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CHAPTER ONE
INTRODUCTION

1.1 THE PURPOSE OF THIS WORK
Computer programs written to solve non-trivial programs 

almost invariably contain errors. Every programmer knows the 
long and tedious chore of correcting errors or "bugs" in the 
program. Therefore, methods are being developed to enable 
compilers to share the burden of debugging with the programmer. 
The error correction methods in existing compilers are geared 
to the particular language they are dealing with. In this 
thesis we shall present a technique for error correction that 
is language-independent.

In writing computer programs, errors are committed at 
various levels. At the highest level* we have the logical 
errors. The computer accepts a program with logical errors and 
executes it but does not produce what the program is meant to 
produce. This is (logical) correctness of a program and we 
do not deal with it here. Theoretical and practical work has 
been done in this area by Rustin R. (1971), Floyd, R. W. (1967).

At the lowest level the user may make errors in the 
instructions to the operating system. These errors are actually 
caused by violating the syntax of the language of the operating 
system. Therefore, we can regard them as syntax errors.

♦We consider the level of an error higher than the level of 
another error if the former is not detected until the latter 
has been corrected.



Compile-tirae errors, which we are going to consider, 
occur for two reasons. In a program either the syntax or the 
semantics may be unacceptable to the compiler; accordingly, 
we have syntactic or semantic errors. We have chosen to work 
with syntactic error correction, since the systematic approach 
to compilation represented by syntax-directed compilers makes 
possible a similarly systematic approach to the automatic 
correction of syntactic errors. Also, without resolving syntactic 
errors compilation cannot be continued. At or soon after the 
occurrence of a syntactic error, the compiler "gets stuck" and 
cannot proceed unless the compiler is provided with a scheme 
either for correcting the error or for making certain changes 
in the "state of compiling". The objective of this work is 
to develop a scheme that will correct the errors that we 
believe are "most likely" to occur. In the event of an 
"unlikely error", the scheme will enable the compiler to proceed 
further by merely changing the "state of compiling".

Even though we are confining ourselves to syntactic 
errors, we do not completely ignore semantic errors. Semantic 
errors cause compilers to assign unexpected meaning to the 
program. We are not concerned with the problem of correcting 
semantic errors committed by the programmer. However, we 
are concerned with the semantic errors introduced by correc
tions of the syntactic errors.

1.2 SURVEY OF PREVIOUS WORK DONE IN RELATED FIELDS
Hopcroft and Ullman (1966) establish fundamental 

results on error correction in formal languages. For a 
language L, they define the set E^CL) consisting of all 
strings w, such that there is a string x in L with the 
same number of symbols as w and differing from w in at 
most e symbols. In other words, (L) is the set of all



strings within e-Hamming distance of the strings in L. They 
prove that the set of regular languages, the set of context-free 
languages and the set of context-sensitive languages are closed 
under the operation Eg. However, the set of deterministic 
languages is not closed under Eg.

One of the earliest papers on error correction is by 
E.T. Irons (1963). Irons uses top-down parsing. In order 
to avoid backup, he constructs all possible parses in parallel. 
At any step during the parse, one or more parse trees have 
been constructed; some branches are incomplete. An error is 
detected when no partial tree can be further built. Then all 
input symbols are successively examined and discarded until 
one is found which can be a node of some incomplete branch.
A string of symbols is constructed such that, if inserted before 
this input symbol, it will allow the parsing to continue.

If an error is not detected at its occurrence in the 
string,the correction suggested by Irons may not be what the 
programmer intended. The only way to find the correct inter
pretation of the string is to go back and reinterpret the string 
from the point of error. J. P. Levy (1971) introduces the 
notion of "backward move". After the parser detects the exis
tence of an error it starts scanning right to left finding the 
least number of characters in which a correction may be needed. 
This substring he calls the left context of the error. Then 
the parser "moves forward" constructing all possible inter
pretations until all interpretations are equivalent*. Levy 
admits that this model is not practical for the conventional 
context-free description of programming languages. In order 
to make it more practical, he proposes the use of "bracketed 
context-free" description of programming languages. He also 
proposes some heuristic restrictions on the type of errors.
*Lêvy defines equivalence of strings as follows: Two prefixes 
X and y of a language L are equivalent with respect to L iff

for every string z, xz f L 4==̂  yz € L .



J. E. LaFrance (1971) describes an automatic error 
recovery technique for parsers using Floyd production language; 
he also extends his technique to parsers that use recursive 
descent. Techniques for the generation of production language 
parsers have been developed by a number of workers, including 
Beals (1969), Beals et al (1969), DeRemer (1968), Early (lf;66), 
Haynes and Schutte (1970). LaFrance uses the technique of 
Beals et al. to produce a top-down parser. The parser auto
matically detects an error when it observes unexpected symbol 
either on the stack or in the look-ahead symbols. Since the 
parser is predictive (top down), it knows what to expect in 
the look-ahead symbols. The existing string of input symbols
is transformed according to the expectations of the parser
along with a change on. the top of the stack.

C. J, Burgess (1972) gives a method of error diagnostics 
for syntax-directed compilers. He considers the left-faotor 
(LF) grammars, which constitute rather a large subclass of 
context-free grammars. He uses top-down parsing. To a given 
BNF grammar he adds what he calls "error categories", which 
will aid in detecting errors in the input string during parsing,

Compilers for CORC (a dialect of ALGOL), CUPL (a dialect 
of PL/1) and PL/C (a dialect of PL/1) try to correct all the 
errors in programs and execute them in spite of all errors.
The error correction techniques in these compilers are ad hoc 
rather than systematic. In PL/C (Conway 1970) the syntactic
analyzer, at each step, uses a transition table to decide wbat
is to be done next. The rows in a transition table correspond 
to the last "state" of the analyzer and the columns correspond 
to the next input symbol. The entries in the transition table 
corresponding to an illegal combination of the last state of 
the analyzer and the next input symbol have addresses of error



correction routines, PL/C also corrects semantic errors.
S? nee th'î semantic analysis is performed as an independent 
pass rather than concurrently with the syntactic analysis, 
the syntactic corrections are performed without considering 
their effect on the semantics of the program. If the syntactic 
analyzer makes a correction which is syntactically correct but 
does not conform to the semantic conventions the semantic 
analyzer is unable to retract the decision of the syntactic 
analysis. PL/C includes the spelling correction scheme of 
Morgan (1970).

The IBM PL/1 (F level) compiler also corrects syntactic 
and ;;.emantic errors in source programs. The user has the option 
to indicate if the machine code for his program is to be 
executed in spite of errors. The diagnostics and the corrections 
are not very clear for two reasons; First, the messages are 
not printed with the offending source statements. Several 
messages for the same statement appear in different places. 
Second, messages often make references to statements and not 
to the exact position in the statement. For example, the 
message may indicate that a certain symbol was inserted in a 
certain statement, but there may be more than one place where 
the particular symbol could be inserted in that statement.

The error recovery scheme used in the XPL system (McKeeman 
et al. 1970) is rather primitive. The compiler writer gives a 
list of symbols, like ” , "DO" , "IF" etc. which indicate the 
end of a statement or the beginning of a new statement. When 
an error is detected, input symbols are examined and discarded 
until one is found which is in the list. Then the symbols on 
the top of the stack are successively examined until the current 
input symbol can legally follow what remains on the stack.

Leinius (1970) presents an elaborate method of recovery 
for bottom-up parsing of simple precedence grammars. His



technique is automatic. He also explains how his technique 
can be extended to languages that are not simple precedence.

L. R. James (1972) implements Leinius' method for SPL, 
a subset of PL/1. He uses Morgan's (1970) spelling correction 
algorithm, and compiles statistics from samples of programs 
written in SPL. Besides the implementation and the statistics 
there is nothing novel in this work.

1.3 THE PHILOSOPHY OF THIS WORK
The basic philosophy of our approach is to restrict our 

efforts to the "most likely" errors. It is assumed that the 
most likely errors are;

1) a missing symbol,
2) a wrong symbol,
3) a symbol in excess,
4) two adjacent symbols permuted.

We make a further assumption that there is only one error per 
"substructure" (to be defined in detail below). This second 
assumption is made not because multiple errors in a substructure 
are rare, but because automatic correction techniques that 
correct multiple errors become impractical to implement for 
practical programming languages. The theory of an automatic 
method to correct multiple errors has been developed by Levy 
(1971).

As mentioned, our algorithm is automatic rather than 
ad hoc. In compilers that use ad hoc correction techniques 
the correction algorithm consists of a collection of "hand 
made" routines. After the detection of an error it is deter
mined which one of these hand-made routines should handle the



error. Each of these special routines can correct an error 
more efficiently than a general automatic algorithm. However, 
our philosophy is to present an algorithm that is language- 
independent. Therefore, our algorithm corrects errors using 
only the information in the grammar of the language. This 
makes our algorithm very portable.

It is true that errors committed by naive programmers, 
who know little about the structure of the language, may fail 
to satisfy the above requirements. In such cases our approach 
is to delete the offending statements and proceed. The purpose 
of providing the compiler with an error correction facility 
is not to encourage the programmers to develop the attitude 
that "the compiler will correct the errors anyway”. However, 
errors occur in spite of careful programming, and an attempt 
by the compiler to correct errors will save human time as 
well as computer time.

1.4 APPROACH AND OUTLINE
Treatment of syntax errors in the literature is mostly 

heuristic. Most often, it is recovery rather than correction 
which is undertaken. Except for Levy’s theoretical treatment, 
the existing error correction techniques insist on making 
corrections at the point where the existence of error is 
detected. The existence of an error, however, is not always 
detected at the point of its occurrence. Also, delay in 
detecting the existence of error occurs more often with some 
parsers than others. Therefore, if an error correction tech
nique is to be applicable to a large class of parsers it must 
solve the problem of locating the exact position of error.
In Chapter Three we present a method of locating the position 
of error.
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Levy's model is both formal and fairly realistic but 
its implementation becomes difficult for most programming 
languages. We have therefore simplified Levy's model so that 
its implementation is feasible, yet realistic enough to correct 
the most likely errors.

1.41 ^  Outline of the Dissertation
Chapter Two introduces three important classes of 

parsers: LR parsers, LL parsers and Mixed Strategy parsers.
We choose these parsers since syntax-directed techniques 
for these are widely known. A discussion of syntax-directed 
parsing is included. Formal definitions and the most important 
properties of the above-mentioned parsers are given.

Chapter Three describes our algorithm for correcting 
errors. After the parser detects the existence of an error 
a string between the previous delimiter and the next delimiter 
and the next delimiter is isolated. This string corresponds 
to a "substructure" in the language. From this erroneous 
input string, strings called correction strings are generated 
which differ at most by one symbol from the input string.
These correction strings are then subjected to a series of 
stringent tests. After all the correction strings undergo 
tests a decision about the final correction is made. The 
first section discusses detection of errors. Capabilities 
of different parsers to detect errors early in the string are 
discussed and causes for delay in detecting errors are given.
The second section considers the generation and testing of 
correction strings.

Chapter Four describes the implementation of our algorithm, 
The XPL System which was used to generate the compiler of the 
implementation in briefly described in the first section.
Section Two is "Detection and Location of Errors". Section



Three describes the generation of correction strings. Testing 
of these correction strings, for syntactic and semantic 
correctness is given in Section Four. After testing all the 
correction strings, a decision is made about the conclusion 
of the correction process for the particular error; Section 
Five considers such correction decisions. Section Six explains 
the process of backing up the parser.

Chapter Five contains a few concluding remarks. First, 
the significance of this research is given. Then the per
formance of the implementation is evaluated. Finally, topics 
are mentioned where further work would improve our error 
correction algorithm.

The appendix is divided into three parts. Appendix A 
contains BNF grammar for the XPL language. Appendix B is a 
listing of the important procedures comprising EXPL, the 
compiler with our error correction algorithm. Appendix C 
contains results of sample programs run under EXPL with our 
error correction algorithm. One sample program is run both 
under EXPL and PL/1 F level compilers; the results show hov/ 
EXPL corrects certain errors when the PL/1 F compiler fails.



CHAPTER TWO 
SYNTAX-DIRECTED COMPILING

In this chapter we shall discuss three important 
classes of parsers: LR parsers, LL parsers and Mixed
Strategy parsers. Our purpose is twofold. First, formal 
definitions and properties of the parsers are given with 
references to the sources where the proofs and further 
discussion can be found. Second, a simple example is 
used to illustrate the working of each of these parsers. 
Sources are quoted where more formal algorithms and their 
proofs are to be found. Sections 2,1 contains definitions 
of the terms to be used in the rest of the chapter. Section 
2,2 is on sytax-directed parsing. The three deterministic 
parsers mentioned are described in Section 2.3, Section
2,4 briefly describes semantic analysis.

2,1 DEFINITIONS OF THE TERMINOLOGY
In this section we shall define the terms to be used 

in the rest of the chapter.

2.11 Vocabulary and Strings
We will use the basic terminology of set theory 

without definition,
A vocabulary or alphabet is a non-empty finite set 

of elements called symbols,

10
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A string is a finite sequence of symbols from a 
vocabulary. The empty string, denoted by e, is the sequence 
containing no symbols.

The length of a string s, written |si , is the number 
of symbols in it. If s and t are two strings, their
concatenation st is the string obtained by writing the
string t after the string s. For any string s, we see 
that

es = se = s.
If r, s, and t are three strings such that r = st

then s is the head of r, written s = head(r). If lsl= n,
then s is the n-head of r, written s = head%(r). Also,
t is called the tail of r, written t = tail(r), and if
|tI = n, then t is the n-tail of r, written t = tailn(r).

For vocabulary V, the set of all sequences of symbols
of .V-is denoted by V*. This includes the empty string e.
The set of all non-empty strings is V+. Thus V* = V\7^e|'.

2.12 Grammars, Sentential Forms and Languages
Let V be an alphabet. A context-free (cf) production 

or rewriting rule is an ordered pair (A, x), usully written
A : := X, where A is a symbol and x is a string in V. A
is the left part and x is the right part of the production.
A production A :;= e is an e-production.

where
A context-free grammar (cfg) is a 4-tuple G = (N,T,P,S)

1) P is a finite set of productions.
2) N is a set of non-terminals. A non-terminal is a

symbol that appears as the left part of a production.
3) T i& a set of terminals. A terminal is a symbol in

V which is not a non-terminal.
4) S is a distinguished non-terminal called the goal 

or start symbol.
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We shall use the following conventions to represent 
various symbols concerned with a grammar;

1) a,b,c,d and f represent terminals.
2) A,B,C,D and S represent non-terminals; S 

represents the start symbol.
3) R,S,T,U,...,Z represent either non-terminals or 

terminals.
4) r,s,t,u,...,7z represent strings of non-terminals 

and terminals.

We say a string v directly produces the string w, 
written

V ==̂  w,
if we can write

V  = xUy, and w = xuy
for some string x and y, where TJ : ; = u is a rule of G.
We also way that w is a direct derivation of v, or that
w directly reduces to v. We say v produces w, or w 
reduces to v, written v ==> w, if there exists a sequence 
of direct derivations

V = Uq =4 Ug ... u^ = w where n 0.
The sequence is called a derivation of length n. Also, we 
write

V ==^ * w if V w or V = w.

A direct derivation xUy xuy is rightmost, written
xUy xuy,

if y contains only terminals. A direct derivation 
xUy xuy is called leftmost, written

xUy ==̂  xuy,
Im

if X contains only terminals. A derivation w ==̂  v is
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called a rightmost derivation, witten \v =4 v, if every 
direct derivation in it is rightmost. Similarly we define 
leftmost derivation.

A string s is called a sentential form if it is 
derivable from the dishtinguished symbol S, that is, if 
S ==> * s. A sentential form consisting only of terminals 
is called a sentence. The set of all sentences:

L(G) = |w \ S ==> * w, and w e T* |

is the language generated by G.

Let w = xuy be a sentential form in grammar G. Then
u is called a phrase of the sentential form w for a non
terminal U if

S ==̂  * xUy and U ==> u.
u is called a simple phrase if S ==> * xUy and U ::= u.
The handle of a sentential form is its leftmost simple phrase.

We say that a cfg G = (V,T,P,S) is e-free if either

1. P has no e-productions, or
2. There is exactly one e-production; S ;:= e, and 

S does not appear on the right side of any 
production in P,

In the future, we will assume cfgs to be e-free. This is 
justified by the following theorem;

Given any context-free grammar, G = (V,T,P,S), 
we can find an e-free cfg G' = (V,T',P’,S') such 
that L(G) = L(G'). (See Ullman and Hopcroft, 1969, 
for proof.)
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We shall end this section with the definition of

FIRST(s), where s is a string of symbols.
FIRST(s) = |x ) s ==> * xs’ and \x( = k,

or s ==> * X and I x I < k,
where x is a string of terminals only.j 

That is, FIRST(s) consists of all terminal prefixes of length 
k or less,

2.2 SYNTAX-DIRECTED PARSING
2,21 Syntax-Directed Vs. Ad Hoc Methods

Since the late fifties tools have been developed to 
make the job of compiler writing easier and more efficient. 
Many systems, called compiler compilers (cc) have been 
invented. Compiler compilers aid compiler,writing the same 
way programming languages aid writing algorithms for computers 
BMCC (Brooker-Morris compiler compiler), Floyd’s (1961) 
Production Language, Shorre’s (1964) META, McClure's (1965) 
TMG, Cheatham’s (1965) TGS-II, Feldman’s (1966) FSL (formal 
semantic language), Mercer’s (1970) TWINKLE and SKELETON 
of McKeeman et al. (1970) are examples of such systems.

A compiler written using a cc system may require more 
memory space than the compiler written ad hoc in assembler, 
language for the same purpose. However, using a cc has the 
following advantages;

1. Formality,
2. Portability,
3. Programming ease.

Formality: Compiler compiler make compiler writing formal
and systematic. In traditional ad hoc compiler writing,
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heuristic knowledge of the language is used. Heuristic 
knowledge of a language differs from person to person.
Hence, each person using the ad hoc method ends up inventing 
his own "tricks" for his compiler.

Portability: Since syntax-directed compiling uses the syntax
(or the tables derived from the syntax) of the language rather 
than heuristic knowledge of the language, it is easy to modify 
the compiler when the language is changed. Changes in the 
language are expressed in terms of changes in the syntax of 
the language which in turn produce changes in the tables.
With the new tables the compiler can parse the new language.

Ease of Programming: The languages in which compiler compilers
are written are higher-level languages which are easier to use 
than assembler language. Debugging is easier in higher-level 
languages than in assembler languages. Also, changes from 
machine to machine becomes easier if the programming is in a 
higher-level language, since higher-level languages are less 
machine dependent than assembler languages.

Syntax-directed compiling is done in the following steps:

1. lexical analysis,
2. syntactic analysis,
3. semantic analysis.

Lexical analysis and syntactic analysis are discussed in 
Section 2.22 and 2.23. Semantic analysis will be considered 
in Section 2.4.

2.22 Lexical Analysis or Scanning

Lexical analysis (scanning) is the simplest part of 
compiling. To make the storing and transfer of the source
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program between different phases of compiling efficient, the 
terminal symbols of the language can be represented by integers 
called tokens. In other words, each terminal symbol can be 
associated with a unique integer. For example, the scanner of 
our implementation for the XPL language associates

; with 1,
) with 2,
( with 3,

etc.
There are certain terminal symbols for which the semantic 
analyzer and the code generator need to know the actual symbol 
as well as the token. The names of the identifiers and the 
values of the constants are such symbols, A scanner can be 
as simple as just reading a single character on the input 
medium and converting it to an integer. This makes the job 
of the syntactic analyzer more burdensome. A scanner could 
recognize the whole symbol, for example, BAL_OF_TODAY as an 
identifier, or 125,6 E 03 as a decimal floating point constant. 
In other words, the scanner does a small amount of parsing.
The scanner can also do some error-correction in numerical 
constants. For example, the scanner can detect and correct 
the error in the constant 1.2U25 better than the syntactic 
analyser. Finally, the scanner can recognize comments 
(remarks) and delete them from the information sent to the 
future phases of compiling.

2.23 Syntactic Analysis

Syntactic analysis (or parsing) is the process of 
determining if a given input string is a sentence in the 
given language. From the definition of "sentence" (Section 
2.1) this implies the construction of a derivation for the 
string. Consider the language L described by the production 
set P:
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= E + T 
= T
= T F 
= F 
= a

The string a + a * a is a sentence in the language L, since 
there is a derivation for it. For example,
(2.231) E = = ^ E + T = = ^ E  + T * F = = ^ E + T * a = ^ E + F * a

==̂  E + a ♦ a ==> T + a * a
==̂  F + a * a ==̂  a + a * a.

is a rightmost derivation for a + a * a. Also, there is a
leftmost derivation;
(2.232) E =4 E + T T + T =3 F + T a + T ==» a + T * F

==̂  a + F * F a + a * F a + a * a.
The leftmost derivation as well as the rightmost derivation 
can be represented by a diagram called the syntax tree.

E
T

F

a

F

Figure 2.1 Syntax Tree of a + a * a.

A derivation to derive a sentence is also called a parse. 
The leftmost derivation is called the left parse. The rightmost
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derivation, with the direct derivations written in reverse 
order, is called the right parse. For example, the parse
(2.232) for the sentence a + a * a in L, is a left parse.
The reverse of (2.231), namely

a + a + a ==̂  F + a * a = ^ T + a * a  ==̂  E + a * a 
==̂  E + F * a = = ^ E + T * a
= 4 e + t * f ==^e + t = ^ e .

is a right parse. For a given sentence the process of finding 
left parse (right parse) is called the top-down parsing 
(bottom-up parsing).

In top-down parsing, we start with the goal symbol and 
build the (parse) tree down to the terminals. In bottom-up 
parsing, on the other hand, we start with the terminals and 
build the tree toward the goal symbol. In either case, we 
observe the following facts;

1. The root of the tree is the goal symbol.
2. The leaves are terminal symbols and the nodes

are non-terminal symbols.
3. Each node that is not a leaf is the left side

of a production and the immediate branches from
the node represent the right side of that 
production.

All the parsing methods described above are left-to-right 
in the sense that they scan the input string from left to right. 
We could similarly define right-to-left parsing methods.

2.3 DETERMINISTIC PARSERS
2.31 Pushdown Automaton

We now introduce the pushdown automaton— a recognizer 
that is a natural model for syntactic analyzers of context-free 
languages.
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Definition: A pushdown automaton (PDA) is a 7-tuple
P = (Q,I,r ,M,qQ,TQ,F)

where
1.

2 .
3.
4.

5.
6 .

Q is a finite set of state symbols representing 
the possible states of the finite state control.
I is a finite input alphabet.
r is a finite alphabet of pushdown list symbols.
M is a mapping from Q x (I\J{e} ) x F  to the finite 
subsets of Q x T*.
QqCQ is the initial state of the finite control.
TqCF is the symbol that appears initially on top
of the pushdown list.

7. FÇ Q is the set of final states.
A configuration of P is a triple (q,w,t) in QxI*xT*, where

1. q represents the current state of the finite control.
2. w represents the unused portion of the input. The 

first symbol of w is under the input head. If w is 
e, then it is assumed that all of the input tape has 
been read.

3. t represents the contents of the pushdown list.
The leftmost symbol of t is the topmost pushdown symbol, 
t = e, then the pushdown list is assumed to be empty.

If

FINITE
CONTROL

Input tape

Figure 2.2 Pushdown Automaton

+j
m•ft

c
0 •a
X!
01
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A PDA P= (Q,I,r,M,qQ,TQ,F) is said to be deterministic 
(DPDA) if for each q in Q and T in T either

1. M(q,i,T) contains at most one element for each i 
in I and M(q,e,T) = 0  ; or

2. M(q,i,T) = ÇÔ for all i in I, and M(q,e,T) 
contains, at most, one element.

These two restrictions imply that a DPDA has at most 
one choice of most in any configuration. Thus in practice it 
is much easier to simulate a deterministic PDA than a non- 
deterministic PDA. The space and time requirements of deter
ministic PDA's are linear with respect to the length of input 
strings. We shall consider the following important classes of 
deterministic parsers:

1. LR(k) parsers
2. LL(k) parsers
3. Precedence parsers
4. Bounded context parsers.

2.32 LR(k) Parsers
Definition: Let G = (V,T,P, S) be a cfg. We say G is an
LR(k) grammar, k>0, if the three conditions

1. S ==> * rAw =4” rsw,
rm rm

2. S ==̂  * rBx ==> rsy, and
rm rm

3. FIRSTk(w) = FIRSTĵ (y)

imply that aAy = cBx. That is, r = t, A = B, and x = y.

A language generated by an LR(k) grammar is called an
LR(k) language. A language has an LR(k) parser if it has
an LR(k) grammar to describe it.
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LR(k) grammars are the largest class of unambiguous 
grammars for which we can construct deterministic parsers.
In fact,

Theorem: For any deterministic language L there
is an LR(k) grammar G, for some k>0, such that G 
generates L.

(See Aho and Ullman (1972) for proof).

Let us consider a deterministic language and see how 
we can construct an LR(k) parser for it. Consider the language 
described by the production set Pj :

EXPR
EXPR
TERM
TERM
FACT

= EXPR + TERM 
= TERM
= TERM * FACT 
= FACT 
= a

EXPR, TERM, FACT are the non-terminals. EXPR is the goal 
symbol. i, + and + are the terminal symbols. Throughout 
this chapter we shall refer to this language by the name 
"Expression Language."

We now show how to construct a PDA P = (Q,I,17 ,M,qg,Tq ,F) 
for the above language. The finite control Q has four states:

1. Push: push the input symbol that is presently under
the scanner onto the pushdown list.

2. Reduce: do not move the input tape, but reduce the
alphabet symbols on the pushdown list by using a
production.

3. Accept.
4. Error.
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The alphabet I is the set:

(EXPR, TERM, FACT, a, t, * and $)

The mapping M is given in the form of a table in Figure 2.32.
Qg is the initial state when $ has been pushed on C. Tq is
the symbol initially on top of T. F is the final state "accept".

We now describe the construction of M and . We may 
assume that only terminals and non-terminals are on F . Then to 
define the mapping M we will have to know the entire contents 
of r .  Instead, suppose new symbols, say T q ,  T̂ , . . . , T̂  ̂are used 
to represent all possible correct configurations of the stacks 
of terminals and non-terminals on F . Then each time the contents 
of f are changed, a T^ can be placed on the top of F and 
M can consult only the top of H  to decide the move. The 
possible configurations Tq ,T]̂ .... and the transition table M 
are given in Figure 2.3. Figure 2.3 contains the tables, 
called LR(k) tables, for our Expression Language. The tables 
were computed by hand using the algorithm given by the flow chart 
of Figure 2.4. A more formal algorithm to compute LR(k) tables 
and a proof of its validity are given in Aho and Ullman (1972, 
Algorithm 5.12, Theorem 5.12). Their algorithm (5.7 Ibid) of 
parsing using these LR(K) tables is slightly different from ours. 
LR(k) parsers are quite powerful; they can parse any deterministic 
language, but the LR(k) tables become impractically large for 
practical programming languages. Optimization techniques for 
reducing the size of LR(k) tables are given (in Chapter Seven,
Ibid) but seem less than convincing. Restrictions of LR(k) 
grammars have been proposed to make parsing practical. DeRemer 
introduced Simple LR(k) grammars and LALR(k) grammars (DeRemer 
1969, 1971) which have efficient parsers.
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a 4- * $

'̂0 1,T, 0 0 0 To : $
0 2,Tg S'Tg 2,Tg : $a

^2 0 2,T3 2.T3 2.T3 Tg ; $F

3̂ 0 2,T̂ 1’T4 2.T4 T3 ; $T
0 2,Tg 0 ACCEPT : $E

5̂ l,Ty 0 0 0 Tg : $E'+

6̂ l,Tg 0 0 0 Tg : $T*

T? 0 2.Tg 2'T9 2,Tg Ty : $E+a

8̂ 0 2'TlO 2,Tio 2,Tio Tg ; $T*a

9̂ 0 2'Til 2,Ti2 2, Til T9 : $E+F

^10 0 2,T3 2.T3 2,T3 T̂ g: $T*F

Til 0 2,T^ 2,T^2 2,74 Tĵ ; $E+T

Ti2 T» ̂ 13 0 0 0 T̂ g: $E+

^13 0 2'Tl4 2,Ti4 2,Ti4 T̂ g: $E+T*a

?14 0 2'Tll 2,Til 2,Til $E+T*F

Figure 2.3
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2.33 LL(k) Parsers
Certain compilers that parse top-down must use back

tracking. For some languages back-tracking can be avoided by 
looking at certain input symbols in advance. For example,
consider the grammar:

1. G : : = aE 2. G := Bd
3. E ::= bD 4. B ; = Ac
5. D : := df 6. A : = ab

G is the start (goal) symbol.

Suppose we want to parse the string abed. We start 
with the goal symbol G. There are two productions to choose 
from: (1) and (2). At this point, just by looking at the first
input symbol a we cannot tell which alternative to take. Suppose 
we choose (1).

aE

The first symbol of the input string, viz. a, matches. Next, 
we have to replace the non-terminal E. There is only one choice, 
hence we take it.

G ==̂  aE abD .

A second match is found. We procédé further with D. But this 
time

G ==) aE ==̂  abD abcdf .

We failed to match the input string. Therefore, this is not the 
parse we were looking for. We made the wrong choice at the very 
first step. We start with G again and take the other alternate

G ==̂  Bd
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which will lead to

G ==̂  Bd ==& Aed abed

the correct parse.

While making a choice between production (1) and (2), 
if enough (in this case, four) input symbols had been scanned, 
we could have made a correct choice. If such correct choices 
can always be made for any production the grammar is called an 
LL(k) grammar, where k is the maximum number of input symbols 
which must be scanned in advance. More formally,

Definition: Let G = (N,T,P,S) be a cfg. G is said to be LL(k),
for some fixed integer k > 0, if whenever there are two leftmost 
der ivations

1. S ==)* wAr wrs ==̂ * wx,
Im Im Im

2. S wAr ==* wtr ==* wy
Im Im Im

and

such that FIRSTĵ (x) = FIRST^(y), then it follows that s 
That is, the two productions

A : := s and A : := t 
used in the two derivations are identical.

The grammar we just considered is LL(4). It should be noted 
that there are deterministic grammars that are not LL(k) for any 
k. For example, the grammar

(1) S := A (2) S := B
(3) A : = aaA (4) A : = aa
(5) B : = aaB (6) B : = a

is LR(1), but there is no fixed k for which it is LL(k). This



27

is true because to recognize the string a*', all the n 
symbols have to be scanned before a choice between production
(1) and (2) can be made.

2.34 Precedence Parsers
Bottom-up parsing involves repeated application of the 

following two steps:

1. finding the handle, and
2. reducing it to the appropriate non-terminal.

Each of these two steps calls for repeated consultation of 
the productions of the grammar. If the number of productions 
is large, the repeated consultation of these productions for 
every iteration of the above steps will slow down the parsing 
process. Therefore from these production tables are derived 
which can be consulted more efficiently than the productions 
themselves. Precedence relations are examples of such tables,

We shall begin with the definition of precedence 
relations.

Definition: Let G = (V,T,P,S) be a cfg. ^  , =  and ^  are
three relations on V defined as follows:

1. X 4 Y if there is a rule A ; : aXBb in P such
that B ==> * Yy

2. X = Y if there is a rule A ::= axyb in P
3. X ^ Y if y is a terminal and if there is a

rule A ::= aByb in P, such that B cx,
and Y ==̂  * ad.

The grammar G is called (1,1) precedence (or Wirth- 
Weber precedence) grammar if the three relations ^ ^
are pairwise disjoint and G is e-free.
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A (1,1) precedence grammar is called a simple precedence 
grammar if the right sides of productions are unique, that is,
G does not have two productions

Uj : := X and Ug : := x

where ^ Ug .

Intuitively, (1,1) precedence relations indicate the 
left and the right end of handles on the input string. Suppose 
we are scanning the input string from left to right. The 
relation ^  indicates the beginning of à handle; more explicitely, 
if X Y holds, Y is the left end of a handle. =: indicates 
the continuation of a handle, and ^  indicates the right end 
of a handle. When none of these relations holds between the 
last symbol scanned and the next input symbol an error is 
indicated.

Many naturally occurring grammars are not precedence 
grammars, and in many cases rather awkward grammars result 
from an attempt to find a simple precedence grammar for the 
language at hand. We can obtain a larger class of grammars 
which can be parsed using precedence techniques by relaxing 
the restriction that the ^ and =  precedence relations 
be disjoint.

Definition: A (1,1) precedence grammar in which we do not
require the relations ^ and =  to be disjoint is called a
(1,1) weak precedence grammar.

There are deterministic languages that cannot be 
described by simple precedence grammars. Therefore we need 
what are called extended precedence grammars.
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Definition: Let G = (V,T,D,S) be a cfg. Let x and y
be two strings of lengths ra and n respectively, that is,
IXI = m and \yl = n. Then we define the three (m,n) precedence 
relations as follows:

X < y if there is a canonical sentential form....
xy....where the head symbol of y is the head
of the handle.

X = y if there is a canonical sentential form
....xy....where the head of symbol y and 
the tail symbol of y are in the handle.

X ^ y if there is a canonical sentential form.... 
xy....where the tail symbol of x is the
tail of the handle.

G is said to be (m,n) precedence grammar if it is e-free and 
if the three relations < , = and ^ are pairwise disjoint.

G is called weak (m,n) precedence grammar if it is
e-free, and the relation ^ is disjoint from the relation ==
and the relation ^  . To illustrate precedence parsing, 
consider the language described by the grammar G:

1. E : = E + T
3. T ; = T * F
5. F : = (E)

2. E 
4. T 
6. F

The weak (1,1) precedence tables for G are given in 
Figure 2.9.
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S(i):R

NO

YES

NO
3(1)

YES

YES

(accept ")

% S(l) » E

'^ h e re a 
production

ERROR

ERROR

Reduce

Stack the input symbol
8(1) - R

(i) " $, R - T(k)
Scan next symbol

R " T(k)

FIGURE 2.5 
(1,1) Precedence Parser



31

$ + * ( ) a
E 2 1 0 0 1 0
T 2 2 1 0 1 0
F 2 2 2 0 0 0
$ 0 0 0 1 0 ' 1
+ 0 0 0 1 0 0
* 0 0 0 1 0 0
( 0 0 0 1 0 0
) 2 2 2 0 2 0
i 2 2 2 0 2 0

(1,1) precedence table for G .
1 represents <• or =
2 represents ̂
0 represents no relation

FIGURE 2.6

So far we have seen how precedence relations can be used 
to find handles in the input strings. The next step in bottom- 
up parsing is to find the correct non-terminal to which the 
handle reduces. To reduce the handle we need to find a production 
such that its right side matches the handle. This does not pose 
a problem if the right sides of all productions are unique. 
Grammars in which productions have unique right parts are called 
uniquely invertible (for short, UI). However, not all grammars 
are uniquely invertible. If a grammar is not uniquely invert
ible we need to look for some other property in the grammar 
which will enable us to perform the reduction of handles. The 
answer is given in the next section.
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2.35 Bounded Context Parsers
The problem of reducing handles in the input strings to 

non-terminals is a trivial problem for uniquely invertible 
grammars. Theoretically, it is possible to convert a given 
cfg G into an equivalent cfg G’ which is uniquely invertible.
The following theorem and its proof are given in Graham (1970).

Theorem: Let G = (V,T,P,S) be a context-free grammar.
a. There is an equivalent grammar G' which is 

uniquely invertible.
b. If G is LR(k) there is an equivalent LR(k) grammar 

G’ which is uniquely invertible.

However, such transformations may leave the original grammar 
deformed badly. Besides, with the new grammar finding the 
handle may be considerably more inefficient than with the orig
inal grammar. Therefore it is necessary to find different ways 
of reducing handles for grammars that are not uniquely invertible.

Suppose X is a handle in a right sentential form and
Uj : := X and Ug : x

are two productions such that ^ Ug. The left and right con
text of X in the sentential form may indicate which production 
to choose. The grammars in which we can tell which production to 
choose by looking at the context around the handle are the bound
ed context grammars. More formally:

Definition: A cfg G = (V,T,P,S) is an (m,n) bounded right-
context (BRC) grammar if the four conditions

1. $S$ rAw rsw, and
2. $S$ tBx tux = r'st

are rightmost derivations in grammar G,
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3. ixl < lyl ,
4. the last m symbols of r and r' coincide, and 

the first n symbols of w and y coincide

imply that r* Ay = tBx ; that is, r' = t, A = B, and y = x.
A grammar is BRC if it is (m,n) BRC for some m and n.

The word "right” in bounded right-context is misleading.
It is not the context that is "right"; rather, "right" refers 
to using rightmost derivations. Symmetrically, if we use left
most derivations we have bounded left-context (or BLC) grammars. 
Further, in the definition of (m,n) BRC, if we replace "right
most derivations" by "any derivations" we have (m,n) bounded 
context (or BC) grammars. Williams (1970) defines bounded 
parsable (BPC) grammars. BPC grammars are BC grammars in which 
a handle is not necessarily the leftmost simple phrase (i.e. 
reduction string). In his definition, a handle is any simple 
phrase.

2.36 Hierarchy of Grammars
The only difference between LR(n) parsers and (m,n)

BRC parsers is that LR(n) parsers are allowed to look at any 
number of symbols on the stack (of the parsed symbols) whereas 
(m,n) BRC parsers are allowed to look at only a predetermined 
fixed number m of stack symbols. Therefore, every (m,n)BRC 
is LR(n). The converse is not true. The grammar G;

S
A
B

= aA 1 bB 
= OA 1 1 
= OB 1 1

is an LR(0) grammar, but fails to be (m,n) BRC for any m 
and n.
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However, the grammar G' ;

S : := aA 1 bA 
A : : = OA 1 1

generates the same language and is (0,0)BRC. In general, 
given any deterministic language L There is a (1,1) BRC 
grammar to describe it.

Several investigators have worked on the transformation 
of deterministic context-free grammars to precedence grammars. 
Fisher (1969) proved;

Simple precedence languages form a proper subclass 
of deterministic language.

L = I ao"l" I n > l] U  {bO^l^K | n >  l]

is a deterministic language that is not simple precedence.

However, any deterministic language can be described 
by a weak (1,1) precedence (not necessarily UI) grammar. Also, 
Graham (1970) established that

Every deterministic language is generated by a 
UI (2,1) precedence grammar.

Figure 2.7 shows a hierarchy of deterministic grammars.

2.37 Mixed Strategy Parsers
BRC parsers do not make efficient parsers by themselves 

(Section 5.4.2, Aho and Ullman, 1972). Precedence relations 
speed up the task of finding handles, but some context around 
the handle may be needed to reduce the handle, Therefore it 
is efficient to have a parser that uses a (p,q) precedence 
relation to find the handle and (m,n) context to reduce the
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SIMPLE: 
PRECEDENCE

Figure 2.7 Hierarchy of Deterministic Grammars.

handle. Such a parser is called a (p,q;ra,n) mixed-strategy 
parser (MSP). McKeeman (1966) introduced the MSP's. He 
gave the name stacking-decision function (Cl) to the function 
that finds the handle and the name production selection func
tion (2) to the one that reduces the handle. The domain and 
the range of the functions 01 and 02 are as follows. If ocx 
is a canonical sentential form, where cc, is the part that is 
partially reduced and x is the unscanned part of the input 
string, the domain of 01 consists of pairs of the form
(tp(oc), hq(x) ). tp stands for TAIL^ and 
HEADq. The values of the 01 function are

stands for
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Cl (tp(cK),hq(x) ) = 0 , when no relation holds
between t^((X) and h^fx)

= 1 , tp(c%) <hq(x)
= 2 , tp(cx) ^  hq^x) .

The function C2 is called whenever the value of Cl is 2. The 
domain of 02 consists of triples of the form (l,h,r), where h 
is the handle, and 1 and r are the left and right context 
(of length p and q respectively) of h in the sentential 
form. The values of 02 are

02(1,h,r) = 0, the handle cannot be reduced
= p, P>0, pth production is used

in the reduction.

2.4 SEMANTIC ANALYSIS

In the syntactic analysis phase, it is decided if the 
given input program is an acceptable program; in the semantic 
analysis the accepted program is translated into a target lang
uage. During the process of translating the source program 
into target code the semantic analyzer constructs a table of 
symbols used in the source program. Some of the functions of 
symbol table construction of the semantic analyzer of a con
ventional programming language are:

1. Label identifiers are defined when they appear 
as labels of statements; the label and its 
(relative) position should be stored in the symbol 
table. Any forward references to this label 
should be marked appropriately.

2. Identifiers should be declared (explicitly or 
implicitly) once, and only once; their attri
butes (by declaration or by default) should be 
entered into the symbol table.
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3. The arguments of function calls must be compatible 
both in number and in attributes with the definition 
of the function. At the time of definition, func
tions, along with their arguments, should be 
entered into the symbol table.

The significance of the symbol table to our error 
correction algorithm is as follows. After a candidate is 
selected for correction it is first checked for semantic 
correctness. The semantic analyzer is called to check the 
semantic correctness. If the semantic analysis of the candidate 
for correction introduces conflicts with the information in 
the symbol table constructed to that point the semantic analyzer 
announces a semantic error and the candidate for correction 
is rejected.



CHAPTER THREE 
AN ERROR CORRECTION ALGORITHM

This chapter describes our algorithm for correcting 
syntax errors. Semantic errors are also considered, but 
correcting semantic errors is not the goal of this thesis. 
Semantic errors committed by the programmer and found in 
syntactically correct statements do not influence our 
algorithm. However, semantic errors matter in the following 
way:

if an attempt to correct a syntax error introduces 
semantic errors then the correction is rejected.

Section 3.1 describes detection of errors. First, 
the terms "error correction" and "error recovery" are dis
tinguished. Then the capabilities of different parsers to 
detect errors early in the string are discussed. Causes 
for the delay in detecting errors are also given. The two 
types of errors detected are considered in Section 3.12. 
Section 3.2 is the core of this thesis. Section 3.21 con
tains the rules which define the set of all correction 
strings for a given string. In Section 3.22 the ideal 
conditions required by our error correction algorithm are 
given. A method of finding the correction strings is 
presented in Section 3.23. A method for checking syntactic 
and semantic context is described in Section 3.24. Section 
3.25 explains how the final correction, after screening out

38
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all the unwanted correction strings, is selected. In the 
process of screening out invalid correction strings, if no 
strings are left, the parser is moved backwards and the 
correction process is repeated. Section 3.26 illustrates 
how the backing of the parser works.

3.1 DETECTION OF ERRORS

3.11 Error Correction and Error Recovery
When the parser (a DPDA) enters the state "ERROR" we 

say a (syntax) error has been detected. If the parser halts 
after the detection of the first syntax error the remainder 
of the program remains unparsed and the programmer is not
given any information about the rest of the syntax errors.
This means that for each syntax error the programmer must 
resubmit his program. Therefore, the parser must find a 
way to get out of the state ERROR. There are two actions 
the parser can take:

1. Make appropriate changes in the input tape.
2. Make changes in the internal status (pushdown

list) of the DPDA and in the input tape.

Action 1. is error correction and action 2. is 
error recovery. In our algorithm both error correction and 
error recovery are used. Correction is tried first. If it 
does not succeed, we resort to recovery action which is 
rather simple-minded but will always succeed.

3.12 Delay in Detecting Errors
The performance of the error correction algorithm 

depends very much on how early the error is detected.
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A delay in the detection of an error may make error correc
tion very difficult, and sometimes even impossible. The 
delay in detecting errors is caused by

1. limited left context
2. misinterpretation of the string.

Limited left context: If a language has an LR parser as well
as a precedence parser, the precedence parser is usually 
faster than the LR parser. However, the precedence parser 
will not detect the errors as early as the LR parser. LR 
parsers, in general, detect an error at the earliest possible 
opportunity in a left-to-right scan of input string. LL 
parsers enjoy the fast speed and share the good error detect
ing capability of LR parsers at the same time. However, not
every deterministic language has a LL grammar, and, in 
general, it is often possible to find a more "natural" LR 
grammar to describe a programming language and its trans
lation.

Suppose that statement (1) was written when (2) 
was intended:

(1) A / B + C ;
(2) A = B + C ;

Assume the language under consideration is a subset of PL/1.* 
A LR(1) parser will find the error just after it stacks A 
on the pushdown list and scans the symbol /. However,

*PL/1 itself cannot be parsed by a (1,1) precedence parser. 
Therefore, a subset must be assumed.



41

A / B + C ;
t  tLR(1) parser (1,1) precedence

detects error parser detects
error

a (1,1) precedence parser will not detect the error until 
it scans the statement delimiter. A (2,1) precedence parser, 
of course, would have detected the error at the same time 
LR(1) did. Intuitively, the reason for the inability of 
the (1,1) precedence parser to detect the error early is 
the lack of sufficient left context. At the time the (1,1) 
precedence parser is scanning the symbol / and making a 
decision as to what should be done with it, it can look 
only at A (which is on the top of the pushdown list). 
Therefore, the (1,1) precedence parser cannot distinguish 
the two contexts of A / B + C

. . ; X = A / B + C  )••• 
and A / B + C  ;...

In general, suppose

^ ^1 ®2’“ ^n *k tk+1"'" ^

is a right sentential form. is the top symbol on the
pushdown list and t^ is the next input symbol. Let Ŝ , 
i< n, be the head symbol of the handle. A (p,l) precedence 
parser is allowed to look at p symbols , 8  ̂ ,
... , 8  ̂ from the top of the pushdown list. If i< n - p + 1, 
that is, if the parser is unable to look at the head of the 
handle, the parser may not be able to detect if t^ is an 
illegal symbol.
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Now we shall consider the second reason for delay in 
the detection of errors. If the head of an erroneous string* 
X, by accident,happens to be the head of a correct string y 
in the language, the parser may be misled and a delay caused 
in detecting the error. Actually, as far as the parser is 
concerned, there was no delay, but according to the error 
correcting algorithm the string y may not be derivable 
from the string x. For example, in statement (3) (in PL/1)

(3) A ( B + 1 ;
- t

the earliest place any parser with a left-to-right scanner 
can detect the error is the ; (semicolon). Statement (3) 
appears to be a head of statements of the form

(4) A (B + 1  .. . ) = ... ;

Any statement of the form (4) cannot be derived from the 
statement (3) by using the transformation Rule (3.21) (to 
be given in Section 3.21). The shortest string of the form
(4) is:

A (B + 1) = 0 ;

and cannot be derived from string (3) using the trans
formation (3.21).

Errors in statements that mislead a left-to-right 
parser into believing that the erroneous statement is a 
substring of another correct string are not rare. The 
following are a few examples of such errors in PL/1 
statements:
♦The string x is not all of the string from the beginning 
of the input; it is the string of terminals around the point 
of detection of the error corresponding to a substructure 
(substructure is defined in Section 3.22)
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Another Possible 
Incorrect Statement Intended Statement Interpretation
X, Y, A(0) ; X, Y = A(0) ; X ,  Y, A(0) = 0 ;
A : B(C + 1) ; A = B(C + 1) ; A:B(C + 1) = 0 ;
A (B + lj A = B + 1 i A (B + 1) = 0 5
declar (A,B) fixed; declare (A,B) fixed; declar (A,B) = fixed;
do i = 0 ; do; i = 0; do i = 0 to 1 ;

3.13 Types of Errors
When the parser enters the state ERROR we know that 

a syntax error has been detected. We categorize syntax errors 
into two classes;

1. Action error,
2. Reduction error.

In bottom-up parsing, "action error" corresponds to 
the case when the top symbol on the pushdown list and the 
next input symbol form an illegal pair. In LR(k) tables 
and precedence tables we have represented such cases (in
Chapter 2) by a 0 (zero). In top-down parsing "action error"
corresponds to the case when the top of the pushdown list is 
a terminal different from the next input symbol.

In bottom-up parsing, "reduction error" means the 
tail of the handle is reached but the handle cannot be 
successfully reduced to a non-terminal. In top-down 
(LL(k) ) parsing "reduction error" means that the top of 
the pushdown list is a non-terminal A such that FIRSTk(A) 
does not contain the string HEADk(T), where T is the 
remaining input string.

3.2 CORRECTION OF ERRORS
A parser of a language recognizes correct strings in

that language. An error-correcting parser recognizes
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the correct strings in the language, and in addition, 
recognizes certain strings called correctable strings. A 
precise description of correctable strings follows.

3.21 Correctable Strings
Let G = (V,T,P,S) be a deterministic cfg and let D 

be a parser for the language L = L(G). A PDA D' is said 
to be an error correcting parser for L if D' recognizes 
a set L’ such that

1. L’ is a subset of T*
2. L is a subset of L’ , and
3. for string s' in L' there is a corres

ponding string s in L such that s and
s' differ by at most one symbol, or in a
permutation of two adjacent symbols.

The strings s' of L' are called the strings correctable 
by D'. When D' is understood, we shall just say s' is 
a correctable string. A string s in L that corresponds 
to string s' in L' is called a correction of s', 
written s = C(s').

Now we shall define the rule by which an incorrect
string w is transformed to a correct string s. It
should be noted that the string w does not consist of 
the terminal symbols the programmer wrote, but rather the 
tokens corresponding to them. The lexical analyzer converts 
the input terminals into tokens and passes them to the 
syntactic analyzer. A correctable string w is transformed 
to a correct string s by the following rule;
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Wĵ ,W2,W3,S]̂ ,S2 and S3 are strings of tokens such 
that
1) w = and s = s^SgS^ ,

(3.21) 2) = s^ , Wg = Sg and Wg = ab
3) Sg is one of the following; 

cab, cb, b or ba
where a, b, and c are tokens.

In the future we shall refer to this rule as Rule (3.21).

3.22 A Model for Error Correction
No correction algorithm can correct all errors without 

being prohibitively expensive. Therefore, we do not attempt 
to correct all errors. The language and errors are required 
to satisfy certain conditions for our algorithm to be effective.

First, it is assumed that we can define a substructure 
in the language such that the programs in the language can 
be expressed in the form:

$ substructure substructure ... substructure $

where $ indicates the beginning or the end of program. In 
languages FORTRAN and BASIC this condition is easily satisfied. 
FORTRAN statements and BASIC statements are the required 
substructures. In block-structured languages like ALGOL and 
PL/1 we must be satisfied with less than ideal conditions.
A substructure in the language is chosen so that;

1. the number of correctable errors is maximized, while
2. the average time spent on each error is minimized.

Block statement, compound statement and simple statement are 
possible candidates for the substructure. If the simple
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statement is chosen as substructure, the errors found while 
parsing a simple statement, but not local to the simple 
statement, may not be correctable. Among block statement, 
compound statement and simple statement the choice of simple 
statement will have the most global errors that will be 
immune to correction. An example will illustrate the problem. 
Suppose a programmer wrote (in PL/1)

if B then
TEMP = X ;
X = Y ;
Y = TEMP ;

end;

when he actually meant to write • 

if B then
do;

TEMP = X ;
X = Y ;
Y = TEMP ;

end;

The error is detected when the simple statement "end;" is 
being parsed. If the correction is confined to the simple 
statement substructure, the error cannot be corrected.
However, if the correction is confined to the compound 
statement or block substructure, the amount of time spent 
on each error becomes prohibitively large.

Next, the correction strings are obtained by applying 
Rule (3.21). This implies that an erroneous string which
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cannot be transformed to a correct string by Rule (3.21) can
not be corrected. In most compilers the lexical analyzer 
removes the spaces between the terminal symbols and passes 
the tokens to the syntactic analyzer. Therefore, errors 
caused by

1. misplaced space (s), and
2. missing space

are not always correctable by our algorithm. For example, the 
string

dec lare A fixed ;
is not correctable, since it is tranformed to the tokens
T*(<identifier>) T(<identifier>) T(<identifier>) T(fixed) T(;)

which cannot be transformed to a correct string of tokens by 
Rule (3.21). For the same reason, the string

declareA fixed ;
is not correctable. The lexical analyzer is better suited for 
correcting such errors.

3.23 Generating Correction Strings
After detecting the existence of error, the next step in 

the error correction algorithm is to generate the correction 
strings. Consider the incorrect statement (in PL/1):
(1) A = B C ;
The following are among the correction strings generated by 
Rule (3.21);
(2) A = B + C
(3) A = B - C
(4) A = B * C
(5) A = B / C
(6) A = B mod C

* T(symbol) means the token of the "symbol".
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(7) A = B = C

(8) A = B < C

(9) A = B > c
(10) A = B 1 c

(11) A =. B & c
(12) A = B H c
(13) A = B J
(14) A = C Î

Obviously, all these strings need not be generated. 
In other words, there are groups of strings that can be 
represented by one string. For example, from (2) and (3) 
only (2) need be considered. From (4), (5) and (6) only
(4) can be considered. This introduces the notion of 
syntactical equivalence. Two strings of terminals

s ... 8^ and t T^Tg ...

are said to be syntactically equivalent if k = m and the 
terminals and T. are syntactically equivalent for each 
i. Next, we shall define syntactical equivalence of terminals

Definition: Let G = (V,T,P,S) be a cfg. Two symbols
(terminal or non-terminal) t^ and tg are said to be 
syntactically equivalent if two new productions

<NEW>::= t̂
<NEW> : := tg

can be such that:
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if P’Ç p is the set of productions containing 
either t^ or tg or both, then if each 
occurrence of t^ and tg is replaced by 
<NE\V> then all the productions of P' become 
identical.

If t̂  and tg are terminals then <NEW> is called a pseudo
terminal .

In XPL, for example, the terminals *, / and mod
are syntactically equivalent, since the productions

<term > 
<term> 
<term>

= <term> * <primary> 
= <term> / <primary> 
= <term> mod <primary>

become identical when *, / and mod are replaced by a
pseudo-terminal. Consequently, strings (4), (5) and (6) 
are syntactically equivalent. Similarly, strings (2) and 
(3) are equivalent and so are strings (8) and (9). Thus 
we can represent strings (2) through (9) by the following 
strings;

(2)' A =
(4)' A =
(7)' A =
(8)' A =

Intuitively, strings (10) and (11) appear equivalent. However, 
our definition of syntactical equivalence does not make them 
syntactically equivalent. Therefore, we need to modify our 
definition of syntactical equivalence.
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Let G = (V,T,P,S) be a cfg. Two symbols and tg
are said to be essentially equivalent if two new productions

<NEW> ;:= t^ 
<NEW> ; := tg

can be introduced such that:

if P'C p is the set of productions 
<N]> : := o(^

‘^ 2

<Nk>

containing either t̂  or tg , then after replacing each 
occurrence of t^ and tg in each by <NEV/> and
performing the reductions (if possible) c<̂ to JS>̂ , 

where is a string such that,

the strings yûg . . . become identical. For example,
in XPL we can define

<NEW>
<NEW>
<NEW>

= I

= & 
= *

and change the productions (See Appendix B)
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<expression> ;:= <expression> <logical factor>
<logical factor > ;;= <logical factor> <logical secondary). 
<term> : := <term> * <primary)

to

^expression) ::= ^expression) <NEW> ^logical factor)
<logical factor) ;;= <logical factor) <NEW) ^logical secondary) 
<term) ;;= <term> <NEW) (primary)

Then the three right parts.

(expression) (NEW) (logical factor)
(logical factor) (NEW) (logical secondary)
(term) (NEW) (primary)

reduce to

(expression) .

This makes the strings (1)', (10) and (11) equivalent.
Also, strings (2)' and (4)' can be made equivalent by the 
new definition. However, the terminal "+” and the terminal 

are not always equivalent. For XPL (as some other 
programming languages) uses + (and -) for two purposes, 
viz. unary + and binary +. One solution is to use a 
distinct notation, say for unary +. The other solution
is to distinguish them by means of context. For example,
+ in the left context of (arithmetic expression) , (term) , 
(primary) , (variable) , (identifier) , and (constant) is 
binary; but + in the left context of (, IF, =, TO 
and BY is unary. The same problem arises with the terminal
ft —tf
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The symbol "=" in the left context of ; < variable) is the
assignment operator. In all other legal left contexts it is
the relational operator.

Now we shall consider the actual problem of generating 
the correction strings. Let t^t^ ... t^ be a string of
terminals containing an error such that

substructure C(tgt^ ... t̂ )

where C(tQ,...,t^) is a correction string of the string 
tgt^...t^. Let t̂ , k^n, be the next input symbol at the 
time the error was detected. We shall call t^ the position 
being corrected. When after an error is detected

(1) *0^1" *^k‘•'̂ n
t

the error flag is set and the parser enters the error-correction 
mode. Then the correction strings of string (1) are generated. 
According to Rule (2.31) the following is the set of correc
tion strings:

Strings obtained by inserting a terminal s in front of t̂ .

(2) * 0 * 1 ' •  *^n

Strings obtained by replacing t^ by a terminal s.

(3) . .tĵ _jStĵ ĵ. . . t^

The string obtained by deleting t̂ .

( 4 )  t ^ t ^ .  . . t j ^ _ j t j ^ .  . . t j^
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The string obtained by interchanging the place of tĵ and

(5) t̂ tĵ . . . .t^

If a language has NT terminals this will generate 
2 * NT + 2 correction strings. Testing each one of these 
strings by parsing will be time consuming. Therefore, the 
following means are used to screen out the obviously ineli
gible or unwanted candidates.

a. If Sj and Sg are two syntactically equivalent 
terminals then the two strings

* 0 ^ 1 ' • * ’̂ n *0*1'•'*k+l®2^k'* *^n
formed by substituting s^ and Sg for s in (2) are 
syntactically equivalent. Of syntactically equivalent strings 
only one needs to be generated. The same argument holds for 
the set of strings (3).

b. The string

*0*1'* **k-l®’*k''**n

generated by inserting s* in front of t^ need not be 
considered if s’ does not satisfy the (1,1) context, viz., 
(tk_i t^J. For LR, LL and precedence parsers checking of
(1.1) context can be done by a quick look at the parsing 
tables. The same argument holds for the strings generated 
by replacing t^ by a terminal s^ which has an invalid
(1.1) context.
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3.24 Testing the Correction Strings
The correction strings that are generated are checked

for

1) syntactic context in the substructure
2) semantic context in the part of the program that 

is already parsed.

If the parser announces an error while scanning the terminal 
t^ the syntactic context of the error is the string of 
terminals (tokens)

such that

substructure:** C(tgt^...t^...t^)

The terminals are already parsed. The terminals
^k+l’'**’^n to be read in advance and stored. The
question arises about how many terminals are to be read in 
advance, i.e. what is n? It is assumed that the language 
uses one or more terminals to delimit the substructure; t^ 
should be the first such terminal that is beyond t̂ . It 
is possible that the programmer has omitted a delimiter or 
misplaced one. If a delimiter is omitted the terminals up 
to the next delimiter are read in advance. If omission of 
the delimiter is the only error among the terminals tQ,t^,...,t^ 
then it will be corrected. A misplaced delimiter t^ will 
cause the failure of the reduction

substructure=3^ C(tgt^...t^).
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For example, in our implementation of XPL and "THEN"
are considered to be "statement" delimiters. In the statement

if X —»Y then 
X = 0 ;

the error (a missing =, < or >) is detected while scanning the 
symbol "Y". The isolated string is: " if X-iY then ". In
the statement

X = Y Y = TEMP ;
t .

the semicolon is missing. Therefore, the symbols up to the 
next semicolon are read in advance. In the following example

declare (A,B;C) fixed;
a semicolon is written in place of a comma. The isolated string 
is "declare (A,B;" which cannot be corrected by our algorithm.

A correction string CCt^.-.t^) is said to satisfy the
syntactic context of the substructure if the parsing of the 
string C(tQ...t^) continues without any syntactic errors 
resulting during the reduction

substructure ==t * C ( t ^ t . t^) ,
and at the end of reductions the contents of the pushdown list 
indicates the correct parsing of a substructure.

The LL and LR parsers can access all the contents of the 
pushdown list. Hence, the parsing up to the delimiter t^ with
out any syntactic error is sufficient to ensure the proper con
figuration of the pushdown list. However, this is not the case 
with precedence parsers. For example, consider the incorrect 
statement (in XPL)
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if B the X = B ;

("the” is a mispunch for "then".) One of the correction strings 
is

if B the: X = B ;

A parser using a (1,1) precedence relation will parse this 
without noticing the syntactic error. The top of the push
down list will have the form:

<expression>
<replace>
<variable>

<label definition)
^expression)

if

One more reduction will reduce it to

<statement list>
<expression>

if

Since the parser checks only the top symbol, it will not notice 
the presence of "if" and (expression). Therefore, special 
checking is necessary to ensure the correct configuration of 
the pushdown list.

The compiler designer, at the time of implementing our 
algorithm forms a list of symbols which can appear on the 
parse stack after the complete parsing of a string satisfying 
the syntax of "statement" (substructure). For XPL this is:
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, <statement> , <statement list > ,
<basic statement > , <if statement),

< group head) , <procedure head) and

If the parsing of a correction string C(tj^...t^) continues 
without any syntactic errors then it undergoes the special 
checking which consists of examining the parse stack for any 
symbols not listed above. If a symbol not listed above is 
found on the parse stack the correction string C(tQ...t^) is 
considered to have failed the syntactic context of the sub
structure and is rejected.

After a correction string satisfies the syntactic 
context in the substructure, the next step is to check its 
semantic compatibility with the part of the program already 
compiled.

Semantic compatibility is checked by calling the semantic 
analyzer. The semantic analyzer may find that the semantic 
information of the correction string C(tgt^...t^) creates con
flicts with the semantic table constructed from the semantic 
analysis of the part of the program already compiled. In this 
case the correction string C(tQ...t^) is rejected. For example, 
consider the incorrect statement (in XPL)

A : B (C + 1) + 1 ;

A correction string for this is

A : B (C + 1) = 1 ;

This satisfies the syntactic context, but if A was declared to
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be any identifier type other than label, the semantic analyzer 
announces error and the correction string is rejected. In such 
a case the alternate correction string

A = B (C + 1) + 1 ;

is accepted.

3.25 Correction Decision
Each generated correction string that satisfies the 

syntactic context and the semantic context is saved for the 
final selection. After all the correction strings are generated 
and tested the number of correction strings that are saved is 
computed. This number is used to make the decision about the 
next step to be taken in the error correction process. The 
following are the possibilities-.

1. several correction strings saved,
2. exactly one correction string saved,
3. no correction strings saved.

We shall discuss how the decisions are made in these cases 
taking them one by one.

1. Several correction strings: When there is more 
than one correction string satisfying the syntactic and 
semantic context a scheme is needed to find the "best" one.
The best criteria for such a scheme are language dependent.
The following is a scheme used in our implementation for XPL 
which can be modified for other languages by including 
additional language-dependent criteria.

a. If the correction string ‘̂ k-l*k''’̂ n obtained
by interchanging t^ t^^^ is one of the
correction strings saved, choose it..
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b. Otherwise, if the correction string *'^k-l^k+1'**̂ n 
(obtained by deleting t^) is one of the correction 
strings saved, choose it.

c. Otherwise, if there is any correction string of the 
form tQ...t^_^s't^...t^ (obtained by inserting a 
terminal s' in front of t̂ J, choose it.

d. Otherwise, choose the first one.

The justification for the above criteria is intuition
and our experience with error correction for XPL. If the 
interchange of two consecutive symbols is one of the correc
tions saved, then most likely it is the "best" correction.
The choice among b, c and d, however, was not so definite.
There were examples suggesting the highest priority for the 
selection criterion b, but there were also examples that 
suggested the contrary.

2. Exactly one correction string: In this case the 
programmer is informed about the correction action taken, the 
error flag is reset and the parser enters the standard mode.

In either of the above two cases the correction, string 
finally selected is very unlikely to be an undesirable one since 
it undergoes stringent tests.

3. ^  correction strings : This can happen for two 
reasons. First, the point of error may be left of the point 
of error detection. In this case, the parser is moved one 
step backwards (to be explained in the next section) and the 
error correction process is tried one symbol left of the 
position where error correction was being attempted previously.
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This is repeated until one or more correction strings are 
found, or the backward move reaches the left end of the sub
structure, Second, if the left end of the substructure is 
reached the error correction algorithm has failed to correct 
the error(s) found in the substructure. A recovery action is 
taken, viz. delete the string

comprising the substructure where the error was being corrected,
O'This includes the terminals t„. ,t^ that were scanned before

the error was detected but after the delimiter for the pre
vious substructure was scanned. Also, it includes the terminals

. .,t. that were scanned in advance where n"k+1’ 
next delimiter

n is the

3.26 Backing Up the Parser
We shall explain the backward move of the parser by an 

example. Consider the language L given by LL(1) grammar G;

1. S ;= $ V R $
2. R ; = =E
3. E := T E’
4. E’ : : = e
5. E’ : : = + T E ’
6 . T . ;= F T'
7. T’ : : = e
8. T' : : = * F T '
9. F := V
A. F ;= ( E )
B. V := I V’
C. V : ; = e
D. V ;:= ( E )
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The language given in Section 2.43 is a subset of L.
The Grammar G given above contains a few more productions in 
addition to the productions of the grammar of Section 2.43.

Suppose that we are parsing the string (scanning it 
from left to right)

(1) $ 1 ( 1 + 1 $
Î

One method of correcting the error is the following. Top-down 
parsing is goal-oriented in the sense that the parser, on its 
pushdown list, has information about what it is expecting 
rather than what it has already parsed. With the information 
on the pushdown list and the parsing tables one can decide 
(for details see Irons, 1963) what strings of terminals are 
expected at the point of error. Hence, at the point of error 
the string of unwanted symbols can be replaced by the (shortest) 
correct string. With this method, a correction for the above 
string is

$ 1 ( 1 + 1  .) = I. $
- — string inserted

As far as the parser is concerned, this is a "natural" 
correction. However, it is not very likely that a human 
(assuming he knows the language well enough) omits three 
symbols at once. It is more probable that a human omits or 
misplaces one symbol rather than a string of several symbols. 
Therefore, we consider

$ 1 = 1 + 1 $  

as a "natural" correction of string (1).
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In order to find this correction, the parser will have to 
move backwards. In the next chapter the backward move is illus
trated by an example using bottom-up parsing. Therefore, to 
avoid duplication, an example in top-down parsing is used here.

The parsing of the string $ I ( -t- I $ is given by the 
following sequence of moves.*

Ml [I(I+I$, VR$, l] h- [l(I+I$, IV’R$, IB]
M2 [(1+1$, V’R$, IB]
M3 H [(1+1$, (E)R$, IBD]
M4 [1+1$, E)R$, IBD]
M5 H- [1+1$, TE’)R$, 1BD3]
MB k- [1+1$, FT'E')R$, 1BD36]
M7 h- [1+1$, VT’E')R$, 1BD369]
M8 H [1+1$, IV'T’E’)R$, 1BD369B3
M9 [+1$, V'T'E’)R$, 1BD369B]
MIO I— [+1$, T’E')R$, 1BD369BC]
Mil H [+1$, E')R$, 1BD369BC7]
M12 H [+1$, +TE’)R$, 1BD369BC75]
MIS A (1$, TE’)R$, 1BD369BC75]
M14 H [1$, ET’E’)R$, 1BD369BC756]

* A configuration of the parser is [w,ex,7T] where w is the 
remainder of the input string, cn is the contents of the pushdown 
list, and 7T is the sequence of production numbers used in the 
parsing. A move in which a terminal t is popped is indicated by

Ctw, t (X ,7T] Aiw, , 7T] .
An e-move is indicated by

[w, Zof ,71] h* Cw, V , 7Tp3
where Z is a non-terminal, and fis a string of terminals and 
non-terminals.
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Ml5 {—  [1$, VT'E')R$, 1BD369BC7569]
M16 \—  [l$, IV'T'E')R$, 1BD369BC7569B3
Ml 7 ^  [•$, V'T'E')R$, 1BD369BC7569BJ
M18 y—  [$, )R$, 1BD369BC7569BC74 3

At this point the parser announces an action error because 
the terminal $ on the input does not match the symbol ) on 
the pushdown list.

An attempt to
a) insert a terminal in front of the symbol $
b) replace the symbol $ by a terminal
c) delete the symbol $

will not correct the error.

Therefore, we back up the parser to the step when it was 
about to scan the previous terminal, viz. I, in the input string. 
M13 is the required step. At M13, the parser observes the input 
symbol I the first time, and moves accordingly. Instead, we

a) insert a terminal before I
b) replace I by another terminal,
c) delete I,
d) interchange I and $,

and allow the parser to continue. None of these attempts allow
the parser to continue without an error. Therefore, we back 
up the parser again. This time, we set the parser back at M9. 
Again, our attempts at correction fail. The process of backing 
up continues and finally we arrive at move M2. Here, the 
correction

replace the input symbol ( by the symbol =
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succeeds and the parser continues as given below.

, M2' [I = 1+1$, IV’R$, IB] ^  1=1+1, V’R$, IB]
M3’ H  [=1+1$,■ R$, IBC]
M4’ J—  (=1+1$, =E$, 1BC2]
M5’ [l+I$, E$, 1BC2]
M6’ Y - [1+1$, TE'$, 1 BC23]
M7' I—  [l+I$, FT'E'$, 1BC236]
M8’ I- (l+I$, VT'E’4, 1BC2369]
M9’ [l+I$, IV’T'E’$, 1BC2369B]
MIO’ ^  [+1$, V’T'E’$, 1BC2369B]
Mil’ y- [+1$, T’E ’$, 1BC2369BC]
M12’ |_ [+1$, E’$, 1BC2369BC]
M13’ )__ [+1$, +TE’$, 1BC2369BC5]
M14’ y- [1$, TE’$, 1BC2369BC5]
M15’ y—  [1$, FT’E ’$, 1BC2369BC56]
M16’ y—  [1$, VT’E’$, 1BC2369BC569]
M17’ y- [1$, IV’T’E’$, 1BC2369BC569B)
M18’ y- [$, V’T’E'$, 1BC2369BC569B]
M19’ I—  [$, $, 1BC2369BC569BC74]



CHAPTER FOUR 
IMPLEMENTATION OF THE ALGORITHM

This chapter describes an implementation of the error 
correction altorithm given in the last chapter. The basic 
principle of the algorithm can be implemented in almost any 
kind of deterministic parser. After the parser detects the 
existence of an error a string of terminals around the position 
where the existence of the error was detected is isolated.
The string of terminals isolated presumably corresponds to a 
substructure (e.g. "statement") in the language. The algorithm 
requires that there be at most one error in this string. Also, 
for the algorithm to successfully correct the input string, 
it must differ from the intended string by one terminal symbol 
or by a single permutation of two adjacent terminals. How
ever, the success of the algorithm does not depend on how 
soon the error is detected, as long as it is detected in the 
same substructure as it appears. In Chapter Two it was 
explained why precedence parsers do not, in general, detect 
errors as early as the LR and LL parsers. Since our algorithm 
does not rely on the early error detection capability of the 
parser, it can be implemented with a precedence parser without 
difficulty. In fact, the compiler used in our implementation 
parses bottom-up using precedence relations.

The language chosen for implementing our algorithm 
is XPL. XPL is a subset of PL/1 introduced by McKeeman et 
al. (1970). An XPL compiler for the implementation was built
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from SKELETON. SKELETON is a protocompiler* (ibid.) which is 
briefly described in the next section. Dection and location 
of errors are discussed in Section 4.2. Section 4.3 describes 
generation of the correction strings. Testing of these 
correction strings is given in Section 4.4. After testing 
all the correction strings a decision is made about the con
clusion of the correction process for the particular error; 
Section 4.5 considers such correction decisions. If none 
of the correction strings generated passes the tests (of 
Section 4.4) the parser is backed up (unless the process of 
backing up has reached the left end of the substructure in 
which case the algorithm announces its failure to correct 
the error detected in that substructure) and the correction 
process is repeated. Section 4.6 explains the process of 
backing up the parser. Section 4.8 includes some language- 
dependent heuristics to aid error correction.

4.1 SKELETON, A PROTOCOMPILER

SKELETON of the XPL system was used in building the 
compiler of our implementation. A detailed description of 
the XPL system is given in McKeeman et al. (1970). Only 
a brief account will be included here.

The first step in using SKELETON to generate a syntax- 
directed compiler is to give a BNF grammar of the language 
for which the compiler is to be written as input to a pro
gram called ANALYZER. The productions of the grammar are 
written in the usual BNF —  non-terminals enclosed in angular 
brackets ( •< ,>) and terminals without the angular brackets.

*A protocompiler is a model compiler on the basis of which 
one can build his own compiler.
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BNF grammar ANALYZER Parsing

After checking for ambiguities, ANALYZER computes the 
tables that constitute Cl and C2 decision functions (see 
Section 2.45 for definitions of Cl and C2 functions). Cl 
tables represent a (2,1) precedence matrix. For a grammar 
with N symbols, the (2,1) precedence matrix is of the size 
N X N X N. For grammars of practical programming languages,
N >100, and the size of the precedence matrix becomes imprac- 
tically large. ANALYZER uses the following scheme to economize 
the storage of the precedence matrix.

A (2,1) precedence matrix indicates which one of the 
three relations , or null exists between the string of
two symbols from the top of the parse stack and the next 
input symbol. In other words, it determines the precedence 
relation from (2,1) context. Most of the time a (1,1) 
context is sufficient to decide which one of the three 
relations holds. Therefore, a 2-dimensional matrix will do 
for most of the cases. In a few cases, (1,1) context is not 
sufficient to decide if or 5» holds. For such cases,
ANALYZER enters a conflict symbol, 0  , say, in the 2-dimen
sional matrix. Corresponding to each entry in the matrix 
there will be two sets of triples, one for the relation 
and the other for the ^  relation. ANALYZER produces only 
those triples for which holds. Absence of a triple indicates 
a relation. The triples corresponding to all the # 
entries are listed in an array Cl TRIPLES.
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After ANALYZER produces the parsing tables, the next 
step is to construct the remaining parts of the compiler.
A compiler generated from SKELETON has the form:

SYNTACTIC
ROUTINES

SEMANTIC
ROUTINES

SCANNER

TABLES
from

ANALYZER

The syntactic analysis routines are provided by 
SKELETON. The SCANNER and SEMANTIC ANALYZER are to be pro
vided by the compiler writer.

4.2 DETECTION AND LOCATION OF ERRORS
Figure 4.1 is an overview of bottom-up parsing. Entrance 

to the boxes ERR0R_1 or ERR0R_2 indicates an error in the 
input string. In either case we say that the parser has 
detected the existence of an error. Entrance to the box 
ERR0R_1 corresponds to having a null relation in the Cl 
matrix. The parser indicates this by printing out the message:
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IJ

Stack
the
T0KJ5N

Illegal
TO;

NO

Y33

Reduce
Call Semantic 
Routine ,

Figure h , l A precedence parser.
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DECLARE (I,J,) FIXED ;
***ERROR, ILLEGAL SYMBOL PAIR: , ) .

In Chapter Three we referred to this type of error as action 
error ; it corresponds to type 0 error in Leinius (1970) .

Entrance to box ERR0R_2 in Figure 4.1 indicates that 
the tail of the handle has been found because there is a 
"2" in the Cl matrix indicating a reduction needs to be done 
on a top portion of the parse stack, but no production can 
be found to satisfy the following conditions;

1) its right side matches a top portion of the parse 
stack,

2) it satisfies the left and the right context.

In Chapter Two this was called reduction error. Our reduction 
error corresponds to type 1, type 2 and type 3 errors of 
Leinius. The following is an example of reduction error.

A + AA(C + 1 ;
***ERROR, NO PRODUCTION APPLICABLE 
PARTIAL PARSE TO THIS POINT IS:

^statement list>-<variable>-/replace>^ subscript head>.

It is important to note that the place where the parser 
announces an error is not necessarily where the error-causing 
symbol is. Rather it is the place where the parser noticed 
for the first time the existence of an incorrect input string.
The location of the error-causing symbol depends on how the 
incorrect string is interpreted. For example, for the 
statement

A : B(C + 1) + 1 ;
**+ERROR, NO PRODUCTION APPLICABLE.
PARTIAL PARSE TO THIS POINT IS:

^statement list> <label definition> <expression> .
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The location of the error-causing symbol depends on which 
correction string is considered as the intended string. 
Syntactically the two corrections cannot be distinguished. 
However, the latter may change the semantics of the identifier 
A.

The detection of the existence of error is automatic 
but determining the location of the error is not. The error- 
causing symbol is not finally located until correction for 
the incorrect string is decided. At first, it may appear 
that the symbol that causes the parser to announce the error 
must be the error-causing symbol. Unfortunately, this is not 
so. The error-causing symbol may not be detected until many 
symbols beyond the error are scanned. The delay in the detec
tion of error may be due to;

1) insufficient right context (misinterpretation of 
the string),

2) insufficient left context.

Since these two causes of delay have been discussed in the 
last chapter we shall not repeat them here.

As a result of the delay in detecting errors the parser
quite often announces the error a few symbols after the appear
ance of the error-causing symbol. Therefore, to locate the
error-causing symbol the parser may have to be backed up 
several symbols. Also, another thing must be noted. When 
the parser announces the error, it indicates if it is an 
action error or reduction error. However, the information 
about the type of error does not indicate anything regarding 
the location of the error. Hence the process of error cor
rection does not distinguish the two types of errors. The 
type of error is indicated for the benefit of the programmer 
only.
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4.3 GENERATING CORRECTION STRINGS
Once the parser recognizes the presence of an error, 

a marker is placed under the next input symbol and the pro
grammer is notified of the error. For example,

DECLARE (I,J,) FIXED ;
***ERROR, ILLEGAL SYMBOL PAIR , ) . ?

LAST PREVIOUS ERROR WAS DETECTED ON LINE 0 ***
PARTIAL PARSE TO THIS POINT IS:

^statement list> DECLARE <identifier list> <identifier> 
(Procedure ERROR is responsible for writing this message.)

t f t t) )At this point the tokens of "DECLARE", "(" , "I" ,
"J" , and "," have been stored in a stack called BUFFOR, 
and its pointer, BUF_PTR has the value 5* pointing is to the 
top element on BUFFOR. There is another stack, BCD_BUF, 
to store the EBCDIC form of these terminals. After the error 
message is printed, the procedure STORE_INFORMATION is called 
to store the following information.

1. The card number (LINE_NO) where the error was 
recognized,

2. The parse stack (SAVE_STACK) and its pointer 
(SAVE_SP),

3. The token (SAVE_TOKEN) and the EBCDIC code (SAVE_BCD) 
of the next input symbol,

4. The token (TOKEN_IN_ADVANCE) and EBCDIC (BCD_IN_ 
ADVANCE) of the symbols up to and including the 
symbol after the next delimiter (";" or "THEN") 
are read in advance. The pointer MARK points to 
the top of the stacks** TOKEN_IN_ADVANCE and 
BCD IN ADVANCE.

*The count starts at 0.
♦*T0KEN_IN_ADVANCE and BCD_IN_ADVANCE are actually so called
decques. These elements will be added and deleted from the 
top and the bottom as well.



73

In other words, STORE_INFORMATION has isolated the string
tgi^.-.t^t^. t̂  is the first symbol after the previous
delimiter. After the completion of the parsing of symbols
up to a delimiter the PARSEr reinitializes BUF_PTR to 0.
Therefore, at the time of detection of error, BUF_PTR = k-1,
and BUFFOR contains t^ is saved in SAVE_TOKEN.
TOKEN IN ADVANCE contains the tokens 'of t, t ,— — K+i. n
^n+1 ^n+l is the symbol after the delimiter t̂ .
Then the procedure TRY__AGAIN is called to generate the cor
rection strings. Next, we shall describe how TRY_AGAIN 
controls the generation of the correction strings one by one

The following sets of strings are to be generated:

(4.32) tg. . (inserting r in front of t̂ )
(4.33) tg. .**k-l^^k+l-•'̂ n' (replacing t^ by r)
(4.34) tg. . -tk-l^k+l"•-tn' (deleting tĵ)
(4.35) tg. . (permuting t^ and t^^^)

Using the notation of Rule (3.21), if string (4.31) is written 
as w = w^WgWg then the strings in (4.32), (4.33), (4.34), 
or (4.34) are given by w^s^w^ where Sgis

rtk*k+l' “■tk+l- *k+l *k+l‘k
respectively. In other words, the string (of tokens) to be 
generated is

W 1 S 2 W 3  .

The tokens of w^ are already scanned and parsed. That much 
of the correction string w^SgWg need not be generated. The 
remaining part, viz. SgW^ is generated by presenting the tokens 
one by one. The token t^^^ and the tokens in Wg are all 
in TOKEN IN ADVANCE, and the token t, is saved in SAVE TOKEN.

—  —  K  —

TRY_AGAIN controls the generation of SgWg in the following 
way;
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a) for Sg - 
it sets TOKEN - r and SUCCESS_PTR = 0

b) for sg - rt^^j 
It sets TOKEN = r and SUCCESS_PTR - 1

c) for Sg - t^+i,
it sets TOKEN - t.^^ and SUCCESS_PTR - 2 ;

d) for Sg =
it sets TOKEN = ^^+1’ SUCCESS_PTR = 1 and interchanges 
the values of SAVE_TOKEN and TOKEN_IN_ADVANCE(0).

TOKEN is the current token presented for the construction 
of the correction string, and SUCCESS_PTR controls the genera
tion of successive tokens by the algorithm (SCOOP_OR_SCAN) ;

if SUCCESS_PTR = 0 then 
else TOKEN = SAVE_TOKEN;

TOKEN = TOKEN_IN_ADVANCE (SUCCESS_PTR-1); 
SUCCESS PTR = SUCCESS PTR + 1;

There are 42 terminals in XPL. For each terminal r, 
there is a string of the form (4.32). Hence, there will be 
42 strings of the form(4.32). Not all of these are actually 
generated:

a) Among syntactically equivalent strings only one 
is generated,

b) those strings for which the terminal r has an 
invalid (1,1) context (which is indicated by 0 
in the Cl matrix) need not be generated.

The same argument holds for the strings of the form (4.33). 
The procedure NEXT_LEGAL__TOKEN is responsible for skipping 
over the unwanted tokens.
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4.4 TESTING THE CORRECTION STRING
In the last section, the correction string to be 

generated was denoted by w^SgW^. The part is already 
scanned and parsed. The remaining string SgW^ parsed
(by the procedure PARSE) as it is generated. While s^w^
is being parsed one of two things may happen;

1. PARSE announces a syntactic error,
2. end of SgW^ is reached without any error.

In the former case, the correction string w^SgW^ is said 
to have failed the right-context check and is rejected.
TRY_AGAIN is called to present the next correction string.
In the latter case, the correction string has satisfied
the right-context check and the procedure CONTEXT_CHECK is 
called to perform the next two tests;

a) left-context check,
b) semantics check on the string

First, CONTEXT_CHECK announces that the string w^s^w^ 
has satisfied the right context. Consider the example

(4.40) IF B THE X = 0 ; ...
***ERROR, ILLEGAL SYMBOL PAIR <identifier> <identifier> .
PARTIAL PARSE TO THIS POINT IS; ^statement list> IF < identifier>.

One of the correction strings is IF B ; X = 0 ; (obtained 
by replacing "THE" by ":"). This string parses without 
causing any syntactic error. Therefore, CONTEXT_CHECK 
announces;

  ; IS BEING CONSIDERED AS A REPLACEMENT FOR "THE".
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We shall define formally what is meant by "a correction 
string fails the left-context check," Let tQ...t^...t^ be 
an incorrect string, and let w^WgWg be a correction string 
where

*1 “ =2 is
ilk^k+l' ilk+l’ *k+l *k+l*k '

The correction string w^s^w^ is said to fail the left-context 
check.

To see if the correction string w^SgWg satisfies the 
left-context check a (k,l) precedence matrix, where k = ,
is required. Strictly speaking, Cl is just a (1,1) precedence 
matrix. Therefore, when k>l the Cl matrix cannot check the 
left context of a correction string. The following scheme 
is used to check the left context. The right context is 
checked automatically during the continued parsing of the part 
SgWg. Therefore a correction string undergoes the right- 
context check first; then in case it does satisfy the right- 
context check it undergoes the left-context check. Satis
faction of the right-context check implies that the correction 
was completely parsed and the parser detected no error during 
this time. If the correction string satisfies the syntax of 
substructure, the top of the parse stack should reflect this. 
Therefore, the left-context check involves examining the 
portion of the parse stack that corresponds to the parsing 
of the most recent substructure. This raises the question: 
what is the syntax of substructure? We shall answer this by 
considering the following example.

A string between two consecutive delimiters* (including 
the right delimiter) corresponds to a substructure. In the 
following segment of an XPL program each line contains a 
substructure.

*8ee footnote on the next page,
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(1) DECLARE (A,B) FIXED ;
(2) IF A = B THEN
(3) A = 0 ;
(4) ELSE B = 0 ;
(5) DO I = 1 TO 5 ;
(6) A = 1 ;
(7) END ;
(8) XX ; PROCEDURE ;
(9) RETURN ;
(10) END XX ;

When string (1) is completely parsed it reduces to <statement 
list> . The last three reduction steps are;

^declaration statement)» <Cbasic statement)
^statement>
<statement list) .

String (2) reduces to <if clause > . String (3) reduces 
to < basic statement) . However, in the right context of 
"ELSE" the non-terminal < basic statement) will not be 
reduced to ^statement) . The partial parse stack to this 
point has the form: '

< basic statement)
<if clause)

^statement list)

♦The syntactic unit in XPL that naturally corresponds to the 
substructure described in Section 3.22 is ^statement) . A 

^statement) is either a <basic statement) or an <if state
ment) . Either of these two are delimited by a In
an <if statement) what follows "THEN" is a ^statement) 
in itself. By considering "THEN" also as a delimiter we 
can increase the number of errors that are correctable by 
our algorithm. Thus, we choose and "THEN" as the two 
delimiters in XPL. In case the delimiter is absent, the 
presence of: "IF", "DO", "DECLARE" etc. indicates the
beginning of the next substructure.
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String (4) will first reduce to ELSE < statement "> and then

<^basic statement> ELSE <Cstatement>
<true part> < statement> .

Then,

<if clause> true part> cfstatement >
< if statement^
<Tstatement > .

Finally, the partial parse stack will have the form:

^statement list> .

String (5) reduces to ĉ group head> . String (6) first 
reduces to <”statement> then

group head> <statement> ==̂  ^group head> .

String (7) first reduces to <'ending> ; then,

<Tgroup head> <'ending> ; ==# <’group> ;
===̂ <’basic statement^
==̂  statement^ .

Once again, the partial parse stack becomes ^statement list> 
String (8) reduces to ^procedure head> . String (9) 
reduces to < statement list> and the partial parse stack 
assumes the form:

«(statement list>
^procedure head>
<'statement list> ,

The "END XX" of string (10) first reduces to <ending> then.
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^procedure headXstatement list> -<rendingj>
==̂  ^'procedure definition^ .

Finally, <'procedure definition> ;
==̂  <basic statement>
==̂  <statement>

and the partial parse stack becomes

^statement list)> .

The only time a substructure does not reduce to <statement> 
and then to statement list > is when it is a part of a 
compound statement. The following are the compound statements 
in XPL:

<if statement>
<group>

^procedure definition^;

Since the above example considers each of these compound 
statements we have exhausted the different ways a substructure 
can be reduced. Therefore we can conclude that a substructure 
reduces to one of the following non-terminals:

<statement list>, <basic statement> ,
<if clause > , <Tgroup head> or ^procedure head > .

In other words, the syntax of substructure is given by

substructure ::= <statement list>
I < basic statement^
I < if clause>
I < group head>
I ^procedure head)
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Therefore, the testing of the so called left-context is 
performed by a check of the parse stack for any symbols not 
mentioned above. In case a symbol not mentioned above is 
found on the parse stack, the correction string has failed 
the left-context check and is therefore rejected. For 
example, the correction string (4.41) generated to correct 
the string (4.40)

lil L  ; = 0 ;
left context | right context

terminal for 
replacement

causes the parse stack configuration to be

^statement list>
IF

^statement list>

Since "IF” is not one of the symbols listed above, string
(4,41) fails left-context check.

4.41 Semantic Check
In case a correction string satisfies the left-context 

check it undergoes semantic analysis. The semantics for our 
XPL compiler was borrowed from the XCOM compiler for XPL 
(McKeeman et al., 1970), with the following differences;

1) Our compiler does not produce any machine code,
2) XCOM does not distinguish between subscripted 

and unsubscripted identifiers. The flag ARRAY 
TYPE was added to make this distinction possible.

The semantics of our compiler, like the semantics of compilers 
of most programming languages, requires the following:
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1) Each label referenced must actually appear as the 
label of an appropriate statement in the program.

2) No identifier can be declared more than once.
3) All identifiers except labels must be declared 

before use.
4) The arguments of a function call must be compatible 

both in number and in attributes with the definition 
of the function.

Failure to comply with any of the requirements listed above 
results in a semantic error. While in the standard mode, 
the compiler attempts to resolve the semantic error. In 
other words, if a substructure contains one or more semantic 
errors but no syntactic errors, an attempt is made to resolve 
the error. For example,

1) if an identifier is used without declaration, 
the default type, viz. fixed type is assumed, or

2) if an identifier is declared twice, the second 
declaration is ignored.

A semantic error detected during error correction mode 
may be due to the programmer or it may be introduced by the 
correction string that is being tested for semantic context 
check. In either case, a semantic error detected during the 
error correction mode causes the value of the switch SEMANTICS 
to be false. If at the end of the semantic analysis of a 
correction string the switch SEMANTICS is false, then the 
correction string has failed the semantics check and therefore 
rejected. This, of course, implies that

semantic errors committed in a substructure by the
programmer in addition to a syntactic error in the
same substructure will inhibit the correction of
the syntactic error.
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If a correction string satisfies the semantics check, 
it is saved (by SAVE_CORRECTION).

4.5 CORRECTION DECISION
After all the correction strings are tested for a) 

right-context check, b) left-context check, and c) semantics 
check a decision is made if the error correction process for 
the particular error being corrected should be concluded.
The decision depends on the number of correction strings that 
where saved after all the tests. The following three are 
possible;

1. several correction strings were saved,
2. exactly one string was saved,
3. no strings were saved.

All these cases were treated in the last chapter. It was 
mentioned under case 3 that if no correction strings were 
saved and if the left end of the substructure was not reached 
the parser must be moved one position to the left and the 
process of error correction repeated. In the next section 
we shall illustrate the backward movement of the parser of 
our implementation.

4.6 BACKING UP THE PARSER
Consider the segment

(4.61) AA(1) = B(C + 1 ; A

(Assume that the statement DECLARE AA(4) FIXED, (A,B,C)
FIXED has appeared previously.) The parser detects the error 
while scanning the symbol and writes the message
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***ERROR, NO PRODUCTION APPLICABLE.
PARTIAL PARSE TO THIS POINT IS;

^statement list> <variable> <replace> <subscript head> <expression>. 
At this point BUFFOR contains the tokens of the following 
symbols:

(4.62) AA(1) = B(C + 1

and BUF_PTR = 9 (the count starts at 0). STORE_INFORMATION 
saves the token of ";" in SAVE_TOKEN and saves itself
in SAVE_BCD. Since the existence of the error was detected 
at the end of the substructure there is only one symbol, 
viz., "A" to be read in advance. Therefore, TOKEN_IN_ADVANCE(0)
= token of identifier > , and MARK = 0.

TRY_AGAIN is called to generate all the correction 
strings. The following corrections satisfy the right 
context:

(1) AA(1) = B(C + 1) ; (Insert )
(2) AA(1) = B(C + 1 THEN ; (Insert "THEN"
(3) AA(1) = B(C + 1 THEN (Replace ";" by "THEN"

Since B is not an array, correction string (1) does not satisfy 
the semantic context and is therefore rejected. (2) and (3) 
are also rejected because they both fail to satisfy the left 
context check. Thus, no correction strings are saved. The 
message:

...NO CORRECTIONS ON THE PRESENT POSITION WERE SUCCESSFUL 
THEREFORE, THE NEXT POSITION ON THE LEFT WILL BE TRIED,

is written to indicate that the backward movement of the parser 
is in process.
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At this point the partial parse stack is:

<expression>
^subscript head>

(4.63) <replace>
<variable>

<statement list>

If the top symbol of the parse stack were a terminal, backing 
up the parser by one step would simply mean taking the symbol 
on the top of the parse stack and adding it to the head of 
the input string (where it originally came from). However, 
the top symbol on the parse is not always a terminal. For 
example, in the present case, the symbol on the top of the 
parse stack is the non-terminal expression which is the 
reduction of the terminals

C + 1 .

Therefore backing up the parser implies undoing this reduction, 
or "unreducing". In other words, the partial parse stack 
should be changed to __

1
+
C

^subscript head>
<replace>
<variable>

^statement list>

Now the top symbol on the parse stack is a terminal. The 
backward movement of the parser by one symbol is completed 
if the symbol on the top of the parse stack is moved to the 
head of the input string.
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The most difficult part of moving the parser backwards 
is "unreducing" the non-terminal on the top of the parse 
stack. For a bottom-up left-to-right parser "unreducing" 
amounts to top-down right-to-left parsing. For example, 
in our case, the problem was to find how much of BUFFOR, 
viz. ,

AA(1) = B (C + 1

from right-to-left was reduced to the non-terminal ^expression/ 
Given <expression> , finding out that

<expression>==^ * C + 1

by scanning BUFFOR) amounts to parsing top-down right-to-left. 
Therefore, "unreducing" would call for a new parser and a 
new parsing table. This can be avoided by using the following 
method.

Instead of asking how much on the top of BUFFOR 
corresponds to the symbol on the top of the parse stack, 
we ask how much on the top of the parse stack corresponds to 
all of BUFFOR. BUFFOR consists of the terminals since the 
end of the last substructure. In Section 4.5, it was 
mentioned that the end of the parsing of a substructure is 
indicated by the presence of one or more of the following 
symbols (and no others).

<statement list> , <basic statements ,
< group head > , /procedure head > and <if clause>.

Therefore, all the symbols on the parse stack corres
ponding to the terminals in BUFFOR are identified they can 
be deleted and the parsing of the present substructure can 
be repeated by taking the terminals from (the bottom of)
BUFFOR rather than the input string. Also, the parsing can 
be stopped when the top of BUFFOR is reached and the top
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terminal of BUFFOR can be added to the head of the input 
string. For example, in the stack configuration (4.63) 
the symbols

[̂['expressions , ^subscript head> , <^replaceS and <[variable>

correspond to the terminal string (4.62) which is the present 
contents of BUFFOR. The procedure UNSTACK removes the above 
symbols from the parse stack leaving only

<statement list>.

Then UNSTACK sets the switch

RESTACKING = true,
BUF_PTR_LMT = BUF_PTR - 1, and 

(In our present case, BUF_PTR = 9, therefore, BUF_PTR_LMT = 8) 
BUF_PTR = 0.

Now, we proceed with reparsing of the segment (4.61) starting 
from the symbol "AA". As the parsing continues BUF_PTR is 
incremented by 1 and the next token is taken from BUFFOR.
When

BUF_PTR = BUF_PTR_LMT (8, in the present case)

the process of restacking stops and the procedure RESTACK sets

RESTACKING = false.

By this time the partial parse stack has the form;

+
C

^subscript head>
<[replace>
<variable>

^statement list>.
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The terminal "1" is on the top of the stack BUFFOR. To 
complete the process of backing the parser the terminal ”1" 
has to be pushed back on the input stack. In error correction 
mode TOKEN_IN_ADVANCE plays the role of the input stack.
Therefore the terminal ”1" is pushed on the stack TOKEN_IN_ 
ADVANCE (by RESTACK).

4.7 THE PROCEDURES
The procedures constituting the error correction algo

rithm have been referrenced in Section 4.2 through 4.6. An 
alphabetic list of these procedures is given in table 4.1. A 
flow chart of PARSE, the procedure central to all the procedures, 
is given in Figure 4.2. Figure 4.3 gives an overview of the 
correction algorithm.

4.8 HEURISTICS
We shall conclude this chapter with a few heuristic aids 

for correcting errors in XPL language.

First, we shall consider the case of an unmatched 
END ;

statement. There is no local error in the above statement. The 
global error is caused by one of the following two cases:

1. the <group head > of a cfgroup> statement is 
missing or incorrectly specified,

2. the <(procedure head> of a ^[procedure definition> 
statement is missing or incorrectly specified.

In either case, the best solution is to delete the statement 
"END;", since it is too late to go back and correct the < group 
head> or the ^procedure head>. Our error correction algorithm 
would find the following corrections;
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; END (interchanging "END" and ";")
; (deleting "END")
RETURN ; (replacing "END" by "RETURN")

Instead, in our implementation an ad hoc procedure, UNMATCHED_ 
END, is given control and the standard error correction is 
bypassed.

The next case will be illustrated by examples. Consider 
the incorrect statement;

A B + 1 ;
The automatic correction algorithm.will find the following 
corrections:

A = B + 1 ; (inserting "=" before B)
A = + 1 ; (replacing B by "=")

Obviously, the former correction is more "natural" than the 
latter. Also, for the incorrect statement:

A = B IF A < 0 ...
the corrections selected by the automatic correction algorithm 
are:

A = B ; IF A <  0 ... (inserting before "IF")
A = B ; A < 0 ... (replacing "IF" by ";")

In this case, the latter correction will introduce an error in 
the next statement.

In our implementation the problem is solved in the 
following way. For an incorrect string

*0*1 "  • *k •*• *n 
if the correction string

*0*1 *•• ®’*k *•• *n
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(obtained by inserting a token s’ before t̂ ) is saved as one 
of the successful corrections, then the correction string

t^t^ ...

(obtained by replacing tĵ by the token s’) is not generated,



TABLE 4.1

Procedure Called by Calls Function
ABORT_
STATEMENT
CONTEXT_
CHECK

CORRECTION
DECISION
PARSE

CORRECTION_ PARSE,
DECISION CON TEXT CHECK

CORRECTION_DECISION 
TRY_AGAIN, REPORT_ 
CORRECTION, SAVE_ 
CORRECTION.
WRITE_MESSAGE, 
UNSTACK, ABORT_ 
STATEMENT,
GET CARD,

Aborts the offending statement,

Checks: 1) right context, 2) left 
context and 3) semantic context. If 
a correction satisfies all three then 
calls SAVE_CORRECTION to save it.
1) If no corrections backs up the parser 
by one symbol. If the backing up has 
reached the beginning of the state
ment, declares the failure of the 
error correction scheme and deletes 
the symbols up to the next semi
colon. 2) If any corrections reports 
them. In case of multiple correc
tions, indicates which correction 
was chosen.

ERROR

GET CARD

PARSE,
SYNTHESIZE

SCAN, CHAR

STACK DUMP Prints error message. For syntactic 
error writes out the contents of 
the parse stack.
Reads source cards. During standard 
mode lists the cards as they are 
read, but during error-correction 
mode, the listing is delayed 
until the correction algorithm has 
finished trying to correct the error.

Modified from the procedure (with the same name) in XCOM.
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Procedure Called by Calls Funct ion:
NEXT LEGAL TRY AGAIN 
TOKEN

Among syntactically equivalent 
terminals considers only one. 
Also, skips over the terminals 
with invalid context.

PARSE MAIN_
PROCEDURE

STACKING, REDUCE, 
ERROR, RESTACK 
CONTEXTCHECK, 
CORRECTION_DECISION, 
STORE_INFORMATION, 
SCOOP_OR_SCAN,
TRY AGAIN.

Decides which move: stack, reduce, 
accept or error. If stack, stacks 
the token; if reduce, calls reduce; 
if accept returns to MAIN_PROC; 
if error, enters error correction 
made.

REDUCE PARSE

REPORT_ CONTEXT
CORRECTION CHECK
RESTACK

RESTORE
STACKS

PARSE

TRY_AGAIN,
ABORT STATEMENT

PR_OK,
SYNTHESIZE

TRY AGAIN

If no production applicable returns 
the value false. Otherwise, calls 
SYNTHESIZE to perform the semantic 
analysis for the production.
Prints out the current correction 
that has satisfied the right context.
Restacks the parse stack to the 
position one symbol before the pre
vious position of correction.
Restores the parser as it was 
before the latest correction was 
tried.

SAVE_ CONTEXT_CHECK
CORRECTION

If a correction satisfies the right 
context, and the semantic context 
SAVE CORRECTION is called to save it.

Modified from the procedure (with the same name) in XCOM.
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Procedure Called by Calls Function
SCOOP_OR
SCAN

PARSE SCAN In standard mode calls SCAN. In 
error correction mode gets the 
next TOKEN IN ADVANCE.

STACKING PARSE

STORE_ PARSE
INFORMATION
SYNTHESIZE^ REDUCE

SCAN

ENTER,
ID LOCKUP,

Returns the value Q, in case of 
illegal symbol pair;
1, if they symbol is to be stacked;
2, if a reduction is to be performed.
Sets the error flag. Reads the 
symbols in advance for right context.
Performs semantic analysis (does 
not produce any code). In case of 
a semantic error, attempts to resolve 
it and in error correction mode turns 
the switch SEMANTICS to false.

TRY_AGAIN PARSE, RESTACK NEXT_LEGAL_TOKEN, 
CONTEXT CHECK RESTORE STACKS

UNMATCHED_ PARSE 
END

Arranges to:
1) insert a legal token,
2) replace by a legal token,
3) delete,
4) interchange

Deletes (ad noc) unmatched "end;" 
statement.

Modified from the procedure (with the same name) in XCOM.
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Procedure Called by Calls Function
UNSTACK CORRECTION_

DECISION
Peels off the parse stack to the place 
corresponding to the end of the 
previous statement. BUF_PTR_LMT, 
the pointer indicating the position 
to be corrected is set one position 
back.

WRITE_
MESSAGE

CORRECTION
DECISION

The valid corrections, if any, are 
printed.

Modified from the procedure (with the same name) in XCOM.
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CHAPTER FIVE
CONCLUSION

5.1 SIGNIFICANCE OF THIS RESEARCH
In this thesis we have presented an algorithm for cor

recting syntactic errors. The significance of this research 
consists of the following results:

5.11 Locating the Error
High-quality error correction must not insist on making 

a correction where the existence of an error is detected but 
rather must solve the problem of actually finding the error.
There are two reasons why the existence of error sometimes 
is not detected at the occurrence of the error: 1) the nature 
of the error, 2) the nature of the parser. There are parsers 
which are quite efficient in parsing correct programs but do 
not detect the existence of errors as early as certain other 
parsers. The error-correction algorithm to be used in such 
parsers will be of little use if it insists on making a 
correction where the existence of error was detected.

5.12 Testing the Corrections
A correction candidate must undergo through testing before 

it is selected as the final correction. A hasty and lenient test 
could select a candidate that may allow the parsing to continue 
correctly for a short time but later cause spurious errors. 
Therefore, a correction candidate must be tested in a context 
large enough to ensure the "goodness" of the candidate but not

97
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so large as to make the test very time-consuming. Most of the 
existing error-correction algorithms use only syntactic context 
for testing the correction candidates. In our algorithm the 
candidates are also tested in semantic context.

5.2 THE PERFORMANCE OF THE IMPLEMENTATION
The EXPL compiler is running with no major bugs. Many 

sample EPL programs have been run, typical examples of which 
are given in Appendix D. One program was run both under EXPL 
and the PL/1 F compilers to demonstrate how the PL/1 F compiler 
fails to correct errors which are not detected at the point 
of their occurrence. EXPL is capable of correcting such 
errors by moving to the left of the point where the error was 
detected.

5.21 Correction Speed
Since the vast variety of possible errors precludes 

definition of anything like a "typical" or "average" error, 
it is difficult to extract from our results answers to questions 
such as "how long does EXPL take to correct an error". The 
answers depend very much on the particular error. In order 
to get a rough estimate of the correction speed of EXPL, an 
XPL program with 30 statements was run several times, each 
time with a different number of "bugs". All times are relative 
to the IBM system 360/50.

With no errors the compilation time was 3.23 seconds. 
Figure 5.1 shows compilation time vs. number of errors per 30 
cards.

The curve is almost linear and rises monotonically and 
not sharply.
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The correction speed can be improved by about 100 per
cent by the following modification. At present the algorithm 
does not stop after it finds a correction that satisfies all 
the tests. It finds all the corrections. If there are several 
alternates the algorithm is provided with a criterion by which 
it selects the "best" correction. For example, the criteria 
given in Section 3.22 select the "best" correction according 
to the priority;

1) interchange the error-causing symbol and the one to 
its right (highest priority),

2) delete the error-causing symbol,
3) replace the error-causing symbol by another symbol,
4) insert a symbol in front of the error-causing symbol.
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Instead of finding all the corrections and then selecting the 
best one vie can arrange the finding of the corrections accord
ing to the given criterion. With this modification the algorithm 
can stop after finding the first correction since it is the 
"best" one. This, on the average, will save about 50 percent 
of the time (which amounts to doubling the speed). The only 
disadvantage is that the user will not be able to see all the 
possible corrections.

5.3 EXTENSIONS
Our algorithm could be made more effective by adding 

several additional features. In our algorithm the scanner 
does not participate in correcting errors. The correction 
algorithm works on the tokens of the symbols rather than 
the symbols themselves. This makes the errors involving a 
missing space or a misplaced space immune to our algorithm.
As indicated in Chapter Three, statements like

DEC LARE A FIXED ;
IPX = Y THEN Y = 0 ;

are not correctable by our algorithm. To be able to correct 
such errors we may need to:

1) Concatenate terminals to form one or more new terminals, 
e.g., DEC and LARE concatenated should give DECLARE.

2) A substring of a terminal may be recognized as a 
differnet terminal e.g., in "IFX", "IF" is a terminal 
in itself.

This can be done by involving the scanner in the cor
rection process. The question then arises: how can the scanner 
know when and where to make a correction? To provide the 
scanner with its own error detection facility would slow down
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the error correction process. Therefore the scanner should 
only convert terminal symbols into tokens as usual and retain 
approximately one record of the latest input in a buffer. The 
syntactic analyzer can carry out the error correction procedure 
with the following modification. At a given point in the sub
structure if no correction is available before the point to be 
corrected is moved to the left the scanner should be called 
to attempt to correct the error at that point. The scanner 
can take certain actions. For example:

1) concatenate the last two terminal symbols if the 
cancatenated symbol is a legal terminal in the 
language

2) Split the terminal symbol into two terminal symbols.

In case the scanner is successful in getting new terminal 
symbol(s) from the old one(s) the syntactic analyzer can repeat 
the error correction process with the new tokens. Otherwise, 
the point to be corrected will be moved to the left as usual.

In the following (PL/1) statement:
...IFX = Y THEN ...

the existence of error is detected at the symbol "THEN" by 
the syntactic analyzer. At this point no corrections are 
available. The actions of the scanner will also fail. Finally, 
when the point to be corrected is shifted to the symbol "IFX" 
the scanner will be able to correct the error.

We have demonstrated that EXPL can correct errors better 
than other compilers that were available for our testing. We 
do not, however, claim that our error correction algorithm 
is the best possible one. Also, our algorithm is not yet 
perfected; there is scope for improving our algorithm which we 
mentioned in this and in the last chapter.
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APPENDIX A 
A BNF GRAMMAR FOR XPL

1 .
2.
3.
4.
5.
6 .
7.
8 . 
9.

10 .
1 1 .
12 .
13.
14.
15.
16.
17.
18.
19.
20. 
21. 
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

^program> ; 
^statement

<basic statement^

;= ^statement list) EOF 
list) ::=< statement)

I <statement list><statement> 
<statement> :;= <basic statement)

\ <if statement)
;:= <assignment> ;

I <group> ;
I ^procedure definition) ;
< return statement) ;
< call statement) ;
<go to statement) ; 
«^declaration statement) ;

/ if statement)
J
I<if clause) : ; = 

< true part) :;=

I
\
\
\
\
I label definition basic 
<if clause) <statement>

<if clause)<true partXstatement) 
«^label definitionxif statement) 
IF ̂ expression) THEN 

< basic statement) ELSE

statement

<• group) ; : = <group head)<’ending>
< group head) : : = DO;

I DO 4step definition);
I DO <while clausc>; 
i DO case selector^;
I <'group head)<statement>

<step definition): : =<variable)<replace><expressionXiteration
control)

< iteration control):;= TO <expression)
I TO <expression) BY <expression>

awhile clause) 
crease selector) 
< procedure 
<■ procedure

^procedure 
< parameter 
^parameter
pending) ; : =

<label

WHILE <expression>
CASE ^expression) 

definition): :=fprocedure headxstatement 1 istXending) 
head) : ;= procedure name);

I <:procedure nameX'type);
\ ^procedure name)<parameter list);
I ^procedure namexparameter list)<type);

< label definition) PROCEDURE 
^parameter head)«ridentifier>)(
<parameter head)<identifier>.,

END
1 END <identifier)
1 <label definitionXending) 

definition): := <identifier);

name)
list)
head)

1



44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60. 
61. 
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80. 
81. 
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.

<return statement> : ;= RETURN
I RETURN ̂ expression/» 
CALL <variable>

: = ̂ go to><identifier>
<̂ call statement^ ;
</go to statement^
<fgo to> ; ; = GO TO 

1 GOTO
^declaration statement>; ; = DECLARE^declaration element'̂

I ^declaration statementXdeclaration element) 
^declaration element)» ;; = <type declaration)

I <r ident if ier) LITERALLY<str ing>
<[type declaration) :: = ^identifier specification)<type>

1 Abound head)<:nuraber> )<type>
I <type declarationXinitial list>

<type) FIXED
I CHARACTER 
I LABEL
Î <bit beadXnumber)) 

dbit head) ; ; = BIT (
<bound head) ;:= <identifier specification)(
^identifier specification) ^identifier)

I ^identifier list><’identifier>)
<fidentifier list) ;:= (

I ^identifier listX'identifier>,
^initial list) ::= ^initial head><rconstant>)
^initial head) ::= INITIAL

I ^initial head) <fconstant>, 
assignment) : := < variable><replace><expression)

I <left part)/assignment)
< replace) ; := =
<fleft part) ;: = ^variable),
^expression) ::= <Tlogical factor)

I expression)t<logica 1 factor)
<logical factor) ::=<logical secondary)

I -^logical factor) & ^logical secondary) 
<logical secondary) :;= ^logical primary)

I -i<logical primary)
^logical primary) ;:= <string expression)

1 <string expression)<relation><stringXexpression)
<relation')

I

I

<

>=
n<
>

<string expression) ^arithmetic expression)
1 <string expression><arithmetic expression) 

^arithmetic expression) ; ;= <term>
I ^arithmetic expression) + <^term>
I ^arithmetic expression) - <term>
1 + <term)
I -•Cerm)



97. <'term> <̂ priinary>
98. I <term> * <primary>
99. I <term> / <primary>
100. 1 <^term> MOD <:̂ primary>
101. <^primary> :; = <̂ coiistant>
102. I <variable>
103. 1 ( <expi’ession> )
104. <constant> :;=^string>
105. 1 <nuniber>
106. <variable> : ; = <^identifiex’>
107. I <subscript head><'expression> )
108. ^subscript head> : := <identifier> (
109. I ^subscript head><'expression>
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/***************************************************************/
/********** **********/
/********** TR\_AGAIN **********/
/********** **********/
/***************************************************************/

TPY.AGAIN:
PROCEDURE; /* INITIATE THE GENERATION OF THE NEXT CORRECTION

STRING */
IF 5TACK_MESSEC_UP THEN 

00;
CALL RESTORE_STACKS;
STACK_MESSED_UP=FALSE;
SEMANTIC S = TRUE;

END;

DC FCREVEP;

IP -.INSERTEC THFN 
DO;

IF NEXT_LEGAL_T0KEN<NT-1 THEN 
DO; /* MAKE THE INSERTION */

SUCCESS_PTR=0;
TOKEN = TR Y_INDEX;
BCD=V (TRY_ INDEX I ;
RETURN;

END;
ELSE /* RE-INTITIALIZE cQR REPLACEMENT */
DO;

IF MARK<0 THEN 
CO;

FINISHED_TRYING=TRUE;
RETURN ;

END;
INSERTED = TRUE ;
SHIFTED;
LAST_IN0EX=-1;
TRY_INOEX=-l;
C1_LINE=C1(PARSE_STACK(SP)) ;
61 TE=BYTE(CI_LINE);

END;
END;

ELSE
DO;

IF -REPLACED THEN 
DO;

IF NEXT_LEGAL_T0KEN<NT-1 THEN 
DO;

IF INSERTI0NS>0 THEN
d o ; /* IF A TOKEN WAS A SUCCESSFUL INSERTION 

DO NOT TRY IT FOR REPLACEMENT */ 
I=INSERTI0NS-1;
DO WHILE TRY_INDEX-=INSERT_TOKEN(I) & I>=0; 

1=1- 1;
END;

END;
ELSE i=-l;
IF K O  THEN



DO;
SUCCESS_PTR=l;
TOKEN=TRY_INDEX;
8CD=V(TRY_INDEXJ;
RETURN;

END;
END;

ELSE
DO;

REPLACED=TRUE;
SHIFT=0;
LAST_INDEX=-1;
TRY_INDEX=-l;
Cl_L INE=Cl(PARSE_STACKt SPH ;
BITF=BYTE(C1_LINE);

END;
ENC;

ELSE 
DO ;

IF ^DELETED THEN 
DO;

DELETED = TRUE ;
SUCCESS_PTR=2;
TOKEN=TOKEN_IM.AOVANCE(0 );
BCD=BCD_IN_ADVANCE{C) ;
RETURN;

END;
ELSE

on ;
IF -.INTERCHANGED THEN

DO; /* INTERCHANGE THE SYMBOLS */ 
INTERCHANGED=TRUE;
SIJCCESS_PTR=l;
TEMP=SAVE_ TOKEN; 
SAVE_T0KEN=T0KEN_lN_ADVANCE(0) ; 
TOKEN_IN_ADVANCE(0)=TEMP;
t q k e n= s a v e_t o k e n ;
TEMP_BCD=SAVE_BCD;
SAVE_BCD=BCD_I N_ADVANCE 10) ; 
BCD_IN_ADVANCE(0)=TEMP_BCD;
3CD-SAVE_3C0;
RETURN;

END;
ELSE

DO; /* CHANGE THEM BACK THE WAY THEY WERE */ 
TEMP=SAVE_TOKEN; 
SAVE_T0KFN=T0KEN_IN_ADVANCE(O); 
TOKEN_IN_ADVANCE(0)=TEMP;
FINISHED_TPY ING=TRUE;
TEMP_8C0=SAVE_BC0;
SAVE_BCD=BCD_IN_ADVANCE( 0) ;
RC0_IN_ADVANCE(0)=TEMP_BCD;
RETURN;

END;
END;

END;
END;

END; /* OF CO FOREVER*/

END TRY_AGAIN;



/********************* ******************************************/ 
/********** **********/
y********** SAVE_CORRECTICN **********/
/********** **********/
/********** *****************************************************/

SAVE_CORPECTION:
PROCEDURE;

/* AFTER A CORRECTION THAT ALLOWS THE REQUIRED RIGHT CONTEXT WE STORE 
THE PARTIAL PARSE_STACK FOR THAT CORRECTION FOR LATER USE IN CASE WE 
DECIDE THAT IT IS THE FINAL CORRECTION «/

IE ^INSERTED THEN
DO; /* RECORD SUCCESSFUL INSERTION */

INSERT_TOKEN( INSERTIONS )=TRY_INOEX;
INSERT ICNS=INSERT IONS+1;

END;

ELSE
IF -^REPLACED THEM

DO; /* RECORD THE SUCCESSFUL REPLACEMENT */
REPLACE_TOKEN(REPLACEMENTSI=TRY_INDEX ;
RFPL ACE MENTS=REPLACE MENTS+1;

END;
ELSE

IF ^INTERCHANGED THEN
/* RECORD THE SUCCESSFUL DELETION */

DO;
DE LET ION=l;

END;
ELSE

IF -.F INISHEO.TRYING THEN
/* RECORD SUCCESSFUL INTERCHANGE */
DO;

INTERCHANGE 5=1;
END;

STMT_PTR=BUF_PTR-1 ; 
on 1=0 TO STMT.PTR;

CnPR_STMT(n=BCO_BUFm ;
END;

END SAVE_COPRECTION;



/***************************************************************/ 
/********** **********/
/********** WRITE_MESSAGE **********/
/********** **********/
/**************************** ***********************************/

WP TTFLMFSSAGE:
PROCEDURE;

CORRECTIDNS= REPLACEMENTS ♦ DELETION + INSERTIONS + INTERCHANGES;

IF CDRRECTICNS=0 THEN 
RETURN;

ELSE IF CCRPECTI0NS=1 THEN

DO; /*** UNIQUE CORRECTION ***/
IF INSERTI0NS=1 THEN 

DO ;
DOUBLE_SPACE;
OUTPUT:'ACTION------ : 'j|V(INSERT.TOKEN(0))|1
• WAS INSERTED BEFORE • I I SAVE.BCO j | • IN LINE NO. • I ! LI NE_NO; 
INSERT 10NS=0;

END;

ELSE IF REPLACEMENTS:! THEN 
DO;

DOURLE.SPACE;
OUTPUT:'ACTION : '||SAVE_BCO II» WAS REPLACED BY '
1|V(REPLACE_TOKENIO))11' IN LINE NO. »llLINE_NO; 
RFPLACEMENTS:0;

END;

ELSE IF DELETION:! THEN 
DO;

DOUBLE_SPACE;
OUTPUT:'ACT ION-------: '|)SAVE_BCD I I ' WAS DELETED' I I
' IN LINE NO. »!1LINE_N0;
DELETION=0;

END;

ELSE IF INTERCHANGES:! THEN 
DO;

DCUBLE_SPACE;
OUTPUT:'ACTION------ : '||V(TEMP)||' AND • H S AV E_BCD| I
• ARE INTERCHANGED 'II* IN LINE NC.•I ILINE_NO; 
INTERCHANGES:0;

END;

END; /*** OF UNIQUE CORRECTION ***/



ELSE /**** IF DELTA > 1 ******/
DT;

OUTPUT:' ************ NO UNIQUE CORRECTION*;

I =0;
IF INTERCHANGE S=1 THEN 

DC;
1=1 + 1;
OUTPUT:'CORRECTION NO. » 1 11 1 IX41 I SAVF.BCDI 1• AND • 
I |V(T0KEN_IN_ADVANCE(0) )l I ' INTERCHANGED*; 
INTERCHANGES=0;

END;
IF DELETION=I THEN 

DO;
I: l+l;
OUTPUT = *CORRECTION NC. * 1 1 11JX4|ISAVE_BCDlI 

• DELETED';
DELETI0N=0;

END;

DO WHILE REPLACEMENTS > 0 ;
1 =1+1 ;
REPLACE MENTS=RFPLACEMENTS-l;
OUTPUT:'CORRECT ION NO. * I I 111X41 I SAVE.BCDI I 
' REPLACED BY * I IV(REPLACE_TQKEN(REPLACEMENTS) »;

END;

DO WHILE INSERTIGNS>0;
1= 1 + 1 ;
I NSERT IONS= INSERT IONS-1 ;
OUTPUT='CORRECTION NO. * ||I|IX4I I V (INSERT_TOKEN< 
INSERTIONS))! I' INSERTED BEFORE '||SAVE_BCD;

END;

PND; /* OF IF DELTA > 1 */

END WRITF_MESSAGE;



/************************* **************************************/
/♦***♦**♦** **********/
/********** STORE.INFQRMATION **********/
/♦♦♦*****#* **********/
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * f

STOPF_INFnRMATICN: PROCEDURE; /* SAVE THE PRESENT INPUT SYMBOL AND
READ s y m bols UP TO AND ONE AFTER THE NEAREST DELIMITER */

DECLARE I FIXED;
ATTEMPTED=TRUE; /* ERROR CORRECTION MODE FLAG ON ♦/
L INE_NO=CARD_COUNT ;
SAVE_SP=SP;
SAVE_P TR=BUF_PTR;
SAVE_TOKEN=TOKEN;
SAVE_BCD=BCD;

DO 1=0 TO BUF_PTR;
SAVE_8UF(I)=BUFF0R(I);

END;

DO 1=2 TO Sp;
SAVE_STACK( I )=PARSE_STACK< n  ;
END;

i=o;

IF STOPTT (TOKEN) &T0KEN^=SEMIC0L0N THEN
no; /* IN CASE NO SYMBOLS NEED TO BE READ IN ADVANCE */ 

MARK=-1;
REPLACEO=TRUE;
DELETED=TRUE;

END;
ELSE

DO;
no WHILE ^STOPIT(TOKEN); /* READ UNTIL THE

BEGINNING OF NEXT STATMENT */
CALL s c a n;
TOKEN_IN_ADVANCE(I)=TGKEN;
BCD_IN_ADVANCE(I)=BCD;
MARK=I;
1= 1+ 1 ;

END;

IF TOKEN=SEMICOLCN I BCD='THEN* THEN 
00;

CALL SCAN;
TOKEN_IN_ADVANCE(1)=TCKEN;
BCD_IN_ADVANCE( I)=BCD;
MARK=I;

END;
END;

TRY_INDEX=-1;
LAST_INDEX=-l;
SHIFT=0;
C1_LINE=CI (PARSE_STACK(SP) );
8ITE=RYTE(C1_LINE);

END STORE_INFORMATION;
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/* WRITE THE CORRECTED STATEMENT */
LINE=* CORRECTED STATEMENT --- •;
no 1=0 TO STMT_PTR;

IF LENGTHILY NE) > 80 THEN
DO;

OUTPUT=LINE;
LINE=X4:

END;
L TNE=LIME) IXII |CORR_STMT<I ) ;

END;
OUTPLT=LINE :

END;
IF CnPRECTI 0NS=0 THEN 

CALL AGORT_STATEMENT;

IF MARK<C THEN 
DO;

t o k e n =s a v e_t g k e n ;
BCO=SAVE_BCn;

END;
ELSE
DO;

BCO=BCD_IN_ADVANCE(MARK); 
TCKEN=TOKEN_IN_ADVANCE(MAPK);

END;

ATTEMPTEC=FALSE;
SPIT_CARD=TRUE;
CALL GET_CAPD;
SPIT_CARC=FALSE;
RUF_PTR=-l;
BUF_PTR_LMT = 0;

END;

/* RFSET THE FLAGS FOR NEXT TIME */ 
SEM_ANAL=0;
SEM_CHECK=FALSE;
REPLACED: FALSE;
OELETEO=FALSE;
INSERTED=FALSE;
INTERCHANGED: FALSE; 
FINISHED_TRYING=FALS E ;

END CORRECT ICN.CECIS ION;



/***************************************************************/
/********** **********/
/********** UNMATCHEC_END **********/
/********** **********/
/***************************************************************/

UNN!ATCHED_END:
PROCEDURE;
/* AD HOC c o r r e c t i o n FOR UN MATCHED END : IS TO DELETETE END ; */ 

ATTEMPTED=TRUE;
CALL SCAN;
3CD_IM_ADVANCE(0)=*EN0*;
BCD_IN_ADVANCE(1)
8CD_IN_ADVANCE( 2) = BCD ;
T0KEN_IN_ACVANCE(2)=T0KEN:
MAPK=2;
BUF_PTR_LMT=-2;
3UF_PTR=-l;
CALL COPRECTION_DECISION;

FND UNMATCHED.END;

/***************************************************************/ 
/********** **********/
/********** CONTEXT.CHECK **********/
/********** **********/
/***************************************************************/

CONTEXT.CHECK:
PROCEDURE; /* CHECK IF PARSE STACK HAS PROPER FORM */
IF f i n i s h e d.t r y i n g t h e n

00;
CALL CORRECTION.DECI SION;
r e t u r n;

END;
I = SP;

/* CHECK THE LEFT CONTEXT 
on WHTLF ST0P2(PARSE_STACKm ) ;

Î =1-1;
END;
IF I-. = D THEN

DO; /* IN CASE LEFT CONTEXT IS NOT SATISFIED */
IF CONTROL!BYTE!'0*)) THEN
00;

CALL REPORT.CORRECTION;
OUTPUT:

». IMPROPER STACK CONFIGURATION- CORRECTION REJECTED';
CALL STACK.DUMP;

END;
IF SFM.CHECK THEN 

DO;
SEM_CHECK=FALSE;
mUF_PTR=SAVE_PTR;

END;



IF ATTEMPTED THEN 
CALL TRY_AGAIN;

END;
ELSE

IF -.SEH_CHECK THEN
DO; /* IF LEFT CONTEXT IS OK PREPARE FOR SEMANTIC CHECK */ 

SP=LAST_SP;
DO 1=2 TO SP;

PARSE_STACK(i;=LAST_STACK(I);
END;

IF ATTEMPTED fi CONTROL(BYTE(•0•)) TEEN 
CALL REPORT_CORRECTION;

PUF_LMT=BUF_PTR+1 ;
BUFFOR(BUF_LMT)=TOKEN;
RCO_BLF(0UF_LMT)=8CD;
SEM_CEECK=TRUE;
T0KEN=BUFF0R(0);
BCD=BCD_BUFI0);
BUF_PTR=0;
RETURN;

END;
ELSE

DO; /* RETURNED FROM SEMANTIC CHECK */
SEM_ANAL=SEM_ANAL+l;
SEM_CHECK=FALSE;
IF ATTEMPTED THEN

DO ; /* IN ERROR CORRECTION MODE */
IF SEMANTICS THEN 

DO;
CALL SAVE.CORRECTION ;
CORR_SP=SP;
DO 1=2 TO SP;

CORR_STACK( I > = P AR SE_S TACK ( I);
END;

END;
ELSE
IF CONTROL (BYTE! ' O')) THEN 
OUTPUT:
' CORRECTION REJECTED FOR SEMANTIC 

BUF_PTR=SAVE_PTR;
CALL Tk Y_AGâ î N î 
RETURN;

END;
ELSE

DO; /* IN STANDARD MODE */
SEM_ANAL=0;
TOKEN=0UFFOR(BUF_LMT); 
eCC=BCO_BUF(BUF_LMT);
BUF_PTR=-l;
LAST_SP=SP ;
DO 1=2 TO SP;

LAST_STACK( I)=PARSE_STACK(I );
END;

FNC;
END;

END C0NTEXT_CHECK;



/***************************************************************/
/********** **********/
/********** RESTACK **********/
/********** **********/
/***************************************************************/

restack:
PROCEDURE; /* RESTACK THE PARSE STACK TO CNE SYMBOL BEFORE LAST TIME */

TF BUF_PTR_LMT>BUF_PTR THEN 
DO;

BUF_PTR=8UF_PTR+1;
TQKEN=BUFFQR(BUF_PTR) ;
RETURN;

END;

SAVE_PTR=BUF_PTR;
SAVE_SP=SP;
DO 1=2 TO SP;

SAVF_STACK(I)=PARSE_STACK(I);
END;

mark=mark+i;
DO 1=0 TO MARK-l;

TOKEN_IN_ADVANCE(MARK-n=TOKEN_TN_ADVANCE( MARK-I-1) 
BCD_I N_ ADV ANCE (M ARK-n=BCD_IN_ ADVANCE (MARK-I-1) ; 

END;

TOKEN_(N_AOVANCE(0)=SAVE_TOKEN;
BCD_IN_ADVANCE(0)=SAVE_RCD; 
SAVE_T0KEN=BUFF0R(BUF_PTR_LMT+1);
SAVE_BCD = BCD_eUF( 8UF_PTR_LMT + I ) ;

LAST_INDEX=-l;
TRY_INDEX=-1;
SHIFT=0;
C1_LINE=C1(PARSE_STACK( SP )) ;
BIt e =BYTE(C1_LINE);

FINISHED_TRY ING=FALSE;
RESTACKING=F ALSE;
IMSERTFD=FALSE;
RFPLACED=FALSE;
DELETED=FALSe;
TMTEP.CHANGED=FALSE;

CALL TRY_AGAIN;

FND r f s t a c k ;



/***************************************************************/ 
/********** **********/
/********** SCOOP_OR_SCAN **********/
/********** **********/
/***************************************************************/

SCCCP_OR_SCAN:
PROCEDURE;

/* IN STANCARC MODE JUST SCAN NEXT SYMBOL */

IP -ATTEMPTED THEN 
CALL SCAN;

ELSE /* IN ERROR CORRECTION MODE GET THE NEXT TOKEN THAT IS ALREADY
READ IN */

IF SUCCESS_PTR=0 THEN 

DO;
SUCCESS_PTR=l;
TOKEN=SAVE_TOKEN;
BCD=SAVE_BCD;

END;
ELSE

DO;
BCD=eCD_IN_ADVANCE<SUCCESS_PTR-l);
TOKEN=TOKFN_IN_ADVANCE(SUCCESS_PTR-I); 
SUCCESS_PTR=SUCCESS_PTR+1;

FND;

END s c c o p_ or_ s c a n ;
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on ; /***** CASE 1 ********/

IF ATTEMPTED & -.SEM_CHECK G SUCCESS_PTR=MARK + 2 
I ATTEMPTED G SEM_CHECK G BUF_PTR=BUF_LMT 
I -«ATTEMPTED G END_OF_STMT THEN 

DO;
END_OF_STMT=FALSE;
CALL CCNTEXT_CHECKî 

END ;
ELSE

DO;
IF TOKEN=SEMI COLON | BCD=*THEN* THEN 

ENO_nF_STMT=TRUE;
IF SEM.CHECK THEN 

00;
SP=SP+1;
IF SP=STACKSIZE THEN 

DO;
CALL ERROR!'STACK OVERFLOW***COMPILATION ABORTED***'

,2 );
RETURN; /* THUS ABORTING COMPILATION. */

e n d ;
PARSE.STACK(SP)=TOKEN;
VAR!SP)=BCD;
FIXV(SP)=NUMBER_VALUE;
FI XL! SP) =CARDS-l;
BUF_PTR=BUF_PTR + l;
TOKEN=BUFFOR!GUF_PTR) ;
BC0=BCD_BUF1BUF_PTR) ;

END;
ELSE

00;
IF -.!RESTACK ING G BUF_PTR_LMT<OI THEN 
DO;

SP=SP+l:
IF SP=STACKSIZE THEN 
00;

CALL ERROR!
'STACK OVERFLOW***COMPILATION ABORTED***',2); 
RETURN; /* THUS ABORTING COMPILATION. */

END ;
P AR S E.S IA CK {S P i=T OK EN ;

END;
IF ATTEMPTED THEN

STACK_MESSEO_UP=TRUE;
IF RE STACKING THEN 

CALL RESTACK;
ELSE

DO;
BUF_PTR=BUF_PTR + 1;
BUFFOR !BUF_PTR )=TOK EN;
8CD_0UF!BUF_PTR) = 0CC;
CALL SCOOP_OR_SCAN;

END;
END;

END;
END; /* END OF CASE I */



/ * ** * * * * *  CA SE  2 * * * * * * * * * /
IF -.REDUCE THEN 

DO;
IF END_OF_STMT & V( TR Y_I NDEX)-.^'; • & V( TRY.TNDEX )-.='THEN* THEN

00;
E\D_CF_STHT=FALSE;
CALL CGNTEXT_CHECK;

END;
ELSE

o n ;
TF V(PARSE_STACK(SP))='<ENOING>‘ t TOKEN=SEMICOLON &

-.ATTEMPTED THEN /* AD HOC CORRECTION FOR UN MATCHED END; */ 
CALL UNMATCHEO_END;

ELSE
DO;

IF -.ATTEMPTED THEN
00;

CALL ERROR!* NO PRODUCTION APPLICABLE',1);
CALL STORE_INFORMATICN;

END;
IF -.FINISHEO.TRYING THEN 
CALL t r y. a g a i n ;

ELSE
CALL c q r r e c t i o n _ c e c i s i o n ;
END;

END;
END;

ELSE
no;

STACK_MESSED_UP=TRUE;
END ;

END; /******** OF CASE STACKING ***********/
END; /******** OF 00 WHILE COMPILING *******/
FND PARSE;



MAIN.PRnCFOURE :
PROCEDURE;

CALL INITIALIZATION;
CLOCK!I» = TIME;
CCMPILING=TRUE;
SEMANTICS=TRUE;
BUF_PTR=- 1;
CALL PARSE;
IF ATTEMPTED THEN

OUTPUTS' LAST ERROR WAS NOT CORRECTED* 
ELSE

OUTPUT:' DONE WITH COMPILING';
CLOCK!21 = TIME;
/* CLOCKO) GETS SET IN PRINT_SUMMARY */ 
CALL PRINT_SUMMARV;

END MATN_PRGCEOURE;

CALL m a IN_PRGCEDURE;
CLOCK! 0) = TIME; /* KEEP TRACK OF TIME IN EXECUTION */

RETURN SEVERE_ERRORS 
OF ECF EOF



APPENDIX C 

SAMPLE EXPL RUNS



* *• *
♦  X P U SYNTAX A N A L Y S I S  AND LWROK CORKHCTIDN *

• . *  *» *' e************* ****** + *****$**********

TODAY I S  AUGUST 7 ,  1 9 7 3 .  CLOCK T I K E  -  1 5 : 4 8 : 5 . 0 0 .

; 1 I d e c l a r e  a  f i x e d ;
I 2  { DECLARE C A R O S ( I O O )  CHARACTER.  ( I . J I K )  F I X E D .  TEMP CHARACTER:
: I

<=** ERROR, i l l e g a l  SYMUQL P A I R :  1 < I D C N T I F I E R >
; LAST P R E V I O U S  ERROR ft AS  DETECTED ON L I N E  0 .  **■*
; p a r t i a l  p a r s e  TO T H I S  P O I N T  I S :

CSTATENENT L 1 S T >  < DE CL A RA T IO N S T A T E KE NT )  , < I D E N T I F I E R  L I S T )  < 1 D E N T 1 F I E R >  )

A C T I O N  : ) KAS REPLACED GY .  I N  L I N E  N O ,  2
; CORRECTED S T A T E M E N T ------------ DECLARE CARDS C 10 0 J CHARACTER ,  { I  .  U .  K > F I X E D  . TF.KP
j CHARACTER :

3  1 DELCARE < P . O )  F I X E D :
I

♦ t *  ERROR,  i l l e g a l  SYMBOL P A I R ;  < V A R I A 8 L E >  F I X E D
LAST P R E V I O U S  ERROR NAS DETECTED ON L I N E  2 .  * * *

P A R T I A L  PARSE TO T H I S  P O I N T  I S :
< ST ATE HENT  L I 5 T >  < V A R I A G L E >

i
A C T I O N  : DELCARE V A S  REPLACED BY DECLARE I N L I N E  NO.  3

CORRECTED STATEMENT ------  DECLARE ( P ,  0  ) F I X E D  :
4 J DECLARE A A ( 2 1  F I X E D :
0  1 0 0  1=1 , s :  e n d ;

I
*•♦*- ERROR, NO PRODUCTI ON A P P LI C AB L E  

- L AST P R E V I O U S  ERROR WAS DETECTED ON L I N E  3 ,  * * ♦
P A R T I A L  PARSE TO T H I S  P O I N T  I S :

CSTATcKENT L I S T >  0 0  < V A R I A 8 L E >  < REP LACE > < E X PRES SI ON>  ,

: A C T I O N ----------------- : ,  WAS REPLACED BY TO I N  L I N E  N O ,  5
\ CORRECTED--------STATEMENT --- DO I  = 1 TO 5  :
; 6  1 A:  A A I 2 ) :

i I
1 * 4 *  ERROR, NO PRODUCTI ON APP LI CA B LE
i LAST P R E V I O U S  ERROR WAS DETECTED ON L I N E  5 ,  * * *
i p a r t i a l  p a r s e  TO T H I S  P O I N T  I S :
' <STATEMENT L I S T )  < L A 8 E L  D E F I N I T I O N )  <EXPRCSSI ON>
I
1. Oi
' A C T I O N —  ------- ; :  Y'AS REPLACED BY = I N  L I N E  NO,  C
I CORRECTED--------STATEMENT ---  A =  AA (  2  ) :

? I return; I
8  ( EOF OEF I

DONE WI TH C O M P I L I N G  
END OF CHECKI NG AUGUST 7 ,  1 9 7 3 ,  CLOCK T I K E  =  1 5 : 4 0 : 1 0 . 6 1 .

; 6  CARDS WERE CHECKED.

i



4 ERRORS ( 4  SE VERE)  WERE DETECTED.
THE CAST DETECTED ERROR WAS ON L I N E  6 .

SYMBOL TABLE DUMP

A ; F I X E D DECLARED ON L I N E 1 AND REFERENCED I T I MES
AA : ARRAY DECLARED ON L I  NE 4 AND REFERENCED 3 T I M E S
c a r d s : ARRAY DECLARED ON L I N E 2 AND REFERENCED 0 T I M E S
I : F I X E D DECLARED CN L I N E 2 AND REFERENCED 1 T IMES
J : F I X E D DECLARED ON L I N E 2 AND REFERENCED 0 T I MES
K : F I X E D DECLARED ON L I N E 2 AND REFERENCED 0 1 IMES
P ; F I X E D DECLARED ON L I  NE 3 AND REFERENCED 0 TI MES
0 : F I X E D DECLARED ON L I N E 3 AND REFERENCED 0 T IM E S
TEMP : CHARACTER DECLARED ON L I N E 2 AND REFERENCED 0 T I M E S

TOTAL T I M E  I N  CHECKER 
SET UP T I M E  
ACTUAL C HE CKI NG  T I ME  
C L E AN - UP  T I M E  AT END

1 5 : 4 8 : 1 0 . 6 0 .  
1 5 : 4 8 : 5 . 6 5 .  
0 : 0 : 4 . 9 6 .  
0 : 0 : 0 . 1 9 .

CHECKI NG r a t e : 9 6  CARDS PER M IN UT E .



TEST: P R O C E D U R E  G P T I O N S (R A I N J ;

STMT LEVEL NEST 
1 
2
3
4
5
6 
8 
9
10

TEST: PROCEDURE OPTICNSCMAIN ) ; 
DECLARE A FIXEC;

DECLARE CARDS!ICO) CHARACTER, 
TEMP CHARACTER; 

DELCARE (P,Q) FIXED;
DECLARE AA{2) FIXED ;
DO 1=1 ,5; END;
A: AAI2);
RETURN;
END TEST;

(1,J)K) FIXED,



T E S T :  P R O C E D U R E  O P T I O N S  I R AI N ) ;

COMPILER DIAGNOSTICS.

SEVERE ERRORS.

IEM0673I 4 INVALID USE OF FUNCTION NAME ON LEFT HAND SIDE CF I

WARNINGS.

OPTION IN STATEMENT NUMBER 4

IEM0725I 4 STATEMENT NUMBER 4 HAS BEEN DELETED DUE TO A SEVER!

IEM0Î24I 3 INVALID ATTRIBUTE IN DECLARE OR ALLOCATE STATEMENT

IEM0031I 8 OPERAND MISSING IN CR FOLLOWING STATEMENT NUMBER 8

IEM012BI 3 LENGTH OF BIT OR CHARACTER STRING MISSING IN STATE!

IEM0152I 3 TEXT BEGINNING 'KIFIXEC* IN STATEMENT NUMBER 3 HAS

IEM0128I 3 LENGTH OF BIT OR CHARACTER STRING MISSING IN STATE!

ERRORS.

TEM0030 I 4 EQUAL SYMBOL HAS BEEN INSERTED IN ASSIGNMENT STATE

IEM0080I 8 EQUAL SYMBOL HAS BEEN INSERTED IN ASSIGNMENT STATE!

IEM0557I 2 THE MULTIPLE DECLARATION CF IDENTIFIER •A* IN STAT

I E M 0 7 6 4 I ONE OR MORE FIXED BINARY ITEMS CF PRECISION 15 CR

ARE FLAGGED '*********' IN THE XREF/ATR LIST.



PAGE

NAME ON LEFT HAND SIDE CF ECUAL SYMBOL, OR IN REPLY KEYTO OR STRING

BER 4

BEEN DELETED DUE TC A SEVERE ERROR NOTED ELSEWHERE.

CLARE OR ALLOCATE STATEMENT NUMBER 3 . ATTRIBUTE TEXT DELETED. 

CLLOWING STATEMENT NUMBER 8 . DUMMY OPERAND INSERTED,

TER STRING MISSING IN STATEMENT NUMBER 3 . LENGTH 1 INSERTED.

• IN STATEMENT NUMBER 3 HAS BEEN DELETED.

TER STRING MISSING IN STATEMENT NUMBER 3 . LENGTH I INSERTED.

NSERTED IN ASSIGNMENT STATEMENT NUMBER 4 

NSERTED IN ASSIGNMENT STATEMENT NUMBER 8

N CF IDENTIFIER •A* IN STATEMENT NUMBER 2 HAS BEEN IGNORED.

ÎV ITEMS CF PRECISION 15 CR LESS HAVE BEEN GIVEN HALFWORD STORAGE. THEY 

' IN THE XREF/ATR LIST.



* c
» *
t X  p  L  S Y N T A X  A N A L Y S I S  AND ERROR C O R R E C T I O N  ** • * 
* * 
**************************************************************************

T O D A Y  I S  S E P T E M B E R  5 ,  1 9 7 3 .  CL OCK T I M E  =  1 6 : 3 1 : 4 3 . 0 0 .

1
2
3
4
5
6 
7

/ *  T H I S  PROGRAM READS N CARDS ( N = 1 0 ) ,  SORTS THEM I N  A L P H A B E T I C A L  
( C O L L A T I N G )  O R D E R ,  AND P R I N T S  T H E M .  * /

D E C L A R E  N L I T E R A L L Y  « 1 0 ' :
D E C L A R E  CARDS ( N )  C H A R A C T E R ,  < I , L , K )  F I X E D ,  T EM P C H A R A C T E R :

O U T P U T  =  « I N P U T  c a r d s : « ;
DO 1=1 , n ;

* * *  E R R O R ,  NO P R O D U C T I O N  A P P L I C A B L E
L A S T  P R E V I O U S  ERR OR WAS D E T E C T E D  ON L I N E  0 .  * * *

P A R T I A L  P A R S E  T O T H I S  P O I N T  I S :
K S T A T E M E N T  L I S T >  DO < V A R I A D L E >  < R E P L A C E >  < E X P R E S S I O N >  ,

A C T I O N ----------------: , WAS R E P L A C E D  BY T O  I N  L I N E  N O ,  7
C O R R E C T E D  S T A T E M E N T  ------- DO I  =  1 TO 1 0  J

8 i O U T P U T ,  C A R D S ( I )  = I N P U T ;  / *  R E A D  AND L I S T  * /
9  1 D E C L A R E  Y F I X D :

1
* * *  E R R O R ,  I L L E G A L  S YMBO L P A I R :  < I 0 E N T 1 F I E R >  < I D E N T I F I E R >

L A S T  P R E V I O U S  ERR OR WAS D E T E C T E D  ON L I N E  7 .  * * *
P A R T I A L  P A R S E  TO T H I S  P O I N T  I S :

C S T A T E M E N T  L I S T >  < G R C UP  HEAO> D E C L A R E  < I D E N T I F I E R >

A C T I O N ---------------: F I X D  WAS R E P L A C E D  BY F I X E D  I N  L I N E  N O .  9
C O R R E C T E D  S T A T E M E N T    D E C L A R E  Y F I X E D  :

10 I e n d ;
11 1
Î2 ! K,L= n;
1 3  ; DO W H I L E  K «  L ;

I
♦ * *  E R R O R ,  I L L E G A L  S Y M B O L  P A I R :  <  <

L A S T  P R E V I O U S  ERR OR WAS D E T E C T E D  ON L I N E  9 .  * * *
P A R T I A L  P A R S E  TO T H I S  P O I N T  I S :

K S T A T E M E N T  L I S T >  DO W H I L E  K S T R I N G  E X P R E S S I O N )  <  
* * * * * * * * * * * *  NO U N I Q U E  C O R R E C T I O N  

C O R R E C T I O N  N O .  1 <  D E L E T E D
C O R R E C T I O N  N O .  2  <  R E P L A C E D  BY =

C O R R E C T E D  S T A T E M E N T  --------  DO W H I L E  K <  L  :
1 4
1 5
1 6
1 7
1 8
1 9
20 
21 
22

L =  - n ;
DO 1 = 1  TO K :

L = i - i ;
I F  C A R D S ( L )  >  C A R D S ( I )  T HEN

d o ;
T E M P = C A R 0 S ( L ) : 
C A R O S ( L ) = C A R D S (  I ) ;  
C A R D S ! 1 ) = T E M P ;
K=L:



2 3  I
2 4  I
2 5  I
2 6  1

e n d ;
e n d ;

e n d ;
I F

/ *  O F  SORT L O O P  * /

I
* * *  E R R O R ,  I L L E G A L  S Y MB OL  P A I R :  I F  ;

L A S T  P R E V I O U S  ERR OR WAS D E T E C T E D  ON L I N E  1 3 .  * » *
P A R T I A L  P A R S E T O  T H I S  P O I N T  I S :

< S T A T E M E N T  L I S T )  I F  
* * * * * * * * * * * *  NO U N I Q U E  C O R R E C T I O N  

C O R R E C T I O N  N O .  1 I F  D E L E T E D
C O R R E C T I O N  N O .  2  I F  R E P L A C E D  BY R E T U R N
C O R R E C T I O N  N O .  3  I F  R E P L A C E D  BY DO

C O R R E C T E D  S T A T E M E N T  ---------  :
2 7  I

O U T P U T =  • S ORT ED C A R D S : ' :
0 0  1 =1  TO n ;

O U T P U T  = C A R O S ( I  ) ;
END ;

3 2  | E O F  EOF  
DONE V. ' ITH C O M P I L I N G  

END OF C H E C K I N G  S E P T E M B E R  S ,  1 9 7 3 .  CLOCK T I M E  =  1 6 : 3 1 : 4 7 . 6 6 .

2 6  I
2 9  I
3 0  I
31 I

3 2  C ARDS WERE C H E C K E D .
4 ERRORS ( 4  S E V E R E )  WERE D E T E C T E D .
T H E  L A S T  D E T E C T E D  ERR OR WAS ON L I N E  2 6 .

SYMBOL T A B L E  DUMP

C ARDS ; ARRAY D E C L A R E D ON L I  NE 5 AND R E F E R E N C E D Ü T I M E S .
I : F I X E D DE C L A R E D ON L I N E 5 AND R E F E R E N C E D 9 T I M E S .
K : F I X E D D E C L A R E D ON LT NE 5 AND R E F E R E N C E D 4 T I M E S .
L : F I X E D D E C L A R E D ON L I  NE 5 AND R E F E R E N C E D 8 T I M E S .
T E M P : C H A R A C T E R D E C L A R E D 0  N L I NE 5 AND R E F E R E N C E D 2 T I M E S .
Y ; F I X E D D E C L A R E D ON L I  NE 9 AND R E F E R E N C E D 0 T I M E S  .

T O T A L  T I M E  I N  CHECKER  
S E T  UP T I M E  
ACT UAL  C H E C K I N G  T I M E  
C L E A N - U P  T I M E  AT END

1 6 : 3 1 : 4 7 . 7 9 .  
1 6 : 3 1  : 4 3 . 3 5 .  
0 : 0 : 4 .  3 3 .  
0:0:0.11.

C H E C K I N G  r a t e : 4 4 3  C A R D S  PER M I N U T E .



<: y. I» L SYNTAX ANAL YS IS AND ERROR CORRECTION*<■ *

TODAY I S  AUGUST 7 ,  1 9 7 3 .  CLOCK T I M E  =  1 5 : 4 6 :  1 6 . 1 0 .

1 I DECLARE ( A . B . C ,  > F I X E D :
I

*tŸ  ERROR. I LL EGAL  SYMBOL P A I R :  ,  I
LAST PRE VI OUS ERROR WAS DETECTED ON L I N E  0 .  * * *

p a r t i a l  p a r s e  t o  t h i s  P O I N T  I S :
DECLARE < I DENT I H E R  L I S T >  < I D E N T I F 1 E R >  ,

A C T I O N------------- : .  WAS DELETED I N  L I N E  NC, 1
CORRECTED STATEMENT -------- DECLARE ( A .  Ü « C ) F I X E D  :

2 I A = /  B + I ;
1

* * *  ERROR, i l l e g a l  SYMBOL P A I R :  = /
LAST P RE VI OUS ERROR WAS DETECTED CN L I N E  1 .

PART I / i .  PARSE TO T H I S  P O I N T  I S :
CSTATEMENT L I S T >  < V A R I A B L E >  =

NO UNIQUE CORRECTION  
CORRECTION NO.  1 /  DELETED
c o r r e c t i o n  n o .  2 <N'JM3ER> INSERTED BEFORE /
CORRECTION NO.  3 < S T R I N G >  INSERTED DCF ORE /

CORRECT 1.0 S T A T E M E N T  A = B + 1 :
3  I DECLARE I  F I X D ;

I
ERROR, I LL E G A L  SYMBOL P A I R :  <1 DENT I F I E R > < I 0 E N T I F 1 E R >  
I A S I  P RE VI OUS ERROR WAS DETECTED ON L I N E  2 .

p a r t i a l  p a r s e  TO t h i s  p o i n t  i s :
CSTATEMENT L 1 S T >  DECLARE C l O E N T I f 1 E R >

ACT IO N------------- : F I X D  WAS REPLACED BY F I X E D  IN L I N E  NO.  3
CORRECTED STATEMENT   DECLARE I F I X E D  :

4  I I F F  1 THEN ;
i

* * *  ERROR.  ÎTJLEGAL s y m b o l  P A I R :  < I 0 E N T I F 1 E R >  <NUMOER> 
LAST P RE V I OU S ERROR WAS DETECTED ON L I N E  3 .  * * *

P AR TI AL  PARSE TO T H I S  P O I N T  I S :
CSTATEMENT L I S T >  C I D E N T I F I E R )

A CT I ON--------------: I F F  WAS REPLACED BY I F  I N  L I N E  NO, 4
CORRECTED STATEMENT ------  I F  I  THEN

5  I I F  O . C  t h e n  ; ELSE B ;
I

* * *  ERROR.  NO PRODUCTION APPLI CABLE
LAST PREVI OUS ERROR WAS DETECTED ON L I N E  4 .  

P A R TI A L  PARSE TO T H I S  PO I NT  I S :
CSTATEMENT L I S T >  I F  CEXPRESSI ON> ,



ACTION’-------------- : . WAS RCPLACEO OY =  I N  L I N E  NO.  S
CORRECTED STATEMENT ------  I F  B = C THEM

I
♦  ERROR. NO PRODUCTION APPLI CABLE

LAST PREVI OUS ERROR WAS DETECTED ON L I N E  5 .  * * *
P A R T I A L  PARSE TO T H I S  POI NT I S :

<STATCMf.NT L1ST>  < I F  CL AUSE)  <TRUE P A R T )  <EXPRESS I ON)  
t  NO UNIQUE CORRECTION

CORRECTION NO. 1 B DELETED
CORRECTION N D .  2 - 0 REPLACED BY 0 0
CORRECTION NO.  3 B REPLACED BY Î
CORRECTION NO.  A RETURN I NSERTED BEFORE B
CORRECTION NO.  S CALL I NSERTED BEFORE B

CORRECTED STATEMENT ------  ELSE
6 I DECLARE F F I X D ,  K F I X E D :

I
ERROR,  I LL E GA L  SYMBOL P A I R :  < I D E N T I F I E R )  < I D E N T I F I £ R )  '
LAST PRE VI OUS ERROR WAS DETECTED ON L I N E  5 .  * * *

PARTI  / L  PARSE TO T H I S  POI NT  I S :
CSTATEMENT L I S T )  DECLARE < I D E N T I F I E R )

A C T I O N--------------; F I X D  WAS REPLACED BY F I X E D  IN L I N E  NO,  6
CORRECTED STATEMENT ------  DECLARE F F I X E D  ,  X F I X E D  :

r  I A A . ,  ;
I

* * *  ERROR.  I LL E G A L  SYMBOL P A I R :  < I D E N T I F I E R )  < 1 0 : N T I F I E R )  
LAST PREVI OUS ERROR WAS DETECTED ON L I N E  6 .  * * *

P AR T I AL  PARSE 1 0  T H I S  POI NT I S :
(STATEMENT L I S T )  ( I D E N T I F I E R )

ACT I OtJ—** — A A t « # — ABORTED
PARSI NG RESUf-^CS I N STANDARD MCOE

c ! p r o c e d u r e : aa:1
e r r o r , i l l e g a l  SYMBOL P A I R :  (STATEMENT L I S T )  PROCEDURE 
LAST PREVI OUS ERROR WAS DETECTED ON L I N E  7.

P A R T I A L  PARSE TO T H I S  POI NT I S :
(STATEMENT U S D

ACT IO N-------------  PROCEDURE : AA i ------------- ABORTED
PARSI NG RESUMES I N  STANDARD MODE 

9  1 DECLARE A A ( 4 )  F I X E D ;
10 I AA( 1 - )  2 ;

I
* * *  ERROR, ILLEGAL SYMBOL P A I R :  =  )

LAST PREVI OUS ERROR WAS DETECTED ON L I N E ' 8 .  * * *
P A R T I A L  PARSE TO T H I S  POI NT  I S :

(STATEMENT L I S T )  ( S U B S C R I P T  HEAD)  ( S T R I N G  E X PR E SS IO N)

A C T I O N -------------- : ) AND =  ARE INTERCHANGED I N  L I N E  N O . 10
CORRECTED STATEMENT ------  AA I  I  > = 2  ;

11 I END:
ACT I ON—— END % ABORTED
PARSI NG RESUMES I N STANDARD MODE

12 I A A A = ( I i ;
I

ERROR. I LL EGAL  SYMBOL P A I R :  ( I D E N T I F I E R )  ( I D E N T I F I E R )  
LAST PREVI OUS ERROR WAS DETECTED ON L I N G  1 0 .

P A R T I A L  PARSE TO T H I S  P O I N T  I S :
( STATEMENT L I S T )  ( I D E N T I F I E R )

* * * * * * * * , * , *  NO UNIQUE CORRECTI ON  
CORRECTION N O .  I  AA AND = INTERCHANGED
CORRECTION NO,  2 AA DELETED

CORRECTED STATEMENT   A = AA (  I  ) :
13 I r e t u r n ;
14 |EOF EOF



DONC WI TH C O MP I L I N G  
ENü Of- CHECKI NG AUGUST 7 ,  1 9 7 3#  CLOCK T I M E  =  1 5 : 4 6 : 2 1  . 4 0 .

14 CAROS WERE CHECKED.
I t  ERRORS ( 1 1  SEVERE)  WERE DETECTED.
THE LAST d e t e c t e d  ERROR WAS OR L I N E  1 2 .

SYMBOL TABLE DUMP

A F I X E D DECLARED ON L I N E 1 AND REFERENCED 2 T IMES
AA ARRAY DECLARED ON L I NE 9 AND REFERENCED 2 T I M E S
B F I  XCD DECLARED ON L I N E 1 AND REFERENCED 3 T IMES
C F I X E D DECLARED ON L I N E 1 AND REFERENCED 1 T I MES
F F I  XEO DECLARED ON L I K E 6 AND REFERENCED 0 I IMES
I F I XEO DECLARED ON L I  NE 3 AND REFERENCED 0 I  IMES
K F I X E D DECLARED ON L I N E 6 AND REFERENCED 0 T I M E S

TOTAL T I M E  I N  CHECKER 
SET UfJ TIME  
ACTUAL CHECKI NG T IME  
CL EAN- UP T I M E  AT END

1 5 : 4 6 : 2 1 . 5 8 .  
1 5 : 4 6 : 1 6 . 3 1 .  
0 : 0 : 5. 1 7 .  
0:0:0.1 0.

CHECKING r a t e ; 1 62  CARDS PER M I N U T E .


