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CHAPTER I 

INTRODUCTION 

Public LaH 92-500, an amendment to the Federal Hater Pollution 

Control Act, established a national goal of eliminating pollutant 

discharge into navigable waters by 1985. This la'-1 defines a 

pollutant as any substance which directly or indirectly causes 

a deleterious effect upon any organism in the aquatic environment. 

Thus, the pollution potential of the various effluents must be 

assessed. 

Petroleum refinery ~-Tastewaters contain at least three major 

potential sources of pollution: undiluted process wastewaters, 

API separator effluents, and treated wastewaters (HattheTvS and 

Myers 1976). These waste~Jaters commonly contain ammonia, sulfides, 

phenolic compounds, cyanides, and other toxic compounds including 

various hydrocarbons 0·1atthe~vs et al. 1976). Undesirable tastes 

and odors may be associated with petroleum refinerv effluents 

(Rosen and ~1iddleton 1955, Kneese 1962). Increased sludge deposits, 

turbidity, color, odor, and plankton growth may occur in petroleum 

refinery effluent receiving streams (Ludzack, Ingram, and Ettinger 

1957). Ludzack et al. (1957) also observed that oil wastes are 

stored in bottom sludges and flushed by high vmter conditions 

resulting in impaired water quality. The average petroleum 
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refinery effluent may contain 0.8, 2.5, and 0.5 million pounds/day 

of BOD, COD, and suspended solids, respectively (Ford 1970). 

Petroleum refinery effluents may influence receiving streams. 

The BOD exerted on the receiving stream may cause anaerobic 

conditions (Katz 1971, Ford 1970, Reid et al. 1972). These 

conditions may be due to microbial sludges (Ford 1970) or high 

algal populations (Dorris et al. 1962). Oil may directly affect 

fish by coating epithelial gill tissues, and oily sludges may coat 

the bottom of the receiving stream inhibiting plant groHth and 

suffocating benthic organisms (Reid et al. 1972). Chemicals 

present in petroleum refinery effluents may taint fish flesh 

(Klein 1962). These effects on the receiving stream may be 

deleterious to the aquatic community. In order to achieve the 

goals of PL 92-500 a realistic assessment of the effects of petroleum 

refinery waste-vraters must be made. 

Current effluent guidelines are based upon laboratory research 

and are predictions of environmental responses to toxic substances. 

However, adequate protection of the receiving stream community may 

not be possible by comparing toxicity and chemical analyses of 

wastewaters. The effluent guidelines may be unnecessarily low for 

easily biodegradable substances, or may be too high for substances 

which have more than additive toxicity. Petroleum refinery 

effluents often contain toxicants vThich may produce entirely 

different toxicity levels than pure compounds because of varying 

characteristics and interactions of the Hastewaters and receiving 

streams (Matthews et al. 1972). 
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In order to ensure that the stream community is adequately 

protected, direct biological assessment of the ~vastewater must be 

made. The objectives of such monitoring are to ensure that 

effluents are safe under conditions of continuous exposure and 

are conducive to survival, growth, and reproduction of aquatic 

organisms (Tarzwell 1962). 

One of the most successful methods of biological assessment 

of waste~vater quality is the fish bioassay. Bioassays may be 

static or continuous flow. Since static tests are conducted 

without renewal, they require less equipment. However, they also 

have disadvantages. They usually require aeration to maintain 

dissolved oxygen above limiting levels, but aeration may change 

the nature and toxicity of the test solution. Static tests 

use intermittent or composite grab samples ~vhich may fail to 

reflect the true nature of the effluent. However, since the 

Environmental Protection Agency (EPA) has indicated that bioassays 

of wastewaters may be required of industry, it is necessary to 

know whether results obtained from the two methods are of such 

significance to warrant the increased cost and personnel to conduct 

continuous flow bioassays. 

Recommendations by EPA concerning advanced -vmstewater treatment 

technologies are also being examined closely. It is necessary to 

know before spending large sums of money 1vhether different treatment 

technologies will produce the desired environmental benefits. 

Therefore, the objectives of the present study were to compare: 

1. static and continuous flow bioassays and 
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2. biological treatment, sequential biological treatment­

dual media filtration, and sequential biological 

treatment-dual media filtration-activated carbon 

adsorption w·astewater treatment methods. 
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CHAPTER II 

LITERATURE REVIEW 

Large quantities of petroleum and petroleum ·vrastes 

accidently or by design enter the environment yearly. Farrington 

and Quinn (1973) reported the yearly discharge of 28,000 to 

140,000 metric tons of hydrocarbons to coastal waters in domestic 

effluents, an amount which approximated oil spilled in the same 

~vaters in 1970. Hydrocarbons from automobile exhaust residues 

have been found in the Charles River, Boston (Hites and Biemann 

1972). Brown and Lynch (1977) examined the fate of two spills 

off the Massachusetts coast. They found hydrocarbon concentrations 

in the water column from 450 ppb at the surface to 200 pph at 

40 m. They determined that compounds smaller than C15 volatilize 

and that compounds from C14 to Czz ~vere contained in the water 

column. TheBe hydrocarbons may be dissolved or emulsified, and 

heavier fractions may be incorporated in the sediments or form 

tar balls. 

Hydrocarbons associated with sediments may remain unchanged 

for up to 2 years under anaerobic conditions (Blumer et al. 1972). 

Shelton and Hunter (1974) reported aerobic microbial degradation 

of sedimented oils. Over 100 species of bacteria, yeasts, and 

fungi are capable of oxidizing one or more kinds of hydrocarbons, 
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but no single species is capable of noticeably degrading crude oil 

(ZoBell 1969). Fungi exceed bacteria in the ability to degrade 

crude oils, but none of the organisms can degrade a significant 

part of the oil (Perry and Cerniglia 1973). Prototheca zopfiJ, 

an achlorophyllous alga, can degrade up to 40% of crude oil 

(Walker et al. 1975). 

Berbin and Hicks (1973) concluded petroleum derivatives are 

lethal to mosquito larvae by initiating irreversible hypoxia, 

but crude oil contamination of artificial substrate in an Alaskan 

river had no effect on chironomid larvae and the periphyton 

assemblage was enhanced (Rosenberg and Wiens 1976). 

Some calanoid copepods synthesize 1 - 3% of total body lipids 

as the hydrocarbon pristane (Blumer et al. 1964). Benzo(a)pyrene 

has been found in barnacles living on creosoted pilings; however 

toxicity or significance to the barnacles was not discussed 

(Barneff et al. 1968). The spider crab can degrade naphthalene 

(Corner et al. 1973), but impairment of feeding and breeding 

behavior of crabs exposed to sublethal levels of hydrocarbons has 

been noted (Takahashi et al. 1973). Water soluble petroleum fractions 

impaired fertilization and development of sand dollar eggs (Nicol 

et al. 1977). Farrington and Quinn (1973) concluded the presence 

of hydrocarbons from n-Cl2 to n-C22 in clams was due to concentration, 

rather than synthesis, but they did not determine origj_n. Small 

oil globules are ingested like food by clams and concentrated 

primarily in the gut and hepatopancreas (Fang 1976). Fang made no 

report of toxicity, but water soluble crude oil fractions vrere 
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determined to be toxic to larval quahog clams (Byrne and Calder 

1977) and to impair feeding ability and gill efficiency of 

oysters (Chipman and Galtsoff 1949). 

Lasday ancl Hertens (1976) summarized the results of several 

research projects by stating that exposed shellfish eliminate 

hydrocarbons within 2 weeks after being transferred to clean water 

and that no food chain accumulation of hydrocarbons has been 

found. Shelton (1971), hm.;rever, believes that chronic deposition 

or oil spills in sheltered areas have a deleterious effect and is 

supported by the report of the Tampico Hara spill during 1957 

(Holcomb 1969). This incident involved a dark diesel oil spilled 

into a turbulent cove on the Pacific coast of California, the 

effects of which were still noticeable after 10 years. 

Hydrocarbon contamination of fish and shellfish from coastal 

areas has been reported (Krishnaswami ancl Kupchanko 1969, Ehrhardt 

1972, Sidhu et al. 1971, Cannel 1971, Ogata and Miyake 1973, 

Ogata and Ogura 1976). Ellis (1937) determined that volatile 

crude oil compounds enter fish directly through the mouth lining 

and gills. Fish accumulate benzo(a)pyrene and naphthalene directly 

from water and release the hydrocarbons when transferred to clean 

water (Corner 1975). Korn et al. (1976), however, found that 

striped bass feeding and growth rates were impaired by exposure 

to benzene. Fathead minnows exposed to petroleum refinery effluents 

usually became emaciated and died within 32 days (Graham and 

Dorris 1968). Reynolds et al. (1975) found that petroleum refinery 
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wastewaters increased in toxicity "t-rith exposure time in hioassays 

with Selanastrum capricornutum. Combined petrolet.nn refinery and 

domestic effluents had deleterious effects on fish populations 

in a south~vestern stream (Phillips 1965), and on oil effluent 

released to the Buffalo river, New York, caused goldfish to refuse 

food, become sluggish, and lose equilibrium (Hestfall 1943). 

Differences among these reports are due to the inherent 

variability of test organisms, species sensitivity to the various 

toxins, and the test conditions. It is desirable to remove as 

many variables as possible when conducting bioassays so that results 

measure the intrinsic toxicity of the test solution. Ho~vever, when 

bioassays are performed to determine the pollution potential of 

waste1vaters it is essential that the assav should reflect the in - --
!£!£toxicity of the effluent (Marier 1973). To encourage 

comparability of results the American Public Health Association 

has formulated standard methods for bioassay testing (APHA 1975). 

Static bioassays of wastewaters may be performed to evaluate average 

toxicity unless the wastewaters have high biochemical oxygen 

demand (BOD), are volatile, or have high variability. Otherwise, 

continuous flow bioassays are recommended since the toxicity extremes 

of the wastewaters may be more ecologically important than the 

average. 

Many species have been suggested as standard bioassay organisms. 

Buikema et al. (1976) suggested using Daphnia sp. to screen refinery 

effluents. However, potential problems associated with the use 

of this organism and the associated procedure outw·eighed the proposed 



advantages. A comparison of fathead minnm..rs and goldfish as 

standard test fish determined that neither was superior, and that 

variability depended more on the toxicant than the species 

(Adelman and Smith 1976). Sources of intraspecific variation 

are age, sex, and health of the test organism (Buikema et al. 

1976, Mount and Stephan 1969). A?HA (1975) recommends that these 

and other variables (e.g. - suitability for use in bioassay tests, 

local and national importance, and environmental requirements 

of the species) be considered when selecting a test organism. 

Other recommendations concern test chambers, duration of 

tests, needed physicochemical measurements of test solutions, 

and reporting of results. The median lethal concentration (LC50) 

and its confidence limits should be reported where effect is noted 

as death of organisms. Methods include computerized probit 

analysis, the Litchfield-Wilcoxon (1948) method, and the moving­

average angle method (Harris 1959). In other instances the median 

lethal time (LT50) may be a more informative means of reporting 

data (Finney 1971, Litchfield 1949, Shepard 1955, Sprague 1973). 

Uniformity of methods and reporting of data ~rlll facilitate using 

the amount of data. 

A degree of sophistication now exists in bioassay procedures. 

An automated monitoring system (Cairns et al. 1973, Klein et al. 

1968) is currently in use by the Ohio River Valley t.Jater Sanitation 

Commission. However, Hamilton (1976, p. 2683) terms such systems 

"a treasured myth of the public" since the monitors do not really 

stop pollution, they merely report its occurrence. 
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CHAPTER III 

EXPERIMENTPL METHODS 

Wastewater evaluations were conducted in a mobile laboratory 

at petroleum refineries in the state. Effluent was pumped to the 

laboratory from the refinery outfall. Control water ~.;ras obtained 

from the receiving stream upstream from the outfall, or if 

unavailable, from municipal tap water Hhich r.;ras dechlorinated 

and filtered with activated carbon. 

The test chambers 1vere 30 liter glass aquaria. Test solutions 

were introduced at one end of the chambers and overflowed at the 

other end through standpipe drains. The light sources were 

36-inch, single bulb fluorescent fixtures, containing 30 watt 

soft-white bulbs. The lights were connected to a timer, ~.;rhich 

delivered a 16-hour light: 8-hour dark photoperiod to stimulate 

growth and reproduction of the test fish (Mount and Stephan 1969). 

Fathead minnows from a stock reared and maintained by the 

Reservoir Research Center, Oklahoma State University, were used in 

the study. Subadult fish 90 to 120 days of age l•rere used for acute 

tests. The fish were transported to the test site and acclimated in 

control water for 2 weeks prior to testing (Peterson and Anderson 

1969). Temperature of the test containers was maintained at 25°, and 

dissolved oxygen exceeded 4.0 mg/1. Fish were fed daily, hut were 
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not fed during or for 2 days prior to acute tests (APHA 1971). 

Eight acute toxicity bioassays were performed at the same refinery 

to compare the toxicity of petroleum refinery waste'tvaters under 

static and continuous flow conditions. Test concentrations vrere 

volume/volume percentages of waste'tvater I control water and were 

reported as percent wastewater (Table I). 

TABLE I 

EXPERIMENTAL DESIGN OF ACUTE BIOASSAYS 

% No. No. 
Wastewater Test Chambers Fish/Chamber 

Static 0 2 10 

18 2 10 

32 2 10 

55 2 10 

74 2 10 

100 2 10 

Continuous Flow 0 2 10 

18 2 10 

32 2 10 

55 2 10 

74 2 10 

100 2 10 

Ten subadult fish were randomly assigned (Finney 1964) to each 



test chamber 01ount and Stephan 1969). A number of fish, equal 

to the number of test containers, were removed from an acclimation 

tank and placed in a holding vessel. These fish 'vere then singly 

captured from the holding vessel and assigned to test chambers by 

using a random number table. This procedure was repeated until 

all fish were assigned to test chambers. 

Concentrations of ~..rastewater were assigned to test chambers 

12 

by using a random number table. As suggested by Hount and Brungs 

(1967), five concentrations of the effluent and a control were 

used. Duplicate samples of each concentration w·ere tested. Before 

the effluent concentrations were introduced into the test chambers, 

the chambers were drained to within 2 em of the bottom. 

Test concentrations were pumped into static exposure chambers 

from a mixing tank and delivered to continuous flo~v- exposure chambers 

through a diluter modified from ~aunt and Brungs (1967). Delivery 

rates were 500 ml/min to each test chamber. The test chambers 

were covered with glass to prevent escape of volatile toxins. 

Mortality was determined at 1, 2, 6, 8, 24, 48, 72, and 96 h, and 

then at 24 h intervals until mortality ceased. From these data, 

estimates of median lethal concentration (LC50) and median lethal 

time (LTSO) '..rere determined. 

The responses of the fathead minno"t-rs to the effluent made LC50 

determinations by the Litchfield-Wilcoxon (1948) method impossible. 

The fish exhibited a narrot.r toxicity threshold often with no mortality 

at one effluent concentration and complete mortality at the next 

higher concentration. Thus, neither reliable determinations of the 



LCSO values nor their confidence limits could ·be obtained 

graphically. LCSO determinations were made by the movirig average 

angle method (Harris 1959). The effluent concentrations (doses) 

were transformed to logarithms. The percent mortality or 

proportional response (p) at each dose ~vas transformed to an angle, 

0(p) =arcsin~, using Table XII in Fisher and Yates (1963). 

The average of three successive angles v7as computed, each average 

angle being associated with the middle dose of the respective 

set of three doses. An LCSO was estimated by linear interpolation 

between the two successive doses whose average angles bracketed 

45°. For the average angles y < 45 < y', x and x' denote the 

corresponding log doses, and the estimated log LCSO = 

x + (x' - x) [45- y l Confidence limits for the LCSO 
y'- y 

computed as: 

x + (x' - x)AL and x + (x' - x)Au 

where AL and Au were computed from the formula: 

and: 

A- ~g + ~j(A - ~)2 + (1-g) (2k - 1) 
1-g 1-g 4 

A= (45- y)/(y' - y) 

g = 1641.4 ~ 2/nk2 y2 

~.;rere 

~ = 1. 96, the normal deviate corresponding to the two-sided 

confidence level 

n = number of organisms/dose 

k = number of angles 

y = (y' - y). 
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Comparisons of LC50 values were made by comparing the ratio of 

their slope functions. The differences were considered significant 

(p = 0.05) if (x1 - x2) + RL ~ 0 where x1 and x 2 corresponded to 

log doses associated with the LC50's m1 and m2 when m2 ~ m1. 

RL was computed as: 

RL = (Y2 - Yl) - ~2(1 - h)Var(y2 - Yl)th(y2 - yl)2 

be (1 - h) 

and y1 and y2 are the average angles Yn < 45 vrhich correspond to 

the LC50's m1 and m2 where: 

~ = 1. 96 

h = ~2 Var bc/bc2 

be= (xi- xl)(yi- yl) + (xz- x2)(y2- yz) 

(xi - x1)2 + Cx2 - x 2)2 

Var be= 1641.4/(xi- x1) 2 + (xz- x 2) 2 

Var (y2 - y1) = 1541.4/nk 

n = number of organisms/dose 

k = number of angles. 

The Litchfield (1949) method ~vas used to determine LT50 values. 

LTSO values were reported for only 100% concentrations of effluent 

since only incomplete analyses could be performed at lm.rer concen-

trations. Each observation time was plotted against cumulative 

percent mortality on logarithmic probability paper, and a straight 

line was fitted through the points. Times corresponding to 16, 

50, and 84% mortality were recorded from the fitted line. The 

slope function S, the estimate of the standard deviation of the 

mean was calculated as S = LT84/LT50 + LT50/LT16. 
2 
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The standard error of the LTSO (fLTso) was determined in one 

of two ways. If complete mortality occurred, the value "f" was 

read from Nomograph No. 1 using Sand N (total number of test fish). 

If incomplete mortality occurred, fLTSO was determined by reading 

Nz from Nomograph No. 2 using Nand the percentage reacting, then 

reading "f" from Nomograph 1 using S and Nz. The standard error 

of S was determined in a similar manner using N1 = 2N - 1 if 

mortality was complete, or by reading N3 from Nomograph 3, then 

again reading "f" from Nomograph 1 using S and N, or N3. Two 

parameters were examined for comparison of LT50's, the slope 

function ratio (SR) and the reaction time ratio (RR). SR was 

calculated as SR = S1/S2 where s1 > s 2; s1 and s 2 corresponding to 

the standard error for the t~toTo LT50 1 s. Nomograph 4 (Litchfield 

and Wilcoxon 1948) was used to obtain fsR' the standard error of 

SR, by using f 81 and fs 2• Confidence limits for SR were calculated 

as (SR)(fgR) =upper and SR/fSR =lower. The curves were considered 

to deviate significantly (p = 0.05) from parallelism if SR > fSR' 

The reaction time ratio was calculated as: RR = LTS01/LTS02; 

where LTS01 > LT50z. The value of fp~ was read from Nomograph 4 

using fLTso1 and fLT50 2• Confidence limits for RR were calculated 

as (RR) (fRR) = upper and RR/ fRR = l01:to1er. The reaction times were 

considered significantly different (p = 0. 05) if RR > fRR· 

Thirty-two day continuous flow bioassays were performed to 

evaluate the effectiveness of the following petroleum refinery 

wastewater treatment methods for removing toxic compounds; biological 

trea~ment (BT), sequential BT-dual media (sand and anthracite coal) 
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filtration, and sequential BT-dual media (DM) filtration-activated 

carbon adsorption (AC). Th~ dual media filter Has backflushed 

hourly to remove particulate matter. The activated carbon unit 

was operated at a loading rate of 0.04 g COD/g carbon. Virgin 

carbon (ICI United States, Hydrodarco granular) was used for all 

tests. Bed volume was 4. 9m3 ~.,rith a hydraulic flow rate of 0.5 1/min. 
- ~~ 

Two experiments were conducted at each of three refineries, 

and one experiment was conducted at a fourth refinery. All of the 

refineries used a different type of biological waste treatment. 

Refinery A had a raceway bio-ditch followed by a sludge clarifier 

and polishing lagoons. Refinery B used dissolved air flotation 

followed by activated sludge basins and a sludge clarifier. 

Refinery C treated its wastewaters in a bio-oxidation unit followed 

by a series of polishing lagoons. The treatment system at refinery 

D consisted of activated sludge basins follmved by aerated lagoons. 

Test solutions 'tvere delivered to the chambers at approximately 

0.13 ].(min. This rate equalled the test volume in 4 - 6 h as 

recommended by APHA (1975). Each of the treatments was monitored 

hourly with a chemical ion probe system (Hydrolab Corp. Model 60) 

for temperature, dissolved oxygen, pH, and conductivity. The data 

was stored on a magnetic tape recorder (Netrodata f,orp. Model 640). 

Some temperature and dissolved oxygen measurements ~.;ere conducted 

in the test chambers with a field probe unit (Yello't-r Springs 

Instruments, Model 54). Determinations of alkalinity, hardness, 

and chemical oxygen demand (COD) were performed at the beginning and 

end of each bioassay by standard methods (APHA 1975). Determinations 
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of ammonia, total organic carbon (TOC), and suspended solids were 

made at 2, 4, 8, 16, and 32days of exposure. Ammonia was analyzed 

by the standard method of distillation and titration (APHA 1975) 

and by specific ion probe (Orian Hodel 407 meter and Orion Series 95 

ion probe). TOC analyses were performed on a Beckman Model 915 

total organic carbon analyzer. 

Test chambers and photoperiod were identical to acute exposures. 

However, the test fish were fed daily during acclimation and 

exposure. Adult fish, 150 - 180 days of age were used, and glass 

spawning tiles 'vere placed in each test chamber to determine 

effects of the wastewaters on reproduction. Mortality of adult 

fish was recorded daily, and LTSO determinations followed the 

same procedures as in acute bioassays. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

In six experiments comparing static and continuous flo1,7 

acute bioassays, calculated LC50 values ;.;rere low·er in static 

than corresponding continuous flow tests, and in three of four 

experiments where complete analyses could be made (Table II) 

the differences were significant (p = 0.05). 

Reaction time to the effluents was also significantly shorter 

(p = 0. 05) in five static exposures than in continuous flo'tv 

experiments. In five of the experiments the LT50 curves were 

significantly (p = 0.05) nonparallel (Table III), indicating 

differences in LT50. 

Regulatory agencies may recommend that bioassays of waste't.;raters 

be performed to demonstrate that the effluents will not harm receiving 

stream communities. Presently, APHA (1975) recommends continuous 

flow bioassays of effluents that contain variable constituents or 

have volatile fractions. Petroleum refinery 'tvastewaters fit this 

category. Fluctuations of results during this study reflect the 

variability of the wastewater. Toxic volatile fractions of petroleum 

r~finery \~astewaters have been found (Dorris, Burks, and Waller 

1974). Although the continuous flow bioassays constantly replaced 

volatile components of the wastewaters and exposed the test fish 

to varying qualities of effluent during this study, static tests 

18 
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TABLE II 

LC50 VALUES OF ACUTE EXPOSURES 

Test Continuous Flow Static 
Number LCSO (Range) LCSO (Range) Significance 

1 72% (43-7 5) 59% (55-64) + 

2 64% (55-76) 54% (4 7-63) + 

3 43% (40-47) 44% (39-49) 

4 >96 h 72% (67-79) 0 

5 >96 h 65% (61-71) 0 

6 >96 h >96 h 0 

7 >96 h 68% (63-73) 0 

8 73% (68-79) 70% (64-77) + 

>96 h Unable to calculate LCSO 

+ Significant difference between LC50 values (p = Q, 05) 

No significant difference between LC50 values (p = 0.05) 

0 Unable to test for significance 
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TABLE III 

LTSO VALUES OF ACUTE EXPOSURES 

Significance 
Test Continuous Flow Static Reaction 

Number LTSO(Range) S (P..ange) LTSO(Range) S (Range) LTSO Time 
Hours 

1 12 (11-13) 1. 3 (1. 2-1. 4) 7 ( 4-10) 2.5(1.9-3.3) + + 

2 2(1.1-2.4) 3. 7 ( 2. 8-4. 9) 6 ( 4- 8) 2. 0 ( 1. 6-2. 4) + + 

3 8 ( 6- 9) 1. 7 (1. 5-2. 0) .6 (.3-1.3) 5.6(3.3-9.7) + + 

4 29' (21-39) 2.6(2.1-3.3) 10 ( 7-14) 2.2(1.7-2.8) + 

5 42 (34-52) 2.1(1.8-2.4) 34 (32-36) 1. 2(1.1-1. 2) + 

6 34 (26-45) 2.4(2.0-3.0) 17 (11-26) 2.6(1.9-3.5) + 

7 24 (22-27) 1.4(1.3-1.5) 15 (12-19) 1. 8 (1. 5-2. 1) + + 

8 19 (15-24) 2.1 (1. 8-2. 5) 15 ( 9-25) 3.2(2.2-4.5) 

S Standard error of LT50 

+ Significant differences between values for continuous flow and 
static exposure (p = 0.05) 

- No significant differences present (p = 0.05) 



were clearly more effective in indicating toxicity. If further 

research substantiates these results, considerable economic 

advantages could occur by performing static instead of continuous 

flow bioassays without detriment to receiving streams. 

Seven experiments were conducted to evaluate the effectiveness 

of advanced wastewater treatment methods (Table IV). Acute 

toxicity was apparent only at refinery B during these experiments. 

Unless mortality occurred early in an exposure, fish in BT and 

BT-DM effluents displayed a characteristic response. The fins 

began to darken and became progressively compressed and the body 

darkened anteriorly to posteriorly. The fish moved slowly in a 

random manner at the surface and no longer accepted food. Emaciation 

was progressive, but it could not be determined to be the single 

cause of death. 

No reproduction was observed during any of the experiments, 

but prespa\vning behavior was noted. The behavior consisted of 

establishment, defense, and cleaning of spawning sites, and the 

appearance of dark vertical bars on the sides and tubercles on the 

rostrum of male fish. 

Final effluents were evaluated with the exception of refinery 

A, where the sludge clarifier effluent v7as used because of space 

and utility limitations. The first exposure at refinery A resulted in 

mortalities of 5% in the control, 70% in BT effluent, 20% in BT-DM 

effluent, and 15% in BT-DM-AC effluent. Estimates of LT50 values 

were unnecessary except for BT effluent for which the value was 

23.0 days (Table IV). Obvious differences existed in toxicity of the 

different treatment methods. 
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TABLE IV 

LT50 VALUES OF FATHEAD MINNOHS EXPOSED 
TO THREE TREATMENT HETHODS 

Refinery 
A B c 

Treatment Exposure LT50 s LTSO s LTSO s 

Control 1 (1) 0 0 

2 0 0 (2) 

Biological 
Treatment (BT) 1 23d 1.4 <24h 13d 1.1 

2 lOd 1.6 0.4h 2.7 (12) 

BT-DM* 1 (4) <24h 12d 1.2 

2 (11) 0.9h 1.9 (10) 

BT-DM-AC** 1 (3) (13) 0 

2 0 0 (1) 

*BT-DM Biological treatment-dual media filtration 

D 
LT50 s 

0 

12d 1.3 

13d 1.3 

0 

**BT-DM-AC Biological treatment-dual media filtration-activated 
carbon adsorption 

d Days 

h Hours 

s Standard error of LTSO 

0 No mortality 

( ) Cumulative mortality, insufficient to determine LTSO 

No second exposure at refinery D 
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Because of a malfunction of the ion probe system, chemical 

data from treatment feedwaters was obtained during only 1 day of 

the exposure (Table V). Dissolved oxygen (D.O.) was the only 

potentially limiting parameter, but aeration in the test chambers 

maintained concentrations above 4. 0 mg/~-· The pH w-as lov7ered in 

the dual media filter and remained stable through activated carbon 

adsorption, while conductivity was lowered in both of these 

treatments. The decrease in pH could be indicative of bacterial 

activity in the dual media filter, but the D.O. should have also 

decreased if this were true. The drop in conductivity through 

the treatment system could be due to adsorption by the activated 

carbon. Results from this e~posure indicate that additional 

wastewater treatment by dual media filtration significantly reduced 

toxicity of the biologically treated effluent. Further treatment 

by activated carbon adsorption had little additional beneficial 

effect on effluent quality. 

The second exposure at refinery A produced no mortality in the 

control or BT-DM-AC effluent, 55% in BT-DM effluent, and 100% 

in BT effluent. The estimated LT50 in BT effluent was 10.4 days 

(Table IV). During the lOth and 16th days of exposure, fish in 

the control aquaria were engaged in prespavming behavior. Hortality 

during this exposure probably would have been much less, but during 

the 28th day bypassing and cleaning a refinery ':vaste trap resulted 

in a severe overload of the treatment svstem. 

Dissolved oxygen in aquaria influent ranged from 0.4 mg/J, 

to 0. 7 mgG in the control, 1. 0 to 1. 9 mg/1 in BT effluent, 1.1 
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TABI,.E V 

CHEMICAL PARAMETERS OF TREATMENT EFFLUENTS DURING EXPOSURE 1 
AT REFINERY A ON 21 NOVill1BER, 1975 

INFLUENT TO TEST AQUARIA 

Control BT* BT-DW BT-DM~Ac*:l• 

Temp. (OC) X 12.7 13.4 19.7 17.1 

s 0.7 0.6 1.0 0.2 

D.O. (mg/1) :X 1.1 1.8 2.2 2.2 

s 0.1 0.1 o.o 0.1 

Conductivity x 5917 4980 3262 2049 
( 'J.Dlho s I em) 

s 283 321 108 122 

-pH X 8.3 7.7 7.0 7.0 

s 0.1 0.1 0.1 o.o 

*BT Biological treatment 

~T-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration-activated 
carbon adsorption 

x Mean 

s Standard deviation 
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to 2. 0 mg/1,. in BT-DM effluent, and 1. 2 to 2. 0 mg/1 in BT-DN-AC 

effluent (Table VI). Aeration of the test chambers maintained 

D. 0. above 4. 0 mg/1, so the recorded concentrations were not the 

cause of any mortality. 

The pH values w·ere neither extreme nor toxic during the 

second exposure. Values ranged from 7.1 to 8.0 in the control, 

6.1 to 7.9 in BT-DH-AC effluent. The pH was lowered slightly 

in the dual media filter, indicating bacterial activity, but 

increased during activated carbon adsorption. 

Conductivity ranged from 3149 to 5610 pnhos/cm in the control, 

140 to 1110 pnhos/ em in BT effluent, 44 to 996 pnhos/ em in BT-DH 

effluent, and 44 to 1188 ~hos in BT-DM-AC effluent. The 

conductivity was lo~vered by the treatment syste_m during this 

exposure, by 40% in BT-DM effluent and 55% in BT-DM-AC effluent. 

Suspended solids in BT effluent were reduced 52% by dual 

media filtration (Table VII). No further reduction in suspended 

solids occurred with activated carbon adsorption, probably due to 

fine carbon particles released from the carbon unit. 

TOC was reduced 22% by dual media filtration and 71% by 

subsequent activated carbon adsorption. Ammonia, hmvever, 

increased by 17% in BT-DM effluent and 75% in BT-DM-AC effluent. 

COD was reduced 11~~ by dual media filtration and 60% by activated 

carbon adsorption (Table VIII). Alkalinity decreased and hardness 

increased slightly during the exposure with the exception of the 

initial BT-DM-AC sample. Both values for this sample were 

comparatively high, possibly due to leaching of salts from the 

activated carbon. 
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TABLE VI 

CHEMICAL P ARA.11F.TERS OF TREATMENT EFFLUENTS DURING EXPOSURE 2 
AT REFINERY A FROM 18 APRIL TO 8 MAY, 1977 

INFLUENT TO TEST AQUARIA 

Control BT* BT-D~ BT-DM-AC** 

Temp. (oc) X 

s 

D.O. (mg/1) -
X 0.5 1.5 1.6 1.6 

s 0.1 0.3 0.3 0.2 

Conductivity x 4348.6 523.3 320.7 240.2 
(].mhos/ em) 

s 622.5 311.7 303.1 325.1 

pH X 7.7 6.9 6.8 7.2 

s 0.3 0.6 0.7 0.4 

*BT Biological treatment 

+BT-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media-activated 
carbon adsorption 
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TABLE VII 

SAMPLES OF TREATMENT EFFLUENTS DURING EXPOSURE 2 
AT REFINERY A FROM 18 APRIL - 20 HAY, 1977 

Day of Suspended Solids TOC Total NH3 
Exposure Effluent (mg/1) (mg/1) (mg/1) 

2 Control 10.6 3.0 o.o 
BT* 24.7 30.4 11.6 
BT-DW 26.7 23.2 11.2 
BT-DH-AC** 38.1 2.6 31.2 

4 Control 5.6 0.6 o.o 
BT* 50.0 21.6 8.8 
BT-DW 15.4 20.2 8.9 
BT-DM-AC** 16.4 4.9 15.2 

8 Control 1.8 19.6 o.o 
BT* 48.5 23.5 8.6 
BT-DW 20.8 18.9 8.3 
BT-DM-AC** 7.8 2.5 11.9 

16 Control 4.4 4.9 o.o 
BT* 46.1 21.8 7.5 
BT-DW 28.2 19.9 15.4 
BT-DM-AC** 14.7 4.9 18.6 

24 Control 2.2 2.1 o.o 
BT* 23.4 24.6 14.2 
BT-DM+ 8.0 11.5 13.7 
BT-DM-AC** 8.8 4.7 13.0 

32 Control 0.8 2.7 o.o 
BT* 10.0 21.5 12.3 
BT-DM+ 1.2 17.5 12.8 
BT-DM-AC** 1.5 6.8 15.3 

*BT Biological treatment 

+sT-DH Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration-activated 
carbon adsorption 
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TABLE VIII 

SAMPLES OF TREATMENT EFFLUENTS DURING EXPOSURE 2 
AT REFINERY A FROM 18 APRIL - 20 MAY, 1977 

Day of Alkalinity Hardness 
Exposure Effluent (mg/1) (mg/1) 

2 Control 114.0 185.7 
BT* 34.0 308.8 
BT-DM+ 34.0 278.3 
BT-DM-AC** 102.0 1533.8 

32 Control 118.0 133.3 
BTic 29.0 407.7 
BT-DM+ 29.0 411.6 
BT-DM-AC** 30.0 440.9 

*BT Biological treatment 

+BT-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration­
activated carbon adsorption adsorption 

COD 
(mg/1) 

15.4 
142.6 

69.4 
65.6 

10.4 
79.9 

104.2 
27.8 



Hhile dual media filtration improved the effluent quality, 

addition of an activated carbon adsorption unit to the treatment 

system significantly improved waste1vater treatment effectiveness. 

Although ammonia increased in this treatment unit, the levels caused 

no mortality. The activated carbon unit prevented mortality caused 

by an overload of the biological treatment system which the dual 

media filter "t<7as unable to do. 

The first exposure at refinery B resulted in complete 

mortality in BT and BT-DH effluents ~vithin 24 h (Tahle IV). 

Sixty-five percent mortality occurred in BT-DM-AC effluent ~vhen 

the adsorptive capacity of the activated carbon ~~s apparently 

exhausted during the 14th day of exposure. The carbon ~~s 

replaced, and no subsequent mortality occurred. No mortality 

occurred in control aquaria. 

The pH ranged from 5.1 to 7.6 in the control feedwater, 5.1 

to 8.6 in BT effluent, 4.7 to 6.7 in BT-DM effluent, and 4.6 to 

7.6 in BT-DH-AC effluent (Table IX). Mean values decreased 

slightly through the treatment system, but the lm.v values occurred 

during the second day of exposure in all effluents. 

Conductivity readings were extremely variable. Ranges were 

3588.1 to 7769.9 pnhos/cm in control feedwater, -6.9 to 3231.3 

~hos/cm in BT effluent, -10.1 to 4154.6 ~hos/cm in BT-DM 

effluent, and -12.0 to 5238.1 ~hos/cm in BT-DM-AC effluent. 

The negative values are not assumed to be the result of a probe 

malfunction since values from the control feedwater did not 

exhibit this variation. 
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TABLE IX 

CHEMICAL PAP~ETERS OF TREATMENT EFFLUENTS DURING EXPOSu~E 1 
AT REFINERY B FROM 5 APRIL- 7 MAY, 1976 

INFLUENT TO TEST AQUA.~IA 

Control BT* BT-DW BT-DM-AC** 

Temp. (oC) -
X 19.5 25.3 25.0 25.7 

s 2.9 2.3 2.7 2.6 

D.O. (mg/1) X 6.7 5.1 4.7 4.3 

s 2.1 2.9 2.7 2.5 

-Conductivity x 4814.6 620.1 376.6 419.4 
( liDhos/ em) 

s 463.1 1258.9 937.2 1119.2 

pH X 7.0 6.9 6.8 6.7 

s 0~5 0.6 o.s o.s 

*BT Biological treatment 

~T-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration-activated 
carbon adsorption 
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Temperature ranged from 12.8 to 23.9°C in the control, 22.1 

to 28.9°C in BT effluent, 19.8 to 29.1°C in BT-DM effluent, and 

19.5 to 28.4°C in BT-DM-AC effluent. 

Dissolved oxygen in the treatment effluents ranged from 2.9 

to 8.8 mg/1 in the control, 1.4- 9.9 mgf+. in BT effluent, 0.4 

to 9. 2 mg/~ in BT-DM effluent, and 0. 7 - 9. 3 in BT-DM-AC effluent. 

Measurements of D.O. in the test chambers ranged from 0.4 mg/1 .... 

in BT effluent to 8.4 mg/1 in BT-DM-AC effluent (Table X). 

If measured D.O. reflected earlier concentrations in the test 

chambers, the low levels could have contributed significantly 

to observed toxicity. 

Forty-one percent of the suspended solids present in BT 

effluent ~·Tere removed by dual media filtration and 73% 1:yere removed 

by BT-DM-AC treatment (Table XI). Eighty-nine percent of the 

TOC was removed by BT-DM-AC treatment, but TOC increased by 117, 

in the dual media filter. However, ammonia increased 38% in the 

dual media filter and 87% in the activated carbon unit. COD was 

reduced 24% by dual media filtration and 88% by additional 

treatment with activated carbon (Table XII). 

No mortality occurred during the second exposure at refinery B 

in control or BT-DM-AC aquaria. However, 100% mortality Has again 

observed in BT and BT-DM effluents. The e.stimated LTSO in BT 

effluent was 10.5 h, and 22.0 h in BT-DM effluent (Table IV). LT50 

values and reaction time ratios indicated a significant decrease 

in toxicity due to additional wastewater treatment by dual media 

filtration. The activated carbon adsorption unit eliminated 
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TABLE X 

DISSOLVED OXYGEN IN TEST CHAMBERS DURING EXPOSURE 1 
AT REFINERY B FROM 23 APRIL - 5 MAY, 1976 

DAY OF EXPOSURE 

16 28 30 

Control 

a 6.0 mg/1 7.1 mg/1 6.2 mg/1 

b 5.8 7.7 6.3 

BT* 

a 0.4 mg/1 3.3 mg/1 2.3 mg/1 

b 2.4 7.4 6.8 

BT-DW 

a 5.2 mg/1 5.4 mg/1 4.6 mg/1 

b 6.1 8.0 6.8 

BT-DM-AC** 4.9 mg/1 8.1 mg/1 7.5 mg/1 

6.5 8.4 7.6 

*BT Biological treatment 

+nT-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration 
activated carbon adsorption 



TABLE XI 

SAMPLES OF TRFATMENT EFFLUENTS DURING EXPOSURE 1 AT REFINERY B 
FROM 5 APRIL TO 7 MAY, 1976 

Day of Suspended Solids TOC Total NH3 
Exposure Stream (mg/1) (mg/1) (mg/1) 

0 Control 2.4 6.6 0.3 
BT* 57.1 79.0 8.4 
BT-DW 35.3 62.2 9.4 
BT-DM-AC** 11.2 8.5 16.2 

2 Control 3.7 6.7 0.2 
BT* 16.0 91.2 21.7 
BT-Dr.rl- 18.0 83.1 23.3 
BT-DM-AC** 8.0 2.6 16.9 

4 Control 3.6 o.o 
BT* 62.1 30.9 
BT-D~ 57. 2 35.0 
BT-DM-AC** 6.9 19.7 

8 Control <1.0 0.1 
BT* 43.3 25.3 
BT-DW 46.2 26.1 
BT-DM-AC** 6.0 14.7 

16 Control 3.9 o.o 
BT* 55.7 1.9 
BT-mrf" 58.1 5.7 
BT-DM-AC** 7.3 15.0 

24 Control 3.0 o.o 
BT* 46.0 10.6 
BT-Dr.rl- 97.5 8.6 
BT-DM-AC*"c 10.5 13.1 

32 Control 2.6 2.3 o.o 
BT* 165.8 74.3 10.6 
BT-DW 5.2 68.3 15.5 
BT-DM-AC** 22.5 5.6 6.9 

*BT Biological treatment 
+BT-DM Biological treatment-dual media filtration 
**BT-DM-AC Biological treatment-dual media filtration-activated 

carbon adsorption 



TABLE XII 

SAMPLES OF TREATMENT EFFLTJENTS DURING EXPOSURE 1 AT 
REFINERY B FROM 5 APRIL TO 7 MAY, 1976 

Day of Alkalinity Hardness COD 
Exposure Effluent (mg/1) (mg/1) (mg/1) 

0 Control 37.0 81.6 76.1 
BT* 94.0 190.8 296.4 
BT-DM+ 81.0 193.8 242.3 
BT-DM-AC** 107.0 138.7 48.1 

32 Control 82.0 91.1 7.6 
BT* 296.0 146.5 296.4 
BT-DW 259.0 146.5 208.4 
BT-DH-AC** 87.0 217.8 22.9 

TABLE XIII 

SAMPLES OF TREATMENT EFFLUENTS DURING EXPOSTJRE 2 AT 
REFINERY B FROM 4 JUNE TO 6 JULY, 1976 

Day of Alkalinity Hardness COD 
Exposure Effluent (mg/1) (mg/1) (mg/1) 

0 Control 89.0 151.3 o.o 
BT* 161.0 170.7 233.1 
BT-D~ 178.0 147.4 177.5 
BT-DM-AC** 117.0 147.4 26.8 

32 Control 90.0 126.5 4.0 
BT* 159.0 126.5 296.8 
BT-DW 155.0 106.1 175.3 
BT-DM-AC** 122.0 114.2 21.9 

*BT Biological treatment 
~T-DM Biological treatment-dual media filtration 
**BT-DM-AC Biological treatment-dual media filtration-

act iva ted carbon adsorption 



mortality, and the physical appearance of fish in control and 

BT-DM-AC aquaria was identical. 

Additional waste treatment provided significant improvement 

in water quality. BT-DM and BT-DM-AC treatments removed 32 and 

91% of the COD, respectively (Table XIII). BT-DM-AC treatment 

was nearly twice as efficient in removal of suspended solids and 

TOC as BT-DM treatment and ~..ras even more effective in ammonia 

removal (Table XIV). 

The continuous ion probe monitoring system Has inoperative 

during this exposure. Measurements of temperature and dissolved 

oxygen were made with a field probe (Table XV). Low levels of 

dissolved oxygen occurred only in BT and BT-DM aquaria but these 

levels did not contribute to the observed mortality of the test 

fish. Temperature ranged from 17.0° in BT-DM aquaria to 25.0° 

in BT aquaria. 

No immediate mortality occurred during the initial exposure 

at refinery C and by the third day fish in control and BT-DM-AC 

aquaria were establishing spawning territories. On day 5 

toxicity occurred in aquaria containing BT effluent and on 

day 6 in BT-DM effluent. Fish in BT and BT-DM effluents began 

to show effects of chronic exposure by day 8. A heavy rain 

occurred during day 10 and refinery waste~,rater traps overflm..red 

into the outfall where the laboratory intake was situated. This 

was probably the cause of complete fish mortality in BT and BT-DM 

effluent aquaria on days 13 to 16. However, fish in BT-DM-AC 

effluent were unaffected and during day 15 were engaged in 



TABLE XIV 

SAMPLES OF TRFATMENT EFFLUENTS DURING EXPOSURE 2 AT 
REFINERY B FROM 4 JUNE TO 6 J.ULY, 1976 

Day of Suspended Solids TOC Total NH3 
Exposure Effluent (mg/1) (mg/1) (mg/1) 

0 Control 0.1 ll.l~ 0.3 
BT* 11.1 55.4 21.6 
BT-DW 26.2 55.4 24.0 
BT-DM-AO'~* 9.6 21.1 

2 Control 0.7 4.3 0.7 
BT* 68.0 58.2 16.8 
BT-DW 33.5 61.2 28.9 
BT-DM-AC** 11.1 4.3 14.9 

4 Control 0.5 7.5 0.3 
BT* 51.0 55.2 20.8 
BT-DW 10.2 52.2 21.4 
BT-DM-AC1~* 12.0 10.7 18.4 

8 Control 1.4 4.8 0.3 
BT* 26.0 30.9 25.9 
BT-DW 11.2 31.1 23.4 
BT-DM-AC** 3.5 3.9 15.7 

16 Control 1.7 3.9 0.2 
BT* 93.3 64.1 22.1 
BT-DW 14.4 20.7 15.5 
BT-DM-AC** 6.1 4.3 13.4 

24 Control 0.1 10.9 
BT* 77.2 57.9 
BT-DW 7.8 28.5 
BT-DM-AC** 11.1 13.4 

32 Control 0.5 5.3 0.1 
BT* 55.5 36.4 15.3 
BT-DW 16.1 34.7 13.7 
BT-DM-AC** 6.6 3.8 8.1 

*BT Biological treatment 
+BT-DM Biological treatment-dual media filtration 
**BT-DM-AC Biological treatment-dual media filtration-

activated carbon adsorption 



TABLE 'XV 

TEMPERATURE AND DISSOLVED OXYGEN IN TEST CHAMBERS 
DURING EXPOSURE 2 AT REFINERY B 

FROM 4 - 20 JUNE, 1976 

EFFLUENT 

Date Control BT* BT-D~ BT-DM-AC~~* 

a b a b a b a 

4 June Temp. (°C) 23.0 23.0 25.0 23.0 23.0 23.0 20.0 

D.O. (mg/1) 8.2 8.0 3.1 5.3 5.4 5.7 7.8 

6 June Temp. (°C) 22.5 22.5 24.0 23.0 23.5 22.0 21.0 

D.O. (mg/1) 6.8 6.8 0.5 0.6 0.3 0.9 3.5 

8 June Temp. (°C) 22.8 23.0 24.0 21.8 23.3 22.0 21.0 

D.O. (mg/1) 7.0 7.1 2.9 6.5 4.4 5.3 5.6 

12 June Temp. (OC) 19.0 20.5 22.0 18.8 20.0 17 ~.·0 19.9 

D.O. (mg/1) 7.7 7.8 4.7 6.4 6.0 7.1 4.4 

20 June Temp. (°C) 23.8 23.3 24.9 23.5 24.9 23.8 22.8 

D.O. (mg/1) 6.3 7.0 0.3 0.7 2.0 0.5 5.4 

*BT Biological treatment 

+BT-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration-activated 
carbon adsorption 

b 

21.0 

7.7 

21.0 

3.8 

21.0 

6.5 

19.3 

4.8 

23.3 

3.9 



prespawnin.g behavior. LT50 values for BT and BT-DM effluents 'tvere 

13.0 and 12.5 days, respectively (Table IV), indicating no decrease 

in effluent toxicity because of additional dual media filtration, 

but BT-DM-AC treatment eliminated effluent toxicity. 

Sequential treatment of biologically treated effluent at 

refinery C with dual media filtration and activated carbon 

adsorption improved the physicochemical quality of the final 

effluent. Dual media filtration reduced suspended solids 11%, 

but did not reduce TOC and COD (Tables XVI and XVII). Ammonia 

increased 29% after the dual media filter. BT-D~1-AC treatment 

reduced suspended solids, TOC, and COD by 32, 56, and 66%, 

respectively. Ammonia increased 17% in the carbon filtered 

effluent. No significant changes occurred in D.O., conductivity, 

pH, or temperature as a result of the treatment systems (Table 

XVIII)~ nor were any measured in test aquaria (Table XIX). 

Fathead minnow mortalities during the second exposure at 

refinery C were 5% in BT-DM-AC effluent, 10% in control, 50% in 

BT-DM effluent, and 60% in BT effluent (Table IV). No LT50 

estimates could be obtained from these data~ but BT-DM-AC treatment 

noticeably decreased toxicity of the biologically treated effluent. 

Dual media filtration produced only slight reduction in toxicity 

of the effluent. No reproductive behavior was observed during the 

exposure, probably because of the seasonal teml_)erature decrease. 

Temperatures measured during the exposure ranged from 18.5 to 6.5°C 

in the control, 18.5 to 5.7°C in BT effluent, 18.5 to 6.0°C in BT-DM 

0 
effluent, and 18.5 to 7.0 C in BT-DM-AC effluent. Measurements of 



TABLE XVI 

SAMPLES OF TREATMENT EFFLUENTS DURING FXPOSURE 1 AT 
REFINERY C FROM 30 AUGUST TO 1 OCTOBER, 1976 

Day of Suspended Solids TOC Total NH3 
Effluent (mg/1) (mg/1) (mg/1) Exposure 

0 Control 5.5 26.6 
BT* 43.6 48.3 
BT-D0 33.9 47.5 
BT-DM-AC** 35.7 16.5 

2 Control 2.3 20.0 
BT* 26.6 53.3 
BT-DW 22.8 48.9 
BT-DM-AC** 15.8 29.2 

4 Control 11.2 17.9 
BT* 23.8 44.9 
BT-DW 32.1 50.2 
BT-DM-AC** 33.6 25.1 

8 Control 24.6 15.6 
BT* 24.1 49.8 
BT-mr+ 24.6 58.1 
BT-DM-AC** 19.3 15.9 

16 Control 43.3 16.4 
BT* 45.8 49.6 
BT-DW 31.4 50.8 
BT-DH-AC** 27.3 18.9 

32 Control 3.8 21.6 
BT* 6.5 61.0 
BT-DM+ 4.4 58.4 
BT-DM-AC** 2.5 29.2 

*BT Biological treatment 

+BT-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration­
activated carbon adsorption 

o.o 
2.5 
2.3 
2.4 

o.o 
2.4 
4.2 
2.6 

0.1 
4.2 
5.0 
3.2 

0.0 
3.9 
7.2 
4.1 

o.o 
7.6 
8.2 
4.2 

o.o 
3.6 
3.5 
9.3 



TABLE XVII 

SAMPLES OF TREATMENT EFFLUENTS DURING EXPOSURE 1 AT 
REFINERY C FROM 30 AUGUST TO 1 OCTOBER, 1976 

Day of Alkalinity Hardness COD 
Exposure Effluent (mg/1) (mg/1) (mg/1) 

0 Control 234.0 308.2 
BT* 80.0 558.6 189.1 
BT-DW 166.0 586.2 196.4 
BT-DM-AC** 93.0 602.5 43.6 

32 Control 190.0 223.8 40.3 
BT* 155.0 455.4 177.4 
BT-DJ1+ 134.0 435.6 165.3 
BT-DM-AC** 128.0 415.8 80.6 

*BT Biological treatment 

+BT-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration­
activated carbon adsorption 
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TABLE XVIII 

CHEMICAL PARAMETERS OF TREATMENT EFFLUENTS DURING F~POSURE 1 
AT REFINERY C FROM 30 AUGUST TO 1 OCTOBER, 1976. 

INFLUENT TO TEST CHAMBERS 

Control BT* BT-DW BT-DM-AC** 

Temp. (oC) x 22.4 22.8 23.0 22.2 

s 2.9 2.5 2.2 2.3 

D .0 .. (mg/1) - 1.3 2.6 3.1 3.1 X 

s 0.4 0.6 0.5 0.4 

Conductivity X 2829.2 1652.2 132.8 51.6 
( ]mhos/ em) 

s 1518. 0 1839.7 279.6 91.6 

pH X 7.6 7.2 7.0 7.0 

s 0.2 0.1 0.1 0.2 

*BT Biological treatment 

~T-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration­
activated carbon adsorption 



TABLE XIX 

TEMPERATURE A~m DISSOLVED OXYGEN IN TEST CHAMBERS DURING 
EXPOSURE 1 AT REFINERY C FROM 30 AUGUST 

TO 1 OCTOBER, 1976 

EFFLUENT 

Date Control BT* BT-DW BT-DM-AC** 

a b a b a b a b 

30 Aug. Temp. (°C) 21.5 20.5 21.0 21.5 21.0 19.9 20.0 20.0 

D.O. (mg/1) 7.9 7.5 7 .4. 7.2 5.1 4.6 7.5 7.0 

3 Sept. Temp. (°C) 22.0 21.9 21.9 22.5 23.5 22.0 22.0 22.0 

D.O. (mg/1) ' 5. 6 5.3 6.7 6.1 5.2 5.7 7.5 7.7 

7 Sept. Temp. (°C) 22.0 21.5 22.7 21.5 23.5 21.5 22.1 22.0 

D.O. (mg/1) 5.5 5.0 5.0 6.6 4.3 7.0 6.6 6.7 

9 Sept. Temp. (OC) 19.5 19.0 19.0 20.5 20.0 20.0 19.7 19.7 

D.O. (mg/1) 5.9 6.1 6.8 4.4 3.6 4.8 6.5 6.7 

15 Sept. Temp. (°C) 22.0 21.5 21.5 22.1 22.1 21.5 22.0 22.0 

D.O. (mg/1) 5.4 5.1 3.6 2.3 3.3 2.4 3.7 5.1 

23 Sept. Temp. (°C) 20.0 20.0 20.0 20.0 21.0 20.0 20.3 20.5 

D.O. (mg/1) 5.3 6.1 3.7 5.6 3.8 6.3 4.0 5.6 

1 Oct. Temp. (°C) 17.5 17.0 17.0 17.5 18.0 17.0 17.5 17.5 

D.O. (mg/1) 7.2 6.9 5.7 4.8 6.0 6.2 7.8 7.1 

*BT Biological treatment 

+BT-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration-activated 
carbon adsorption 
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D.O. during the second exposure 111ere in excess of 4.0 mg/1 except 

for a single value of 3.5 mg/l in a BT-DM-AC test chamber (Table 

XX) • 

The experimental treatment system produced little effect on 

pH and D.O. (Table XXI). Conductivity decreased through the 

system during the second exposure but was extremely variable. 

After dual media filtration of BT effluent at refinery C 

suspended solids increased 2%, TOC increased 4%, and ammonia 

increased 207% (Table XXII). The large ammonia increase was the 

result of the very low ammonia content of the initial BT sample. 

Ammonia content was also 22% higher in BT-DM-AC effluent than 

BT, but 26% of the suspended solids and 79% of the TOC were removed 

by the additional treatment. BT-DH treatment removed 26% of the 

COD and BT-DM-AC treatment removed 40% (Table XXIII). 

A single exposure was conducted at refinery D. No mortality 

occurred in control or BT-DM-AC aquaria, but complete mortality 

occurred in 24 days in BT and BT-DM effluents. Estimated LT50 

values for BT and BT-DM effluents were 12.0 and 13.5 days, respectively 

(Table IV). Neither toxicity nor reaction times were significantly 

different for the two treatment methods. 

The treatment systems produced little effect on D.O. and pH 

(Table XXIV). Conductivity was reduced by the treatment systems, 

but was highly variable. Values ranged from 14.2 to 836.7 ll!lhos/ em 

in the control, 10.0 to 1678.3 ~has/em in BT effluent, 3.3 to 

1217.8 ~has/em in BT-DM effluent, and 2.1 to 141.2 llllhos/cm in 

BT-DM-AC effluent. 



TABLE XX 

TEMPERATURE AND DISSOLV~D OXYGEN IN TEST Cl~BERS DURING 
EXPOSURE 2 AT REFINERY C FROM 11 OCTOBER 

TO 12 NOVEMBER, 1976 

Effluent 

Date Control BT* BT-Dw- BT-DM-AC** 

a b a b a b a b 

11 Oct. Temp. (°C) 18.0 17.0 17.0 17.2 18.5 17.7 18.0 18.0 

D.O. (mg/1) 6.6 5.7 4.6 4.0 5.9 5.3 8.1 8.4 

13 Oct. Teti!p. (OC) 18.5 18.0 18.0 18.0 18.5 18.0 18.5 18.5 

D.O. (mg/1) 6.4 5.2 4.4 4.1 4.9 4.9 5.3 6.0 

15 Oct. Temp. (OC) 18.0 17.5 17.0 17.5 17.7 17.5 18.0 18.0 

D.O. (mg/1) 6.4 5.5 4.6 4.1 4.5 5.6 3.5 6.2 

19 Oct. Temp. COc) 12.0 11.5 11.0 11.5 13.0 12.0 13.5 13.7 

D.O. (mg/1) 10.2 9.0 6.7 6.7 6.3 7.4 6.8 7.1 

22 Oct. Temp. (°C) 15.5 13.5 13.0 13.9 14.5 14.0 15.0 15.2 

D.O. (mg/1) 8.7 8.4 6.2 7.9 5.5 8.7 6.2 6.7 

27 Oct. Temp. (°C) 14.7 12.0 12.2 12.5 13.0 12.5 14.0 14.5 

D.O. (mg/1) 7.5 7.4 6.1 7.9 5.6 8.3 6.3 7.0 

4 Nov. Temp. (°C) 13.0 12.0 12.2 12.9 15.2 13.0 15.2 15.2 

D .0. (mg/1) 11.4 10.8 6.3 6.7 7.3 5.8 5.4 8.1 

12 Nov. Temp. (°C) 6.5 6.5 6.7 5.7 7.0 6.0 7.0 7.5 

D.O. (mg/1) 12.0 12.0 8.0 8.4 7.4 7.5 6.8 9.0 

*BT Biological treatment 
+BT-DM Biological treatment-dual media filtration 
**BT-DM-AC Biological treatment-dual media filtration-activated 

carbon adsorption 



TABLE XXI 

CH~1ICAL PARAMETERS OF TREATMENT EFFLUENTS DURING 
EXPOSURE 2 AT REFINERY C FROM 11 OCTOBER 

TO 12 NOVEMBER, 1976 

Control BT* BT-D0 BT-DM-AC** 

Temp. (oc) x 

s 

D.O. (mg/1) -
X 2.9 3.5 3.6 3.7 

s 1.7 1.2 1.1 1.1 

Conductivity - 5406.4 4774.4 3041.3 2439.8 X 

( lJUhos/ em) 
s 1532.8 1147.8 1548.7 207 5.4 

pH - 7.1 6.9 6.9 7.0 X 

s 1.2 1.2 1.1 1.1 

*BT Biological treatment 

+BT-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration-activated 
carbon adsorption 
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TABLE XXII 

SAMPLES OF TREATMENT EFFLUENTS DURING EXPOSURE 2 AT 
REFINERY C FROM 11 OCTOBER TO 12 NOVEMBER, 1976 

Day of Suspended Solids TOC Total NH3 
(mg/1) (mg/1) (mg/1) Exposure Effluent 

0 Control 
BT* 26.6 28.6 
BT-DM+ 65.2 30.5 
BT-DH-AC"~~* 41.6 6.6 

4 Control 33.0 5.5 
BT* 38.3 27.5 
BT-DW 37.3 28.7 
BT-DM-AC** 24.6 4.7 

8 Control 20.0 3.9 
BT* 32.9 25.0 
BT-DW 28.0 28.5 
BT-DM-AC** 25.3 3.6 

16 Control 10.7 2.1 
BT* 38.2 20.8 
BT-DM+ 27.9 21.1 
BT-DM-AC** 31.5 6.2 

24 Control 2.2 6.9 
BT* 35.9 20.8 
BT-D~ 22.3 21.6 
BT-DM-AC** 12.6 4.3 

32 Control 1.8 6.2 
BT* 60.8 28.3 
BT-DM+ 30.3 27.2 
BT-DM-AC** 17.3 6.1 

*BT Biological treatment 

~T-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration­
activated carbon adsorption 

0.7 
4.9 
1.6 

0.0 
4.2 
5.4 
4.9 

o.o 
4.1 
4.5 
4.6 

o.o 
4.9 
5.5 
4.6 

o.o 
4.6 
4.4 
3.7 

o.o 
7.0 
6.6 
7.0 



TABLE :XXIII 

SAMPLES OF TREATI1ENT EFFLUENTS DURING EXPOSURE 2 AT 
REFINERY C FROM 11 OCTOBER TO 12 NOVEMBER, 1976 

Day of Alkalinity Hardness COD 
Exposure Effluent (mg/1) (mg/1) (mg/1) 

0 Control 
BT* 130.0 480.0 166.0 
BT-DW 137.0 420.0 140.3 
BT-DM-AC** 127.0 1432.01 98.8 

32 Control 238 .o 273.2 23.7 
BT* 164.0 396.0 178.7 
BT-DM_"i- 153.0 350.0 114.8 
BT-DM-AC** 145.0 554.0 

*BT Biological treatment 

+BT-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration­
activated carbon adsorption 

lcontained large quantity of suspended fine carbon 
particles. 
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TABLE XXIV 

CHEMICAL PARAMETERS OF TREATMENT EFFLUENTS DURING 
THE EXPOSURE AT REFINERY D FROM 

13 JUNE TO 15 JULY, 1977 

Control BT* BT-D~ BT-DM-AC** 

Temp. co c) - 23.5 27.7 27.8 26.2 X 

s 1.8 0.7 2.4 1.3 

D.O. (mg/1) X 2.3 2.3 2.2 2.2 

s 0.1 0.1 0.1 0.1 

Conductivity x 274.1 335.8 150.5 22.7 
(].mhos/ em) 

s 234.9 358.2 245.2 27.4 

pH X 7.4 7.2 7.2 7.4 

s 0.2 0.3 0.2 0.4 

*BT Biological treatment 

~T-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration-activated 
carbon adsorption 
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Dual media filtration provided a reduction of 3% in TOC 

and 18% in suspended solids at refinery D. No change occurred 

in ammonia content of the effluent (Table XXV). BT-DM-AC treatment 

reduced suspended solids and TOC by 69 and 71%, respectively, 

but ammonia increased 9%. COD in the first effluent sample was 

higher in BT-DM and BT-m1-AC than BT effluent, but was lower 

in the second (Table XXVI). Superior removal of suspended solids 

and TOC by BT-DM-AC treatment was instrumental in eliminating 

toxicity of the BT effluent. Dual media filtration of biologically 

treated petroleum refinery effluents improved physicochemical 

water quality but did not substantially reduce effluent toxicity. 

Sequential dual media filtration-activated carbon adsorption of 

biologically treated petroleum refinery effluents significantly 

reduced toxicity in 3 exposures and completely eliminated effluent 

toxicity in 4 exposures. The BT-DM-AC treatment system prevented 

toxicity from an overloaded refinery treatment system and from a 

spill to a receiving stream. Dual media filtration of the biologically 

treated effluents was insufficient to eliminate the toxicity in 

these cases. 

Addition of dual med:i.a filtration to biological ~.;rastewater 

treatment systems would not significantly improve the quality of 

effluents based upon toxicity to organisms in receiving streams 

and would be unable to protect receiving streams against spills of 

untreated wastewaters. Addition of sequential dual media filtration 

and activated carbon adsorption to biological ~.;rastewater treatment 

systems could significantly improve water quality of receiving 



TABLE XXV 

SAMPLES OF TREAT~ffiNT EFFLUENTS DURING THE EXPOSURE AT 
REFINERY D FROM 13 JUNE TO 15 JULY, 1977 

Day of Suspended Solids TOC Total NH3 
Exposure Effluent (mg/1) (mg/1) (mg/1) 

0 Control 5.7 6.3 
BT* 92.1 43.1 
ET-DW 6.1 42.3 
BT-DM-AC** 4.7 9.8 

2 Control 0.9 4.8 
BT* 64.3 51.8 
BT-DW 39.3 51.2 
BT-DM-AC** 20.8 15.8 

4 Control 0.9 11.5 
BT* 59.5 65.4 
BT-DJ-r'- 44.2 53.6 
BT-DM-AC** 13.6 6.6 

8 Control 4.6 3.8 
BT* 21.4 47.2 
BT-DW 46.1 51.1 
BT-DM-AC** 13.5 11.5 

16 Control 7.7 29.3 
BT* 82.4 40.7 
BT-DW 32.7 39.7 
BT-DM-AC** 9.2 

32 Control 7.7 
BT* 19.3 
BT-D~ 18.7 
BT-DM-AC** 9.6 

*BT Biological treatment 

+BT-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration­
activated carbon adsorption 

0.0 
5.9 
5.9 
5.7 

o.o 
5.9 
6.2 
5.9 

0.0 
7.3 
7.0 
7.3 

0.0 
9.6 

10.3 
9.2 

o.o 
3.4 
3.5 
4.5 

o.o 
1.7 
1.6 
2.2 
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TABLE XXVI 

SAMPLES OF TREATHENT EFFLUENTS DURING THE EXPOSURE AT 
RRFINERY D FROM 13 .TIJNE TO 15 JULY, 1977 

Day of Alkalinity Hardness COD 
Exposure Effluent (mg/1) (mg/1) (mg/1) 

0 Control 200.0 274.4 28.3 
BT* 57. 0 364.5 32.3 
BT-DW 70.0 388.1 196.0 
BT-DM-AC** 72.5 380.2 155.6 

32 Control 35.0 280.2 85.5 
BT* 24. 0 399.8 175.0 
BT-DW 23.0 454.7 151.6 
BT-DM-AC** 17.0 423.4 42.8 

*BT Biological treatment 

~T-DM Biological treatment-dual media filtration 

**BT-DM-AC Biological treatment-dual media filtration­
activated carbon adsorption 
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streams by reducing organic contamination released to the streams 

and preventing toxicity due to spills of untreated wastewaters. 

The production of ffimnonia in such treatment systems could 

result in additional pollution potential for refineries, although 

toxicity was not apparent during the study. Toxicity tests in 

this study were performed on effluents obtained from pilot scale 

treatment systems. The activated carbon adsorption unit was 

operated with a low COD to activated carbon loading rate, and 

only virgin carbon ~.;as used in the treatment unit. Pilot scale 

conditions produced excellent quality effluents, but were not 

representative of refinery conditions. Refineries would have to 

regenerate spent activated carbon, use higher flo~v rates, and 

higher loading rates of COD to activated carbon for the treatment 

system to be economically feasible. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The study was conducted to compare acute toxicity of petroleum 

refinery wastewaters to fathead minnows with static and continuous 

flow bioassays, and to compare the abilities of three methods of 

treatment to eliminate wastewater toxicity. 

Eight experiments were performed to compare toxicity of 

petroleum refinery wastewaters to fathead minnmvs in bioassays 

conducted under static and continuous flow methods. Six of the 

experiments showed a shorter reaction time by the minnoHs in 

static conditions. Static tests also produced shorter LTSO estimates 

than continuous flow, and in seven of the experiments estimates of 

the LCSO were lower in static bioassays. 

For purposes of spot testing samples of suspected toxic 

petroleum refinery effluents static bioassays are not only 

less expensive to perform in terms of equipment and man days, but 

give faster and more sensitive estimates of toxicity than continuous 

flo'tv tests. 

Seven experiments were performed to evaluate 3 wastewater 

treatment methods. Methods examined were biological treatment (BT), 

sequential biological treatment-dual media filtration (BT-DM), and 

sequential biological treatment-dual media filtration-activated 

carbon adsorption (BT-DM-AC). 
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On a pilot scale dual media filtration does not significantly 

reduce effluent toxicity and would provide no benefit to receiving 

stream organisms. Sequential dual media filtration-activated carbon 

adsorption significantly improved physicochemical water quality 

of the wastewaters tested and reduced or eliminated toxicity of 

the waste~va ters. However, the study was designed to achieve maximum 

benefit from each treatment system. Flo~" rates through the filter 

systems, gCOD/g carbon loading of the filter, and exclusive use 

of virgin carbon were intentional overdesigns of the activated 

carbon unit to achieve high quality effluents. Petroleum refineries 

will probably be unable to duplicate the methods of operating the 

treatment systems because of the high costs involved. 

The study demonstrated that fathead minnm11 bioassays can be 

successfully used to evaluate waste~vater treatment effectiveness. 

The fish responded to acute toxicity from spills of untreated 

wastewaters and to long-term toxicity of refinery effluents. The 

fish also reflected improvements in effluent water quality resulting 

from additional wastewater treatment. 
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