey, H.; Davis, D.; Sinha, S.; Schlossmacher, M.; Whaley, J.; Swindlehurst, 

C.; et al. Nature 1992, 359, 325-327. 

64. Butterfield, D. A.; Boyd-Kimball, D. Brain Pathol. 2004, 14, 426-432. 

65. Yankner, B. A.; Duffy, L. K.; Kirschner, D. A. Science 1990, 250, 279-282. 

66. Cleary, J. P.; Walsh, D. M.; Hofmeister, J. J.; Shankar, G. M.; Kuskowski, M. A.; 

Selkoe, D. J.; Ashe, K. H. Nat. Neurosci. 2005, 8, 79-84. 

67. Stein, T. D.; Anders, N. J.; DeCarli, C.; Chan, S. L.; Mattson, M. P.; Johnson, J. 

A. J. Neurosci. 2004, 24, 7707-7717. 

68. Huang, X.; Cuajungco, M. P.; Atwood, C. S.; Hartshorn, M. A.; Tyndall, J. D.; 

Hanson, G. R.; Stokes, K. C.; Leopold, M.; Multhaup, G.; Goldstein, L. E.; 

Scarpa, R. C.; Saunders, A. J.; Lim, J.; Moir, R. D.; Glabe, C.; Bowden, E. F.; 

Masters, C. L.; Fairlie, D. P.; Tanzi, R. E.; Bush, A. I. J. Biol. Chem. 1999, 274, 

37111-37116. 



 37

69. (a) Huang, X.; Atwood, C. S.; Hartshorn, M. A.; Multhaup, G.; Goldstein, L. E.; 

Scarpa, R. C.; Cuajungco, M. P.; Gray, D. N.; Lim, J.; Moir, R. D.; Tanzi, R. E.; 

Bush, A. I. Biochemistry 1999, 38, 7609-7616.  (b) Cuajungco, M. P.; Goldstein, 

L. E.; Nunomura, A.; Smith, M. A.; Lim, J. T.; Atwood, C. S.; Huang, X.; Farrag, 

Y. W.; Perry, G.; Bush, A. I. J. Biol. Chem. 2000, 275, 19439-19442. 

70. Varadarajan, S.; Kanski, J.; Aksenova, M.; Lauderback, C.; Butterfield, D. A. J. 

Am. Chem. Soc. 2001, 123, 5625-5631. 

71. Butterfield, D. A.; Boyd-Kimball, D. Biochim. Biophys. Acta 2005, 1703, 149-

156. 

72. Rauk, A.; Armstrong, D. A.; Fairlie, D. P. J. Am. Chem. Soc. 2000, 122, 9761-

9767. 

73. Crescenzi, O.; Tomaselli, S.; Guerrini, R.; Salvadori, S.; D'Ursi, A. M.; Temussi, 

P. A.; Picone, D. Eur. J. Biochem. 2002, 269, 5642-5648. 

74. (a) Atwood, C. S.; Moir, R. D.; Huang, X. D.; Scarpa, R. C.; Bacarra, N. M. E.; 

Romano, D. M.; Hartshorn, M. K.; Tanzi, R. E.; Bush, A. I. J. Biol. Chem. 1998, 

273, 12817-12826.  (b) Atwood, C. S.; Scarpa, R. C.; Huang, X. D.; Moir, R. D.; 

Jones, W. D.; Fairlie, D. P.; Tanzi, R. E.; Bush, A. I. J. Neurochem. 2000, 75, 

1219-1233. 

75. Curtain, C. C.; Ali, F.; Volitakis, I.; Cherny, R. A.; Norton, R. S.; Beyreuther, K.; 

Barrow, C. J.; Masters, C. L.; Bush, A. I.; Barnham, K. J. J. Biol. Chem. 2001, 

276, 20466-20473. 

76. Schoneich, C.; Pogocki, D.; Hug, G. L.; Bobrowski, K. J. Am. Chem. Soc. 2003, 

125, 13700-13713. 



 38

77. Armstrong, D. A., In S-Centered Radicals, Alfassi, Z. B., Ed. Wiley: New York, 

1999; pp 27-61. 

78. Glass, R. S., In Topics In Current Chemistry, Page, P. C. B., Ed. Springer-Verlag: 

Berlin Heidelberg, 1999; Vol. 205, pp 1-87. 

79. Karlin, K. D.; Gultney, Y., In Prog. Inorg. Chem., Lippard, S. J., Ed. 1987; Vol. 

35, pp 219-328. 

80. (a) Butterfield, D. A.; Bush, A. I. Neurobiol. Aging 2004, 25, 563-568.  (b) 

Kanski, J.; Aksenova, M.; Schoneich, C.; Butterfield, D. A. Free Radic. Biol. 

Med. 2002, 32, 1205-1211.  (c) Pogocki, D.; Schoneich, C. Chem. Res. Toxicol. 

2002, 15, 408-418. 

81. Bobrowski, K.; Pogocki, D.; Schoneich, C. J. Phys. Chem. A 1998, 102, 10512-

10521. 

82. Friedrich, S.; Schubart, M.; Gade, L. H.; Scowen, I. J.; Edwards, A. J.; McPartlin, 

M. Chem. Ber./Recueil 1997, 130, 1751-1759. 

 

 



 39

 

 

 

 

CHAPTER 2. 

 

MODELLING THE COPPER NITRITE REDUCTASE 
ACTIVE SITE: TACN-AMINO ACID CONJUGATES 

AND THEIR COPPER(II) COMPLEXES 
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2.1. Introduction 

Copper-containing nitrite reductase (CuNiR) is an enzyme found in many 

terrestrial and aquatic bacteria and fungi that catalyzes the one electron reduction of 

nitrite (NO2
-) to nitric oxide (NO).1  This conversion is essential to such organisms as a 

terminal electron acceptor in their metabolic processes and represents the first committed 

step in the denitrification pathway, whereby nitrate (NO3
-) and nitrite are ultimately 

reduced to inorganic nitrogen.2  The active site of CuNiR from Alcaligenes faecalis has 

been shown by X-ray crystallography to contain a type 1 copper center (Cu-I) separated 

by 12.5 Å from a type 2 copper center (Cu-II) (Figure 2-1).3  Connecting the Cu-I 

electron transfer center to the Cu-II catalytic center is a conserved His-Cys bridge, where 

His and Cys are immediate neighbors in the protein’s primary structure.  A thiolate sulfur 

from the bridging Cys residue coordinates the Cu-I copper ion and is complimented by 

two His and a Met residue.  Likewise, a nitrogen donor from the bridging His residue 

imidazole side chain occupies a coordination site at the Cu-II copper ion.  Two additional 

His residues (one from a neighboring subunit) and a single substrate or aqua ligand 

His

His

His

HisHis

NO2
-

Cys

Met

Cu-II Cu-I

 

Figure 2-1.  Representation of the NO2
--bound CuNiR active site from A. faecalis. 
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complete the coordination sphere of the Cu-II copper. 

Although the details of the CuNiR active site structure are now well understood, 

relatively little is known about the details of the enzyme’s catalytic mechanism.4, 5  Based 

on numerous structural5, 6 and spectroscopic7, 8 studies, however, it has become evident 

that an integral part of the mechanism involves an intramolecular electron transfer from 

Cu-I to Cu-II, presumably via the His-Cys bridge.  This notion is particularly well 

supported by several site-directed mutagenesis9 and pulse radiolysis8, 10 experiments.  

Complementing these studies, several small molecule model complexes of proposed 

catalytic intermediates have also been prepared to help elucidate the likely coordination 

modes of copper(I)- and copper(II)-bound nitrite and nitric oxide and, by analogy, the 

specific reactivity of such intermediates in the enzyme.11, 12  From these and other studies, 

it is generally accepted that the catalytic cycle proceeds by the reduction of an initial 

copper(II)-nitrite adduct to a short-lived copper(I)-nitrite species that rapidly reduces its 

CuII HisCys CuIHL L'

H2O

CuII HisCys CuIHL L'

NO2
-

e-

CuI HisCys CuIIHL L'

NO2
-

CuII HisCys CuIIL L'

NO

NO2
- H2O

H2O + H+ + e-

NO
NO2

- + 2H+ + e- NO + H2O

H+H2O
 

Figure 2-2.  Schematic representation of the CuNiR catalytic cycle, emphasizing the 
important redox steps and key intermediates.  L and L’ represent the protein at Cu-II and 

Cu-I, respectively.  The overall reaction is shown in the center. 
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bound nitrite to nitric oxide in the presence of protons. (Figure 2-2). 

The CuNiR-related model complexes that had been reported at the inception of 

our work all used non-amino acid ligands to mimic various aspects of the ligand 

environment found in the enzyme and were almost all mononuclear.  In an effort to 

develop next-generation models that could more accurately mimic the entire CuNiR 

active site structure and chemistry, we became interested in developing “ligand-peptide 

conjugates”, where actual amino acids are coupled to traditional ligands (e.g. TACN).  As 

a result of this effort, we hoped to eventually probe various aspects of the proposed 

catalytic cycle with greater accuracy.  Specifically, we wished to gain a better 

understanding of the effect of nitrite binding at Cu-II on the subsequent electron transfer 

from Cu-I via the His-Cys bridge. 

Section 2.2 of this chapter describes our initial synthetic strategy for synthesizing 

new ligands that contain a His-Cys bridge and our successes in coupling the normally 

tridentate ligand TACN with Gly, Ala, and Phe to afford ligand-amino acid conjugates.  

The synthesis and characterization of copper(II) complexes of these new ligands are 

discussed in section 2.3. 

2.2. Ligands 

2.2.1. General Ligand Design 

TACN was chosen as the supporting copper chelate in our synthetic strategy as a 

result of our previous experience with this ligand and its well precedented use by others 

in copper coordination and modeling chemistry.12, 13  Ultimately, we envisioned the 

synthesis of a ligand containing two TACN moieties tethered to each end of a His-Cys 

peptide by linkers (Figure 2-3), where each TACN could accommodate a copper ion and 
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allow coordination of the His or Cys side chains to their nearest copper ion.  Prior to this 

work, however, no copper complexes of TACN covalently coupled to any amino acid had 

been reported in the literature.  To probe the synthetic feasibility of this approach and to 

gain an understanding of the effect(s) of covalently-bound amino acids on TACN-copper 

coordination, the ligand designs described in this chapter are primarily focused on the 

coupling of TACN by peptide bonds directly to simple amino acids (Gly, Ala, and Phe).  

The syntheses of these ligands and our preliminary attempts to synthesize a TACN-His 

ligand conjugate (i.e. the left half of the synthetic target in Figure 2-3) are described in 

the remainder of this section. 

2.2.2. (Boc)2TACN Synthesis 

In the first step of (Boc)2TACN (7) synthesis, diethylenetriamine (1) and ethylene 

glycol (2) are reacted with p-toluenesulfonyl chloride (TsCl) to yield their N- and O-

tosylated products, 314 and 415, respectively (Figure 2-4).  3 is then deprotonated at its 

terminal nitrogen atoms with sodium hydride (NaH) under an inert and dry atmosphere, 

thus greatly increasing the nucleophilicity.  A DMF solution of 4 is slowly added to this 

mixture, resulting in the formation of the fully Ts-protected TACN (5) (Figure 2-5).14  

N
H

SH
H
N

O

N
H

N

N N
R

R
HN N

O

N N

N
R

R

O

 

Figure 2-3.  Ligand synthetic target containing two alkyl-protected TACN rings bridged 
by a His-Cys linker. 
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Detosylation of 5 is achieved by high-temperature hydrolysis in concentrated sulfuric 

acid over three days to yield unprotected TACN (6) after basic workup.14  Finally, in a 

method first described by A. Dean Sherry, et al.,16 6 is Boc-protected at two of its 

nitrogens by reaction with a two equivalents of BOC-ON,17 giving 7 in high yield (Figure 

2-6).  Following alkylation of the unprotected nitrogen, the Boc protecting groups are 

easily removed by reaction with TFA, allowing successive alkylation at those positions. 

H2N
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N NH2

   TsCl
   NaOH
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   H2O / THF

TsHN
Ts
N NHTs

HO
OH

TsO
OTs

   TsCl
   NaOH
   25 oC, 4 hrs
   Et2O / THF

1                                                                               3

2                                                                               4  

Figure 2-4.  Tosylation of diethylenetriamine (1) and ethylene glycol (2) to yield N-and 
O-tosylated products, 3 and 4, respectively. 
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Figure 2-5.  Reaction of 3 with 4 to yield Ts3TACN (5), and detosylation of 5 in 
concentrated sulfuric acid to yield TACN (6). 
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Figure 2-6.  Synthesis of (Boc)2TACN (7). 
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2.2.3. Improved Synthesis of 1-(aminoethyl)-4,7-diisopropyl-TACN (12) 

Because of the steric bulk of the His side chain and the consequently low 

reactivity of His with secondary amines (i.e. with 7 directly), we believed a linker with a 

primary amine would be required to couple His and TACN most efficiently.  1-

(aminoethyl)-4,7-diisopropyl-TACN (12) was chosen for this purpose.  The synthesis of 

12 was first reported by Berreau, et al, by using the selective detosylated TACN 

method.18  Figure 2-7 details our improved synthesis of 12 where Boc protecting groups 

are employed rather than tosyl, requiring far milder conditions for deprotection.  

Compound 8 is obtained in high yield following reaction of 7 with a stoicheometric 

quantity of chloroacetonitrile.  The Boc protecting groups are then removed in TFA at 

room temperature and 10 is isolated following basic workup and extraction.  The 

resulting unprotected nitrogens are alkylated with isopropyl groups to give 11.  Finally, 

12 is obtained by reduction of 11 in a 1.0 M borane/THF solution. 
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Figure 2-7. Synthesis of 1-(aminoethyl)-4,7-diisopropyl-TACN (12). 
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2.2.4. TACN-Histidine Conjugate (LHis) Synthesis and Characterization 

 Standard peptide coupling techniques were applied to couple His to 12.19  DCC 

and HOBt hydrate were combined with a solution of 12 and Fmoc-His(Trt)-OH to afford 

13 (Figure 2-8).  The low yield of this reaction (~5%) and loss of the Fmoc protecting 

group are both attributed to the complex workup necessitated by the difficulty of isolating 

the desired product from dicyclohexylurea (DCU) byproduct and undesired side products.  

Fmoc is cleaved from His upon basification of the reaction mixture with aqueous NaOH, 

as evidenced by CO2 gas evolution.20  The 1H NMR spectrum of 13, obtained in CDCl3, 

reveals characteristic Trt signals between 7.0 and 7.3 ppm, but shows no indication of 

Fmoc.  LHis (14) was obtained in low yield (~5%) by direct addition of 95:5:5 % 

TFA/TIS/H2O to 13.  The 1H NMR spectrum of 14, obtained in CDCl3, clearly shows the 

successful cleavage of Trt from the His imidazole side chain.  FTIR of 13 and 14 both 

show a strong and sharp stretching frequency of ~1650 cm-1, consistent with an amide 

carbonyl.21 
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Figure 2-8. Synthesis of LHis (14). 
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2.2.5. Glycine-, Alanine-, and Phenylalanine-TACN Conjugates 

Because of the obvious synthetic difficulties, particularly the low yield, associated 

with the multistep synthesis of LHis as it was described above, we sought to investigate 

the possibility of coupling His directly to the secondary amine of 7.22  This, however, 

would require a better understanding of the effect that converting one of the TACN amine 

nitrogens to an amide would have on its ensuing ability to coordinate a copper(II) ion.23  

As a simple approach to eliminating synthetic problems with the steric bulk and/or 

reactivity of the His side chain in a direct reaction with 7, Gly, Ala, and Phe were used in 

our initial attempts.  The ligands LGly (18), LAla (19), and LPhe (20) were synthesized by 

coupling the secondary amine nitrogen of 7 to the carboxylic acid of the Boc-protected 

amino acids, following Boc deprotection in TFA and purification (Figure 2-9).24 

2.3. Copper(II) Complexes 

Copper(II) complexes of LGly (18), LAla (19), and LPhe (20) were synthesized by 

reaction of the appropriate ligand with either Cu(ClO4)2·6H2O or CuCl2·2H2O in 
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 DCC/HOBt
 -20 oC, 12 hours
 THF

(Boc)N

N

(Boc)N O

NH(Boc)
R

HN

N

HN O

NH2
R

7

15: AA = Gly  R = H     
16: AA = Ala  R = CH3  
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LAla  (19): R = CH3
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TFA
 CH2Cl2
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Figure 2-9. Synthesis of LGly (18), LAla (19), and LPhe (20) from (Boc)2TACN (7). 
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methanol.  The specific reaction conditions, properties, and characterization of each 

complex are described in this section. 

2.3.1. [(CuLGly)2](ClO4)4 

Addition of a solution of 18 in methanol to a rapidly stirring solution of 

Cu(ClO4)2·6H2O in the same solvent resulted in the immediate formation a blue solution 

(Figure 2-10).  After stirring for some time, [Cu(LGly)]2(ClO4)4 (21) precipitated from the 

reaction mixture.  This blue powder was filtered away from the reaction mixture and 

washed with fresh methanol.  Despite repeated attempts, no X-ray quality crystals of 21 

were obtained under any conditions.  The dimeric structure and coordination mode of 21 

as shown in Figure 2-10 was elucidated by analogy to the X-ray crystal structure obtained 

for 22 (see section 2.3.2.), as supported by Electrospray Ionization Mass Spectrometry 

(ESI-MS) and elemental analysis. 
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Figure 2-10.  Synthesis of [Cu(LGly)]2(ClO4)4 (21). 
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The UV-vis spectrum of 21 (Figure 2-11) in acetonitrile exhibits a broad 

transition, or overlap of two transitions, at 589 nm with an extinction coefficient of 180 

M-1cm-1.  These parameters are typical for a copper(II) ion with nitrogen and oxygen 

donor atoms and are attributed predominantly to Ligand-to-Metal Charge Transfer 

transitions (LMCT) [N and/or O  Cu(II) d] mixed with less intense Cu(II) d-d 

transitions of lower energy.25 

ESI-MS strongly supports the dimeric structure assigned to 21.  The parent ion in 

the mass spectrum (Figure 2-12) at 797 m/z exactly matches the mass of 21 minus one 

perchlorate anion, [M-ClO4]+.  A monomeric fragment of 21, [M-CuLGly-(ClO4)3]+, also 

appears in the mass spectrum at 348 m/z.  The agreement of the experimental and 

calculated isotope patterns for these species further corroborate their assignments (Figure 

2-12 inset). 

Figure 2-11.  UV-vis spectrum of 21 dissolved in acetonitrile.  Peak labels indicate the 
wavelength (nm) and extinction coefficient (ε) in parentheses (M-1cm-1). 
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2.3.2. [(CuLAla)2Cl](ClO4)3 

[(CuLAla)2Cl](ClO4)3 (22) was synthesized and isolated in the same way as 21 

(Figure 2-13).  X-ray quality crystals of 22 were obtained by diffusing diethyl ether into a 

capped vial of the blue precipitate concentrated in methanol. 

Figure 2-12.  ESI-MS of 21 dissolved in acetonitrile.  The inset shows expanded views 
of the dinuclear parent ion, [M-ClO4]+ (m/z = 797), and a mononuclear fragment, [M-
CuLGly-(ClO4)3]+ (m/z = 348).  The overlaid solid black lines in the inset represent the 

calculated isotope patterns for each species. 
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Figure 2-13. Synthesis of [(CuLAla)2Cl](ClO4)3 (22). 
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The crystal structure of 22 reveals a bimetallic complex, where two copper(II) 

ions are bridged by two LAla ligands, forming a 4+ cation (Figure 2-14).  The positive 

charge of this complex is balanced by one bridging chloride anion and three outer sphere 

perchlorate anions.  The chloride links molecules of 22 in the crystal lattice by bridging 

between Cu1 from one dimer to Cu2 of an adjacent dimer.  The TACN portion of the LAla 

ligand binds to Cu1 via two secondary amine nitrogens, but the amide nitrogen is not 

coordinated.  The Cu1···N3 distance of 2.96 Å stands in contrast to the rare examples of 

copper complexes with coordinated tertiary amides (2.16 - 2.51 Å).26  These amide-

coordinated species are usually sensitive to C-N bond cleavage, while 22 is stable in 

methanol.  The stability of the amide C-N bonds in 22 is most likely due to the fact that 

the metal is not coordinated by the amide nitrogen atom, but by the oxygen.  The Ala 

portion of the ligand coordinates to the other copper atom, Cu2, by its terminal amine 

nitrogen and the carbonyl oxygen atom.  This type of binding mode for amino acids is 

relatively common and has been reported for copper(II) amino acid species.27  The 

second ligand in the bimetallic complex is related by a noncrystallographic pseudo-C2 

axis to the first ligand; thus, two LAla ligands bridge between the copper atoms in 22.  

The coordination geometry around each copper is closest to square pyramidal, with an 

N3O ligand set in the equatorial plane and a chloride ligand in the axial position (τ = 0.16 

and 0.10 for Cu1 and Cu2, respectively).28  The chloride anions bridge between 

bimetallic moieties [∠Cu-Cl-Cu = 158.25(5)°] to create linear chains of molecules along 

the crystallographic b axis.  The intra- and intermolecular Cu···Cu distances are long (> 

4.9 Å), making any magnetic coupling between copper(II) ions unlikely, an assertion 
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corroborated by its axial EPR obtained in water/ethylene glycol glass at 77 K and a 

microwave frequency of 9.43 GHz (g⊥ = 2.08, g|| = 2.39, ACu
|| = 134 x 10-4 cm-1). 

 

Bond Lengths (Å) Angles (deg) 
Cu1–N1 2.031(3) N1–Cu1–Cl1 100.1(2) N4–Cu2–Cl1A  100.1(2) 
Cu1–N2 1.999(3) N2–Cu1–Cl1   94.5(1) N5–Cu2–Cl1A    95.7(1) 
Cu1–N8 2.057(3) N8–Cu1–Cl1   90.3(1) N6–Cu2–Cl1A    90.1(1) 
Cu1–O2 1.998(3) O2–Cu1–Cl1 104.6(1) O1–Cu2–Cl1A    99.7(1) 
Cu1–Cl1 2.508(1) N1–Cu1–N2   85.5(1) N5–Cu2–N4    99.4(1) 
Cu2–N4 2.007(3) N1–Cu1–N8 100.6(1) N5–Cu2–N6    85.3(1) 
Cu2–N5 2.025(3) O2–Cu1–N2   90.5(1) O1–Cu2–N4    82.3(1) 
Cu2–N6 1.984(3) O2–Cu1–N8   82.2(1) O1–Cu2–N6    90.9(1) 
Cu2–O1 1.999(3) N1–Cu1–O2 162.5(1) N5–Cu2–O1  164.2(1) 
Cu2–Cl1A 2.526(1) N2–Cu1–N8 172.1(1) N4–Cu2–N6  170.2(1) 

Figure 2-14.  Representation of the X-ray crystal structure of [(CuLAla)2Cl](ClO4)3 (22) 
shoowing 50% thermal ellipsoids.  H atoms have been omitted for clarity. Selected bond 

distances (Å) and angles (deg) relevant to copper coordination are tabulated. 
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The UV-vis spectrum of 22 (Figure 2-15) is nearly identical to that of 21.  Here, a 

predominant transition appears at 604 nm with an extinction coefficient of 242 M-1cm-1 

and is attributed to ligand-to-metal charge transfer transitions (LMCT) [N and/or O  

Cu(II) d] mixed with Cu(II) d-d transitions.25 

ESI-MS of 22 confirms its bimetallic structure.  The parent ion in the mass 

spectrum at 825 m/z exactly matches the mass of 22 minus one chloride anion, [M-Cl]+ 

(Figure 2-16).  Similarly, the mass of 22 with chloride, but without one perchlorate anion, 

is also observed at 761 m/z.  A monomeric fragment, [M-CuLAlaCl(ClO4)2]+, also appears 

in the mass spectrum at 362 m/z.  The agreement of the experimental and calculated 

isotope patterns for the parent ion further corroborate the assignment (Figure 2-16 inset). 

Figure 2-15.  UV-vis spectrum of 22 dissolved in acetonitrile.  Peak labels indicate the 
wavelength (nm) and extinction coefficient (ε) in parentheses (M-1cm-1). 
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2.3.3 [Cu2LPheCl4] 

[Cu2LPheCl4] (23) was synthesized by combining a methanol solution of LPhe with 

a methanol solution of cupric chloride (Figure 2-17).  The product precipitated from this 

mixture as a pale blue powder.  X-ray quality crystals were obtained by diffusing diethyl 

ether into a closed vial of the blue powder dissolved in concentrated methanol. 
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Figure 2-17. Synthesis of [Cu(LPhe)Cl4] (23). 

Figure 2-16.  ESI-MS of 22 dissolved in acetonitrile.  The inset shows the expanded 
view of the dinuclear parent ion, [M-Cl]+ (m/z = 825).  The overlaid solid black lines 

represent the calculated isotope pattern for the species. 
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Bond Lengths (Å) Angles (deg) 
Cu1–N1 2.039(2) N1–Cu1–Cl1   89.6(1) N4–Cu2–Cl4    87.8(1) 
Cu1–N2 2.023(2) N1–Cu1–N2   81.7(1) N4–Cu2–O1    81.3(1) 
Cu1–Cl1 2.273(1) Cl2–Cu1–N2   90.7(1) Cl3–Cu2–Cl4  101.4(1) 
Cu1–Cl2 2.285(1) Cl2–Cu1–Cl1   97.1(1) Cl3–Cu2–O1    89.4(1) 
Cu2–N4 2.004(2) N1–Cu1–Cl2 169.3(1) N4–Cu2–Cl3  169.1(1) 
Cu2–O1 2.007(1) N2–Cu1–Cl1 169.5(1) O1–Cu2–Cl4  169.0(1) 
Cu2–Cl3 2.250(1) 
Cu2–Cl4 2.239(1) 
Figure 2-18.  Representation of the X-ray crystal structure of [Cu(LPhe)Cl4] (23) showing 
50% thermal ellipsoids.  H atoms have been omitted for clarity.  Selected bond distances 

(Å) and angles (deg) relevant to copper coordination are tabulated. 
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The crystal structure of 23 reveals a bimetallic complex that is different than that 

of 22 (Figure 2-18).  Here, LPhe bridges between two copper(II) ions in a manner similar 

to 22, with the TACN ring binding to Cu1 through the amine nitrogen atoms in a 

bidentate fashion and the Phe portion of the ligand binding to Cu2 through the terminal 

amine nitrogen and the carbonyl oxygen donor atoms.  Unlike the pseudo-symmetric 

binding mode in 22, however, the coordination sphere around each copper(II) ion in 23 is 

completed by two chloride ligands.  The coordination geometry around both copper(II) 

ions is square planar with an N2Cl2 ligand set around Cu1 and a NOCl2 ligand set around 

Cu2.  If axial interactions are considered, however, the coordination geometry is closest 

to elongated octahedral.  The axial distances involving Cu1 are shorter than the sum of 

their van der Waals radii [Cu1···N3 = 2.783(2) Å, intramolecular; Cu1A···Cl3 = 2.818(1) 

Å, intermolecular], suggesting weak Cu···ligand interactions.  Likewise, the axial 

distances involving Cu2 are also shorter than the sum of their van der Waals radii 

[Cu2···Cl1 = 3.042(1) Å, intramolecular; Cu2···Cl2A = 3.087(1) Å, intermolecular].  The 

bimetallic complexes, loosely linked through weak intra- and intermolecular axial bonds, 

consequently form chains along the crystallographic b axis. 

The UV-vis spectrum of 23 is similar to those of 21 and 22, with a broad 

transition at 658 nm, but a significantly smaller extinction coefficient of 68 M-1cm-1 

(Figure 2-19).  
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Figure 2-20.  Experimental EPR spectrum spectrum of 23 dissolved in 50:50 
water/ethylene glycol glass at 77 K and a microwave frequency of 9.43 GHz. 

Figure 2-19.  UV-vis spectrum of 23 dissolved in water.  Peak labels indicate the 
wavelength (nm) and extinction coefficient (ε) in parentheses (M-1cm-1). 
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Evidence of two distinct copper coordination environments for 23 in solution was 

provided by EPR spectroscopy.  The EPR spectrum of a frozen solution of 23 clearly 

shows two overlapping g|| signals (Cu1, g|| = 2.41, ACu
|| = 134 cm-1; Cu2, g|| = 2.24, ACu = 

193 x 10-4 cm-1) (Figure 2-20). 

No evidence of a bimetallic species was observed for copper(II) complexes of 

LPhe by mass spectrometry.  ESI-MS for 23 in acetonitrile shows a parent ion peak at 410 

m/z, corresponding to the [M-CuCl2+H]+ cation (Figure 2-21).  Furthermore, the [M-

CuCl3]+ cation is observed at 374 m/z, suggesting that 3 dissociates into 1:1 LPhe:Cu and 

solvated Cu2+ upon dissolution. 

 

Figure 2-21.  ESI-MS of 23 dissolved in acetonitrile.  The inset shows expanded views 
of the parent ion, [M-CuCl2+H]+ (m/z = 410), and a related fragment, [M-CuCl3]+ (m/z = 

374), with their respective calculated isotope patterns (bottom). 

2.4. Conclusions 

In summary, our original goal of synthesizing new TACN-amino acid conjugates 

that model the structure and/or reactivity of the CuNiR active site remains in its infancy.  
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Attempts to synthesize a covalently-linked TACN-His conjugate (LHis) in the solution 

phase were met with unforeseen synthetic difficulties, particularly with undesired side 

reactions necessitating complex workup procedures to yield very small amounts of the 

desired product.  The need to use multiple protecting groups (e.g. Fmoc, Boc, Trt, and 

Ts) in the synthesis of these ligands further complicates their chemistry and limits the 

synthetic scope using this approach. 

Despite these problems, however, we successfully synthesized a new family of 

ligand-amino acid conjugates by coupling TACN directly to glycine, alanine, and 

phenylalanine.  These simple ligands provided insight into the coordination chemistry of 

TACN to copper(II) where one of the TACN secondary amines is coupled directly to an 

amino acid.  Each of these ligands (LGly, LAla, and LPhe) was obtained in high yield and 

without any complications using standard peptide coupling procedures.  The copper(II) 

complexes of these ligands were synthesized in methanol and characterized by UV-vis, 

ESI-MS, FTIR, X-ray crystallography (for complexes of LAla and LPhe), and EPR.  In the 

case of copper(II) complexes of LGly and LAla, two ligands coordinate in a bridging mode 

between two copper ions, forming a pseudo-C2 symmetric 1:1 copper-to-ligand complex.  

The TACN amines of each ligand coordinate different copper ions in the complex and the 

terminal amine and amide oxygen of the amino acid of the each ligand coordinate the 

other copper(II) ion.  Although these complexes were synthesized using copper(II) 

perchlorate, the complex of LAla (22) features an axially-coordinated chloride as 

evidenced by its X-ray structure and ESI-MS.  The source of this unanticipated chloride 

is likely the result of impurity in the ligand and/or copper salt, but this assertion has not 

been fully investigated.  Reaction of copper(II) chloride with LPhe gave a 2:1 copper-to-
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ligand complex.  In this case, the TACN secondary amines coordinate one copper(II) ion 

and the terminal amine and amide oxygen of the amino acid of the same ligand 

coordinate a second copper(II) ion.  The copper(II) coordination spheres of both ions are 

completed with chloride ligands.  In no case was the tertiary amide nitrogen of TACN in 

any of these complexes coordinated to or strongly interacting with a copper(II) ion.  This 

observation reflects the poor ability of amides to coordinate copper(II), particularly where 

more favorable ligands are avaiable (e.g. the primary amine of the amino acids). 

From this preliminary work, we conclude that it is possible for TACN to be 

covalently linked to amino acids and to obtain coordination complexes of these ligands.  

The normally tridentate TACN ligand, however, becomes bidentate as a result of 

converting its secondary amine to a tertiary amide, but the ligand still effectively 

coordinates copper(II).  While 21 and 22 form cyclic dimers in both the solid and solution 

phases, 23 prefers coordination of two copper(II) ions per ligand.  In addition to the 

presence of chloride ions, effectively blocking otherwise available coordination sites, the 

differing behavior of 23 is likely the result of the significantly higher steric bulk of its 

benzyl substituent over the much less bulky functional groups of 21 and 22.  Similar 

behavior to that of 23 may also be anticipated for an analogous TACN-His conjugate if 

competing ligands are available. 

While this work could be continued to ultimately yield the target ligand or similar 

ligands, the synthetic challenges and complexity of this approach become greater as the 

complexity of the ligand increases.  This allows for very limited design possibilities with 

few options for changing any aspect of the ligand without complete resynthesis.  Because 

of these factors, we opted to simplify our approach and to try to achieve our goals by 
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creating a His-Cys analogue that could join two pre-formed copper complexes.  By 

focusing on copper coordination chemistry instead of organic covalent bonds and 

complex ligand synthesis, we hoped to circumvent many synthetic difficulties and still 

produce dinuclear complexes that mimic the CuNiR active site structure more accurately 

than previous models.  These efforts are described in Chapter 3. 

2.5. Experimental 

General.  All reagents were purchased from commercial sources and used 

without additional purification unless otherwise noted.  Solvents were dried and purified 

under nitrogen using standard methods.29  Et2O, THF, and pentane were distilled over 

NaK2 alloy, CH3CN and CH2Cl2 over CaH2, MeOH over Mg(OMe)2, and toluene over 

Na.  Degassing of the dried solvents was achieved by triple freeze-pump-thaw degas 

cycles.  Oxygen- and/or water-sensitive reactions were carried out using Schlenk vacuum 

line techniques and/or by using an M. Braun UNILab inert atmosphere glovebox with 

nitrogen as its working gas.  Preparative procedures for the syntheses of 314, 415, 514, 614, 

and Boc2TACN (7)16 are published elsewhere and are briefly described in section 2.2.2.  

The synthesis of 1-(2-aminoethyl)-4,7-diisopropyl-TACN (12) by reduction of 1-

cyanomethyl-4,7-diisopropyl-TACN (11) with 0.1 M Borane in THF is also published 

elsewhere,18 but is included here for completeness. 

Spectroscopy.  Infrared (IR) spectra were prepared by pressing the sample into a 

KBr “glass” and were collected using a Nicolet NEXUS 470 FTIR spectrophotometer 

coupled to a computer running OMNIC E.S.P (version 5.1) software for spectrum 

display, background baseline correction, scaling, and automatic peak-picking.  Unless 

otherwise stated, samples for electronic absorption (UV-vis) spectroscopy were prepared 
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at 5 mM concentrations in a 5 mL 1.00 cm path length quartz cuvette.  UV-vis data were 

obtained using a Shimadzu UV2401PC UV-vis spectrophotometer capable of a 200 - 

1100 nm scan range and having a dedicated variable temperature Neslab RTE-140 

circulating heater/chiller and computer interface running Shimadzu UV Probe (v. 1.00) 

for instrument control and spectrum display.  All UV-vis spectra were obtained at 298.0 

K unless otherwise noted.  1H and 13C NMR spectra were measured at room temperature 

on a Varian 300 MHz (Mercury) spectrometer or a Varian 400 MHz spectrometer 

coupled to the Varian VNMR software package.  Solvent was used as an internal 

chemical shift standard unless otherwise stated.  All signals are reported in ppm relative 

to the reported value(s) for the solvent.  X-band (~9.45 GHz) EPR spectra were obtained 

using a Bruker EMX spectrometer fitted with a either a liquid nitrogen finger dewer or a 

liquid nitrogen cryostat (BVT-3000).  Temperature and g value calibrations were 

performed as described.30 

Physical Methods.  Capillary Gas Chromatography Mass Spectrometry (GC-MS) 

analyses were performed in a Trace GC 2000 and Thermoquest GCQ/Polaris mass 

spectrometer (ThermoQuest Finnigan, San Jose, CA).  The software controlling the 

system was Xcalibur (version 1.1) from ThermoQuest Finnigan.  Electron impact (EI) 

was the ionization source and the typical electron energy was set to 70 eV with the ion 

source temperature maintained at 200 oC.  The instrument was calibrated with the 

perfluorotributyl amine FC-43 over a m/z range of 50-650 Da.  Organic components were 

separated in an Alltech-ECCNO-OAP (30 m x 0.25 mm x 0.25 μm).  The injector 

temperature was set at 210 oC and a splitless mode of injection was used in all analyses.  

The GC temperature gradient was set to 50 oC, holding for 5 minutes, then increased at 
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20 oC/minute to 250 oC holding for 20 minutes.  The GC system was run at a constant 

flow rate of 1.0 mL/minute of helium gas (Minimum Purity 99.999%).  ElectroSpray 

Ionization Mass Spectrometry (ESI-MS) data were recorded using a Q-TOF quadrupole 

time-of flight mass spectrometer (Micromass, Manchester, UK) equipped with a Z-spray 

electrospray ionization (ESI) source.  The software controlling the instrument was 

MassLynx (version 4.0).  A Harvard syringe pump (Harvard Apparatus, South Natick, 

MA, USA) was used to deliver the sample solution to the electrospray source at a flow 

rate of 5 μl/min.  The electrospray capillary voltage was set at 3000 V and the cone 

voltage was typically set to 30 V.  The temperature for desolvation and source was set to 

90 oC.  The desolvation gas (nitrogen, 99.99%) flow rate was set to 250 liters per hour.  

Nebuliser gas flow was set to 20 liters per hour.  The mass spectrometer was calibrated 

over a mass range of 50-1500 Da using a 0.05 μg/μL CsI and 2 μg/μL NaI solution in 

methanol. 

 

1-Cyanomethyl-4,7-di(t-butyloxycarbonyl)-1,4,7-triazacyclononane (8):  To a solution 

of 7 (1.00 g, 3.03 mmol) in CH3CN (20 mL) was added chloroacetonitrile (198 μL, 3.13 

mmol), Na2CO3 (1.00 g), and tetrabutylammonium bromide (7 mg).  The resulting 

mixture was heated at reflux under nitrogen for 3 hours and then cooled to room 

temperature.  The solvent was removed in vacuo.  To the remaining mixture was added 

benzene (20 mL).  Following 15 minutes rapid stirring, the benzene solution was filtered 

and the solvent removed under reduced pressure, yielding the desired product as a 

yellow-orange oil (1.06 g, 95 %).  1H NMR (CDCl3, 300 MHz): δ 3.48 (d, J = 10.5 Hz, 

2H), 3.34 (t, J = 12 Hz, 4H), 3.19 (m, 4H), 2.67 (m, 4H), 1.38 (s, 18H) ppm.  13C{1H} 
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NMR (CDCl3, 300 MHz); δ  155.2, 116.3, 79.7, 53.0, 51.2, 49.8, 44.4, 28.5 ppm.  FTIR 

(KBr, cm-1): 3515 (w, br), 2975 (s), 2931 (s), 2866 (m), 2251 (w, C≡N), 1689 (s, C=O), 

1463 (s), 1413 (s), 1366 (s), 1251 (s), 1153 (s), 1094 (m), 1030 (m), 1000 (m), 961(m), 

921 (w), 860 (m), 776 (m), 733 (m). GC/MS: tR 18.87 min; m/z (relative intensity) 368 (3, 

M+), 168 (100).  Anal. Calcd for C18H32N4O4: C, 58.67; H, 8.75; N, 15.21.  Found: C, 

59.63;  H, 8.59; N, 14.75. 

 

[1-Cyanomethyl-[1,4,7]-triazonan-1,4,7-ium]-bis(trifluoroacetate) (9):  To a solution 

of 8 (1.03 g, 2.80 mmol) in CH2Cl2 (3 mL) was added 80 v/v% CF3CO2H/CH2Cl2 (16 

mL) at 0 OC.  This solution was stirred at 0 OC for 1 hour and for an additional 24 hours at 

room temperature.  Removal of excess CF3CO2H was achieved by concentrating the 

solution under reduced pressure followed by successive addition and evaporation of Et2O 

(2x) in vacuo.  A final addition of Et2O was allowed to evaporate slowly and resulted in a 

pale tan precipitate that was filtered and washed with 50 v/v% Et2O/n-pentane and dried 

under reduced pressure to yield a fine, tan powder (0.83 g, 58 %).  1H NMR (CD3OD, 

300 MHz): δ 3.79 (s, 2H), 3.55 (s, 4H), 3.33 (t, J = 6 Hz, 4H), 3.04 (t, J = 6 Hz, 4H) ppm.  

13C{1H} NMR (CD3OD, 300 MHz): δ 162.2, 162.0, 115.3, 48.1, 43.3, 43.0, 42.3 ppm.  

19F NMR (CD3OD, 300 MHz): -77.46 ppm.  FTIR (KBr, cm-1): 2783 (m, br), 1667 (s, 

C=O), 1440 (w), 1196 (s), 1129 (s), 796 (w), 722 (w).  ESI-MS: m/z = 169 (M – 

2(trifluoroacetic acid) + 1).  Anal. Calcd for C12H18F6N4O4: C, 37.49; H, 4.82; N, 14.10.  

Found: C, 36.44; H, 4.64; N, 13.76. 
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1-cyanomethyl-1,4,7-triazacyclononane (10):  To a solution of 9 (0.71 g, 1.39 mmol) in 

H2O/CH3OH (32 mL/8mL) was added 5 M NaOH (aq) dropwise until the pH was 

adjusted to 13.  This mixture was then extracted with CHCl3 (3 x 50 mL).  The CHCl3 

solution was dried over anhydrous Na2SO4 and concentrated under reduced pressure to 

yield the desired product as a thick yellow-orange oil (0.22 g, 95%).  1H NMR (CDCl3, 

300 MHz): δ 3.49 (s, 2H), 2.55-2.75 (m, 12H), 2.06 (s, 2H) ppm.  13C{1H} NMR (CDCl3, 

300 MHz); δ 116.51, 53.30, 47.85, 46.80, 45.73 ppm.  FTIR (KBr, cm-1): 3344 (s, br), 

2925 (s), 2230 (w, C≡N), 1662 (s, C=O), 1550 (s) 1459 (s), 1360 (s), 1297(m), 1157 (s), 

1119 (s), 915 (m), 54 (s).  ESI-MS: m/z = 169 (M + 1). 

 

1-cyanomethyl-4,7-diisopropyl-1,4,7-triazacyclononane (11):  10 (3.13 g, 18.6 mmol) 

was dissolved into 20 mL CH3CN, to which was directly added Na2CO3 (8 g) and a 

catalytic amount of tetrabutylammonium bromide (10 mg).  To this rapidly-stirring 

mixture was added 2-bromopropane (9.15 g, 74.4 mmol) via syringe.  The reaction 

mixture was then refluxed under nitrogen for 18 hours after which the resulting orange-

colored solution was filtered from excess Na2CO3.  The filtrate was concentrated under 

reduced pressure and washed with 1 M NaOH (50 mL), then extracted with CH2Cl2 until 

the extract was colorless (3 x 100mL).  The extract was dried over Na2SO4 and the 

solvent removed in vacuo to yield the desired product as a yellow-orange oil (4.23 g, 

90%).  1H NMR (CDCl3, 300 MHz): δ 3.46 (s, 2H), 3.80 - 2.40 (m, 14H), 0.89 (s, 6H) 

0.97 (s, 6H) ppm.  13C{1H} NMR (CDCl3, 300 MHz); δ 117.01, 55.95, 54.81, 53.10, 

56.25, 47.13, 18.73, 18.68 ppm. 
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1-(2-aminoethyl)-4,7-diisopropyl-1,4,7-triazacyclononane (12)18:  11 (4.23 g, 16.8 

mmol) was dissolved in 1.0 M BH3·THF (46 mL) and the resulting solution refluxed for 

18 hours.  This clear solution was then cooled to room temperature and ethanol was 

carefully added dropwise while vigorously stirring under nitrogen to quench unreacted 

borane.  The solvent was then removed in vacuo and the resulting white solid was 

redissolved in 4 M HCl in methanol (46 mL).  This acidic solution was refluxed for 2 

hours.  Following cooling of the reaction mixture to room temperature, the methanol was 

removed in vacuo and the remaining aqueous solution was adjusted to pH >11 by 

addition of aqueous NaOH, then extracted with CH2Cl2 (3 x 50 mL).  The combined 

extracts were dried over Na2SO4.  Removal of the solvent under reduced pressure yielded 

the product as a pale yellow oil (3.45 g, 80%).  1H NMR (CDCl3, 300 MHz): δ 2.85 

(heptet, J = 6.6 Hz, 2H), 2.76 (m, 4H), 2.71 (t, J = 6.0 Hz, 2H), 2.65 (m, 4H), 2.57 (s, 

4H), 2.56 (t, J = 6.0 Hz, 2H), 0.95 (d, J = 6.6 Hz, 12H). 

 

2-amino-N-(2-(4,7-diisopropyl-1,4,7-triazonan-1-yl)ethyl)-3-(1-trityl-1H-imidazol-4-

yl)propanamide (13):  A THF solution (100 mL) of Fmoc-His(Trt)-OH (2.42 g, 3.90 

mmol), 12 (1.00 g, 3.90 mmol), and 1-hydroxybenzotriazole hydrate (HOBt·H2O) (0.60 

g, 3.90 mmol) was cooled to -20 °C in an ice/salt bath in air.  To this solution was added 

dropwise N,N’-dicyclohexylcarbodiimide (DCC) (0.81 g, 3.90 mmol) in THF (10 mL).  

This solution was stirred at -20 °C for 1 hour and then removed from the ice bath and 

stirred at room temperature for 12 hours.  The resulting white dicyclohexylurea (DCU) 

precipitate byproduct was filtered and the DCU washed with cold THF.  THF was 

removed from the combined filtrate in vacuo and the residue was redissolved in CH2Cl2 
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(25 mL).  This was washed with 0.05 M citric acid (3 x 40 mL), water (2 x 25 mL), 

NaHCO3 (0.5 M, 3 x 40 mL), and finally with water (2 x 25 mL).  The organic phase was 

then dried over MgSO4, filtered, and its volume reduced by approximately one-half.  This 

solution was cooled to -20 °C for 10 hours to facilitate additional DCU precipitation, 

after which the mixture was filtered and the solvent removed in vacuo to yield a yellow-

red solid.  This solid was then redissolved in methanol (100 mL) and filtered.  The filtrate 

was concentrated to 5 mL and loaded onto a 30 g RediSep disposable flash column and 

sequentially eluted with hexanes and ethyl acetate (300 mL each).  The Fmoc- and Trt-

protected product remained on the column as an orange colored ring.  The column was 

disassembled and the silica portion containing the orange ring was transferred to a 250 

mL beaker.  Water was added to saturate the silica then 4 M NaOH was added dropwise 

to adjust the pH to > 12.  The pH increase resulted in CO2 bubbling, resulting from 

removal of Fmoc under the highly basic conditions.  The aqueous layer was extracted 

with chloroform (3 x 100 mL).  The combined organic extracts were dried over sodium 

sulfate and filtered.  Removal of the filtrate solvent revealed the desired product as a 

yellow oil (0.124 g, 5 %). 1H NMR (CDCl3, 300 MHz): δ 7.82-8.22 (s, 1H), 7.65 (s, 1H), 

7.25 (s, 1H), 2.00 - 3.75 (m, 23H), 1.00 (m, 12H) ppm.  FTIR (KBr, cm-1): 3410 (s, br), 

2950 (s), 2910 (m), 2880 (w), 1650 (s, amide C=O), 1450 (m), 1400 (m), 1380 (w), 1280 

(w), 1200 (m), 1150 (m), 1100 (m), 900 (m), 730 (s). 

 

2-amino-3-(1H-imidazol-4-yl)-N-(2-(4,7-diisopropyl-1,4,7-triazonan-1-

yl)ethyl)propanamide (LHis, 14):  To 13 was added 3 mL of TFA/TIS/H20 (95/2.5/2.5 

v/v %).  This mixture was stirred for 2 hours, after which the TFA and TIS were removed 
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in vacuo.  The pH of the remaining aqueous solution was increased to pH > 9 with 4 M 

NaOH and this solution was then extracted with chloroform (3 x 100 mL).  The combined 

organic extracts were dried over Na2SO4 and filtered.  The filtrate solvent was removed 

in vacuo to yield the desired product as a yellow oil (0.062 g, 50 %).  1H NMR (CDCl3, 

300 MHz): δ 7.82-8.22 (s, 1H), 7.65 (s, 1H), 7.25 (s, 1H), 2.00 - 3.75 (m, 23H), 1.00 (m, 

12H) ppm.  FTIR (KBr, cm-1): 3410 (s, br), 2950 (s), 2910 (m), 2880 (w), 1650 (s, amide 

C=O), 1450 (m), 1400 (m), 1380 (w), 1280 (w), 1200 (m), 1150 (m), 1100 (m), 900 (m), 

730 (s).  ESI-MS: m/z = 394 (M + 1). 

 

Boc2TACN(Boc-Gly) (15):  A THF solution (80 mL) of Boc-Gly-OH, (1.48, 8.45 

mmol), 7 (2.78 g, 8.45 mmol), and 1-hydroxybenzotriazole hydrate (HOBt·H2O) (1.55 g, 

10.12 mmol) was cooled to -20 °C in an ice/salt bath in air.  To this solution was added 

dropwise N,N’-dicyclohexylcarbodiimide (DCC) (2.09 g, 10.12 mmol) in THF (10 mL).  

This solution was stirred at -20 °C for 1 hour and then removed from the ice bath and 

stirred at room temperature for 12 hours.  The resulting white dicyclohexylurea (DCU) 

precipitate byproduct was filtered and the DCU washed with cold THF.  THF was 

removed from the combined filtrate in vacuo and the residue was redissolved in CH2Cl2 

(25 mL).  This was washed with 0.05 M citric acid (3 x 40 mL), water (2 x 25 mL), 

NaHCO3 (0.5 M, 3 x 40 mL), and finally with water (2 x 25 mL).  The organic phase was 

then dried over MgSO4, filtered, and its volume reduced by approximately one-half.  This 

solution was cooled to -20 °C for 10 hours to facilitate additional DCU precipitation, 

after which the mixture was filtered and the solvent removed in vacuo to yield 

Boc2TACN(Boc-Gly) as a pale-yellow solid (3.41 g, 83%).  1H NMR (500 MHz, 
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CD2Cl2): δ 7.53 (t, J = 12.0 Hz, 1H), 3.89 (s, 2H), 3.10 - 3.65 (m, 12H), 1.39 (s, 27H) 

ppm.  13C{1H} NMR (CDCl3, 300 MHz); δ 170.08, 169.57, 155.76, 80.57, 46 - 54, 42.88, 

28.84 ppm.  Anal. Calcd for C23H42N4O7: C, 56.76; H, 8.63; N, 11.51.  Found: C, 56.67; 

H, 8.58; N, 11.58. 

 

Boc2TACN(Boc-Ala) (16):  A THF solution (80 mL) of Boc-Ala-OH, (1.60, 8.44 mmol), 

7 (2.78 g, 8.44 mmol), and 1-hydroxybenzotriazole hydrate (HOBt·H2O) (1.55 g, 10.12 

mmol) was cooled to -20 °C in an ice/salt bath in air.  To this solution was added 

dropwise N,N’-dicyclohexylcarbodiimide (DCC) (2.09 g, 10.12 mmol) in THF (10 mL).  

This solution was stirred at -20 °C for 1 hour and then removed from the ice bath and 

stirred at room temperature for 12 hours.  The resulting white dicyclohexylurea (DCU) 

precipitate byproduct was filtered and the DCU washed with cold THF.  THF was 

removed from the combined filtrate in vacuo and the residue was redissolved in CH2Cl2 

(25 mL).  This was washed with 0.05 M citric acid (3 x 40 mL), water (2 x 25 mL), 

NaHCO3 (0.5 M, 3 x 40 mL), and finally with water (2 x 25 mL).  The organic phase was 

then dried over MgSO4, filtered, and its volume reduced by approximately one-half.  This 

solution was cooled to -20 °C for 10 hours to facilitate additional DCU precipitation, 

after which the mixture was filtered and the solvent removed in vacuo to yield 

Boc2TACN(Boc-Gly) as a yellow oil (3.72 g, 88 %).  1H NMR (CDCl3, 300 MHz): δ 

3.00 - 3.85 (m, 12H); 1.65 (d, J = 7.2 Hz, 3H); 1.30 - 1.48 (m, 27H) ppm.  13C{1H} NMR 

(CDCl3, 300 MHz); δ 174.28, 156.56, 81.08, 46.50 - 54.01, 29.23, 20.80 ppm.  Anal. 

Calcd for C24H44N4O7: C, 57.58; H, 8.86; N, 11.19.  Found: C, 57.23; H, 8.15; N, 10.92. 
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Boc2TACN(Boc-Phe) (17):  A THF solution (80 mL) of Boc-Phe-OH, (1.63, 6.16 

mmol), 7 (2.02 g, 6.16 mmol), and 1-hydroxybenzotriazole hydrate (HOBt·H2O) (1.13 g, 

7.39 mmol) was cooled to -20 °C in an ice/salt bath in air.  To this solution was added 

dropwise N,N’-dicyclohexylcarbodiimide (DCC) (1.52 g, 7.39 mmol) in THF (10 mL).  

This solution was stirred at -20 °C for 1 hour and then removed from the ice bath and 

stirred at room temperature for 12 hours.  The resulting white dicyclohexylurea (DCU) 

precipitate byproduct was filtered and the DCU washed with cold THF.  THF was 

removed from the combined filtrate in vacuo and the residue was redissolved in CH2Cl2 

(25 mL).  This was washed with 0.05 M citric acid (3 x 40 mL), water (2 x 25 mL), 

NaHCO3 (0.5 M, 3 x 40 mL), and finally with water (2 x 25 mL).  The organic phase was 

then dried over MgSO4, filtered, and its volume reduced by approximately one-half.  This 

solution was cooled to -20 °C for 10 hours to facilitate additional DCU precipitation, 

after which the mixture was filtered and the solvent removed in vacuo to yield 

Boc2TACN(Boc-Phe) as a yellow oil (2.63 g, 74 %).  1H NMR (CDCl3, 300 MHz): δ 

7.05 - 7.25 (m, 5H); 4.56 - 5.31 (m, 1H); 2.81-3.85 (br, 12H); 2.76 - 3.82 (m, 14H); 1.39 

(m, 27H) ppm.  Anal. Calcd for C30H48N4O7: C, 62.50; H, 8.33; N, 9.72.  Found: C, 

61.95; H, 8.41; N, 9.55. 

 

TACN-Gly (LGly, 18):  To 15 (3.04 g, 6.25 mmol) was added 10 mL of TFA/CH2Cl2 

(50/50 v/v %).  This mixture was stirred for one hour, after which the solvent was 

removed in vacuo.  Cold Et2O (200 mL) was then added to the resulting yellow oil 

residue resulting in yellow solid precipitate.  This solid was filtered from Et2O, triturated, 

and washed with fresh Et2O.  Residual Et2O was removed from the powder under 
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reduced pressure revealing white powder.  This white solid was dissolved in 50 mL 

CH2Cl2 and stirred in the presence of crushed NaOH (10 g) for 15 hours.  The CH2Cl2 

solution was filtered from excess NaOH and the solvent removed in vacuo to give the 

desired product (0.75 g, 65 %).  1H NMR (CDCl3, 300 MHz): δ 3.43 (s, 2H), 3.37 -3.57 

(m, 2H), 3.23 - 3.33 (m, 2H), 2.93 - 3.06 (m, 4H), 2.58 - 2.73 (m, 4H), 1.77 (s, 2H), 1.45 

(s, 2H) ppm.  FTIR (KBr, cm-1): 3342 (m, br), 2926 (s), 2360 (s), 2334 (s), 1652 (s, 

C=O), 1478 (m), 1370 (m), 1294 (w), 1240 (w), 1198 (w), 1163 (w), 1120 (w), 1054 (m), 

1013 (w), 942 (w), 887 (w), 667 (m).  ESI-MS: m/z = 187 (M + 1).  Anal. Calcd for 

C8H18N4O: C, 51.59; H, 9.74; N, 30.08.  Found: C, 50.93; H, 9.23; N, 30.54. 

 

TACN-Ala (LAla, 19):  To 16 (1.45 g, 2.90 mmol) was added 5 mL of TFA/CH2Cl2 

(50/50 v/v %).  This mixture was stirred for one hour, after which the solvent was 

removed in vacuo.  Cold Et2O (100 mL) was then added to the resulting yellow oil 

residue resulting in yellow solid precipitate.  This solid was filtered from Et2O, triturated, 

and washed with fresh Et2O.  Residual Et2O was removed from the powder under 

reduced pressure revealing white powder.  This white powder was dissolved in 25 mL 

CH2Cl2 and stirred in the presence of crushed NaOH (5 g) for 15 hours.  The CH2Cl2 

solution was filtered from excess NaOH and the solvent removed in vacuo to give the 

desired product (0.58 g, 45 %).  1H NMR (CDCl3, 300 MHz): δ 2.53 - 4.16 (m, 13H); 

2.35 (s, 4H) 1.21 (d, J = 6.6 Hz, 3H) ppm.  FTIR (KBr, cm-1): 2928 (s), 2866 (s), 1649 (s, 

C=O), 1558 (w), 1473 (m), 1442 (m), 1424 (m), 1371 (s), 1288 (w), 1232 (m), 1194 (w), 

1159 (m), 1104 (m), 1057 (m), 1013 (m), 944 (w), 909 (w), 748 (w), 667 (w).  Anal. 

Calcd for C9H20N4O: C, 53.97; H, 10.06; N, 27.97.  Found: C, 53.40; H, 9.12; N, 28.99. 
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TACN-Phe (LPhe, 20):  To 17 (3.21 g, 5.57 mmol) was added 10 mL of TFA/CH2Cl2 

(50/50 v/v %).  This mixture was stirred for one hour, after which the solvent was 

removed in vacuo.  Cold Et2O (200 mL) was then added to the resulting yellow oil 

residue resulting in yellow solid precipitate.  This solid was filtered from Et2O, triturated, 

and washed with fresh Et2O.  Residual Et2O was removed from the powder under 

reduced pressure revealing white powder.  This white powder was dissolved in 50 mL 

CH2Cl2 and stirred in the presence of crushed NaOH (10 g) for 15 hours.  The CH2Cl2 

solution was filtered from excess NaOH and the solvent removed in vacuo to give the 

desired product (0.77 g, 50 %).  1H NMR (CD2Cl2, 300 MHz): δ 7.02 - 7.27 (m, 5H); 

2.45 - 3.97 (m, 15H); 2.02 (s, 4H) ppm.  FTIR (KBr, cm-1): 3261 (s, br), 3025 (s), 2924 

(s), 1641 (s, C=O), 1493 (m), 1453 (m), 1369 (w), 1340 (m), 1287 (m), 1236 (w), 1195 

(m), 1157 (m), 1120 (w), 1105 (m), 1065 (m), 1010 (m), 939 (w), 906 (w), 881 (w), 861 

(m), 751 (w), 702 (w), 668 (w), 621 (w), 595 (w), 530 (w).  Anal. Calcd for C15H24N4O: 

C, 65.21; H, 8.70; N, 20.28. Found: C, 65.46; H, 8.17; N, 19.09. 

 

[(CuLGly)2](ClO4)4 (21):  LGly (0.187 g, 1.00 mmol) was dissolved in 5 mL of methanol.  

To this rapidly-stirring solution was added a solution of Cu(ClO4)2·6H2O (0.371 g, 1.00 

mmol) in 5 mL of methanol via syringe.  Stirring was continued for 5 hours, during 

which time a blue precipitate formed.  The blue precipitate was filtered from the reaction 

mixture, washed with a minimal volume of fresh methanol, and transferred to a vacuum 

flask.  The desired product was obtained as a blue powder following complete removal of 

residual solvent in vacuo (0.18 g, 40 %).  UV/vis (CH3CN) [λmax (ε, M-1cm-1)] 330 (sh, 
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630), 593 (180) nm.  EPR (CH3CN, 9.431 GHz, 90 K) g⊥ = 2.09, g|| = 2.34, A|| Cu = 200 

G.  FTIR (KBr) 3430, 3215, 1591, 1457, 1367, 1085, 1002, 626 cm-1.  ESI-MS (CH3CN): 

797 [M - ClO4]+; 348 [M - CuLGly (ClO4)3]+ m/z.  Anal. Calcd for C16H36Cl4Cu2N8O18: 

C, 21.41; H, 4.04; N, 12.49.  Found: C, 20.04; H, 4.33; N, 11.08. 

 

[(CuLAla)2Cl](ClO4)3 (22):  LAla (0.217 g, 1.08 mmol) was dissolved in methanol (5 mL).  

To this rapidly-stirring solution was added a solution of Cu(ClO4)2·6H2O (0.684 g, 1.08 

mmol) in methanol (5 mL) via syringe.  Stirring was continued for 5 hours, during which 

time a blue precipitate formed.  The blue precipitate was filtered from the reaction 

mixture, washed with a minimal volume of fresh methanol, and transferred to a vacuum 

flask.  The desired product was obtained as a blue powder following complete removal of 

residual solvent in vacuo.  X-ray quality crystals were obtained by dissolving the 

crystalline powder into a minimal volume of methanol and diffusing ether into this 

solution at room temperature (0.28 g, 60 %).  UV-vis (CH3CN) [λmax (ε, M-1cm-1)] 331 

(sh, 1850), 600 (300) nm.  EPR (CH3CN, 9.4341 GHz, 90 K) g⊥= 2.08, g|| = 2.39, A|| Cu = 

120 G.  FTIR (KBr, cm-1): 3427, 3225, 3124, 2925, 1583, 1139, 1112, 1088, 625.  ESI-

MS (CH3CH): 825 [M - Cl]+; 761 [M - ClO4]+; 362 [M - CuLAlaCl(ClO4)2]+ m/z.  Anal. 

Calcd for C18H40Cl4Cu2N8O14·CH3NO2·H2O: C, 24.26; H, 4.82; N, 13.51.  Found: C, 

23.53; H, 4.88; N, 12.53. 

 

[Cu2LPheCl4] (23):  LPhe (0.138 g, 0.499 mmol) was dissolved in 5 mL of methanol.  To 

this rapidly-stirring solution was added a solution of CuCl2 (0.134 g, 0.998 mmol) in 5 

mL of methanol via syringe.  Stirring was continued for 5 hours, during which time a 
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blue precipitate formed.  The blue precipitate was filtered from the reaction mixture, 

washed with a minimal volume of fresh methanol, and transferred to a vacuum flask.  

The desired product was obtained as a blue powder following complete removal of 

residual solvent in vacuo.  X-ray quality crystals were obtained by dissolving the 

crystalline powder into a minimal volume of methanol and diffusing ether into this 

solution at room temperature (0.136 g, 50 %).  UV/vis (CH3CN) [λmax (ε, M-1cm-1))] 366 

(sh, 210), 655 (74) nm.  EPR (H2O/ethylene glycol 50/50 v/v %, 9.44 GHz, 100 K) g⊥ = 

2.080, g||(1) = 2.239, A|| Cu(1) = 190.2 x 10-4 cm-1, g||(2) = 2.410, A|| Cu(2) = 133.9 x 10-

4 cm-1.  FTIR (KBr, cm-1): 3438, 3325, 3271, 1573, 1433, 1338, 1073, 1022, 977, 816, 

751, 706, 629, 572.  ESI-MS (H2O): 410, [M - CuCl2]+; 374, [M - CuCl3]+ m/z.  Anal. 

Calcd for C15H24Cl4Cu2N4O: C, 33.04; H, 4.44; N, 10.27.  Found: C, 32.78; H, 4.91; N, 

10.71. 

 

 X-ray Crystalloraphy. [(CuLAla)2Cl](ClO4)3 (22):  A green crystal of the 

complex, having approximate dimensions 0.42 x 0.26 x 0.24 mm, was mounted on a 

glass capillary with heavy-weight oil and quickly placed under a cold stream of nitrogen 

on the diffractometer.  The data were collected at 143(1) K on a Bruker Apex 

diffractometer using Mo Kα (λ = 0.71073 Å) radiation.31  Important crystallographic 

information is summarized in table 2-1.  Intensity data, which approximately covered the 

full sphere of the reciprocal space, were measured as a series of ω oscillation frames each 

0.3° for 24 seconds per frame.  The detector was operated in 512 x 512 mode and was 

positioned 6.00 cm from the crystal.  Coverage of unique data was 99.6 % complete to 

52° (2θ).  Cell parameters were determined from a non-linear least squares fit of 6818 
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reflections in the range of 2.27 < θ < 26.4°.  A total of 36607 reflections were measured.  

The data were corrected for absorption by multi-scan method form equivalent reflections 

giving minimum and maximum transmission of 0.5549 and 0.7015.  The data were 

merged to form a set of 6919 unique data with R(int) = 0.049. 

The structure was solved by the direct method using SHELXTL system and 

refined by full-matrix least squares on F2 using all reflections.32  All the non-hydrogen 

atoms were refined anisotropically.  All the hydrogen atoms were included with idealized 

parameters except the hydrogen atoms on N(l), N(2), N(4), N(5), N(6), N(8) and O(17) 

atoms, which were located and refined with fixed temperature factors.  The asymmetric 

unit contains one C18H38C1Cu2N8O2 cation, three C1O4
- anions and CH3NO2

.H2O solvent 

molecules.  The cations form polymeric chains along the b-axis.  Final R1 = 0.051 is 

based on 6548 “observed reflections” [I > 2σ(I)] and wR2 = 0.135 is based on all 

reflections (6919 unique data).  The final structure was graphically presented using the 

Accelrys Materials Studio software package.33 

 

[Cu2LPheCl4] (23):  A green crystal of the complex, having approximate dimensions 0.10 

x 0.08 x 0.04 mm, was mounted on a glass capillary with heavy-weight oil and quickly 

placed under a cold stream of nitrogen on the diffractometer.  The data were collected at 

120(1) K on a Bruker Apex diffractometer using Mo Kα (λ = 0.71073 Å) radiation.31  

Important crystallographic information is summarized in table 2-1.  Intensity data, which 

approximately covered the full sphere of the reciprocal space, were measured as a series of 

co oscillation frames each 0.4° for 31 seconds per frame.  The detector was operated in 

512 x 512 mode and was positioned 6.00 cm from the crystal.  Coverage of unique data 
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was 98.7 % complete to 53°(2θ).  Cell parameters were determined from a non-linear 

least squares fit of 6679 reflections in the range of 3.20 < 0 < 25.92°.  A total of 8025 

reflections were measured. The data were corrected for absorption by multi-scan method 

form equivalent reflections giving minimum and maximum transmission of 0.7758 and 

0.9006.  The data were merged to form a set of 3795 unique data with R(int) = 0.021. 

The structure was solved by the direct method using SHELXTL system and 

refined by full-matrix least squares on F2 using all reflections.32  All the non-hydrogen 

atoms were refined anisotropically.  All the hydrogen atoms were included with 

idealized parameters.  Final R1 = 0.022 is based on 3634 "observed reflections" [I > 

2σ(I)] and wR2 = 0.050 is based on all reflections (3795 unique data).  The final 

structure was graphically presented using the Accelrys Materials Studio software 

package.33 
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Table 2-1. Summary of crystallographic data for compounds 22 and 23. 

 22 23 

empirical formula C19H45C14Cu2N9O17 C15H24C14Cu2N4O 

formula weight 940.52 545.26 

crystal system orthorhombic monoclinic 

space group P2(1)2(1)2(1) P2(1) 

a (Å) 9.9962(11) 7.5158(6) 

b (Å) 17.432(2) 7.5207(6) 

c (Å) 20.285(2) 17.9669(15) 

α (deg) 90 90 

β (deg) 90 100.012(1) 

γ (deg) 90 90 

V (Å-3) 3534.7(7) 1000.10(14) 

Z 4 2 

density (calcd) 1.767 g/cm3 1.811 g/cm3 

temperature (K) 143(2) 120(2) 

crystal size (mm) 0.42 x 0.26 x 0.24 0.10 x 0.08 x 0.04 

diffractometer Bruker Apex Bruker Apex 

absorption coefficient 1.590 mm-1 2.674 mm-1 

radiation, λ (Å) Mo Kα, λ = 0.71073 Mo Kα, λ = 0.71073 

2θ max (deg) 52.0 53.0 

reflections collected 36607 8025 

independent reflections 6919 3795 

observed reflections 6548 3634 

variable parameters 1936 552 

R1 [I > 2σ(I)] 0.0505 0.0221 

wR2 [I > 2σ(I)] 0.1334 0.0492 

R1 (all data) 0.0535 0.0238 

wR2 (all data) 0.1353 0.0497 

goodness-of-fit 1.051 1.005 

largest diff. peak and hole (e-1 Å-3) 1.779, -0.721 0.665, -0.271 
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SYNTHESIS AND THIOLATE REACTIVITY OF 
NEW THIOETHER-CONTAINING PYRIDINE 

AMIDE COPPER(II) COMPLEXES
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3.1. Introduction 

Modelling the active site structure of copper-containing nitrite reductase (CuNiR) 

through the synthesis of ligands that are covalently linked to His and Cys residues 

presents difficult synthetic challenges and allows little room for ligand alteration without 

complete resynthesis (see chapter 2).  In an attempt to circumvent such difficulties while 

simultaneously increasing the overall synthetic potential of our designs, we sought to 

investigate the possibility of achieving next-generation dinuclear CuNiR model 

complexes by synthesizing discrete nitrogen- and sulfur-containing ligands that each 

mimic a certain aspect of the active site structure.  These ligand units would join in their 

coordination to copper ions to form complex structures that could be easily tuned.  Thus, 

instead of first designing and synthesizing a singular covalently-linked ligand and 

subsequently reacting that ligand with copper, we proposed that our goals could be 

achieved in a far more elegant manner by minimizing our reliance on covalent linkages 

altogether. 

Beyond CuNiR, the coordination chemistry of copper with sulfur-containing 

ligands has attracted considerable interest because of its relevance to bioinorganic 

chemistry in general.1, 2  Copper thiolate and thioether complexes are of particular interest 

because of their key roles in a number of ubiquitous metalloproteins such as the type 1 

copper (Cu-I) electron transfer sites found in cupredoxins.1  Cu-I centers contain a copper 

ion coordinated by a distorted tetrahedral arrangement of His2CysMet (e.g., 

plastocyanin3), an axially elongated trigonal bipyramidal array of His2CysMetGly (e.g., 

azurin4), or a distorted trigonal planar array of His2Cys (e.g., azurin mutants4).  The 

cysteine residue donates a thiolate sulfur atom to copper in each case and methionine 
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donates a thioether sulfur atom in the first two cases.  In what can be described as a 

binuclear version of the Cu-I center, the CuA electron transfer site, found in both 

cytochrome c oxidase (CcO)4 and nitrous oxide reductase (N2OR)5, contains two copper 

ions bridged by two cysteine thiolates.6  Copper metallothioneins contain copper(I) ions 

coordinated exclusively by cysteine thiolate ligands.7  A methionine thioether sulfur atom 

and two histidines coordinate to the copper ion in CuB from the peptidylglycine α-

hydroxylating monooxygenase (PHM) domain of peptidylglycine α-amidating 

monooxygenase (PAM).8  Finally, inorganic sulfide is found in the unprecedented 

catalytic CuZ site from N2OR.9 

This chapter describes our initial efforts to produce dinuclear CuNiR model 

complexes by focusing on copper(II) coordination chemistry with new thioether-

containing pyridine amide ligands.  As an unanticipated consequence of this effort, our 

investigation into new mixed thiolate/thioether copper(II) complexes with pyridyl, amide, 

and thioether supporting ligands is also presented along with an unprecedented 

copper(II)-thiolate redox decomposition mode.  Section 3.2 of this chapter describes the 

ligand syntheses.  Copper and zinc complexes are described in sections 3.3 and 3.4, 

respectively.  Finally, thiolate reactions with the copper(II) complexes are described in 

section 3.5. 

3.2. Ligand Syntheses 

The new ligands N-(pyridin-2-ylmethyl)-(methylthio)acetamide (2-HLN2S, 1), N-

(pyridin-3-ylmethyl)-(methylthio)acetamide (3-HLN2S, 2), and N-(pyridin-4-ylmethyl)-

(methylthio)acetamide (4-HLN2S, 3) were synthesized by DCC-mediated coupling of 

methylthioacetic acid to 2-, 3-, and 4-picolylamine, respectively (Figure 3-1).10  The 
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design of these ligands was modeled after the His-Cys bridge portion of the CuNiR active 

site that connects the Cu-I and type 2 copper (Cu-II) centers, where the His imidazole and 

Cys thiolate are substituted with less reactive pyridyl and thioether functionalities to 

circumvent undesired side reactions in their syntheses and reactions with copper.  These 

His-Cys analogues were envisioned to coordinate between two preformed copper(II) 

complexes in a similar mode as the actual His-Cys bridge of CuNiR.  A similar approach 

using a pyridyl thiolate ligand bridging between two substituted β-diketiminate copper 

complexes was independently proposed by the Lee and Tolman.11  Ideally, one copper 

ion would coordinate to the pyridyl nitrogen while another would be available for 

coordination via the methyl thioether sulfur atom and possibly the amide oxygen.  

Eventually, the thioether and pyridyl groups would be replaced with thiolate and 

imidizole to more closely match the properties of His and Cys as found in the enzyme. 

 

Ligand 2-HLN2S is nearly identical to ligand ptgH,12 reported by Nonoyama, et al., 

differing only in its thioether substituent (methyl vs. ethyl).  Although spectroscopic data 
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Figure 3-1.  Synthesis of 2- HLN2S (1), 3- HLN2S (2), and 4-HLN2S (3). 
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for copper(II) complexes of ptgH have been reported, no structural information for 

complexes of this ligand exist.  2-HLN2S is also related to the N3S(thioether) tetradentate 

ligand, pygeH, for which structures have been reported,13, 14 and contains pyridyl and 

thioether functional groups connected by an amide linkage, providing up to four potential 

donor atoms: N(pyridine), N(amide), O(amide), and S(thioether).  In the case of the 

closely related N-(2-pyridylmethyl)acetamide (2-HLN2), previously reported in our group, 

copper(II) coordination through all of its potential donor atoms, N(pyridine), N(amide), 

and O(amide), is observed.15  3- and 4-HLN2S differ from 2-HLN2S only in the relative 

position of their pyridyl nitrogen atoms.  Since the position of the nitrogen in the pyridyl 

ring would likely affect the favored copper coordination mode of each ligand, predictions 

of their coordination chemistry with copper were difficult to make.  Clearly 3- and 4-

HLN2S were anticipated to favor a bridging coordination mode more than 2-HLN2S 

because of their more outward-oriented nitrogens.  In addition to these, ligand 2-MeLN2S 

was synthesized in an attempt to disfavor possible amide nitrogen coordination in copper 

complexes of 2-HLN2S and to promote a linear coordination mode.  With the exception of 

its tertiary methyl amide, it is identical to 2-HLN2S in all respects.  The synthesis of 2-

MeLN2S was accomplished in a similar manner as that of 1, 2, and 3 by DCC-mediated 

coupling of (methylthio)acetic acid to N-methyl(2-pyridyl)methaneamine16 (Figure 3-2). 

 

OH

O
S

N
N
H

DCC/HOBt
-10 oC, 15 hours
THF

N
N

O
S

2-MeLN2S (4)

 

Figure 3-2.  Synthesis of 2-MeLN2S (4). 
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3.3. Copper(II) Complexes of 2-HLN2S 

3.3.1. [Cu(2-HLN2S*)Cl2] 

Prior to using 2-, 3-, or 4-HLN2S in reactions with preformed copper complexes to 

produce dinuclear bridging species, we sought to first investigate the coordination 

chemistry of these new ligands directly with copper(II).  The reaction of 2-HLN2S with 

CuCl2·2H2O in methanol results in the immediate formation of a deep blue solution 

(Figure 3-3).  X-ray quality crystals of the product were obtained in good yield by 

diffusing diethyl ether into the concentrated reaction mixture in a tightly capped vial.  

The X-ray crystal structure of 5 clearly reveals that the copper(II) ion is coordinated by 

the tautomeric form of 2-HLN2S, designated 2-HLN2S*, via its N(pyridine), N(imidic acid), 

and S(thioether) donors in three basal plane positions of the square pyramidal complex (τ 

= 0.02) (Figure 3-4).17, 18  The fourth basal position and one axial position are occupied 

by chloride ligands.  The imidic acid form of 2-HLN2S is evident in its relatively short C7-

N2 and long C7-O1 bond distances as well as in the presence of the hydrogen atom, H1, 

that is covalently bonded to O1.  The imidic acid proton of each molecule forms 

hydrogen bonds to chloride ligands of neighboring monomeric units in the crystal 

structure. 

CuCl2
 MeOH

5

2-HLN2S

1

N
N

OH

SCu
ClCl

 

Figure 3-3.  Synthesis of [Cu(2-HLN2S*)Cl2] (5). 
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Bond Lengths (Å) Angles (deg) 
Cu1–N1 2.015(3) N1–Cu1–N2   82.0(1) 

 Cu1–N2 1.950(3) N1–Cu1–Cl1   96.9(1) 
 Cu1–S1 2.367(1) S1–Cu1–N2   84.1(1) 
 Cu1–Cl1 2.237(1) S1–Cu1–Cl1   93.3(3) 
 Cu1–Cl2 2.648(1) N1–Cu1–Cl2 103.9(1) 
 N2–C7 1.277(4) N2–Cu1–Cl2   97.1(1) 
 C7–O1 1.318(4) S1–Cu1–Cl2   97.4(3) 
   Cl1–Cu1–Cl2 100.9(3) 
   N1–Cu1–S1 163.1(1) 
   N2–Cu1–Cl1 161.7(1) 

Figure 3-4.  Representation of the X-ray crystal structure of [Cu(2-HLN2S*)Cl2] (5) as 
50% thermal ellipsoids. H atoms other than the imidic acid H1 have been omitted for 

clarity. Selected bond distances (Å) and angles (deg) relevant to copper coordination and 
amide group are tabulated. 
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 The UV-vis spectrum of 5 is typical for a copper(II) complex with nitrogen, 

chloride, and thioether sulfur ligands in a square pyramidal geometry (Figure 3-5).19  The 

spectrum exhibits a characteristic Ligand-to-Metal-Charge Transfer (LMCT) transition at 

655 nm with an extinction coefficient of 140 M-1cm-1. 

 

 

 The X-band EPR spectrum of 5 provides more information about its nature in the 

solution phase (Figure 3-6).  The sample for this experiment was prepared by dissolving 

clean X-ray quality crystals of 5 in 1:1 CH2Cl2/MeOH and was measured at 120 K.  

Interestingly, two overlapping axial copper(II) hyperfine signals are observed, suggesting 

the presence of two unique copper(II) species in solution.  The more intense signal, 

centered at g = 2.19, shows a copper(II) hyperfine splitting of 170 x 10-4 cm-1.  The other 

signal, centered at g = 2.42 has a slightly smaller copper(II) hyperfine splitting of 121 x 

10-4 cm-1.  The parameters for the latter signal exactly match that of a pure solvated 

Figure 3-5.  UV-vis spectrum of [Cu(2-HLN2S*)Cl2] in H2O. 
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cupric chloride solution under identical conditions, indicating significant dissociation of 

copper(II) from the ligand upon dissolution.  This observation was rationalized by 

considering the acidic nature of the ligand itself, especially in the imidic acid form, and 

the low binding affinity of pyridyl for copper(II) ions under acidic conditions.  Indeed, 

the pH of this solution was measured to be 3.71, favoring equilibrium toward pyridyl 

protonation and ligand dissociation. 

 

 

3.3.2. [Cu(2-LN2S)Cl(CH3OH)] 

Despite the observation that 2-HLN2S readily tautomerizes upon coordination to 

free copper(II) ions, its original design function as a His-Cys analogue bridging unit 

Figure 3-6.  Experimental EPR spectrum of [Cu(2-HLN2S*)Cl2] in 1:1 CH2Cl2/MeOH 
at 120 K and a microwave frequency of 9.43 GHz. 



 93

remained our primary interest.  As an initial test of its ability to perform in this role, a 

methanol solution of 2-HLN2S was combined with two equivalents of a rapidly stirring 

solution of [Cu(iPr3TACN)Cl2]20 in the same solvent (Figure 3-7).  The reaction mixture 

changed from the bright green color of pure [Cu(iPr3TACN)Cl2] to a very dark shade of 

blue similar to that of 5 over the course of 30 minutes.  Slow evaporation of the solvent 

from the reaction mixture afforded deep blue X-ray quality crystals and a small amount 

of pale yellow residue on the vial walls.  1H NMR and COSY of the pale yellow residue 

were sufficient to identify that substance as containing iPr3TACN.  The blue crystals 

were submitted for X-ray analysis. 

 

 

The X-ray crystal structure of the blue product, [Cu(2-LN2S)Cl(MeOH)] (6), is 

similar to that of 5 in that the ligand coordinates to copper(II) in the three basal plane 

positions of the distorted square pyramidal complex via its N(pyridyl), N(amidate), and 

S(thioether) donors (Figure 3-8).  Instead of 2-HLN2S acting in a bridging coordination 

motif between the two [Cu(iPr3TACN)Cl2] complexes, however, it surprisingly abstracts 

the copper(II) ion from [Cu(iPr3TACN)Cl2].  Moreover, 2-HLN2S becomes deprotonated 

2-HLN2S
 MeOH

+ 2 [Cu(iPr3TACN)Cl2] iPr3TACN HClN
N

O

S Cu
ClHO

6

+

1

 

Figure 3-7.  Synthesis of [Cu(2-LN2S)Cl(CH3OH)] (6) by reaction of 2-HLN2S with 
[Cu(iPr3TACN)Cl2]. 
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at its amide nitrogen, converting the liberated iPr3TACN to its monohydrochloride salt.  

The charge of the copper(II) ion in 6 is balanced by the anionic 2-LN2S ligand and a single 

equatorial chloride ligand.  Unlike 5, where the ligand is neutral and two chloride ligands 

are coordinated, methanol solvent serves as the axial ligand in 6.  The same product can 

be obtained with much higher efficiency by reaction of a stoicheometric quantity of 2-

HLN2S with CuCl2·2H2O in the presence of excess triethylamine. 

With the exception of the axial ligands, the bond distances and angles around the 

copper atoms in 5 and 6 are very similar.  The axial Cu1-O1 bond distance in 6 is more 

than 0.3 Å shorter than the Cu1-Cl2 distance in 5.  This shorter axial bond length in 6 is 

accompanied by a shifting of the copper atom out of the basal plane, giving rise to a 

larger τ value of 0.21.17  The tautomeric relationship of the ligands in 5 and 6 is illustrated 

quantitatively by their C-N and C-O bond distances, which support the assignment of the 

imidic acid form of the ligand in 5 and the amidate form of the ligand in 6.  Although no 

structural data has been reported for the copper(II) complexes of the very similar ptgH 

ligand reported by Nonoyama, IR studies of those complexes also support the assignment 

of amidate and imidic acid ligand tautomers and the relationship between [Cu(ptgH)Cl2] 

and [Cu(ptg)Cl] is proposed.12  The spectroscopic features reported for the ptgH 

complexes mirror those of 5 and 6.  It is also noteworthy that 6 is structurally and 

spectroscopically similar to [Cu(pyge)Br].14  With the exception of the axial Cu(II)-

ligand bond and the Cu(II)-halide bonds, the solid state structural parameters for 6 and 

[Cu(pyge)Br] are nearly identical.  While the structure of 6 is a slightly distorted square 

pyramid (τ = 0.21), [Cu(pyge)Br] has a τ value of 0.01,14 making it a nearly ideal square 

pyramid. 
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Bond Lengths (Å) Angles (deg) 
Cu1–N1 2.019(1) N1–Cu1–N2   82.3(1) 

 Cu1–N2 1.932(1) N1–Cu1–Cl1   98.4(1) 
 Cu1–S1 2.332(1) S1–Cu1–N2   84.1(1) 
 Cu1–Cl1 2.238(1) S1–Cu1–Cl1   93.4(1) 
 Cu1–O1 2.329(1) N1–Cu1–O1   93.7(4) 
 N2–C7 1.318(2) N2–Cu1–O1   90.0(4) 
 C7–O2 1.252(2) S1–Cu1–O1 100.5(1) 
   Cl1–Cu1–O1   96.7(1) 
   N1–Cu1–S1 160.3(1) 
   N2–Cu1–Cl1 173.2(1) 
Figure 3-8.  Representation of the X-ray crystal structure of [Cu(2-LN2S)Cl(MeOH)] (6) 

as 50% thermal ellipsoids.  H atoms other than methanol H1 have been omitted for 
clarity.  Selected bond distances (Å) and angles (deg) relevant to copper coordination and 

the amide group are tabulated. 
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 The UV-vis spectrum of 6 in methanol is nearly identical to that of 5 (Figure 3-9).  

A distinctive LMCT transition appears at 642 nm with an extinction coefficient of 236 

M-1cm-1.  While the UV-vis of 5 arguably shows the equilibrium with solvated copper(II) 

in its low energy shoulder, there is no indication of more than a single chromophore in 

the UV-vis spectrum of 6. 

 

 Corroborating these observations, the X-band EPR spectrum of 6, also prepared 

from X-ray quality crystals of the compound dissolved in 1:1 CH2Cl2/MeOH, shows a 

single axial signal (Figure 3-10).  The g|| and A|| values for 6 (g|| = 2.19 and A|| = 170 x 

10-4 cm-1) are identical to those of the higher intensity signal in the EPR spectrum of 5 

under the same conditions, suggesting that 5 and 6 are identical in solution.  In contrast to 

5, no additional copper(II) signal is observed in the spectrum of 6 due to its higher pH of 

6.43.  Lending further credence to this argument, direct addition of triethylamine to 

solutions of 5 results in spectroscopic features that are identical to those of 6 without any 

Figure 3-9.  UV-vis spectrum of [Cu(2-LN2S)Cl(MeOH)] in MeOH. 
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detectable signal for solvated copper(II).  Conversely, addition of dilute hydrochloric acid 

solutions to either 5 or 6 results in concomitant ligand dissociation and release of 

copper(II), as evidenced by the resulting EPR and UV-vis spectra where only solvated 

copper(II) is detected.  Based on this evidence, it is clear that 5 and 6 are identical in 

solution and that the imidic acid form of the ligand, as in 5, is stabilized only in the solid 

state. 

 Reactions of ligands 3- and 4-HLN2S with cupric chloride or cupric triflate gave 

very different results than the reactions described above with 2-HLN2S.  In both cases, an 

insoluble green powder was obtained, regardless of the presence of base.  Despite 

repeated efforts, we were neither able to obtain X-ray quality crystals of these products 

Figure 3-10.  Experimental EPR Spectrum of [Cu(2-LN2S)Cl(MeOH)] in 1:1 
CH2Cl2/MeOH at 120 K and a microwave frequency of 9.43 GHz. 



 98

nor conclusively characterize their structures due to their very low solubility.  Reactions 

of 3- and 4-HLN2S with [Cu(iPr3TACN)Cl2] were fraught with similar difficulties. 

3.3. Synthesis and Characterization of [Zn(2-MeLN2S)Cl2] 

Ligand 2-MeLN2S was designed and synthesized as an analogue of 2-HLN2S that 

would be physically incapable of amidate or imidic acid nitrogen coordination.  With its 

tertiary methyl amide, it was hoped that 2-MeLN2S would favor a bridging copper(II) 

coordination mode rather than a 1:1 square pyramidal complex like 5 or 6.  Unlike 2-

HLN2S, 2-MeLN2S proved to be a poor copper(II) ligand and no structural information was 

obtained for comparison of its copper coordination chemistry with that of the other 

ligands.  The reaction of 2-MeLN2S with ZnCl2 in methanol, however, gave X-ray quality 

crystals of [Zn(2-MeLN2S)Cl2] (7) (Figure 3-11).  As anticipated, the X-ray crystal 

structure of 7 confirmed the complete inability of the amide nitrogen to coordinate the 

metal ion (Figure 3-12).  Instead, the amide is rotated 180o and coordinates via its 

carbonyl oxygen, forcing the thioether sulfur away from the metal ion and hindering its 

ability to coordinate.  In addition to the N(pyridyl) and O(amide) donor atoms from 2-

MeLN2S, the coordination sphere of the tetrahedral zinc(II) ion is completed by two 

chloride anions. 

  

N

N

O
SZn

Cl

ClZnCl2
 MeOH

7

2-MeLN2S

4

 

Figure 3-11.  Synthesis of [Zn(2-MeLN2S)Cl2] (7). 
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Bond Lengths (Å) Angles (deg) 
Zn1–N1 2.039(1) N1–Zn1–Cl1   82.0(1) 

 Zn1–O1 2.013(1) N1–Zn1–Cl2   96.9(1) 
 Zn1–Cl1 2.212(1) N1–Zn1–O1   84.1(1) 
 Zn1–Cl2 2.209(1) O1–Zn1–Cl1   93.3(3) 
   O1–Zn1–Cl2 103.9(1) 
   Cl1–Cu1–Cl2   97.1(1) 

Figure 3-12.  Representation of the X-ray crystal structure of [Zn(2-MeLN2S)Cl2] (7) as 
50% thermal ellipsoids.  H atoms have been omitted for clarity.  Selected bond distances 

(Å) and angles (deg) relevant to zinc coordination are tabulated. 

 

 

3.5. [Cu(2-LN2S)Cl(CH3OH)] Thiolate Reactivity 

Despite our difficulties with these ligands with respect to their intended purposes, 

the similarity of the N2S(thioether) ligand set in 6 to the His2Met ligand set of the Cu-I 

site in azurin, for example, prompted us to attempt the synthesis of thiolate complexes of 

6.  Success with this approach would potentially lead to the development of new neutral 
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models of the Cu-I electron transfer center.  To this end, methanol solutions of 6 were 

treated with thiols 2,6-dimethylthiophenol (HSAr) or tritylthiol (HSCPh3) at -80 °C in the 

presence of triethylamine for in situ thiol deprotonation.21  Alternatively, 6 could also be 

treated using the sodium thiolate salts of HSAr22 and HSCPh3
23 without addition of 

triethylamine to give the same results (Figure 3-13).  These reactions all occur 

spontaneously and are accompanied by dramatic color changes of their respective 

solutions from the deep blue of 6 to scarlet red for 6(SAr) and to dark green for 6(SCPh3). 

 

 

 

 

Rather than forming stable complexes, 6(SAr) and 6(SCPh3) both undergo 

spontaneous redox decomposition at room temperature.  In this process, the thiolate 

sulfur is oxidized to disulfide, reducing copper(II) to copper(I) in the process.  The redox 

decomposition of 6(SCPh3) also produces a white powder precipitate during the course of 

its decomposition, vide infra. 

Figure 3-13.  Syntheses of 6(SAr) and 6(SCPh3). 
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The redox decomposition of copper(II)-thiolates is well precedented in the 

literature and results in the complete bleaching of intensely colored copper(II) solutions 

as the reaction proceeds.24, 25  Interestingly, reactions of 6(SAr) and 6(SCPh3) appear to 

progress to only one-half completion and return half of 6 unreacted.  Addition of a full 

second equivalent of thiolate is required to completely bleach these solutions.  Since only 

one equivalent of thiolate per copper(II) should be sufficient to reduce all of the 

copper(II) ion in a normal redox decomposition, the requirement for two thiolate 

equivalents per copper(II) in our reactions was puzzling and unprecedented, demanding 

further investigation.  While 6(SCPh3) has a half-life of about 90 minutes at room 

temperature, 6(SAr) decomposes within one minute under the same conditions.  In either 

case, the high instability of these complexes at room temperature renders them 

undesirable candidates as potential Cu-I models.  Because of its higher relative stability, 

however, the decomposition of 6(SCPh3) was chosen for a more thorough investigation 

of its interesting redox behavior described above. 

The UV-vis spectrum of 6(SCPh3), obtained in THF immediately after thiolate 

addition to 6, shows a high intensity transition at 428 nm (Figure 3-14).  The extinction 

coefficient of this transition is 2618 M-1cm-1 and lies in the characteristic range for a 

typical thiolate-copper(II) LMCT transition, strongly supporting its assignment as such.22  

A second transition at 555 nm is also evident in this spectrum with an extinction 

coefficient of 460 M-1cm-1 and is attributed to a second thiolate-copper(II) LMCT and/or 

a N(pyridine)  Cu(II) LMCT as observed for pure 6.1 

The redox decomposition of 6(SCPh3), followed in the same UV-vis spectrum, 

was observed to proceed cleanly as per the isosbestic point at 338 nm.  While the 
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S(thiolate)  Cu(II) LMCT band at 428 nm completely diminishes, the 555 nm transition 

undergoes a red shift of about 50 nm with the final spectrum corresponding exactly to the 

spectrum of 6 in the same solvent.  Additionally, the amount of 6 remaining after the 

redox decomposition was quantified by its extinction coefficient as exactly half of the 

original amount of 6 introduced into the reaction originally.  Conclusive identification 

was achieved by X-ray crystallographic analysis of remaining 6 recrystalized from the 

decomposition mixture. 

 

 

 

Characterization of the white precipitate that formed during the reaction was also 

performed.  Unfortunately, all efforts to dissolve this powder result in its rapid 

decomposition to an insoluble brown solid within minutes.  Ultimately, the empirical 

formula of the white powder was determined by elemental analysis to be [Cu(SCPh3)] 

(Anal calcd for C19H15CuS: C, 67.33; H, 4.46, N, 0.00; S, 9.46. Found: C, 67.58; H, 4.85; 

Figure 3-14.  UV-vis spectrum of 6(SCPh3) in methanol at 25 oC.  Individual scans 
showing the redox decomposition were measured at 10 minute intervals. 
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N, 0.17; S, 9.43).  1H NMR of the powder in d8-THF, obtained immediately after 

dissolving the sample, confirmed this assignment.  Additionally, gravimetric analysis of 

the collected powder accounts for exactly 50% of the original copper ions and half of the 

HSCPh3.  A mixture of organic products, including the remaining half of the HSCPh3 in 

the form of disulfide, was separated from the decomposition solution by flash column 

chromatography and characterized by NMR and GC-MS.  When a second equivalent of 

thiolate is titrated into the remaining 6 in the decomposition mixture, all of the Cu(II) is 

reduced as indicated by the complete bleaching of the solution and formation of more 

[Cu(SCPh3)].  In this case, the excess thiolate added to the solution is sequestered by 

copper(I) instead of from unreacted 6(SCPh3).  The absence of any observable features in 

the UV-vis or EPR after this decomposition confirms the nonexistence of any detectable 

quantities of Cu(II). 

3.6. Conclusions 

 The new ligands 2-, 3-, and 4-HLN2S were prepared by DCC-mediated coupling of 

(methylthio)acetic acid to 2-, 3-, or 4-picolylamine.  2-HLN2S tautomerizes to its imidic 

acid form upon coordination to cupric chloride in methanol.  Under basic conditions, 2-

HLN2S becomes deprotonated and mono-anionic with a high affinity for copper(II) as 

evidenced by its ability to sequester copper(II) directly from normally robust 

[Cu(iPr3TACN)Cl2] complexes.  The formation of the amidate is facilitated by the 

thioether coordination, forcing the amide nitrogen to strongly interact with the copper(II) 

ion.  The methylated amide variant of this ligand, 2-MeLN2S, does not have a high affinity 

for copper(II), but readily complexes zinc(II).  X-ray structural analysis of this complex 

reveals amide carbonyl and pyridyl coordination to the metal ion.  The orientation of the 
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amide, however, forces the thioether away from the metal center, preventing sulfur 

coordination.  Reactions of 3- and 4-HLN2S with cupric chloride or cupric triflate form 

insoluble green products.  Although no structural information for these products has been 

determined to date, their known properties, particularly their low solubility, lend credence 

to the notion that they are highly stable coordination polymers. 

With the notable exceptions of several stable copper(II) and mixed valence copper 

thiolate complexes,23, 26 copper(II) thiolates are readily reduced to copper(I) with 

concomitant oxidation of thiolate to disulfide.25  Our preliminary experiments, however, 

show that the decompositions of 6(SAr) and 6(SCPh3) proceed by an alternate pathway.  

When solutions of 6(SCPh3) or 6(SAr) are allowed to equilibrate at room temperature, 

their color does not fully bleach, but remains the blue color of the starting material, 6.  

From extensive spectroscopic, X-ray crystallographic, and gravimetric analysis studies, it 

is apparent that only half of the copper(II) is reduced per equivalent of thiolate, leaving 

the remainder unchanged as 6.  Furthermore, only half of the thiolate is oxidized to 

disulfide.  These data are consistent with the reactions illustrated in equations 1 and 2, 

where the relatively slow redox formation of copper(I) is followed by a fast step where 

the copper(I) sequesters the thiolate from remaining 6(SCPh3), producing [Cu(SCPh3)] 

and liberated 6.  Consequently, these one-electron reactions require two full equivalents 

of thiolate to reduce all of the copper(II) since one equivalent of thiolate is rapidly 

sequestered by generated copper(I). 

          CuII(2-LN2S)(SCPh3) CuI (SCPh3)2 2-HLN2Sslow + +  (1) 

CuI CuII(2-LN2S)(SCPh3) fast CuI(SCPh3) CuII(2-LN2S)++  (2) 



 105

In summary, although the ligands described in this work did not adequately 

perform their intended design roles as His-Cys bridge analogues to yield dinuclear 

models of the CuNiR active site, interesting copper(II) and zinc(II) complexes were 

synthesized and characterized that may have relevance to various biological sites.  

Finally, a new mode of copper(II)-thiolate redox decomposition has been discovered 

where two equivalents of thiolate are required to fully reduce a single equivalent of 

copper(II). 

3.7. Experimental 

General.  All reagents were purchased from commercial sources and used 

without additional purification unless otherwise noted.  Solvents were dried and purified 

under nitrogen using standard methods.  Et2O, THF, and pentane were distilled over 

NaK2 alloy, CH3CN and CH2Cl2 over CaH2, MeOH over Mg(OMe)2, and toluene over 

Na.  Degassing of the dried solvents was achieved by triple freeze-pump-thaw degas 

cycles.  Oxygen- and/or water-sensitive reactions were carried out using Schlenk vacuum 

line techniques and/or by using an M. Braun UNILab inert atmosphere glovebox with 

nitrogen as its working gas.  Preparative procedures for the syntheses of 

[Cu(iPr3TACN)Cl2] and N-methyl(2-pyridyl)methaneamine are published elsewhere.16, 27 

Spectroscopy.  Infrared (IR) spectra were prepared by pressing the sample into a 

KBr “glass” and were collected using a Nicolet NEXUS 470 FTIR spectrophotometer 

coupled to a computer running OMNIC E.S.P (version 5.1) software for spectrum 

display, background baseline correction, scaling, and automatic peak-picking.  Unless 

otherwise stated, samples for electronic absorption (UV-vis) spectroscopy were prepared 

at 5 mM concentrations in a 5 mL 1.00 cm path length quartz cuvette.  UV-vis data were 
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obtained using a Shimadzu UV2401PC UV-vis spectrophotometer capable of a 200 - 

1100 nm scan range and having a dedicated variable temperature Neslab RTE-140 

circulating heater/chiller and computer interface running Shimadzu UV Probe (v. 1.00) 

for instrument control and spectrum display.  All UV-vis spectra were obtained at 298.0 

K unless otherwise noted.  1H and 13C NMR spectra were measured at room temperature 

on a Varian 300 MHz (Mercury) spectrometer or a Varian 400 MHz spectrometer 

coupled to the Varian VNMR software package.  Solvent was used as an internal 

chemical shift standard unless otherwise stated.  All signals are reported in ppm relative 

to the reported value(s) for the solvent.  X-band (~9.45 GHz) EPR spectra were obtained 

using a Bruker EMX spectrometer fitted with a either a liquid nitrogen finger dewer or a 

liquid nitrogen cryostat (BVT-3000).  Temperature and g value calibrations were 

performed as described.28 

Physical Methods.  Capillary Gas Chromatography Mass Spectrometry (GC-MS) 

analyses were performed in a Trace GC 2000 and Thermoquest GCQ/Polaris mass 

spectrometer (ThermoQuest Finnigan, San Jose, CA).  The software controlling the 

system was Xcalibur (version 1.1) from ThermoQuest Finnigan.  Electron impact (EI) 

was the ionization source and the typical electron energy was set to 70 eV with the ion 

source temperature maintained at 200 oC.  The instrument was calibrated with the 

perfluorotributyl amine FC-43 over a m/z range of 50-650 Da.  Organic components were 

separated in an Alltech-ECCNO-OAP (30 m x 0.25 mm x 0.25 μm).  The injector 

temperature was set at 210 oC and a splitless mode of injection was used in all analyses.  

The GC temperature gradient was set to 50 oC, holding for 5 minutes, then increased at 

20 oC/minute to 250 oC holding for 20 minutes.  The GC system was run at a constant 
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flow rate of 1.0 mL/minute of helium gas (Minimum Purity 99.999%).  ElectroSpray 

Ionization Mass Spectrometry (ESI-MS) data were recorded using a Q-TOF quadrupole 

time-of flight mass spectrometer (Micromass, Manchester, UK) equipped with a Z-spray 

electrospray ionization (ESI) source.  The software controlling the instrument was 

MassLynx (version 4.0).  A Harvard syringe pump (Harvard Apparatus, South Natick, 

MA, USA) was used to deliver the sample solution to the electrospray source at a flow 

rate of 5 μl/min.  The electrospray capillary voltage was set at 3000 V and the cone 

voltage was typically set to 30 V.  The temperature for desolvation and source was set to 

90 oC.  The desolvation gas (nitrogen, 99.99%) flow rate was set to 250 liters per hour.  

Nebuliser gas flow was set to 20 liters per hour.  The mass spectrometer was calibrated 

over a mass range of 50-1500 Da using a 0.05 μg/μL CsI and 2 μg/μL NaI solution in 

methanol. 

 

N-(pyridin-2-ylmethyl)-(methylthio)acetamide (2-HLN2S, 1).  A solution of 

(methylthio)-acetic acid (1.00 g, 9.42 mmol), HOBt (1.53 g, 11.3 mmol), and 2-

(aminomethyl)-pyridine (1.02 g, 9.43 mmol) in 20 mL THF was cooled to -10 °C in an 

ice/salt bath.  N,N-Dicyclohexylcarbodiimide monohydrate (DCC·H2O) (2.33 g, 11.3 

mmol) was dissolved in a minimal volume of THF, cooled to -10 °C, and added in one 

portion to the (methylthio)acetic acid solution.  The resulting mixture was stirred at -10 

°C for 1 hour and then allowed to warm to room temperature.  Stirring was continued at 

room temperature for 15 hours.  The reaction mixture was then cooled to -40 °C and the 

DCU suspension was filtered off.  The filtrate was concentrated in vacuo and the desired 

product was distilled from the reaction byproducts using a Kugelrohr distillation 
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apparatus (170 °C, 0.18 torr).  The product was stored at -45 °C (1.64 g, 90 %).  1H NMR 

(CDCl3, 300 MHz): δ 8.48 (d, J = 4.7 Hz, 1H), 7.96 (s, 1H), 7.56 - 7.66 (m, 1H), 7.10 - 

7.26 (m, 2H), 4.55 (d, J = 5.22 Hz, 2H), 3.22 (s, 2H), 2.11 (s, 3H) ppm.  13C{1H} NMR: δ 

168.47, 156.02, 148.78, 136.48, 122.13, 121.66, 44.53, 37.95, 16.29 ppm.  FTIR (KBr, 

cm-1): 3063, 2927, 2854, 1652 (υCO), 1221, 757.  GC/MS: tR 14.14 min; m/z (relative 

intensity) 196 (1, M+), 92 (100).  Anal. Calcd for C9H12N2OS: C, 55.08; H, 6.16; N, 

14.27. Found: C, 54.85; H, 6.54; N, 13.71. 

 

N-(pyridin-3-ylmethyl)-(methylthio)acetamide (3-HLN2S, 2).  A solution of 

(methylthio)-acetic acid (2.00 g, 18.8 mmol), HOBt (3.06 g, 22.6 mmol), and 3-

(aminomethyl)-pyridine (2.04 g, 18.8 mmol) in 20 mL THF was cooled to -10 °C in an 

ice/salt bath.  N,N-Dicyclohexylcarbodiimide monohydrate (DCC·H2O) (2.66 g, 22.6 

mmol) was dissolved in a minimal volume of THF, cooled to -10 °C and added in one 

portion to the (methylthio)acetic acid solution.  The resulting mixture was stirred at -10 

°C for 1 hour and then allowed to warm to room temperature.  Stirring was continued at 

room temperature for 15 hours.  The reaction mixture was then cooled to -40 °C and the 

DCU suspension was filtered off.  The filtrate was concentrated in vacuo and the 

remaining oil-solid mixture was separated by Kugelrohr distillation (170 C, 0.05 torr).  

The desired product was obtained as a yellow oil in the Kugelrohr collection flask (2.58 

g, 70 %).  1H NMR (CDCl3, 300 MHz): δ 7.10 – 8.42 (m, 5H), 4.35 (d, J=6.00 Hz, 2H) 

3.19 (s, 2H), 1.98 (s, 3H) ppm.  13C{1H} NMR: δ 169.52, 148.95, 148.64, 135.88, 134.42, 

123.86, 41.23, 37.97, 16.48 ppm.  Anal. Calcd for C9H12N2OS: C, 55.08; H, 6.16; N, 

14.27. Found: C, 55.88; H, 6.22; N, 15.34. 
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N-(pyridin-4-ylmethyl)-(methylthio)acetamide (4-HLN2S, 3).  A solution of 

(methylthio)acetic acid (2.00 g, 18.8 mmol), HOBt (3.06 g, 22.6 mmol), and 4-

(aminomethyl)-pyridine (2.04 g, 18.8 mmol) in 20 mL THF was cooled to -10 °C in an 

ice/salt bath.  N,N-Dicyclohexylcarbodiimide monohydrate (DCC·H2O) (2.66 g, 22.6 

mmol) was dissolved in a minimal volume of THF, cooled to -10 °C and added in one 

portion to the (methylthio)acetic acid solution.  The resulting mixture was stirred at -10 

°C for 1 hour and then allowed to warm to room temperature.  Stirring was continued at 

room temperature for 15 hours. The reaction mixture was then cooled to -40 °C and the 

DCU suspension was filtered off.  The filtrate was concentrated in vacuo and the 

remaining oil-solid mixture was separated by Kugelrohr distillation (170 C, 0.05 torr).  

The desired product was obtained as a yellow oil in the Kugelrohr collection flask (2.50 

g, 68 %).  1H NMR (CDCl3, 300 MHz): δ 7.18 – 8.38 (m, 5H), 4.41 (d, J=6.15 Hz, 2H) 

3.17 (s, 2H), 2.02 (s, 3H) ppm.  13C{1H} NMR: δ 170.24, 150.83, 147.77, 123.24, 42.59, 

37.92, 16.60 ppm.  GC/MS: tR 15.0 min; m/z (relative intensity) 196 (5, M+), 150 (100). 

 

N-Methyl-2-methylsulfanyl-N-pyridin-2-ylmethyl-acetamide (2-MeLN2S, 4).  A 

solution of (methylthio)acetic acid (0.43 g, 4.09 mmol), HOBt (0.75 g, 4.91 mmol), and 

N-methyl(2-pyridyl)methaneamine (0.50 g, 4.09 mmol) in THF (10 mL) was cooled to -

10 °C in an ice/salt bath.  N,N-Dicyclohexylcarbodiimide monohydrate (DCC·H2O) (1.01 

g, 4.91 mmol) was dissolved in a minimal volume of THF, cooled to -10 °C and added in 

one portion to the (methylthio)acetic acid solution.  The mixture was stirred at -10 °C for 

1 hour and then allowed to warm to room temperature.  Stirring was continued at room 
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temperature for 30 hours.  The reaction mixture was then cooled to -40 °C and the DCU 

suspension was filtered off.  The filtrate was concentrated in vacuo and then dissolved in 

6 mL of chloroform.  This solution was loaded onto a RediSep (35 gr) flash column.  

Impurities were eluted from the column with chloroform and the desired product was 

obtained in high purity as an orange oil following subsequent elution with methanol and 

removal of the solvent in vacuo (0.86 g, 100 %).  1H NMR (CDCl3, 300 MHz): δ 8.47 (m, 

1H), 7.60 (m, 1H), 7.08 - 7.22 (m, 2H), 4.62 – 4.66 (s, 2H), 3.27 - 3.32 (s, 2H), 2.91 - 

3.06 (s, 3H), 2.13 - 2.17 (s, 3H) ppm.  13C{1H} NMR: δ 169.25, 157.22, 149.28, 137.30, 

122.43, 121.90, 55.93, 53.43, 35.51, 16.16 ppm.  FTIR (KBr, cm-1): 3062, 2920, 2855, 

1717, 1645 (υCO), 1590, 1571, 1476, 1435, 1397, 1300, 1257, 1151, 1099, 1049, 993, 

939, 783, 753, 607.  GC/MS: tR 14.15 min; m/z (relative intensity) 210 (4, M+), 93 (100). 

 

[Cu(2-HLN2S*)Cl2] (5).  CuCl2·2H2O (197 mg, 1.15 mmol) was weighed into a 50 mL 

Erlenmeyer flask and dissolved in 15 mL methanol.  2-HLN2S (250 mg, 1.27 mmol) was 

weighed into another 50 ml Erlenmeyer flask and dissolved in 15 mL methanol.  This 

solution was added to the CuCl2 mixture in a single portion, yielding an dark blue 

solution after several minutes.  The reaction mixture was stirred for 5 hours at room 

temperature then cooled to -40 °C, resulting in the formation of a blue precipitate.  The 

blue precipitate was filtered from the solution onto a fritted glass filter, redissolved from 

the frit in water, and transferred to a 50 mL round bottom flask.  The water was then 

removed under reduced pressure and the remaining solid was redissolved into a minimal 

amount of warm methanol.  Recrystallization from MeOH/Et2O yielded X-ray-quality, 

dark blue crystals of the desired product (187 mg, 49.2 %).  UV-vis (methanol) [λmax, nm 
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(ε, M-1 cm-1)]: 656 (140).  FTIR (KBr, cm-1): 3107, 3068, 3045, 2956, 2914, 2749, 2661, 

2463, 2295, 1685, 1642, 1608, 1570, 1493, 1480, 1437, 1441, 1426, 1397, 1374, 1360, 

1326, 1282, 1228, 1160, 1084, 1054, 1026, 993, 966, 844, 786, 719, 646.  Anal. Calcd for 

C9H12Cl2CuN2OS: C, 32.69; H, 3.66; Cl, 21.44; N, 8.47. Found: C, 32.38; H, 3.72; Cl, 

21.57; N, 8.36. 

 

[Cu(2-LN2S)Cl(MeOH)] (6).  CuCl2·2H2O (197 mg, 1.15 mmol) was weighed into a 50 

mL Erlenmeyer flask and dissolved into 15 mL of methanol.  To this stirring solution was 

added Et3N (349 mg, 3.45 mmol) via syringe, resulting in the immediate formation of a 

green precipitate.  2-HLN2S (250 mg, 1.27 mmol) was weighed into another 50 ml 

Erlenmeyer flask and dissolved in 15 mL of methanol.  This solution was added to the 

CuCl2 mixture in a single portion, yielding an dark blue solution after several minutes.  

The reaction mixture was stirred for 5 hours at room temperature and then cooled to -40 

oC.  The crude product precipitated as a blue solid and was filtered away from the 

solution.  The filtrate was collected in a 50 mL round bottom flask, concentrated, and 

again cooled to -40 oC.  The precipitation/filtration process was repeated until no 

additional solid could be collected.  The combined crude product was combined and 

dissolved in a minimal amount of methanol.  Recrystallization from MeOH/Et2O yielded 

X-ray-quality, dark blue crystals of the desired product (127 mg, 38.8 %).  UV-vis 

(methanol) [λmax, nm (ε, M-1 cm-1)]: 642 (240).  EPR (9.433 GHz, 1:1 CH2Cl2/toluene, 77 

K) g|| = 2.30, A||
Cu = 87 x 10-4 cm-1, g⊥ = 2.08.  FTIR (KBr, cm-1): 3144, 2871, 

2806,1593,1564,1483, 1409, 1382, 1345, 1315, 1283, 1227, 1212, 1162, 1089, 1051, 

1026, 968, 881, 764, 719, 673, 646, 469, 418, 352, 310, 251, 216, 205.  Anal. Calcd for 
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C10H15ClCuN2O2S: C, 36.81; H, 4.63; Cl, 10.87; N, 8.59.  Found: C, 36.92; H, 4.42; Cl, 

11.11; N, 8.82. 

 

[Zn(2-MeLN2S)Cl2] (7).  2-MeLN2S (250 mg, 1.19 mmol) was weighed into a 50 ml 

Erlenmeyer flask and dissolved in 10 mL of methanol.  ZnCl2 (162 mg, 1.07 mmol) was 

weighed into a separate 50 mL Erlenmeyer flask and dissolved into 10 mL methanol 

which was then added to the 2-MeLN2S solution in a single portion.  The reaction mixture 

was stirred for 5 hours at room temperature and the solvent then removed in vacuo.  To 

the remaining solid was added 10 mL of chloroform.  The desired product was obtained 

in high purity as a light tan powder after filtering this solution and removing the filtrate 

solvent in vacuo.  X-ray-quality crystals were obtained by slow evaporation of a 

concentrated solution of the tan powder (347 mg, 93 %).  FTIR (KBr, cm-1): 3435, 3106, 

3054, 3031, 2991, 2959, 2916, 2829, 1587 (s, C=O), 1486, 1459, 1442, 1406, 1352, 

1323, 1280, 1225, 1150, 1123, 1095, 1059, 1029, 1001, 986, 874, 836, 797, 775, 707, 

660, 652, 618, 571, 534, 480, 464, 422. Anal. Calcd for C10H14Cl2N2OSZn: C, 34.65; H, 

4.07; N, 8.08. Found: C, 34.72; H, 4.07; N, 8.09. 

 

X-ray Crystallography: [Cu(2-HLN2S*)Cl2] (5):  A blue crystal of the 

complex, having approximate dimensions 0.24 x 0.22 x 0.16 mm, was mounted on a 

glass capillary with heavy-weight oil and quickly placed under a cold stream of nitrogen 

on the diffractometer.  The data were collected at 153(2) K on a Bruker Apex 

diffractometer using Mo Kα  (λ =0.71073 Å) radiation.29  Important crystallographic 

information is summarized in table 3-1.  Intensity data, which approximately covered the 
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full sphere of the reciprocal space, were measured as a series of ω oscillation frames each 

0.3° for 21 seconds per frame.  The detector was operated in 512 x 512 mode and was 

positioned 6.12 cm from the crystal.  Coverage of unique data was 98.2 % complete to 

52° (2θ).  Cell parameters were determined from a non-linear least squares fit of 3248 

reflections in the range of 4.3 < θ < 25.4°.  A total of 4330 reflections were measured. 

The data were corrected for absorption by multi-scan method form equivalent reflections 

giving minimum and maximum transmission of 0.5987 and 0.7018.  The data were 

merged to form a set of 2189 unique reflections with R(int) = 0.026. 

The structure was solved by the direct method using SHELXTL system and 

refined by full-matrix least squares on F2 using all reflections.30  All the non-hydrogen 

atoms were refined anisotropically.  All the hydrogen atoms were included with idealized 

parameters except the hydrogen atom on O1 atom, which was located and refined 

isotropically.  The asymmetric unit contains a C9H12N2OSCl2Cu moiety that forms H-

bonds with another C9H12N2OSCl2Cu molecule in the unit cell.  Final R1 = 0.025 is based 

on 2137 “observed reflections” [I > 2σ(I)] and wR2 = 0.062 is based on all reflections 

(2189  unique reflections).  The final structure was graphically presented using the 

Accelrys Materials Studio software package.31 

 

[Cu(2-LN2S)Cl(MeOH)] (6):  A deep blue crystal of the complex, having approximate 

dimensions 0.56 x 0.52 x 0.48 mm, was mounted on a glass capillary with heavy-weight 

oil and quickly placed under a cold stream of nitrogen on the diffractometer.  The data 

were collected at 120(2) K on a Bruker Apex diffractometer using Mo Kα (λ =0.71073 

Å) radiation.29  Important crystallographic information is summarized in table 3-1.  
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Intensity data, which approximately covered the full sphere of the reciprocal space, were 

measured as a series of ω oscillation frames each 0.3° for 10 sec / frame.  The detector 

was operated in 512 x 512 mode and was positioned 6.12 cm from the crystal.  Coverage 

of unique data was 98.0 % complete to 54° (2θ).  Cell parameters were determined from 

a non-linear least squares fit of 4921 reflections in the range of 4.2 < θ < 26.4°.  A total 

of 7396 reflections were measured.  The data were corrected for absorption by multi-scan 

method form equivalent reflections giving minimum and maximum transmission of 

0.3850 and 0.4312.  The data were merged to form a set of 2694 unique reflections with 

R(int) = 0.016. 

The structure was solved by the direct method using SHELXTL system and 

refined by full-matrix least squares on F2 using all reflections.30  All the non-hydrogen 

atoms were refined anisotropically.  All the hydrogen atoms were included with idealized 

parameters except the hydrogen atoms on O1 atom, which was located and refined 

isotropically.  The asymmetric unit contains a C10H15N2O2SClCu moiety that forms H-

bonds with another C9H12N2OSCl2Cu molecule in the unit cell.  Final R1 = 0.0270 is 

based on 2673 “observed reflections” [I > 2σ(I)] and wR2 = 0.050 is based on all 

reflections (2673 unique reflections).  The final structure was graphically presented using 

the Accelrys Materials Studio software package.31 

 

[Zn(2-MeLN2S)Cl2] (7):  A colorless crystal of the complex, having approximate 

dimensions 0.22 x 0.20 x 0.16 mm, was mounted on a glass capillary with heavy-weight 

oil and quickly placed under a cold stream of nitrogen on the diffractometer.  The data 

were collected at 120(2) K on a Bruker Apex diffractometer using Mo Kα (λ =0.71073 
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Å) radiation.29  Important crystallographic information is summarized in table 3-2.  

Intensity data, which approximately covered the full sphere of the reciprocal space, were 

measured as a series of ω oscillation frames each 0.3° for 25 seconds per frame.  The 

detector was operated in 512 x 512 mode and was positioned 6.12 cm from the crystal.  

Coverage of unique data was 95.6 % complete to 56.6° (2θ). Cell parameters were 

determined from a non-linear least squares fit of 6136 reflections in the range of 2.2 < θ < 

28.3°.  A total of 15507 reflections were measured. 

The structure was solved by the direct method using SHELXTL system and 

refined by full-matrix least squares on F2 using all reflections.30  All the non-hydrogen 

atoms were refined anisotropically.  All the hydrogen atoms were included with idealized 

parameters.  There are four molecules in the unit cell.  Final R1 = 0.0178 is based on 

3220 “observed reflections” [I > 2σ(I)] and wR2 = 0.0478 is based on all reflections (3295 

unique reflections).  The final structure was graphically presented using the Accelrys 

Materials Studio software package.31 
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Table 3-1. Summary of crystallographic data for compounds 5 and 6. 

 5 6 

empirical formula C9H12Cl2CuN2OS  C10H15ClCuN2O2S 

formula weight 330.71 326.29 

crystal system trigonal triclinic 

space group P3(1) P-1 

a (Å) 6.9560(8) 7.3002(3) 

b (Å) 6.9560(8) 8.2461(4) 

c (Å) 21.791(5) 10.8430(5) 

α (deg) 90 78.059(1) 

β (deg) 90 80.354(1) 

γ (deg) 120 84.568(1) 

V (Å-3) 913.1(3) 628.36(5) 

Z 3 2 

density (calcd) 1.804 g/cm3 1.725 g/cm3 

temperature (K) 153(2) 120(2) 

crystal size (mm) 0.24 x 0.22 x 0.16 0.56 x 0.52 x 0.48 

diffractometer Bruker Apex Bruker Apex 

absorption coefficient 2.382 mm-1 2.107 mm-1 

radiation, λ (Å) Mo Kα, λ = 0.71073 Mo Kα, λ = 0.71073 

2θ max (deg) 52.0 54.0 

reflections collected 4330 7396 

independent reflections 2189 2694 

observed reflections 2137 2673 

variable parameters 501 334 

R1 [I > 2σ(I)] 0.0251 0.0197 

wR2 [I > 2σ(I)] 0.0617 0.0506 

R1 (all data) 0.0257 0.0199 

wR2 (all data) 0.0620 0.0508 

goodness-of-fit 1.023 1.051 

largest diff. peak and hole (e-1 Å-3) 0.492, -0.262 0.364, -0.437 
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Table 3-2. Summary of crystallographic data for compound 7. 

7 

empirical formula C10H14Cl2N2OSZn 

formula weight 346.56 

crystal system monoclinic 

space group P2(1)/n 

a (Å) 10.5046(5) 

b (Å) 8.6334(4) 

c (Å) 15.4007(8) 

α (deg) 90 

β (deg) 97.0570(10) 

γ (deg) 90 

V (Å-3) 1386.11(12) 

Z 4 

density (calcd) 1.661 g/cm3 

temperature (K) 120(2) 

crystal size (mm) 0.22 x 0.20 x 0.16 

diffractometer Bruker Apex 

absorption coefficient 2.292 mm-1 

radiation, λ (Å) Mo Kα, λ = 0.71073 

2θ max (deg) 56.6 

reflections collected 15507 

independent reflections 3295 

observed reflections 3220 

variable parameters 704 

R1 [I > 2σ(I)] 0.0178 

wR2 [I > 2σ(I)] 0.0476 

R1 (all data) 0.0183 

wR2 (all data) 0.0478 

goodness-of-fit 1.083 

largest diff. peak and hole (e-1 Å-3) 0.381, -0.213 
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CHAPTER 4. 

 

COPPER(II) REDUCTION BY THIOETHER 
SULFUR: A SYNTHETIC MODEL OF THE 

COPPER(II) REDUCTION BY METHIONINE IN 
ALZHEIMER’S DISEASE AMYLOID-β PEPTIDES



 123

4.1. Introduction 

The interesting chemistry with the new ligands described in chapter 3, particularly 

with ligand 2-HLN2S, prompted us to consider variations of their designs.  We were 

specifically interested in the copper chemistry of 2-HLN2S analogues that possess two 

amide and two thioether moieties.  Ligand 2-HLN2S is easily deprotonated to its mono-

anionic amidate form when coordinated to copper(II) under basic conditions.  In addition 

to the anionic ligand, the 2+ charge of the copper ion is balanced by an equatorially-

coordinated chloride ligand to give a neutral complex.  It was reasoned that two amide 

functionalities in an analogous ligands could both be deprotonated to afford neutral 

complexes where the ligand alone would balance the copper(II) charge.  This project was, 

thus, conceived with the intent of developing new type 1 copper (Cu-I) center models as a 

direct extension of our previous work. 

Interestingly, the reaction of one of the new ligands with copper(II) results in 

redox decomposition where the ligand thioether sulfurs are implicated as the copper(II) 

reductants, vide infra.  This unprecedented synthetic result has direct relevance to the 

proposed mechanism of copper(I) and Reactive Oxygen Species (ROS) generation in the 

amyloid-β (Aβ) peptides associated with neurodegeneration in Alzheimer’s Disease 

(AD). 

AD is one of several neurodegenerative disorders where the pathogenesis is 

linked to amyloid plaques.1  Postmortem analysis of AD brains reveals the presence of 

insoluble deposits of Aβ peptides, containing from 39 to 43 residues, proteolytically 

derived from transmembrane amyloid precursor glycoprotein (APP).2  The solution 

structure of Aβ(1-42), the principal form of Aβ deposits in AD brains, is shown in Figure 
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4-1.3  Although the molecular basis for the neurotoxicity in AD has not yet been 

conclusively identified, one prevalent hypothesis suggests that oxidative stress associated 

with neurotoxicity results from the oxidation of the unique methionine residue (Met-35) 

in Aβ.4-6 

 

 

 

 

 

The histidine-rich N-terminus of Aβ is known to bind copper(II) with high affinity 

and the reduction of copper(II) has been linked to Aβ’s neurotoxicity.7, 8  Both Aβ 

neurotoxicity and its ability to reduce copper(II) are dependent on the methionine (Met-

35) residue, leading to the notion that methionine sulfur reduces copper(II) with 

Figure 4-1.  Representation of the structure of Aβ(1-42).  Met-35 and Ile-31 are 
highlighted as CPK spheres.

DAEFR5HDSGY10EVHHQ15KLVFF20AEDVG25SNKGA30IIGLM35VGGVV40IA 
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concomitant generation of methionine cation radicals (reaction 1).4, 6, 9  In the oxygen-rich 

environment of the brain, neuronal damage may be compounded by the formation of 

ROS through Fenton chemistry by copper(I) mediated generation of •OH from O2 

(reactions 2 - 5),10 or perhaps through direct oxidation of cellular units (lipids, proteins, 

DNA) by Met(S+•) itself.11  Soluble oligomeric forms of Aβ have recently been shown to 

be responsible for neural dysfunction, possibly leading to onset of AD, raising the 

possibility that the chemistry involving Met-35 and copper(II) to generate copper(I), 

ROS, or Met(S+•) may occur prior to formation of insoluble amyloid plaques.12 

 

 

                                  (Aβ)Met(S) + CuII  (Aβ)Met(S+·) + CuI  (1) 

                                                   O2 + CuI  CuII + O2
·-  (2) 

                                                O2
·- + O2

·- + 2 H+  H2O2  (3) 

                                                   O2
·- + CuII  O2 + CuI  (4) 

                                            H2O2 + CuI  ·OH + CuII + OH-  (5) 

 

 

Normally, the reduction potentials for copper and methionine, or more generally 

thioethers, are not conducive for thermodynamically spontaneous redox reactions.13, 14  

The redox potential for the Met(S+•)/Met(S) couple is 1.2 to 1.5 V vs. Ag/AgCl,13 while 

typical CuII/I redox potentials range from -0.6 to 0.6 V vs. Ag/AgCl, depending on 

solvent and ligand identity.15  While the potential of copper in Aβ (0.5 V vs. Ag/AgCl)8 is 

higher than in typical copper complexes, it is still far too low to oxidize methionine under 
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normal circumstances.  Indeed, aside from the provocative proposal that Met(S) in Aβ 

reduces copper(II), there are no examples of spontaneous redox between copper(II) and 

methyl thioethers in the chemical or biochemical literature. 

Thermochemical and theoretical studies have both revealed that the reduction 

potential of sulfides can be significantly modulated by two-center three-electron, so-

called σσ*, interactions between the sulfur cation radical and an electronegative partner.6, 

13, 16  This type of interaction in Aβ between Met-35 and the Ile-31 backbone carbonyl 

was proposed to be responsible for its unusual ability to reduce copper.11, 17 

This chapter describes the synthesis and copper chemistry of a new family of 

ligands based on 2-Methyl-2-(2-pyridinyl)-1,3-propanediamine.18  One of these ligands 

carries out spontaneous reduction of bound copper(II) by its amide-activated thioether 

sulfur.  The implication of this unprecedented synthetic reactivity on the proposed 

mechanism of neurotoxicity in AD is also discussed. 

4.2. Ligand Syntheses 

2-Methyl-2-(2-pyridinyl)-1,3-propanediamine (2) was chosen as the diamine 

precursor from which to synthesize the new ligand described above.  The synthesis of 2 

was first reported by Friedrich, et al., in 1997 and begins with the high temperature and 

high pressure reaction of 2-ethylpyridine with formaldehyde (Figure 4-2).18  In reality, 

this reaction affords a mixture of equal amounts of mono- and di-alkylated products, 

along with unreacted starting materials.  The desired dialcohol product, as shown in the 

figure, is obtained only after careful vacuum distillation of the reaction mixture, but still 

in low purity. 
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The purified dialcohol is then reacted with tosyl chloride to yield the ditosylate 

product, 1.18  In the published procedure for the synthesis 1, pyridine is used as the 

solvent/base and the crude product is obtained as a tacky oil.  Pure 1 is obtained from the 

tacky material after a complex workup procedure.  Applying techniques used previously 

in our laboratory for the tosylation of ethylene glycol (see chapter 2),19 both the yield and 

purity of 1 were dramatically improved by using sodium hydroxide as the base and 

H2O/THF as the solvent mixture.  Using this method, recrystallization of the desired 

product by direct addition of ethanol to the reaction mixture consistently gives 

analytically pure 1, almost regardless of the purity of the dialcohol starting material. 

1 is subsequently reacted with sodium azide in DMSO, resulting in azide 

displacement of tosylate and formation of the diazide product.  Because of the potentially 

explosive character of organic azides,20 the diazide product is not isolated at any step of 

the scale reaction.  Instead, DMSO is replaced in portions with pyridine and the diazide is 

Figure 4-2.  Synthesis of 2-Methyl-2-(2-pyridinyl)-1,3-propanediamine (2) 
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immediately converted to the diamine, 2, using the Staudinger reaction.21  The structure 

of 2 is very similar to 2-picolylamine except for its central quaternary carbon and second 

amine arm.  Metal complexes of several aryl amine derivatives of 2 have been reported, 

including Zr, Ti, and Hf,18, 22 but there are no reported copper complexes of this ligand.  

 Inspired by the interesting copper(II) chemistry of N-(2-pyridylmethyl)acetamide 

(pmac) previously reported by our group,23 the new ligand LPy(ac)2 (3) was synthesized by 

reaction of 2 with acetic anhydride (Figure 4-3).  The desired product is easily obtained 

as a fine pale-yellow powder following recrystallization from ethanol. 

 

 

 Toward our original synthetic goal, 2 was also reacted with (methylthio)acetic 

acid using DCC/HOBt peptide coupling reagents to yield LPy(acSMe)2 (4) (Figure 4-4).  

This new ligand is the diamine dithioether analogue of 2-HLN2S,24 and was envisioned to 

react with copper(II) to become anionic in its amidate form.  The symmetric structure of 

4, with the methyl group of the quaternary carbon forcing the arms to the same side of the 

molecule, was expected to promote a capping coordination mode of the ligand by its 

Figure 4-3.  Synthesis of LPy(ac)2 (3). 
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pyridyl and amidate nitrogens.  Coordination of at least one thioether sulfur was also 

anticipated based on our previous experience.24 

 

 

 To systematically probe the effect(s) of each functional group in 4 on its 

coordination chemistry, and having already synthesized 3 which is essentially 4 without 

its methyl thioethers, modifications to the remainder of the ligand were carried out.  Since 

amide nitrogens are poor ligands, we began with conversion of the amide groups of 4 to 

amines.  Reaction of 4 with LiAlH4 is sufficient for this reduction on a small scale and 

proceeds without adverse effects to the remainder of the ligand, yielding LPy(SMe)2 (5) in 

high purity (Figure 4-5). 

Figure 4-4.  Synthesis of LPy(acSMe)2 (4). 
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With the methyl thioether and amide variants complete, the pyridyl ring itself was 

targeted next.  Pyridyl-free 4 was obtained by simple reaction of 1,3-diaminopropane 

with (methylthio)acetic acid, yielding L(acSMe)2 (6) (Figure 4-6).  Other than the absence 

of pyridyl and methyl at the quaternary carbon, 6 is identical to 4 in all respects. 

 

 

 Finally, in an effort to improve the yield of 5 and simultaneously circumvent the 

requirement to reduce 4 with LiAlH4 in preparative-scale syntheses of this compund, 2 

Figure 4-5.  Synthesis of LPy(SMe)2 (5) 
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was mono-tosylated at each of its amine nitrogens to give 2-Methyl-N,N'-di(p-

toluenesulfonyl)-2-pyridin-2-ylpropane-1,3-diamine (7).  It was hoped that reaction of 7 

with 2-(methylthio)ethyl tosylate followed by detosylation would more efficiently yield 

5.  Numerous attempts to react 7 with 2-(methylthio)ethyl tosylate, however, continually 

resulted in a mixture of products (Figure 4-7).  It was later discovered that 2-

(methylthio)ethyl tosylate is unstable due to its susceptibility to intramolecular 

nucleophilic attack by its thioether sulfur, especially at elevated temperatures, eliminating 

tosylate.25  This process initially results in the formation of three-member sulfonium rings 

that subsequently polymerize. 

 

 

 The instability problem was surmounted and the synthesis improved by reversal 

of the reagent functional groups.  Instead of reacting 7 with unstable 2-(methylthio)ethyl 

tosylate, 1 was reacted with 2-(methylthio)-N-tosylethanamine.26  This simple alteration 

resulted in the successful preparation of the tosyl-protected product, LPy(TsSMe)2 (8) 

(Figure 4-8) and has the advantage of not requiring the preparation or use of 2.27 

 

Figure 4-7.  Attempted reaction of 7 with 2-(methylthio)ethyl tosylate 
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X-ray quality crystals of 8 were obtained by slow solvent evaporation from a 

concentrated ethanol solution of the purified product.  The X-ray crystal structure of 8 

clearly shows its tosyl-protected amines, methyl thioether arms, pyridyl ring, and central 

quaternary carbon, all possessing normal geometric parameters (Figure 4-9).27  More 

careful examination of this structure reveals the relative positions of each of these groups.  

The methyl of the quaternary carbon forces the pyridyl nitrogen (N1) to be rotated 180o 

so that it faces the opposite side of the molecule.  In addition, N2 and N3 of the thioether 

arms are also oriented in the same direction, creating what could be envisioned as a 

binding pocket.  Unfortunately, all efforts to cleave the tosyl groups from 8 to produce 5 

also result in simultaneous cleavage of the methyl thioether groups and a mixture of 

products is obtained.  Despite this problem, the synthetic route described here could 

easily be adapted for the synthesis of other secondary amine derivatives directly from 1 

without the need to proceed through 2. 

Figure 4-8.  Synthesis of LPy(TsSMe)2 (8). 

N
Ts
N

Ts
N

SS

1. NaH
     DMF
     105 oC, 2 hours
2. 1
     DMF
     105 oC, 4 hours

LPy(TsSMe)2 (8)

S
N
H

Ts2



 133

 

4.3. Copper(II)-Ligand Reactivity 

The new ligand, 4, consists of a pyridyl ring connected to two arms, each 

containing an amide and a methyl thioether.18, 28  Solutions of copper(II) mixed with 4 

initially yield a dark forest green solution, but the color steadily bleaches to produce a 

clear, light yellow solution at room temperature over the course of several hours.  This 

unexpected decomposition was followed by 1H NMR, EPR, and UV-vis spectroscopy. 

The paramagnetically broadened 1H NMR spectrum of the initial green solution 

sharpens over time, eventually producing a well-defined spectrum with chemical shifts 

that differ slightly from the spectrum of the free ligand (Figure 4-10).  The observed 

differences in the chemical shifts of the ligand after decomposition compared to 

unreacted ligand, particularly in the aromatic region of the spectrum, suggest that the 

Figure 4-9.  Representation of the X-ray crystal structure of LPy(TsSMe)2 (8) possessing 
normal geometric parameters.  H atoms have been removed for clarity. 
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ligand is coordinated to copper(I).  Interestingly, the same spectrum cannot be replicated 

by direct reaction of 4 with copper(I) salts, implying some change to the ligand has also 

occurred in the decomposition. 

 

 

 

The X-band EPR spectrum of the initial green solution displays a predominant 

axial signal that is typical of a tetragonal copper(II) species (g|| = 2.24, A|| = 153 x 10-4 

cm-1, g⊥ = 2.05) (Figure 4-11).  An apparent copper hyperfine signal of lower intensity is 

Figure 4-10.  The 300 MHz 1H NMR spectrum of the LPy(acSMe)2 copper(I) 
decomposition mixture in acetonitrile-d3 after 48 hours (black).  The 1H NMR 
spectrum of pure LPy(acSMe)2 in the same solvent (orange) is overlaid for comparison.  
The inset shows the 300 MHz 1H NMR array plot.  Individual scans were collected at 
300 second intervals over 10 hours. 
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also discernable in the spectrum, centered at g|| = 2.30, and has otherwise identical 

parameters as the more intense signal.  The observed EPR signals completely disappear 

into the baseline over the course of the decomposition reaction, clearly showing the 

complete consumption of the paramagnetic copper(II) species in the decomposition. 

 

 

Finally, the UV-vis spectrum of the initial green solution is dominated by two 

absorption bands centered at 360 and 710 nm that both disappear over the course of the 

decomposition reaction (Figure 4-12).  The UV-vis experiments also reveal that a single 

ligand molecule reduces two copper ions.  When 2:1 ratios of copper(II) to 4 are reacted, 

the copper(II) chromophores at 360 and 710 nm completely disappear.  Higher Cu:4 

ratios result in residual unreduced copper(II).  The redox decomposition also proceeds 

Figure 4-11.  X-band EPR spectrum of the initial green solution of LPy(acSMe)2 (4) with 
copper(II) triflate in CH3CN at 77 K. 
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regardless of either the copper(II) salt or solvent identity, proving that the reducing 

moiety must be in the ligand.  Ligand impurities were ruled out as potential reducing 

agents by the analytical purity of 4 coupled with the known 2:1 stoichiometry of the 

reaction. 

 

 

All of the spectroscopic results presented above are consistent with reduction of 

copper(II) to copper(I).  This conclusion was further verified by quantitative 

recrystallization of [Cu(CH3CN)4](OTf) directly from an acetonitrile solution of the 

reaction mixture after complete decomposition. 

Attempts to characterize the electrochemical properties of 4 and the initial dark 

green complex formed immediately after addition of copper(II) salts to 4 were carried out 

Figure 4-12.  UV-vis spectrum of the 2:1 redox reaction between cupric triflate (3.3 
mM) and LPy(acSMe)2 (4) (1.7 mM) in acetonitrile.  Individual scans were recorded at 15 

minute intervals for 25 hours. 
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using cyclic voltammetry (CV).  While the cyclic voltammogram of 4 in acetonitrile 

exhibits only a completely irreversible oxidation at +1200 mV (Ag/AgCl), assigned as 

the thioether sulfur oxidation, the cyclic voltammogram of the green complex is devoid 

of this feature, exhibiting a single irreversible reduction peak at -276 mV, assigned as the 

CuII  CuI reduction.  If the potential is scanned to -500 mV or greater, however, the 

copper becomes fully reduced to Cu0 and is deposited on the electrode surface as 

evidenced by a very sharp irreversible oxidation in the reverse scan.  Interestingly, the 

irreversible +1200 ligand oxidation peak reappears after the formation of Cu0 as a result 

of liberated ligand at the electrode surface.  Although work is still underway to ascertain 

more details about the electronic structure of the green redox-active complex, this initial 

result is indicative of a direct thioether sulfur interaction with the copper(II) ion of the 

green complex. 

The fact that copper(II) is reduced by 4 is unambiguous.  Many examples of 

copper(II) thioether complexes are known and complexes with ligands similar to 4 have 

been reported by our group and others.24, 29  There are, however, no examples of 

spontaneous redox in synthetic copper(II) thioether complexes without addition of 

external reducing agents, despite their generally higher reduction potentials.30 

Previously in our laboratory, copper(II) complexes of 2-HLN2S and pmac were 

synthesized and characterized.23, 24  Stable, crystallographically characterized copper(II) 

complexes of 2-HLN2S were shown to coordinate to copper(II) in a tridentate mode via 

the ligand pyridyl nitrogen atom, amidate nitrogen atom, and the thioether sulfur atom 

(see chapter 3).24  Pmac, which differs from 2-HLN2S only in the absence of the methyl 

thioether group, coordinates in a related manner via the two nitrogen atoms and a 
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bridging oxygen atom to form clusters.23  Importantly, reduction of copper(II) was never 

observed with either 2-HLN2S or pmac. 

 

 

N
N
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N
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2-HLN2S pmac  

 

 

While pmac contains no thioether group, the key difference between 4 and 2-

HLN2S is that 4 possesses two amido-thioether arms attached to the pyridyl ring.  To more 

systematically evaluate the mutual dependence of the observed redox decomposition on 

the amide, pyridyl, and thioether functional groups of 4, we synthesized ligands 3, 5, and 

6 (see section 4.2).  3 is identical to 4 except for the thioether groups, which are absent.  5 

is also identical to 4 except that the amide groups have been reduced to amines.  

Solutions of copper(II) with 3 or 5 appear green immediately upon mixing, suggesting 

coordination, but no further color change was observed, indicating that the complexes are 

stable in the 2+ oxidation state.  Thus, both of the thioethers and the amides are necessary 

for the reduction of copper. 
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Bond Lengths (Å) Angles (deg) 
Cu1–S1 2.323(2) S1–Cu1–S1B 180.0(0) 

 Cu1–O4 1.924(2) S1–Cu1–O4   87.2(1) 
 Cu···Cu 9.078(2) S1–Cu1–O4A   92.8(1) 
   O4–Cu1–O4A 180.0(2) 
Figure 4-13.  Representation of the X-ray crystal structure of [Cu(L(acSMe)2)](OTf)2 (9) as 
50% thermal ellipsoids.  All non-amide H atoms have been omitted for clarity.  Selected 

bond distances (Å) and angles (deg) relevant to copper coordination and the amide 
groups are tabulated. 

 

 

To assess the importance of the pyridyl group in 4, 6 was synthesized.  6 contains 

the amide and thioether functional groups, but the pyridyl ring is absent.  Reactions of 6 

with copper(II) salts result in the formation of stable complexes with no evidence of 

reduction, suggesting that the pyridyl ring in copper(II) complexes of 4 facilitates redox 

by organizing the ligand and copper ion and/or raising the CuII/I redox potential.  X-ray 

quality crystals of the product, [Cu(L(acSMe)2)](OTf)2 (9), were obtained by diffusing 
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diethyl ether into a concentrated methanol solution of the reaction mixture.  The X-ray 

crystal structure confirms both the identity and stability of the complex (Figure 4-13).  In 

the crystal structure of 9, ligand 5 forms infinite linear chains between copper(II) ions 

and coordinates in a square planar geometry via its amide oxygen (O4) and thioether 

sulfur (S1) atoms.  The amide nitrogen atoms are not involved in coordination.  Outer-

sphere triflate ions, located between the chains, balance the charge of the cations. 

Finally, since the ability of 4 to reduce copper(II) had now been established and 

all evidence strongly pointed to the mutual importance of the pyridyl, amide, and 

thioether functional groups of the ligand to promote the reduction, an attempt was made 

to investigate the copper(II) chemistry of 8, containing sulfonamides instead of amides.  

It was proposed that the sulfonyl groups of 8 could possibly promote thioether activation 

in the same way that the amide carbonyl is suggested to do in the copper(II) complex of 

4.  Indeed, the reaction of copper(II) with 8 results in an initial blue solution that slowly 

bleaches to pale yellow, indicative of copper(II) reduction.  Work is currently underway 

to investigate this preliminary result quantitatively and to compare its chemistry to that of 

4.  A summary of the observed copper chemistry with the ligands described in this 

section is provided in Table 4-1. 
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Table 4-1. Summary of ligand reactivity with copper(II). 
Ligand Observation 
LPy(ac)2  (3) Forms stable green CuII product 
LPy(acSMe)2 (4) Decomposes from dark green CuII to pale yellow CuI product 
LPy(SMe)2 (5) Forms stable green CuII product 
L(acSMe)2 (6) Forms stable green CuII product 
LPy(TsSMe)2 (8) Decomposes from green CuII to pale yellow CuI product 
2-HLN2S  Forms stable dark blue CuII product24 
Pmac  Forms stable blue CuII product23 

Ligand Structures: 
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4.4. Conclusions 

Our results provide clear evidence that, under the appropriate conditions, thioether 

sulfur can be activated to reduce copper(II).  In ligand 4, the presence of the pyridyl ring, 

two thioether groups and two amide groups are all required for spontaneous redox to 

occur.  Preliminary experiments with ligand 8 show that similar results can also be 
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obtained using sulfonamide groups instead of amides, supporting the notion that the 

thioether sulfurs of 4 are activated by amide carbonyl interactions.  If the tosyl groups of 

8 are removed and the resulting ligand, 5, is reacted with copper(II), no redox is observed 

and a stable copper(II) product is obtained.  The importance of two amide and two 

thioether groups, highlighted by the difference in reactivity between 4 and 2-HLN2S, 

suggests that the amide group of one arm modulates the redox potential of the thioether 

group from the other arm, but cannot activate the thioether in the same arm, perhaps due 

to structural constraints or coordination effects.  The very close proximity of Met-35 and 

the Ile-31 amide carbonyl in Aβ may activate it for redox with copper(II) in the same 

way.  In addition to sulfur activation, it is also likely that the copper redox potential is 

significantly modulated by its coordination environment and that the redox chemistry 

occurs as a consequence of shifting both the copper and sulfur redox potentials in these 

special systems.  This is supported by the fact that no redox is observed with 6, which 

contains no pyridyl group. 

Since the neurotoxicity in AD is known to be related to soluble Aβ oligomers,12 

we believe that the proposed copper(II)-thioether redox may occur by way of an 

intermolecular mechanism, where the redox-active species is composed of two 

interacting Aβ peptides in solution.  Specifically, we envision a scenario where the 

activated Met-35 residue of one peptide directly coordinates the bound copper(II) of a 

second peptide, allowing for conditions that promote unusually facile inner-sphere 

electron transfer.  This arrangement is consistent with the properties and reactivity of the 

model system presented in this chapter, where very specific conditions are required for 

redox to occur. 
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To our knowledge, no other examples of spontaneous redox between methyl 

thioether sulfur and copper(II) have been reported in the literature to date.  The 

preliminary observations presented in this work, as such, may provide the first synthetic 

evidence supporting the feasibility of the unusual decomposition mode that is proposed to 

take place in Aβ peptides.  Further studies of our system to elucidate the details of its 

redox mechanism and the identity of the organic ligand decomposition product(s) are 

currently underway. 

4.5. Experimental 

General.  All reagents were purchased from commercial sources and used 

without additional purification unless otherwise noted.  Solvents were dried and purified 

under nitrogen using standard methods.  Et2O, THF, and pentane were distilled over 

NaK2 alloy, CH3CN and CH2Cl2 over CaH2, MeOH over Mg(OMe)2, and toluene over 

Na.  Degassing of the dried solvents was achieved by triple freeze-pump-thaw degas 

cycles.  Oxygen- and/or water-sensitive reactions were carried out using Schlenk vacuum 

line techniques and/or by using an M. Braun UNILab inert atmosphere glovebox with 

nitrogen as its working gas.  Procedures for the syntheses of 2-methyl-2-(2-pyridinyl)-

1,3-propan-diol, 2-methyl-2-(2-pyridinyl)-1,3-bis(p-toluenesulfonate)-propane, and 2-

methyl-2-(2-pyridinyl)-1,3-propanediamine are published elsewhere.18  The improved 

syntheses of 2-methyl-2-(2-pyridinyl)-1,3-bis(p-toluenesulfonate)-propane and 2-methyl-

2-(2-pyridinyl)-1,3-propanediamine are also included here. 

Spectroscopy.  Infrared (IR) spectra were prepared by pressing the sample into a 

KBr “glass” and were collected using a Nicolet NEXUS 470 FTIR spectrophotometer 

coupled to a computer running OMNIC E.S.P (version 5.1) software for spectrum 
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display, background baseline correction, scaling, and automatic peak-picking.  Unless 

otherwise stated, samples for electronic absorption (UV-vis) spectroscopy were prepared 

at 5 mM concentrations in a 5 mL 1.00 cm path length quartz cuvette.  UV-vis data were 

obtained using a Shimadzu UV2401PC UV-vis spectrophotometer capable of a 200 - 

1100 nm scan range and having a dedicated variable temperature Neslab RTE-140 

circulating heater/chiller and computer interface running Shimadzu UV Probe (v. 1.00) 

for instrument control and spectrum display.  All UV-vis spectra were obtained at 298.0 

K unless otherwise noted.  1H and 13C NMR spectra were measured at room temperature 

on a Varian 300 MHz (Mercury) spectrometer or a Varian 400 MHz spectrometer 

coupled to the Varian VNMR software package.  Solvent was used as an internal 

chemical shift standard unless otherwise stated.  All signals are reported in ppm relative 

to the reported value(s) for the solvent.  X-band (~9.45 GHz) EPR spectra were obtained 

using a Bruker EMX spectrometer fitted with a either a liquid nitrogen finger dewer or a 

liquid nitrogen cryostat (BVT-3000).  Temperature and g value calibrations were 

performed as described.31 

Physical Methods.  Capillary Gas Chromatography Mass Spectrometry (GC-MS) 

analyses were performed in a Trace GC 2000 and Thermoquest GCQ/Polaris mass 

spectrometer (ThermoQuest Finnigan, San Jose, CA).  The software controlling the 

system was Xcalibur (version 1.1) from ThermoQuest Finnigan.  Electron impact (EI) 

was the ionization source and the typical electron energy was set to 70 eV with the ion 

source temperature maintained at 200 oC.  The instrument was calibrated with the 

perfluorotributyl amine FC-43 over a m/z range of 50-650 Da.  Organic components were 

separated in an Alltech-ECCNO-OAP (30 m x 0.25 mm x 0.25 μm).  The injector 
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temperature was set at 210 oC and a splitless mode of injection was used in all analyses.  

The GC temperature gradient was set to 50 oC, holding for 5 minutes, then increased at 

20 oC/minute to 250 oC holding for 20 minutes.  The GC system was run at a constant 

flow rate of 1.0 mL/minute of helium gas (Minimum Purity 99.999%).  ElectroSpray 

Ionization Mass Spectrometry (ESI-MS) data were recorded using a Q-TOF quadrupole 

time-of flight mass spectrometer (Micromass, Manchester, UK) equipped with a Z-spray 

electrospray ionization (ESI) source.  The software controlling the instrument was 

MassLynx (version 4.0).  A Harvard syringe pump (Harvard Apparatus, South Natick, 

MA, USA) was used to deliver the sample solution to the electrospray source at a flow 

rate of 5 μl/min.  The electrospray capillary voltage was set at 3000 V and the cone 

voltage was typically set to 30 V.  The temperature for desolvation and source was set to 

90 oC.  The desolvation gas (nitrogen, 99.99%) flow rate was set to 250 liters per hour.  

Nebuliser gas flow was set to 20 liters per hour.  The mass spectrometer was calibrated 

over a mass range of 50-1500 Da using a 0.05 μg/μL CsI and 2 μg/μL NaI solution in 

methanol. 

 

2-Methyl-2-(2-pyridinyl)-1,3-bis(p-toluenesulfonate)-propane (1).  Sodium hydroxide 

(34.2 g, 854 mmol) was dissolved in 200 mL of water in a 2 L beaker.  To this solution 

was added 2-methyl-2-(2-pyridinyl)-1,3-propanediol (50.0 g, 299 mmol) in 200 mL of 

THF.  This mixture was cooled to 0 oC and a solution of p-toluenesulfonyl chloride 

(114.1 g, 568.1 mmol) in 200 mL of THF was added dropwise over 2 hours.  During this 

time, the solution was rapidly stirred and the temperature was maintained at 0 oC.  A 

yellow-white precipitate began to form.  After the addition was complete, the reaction 
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mixture was stirred at room temperature for an additional 2 hours.  The reaction mixture 

was then poured into 500 mL of ice water and stirred for 1 hour, resulting in the 

formation of more yellow-white precipitate.  The precipitate was filtered from the 

solution, repeatedly washed with ethanol, and trace solvents were removed under reduced 

pressure to yield the desired product in high purity as a fine white powder (66.1g, 49%).  

1H NMR (200 MHz, CDCl3) δ 8.30-8.34 (m, 1H), 7.55-7.67 (m, 5H), 7.10-7.32 (m, 6H), 

4.27 (s, 4H), 2.44 (s, 6H), 1.34 (s, 3H) ppm.  Anal. Calcd for C23H25NO6S2: C, 58.09; H, 

5.30; N, 2.95; S, 13.48. Found: C, 58.05; H, 5.26; N, 2.95; S, 13.38. 

 

2-Methyl-2-(2-pyridinyl)-1,3-propanediamine (2).  1 (50.00 g, 105 mmol) was 

dissolved in 500 mL DMSO in a 1 L Schlenk flask under a nitrogen atmosphere.  To this 

rapidly-stirring solution at 70 oC was added anhydrous NaN3 (20.48 g, 315 mmol) in a 

single portion.  The resulting mixture was stirred for 40 hours at 70 oC, allowed to cool to 

room temperature, and poured into 700 mL of 30 v/v% ethanol in water in a 2 L 

separation funnel.  This resulted in the formation of colorless oil that settled to the bottom 

of the funnel after agitation.  The oil was extracted into 400 mL of Et2O.  The Et2O 

extraction was repeated 2 more times.  The combined Et2O solution was reduced in 

volume to 400 mL, washed with 100 mL of water, dried over Na2SO4, and then filtered 

into a clean 2 L flask.  To the remaining 400 mL Et2O solution was added 150 mL 

pyridine and the total volume then reduced to 100 mL under reduced pressure (NOTE:  

Due to the explosive nature of organic azides, the azide intermediate was not isolated 

from solvent at any time).  The same flask was fitted with an addition funnel containing 

PPh3 (66.07 g, 252.8 mmol) in 125 mL of pyridine, the contents of which were added 
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drop-wise to the stirring pyridine solution at 0 oC.  After complete addition, the reaction 

mixture was allowed to warm to room temperature, stirred for 2 hours, and the solvent 

then removed in vacuo to reveal a thick yellow oil.  600 mL of 25 % NH4OH were added 

to this oil and the flask was fitted with a condenser.  This mixture was heated to reflux 

(~150 oC) in an oil bath for 12 hours.  After cooling to room temperature, the colorless 

NH4OH solution was filtered into a clean 2 L flask.  To the remaining PPh3O in the first 

flask was added 600 mL of fresh 25 % NH4OH and the mixture was refluxed for 1 hour 

in order to further extract the desired product.  After cooling, the NH4OH solution was 

filtered and combined with the first 600 mL solution.  The 25% NH4OH solvent was then 

removed by heating under high vacuum to reveal a yellow oil that was subsequently 

dissolved into an equal volume of dichloromethane and washed with 4 M aqueous NaOH.  

The aqueous wash was extracted with dichloromethane until the extracts were colorless.  

The combined dichloromethane solution was dried over Na2SO4 and the solvent removed 

in vacuo to yield the desired product as a low-viscosity yellow oil (16.80 g, 97%).  1H 

NMR (200 MHz, CDCl3) δ 8.24-8.28 (m, 1H), 7.32-7.38 (m, 1H), 7.01-7.06 (m, 1H), 

6.80-6.87 (m, 1H), 2.61-2.87 (m, 4H), 2.05 (s, 4H), 1.03 (s, 3H) ppm.  13C NMR (200 

MHz, CDCl3) δ 162.77, 148.11, 135.79, 120.80, 120.50, 49.24, 28.39, 20.57 ppm. 

 

N,N'-(2-Methyl-2-pyridin-2-ylpropane-1,3-diyl)-bis(acetamide) (LPy(ac)2, 3).  2 (3.00 

g, 18.2 mmol) was dissolved in 12 mL of pyridine in a 100 mL flask.  To this rapidly-

stirring solution was poured 15 mL of acetic anhydride in a single portion.  After stirring 

for 12 hours at room temperature, 30 mL of water were added and the mixture was stirred 

for 5 more minutes.  The solvent and excess acetic anhydride were removed by gentle 
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heating under reduced pressure, resulting in a thick yellow-orange oil that was then 

dissolved into an equal volume of dichloromethane and washed with 4 M aqueous NaOH.  

The aqueous wash was extracted with additional dichloromethane until the extracts were 

colorless.  The combined dichloromethane solution was dried over Na2SO4 and filtered.  

Following removal of the filtrate solvent in vacuo, Et2O (10 mL) was added to the 

obtained yellow oil and the desired product recrystallized as a white solid that was 

filtered from the Et2O solution and washed with fresh Et2O (2.92 g, 65%).  1H NMR (200 

MHz, CDCl3) δ 8.43-8.46 (m, 1H), 7.58 - 7.67 (m, 1H), 7.34 - 7.38 (m, 1H), 7.08 - 7.24 

(m, 3H), 3.79 - 3.91 (m, 2H), 3.05 - 3.15 (m, 2H), 1.96 (s, 6H), 1.16 (s, 3H) ppm.  13C 

NMR (200 MHz, CDCl3) δ 170.89, 164.37, 148.20, 136.77, 121.70, 121.46, 46.08, 43.94, 

23.29, 22.77 ppm.  FTIR (KBr): 3286, 3090, 3009, 2984, 2970, 2932, 2843, 2015, 1900, 

1674, 1653 (υCO), 1589, 1553, 1468, 1441, 1426, 1388, 1364, 1356, 1340, 1284, 1258, 

1222, 1164, 1128, 1089, 1052, 1038, 1029, 993, 908, 893, 853, 800, 756, 705, 649, 624, 

587, 585, 527, 519, 515, 499, 472, 464, 453, 441, 426, 410 cm-1.  Anal. Calcd for 

C13H19N3O2: C, 62.63; H, 7.68; N, 16.85. Found: C, 62.58; H, 7.43; N, 16.74. 

 

N,N'-(2-Methyl-2-pyridin-2-ylpropane-1,3-diyl)-bis[2-(methylthio)acetamide] 

(LPy(acSMe)2, 4).  A solution of 2 (6.03 g, 36.5 mmol), (methylthio)acetic acid (7.75 g, 73.0 

mmol), and HOBt (9.86 g, 73.0 mmol) in 250 mL of 50 v/v% THF/DMF was cooled to 0 

oC.  To this rapidly-stirring mixture was added a solution of DCC (15.06 g, 73.0 mmol) in 

a minimal volume of THF.  The reaction mixture was stirred for one hour at 0 oC after the 

DCC addition was complete and then allowed to warm to room temperature and stirred 

for an additional 4 hours during which time dicyclohexylurea (DCU) byproduct had 
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precipitated from the solution.  The reaction mixture was cooled to -40 oC and the 

solution filtered away from the DCU precipitate.  Solvent was removed from the filtrate 

by gentle heating under reduced pressure, revealing a thick yellow-orange oil.  An equal 

volume of toluene was added to this oil and the mixture was stirred for one hour at room 

temperature during which time more DCU precipitated.  The DCU was filtered away and 

the toluene was removed from the filtrate in vacuo.  The remaining yellow oil was 

dissolved into a minimal volume of dichloromethane and washed with 4 M aqueous 

NaOH.  The aqueous wash was extracted with more dichloromethane until the extracts 

were colorless.  The combined organic solution was dried over Na2SO4, filtered, and the 

solvent was removed under reduced pressure to give the desired product as a viscous 

yellow-orange oil (10.44 g, 84%).  1H NMR (200 MHz, CDCl3) δ 8.43 - 8.49 (m, 1H), 

7.87 - 7.98 (m, 2H), 7.52 - 7.68 (m, 1H), 7.33 - 7.39 (m, 1H), 7.06 - 7.15 (m, 1H), 3.78 - 

3.90 (m, 2H), 3.13 - 3.29 (m, 2H), 3.13 (s, 4H), 2.01 (s, 6H), 1.21 (s, 3H) ppm.  13C NMR 

(200 MHz, CDCl3) δ 169.31, 163.72, 148.22, 136.69, 121.69, 121.22, 46.17, 44.34, 

38.02, 22.65, 16.10 ppm.  FTIR (KBr): 3312, 3062, 2972, 2918, 2858, 1653 (C=O), 1589, 

1522, 1473, 1431, 1385, 1362, 1302, 1225, 1155, 1120, 1072, 1050, 1021, 993, 963, 892, 

867, 826, 789, 750, 696, 618, 543, 467, 449, 404 cm-1.  EIMS: m/z (Int.); 342 [M+] 

(100%).  Anal. Calcd for C15H23N3O2S2: C, 52.76; H, 6.79; N, 12.30; S, 18.78. Found: C, 

53.82; H, 6.85; N, 12.03; S, 17.95. 

 

2-Methyl-N,N'-bis[2-(methylthio)ethyl]-2-pyridin-2-ylpropane-1,3-diamine 

(LPy(SMe)2, 5).  LiAlH4 (1.40 g, 35.1 mmol) was added in small portions directly to a 

stirring solution of 4 (1.00 g, 2.93 mmol) in 100 mL dry diethyl ether under nitrogen.  
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The reaction mixture was refluxed for 12 hours.  After cooling to room temperature, 

excess LiAlH4 was quenched by slow addition of water under a continuous nitrogen 

purge.  The ether level was maintained during quenching.  The resulting mixture was 

transferred to a 1 L separation funnel and extracted with fresh diethyl ether (4 x 200 mL).  

The combined organic extract was dried over Na2SO4, filtered, and the solvent was 

removed under reduced pressure to give the desired product as a viscous yellow-orange 

oil (0.78 g, 85 %).  1H NMR (300 MHz, CDCl3) δ 8.47 - 8.51 (m, 1H), 7.54 – 7.62 (m, 

1H), 7.00 – 7.10 (m, 2H), 2.33 -3.07 (m, 12H), 1.97 – 2.12 (m, 8H), 1.34 (s, 3H) ppm.  

ESI/MS: m/z = 314 (M + 1). 

 

N,N'-Propane-1,3-diylbis[2-(methylthio)acetamide] (L(SMe)2, 6).  1,3-diaminopropane 

(0.815 g, 10.99 mmol), (methylthio)acetic acid (2.334 g, 21.99 mmol), and HOBt (3.368 

g, 21.99 mmol) were dissolved in 250 mL of 50 v/v% THF/DMF and cooled to 0 oC.  To 

this rapidly-stirring solution was added a solution of DCC (4.537 g, 21.99 mmol) in a 

minimal volume of THF.  The reaction mixture was stirred for one hour at 0 oC and then 

allowed to warm to room temperature and stirring was continued for an additional 4 

hours.  Dicyclohexylurea (DCU) byproduct precipitated from the solution during this 

time.  The reaction mixture was cooled to -40 oC and the solution filtered away from the 

DCU precipitate.  Solvent was removed from the filtrate by gentle heating under reduced 

pressure, revealing a pale yellow solid.  This was dissolved into a minimal volume of 

dichloromethane and washed with 4 M aqueous NaOH.  The aqueous wash was extracted 

with more dichloromethane until the extracts were colorless.  The combined organic 

solution was dried over Na2SO4, filtered, and the solvent was removed under reduced 
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pressure.  The desired product was obtained from this as a white solid following 

recrystallization from 5 % ethanol in toluene (1.62 g, 59 %).  1H NMR (300 MHz, 

CDCl3) δ 7.22 – 7.44 (m, 2H), 3.30 – 3.38 (m, 4H), 3.22 (s, 4H), 2.14 (s, 6H), 1.64 – 1.76 

(m, 2H) ppm.  13C NMR (300 MHz, CDCl3) δ 169.75, 38.46, 36.54, 30.03, 16.76 ppm. 

 

2-Methyl-N,N'-di(p-toluenesulfonyl)-2-pyridin-2-ylpropane-1,3-diamine (7).  A 

mixture of 2 (2.000 g, 12.12 mmol), K2CO3 (3.1 g, 22 mmol), and water (10 mL) was 

cooled to 0 °C in a 150 mL Erlenmeyer flask.  To this was added a solution of p-

toluenesulfonyl chloride (4.593 g, 24.1 mmol) in THF (20 mL) over 2 hours.  The 

reaction mixture was then allowed to warm to room temperature and stirring was 

continued for 12 hours after which time it was poured into 250 mL of ice water in a 500 

mL separation funnel.  This aqueous solution was extracted with chloroform (3 x 100 

mL).  The combined chloroform solution was dried over Na2SO4, filtered, and the solvent 

removed in vacuo to yield the crude product as a thick orange oil that was subsequently 

recrystallized from 150 mL of 10 v/v% ethanol in diethyl ether.  The desired product was 

filtered then washed with ethanol and diethyl ether to yield the desired product as a white 

crystalline powder (2.59 g, 45.1 %).  1H NMR (300 MHz, CDCl3) δ 8.38 - 8.42 (m, 1H), 

7.75 (d, J = 8, 4H), 7.62 - 7.69 (m, 1H), 7.28 - 7.35 (m, 5H), 7.12 - 7.18 (m, 1H), 5.95 - 

6.03 (m, 2H), 3.07 - 3.27 (m, 4H), 2.42 (s, 6H), 1.34 (s, 3H) ppm.  13C NMR (300 MHz, 

CDCl3) δ 163.64, 148.64, 143.62, 137.47, 137.24, 130.05, 127.14, 122.46, 121.59, 48.78, 

45.33, 22.55, 21.76.  Anal. Calcd for C23H27N3O4S2: C, 58.33; H, 5.75; N, 8.87. Found: 

C, 58.11; H, 5.65; N, 8.71. 
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2-Methyl-N,N'-bis[2-(methylthio)ethyl]-N,N'-di(p-toluenesulfonyl)-2-pyridin-2-

ylpropane-1,3-diamine (LPy(TsSMe)2, 8).  N-[2-(Methylthio)ethyl]-p-toluenesulfonamide  

(6.618 g, 27.01 mmol) was dissolved in 120 mL of DMF and heated to 105 °C in a 3-

neck flask.  Sodium hydride (60 % dispersion in oil) (2.72 g, 113.4 mmol) was slowly 

added to this rapidly-stirring solution, resulting in the immediate evolution of hydrogen 

gas.  Sirring and heating were continued for one hour following complete addition and 

the cessation of hydrogen gas evolution.  The reaction mixture was then cooled to room 

temperature and the DMF solution was filtered from excess sodium hydride.  1 (6.416 g, 

13.50 mmol) in 120 mL of DMF was added drop-wise to this solution over the course of 

two hours at 105 °C.  Stirring at 105 °C was continued for two additional hours and the 

reaction mixture was then cooled to room temperature and poured into 250 mL of water 

in a 500 mL separation funnel.  The aqueous solution was extracted with chloroform (4 x 

125 mL).  The organic extracts were combined and the chloroform removed in vacuo to 

yield a red-brown oil.  The desired product was obtained from this crude product as a 

white powder following recrystallization from 100 mL of ethanol at room temperature 

(2.46 g, 29.3 %).  X-ray quality crystals of the product were obtained by slow 

evaporation of a concentrated ethanol solution of the powder.  1H NMR (300 MHz, 

CDCl3) δ 8.45 - 8.49 (m, 1H), 7.59 - 7.66 (m, 5H), 7.36 - 7.41 (m, 1H), 7.22 - 7.26 (m, 

4H), 7.10 - 7.15 (m, 1H), 3.70 (d, J = 14 Hz, 2H), 3.39 (d, J = 14 Hz, 2H), 2.43 - 2.70 (m, 

8H), 2.36 (s, 6H), 1.74 (s, 6H), 1.55 (s, 3H) ppm.  13C NMR (300 MHz, CDCl3) δ 163.13, 

149.34, 143.82, 137.25, 136.29, 130.04, 127.68, 122.51, 122.35, 57.82, 50.51, 46.90, 

31.75, 21.77, 19.80, 15.52 ppm.  Anal. Calcd for C29H39N3O4S4: C, 56.01; H, 6.32; N, 

6.76. Found: C, 55.99; H, 6.30; N, 6.59. 
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[Cu(L(SMe)2)](OTf)2 (9).  A solution of L(SMe)2 (6) (0.048 g, 0.19 mmol) in 5 mL of 

methanol was slowly added to a rapidly stirring solution of Cu(OTf)2 in 5 mL of 

methanol (0.070 g, 0.19 mmol).  The resulting clear dark green solution was stirred for 30 

minutes at room temperature.  X-ray quality crystals of the desired product were obtained 

by concentrating the reaction mixture and diffusing diethyl ether into it (0.095 g, 85 %).  

ESI-MS: m/z (Int.); 712, {[Cu(L(SMe)2)2](OTf)}+, (77 %); 463 , {[Cu(L(SMe)2)](OTf)}+, (43 

%).  Anal. Calcd for C11H18CuF2N2O8S4: C, 21.60; H, 2.94; N, 4.58. Found: C, 21.84; H, 

3.01; N, 4.62. 

 

X-ray Crystallography. LPy(TsSMe)2 (8):  A colorless crystal of 

dimensions 0.47 x 0.33 x 0.31 mm was selected for structural analysis.  Intensity data for 

this compound were collected using an instrument with a Bruker APEX ccd area detector 

with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å).32  Important 

crystallographic information is summarized in table 4-2.  The sample was cooled to 97(2) 

K.  Cell parameters were determined from a non-linear least squares fit of 6458 peaks in 

the range 2.25 < θ < 28.27°.  A total of 17215 data were measured in the range 2.25 < θ < 

26.00° using ω oscillation frames.  The data were corrected for absorption by the semi-

empirical method  giving minimum and maximum transmission factors of 0.8572 and 

0.902.33  The data were merged to form a set of 6174 independent data with R(int) = 

0.0227 and a coverage of 100.0 %. 

The monoclinic space group P(1) was determined by systematic absences and 

statistical tests and verified by subsequent refinement.  The structure was solved by direct 
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methods and refined by full-matrix least-squares methods on F2.34  Hydrogen atom 

positions were initially determined by geometry and refined by a riding model.  Non-

hydrogen atoms were refined with anisotropic displacement parameters.  Hydrogen atom 

displacement parameters were set to 1.2 (1.5 for methyl) times the displacement 

parameters of the bonded atoms.  A total of 316 parameters were refined against 121 

restraints and 6174 data to give wR(F2) = 0.1219 and S = 1.005 for weights of w = 1/[σ2 

(F2) + (0.0660 P)2 + 0.9400 P], where P = [Fo2 + 2Fc2] / 3.  The final R(F) was 0.0437 

for the  5852 observed, [F > 4σ(F)], data.  The largest shift/s.u. was 0.006 in the final 

refinement cycle.  The final difference map had maxima and minima of 0.872 and -0.488 

e/Å3, respectively.  The final structure was graphically presented using the Accelrys 

Materials Studio software package.35 

 

[Cu(LPy(TsSMe)2)](OTf)2 (9):  A blue prism-shaped crystal of dimensions 0.30 x 0.28 x 

0.10 mm was selected for structural analysis.  Intensity data for this compound were 

collected using an instrument with a Bruker APEX ccd area detector with graphite-

monochromated Mo Kα radiation (λ = 0.71073 Å).32  Important crystallographic 

information is summarized in table 4-2.  The sample was cooled to 110(2) K.  Cell 

parameters were determined from a non-linear least squares fit of 6458 peaks in the range 

2.25 < θ < 28.27°.  A total of 8083 data were measured in the range 2.25 < θ < 26.00° 

using ω oscillation frames.  The data were corrected for absorption by the semi-empirical 

method  giving minimum and maximum transmission factors of 0.660 and 0.865.33  The 

data were merged to form a set of 2118 independent data with R(int) = 0.0165 and a 

coverage of 100.0 %. 
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The monoclinic space group P2/n was determined by systematic absences and 

statistical tests and verified by subsequent refinement.  The structure was solved by direct 

methods and refined by full-matrix least-squares methods on F2.34  Hydrogen atom 

positions were initially determined by geometry and refined by a riding model.  Non-

hydrogen atoms were refined with anisotropic displacement parameters.  Hydrogen atom 

displacement parameters were set to 1.2 (1.5 for methyl) times the displacement 

parameters of the bonded atoms.  A total of 222 parameters were refined against 137 

restraints and 2118 data to give wR(F2) = 0.1005 and S = 1.013 for weights of w = 1/[σ2 

(F2) + (0.0660 P)2 + 0.9400 P], where P = [Fo2 + 2Fc2] / 3.  The final R(F) was 0.0339 

for the  1938 observed, [F > 4σ(F)], data.  The largest shift/s.u. was 0.006 in the final 

refinement cycle.  The final difference map had maxima and minima of 0.889 and -0.513 

e/Å3, respectively.  The final structure was graphically presented using the Accelrys 

Materials Studio software package.35 
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Table 4-2. Summary of crystallographic data for compounds 8 and 9. 

 8 9 

empirical formula C29H39N3O4S4 C11H18CuF6N2O8S4 

formula weight 621.97 612.07 

crystal system triclinic monoclinic 

space group P(1) P2/n 

a (Å) 11.446 (2) 11.770(4) 

b (Å) 12.166 (2) 7.182(2) 

c (Å) 12.584 (2) 12.792(5) 

α (deg) 92.881 (3) 90 

β (deg) 112.681 (3) 95.232(5) 

γ (deg) 99.595 (3) 90 

V (Å-3) 1581.5 (5) 1076.8(6) 

Z 2 2 

density (calcd) 1.306 g/cm3 1.888 g/cm3 

temperature (K) 97(2) 110(2) 

crystal size (mm) 0.47 x 0.33 x 0.31 0.30 x 0.28 x 0.10 

diffractometer Bruker Apex Bruker Apex 

absorption coefficient 0.338 mm-1 1.496 mm-1 

radiation, λ (Å) Mo Kα, λ = 0.71073 Mo Kα, λ = 0.71073 

2θ max (deg) 52.0 48.0 

reflections collected 17215 8083 

independent reflections 6174 2118 

observed reflections 5852 1938 

variable parameters 361 552 

R1 [I > 2σ(I)] 0.0437 0.0339 

wR2 [I > 2σ(I)] 0.1219 0.1005 

goodness-of-fit 1.005 1.013 

largest diff. peak and hole (e-1 Å-3) 0.872, -0.488 0.889, -0.513 
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