
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it
is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of -ihe page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being
photographed the photographer followed a definite method in
"sectioning" the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete.

4. The majority of users indicate that the textual content is of greatest value,
however, a somewhat higher quality reproduction could be made from
"photographs" if essential to the understanding of the dissertation. Silver
prints of "photographs" may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as
received.

Xerox University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106

74-6967
LAZARUS, Paul Shantraj, 1944-

AUTOMATIC ERROR CORRECTION IN SYNTAX- DIRECTED COMPILERS.
The University of Oklahoma, Ph.D., 1973 Computer Science

University Microfilms. A XEROX Company, Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.

THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

AUTOMATIC ERROR CORRECTION IN SYNTAX-DIRECTED COMPILERS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY

BY
PAUL SHANTRAJ LAZARUS

Norman, Oklahoma
1973

AUTOMATIC ERROR CORRECTION IN SYNTAX-DIRECTED COMPILERS

APPROVED BY

^ ------------ u.-- ----='---

DISSERTATION COMMITTEE

AC KNOW LEDGEMEN T S

I wish to express my gratitude to Dr. Stephen Feyock
for his guidance, patience and especially for editing the
writing of this thesis. I would also like to thank
Doctors J. A. Payne, V. B. Gylys and J. Christensen for
serving on my committee and for giving valuable comments.
I appreciate Ms. Judy Thain for her encouragement and
helping me in preparing the draft and the final copy of
this thesis.

rABLE OF CONTENTS

CHAPTER ONE
INTRODUCTION

Section Page
1.1 The Purpose of This W o r k 1
1.2 The Philosophy of This Work...................... 2
1.3 Survey of the Previous Work...................... 6
1.4 Outline.. 7

CHAPTER TWO
SYNTAX-DIRECTED COMPILING

2.1 Definitions of the Terminology................ 10
2.11 Vocabulary and Strings................. 10
2.12 Grammars, Sentential Forms and Languages. . 11

2.2 Syntax-Directed Parsing 14
2.21 Syntax-Directed Vs. Ad Hoc Methods....... 14
2.22 Lexical Analysis 15
2.23 Syntactic Analysis 16

2.3 Deterministic Parsers.......................... 18
2.31 Pushdown Augomaton 18
2.32 LR(k) Parsers........................... 20
2.33 LL(k) Parsers................. 25
2.34 Precedence Parsers....................... 27
2.35 Bounded Context Parsers 32
2.36 Hierarchy of Parsers................... 33
2.37 Mixed Strategy Parsers 34

2.4 Semantic Analysis.............. 36

CHAPTER THREE
AN ERROR CORRECTION ALGORITHM

Section Page
3.1 Detection of Errors ; 40

3.11 Error Correction and Error Recovery 40
3.12 Delay in Detecting Errors....... . 40
3.13 Types of Errors......................... 43

3.2 Correction of E r r o r s 43
3.21 Correctable Strings 44
3.22 A Model for Error Correction . 45
3.23 Generating Correction Strings 47
3.24 Testing the Correction Strings 54
3.25 Correction Decision 58
3.26 Backing Up the Parser................... 60

CHAPTER FOUR
IMPLEMENTATION OF THE ALGORITHM

4.1 SKELETON, a Protocompiler.................. 66
4.2 Detection and Location of E r r o r s 68
4.3 Generating Correction Strings 72
4.4 Testing the Correction String 75
4.5 Correction Decision 82
4.6 Backing Up the Parser...................... 82
4.7 The Procedures.................................. 87
4.8 Heuristics.................................... 87

CHAPTER FIVE
CONCLUSION

Section
5.1

5.2

5.3

Significance of This Research
5.11 Locating the Error
5.12 Testing the Correction
The Performance of the Implementation
5.21 Correction Speed..............
Extensions

Page
97
97
97
98
98

100

BIBLIOGRAPHY
APPENDIX A
APPENDIX B
APPENDIX C

A BNF GRAMMAR FOR XPL
LIST OF IMPORTANT PROCEDURES IN EXPL
SAMPLE EXPL RUNS

CHAPTER ONE
INTRODUCTION

1.1 THE PURPOSE OF THIS WORK
Computer programs written to solve non-trivial programs

almost invariably contain errors. Every programmer knows the
long and tedious chore of correcting errors or "bugs" in the
program. Therefore, methods are being developed to enable
compilers to share the burden of debugging with the programmer.
The error correction methods in existing compilers are geared
to the particular language they are dealing with. In this
thesis we shall present a technique for error correction that
is language-independent.

In writing computer programs, errors are committed at
various levels. At the highest level* we have the logical
errors. The computer accepts a program with logical errors and
executes it but does not produce what the program is meant to
produce. This is (logical) correctness of a program and we
do not deal with it here. Theoretical and practical work has
been done in this area by Rustin R. (1971), Floyd, R. W. (1967).

At the lowest level the user may make errors in the
instructions to the operating system. These errors are actually
caused by violating the syntax of the language of the operating
system. Therefore, we can regard them as syntax errors.

♦We consider the level of an error higher than the level of
another error if the former is not detected until the latter
has been corrected.

Compile-tirae errors, which we are going to consider,
occur for two reasons. In a program either the syntax or the
semantics may be unacceptable to the compiler; accordingly,
we have syntactic or semantic errors. We have chosen to work
with syntactic error correction, since the systematic approach
to compilation represented by syntax-directed compilers makes
possible a similarly systematic approach to the automatic
correction of syntactic errors. Also, without resolving syntactic
errors compilation cannot be continued. At or soon after the
occurrence of a syntactic error, the compiler "gets stuck" and
cannot proceed unless the compiler is provided with a scheme
either for correcting the error or for making certain changes
in the "state of compiling". The objective of this work is
to develop a scheme that will correct the errors that we
believe are "most likely" to occur. In the event of an
"unlikely error", the scheme will enable the compiler to proceed
further by merely changing the "state of compiling".

Even though we are confining ourselves to syntactic
errors, we do not completely ignore semantic errors. Semantic
errors cause compilers to assign unexpected meaning to the
program. We are not concerned with the problem of correcting
semantic errors committed by the programmer. However, we
are concerned with the semantic errors introduced by correc
tions of the syntactic errors.

1.2 SURVEY OF PREVIOUS WORK DONE IN RELATED FIELDS
Hopcroft and Ullman (1966) establish fundamental

results on error correction in formal languages. For a
language L, they define the set E^CL) consisting of all
strings w, such that there is a string x in L with the
same number of symbols as w and differing from w in at
most e symbols. In other words, (L) is the set of all

strings within e-Hamming distance of the strings in L. They
prove that the set of regular languages, the set of context-free
languages and the set of context-sensitive languages are closed
under the operation Eg. However, the set of deterministic
languages is not closed under Eg.

One of the earliest papers on error correction is by
E.T. Irons (1963). Irons uses top-down parsing. In order
to avoid backup, he constructs all possible parses in parallel.
At any step during the parse, one or more parse trees have
been constructed; some branches are incomplete. An error is
detected when no partial tree can be further built. Then all
input symbols are successively examined and discarded until
one is found which can be a node of some incomplete branch.
A string of symbols is constructed such that, if inserted before
this input symbol, it will allow the parsing to continue.

If an error is not detected at its occurrence in the
string,the correction suggested by Irons may not be what the
programmer intended. The only way to find the correct inter
pretation of the string is to go back and reinterpret the string
from the point of error. J. P. Levy (1971) introduces the
notion of "backward move". After the parser detects the exis
tence of an error it starts scanning right to left finding the
least number of characters in which a correction may be needed.
This substring he calls the left context of the error. Then
the parser "moves forward" constructing all possible inter
pretations until all interpretations are equivalent*. Levy
admits that this model is not practical for the conventional
context-free description of programming languages. In order
to make it more practical, he proposes the use of "bracketed
context-free" description of programming languages. He also
proposes some heuristic restrictions on the type of errors.
*Lêvy defines equivalence of strings as follows: Two prefixes
X and y of a language L are equivalent with respect to L iff

for every string z, xz f L 4==̂ yz € L .

J. E. LaFrance (1971) describes an automatic error
recovery technique for parsers using Floyd production language;
he also extends his technique to parsers that use recursive
descent. Techniques for the generation of production language
parsers have been developed by a number of workers, including
Beals (1969), Beals et al (1969), DeRemer (1968), Early (lf;66),
Haynes and Schutte (1970). LaFrance uses the technique of
Beals et al. to produce a top-down parser. The parser auto
matically detects an error when it observes unexpected symbol
either on the stack or in the look-ahead symbols. Since the
parser is predictive (top down), it knows what to expect in
the look-ahead symbols. The existing string of input symbols
is transformed according to the expectations of the parser
along with a change on. the top of the stack.

C. J, Burgess (1972) gives a method of error diagnostics
for syntax-directed compilers. He considers the left-faotor
(LF) grammars, which constitute rather a large subclass of
context-free grammars. He uses top-down parsing. To a given
BNF grammar he adds what he calls "error categories", which
will aid in detecting errors in the input string during parsing,

Compilers for CORC (a dialect of ALGOL), CUPL (a dialect
of PL/1) and PL/C (a dialect of PL/1) try to correct all the
errors in programs and execute them in spite of all errors.
The error correction techniques in these compilers are ad hoc
rather than systematic. In PL/C (Conway 1970) the syntactic
analyzer, at each step, uses a transition table to decide wbat
is to be done next. The rows in a transition table correspond
to the last "state" of the analyzer and the columns correspond
to the next input symbol. The entries in the transition table
corresponding to an illegal combination of the last state of
the analyzer and the next input symbol have addresses of error

correction routines, PL/C also corrects semantic errors.
S? nee th'î semantic analysis is performed as an independent
pass rather than concurrently with the syntactic analysis,
the syntactic corrections are performed without considering
their effect on the semantics of the program. If the syntactic
analyzer makes a correction which is syntactically correct but
does not conform to the semantic conventions the semantic
analyzer is unable to retract the decision of the syntactic
analysis. PL/C includes the spelling correction scheme of
Morgan (1970).

The IBM PL/1 (F level) compiler also corrects syntactic
and ;;.emantic errors in source programs. The user has the option
to indicate if the machine code for his program is to be
executed in spite of errors. The diagnostics and the corrections
are not very clear for two reasons; First, the messages are
not printed with the offending source statements. Several
messages for the same statement appear in different places.
Second, messages often make references to statements and not
to the exact position in the statement. For example, the
message may indicate that a certain symbol was inserted in a
certain statement, but there may be more than one place where
the particular symbol could be inserted in that statement.

The error recovery scheme used in the XPL system (McKeeman
et al. 1970) is rather primitive. The compiler writer gives a
list of symbols, like ” , "DO" , "IF" etc. which indicate the
end of a statement or the beginning of a new statement. When
an error is detected, input symbols are examined and discarded
until one is found which is in the list. Then the symbols on
the top of the stack are successively examined until the current
input symbol can legally follow what remains on the stack.

Leinius (1970) presents an elaborate method of recovery
for bottom-up parsing of simple precedence grammars. His

technique is automatic. He also explains how his technique
can be extended to languages that are not simple precedence.

L. R. James (1972) implements Leinius' method for SPL,
a subset of PL/1. He uses Morgan's (1970) spelling correction
algorithm, and compiles statistics from samples of programs
written in SPL. Besides the implementation and the statistics
there is nothing novel in this work.

1.3 THE PHILOSOPHY OF THIS WORK
The basic philosophy of our approach is to restrict our

efforts to the "most likely" errors. It is assumed that the
most likely errors are;

1) a missing symbol,
2) a wrong symbol,
3) a symbol in excess,
4) two adjacent symbols permuted.

We make a further assumption that there is only one error per
"substructure" (to be defined in detail below). This second
assumption is made not because multiple errors in a substructure
are rare, but because automatic correction techniques that
correct multiple errors become impractical to implement for
practical programming languages. The theory of an automatic
method to correct multiple errors has been developed by Levy
(1971).

As mentioned, our algorithm is automatic rather than
ad hoc. In compilers that use ad hoc correction techniques
the correction algorithm consists of a collection of "hand
made" routines. After the detection of an error it is deter
mined which one of these hand-made routines should handle the

error. Each of these special routines can correct an error
more efficiently than a general automatic algorithm. However,
our philosophy is to present an algorithm that is language-
independent. Therefore, our algorithm corrects errors using
only the information in the grammar of the language. This
makes our algorithm very portable.

It is true that errors committed by naive programmers,
who know little about the structure of the language, may fail
to satisfy the above requirements. In such cases our approach
is to delete the offending statements and proceed. The purpose
of providing the compiler with an error correction facility
is not to encourage the programmers to develop the attitude
that "the compiler will correct the errors anyway”. However,
errors occur in spite of careful programming, and an attempt
by the compiler to correct errors will save human time as
well as computer time.

1.4 APPROACH AND OUTLINE
Treatment of syntax errors in the literature is mostly

heuristic. Most often, it is recovery rather than correction
which is undertaken. Except for Levy’s theoretical treatment,
the existing error correction techniques insist on making
corrections at the point where the existence of error is
detected. The existence of an error, however, is not always
detected at the point of its occurrence. Also, delay in
detecting the existence of error occurs more often with some
parsers than others. Therefore, if an error correction tech
nique is to be applicable to a large class of parsers it must
solve the problem of locating the exact position of error.
In Chapter Three we present a method of locating the position
of error.

8

Levy's model is both formal and fairly realistic but
its implementation becomes difficult for most programming
languages. We have therefore simplified Levy's model so that
its implementation is feasible, yet realistic enough to correct
the most likely errors.

1.41 ^ Outline of the Dissertation
Chapter Two introduces three important classes of

parsers: LR parsers, LL parsers and Mixed Strategy parsers.
We choose these parsers since syntax-directed techniques
for these are widely known. A discussion of syntax-directed
parsing is included. Formal definitions and the most important
properties of the above-mentioned parsers are given.

Chapter Three describes our algorithm for correcting
errors. After the parser detects the existence of an error
a string between the previous delimiter and the next delimiter
and the next delimiter is isolated. This string corresponds
to a "substructure" in the language. From this erroneous
input string, strings called correction strings are generated
which differ at most by one symbol from the input string.
These correction strings are then subjected to a series of
stringent tests. After all the correction strings undergo
tests a decision about the final correction is made. The
first section discusses detection of errors. Capabilities
of different parsers to detect errors early in the string are
discussed and causes for delay in detecting errors are given.
The second section considers the generation and testing of
correction strings.

Chapter Four describes the implementation of our algorithm,
The XPL System which was used to generate the compiler of the
implementation in briefly described in the first section.
Section Two is "Detection and Location of Errors". Section

Three describes the generation of correction strings. Testing
of these correction strings, for syntactic and semantic
correctness is given in Section Four. After testing all the
correction strings, a decision is made about the conclusion
of the correction process for the particular error; Section
Five considers such correction decisions. Section Six explains
the process of backing up the parser.

Chapter Five contains a few concluding remarks. First,
the significance of this research is given. Then the per
formance of the implementation is evaluated. Finally, topics
are mentioned where further work would improve our error
correction algorithm.

The appendix is divided into three parts. Appendix A
contains BNF grammar for the XPL language. Appendix B is a
listing of the important procedures comprising EXPL, the
compiler with our error correction algorithm. Appendix C
contains results of sample programs run under EXPL with our
error correction algorithm. One sample program is run both
under EXPL and PL/1 F level compilers; the results show hov/
EXPL corrects certain errors when the PL/1 F compiler fails.

CHAPTER TWO
SYNTAX-DIRECTED COMPILING

In this chapter we shall discuss three important
classes of parsers: LR parsers, LL parsers and Mixed
Strategy parsers. Our purpose is twofold. First, formal
definitions and properties of the parsers are given with
references to the sources where the proofs and further
discussion can be found. Second, a simple example is
used to illustrate the working of each of these parsers.
Sources are quoted where more formal algorithms and their
proofs are to be found. Sections 2,1 contains definitions
of the terms to be used in the rest of the chapter. Section
2,2 is on sytax-directed parsing. The three deterministic
parsers mentioned are described in Section 2.3, Section
2,4 briefly describes semantic analysis.

2,1 DEFINITIONS OF THE TERMINOLOGY
In this section we shall define the terms to be used

in the rest of the chapter.

2.11 Vocabulary and Strings
We will use the basic terminology of set theory

without definition,
A vocabulary or alphabet is a non-empty finite set

of elements called symbols,

10

11

A string is a finite sequence of symbols from a
vocabulary. The empty string, denoted by e, is the sequence
containing no symbols.

The length of a string s, written |si , is the number
of symbols in it. If s and t are two strings, their
concatenation st is the string obtained by writing the
string t after the string s. For any string s, we see
that

es = se = s.
If r, s, and t are three strings such that r = st

then s is the head of r, written s = head(r). If lsl= n,
then s is the n-head of r, written s = head%(r). Also,
t is called the tail of r, written t = tail(r), and if
|tI = n, then t is the n-tail of r, written t = tailn(r).

For vocabulary V, the set of all sequences of symbols
of .V-is denoted by V*. This includes the empty string e.
The set of all non-empty strings is V+. Thus V* = V\7^e|'.

2.12 Grammars, Sentential Forms and Languages
Let V be an alphabet. A context-free (cf) production

or rewriting rule is an ordered pair (A, x), usully written
A : := X, where A is a symbol and x is a string in V. A
is the left part and x is the right part of the production.
A production A :;= e is an e-production.

where
A context-free grammar (cfg) is a 4-tuple G = (N,T,P,S)

1) P is a finite set of productions.
2) N is a set of non-terminals. A non-terminal is a

symbol that appears as the left part of a production.
3) T i& a set of terminals. A terminal is a symbol in

V which is not a non-terminal.
4) S is a distinguished non-terminal called the goal

or start symbol.

12

We shall use the following conventions to represent
various symbols concerned with a grammar;

1) a,b,c,d and f represent terminals.
2) A,B,C,D and S represent non-terminals; S

represents the start symbol.
3) R,S,T,U,...,Z represent either non-terminals or

terminals.
4) r,s,t,u,...,7z represent strings of non-terminals

and terminals.

We say a string v directly produces the string w,
written

V ==̂ w,
if we can write

V = xUy, and w = xuy
for some string x and y, where TJ : ; = u is a rule of G.
We also way that w is a direct derivation of v, or that
w directly reduces to v. We say v produces w, or w
reduces to v, written v ==> w, if there exists a sequence
of direct derivations

V = Uq =4 Ug ... u^ = w where n 0.
The sequence is called a derivation of length n. Also, we
write

V ==^ * w if V w or V = w.

A direct derivation xUy xuy is rightmost, written
xUy xuy,

if y contains only terminals. A direct derivation
xUy xuy is called leftmost, written

xUy ==̂ xuy,
Im

if X contains only terminals. A derivation w ==̂ v is

13

called a rightmost derivation, witten \v =4 v, if every
direct derivation in it is rightmost. Similarly we define
leftmost derivation.

A string s is called a sentential form if it is
derivable from the dishtinguished symbol S, that is, if
S ==> * s. A sentential form consisting only of terminals
is called a sentence. The set of all sentences:

L(G) = |w \ S ==> * w, and w e T* |

is the language generated by G.

Let w = xuy be a sentential form in grammar G. Then
u is called a phrase of the sentential form w for a non
terminal U if

S ==̂ * xUy and U ==> u.
u is called a simple phrase if S ==> * xUy and U ::= u.
The handle of a sentential form is its leftmost simple phrase.

We say that a cfg G = (V,T,P,S) is e-free if either

1. P has no e-productions, or
2. There is exactly one e-production; S ;:= e, and

S does not appear on the right side of any
production in P,

In the future, we will assume cfgs to be e-free. This is
justified by the following theorem;

Given any context-free grammar, G = (V,T,P,S),
we can find an e-free cfg G' = (V,T',P’,S') such
that L(G) = L(G'). (See Ullman and Hopcroft, 1969,
for proof.)

14
We shall end this section with the definition of

FIRST(s), where s is a string of symbols.
FIRST(s) = |x) s ==> * xs’ and \x(= k,

or s ==> * X and I x I < k,
where x is a string of terminals only.j

That is, FIRST(s) consists of all terminal prefixes of length
k or less,

2.2 SYNTAX-DIRECTED PARSING
2,21 Syntax-Directed Vs. Ad Hoc Methods

Since the late fifties tools have been developed to
make the job of compiler writing easier and more efficient.
Many systems, called compiler compilers (cc) have been
invented. Compiler compilers aid compiler,writing the same
way programming languages aid writing algorithms for computers
BMCC (Brooker-Morris compiler compiler), Floyd’s (1961)
Production Language, Shorre’s (1964) META, McClure's (1965)
TMG, Cheatham’s (1965) TGS-II, Feldman’s (1966) FSL (formal
semantic language), Mercer’s (1970) TWINKLE and SKELETON
of McKeeman et al. (1970) are examples of such systems.

A compiler written using a cc system may require more
memory space than the compiler written ad hoc in assembler,
language for the same purpose. However, using a cc has the
following advantages;

1. Formality,
2. Portability,
3. Programming ease.

Formality: Compiler compiler make compiler writing formal
and systematic. In traditional ad hoc compiler writing,

15

heuristic knowledge of the language is used. Heuristic
knowledge of a language differs from person to person.
Hence, each person using the ad hoc method ends up inventing
his own "tricks" for his compiler.

Portability: Since syntax-directed compiling uses the syntax
(or the tables derived from the syntax) of the language rather
than heuristic knowledge of the language, it is easy to modify
the compiler when the language is changed. Changes in the
language are expressed in terms of changes in the syntax of
the language which in turn produce changes in the tables.
With the new tables the compiler can parse the new language.

Ease of Programming: The languages in which compiler compilers
are written are higher-level languages which are easier to use
than assembler language. Debugging is easier in higher-level
languages than in assembler languages. Also, changes from
machine to machine becomes easier if the programming is in a
higher-level language, since higher-level languages are less
machine dependent than assembler languages.

Syntax-directed compiling is done in the following steps:

1. lexical analysis,
2. syntactic analysis,
3. semantic analysis.

Lexical analysis and syntactic analysis are discussed in
Section 2.22 and 2.23. Semantic analysis will be considered
in Section 2.4.

2.22 Lexical Analysis or Scanning

Lexical analysis (scanning) is the simplest part of
compiling. To make the storing and transfer of the source

16

program between different phases of compiling efficient, the
terminal symbols of the language can be represented by integers
called tokens. In other words, each terminal symbol can be
associated with a unique integer. For example, the scanner of
our implementation for the XPL language associates

; with 1,
) with 2,
(with 3,

etc.
There are certain terminal symbols for which the semantic
analyzer and the code generator need to know the actual symbol
as well as the token. The names of the identifiers and the
values of the constants are such symbols, A scanner can be
as simple as just reading a single character on the input
medium and converting it to an integer. This makes the job
of the syntactic analyzer more burdensome. A scanner could
recognize the whole symbol, for example, BAL_OF_TODAY as an
identifier, or 125,6 E 03 as a decimal floating point constant.
In other words, the scanner does a small amount of parsing.
The scanner can also do some error-correction in numerical
constants. For example, the scanner can detect and correct
the error in the constant 1.2U25 better than the syntactic
analyser. Finally, the scanner can recognize comments
(remarks) and delete them from the information sent to the
future phases of compiling.

2.23 Syntactic Analysis

Syntactic analysis (or parsing) is the process of
determining if a given input string is a sentence in the
given language. From the definition of "sentence" (Section
2.1) this implies the construction of a derivation for the
string. Consider the language L described by the production
set P:

1 .
2 ,

3.
4.
5.

E
E
ï
T
F

17

= E + T
= T
= T F
= F
= a

The string a + a * a is a sentence in the language L, since
there is a derivation for it. For example,
(2.231) E = = ^ E + T = = ^ E + T * F = = ^ E + T * a = ^ E + F * a

==̂ E + a ♦ a ==> T + a * a
==̂ F + a * a ==̂ a + a * a.

is a rightmost derivation for a + a * a. Also, there is a
leftmost derivation;
(2.232) E =4 E + T T + T =3 F + T a + T ==» a + T * F

==̂ a + F * F a + a * F a + a * a.
The leftmost derivation as well as the rightmost derivation
can be represented by a diagram called the syntax tree.

E
T

F

a

F

Figure 2.1 Syntax Tree of a + a * a.

A derivation to derive a sentence is also called a parse.
The leftmost derivation is called the left parse. The rightmost

18

derivation, with the direct derivations written in reverse
order, is called the right parse. For example, the parse
(2.232) for the sentence a + a * a in L, is a left parse.
The reverse of (2.231), namely

a + a + a ==̂ F + a * a = ^ T + a * a ==̂ E + a * a
==̂ E + F * a = = ^ E + T * a
= 4 e + t * f ==^e + t = ^ e .

is a right parse. For a given sentence the process of finding
left parse (right parse) is called the top-down parsing
(bottom-up parsing).

In top-down parsing, we start with the goal symbol and
build the (parse) tree down to the terminals. In bottom-up
parsing, on the other hand, we start with the terminals and
build the tree toward the goal symbol. In either case, we
observe the following facts;

1. The root of the tree is the goal symbol.
2. The leaves are terminal symbols and the nodes

are non-terminal symbols.
3. Each node that is not a leaf is the left side

of a production and the immediate branches from
the node represent the right side of that
production.

All the parsing methods described above are left-to-right
in the sense that they scan the input string from left to right.
We could similarly define right-to-left parsing methods.

2.3 DETERMINISTIC PARSERS
2.31 Pushdown Automaton

We now introduce the pushdown automaton— a recognizer
that is a natural model for syntactic analyzers of context-free
languages.

19

Definition: A pushdown automaton (PDA) is a 7-tuple
P = (Q,I,r ,M,qQ,TQ,F)

where
1.

2 .
3.
4.

5.
6 .

Q is a finite set of state symbols representing
the possible states of the finite state control.
I is a finite input alphabet.
r is a finite alphabet of pushdown list symbols.
M is a mapping from Q x (I\J{e}) x F to the finite
subsets of Q x T*.
QqCQ is the initial state of the finite control.
TqCF is the symbol that appears initially on top
of the pushdown list.

7. FÇ Q is the set of final states.
A configuration of P is a triple (q,w,t) in QxI*xT*, where

1. q represents the current state of the finite control.
2. w represents the unused portion of the input. The

first symbol of w is under the input head. If w is
e, then it is assumed that all of the input tape has
been read.

3. t represents the contents of the pushdown list.
The leftmost symbol of t is the topmost pushdown symbol,
t = e, then the pushdown list is assumed to be empty.

If

FINITE
CONTROL

Input tape

Figure 2.2 Pushdown Automaton

+j
m•ft

c
0 •a
X!
01

20

A PDA P= (Q,I,r,M,qQ,TQ,F) is said to be deterministic
(DPDA) if for each q in Q and T in T either

1. M(q,i,T) contains at most one element for each i
in I and M(q,e,T) = 0 ; or

2. M(q,i,T) = ÇÔ for all i in I, and M(q,e,T)
contains, at most, one element.

These two restrictions imply that a DPDA has at most
one choice of most in any configuration. Thus in practice it
is much easier to simulate a deterministic PDA than a non-
deterministic PDA. The space and time requirements of deter
ministic PDA's are linear with respect to the length of input
strings. We shall consider the following important classes of
deterministic parsers:

1. LR(k) parsers
2. LL(k) parsers
3. Precedence parsers
4. Bounded context parsers.

2.32 LR(k) Parsers
Definition: Let G = (V,T,P, S) be a cfg. We say G is an
LR(k) grammar, k>0, if the three conditions

1. S ==> * rAw =4” rsw,
rm rm

2. S ==̂ * rBx ==> rsy, and
rm rm

3. FIRSTk(w) = FIRSTĵ (y)

imply that aAy = cBx. That is, r = t, A = B, and x = y.

A language generated by an LR(k) grammar is called an
LR(k) language. A language has an LR(k) parser if it has
an LR(k) grammar to describe it.

21

LR(k) grammars are the largest class of unambiguous
grammars for which we can construct deterministic parsers.
In fact,

Theorem: For any deterministic language L there
is an LR(k) grammar G, for some k>0, such that G
generates L.

(See Aho and Ullman (1972) for proof).

Let us consider a deterministic language and see how
we can construct an LR(k) parser for it. Consider the language
described by the production set Pj :

EXPR
EXPR
TERM
TERM
FACT

= EXPR + TERM
= TERM
= TERM * FACT
= FACT
= a

EXPR, TERM, FACT are the non-terminals. EXPR is the goal
symbol. i, + and + are the terminal symbols. Throughout
this chapter we shall refer to this language by the name
"Expression Language."

We now show how to construct a PDA P = (Q,I,17 ,M,qg,Tq ,F)
for the above language. The finite control Q has four states:

1. Push: push the input symbol that is presently under
the scanner onto the pushdown list.

2. Reduce: do not move the input tape, but reduce the
alphabet symbols on the pushdown list by using a
production.

3. Accept.
4. Error.

22

The alphabet I is the set:

(EXPR, TERM, FACT, a, t, * and $)

The mapping M is given in the form of a table in Figure 2.32.
Qg is the initial state when $ has been pushed on C. Tq is
the symbol initially on top of T. F is the final state "accept".

We now describe the construction of M and . We may
assume that only terminals and non-terminals are on F . Then to
define the mapping M we will have to know the entire contents
of r . Instead, suppose new symbols, say T q , T̂ , . . . , T̂ ̂are used
to represent all possible correct configurations of the stacks
of terminals and non-terminals on F . Then each time the contents
of f are changed, a T^ can be placed on the top of F and
M can consult only the top of H to decide the move. The
possible configurations Tq ,T]̂ and the transition table M
are given in Figure 2.3. Figure 2.3 contains the tables,
called LR(k) tables, for our Expression Language. The tables
were computed by hand using the algorithm given by the flow chart
of Figure 2.4. A more formal algorithm to compute LR(k) tables
and a proof of its validity are given in Aho and Ullman (1972,
Algorithm 5.12, Theorem 5.12). Their algorithm (5.7 Ibid) of
parsing using these LR(K) tables is slightly different from ours.
LR(k) parsers are quite powerful; they can parse any deterministic
language, but the LR(k) tables become impractically large for
practical programming languages. Optimization techniques for
reducing the size of LR(k) tables are given (in Chapter Seven,
Ibid) but seem less than convincing. Restrictions of LR(k)
grammars have been proposed to make parsing practical. DeRemer
introduced Simple LR(k) grammars and LALR(k) grammars (DeRemer
1969, 1971) which have efficient parsers.

23

a 4- * $

'̂0 1,T, 0 0 0 To : $
0 2,Tg S'Tg 2,Tg : $a

^2 0 2,T3 2.T3 2.T3 Tg ; $F

3̂ 0 2,T̂ 1’T4 2.T4 T3 ; $T
0 2,Tg 0 ACCEPT : $E

5̂ l,Ty 0 0 0 Tg : $E'+

6̂ l,Tg 0 0 0 Tg : $T*

T? 0 2.Tg 2'T9 2,Tg Ty : $E+a

8̂ 0 2'TlO 2,Tio 2,Tio Tg ; $T*a

9̂ 0 2'Til 2,Ti2 2, Til T9 : $E+F

^10 0 2,T3 2.T3 2,T3 T̂ g: $T*F

Til 0 2,T^ 2,T^2 2,74 Tĵ ; $E+T

Ti2 T» ̂ 13 0 0 0 T̂ g: $E+

^13 0 2'Tl4 2,Ti4 2,Ti4 T̂ g: $E+T*a

?14 0 2'Tll 2,Til 2,Til $E+T*F

Figure 2.3

24

Scan the first
Input synbol a

Y3S f"— I
jî«ïCT»w«m»w-1 Accapt g

«xÿ

 ̂ Does a top portions
of (not including
T*g) match the right

side of a pro
duction?

T
Y NO

r t!TVT.N40C«-^';ç

Krror L
vz-ft-T̂ rtcvwr.*

Is there a right side'%̂
of a production consisting

;Pfjust "a" or a top portion
of r and a?

jRe^'O the symbols from
I(including the T*s corres-

JES [ponding to the right side of
the production,̂ Enter the
ileft side of the production
I on the top of v ‘ ,

.1,Ÿ YES
Push a on X’
Move the scanner head on
the next input symbol.

I Create a
V. Î igura'cion -jnsu symbol

hW/ft* I

Enter the appropriate
T; on the top of

vG I
■ J

A

FIGURE 2.4

25

2.33 LL(k) Parsers
Certain compilers that parse top-down must use back

tracking. For some languages back-tracking can be avoided by
looking at certain input symbols in advance. For example,
consider the grammar:

1. G : : = aE 2. G := Bd
3. E ::= bD 4. B ; = Ac
5. D : := df 6. A : = ab

G is the start (goal) symbol.

Suppose we want to parse the string abed. We start
with the goal symbol G. There are two productions to choose
from: (1) and (2). At this point, just by looking at the first
input symbol a we cannot tell which alternative to take. Suppose
we choose (1).

aE

The first symbol of the input string, viz. a, matches. Next,
we have to replace the non-terminal E. There is only one choice,
hence we take it.

G ==̂ aE abD .

A second match is found. We procédé further with D. But this
time

G ==) aE ==̂ abD abcdf .

We failed to match the input string. Therefore, this is not the
parse we were looking for. We made the wrong choice at the very
first step. We start with G again and take the other alternate

G ==̂ Bd

26

which will lead to

G ==̂ Bd ==& Aed abed

the correct parse.

While making a choice between production (1) and (2),
if enough (in this case, four) input symbols had been scanned,
we could have made a correct choice. If such correct choices
can always be made for any production the grammar is called an
LL(k) grammar, where k is the maximum number of input symbols
which must be scanned in advance. More formally,

Definition: Let G = (N,T,P,S) be a cfg. G is said to be LL(k),
for some fixed integer k > 0, if whenever there are two leftmost
der ivations

1. S ==)* wAr wrs ==̂ * wx,
Im Im Im

2. S wAr ==* wtr ==* wy
Im Im Im

and

such that FIRSTĵ (x) = FIRST^(y), then it follows that s
That is, the two productions

A : := s and A : := t
used in the two derivations are identical.

The grammar we just considered is LL(4). It should be noted
that there are deterministic grammars that are not LL(k) for any
k. For example, the grammar

(1) S := A (2) S := B
(3) A : = aaA (4) A : = aa
(5) B : = aaB (6) B : = a

is LR(1), but there is no fixed k for which it is LL(k). This

27

is true because to recognize the string a*', all the n
symbols have to be scanned before a choice between production
(1) and (2) can be made.

2.34 Precedence Parsers
Bottom-up parsing involves repeated application of the

following two steps:

1. finding the handle, and
2. reducing it to the appropriate non-terminal.

Each of these two steps calls for repeated consultation of
the productions of the grammar. If the number of productions
is large, the repeated consultation of these productions for
every iteration of the above steps will slow down the parsing
process. Therefore from these production tables are derived
which can be consulted more efficiently than the productions
themselves. Precedence relations are examples of such tables,

We shall begin with the definition of precedence
relations.

Definition: Let G = (V,T,P,S) be a cfg. ^ , = and ^ are
three relations on V defined as follows:

1. X 4 Y if there is a rule A ; : aXBb in P such
that B ==> * Yy

2. X = Y if there is a rule A ::= axyb in P
3. X ^ Y if y is a terminal and if there is a

rule A ::= aByb in P, such that B cx,
and Y ==̂ * ad.

The grammar G is called (1,1) precedence (or Wirth-
Weber precedence) grammar if the three relations ^ ^
are pairwise disjoint and G is e-free.

28

A (1,1) precedence grammar is called a simple precedence
grammar if the right sides of productions are unique, that is,
G does not have two productions

Uj : := X and Ug : := x

where ^ Ug .

Intuitively, (1,1) precedence relations indicate the
left and the right end of handles on the input string. Suppose
we are scanning the input string from left to right. The
relation ^ indicates the beginning of à handle; more explicitely,
if X Y holds, Y is the left end of a handle. =: indicates
the continuation of a handle, and ^ indicates the right end
of a handle. When none of these relations holds between the
last symbol scanned and the next input symbol an error is
indicated.

Many naturally occurring grammars are not precedence
grammars, and in many cases rather awkward grammars result
from an attempt to find a simple precedence grammar for the
language at hand. We can obtain a larger class of grammars
which can be parsed using precedence techniques by relaxing
the restriction that the ^ and = precedence relations
be disjoint.

Definition: A (1,1) precedence grammar in which we do not
require the relations ^ and = to be disjoint is called a
(1,1) weak precedence grammar.

There are deterministic languages that cannot be
described by simple precedence grammars. Therefore we need
what are called extended precedence grammars.

29

Definition: Let G = (V,T,D,S) be a cfg. Let x and y
be two strings of lengths ra and n respectively, that is,
IXI = m and \yl = n. Then we define the three (m,n) precedence
relations as follows:

X < y if there is a canonical sentential form....
xy....where the head symbol of y is the head
of the handle.

X = y if there is a canonical sentential form
....xy....where the head of symbol y and
the tail symbol of y are in the handle.

X ^ y if there is a canonical sentential form....
xy....where the tail symbol of x is the
tail of the handle.

G is said to be (m,n) precedence grammar if it is e-free and
if the three relations < , = and ^ are pairwise disjoint.

G is called weak (m,n) precedence grammar if it is
e-free, and the relation ^ is disjoint from the relation ==
and the relation ^ . To illustrate precedence parsing,
consider the language described by the grammar G:

1. E : = E + T
3. T ; = T * F
5. F : = (E)

2. E
4. T
6. F

The weak (1,1) precedence tables for G are given in
Figure 2.9.

30

S(i):R

NO

YES

NO
3(1)

YES

YES

(accept ")

% S(l) » E

'^ h e re a
production

ERROR

ERROR

Reduce

Stack the input symbol
8(1) - R

(i) " $, R - T(k)
Scan next symbol

R " T(k)

FIGURE 2.5
(1,1) Precedence Parser

31

$ + * () a
E 2 1 0 0 1 0
T 2 2 1 0 1 0
F 2 2 2 0 0 0
$ 0 0 0 1 0 ' 1
+ 0 0 0 1 0 0
* 0 0 0 1 0 0
(0 0 0 1 0 0
) 2 2 2 0 2 0
i 2 2 2 0 2 0

(1,1) precedence table for G .
1 represents <• or =
2 represents ̂
0 represents no relation

FIGURE 2.6

So far we have seen how precedence relations can be used
to find handles in the input strings. The next step in bottom-
up parsing is to find the correct non-terminal to which the
handle reduces. To reduce the handle we need to find a production
such that its right side matches the handle. This does not pose
a problem if the right sides of all productions are unique.
Grammars in which productions have unique right parts are called
uniquely invertible (for short, UI). However, not all grammars
are uniquely invertible. If a grammar is not uniquely invert
ible we need to look for some other property in the grammar
which will enable us to perform the reduction of handles. The
answer is given in the next section.

32

2.35 Bounded Context Parsers
The problem of reducing handles in the input strings to

non-terminals is a trivial problem for uniquely invertible
grammars. Theoretically, it is possible to convert a given
cfg G into an equivalent cfg G’ which is uniquely invertible.
The following theorem and its proof are given in Graham (1970).

Theorem: Let G = (V,T,P,S) be a context-free grammar.
a. There is an equivalent grammar G' which is

uniquely invertible.
b. If G is LR(k) there is an equivalent LR(k) grammar

G’ which is uniquely invertible.

However, such transformations may leave the original grammar
deformed badly. Besides, with the new grammar finding the
handle may be considerably more inefficient than with the orig
inal grammar. Therefore it is necessary to find different ways
of reducing handles for grammars that are not uniquely invertible.

Suppose X is a handle in a right sentential form and
Uj : := X and Ug : x

are two productions such that ^ Ug. The left and right con
text of X in the sentential form may indicate which production
to choose. The grammars in which we can tell which production to
choose by looking at the context around the handle are the bound
ed context grammars. More formally:

Definition: A cfg G = (V,T,P,S) is an (m,n) bounded right-
context (BRC) grammar if the four conditions

1. S rAw rsw, and
2. S tBx tux = r'st

are rightmost derivations in grammar G,

33

3. ixl < lyl ,
4. the last m symbols of r and r' coincide, and

the first n symbols of w and y coincide

imply that r* Ay = tBx ; that is, r' = t, A = B, and y = x.
A grammar is BRC if it is (m,n) BRC for some m and n.

The word "right” in bounded right-context is misleading.
It is not the context that is "right"; rather, "right" refers
to using rightmost derivations. Symmetrically, if we use left
most derivations we have bounded left-context (or BLC) grammars.
Further, in the definition of (m,n) BRC, if we replace "right
most derivations" by "any derivations" we have (m,n) bounded
context (or BC) grammars. Williams (1970) defines bounded
parsable (BPC) grammars. BPC grammars are BC grammars in which
a handle is not necessarily the leftmost simple phrase (i.e.
reduction string). In his definition, a handle is any simple
phrase.

2.36 Hierarchy of Grammars
The only difference between LR(n) parsers and (m,n)

BRC parsers is that LR(n) parsers are allowed to look at any
number of symbols on the stack (of the parsed symbols) whereas
(m,n) BRC parsers are allowed to look at only a predetermined
fixed number m of stack symbols. Therefore, every (m,n)BRC
is LR(n). The converse is not true. The grammar G;

S
A
B

= aA 1 bB
= OA 1 1
= OB 1 1

is an LR(0) grammar, but fails to be (m,n) BRC for any m
and n.

34

However, the grammar G' ;

S : := aA 1 bA
A : : = OA 1 1

generates the same language and is (0,0)BRC. In general,
given any deterministic language L There is a (1,1) BRC
grammar to describe it.

Several investigators have worked on the transformation
of deterministic context-free grammars to precedence grammars.
Fisher (1969) proved;

Simple precedence languages form a proper subclass
of deterministic language.

L = I ao"l" I n > l] U {bO^l^K | n > l]

is a deterministic language that is not simple precedence.

However, any deterministic language can be described
by a weak (1,1) precedence (not necessarily UI) grammar. Also,
Graham (1970) established that

Every deterministic language is generated by a
UI (2,1) precedence grammar.

Figure 2.7 shows a hierarchy of deterministic grammars.

2.37 Mixed Strategy Parsers
BRC parsers do not make efficient parsers by themselves

(Section 5.4.2, Aho and Ullman, 1972). Precedence relations
speed up the task of finding handles, but some context around
the handle may be needed to reduce the handle, Therefore it
is efficient to have a parser that uses a (p,q) precedence
relation to find the handle and (m,n) context to reduce the

35

SIMPLE:
PRECEDENCE

Figure 2.7 Hierarchy of Deterministic Grammars.

handle. Such a parser is called a (p,q;ra,n) mixed-strategy
parser (MSP). McKeeman (1966) introduced the MSP's. He
gave the name stacking-decision function (Cl) to the function
that finds the handle and the name production selection func
tion (2) to the one that reduces the handle. The domain and
the range of the functions 01 and 02 are as follows. If ocx
is a canonical sentential form, where cc, is the part that is
partially reduced and x is the unscanned part of the input
string, the domain of 01 consists of pairs of the form
(tp(oc), hq(x)). tp stands for TAIL^ and
HEADq. The values of the 01 function are

stands for

36

Cl (tp(cK),hq(x)) = 0 , when no relation holds
between t^((X) and h^fx)

= 1 , tp(c%) <hq(x)
= 2 , tp(cx) ^ hq^x) .

The function C2 is called whenever the value of Cl is 2. The
domain of 02 consists of triples of the form (l,h,r), where h
is the handle, and 1 and r are the left and right context
(of length p and q respectively) of h in the sentential
form. The values of 02 are

02(1,h,r) = 0, the handle cannot be reduced
= p, P>0, pth production is used

in the reduction.

2.4 SEMANTIC ANALYSIS

In the syntactic analysis phase, it is decided if the
given input program is an acceptable program; in the semantic
analysis the accepted program is translated into a target lang
uage. During the process of translating the source program
into target code the semantic analyzer constructs a table of
symbols used in the source program. Some of the functions of
symbol table construction of the semantic analyzer of a con
ventional programming language are:

1. Label identifiers are defined when they appear
as labels of statements; the label and its
(relative) position should be stored in the symbol
table. Any forward references to this label
should be marked appropriately.

2. Identifiers should be declared (explicitly or
implicitly) once, and only once; their attri
butes (by declaration or by default) should be
entered into the symbol table.

37

3. The arguments of function calls must be compatible
both in number and in attributes with the definition
of the function. At the time of definition, func
tions, along with their arguments, should be
entered into the symbol table.

The significance of the symbol table to our error
correction algorithm is as follows. After a candidate is
selected for correction it is first checked for semantic
correctness. The semantic analyzer is called to check the
semantic correctness. If the semantic analysis of the candidate
for correction introduces conflicts with the information in
the symbol table constructed to that point the semantic analyzer
announces a semantic error and the candidate for correction
is rejected.

CHAPTER THREE
AN ERROR CORRECTION ALGORITHM

This chapter describes our algorithm for correcting
syntax errors. Semantic errors are also considered, but
correcting semantic errors is not the goal of this thesis.
Semantic errors committed by the programmer and found in
syntactically correct statements do not influence our
algorithm. However, semantic errors matter in the following
way:

if an attempt to correct a syntax error introduces
semantic errors then the correction is rejected.

Section 3.1 describes detection of errors. First,
the terms "error correction" and "error recovery" are dis
tinguished. Then the capabilities of different parsers to
detect errors early in the string are discussed. Causes
for the delay in detecting errors are also given. The two
types of errors detected are considered in Section 3.12.
Section 3.2 is the core of this thesis. Section 3.21 con
tains the rules which define the set of all correction
strings for a given string. In Section 3.22 the ideal
conditions required by our error correction algorithm are
given. A method of finding the correction strings is
presented in Section 3.23. A method for checking syntactic
and semantic context is described in Section 3.24. Section
3.25 explains how the final correction, after screening out

38

39

all the unwanted correction strings, is selected. In the
process of screening out invalid correction strings, if no
strings are left, the parser is moved backwards and the
correction process is repeated. Section 3.26 illustrates
how the backing of the parser works.

3.1 DETECTION OF ERRORS

3.11 Error Correction and Error Recovery
When the parser (a DPDA) enters the state "ERROR" we

say a (syntax) error has been detected. If the parser halts
after the detection of the first syntax error the remainder
of the program remains unparsed and the programmer is not
given any information about the rest of the syntax errors.
This means that for each syntax error the programmer must
resubmit his program. Therefore, the parser must find a
way to get out of the state ERROR. There are two actions
the parser can take:

1. Make appropriate changes in the input tape.
2. Make changes in the internal status (pushdown

list) of the DPDA and in the input tape.

Action 1. is error correction and action 2. is
error recovery. In our algorithm both error correction and
error recovery are used. Correction is tried first. If it
does not succeed, we resort to recovery action which is
rather simple-minded but will always succeed.

3.12 Delay in Detecting Errors
The performance of the error correction algorithm

depends very much on how early the error is detected.

40

A delay in the detection of an error may make error correc
tion very difficult, and sometimes even impossible. The
delay in detecting errors is caused by

1. limited left context
2. misinterpretation of the string.

Limited left context: If a language has an LR parser as well
as a precedence parser, the precedence parser is usually
faster than the LR parser. However, the precedence parser
will not detect the errors as early as the LR parser. LR
parsers, in general, detect an error at the earliest possible
opportunity in a left-to-right scan of input string. LL
parsers enjoy the fast speed and share the good error detect
ing capability of LR parsers at the same time. However, not
every deterministic language has a LL grammar, and, in
general, it is often possible to find a more "natural" LR
grammar to describe a programming language and its trans
lation.

Suppose that statement (1) was written when (2)
was intended:

(1) A / B + C ;
(2) A = B + C ;

Assume the language under consideration is a subset of PL/1.*
A LR(1) parser will find the error just after it stacks A
on the pushdown list and scans the symbol /. However,

*PL/1 itself cannot be parsed by a (1,1) precedence parser.
Therefore, a subset must be assumed.

41

A / B + C ;
t tLR(1) parser (1,1) precedence

detects error parser detects
error

a (1,1) precedence parser will not detect the error until
it scans the statement delimiter. A (2,1) precedence parser,
of course, would have detected the error at the same time
LR(1) did. Intuitively, the reason for the inability of
the (1,1) precedence parser to detect the error early is
the lack of sufficient left context. At the time the (1,1)
precedence parser is scanning the symbol / and making a
decision as to what should be done with it, it can look
only at A (which is on the top of the pushdown list).
Therefore, the (1,1) precedence parser cannot distinguish
the two contexts of A / B + C

. . ; X = A / B + C)•••
and A / B + C ;...

In general, suppose

^ ^1 ®2’“ ^n *k tk+1"'" ^

is a right sentential form. is the top symbol on the
pushdown list and t^ is the next input symbol. Let Ŝ ,
i< n, be the head symbol of the handle. A (p,l) precedence
parser is allowed to look at p symbols , 8 ̂ ,
... , 8 ̂ from the top of the pushdown list. If i< n - p + 1,
that is, if the parser is unable to look at the head of the
handle, the parser may not be able to detect if t^ is an
illegal symbol.

42

Now we shall consider the second reason for delay in
the detection of errors. If the head of an erroneous string*
X, by accident,happens to be the head of a correct string y
in the language, the parser may be misled and a delay caused
in detecting the error. Actually, as far as the parser is
concerned, there was no delay, but according to the error
correcting algorithm the string y may not be derivable
from the string x. For example, in statement (3) (in PL/1)

(3) A (B + 1 ;
- t

the earliest place any parser with a left-to-right scanner
can detect the error is the ; (semicolon). Statement (3)
appears to be a head of statements of the form

(4) A (B + 1 .. .) = ... ;

Any statement of the form (4) cannot be derived from the
statement (3) by using the transformation Rule (3.21) (to
be given in Section 3.21). The shortest string of the form
(4) is:

A (B + 1) = 0 ;

and cannot be derived from string (3) using the trans
formation (3.21).

Errors in statements that mislead a left-to-right
parser into believing that the erroneous statement is a
substring of another correct string are not rare. The
following are a few examples of such errors in PL/1
statements:
♦The string x is not all of the string from the beginning
of the input; it is the string of terminals around the point
of detection of the error corresponding to a substructure
(substructure is defined in Section 3.22)

43

Another Possible
Incorrect Statement Intended Statement Interpretation
X, Y, A(0) ; X, Y = A(0) ; X , Y, A(0) = 0 ;
A : B(C + 1) ; A = B(C + 1) ; A:B(C + 1) = 0 ;
A (B + lj A = B + 1 i A (B + 1) = 0 5
declar (A,B) fixed; declare (A,B) fixed; declar (A,B) = fixed;
do i = 0 ; do; i = 0; do i = 0 to 1 ;

3.13 Types of Errors
When the parser enters the state ERROR we know that

a syntax error has been detected. We categorize syntax errors
into two classes;

1. Action error,
2. Reduction error.

In bottom-up parsing, "action error" corresponds to
the case when the top symbol on the pushdown list and the
next input symbol form an illegal pair. In LR(k) tables
and precedence tables we have represented such cases (in
Chapter 2) by a 0 (zero). In top-down parsing "action error"
corresponds to the case when the top of the pushdown list is
a terminal different from the next input symbol.

In bottom-up parsing, "reduction error" means the
tail of the handle is reached but the handle cannot be
successfully reduced to a non-terminal. In top-down
(LL(k)) parsing "reduction error" means that the top of
the pushdown list is a non-terminal A such that FIRSTk(A)
does not contain the string HEADk(T), where T is the
remaining input string.

3.2 CORRECTION OF ERRORS
A parser of a language recognizes correct strings in

that language. An error-correcting parser recognizes

44

the correct strings in the language, and in addition,
recognizes certain strings called correctable strings. A
precise description of correctable strings follows.

3.21 Correctable Strings
Let G = (V,T,P,S) be a deterministic cfg and let D

be a parser for the language L = L(G). A PDA D' is said
to be an error correcting parser for L if D' recognizes
a set L’ such that

1. L’ is a subset of T*
2. L is a subset of L’ , and
3. for string s' in L' there is a corres

ponding string s in L such that s and
s' differ by at most one symbol, or in a
permutation of two adjacent symbols.

The strings s' of L' are called the strings correctable
by D'. When D' is understood, we shall just say s' is
a correctable string. A string s in L that corresponds
to string s' in L' is called a correction of s',
written s = C(s').

Now we shall define the rule by which an incorrect
string w is transformed to a correct string s. It
should be noted that the string w does not consist of
the terminal symbols the programmer wrote, but rather the
tokens corresponding to them. The lexical analyzer converts
the input terminals into tokens and passes them to the
syntactic analyzer. A correctable string w is transformed
to a correct string s by the following rule;

45

Wĵ ,W2,W3,S]̂ ,S2 and S3 are strings of tokens such
that
1) w = and s = s^SgS^ ,

(3.21) 2) = s^ , Wg = Sg and Wg = ab
3) Sg is one of the following;

cab, cb, b or ba
where a, b, and c are tokens.

In the future we shall refer to this rule as Rule (3.21).

3.22 A Model for Error Correction
No correction algorithm can correct all errors without

being prohibitively expensive. Therefore, we do not attempt
to correct all errors. The language and errors are required
to satisfy certain conditions for our algorithm to be effective.

First, it is assumed that we can define a substructure
in the language such that the programs in the language can
be expressed in the form:

$ substructure substructure ... substructure $

where $ indicates the beginning or the end of program. In
languages FORTRAN and BASIC this condition is easily satisfied.
FORTRAN statements and BASIC statements are the required
substructures. In block-structured languages like ALGOL and
PL/1 we must be satisfied with less than ideal conditions.
A substructure in the language is chosen so that;

1. the number of correctable errors is maximized, while
2. the average time spent on each error is minimized.

Block statement, compound statement and simple statement are
possible candidates for the substructure. If the simple

46

statement is chosen as substructure, the errors found while
parsing a simple statement, but not local to the simple
statement, may not be correctable. Among block statement,
compound statement and simple statement the choice of simple
statement will have the most global errors that will be
immune to correction. An example will illustrate the problem.
Suppose a programmer wrote (in PL/1)

if B then
TEMP = X ;
X = Y ;
Y = TEMP ;

end;

when he actually meant to write •

if B then
do;

TEMP = X ;
X = Y ;
Y = TEMP ;

end;

The error is detected when the simple statement "end;" is
being parsed. If the correction is confined to the simple
statement substructure, the error cannot be corrected.
However, if the correction is confined to the compound
statement or block substructure, the amount of time spent
on each error becomes prohibitively large.

Next, the correction strings are obtained by applying
Rule (3.21). This implies that an erroneous string which

47

cannot be transformed to a correct string by Rule (3.21) can
not be corrected. In most compilers the lexical analyzer
removes the spaces between the terminal symbols and passes
the tokens to the syntactic analyzer. Therefore, errors
caused by

1. misplaced space (s), and
2. missing space

are not always correctable by our algorithm. For example, the
string

dec lare A fixed ;
is not correctable, since it is tranformed to the tokens
T*(<identifier>) T(<identifier>) T(<identifier>) T(fixed) T(;)

which cannot be transformed to a correct string of tokens by
Rule (3.21). For the same reason, the string

declareA fixed ;
is not correctable. The lexical analyzer is better suited for
correcting such errors.

3.23 Generating Correction Strings
After detecting the existence of error, the next step in

the error correction algorithm is to generate the correction
strings. Consider the incorrect statement (in PL/1):
(1) A = B C ;
The following are among the correction strings generated by
Rule (3.21);
(2) A = B + C
(3) A = B - C
(4) A = B * C
(5) A = B / C
(6) A = B mod C

* T(symbol) means the token of the "symbol".

48

(7) A = B = C

(8) A = B < C

(9) A = B > c
(10) A = B 1 c

(11) A =. B & c
(12) A = B H c
(13) A = B J
(14) A = C Î

Obviously, all these strings need not be generated.
In other words, there are groups of strings that can be
represented by one string. For example, from (2) and (3)
only (2) need be considered. From (4), (5) and (6) only
(4) can be considered. This introduces the notion of
syntactical equivalence. Two strings of terminals

s ... 8^ and t T^Tg ...

are said to be syntactically equivalent if k = m and the
terminals and T. are syntactically equivalent for each
i. Next, we shall define syntactical equivalence of terminals

Definition: Let G = (V,T,P,S) be a cfg. Two symbols
(terminal or non-terminal) t^ and tg are said to be
syntactically equivalent if two new productions

<NEW>::= t̂
<NEW> : := tg

can be such that:

49

if P’Ç p is the set of productions containing
either t^ or tg or both, then if each
occurrence of t^ and tg is replaced by
<NE\V> then all the productions of P' become
identical.

If t̂ and tg are terminals then <NEW> is called a pseudo
terminal .

In XPL, for example, the terminals *, / and mod
are syntactically equivalent, since the productions

<term >
<term>
<term>

= <term> * <primary>
= <term> / <primary>
= <term> mod <primary>

become identical when *, / and mod are replaced by a
pseudo-terminal. Consequently, strings (4), (5) and (6)
are syntactically equivalent. Similarly, strings (2) and
(3) are equivalent and so are strings (8) and (9). Thus
we can represent strings (2) through (9) by the following
strings;

(2)' A =
(4)' A =
(7)' A =
(8)' A =

Intuitively, strings (10) and (11) appear equivalent. However,
our definition of syntactical equivalence does not make them
syntactically equivalent. Therefore, we need to modify our
definition of syntactical equivalence.

50

Let G = (V,T,P,S) be a cfg. Two symbols and tg
are said to be essentially equivalent if two new productions

<NEW> ;:= t^
<NEW> ; := tg

can be introduced such that:

if P'C p is the set of productions
<N]> : := o(^

‘^ 2

<Nk>

containing either t̂ or tg , then after replacing each
occurrence of t^ and tg in each by <NEV/> and
performing the reductions (if possible) c<̂ to JS>̂ ,

where is a string such that,

the strings yûg . . . become identical. For example,
in XPL we can define

<NEW>
<NEW>
<NEW>

= I

= &
= *

and change the productions (See Appendix B)

51

<expression> ;:= <expression> <logical factor>
<logical factor > ;;= <logical factor> <logical secondary).
<term> : := <term> * <primary)

to

^expression) ::= ^expression) <NEW> ^logical factor)
<logical factor) ;;= <logical factor) <NEW) ^logical secondary)
<term) ;;= <term> <NEW) (primary)

Then the three right parts.

(expression) (NEW) (logical factor)
(logical factor) (NEW) (logical secondary)
(term) (NEW) (primary)

reduce to

(expression) .

This makes the strings (1)', (10) and (11) equivalent.
Also, strings (2)' and (4)' can be made equivalent by the
new definition. However, the terminal "+” and the terminal

are not always equivalent. For XPL (as some other
programming languages) uses + (and -) for two purposes,
viz. unary + and binary +. One solution is to use a
distinct notation, say for unary +. The other solution
is to distinguish them by means of context. For example,
+ in the left context of (arithmetic expression) , (term) ,
(primary) , (variable) , (identifier) , and (constant) is
binary; but + in the left context of (, IF, =, TO
and BY is unary. The same problem arises with the terminal
ft —tf

52

The symbol "=" in the left context of ; < variable) is the
assignment operator. In all other legal left contexts it is
the relational operator.

Now we shall consider the actual problem of generating
the correction strings. Let t^t^ ... t^ be a string of
terminals containing an error such that

substructure C(tgt^ ... t̂)

where C(tQ,...,t^) is a correction string of the string
tgt^...t^. Let t̂ , k^n, be the next input symbol at the
time the error was detected. We shall call t^ the position
being corrected. When after an error is detected

(1) *0^1" *^k‘•'̂ n
t

the error flag is set and the parser enters the error-correction
mode. Then the correction strings of string (1) are generated.
According to Rule (2.31) the following is the set of correc
tion strings:

Strings obtained by inserting a terminal s in front of t̂ .

(2) * 0 * 1 ' • *^n

Strings obtained by replacing t^ by a terminal s.

(3) . .tĵ _jStĵ ĵ. . . t^

The string obtained by deleting t̂ .

(4) t ^ t ^ . . . t j ^ _ j t j ^ . . . t j^

53

The string obtained by interchanging the place of tĵ and

(5) t̂ tĵt^

If a language has NT terminals this will generate
2 * NT + 2 correction strings. Testing each one of these
strings by parsing will be time consuming. Therefore, the
following means are used to screen out the obviously ineli
gible or unwanted candidates.

a. If Sj and Sg are two syntactically equivalent
terminals then the two strings

* 0 ^ 1 ' • * ’̂ n *0*1'•'*k+l®2^k'* *^n
formed by substituting s^ and Sg for s in (2) are
syntactically equivalent. Of syntactically equivalent strings
only one needs to be generated. The same argument holds for
the set of strings (3).

b. The string

*0*1'* **k-l®’*k''**n

generated by inserting s* in front of t^ need not be
considered if s’ does not satisfy the (1,1) context, viz.,
(tk_i t^J. For LR, LL and precedence parsers checking of
(1.1) context can be done by a quick look at the parsing
tables. The same argument holds for the strings generated
by replacing t^ by a terminal s^ which has an invalid
(1.1) context.

54

3.24 Testing the Correction Strings
The correction strings that are generated are checked

for

1) syntactic context in the substructure
2) semantic context in the part of the program that

is already parsed.

If the parser announces an error while scanning the terminal
t^ the syntactic context of the error is the string of
terminals (tokens)

such that

substructure:** C(tgt^...t^...t^)

The terminals are already parsed. The terminals
^k+l’'**’^n to be read in advance and stored. The
question arises about how many terminals are to be read in
advance, i.e. what is n? It is assumed that the language
uses one or more terminals to delimit the substructure; t^
should be the first such terminal that is beyond t̂ . It
is possible that the programmer has omitted a delimiter or
misplaced one. If a delimiter is omitted the terminals up
to the next delimiter are read in advance. If omission of
the delimiter is the only error among the terminals tQ,t^,...,t^
then it will be corrected. A misplaced delimiter t^ will
cause the failure of the reduction

substructure=3^ C(tgt^...t^).

55

For example, in our implementation of XPL and "THEN"
are considered to be "statement" delimiters. In the statement

if X —»Y then
X = 0 ;

the error (a missing =, < or >) is detected while scanning the
symbol "Y". The isolated string is: " if X-iY then ". In
the statement

X = Y Y = TEMP ;
t .

the semicolon is missing. Therefore, the symbols up to the
next semicolon are read in advance. In the following example

declare (A,B;C) fixed;
a semicolon is written in place of a comma. The isolated string
is "declare (A,B;" which cannot be corrected by our algorithm.

A correction string CCt^.-.t^) is said to satisfy the
syntactic context of the substructure if the parsing of the
string C(tQ...t^) continues without any syntactic errors
resulting during the reduction

substructure ==t * C (t ^ t . t^) ,
and at the end of reductions the contents of the pushdown list
indicates the correct parsing of a substructure.

The LL and LR parsers can access all the contents of the
pushdown list. Hence, the parsing up to the delimiter t^ with
out any syntactic error is sufficient to ensure the proper con
figuration of the pushdown list. However, this is not the case
with precedence parsers. For example, consider the incorrect
statement (in XPL)

56

if B the X = B ;

("the” is a mispunch for "then".) One of the correction strings
is

if B the: X = B ;

A parser using a (1,1) precedence relation will parse this
without noticing the syntactic error. The top of the push
down list will have the form:

<expression>
<replace>
<variable>

<label definition)
^expression)

if

One more reduction will reduce it to

<statement list>
<expression>

if

Since the parser checks only the top symbol, it will not notice
the presence of "if" and (expression). Therefore, special
checking is necessary to ensure the correct configuration of
the pushdown list.

The compiler designer, at the time of implementing our
algorithm forms a list of symbols which can appear on the
parse stack after the complete parsing of a string satisfying
the syntax of "statement" (substructure). For XPL this is:

57

, <statement> , <statement list > ,
<basic statement > , <if statement),

< group head) , <procedure head) and

If the parsing of a correction string C(tj^...t^) continues
without any syntactic errors then it undergoes the special
checking which consists of examining the parse stack for any
symbols not listed above. If a symbol not listed above is
found on the parse stack the correction string C(tQ...t^) is
considered to have failed the syntactic context of the sub
structure and is rejected.

After a correction string satisfies the syntactic
context in the substructure, the next step is to check its
semantic compatibility with the part of the program already
compiled.

Semantic compatibility is checked by calling the semantic
analyzer. The semantic analyzer may find that the semantic
information of the correction string C(tgt^...t^) creates con
flicts with the semantic table constructed from the semantic
analysis of the part of the program already compiled. In this
case the correction string C(tQ...t^) is rejected. For example,
consider the incorrect statement (in XPL)

A : B (C + 1) + 1 ;

A correction string for this is

A : B (C + 1) = 1 ;

This satisfies the syntactic context, but if A was declared to

58

be any identifier type other than label, the semantic analyzer
announces error and the correction string is rejected. In such
a case the alternate correction string

A = B (C + 1) + 1 ;

is accepted.

3.25 Correction Decision
Each generated correction string that satisfies the

syntactic context and the semantic context is saved for the
final selection. After all the correction strings are generated
and tested the number of correction strings that are saved is
computed. This number is used to make the decision about the
next step to be taken in the error correction process. The
following are the possibilities-.

1. several correction strings saved,
2. exactly one correction string saved,
3. no correction strings saved.

We shall discuss how the decisions are made in these cases
taking them one by one.

1. Several correction strings: When there is more
than one correction string satisfying the syntactic and
semantic context a scheme is needed to find the "best" one.
The best criteria for such a scheme are language dependent.
The following is a scheme used in our implementation for XPL
which can be modified for other languages by including
additional language-dependent criteria.

a. If the correction string ‘̂ k-l*k''’̂ n obtained
by interchanging t^ t^^^ is one of the
correction strings saved, choose it..

59

b. Otherwise, if the correction string *'^k-l^k+1'**̂ n
(obtained by deleting t^) is one of the correction
strings saved, choose it.

c. Otherwise, if there is any correction string of the
form tQ...t^_^s't^...t^ (obtained by inserting a
terminal s' in front of t̂ J, choose it.

d. Otherwise, choose the first one.

The justification for the above criteria is intuition
and our experience with error correction for XPL. If the
interchange of two consecutive symbols is one of the correc
tions saved, then most likely it is the "best" correction.
The choice among b, c and d, however, was not so definite.
There were examples suggesting the highest priority for the
selection criterion b, but there were also examples that
suggested the contrary.

2. Exactly one correction string: In this case the
programmer is informed about the correction action taken, the
error flag is reset and the parser enters the standard mode.

In either of the above two cases the correction, string
finally selected is very unlikely to be an undesirable one since
it undergoes stringent tests.

3. ^ correction strings : This can happen for two
reasons. First, the point of error may be left of the point
of error detection. In this case, the parser is moved one
step backwards (to be explained in the next section) and the
error correction process is tried one symbol left of the
position where error correction was being attempted previously.

60

This is repeated until one or more correction strings are
found, or the backward move reaches the left end of the sub
structure, Second, if the left end of the substructure is
reached the error correction algorithm has failed to correct
the error(s) found in the substructure. A recovery action is
taken, viz. delete the string

comprising the substructure where the error was being corrected,
O'This includes the terminals t„. ,t^ that were scanned before

the error was detected but after the delimiter for the pre
vious substructure was scanned. Also, it includes the terminals

. .,t. that were scanned in advance where n"k+1’
next delimiter

n is the

3.26 Backing Up the Parser
We shall explain the backward move of the parser by an

example. Consider the language L given by LL(1) grammar G;

1. S ;= $ V R $
2. R ; = =E
3. E := T E’
4. E’ : : = e
5. E’ : : = + T E ’
6 . T . ;= F T'
7. T’ : : = e
8. T' : : = * F T '
9. F := V
A. F ;= (E)
B. V := I V’
C. V : ; = e
D. V ;:= (E)

61

The language given in Section 2.43 is a subset of L.
The Grammar G given above contains a few more productions in
addition to the productions of the grammar of Section 2.43.

Suppose that we are parsing the string (scanning it
from left to right)

(1) $ 1 (1 + 1 $
Î

One method of correcting the error is the following. Top-down
parsing is goal-oriented in the sense that the parser, on its
pushdown list, has information about what it is expecting
rather than what it has already parsed. With the information
on the pushdown list and the parsing tables one can decide
(for details see Irons, 1963) what strings of terminals are
expected at the point of error. Hence, at the point of error
the string of unwanted symbols can be replaced by the (shortest)
correct string. With this method, a correction for the above
string is

$ 1 (1 + 1 .) = I. $
- — string inserted

As far as the parser is concerned, this is a "natural"
correction. However, it is not very likely that a human
(assuming he knows the language well enough) omits three
symbols at once. It is more probable that a human omits or
misplaces one symbol rather than a string of several symbols.
Therefore, we consider

$ 1 = 1 + 1 $

as a "natural" correction of string (1).

62

In order to find this correction, the parser will have to
move backwards. In the next chapter the backward move is illus
trated by an example using bottom-up parsing. Therefore, to
avoid duplication, an example in top-down parsing is used here.

The parsing of the string $ I (-t- I $ is given by the
following sequence of moves.*

Ml [I(I+I$, VR$, l] h- [l(I+I$, IV’R$, IB]
M2 [(1+1$, V’R$, IB]
M3 H [(1+1$, (E)R$, IBD]
M4 [1+1$, E)R$, IBD]
M5 H- [1+1$, TE’)R$, 1BD3]
MB k- [1+1$, FT'E')R$, 1BD36]
M7 h- [1+1$, VT’E')R$, 1BD369]
M8 H [1+1$, IV'T’E’)R$, 1BD369B3
M9 [+1$, V'T'E’)R$, 1BD369B]
MIO I— [+1$, T’E')R$, 1BD369BC]
Mil H [+1$, E')R$, 1BD369BC7]
M12 H [+1$, +TE’)R$, 1BD369BC75]
MIS A (1$, TE’)R$, 1BD369BC75]
M14 H [1$, ET’E’)R$, 1BD369BC756]

* A configuration of the parser is [w,ex,7T] where w is the
remainder of the input string, cn is the contents of the pushdown
list, and 7T is the sequence of production numbers used in the
parsing. A move in which a terminal t is popped is indicated by

Ctw, t (X ,7T] Aiw, , 7T] .
An e-move is indicated by

[w, Zof ,71] h* Cw, V , 7Tp3
where Z is a non-terminal, and fis a string of terminals and
non-terminals.

63

Ml5 {— [1$, VT'E')R$, 1BD369BC7569]
M16 \— [l$, IV'T'E')R$, 1BD369BC7569B3
Ml 7 ^ [•$, V'T'E')R$, 1BD369BC7569BJ
M18 y— [$,)R$, 1BD369BC7569BC74 3

At this point the parser announces an action error because
the terminal $ on the input does not match the symbol) on
the pushdown list.

An attempt to
a) insert a terminal in front of the symbol $
b) replace the symbol $ by a terminal
c) delete the symbol $

will not correct the error.

Therefore, we back up the parser to the step when it was
about to scan the previous terminal, viz. I, in the input string.
M13 is the required step. At M13, the parser observes the input
symbol I the first time, and moves accordingly. Instead, we

a) insert a terminal before I
b) replace I by another terminal,
c) delete I,
d) interchange I and $,

and allow the parser to continue. None of these attempts allow
the parser to continue without an error. Therefore, we back
up the parser again. This time, we set the parser back at M9.
Again, our attempts at correction fail. The process of backing
up continues and finally we arrive at move M2. Here, the
correction

replace the input symbol (by the symbol =

64

succeeds and the parser continues as given below.

, M2' [I = 1+1$, IV’R$, IB] ^ 1=1+1, V’R$, IB]
M3’ H [=1+1$,■ R$, IBC]
M4’ J— (=1+1$, =E$, 1BC2]
M5’ [l+I$, E$, 1BC2]
M6’ Y - [1+1$, TE'$, 1 BC23]
M7' I— [l+I$, FT'E'$, 1BC236]
M8’ I- (l+I$, VT'E’4, 1BC2369]
M9’ [l+I$, IV’T'E’$, 1BC2369B]
MIO’ ^ [+1$, V’T'E’$, 1BC2369B]
Mil’ y- [+1$, T’E ’$, 1BC2369BC]
M12’ |_ [+1$, E’$, 1BC2369BC]
M13’)__ [+1$, +TE’$, 1BC2369BC5]
M14’ y- [1$, TE’$, 1BC2369BC5]
M15’ y— [1$, FT’E ’$, 1BC2369BC56]
M16’ y— [1$, VT’E’$, 1BC2369BC569]
M17’ y- [1$, IV’T’E’$, 1BC2369BC569B)
M18’ y- [$, V’T’E'$, 1BC2369BC569B]
M19’ I— [$, $, 1BC2369BC569BC74]

CHAPTER FOUR
IMPLEMENTATION OF THE ALGORITHM

This chapter describes an implementation of the error
correction altorithm given in the last chapter. The basic
principle of the algorithm can be implemented in almost any
kind of deterministic parser. After the parser detects the
existence of an error a string of terminals around the position
where the existence of the error was detected is isolated.
The string of terminals isolated presumably corresponds to a
substructure (e.g. "statement") in the language. The algorithm
requires that there be at most one error in this string. Also,
for the algorithm to successfully correct the input string,
it must differ from the intended string by one terminal symbol
or by a single permutation of two adjacent terminals. How
ever, the success of the algorithm does not depend on how
soon the error is detected, as long as it is detected in the
same substructure as it appears. In Chapter Two it was
explained why precedence parsers do not, in general, detect
errors as early as the LR and LL parsers. Since our algorithm
does not rely on the early error detection capability of the
parser, it can be implemented with a precedence parser without
difficulty. In fact, the compiler used in our implementation
parses bottom-up using precedence relations.

The language chosen for implementing our algorithm
is XPL. XPL is a subset of PL/1 introduced by McKeeman et
al. (1970). An XPL compiler for the implementation was built

65

66

from SKELETON. SKELETON is a protocompiler* (ibid.) which is
briefly described in the next section. Dection and location
of errors are discussed in Section 4.2. Section 4.3 describes
generation of the correction strings. Testing of these
correction strings is given in Section 4.4. After testing
all the correction strings a decision is made about the con
clusion of the correction process for the particular error;
Section 4.5 considers such correction decisions. If none
of the correction strings generated passes the tests (of
Section 4.4) the parser is backed up (unless the process of
backing up has reached the left end of the substructure in
which case the algorithm announces its failure to correct
the error detected in that substructure) and the correction
process is repeated. Section 4.6 explains the process of
backing up the parser. Section 4.8 includes some language-
dependent heuristics to aid error correction.

4.1 SKELETON, A PROTOCOMPILER

SKELETON of the XPL system was used in building the
compiler of our implementation. A detailed description of
the XPL system is given in McKeeman et al. (1970). Only
a brief account will be included here.

The first step in using SKELETON to generate a syntax-
directed compiler is to give a BNF grammar of the language
for which the compiler is to be written as input to a pro
gram called ANALYZER. The productions of the grammar are
written in the usual BNF — non-terminals enclosed in angular
brackets (•< ,>) and terminals without the angular brackets.

*A protocompiler is a model compiler on the basis of which
one can build his own compiler.

67

BNF grammar ANALYZER Parsing

After checking for ambiguities, ANALYZER computes the
tables that constitute Cl and C2 decision functions (see
Section 2.45 for definitions of Cl and C2 functions). Cl
tables represent a (2,1) precedence matrix. For a grammar
with N symbols, the (2,1) precedence matrix is of the size
N X N X N. For grammars of practical programming languages,
N >100, and the size of the precedence matrix becomes imprac-
tically large. ANALYZER uses the following scheme to economize
the storage of the precedence matrix.

A (2,1) precedence matrix indicates which one of the
three relations , or null exists between the string of
two symbols from the top of the parse stack and the next
input symbol. In other words, it determines the precedence
relation from (2,1) context. Most of the time a (1,1)
context is sufficient to decide which one of the three
relations holds. Therefore, a 2-dimensional matrix will do
for most of the cases. In a few cases, (1,1) context is not
sufficient to decide if or 5» holds. For such cases,
ANALYZER enters a conflict symbol, 0 , say, in the 2-dimen
sional matrix. Corresponding to each entry in the matrix
there will be two sets of triples, one for the relation
and the other for the ^ relation. ANALYZER produces only
those triples for which holds. Absence of a triple indicates
a relation. The triples corresponding to all the #
entries are listed in an array Cl TRIPLES.

68

After ANALYZER produces the parsing tables, the next
step is to construct the remaining parts of the compiler.
A compiler generated from SKELETON has the form:

SYNTACTIC
ROUTINES

SEMANTIC
ROUTINES

SCANNER

TABLES
from

ANALYZER

The syntactic analysis routines are provided by
SKELETON. The SCANNER and SEMANTIC ANALYZER are to be pro
vided by the compiler writer.

4.2 DETECTION AND LOCATION OF ERRORS
Figure 4.1 is an overview of bottom-up parsing. Entrance

to the boxes ERR0R_1 or ERR0R_2 indicates an error in the
input string. In either case we say that the parser has
detected the existence of an error. Entrance to the box
ERR0R_1 corresponds to having a null relation in the Cl
matrix. The parser indicates this by printing out the message:

69

IJ

Stack
the
T0KJ5N

Illegal
TO;

NO

Y33

Reduce
Call Semantic
Routine ,

Figure h , l A precedence parser.

70

DECLARE (I,J,) FIXED ;
***ERROR, ILLEGAL SYMBOL PAIR: ,) .

In Chapter Three we referred to this type of error as action
error ; it corresponds to type 0 error in Leinius (1970) .

Entrance to box ERR0R_2 in Figure 4.1 indicates that
the tail of the handle has been found because there is a
"2" in the Cl matrix indicating a reduction needs to be done
on a top portion of the parse stack, but no production can
be found to satisfy the following conditions;

1) its right side matches a top portion of the parse
stack,

2) it satisfies the left and the right context.

In Chapter Two this was called reduction error. Our reduction
error corresponds to type 1, type 2 and type 3 errors of
Leinius. The following is an example of reduction error.

A + AA(C + 1 ;
***ERROR, NO PRODUCTION APPLICABLE
PARTIAL PARSE TO THIS POINT IS:

^statement list>-<variable>-/replace>^ subscript head>.

It is important to note that the place where the parser
announces an error is not necessarily where the error-causing
symbol is. Rather it is the place where the parser noticed
for the first time the existence of an incorrect input string.
The location of the error-causing symbol depends on how the
incorrect string is interpreted. For example, for the
statement

A : B(C + 1) + 1 ;
**+ERROR, NO PRODUCTION APPLICABLE.
PARTIAL PARSE TO THIS POINT IS:

^statement list> <label definition> <expression> .

71

The location of the error-causing symbol depends on which
correction string is considered as the intended string.
Syntactically the two corrections cannot be distinguished.
However, the latter may change the semantics of the identifier
A.

The detection of the existence of error is automatic
but determining the location of the error is not. The error-
causing symbol is not finally located until correction for
the incorrect string is decided. At first, it may appear
that the symbol that causes the parser to announce the error
must be the error-causing symbol. Unfortunately, this is not
so. The error-causing symbol may not be detected until many
symbols beyond the error are scanned. The delay in the detec
tion of error may be due to;

1) insufficient right context (misinterpretation of
the string),

2) insufficient left context.

Since these two causes of delay have been discussed in the
last chapter we shall not repeat them here.

As a result of the delay in detecting errors the parser
quite often announces the error a few symbols after the appear
ance of the error-causing symbol. Therefore, to locate the
error-causing symbol the parser may have to be backed up
several symbols. Also, another thing must be noted. When
the parser announces the error, it indicates if it is an
action error or reduction error. However, the information
about the type of error does not indicate anything regarding
the location of the error. Hence the process of error cor
rection does not distinguish the two types of errors. The
type of error is indicated for the benefit of the programmer
only.

72

4.3 GENERATING CORRECTION STRINGS
Once the parser recognizes the presence of an error,

a marker is placed under the next input symbol and the pro
grammer is notified of the error. For example,

DECLARE (I,J,) FIXED ;
***ERROR, ILLEGAL SYMBOL PAIR ,) . ?

LAST PREVIOUS ERROR WAS DETECTED ON LINE 0 ***
PARTIAL PARSE TO THIS POINT IS:

^statement list> DECLARE <identifier list> <identifier>
(Procedure ERROR is responsible for writing this message.)

t f t t))At this point the tokens of "DECLARE", "(" , "I" ,
"J" , and "," have been stored in a stack called BUFFOR,
and its pointer, BUF_PTR has the value 5* pointing is to the
top element on BUFFOR. There is another stack, BCD_BUF,
to store the EBCDIC form of these terminals. After the error
message is printed, the procedure STORE_INFORMATION is called
to store the following information.

1. The card number (LINE_NO) where the error was
recognized,

2. The parse stack (SAVE_STACK) and its pointer
(SAVE_SP),

3. The token (SAVE_TOKEN) and the EBCDIC code (SAVE_BCD)
of the next input symbol,

4. The token (TOKEN_IN_ADVANCE) and EBCDIC (BCD_IN_
ADVANCE) of the symbols up to and including the
symbol after the next delimiter (";" or "THEN")
are read in advance. The pointer MARK points to
the top of the stacks** TOKEN_IN_ADVANCE and
BCD IN ADVANCE.

*The count starts at 0.
♦*T0KEN_IN_ADVANCE and BCD_IN_ADVANCE are actually so called
decques. These elements will be added and deleted from the
top and the bottom as well.

73

In other words, STORE_INFORMATION has isolated the string
tgi^.-.t^t^. t̂ is the first symbol after the previous
delimiter. After the completion of the parsing of symbols
up to a delimiter the PARSEr reinitializes BUF_PTR to 0.
Therefore, at the time of detection of error, BUF_PTR = k-1,
and BUFFOR contains t^ is saved in SAVE_TOKEN.
TOKEN IN ADVANCE contains the tokens 'of t, t ,— — K+i. n
^n+1 ^n+l is the symbol after the delimiter t̂ .
Then the procedure TRY__AGAIN is called to generate the cor
rection strings. Next, we shall describe how TRY_AGAIN
controls the generation of the correction strings one by one

The following sets of strings are to be generated:

(4.32) tg. . (inserting r in front of t̂)
(4.33) tg. .**k-l^^k+l-•'̂ n' (replacing t^ by r)
(4.34) tg. . -tk-l^k+l"•-tn' (deleting tĵ)
(4.35) tg. . (permuting t^ and t^^^)

Using the notation of Rule (3.21), if string (4.31) is written
as w = w^WgWg then the strings in (4.32), (4.33), (4.34),
or (4.34) are given by w^s^w^ where Sgis

rtk*k+l' “■tk+l- *k+l *k+l‘k
respectively. In other words, the string (of tokens) to be
generated is

W 1 S 2 W 3 .

The tokens of w^ are already scanned and parsed. That much
of the correction string w^SgWg need not be generated. The
remaining part, viz. SgW^ is generated by presenting the tokens
one by one. The token t^^^ and the tokens in Wg are all
in TOKEN IN ADVANCE, and the token t, is saved in SAVE TOKEN.

— — K —

TRY_AGAIN controls the generation of SgWg in the following
way;

74

a) for Sg -
it sets TOKEN - r and SUCCESS_PTR = 0

b) for sg - rt^^j
It sets TOKEN = r and SUCCESS_PTR - 1

c) for Sg - t^+i,
it sets TOKEN - t.^^ and SUCCESS_PTR - 2 ;

d) for Sg =
it sets TOKEN = ^^+1’ SUCCESS_PTR = 1 and interchanges
the values of SAVE_TOKEN and TOKEN_IN_ADVANCE(0).

TOKEN is the current token presented for the construction
of the correction string, and SUCCESS_PTR controls the genera
tion of successive tokens by the algorithm (SCOOP_OR_SCAN) ;

if SUCCESS_PTR = 0 then
else TOKEN = SAVE_TOKEN;

TOKEN = TOKEN_IN_ADVANCE (SUCCESS_PTR-1);
SUCCESS PTR = SUCCESS PTR + 1;

There are 42 terminals in XPL. For each terminal r,
there is a string of the form (4.32). Hence, there will be
42 strings of the form(4.32). Not all of these are actually
generated:

a) Among syntactically equivalent strings only one
is generated,

b) those strings for which the terminal r has an
invalid (1,1) context (which is indicated by 0
in the Cl matrix) need not be generated.

The same argument holds for the strings of the form (4.33).
The procedure NEXT_LEGAL__TOKEN is responsible for skipping
over the unwanted tokens.

75

4.4 TESTING THE CORRECTION STRING
In the last section, the correction string to be

generated was denoted by w^SgW^. The part is already
scanned and parsed. The remaining string SgW^ parsed
(by the procedure PARSE) as it is generated. While s^w^
is being parsed one of two things may happen;

1. PARSE announces a syntactic error,
2. end of SgW^ is reached without any error.

In the former case, the correction string w^SgW^ is said
to have failed the right-context check and is rejected.
TRY_AGAIN is called to present the next correction string.
In the latter case, the correction string has satisfied
the right-context check and the procedure CONTEXT_CHECK is
called to perform the next two tests;

a) left-context check,
b) semantics check on the string

First, CONTEXT_CHECK announces that the string w^s^w^
has satisfied the right context. Consider the example

(4.40) IF B THE X = 0 ; ...
***ERROR, ILLEGAL SYMBOL PAIR <identifier> <identifier> .
PARTIAL PARSE TO THIS POINT IS; ^statement list> IF < identifier>.

One of the correction strings is IF B ; X = 0 ; (obtained
by replacing "THE" by ":"). This string parses without
causing any syntactic error. Therefore, CONTEXT_CHECK
announces;

 ; IS BEING CONSIDERED AS A REPLACEMENT FOR "THE".

76

We shall define formally what is meant by "a correction
string fails the left-context check," Let tQ...t^...t^ be
an incorrect string, and let w^WgWg be a correction string
where

*1 “ =2 is
ilk^k+l' ilk+l’ *k+l *k+l*k '

The correction string w^s^w^ is said to fail the left-context
check.

To see if the correction string w^SgWg satisfies the
left-context check a (k,l) precedence matrix, where k = ,
is required. Strictly speaking, Cl is just a (1,1) precedence
matrix. Therefore, when k>l the Cl matrix cannot check the
left context of a correction string. The following scheme
is used to check the left context. The right context is
checked automatically during the continued parsing of the part
SgWg. Therefore a correction string undergoes the right-
context check first; then in case it does satisfy the right-
context check it undergoes the left-context check. Satis
faction of the right-context check implies that the correction
was completely parsed and the parser detected no error during
this time. If the correction string satisfies the syntax of
substructure, the top of the parse stack should reflect this.
Therefore, the left-context check involves examining the
portion of the parse stack that corresponds to the parsing
of the most recent substructure. This raises the question:
what is the syntax of substructure? We shall answer this by
considering the following example.

A string between two consecutive delimiters* (including
the right delimiter) corresponds to a substructure. In the
following segment of an XPL program each line contains a
substructure.

*8ee footnote on the next page,

77

(1) DECLARE (A,B) FIXED ;
(2) IF A = B THEN
(3) A = 0 ;
(4) ELSE B = 0 ;
(5) DO I = 1 TO 5 ;
(6) A = 1 ;
(7) END ;
(8) XX ; PROCEDURE ;
(9) RETURN ;
(10) END XX ;

When string (1) is completely parsed it reduces to <statement
list> . The last three reduction steps are;

^declaration statement)» <Cbasic statement)
^statement>
<statement list) .

String (2) reduces to <if clause > . String (3) reduces
to < basic statement) . However, in the right context of
"ELSE" the non-terminal < basic statement) will not be
reduced to ^statement) . The partial parse stack to this
point has the form: '

< basic statement)
<if clause)

^statement list)

♦The syntactic unit in XPL that naturally corresponds to the
substructure described in Section 3.22 is ^statement) . A

^statement) is either a <basic statement) or an <if state
ment) . Either of these two are delimited by a In
an <if statement) what follows "THEN" is a ^statement)
in itself. By considering "THEN" also as a delimiter we
can increase the number of errors that are correctable by
our algorithm. Thus, we choose and "THEN" as the two
delimiters in XPL. In case the delimiter is absent, the
presence of: "IF", "DO", "DECLARE" etc. indicates the
beginning of the next substructure.

78

String (4) will first reduce to ELSE < statement "> and then

<^basic statement> ELSE <Cstatement>
<true part> < statement> .

Then,

<if clause> true part> cfstatement >
< if statement^
<Tstatement > .

Finally, the partial parse stack will have the form:

^statement list> .

String (5) reduces to ĉ group head> . String (6) first
reduces to <”statement> then

group head> <statement> ==̂ ^group head> .

String (7) first reduces to <'ending> ; then,

<Tgroup head> <'ending> ; ==# <’group> ;
===̂ <’basic statement^
==̂ statement^ .

Once again, the partial parse stack becomes ^statement list>
String (8) reduces to ^procedure head> . String (9)
reduces to < statement list> and the partial parse stack
assumes the form:

«(statement list>
^procedure head>
<'statement list> ,

The "END XX" of string (10) first reduces to <ending> then.

79

^procedure headXstatement list> -<rendingj>
==̂ ^'procedure definition^ .

Finally, <'procedure definition> ;
==̂ <basic statement>
==̂ <statement>

and the partial parse stack becomes

^statement list)> .

The only time a substructure does not reduce to <statement>
and then to statement list > is when it is a part of a
compound statement. The following are the compound statements
in XPL:

<if statement>
<group>

^procedure definition^;

Since the above example considers each of these compound
statements we have exhausted the different ways a substructure
can be reduced. Therefore we can conclude that a substructure
reduces to one of the following non-terminals:

<statement list>, <basic statement> ,
<if clause > , <Tgroup head> or ^procedure head > .

In other words, the syntax of substructure is given by

substructure ::= <statement list>
I < basic statement^
I < if clause>
I < group head>
I ^procedure head)

80

Therefore, the testing of the so called left-context is
performed by a check of the parse stack for any symbols not
mentioned above. In case a symbol not mentioned above is
found on the parse stack, the correction string has failed
the left-context check and is therefore rejected. For
example, the correction string (4.41) generated to correct
the string (4.40)

lil L ; = 0 ;
left context | right context

terminal for
replacement

causes the parse stack configuration to be

^statement list>
IF

^statement list>

Since "IF” is not one of the symbols listed above, string
(4,41) fails left-context check.

4.41 Semantic Check
In case a correction string satisfies the left-context

check it undergoes semantic analysis. The semantics for our
XPL compiler was borrowed from the XCOM compiler for XPL
(McKeeman et al., 1970), with the following differences;

1) Our compiler does not produce any machine code,
2) XCOM does not distinguish between subscripted

and unsubscripted identifiers. The flag ARRAY
TYPE was added to make this distinction possible.

The semantics of our compiler, like the semantics of compilers
of most programming languages, requires the following:

81

1) Each label referenced must actually appear as the
label of an appropriate statement in the program.

2) No identifier can be declared more than once.
3) All identifiers except labels must be declared

before use.
4) The arguments of a function call must be compatible

both in number and in attributes with the definition
of the function.

Failure to comply with any of the requirements listed above
results in a semantic error. While in the standard mode,
the compiler attempts to resolve the semantic error. In
other words, if a substructure contains one or more semantic
errors but no syntactic errors, an attempt is made to resolve
the error. For example,

1) if an identifier is used without declaration,
the default type, viz. fixed type is assumed, or

2) if an identifier is declared twice, the second
declaration is ignored.

A semantic error detected during error correction mode
may be due to the programmer or it may be introduced by the
correction string that is being tested for semantic context
check. In either case, a semantic error detected during the
error correction mode causes the value of the switch SEMANTICS
to be false. If at the end of the semantic analysis of a
correction string the switch SEMANTICS is false, then the
correction string has failed the semantics check and therefore
rejected. This, of course, implies that

semantic errors committed in a substructure by the
programmer in addition to a syntactic error in the
same substructure will inhibit the correction of
the syntactic error.

82

If a correction string satisfies the semantics check,
it is saved (by SAVE_CORRECTION).

4.5 CORRECTION DECISION
After all the correction strings are tested for a)

right-context check, b) left-context check, and c) semantics
check a decision is made if the error correction process for
the particular error being corrected should be concluded.
The decision depends on the number of correction strings that
where saved after all the tests. The following three are
possible;

1. several correction strings were saved,
2. exactly one string was saved,
3. no strings were saved.

All these cases were treated in the last chapter. It was
mentioned under case 3 that if no correction strings were
saved and if the left end of the substructure was not reached
the parser must be moved one position to the left and the
process of error correction repeated. In the next section
we shall illustrate the backward movement of the parser of
our implementation.

4.6 BACKING UP THE PARSER
Consider the segment

(4.61) AA(1) = B(C + 1 ; A

(Assume that the statement DECLARE AA(4) FIXED, (A,B,C)
FIXED has appeared previously.) The parser detects the error
while scanning the symbol and writes the message

83

***ERROR, NO PRODUCTION APPLICABLE.
PARTIAL PARSE TO THIS POINT IS;

^statement list> <variable> <replace> <subscript head> <expression>.
At this point BUFFOR contains the tokens of the following
symbols:

(4.62) AA(1) = B(C + 1

and BUF_PTR = 9 (the count starts at 0). STORE_INFORMATION
saves the token of ";" in SAVE_TOKEN and saves itself
in SAVE_BCD. Since the existence of the error was detected
at the end of the substructure there is only one symbol,
viz., "A" to be read in advance. Therefore, TOKEN_IN_ADVANCE(0)
= token of identifier > , and MARK = 0.

TRY_AGAIN is called to generate all the correction
strings. The following corrections satisfy the right
context:

(1) AA(1) = B(C + 1) ; (Insert)
(2) AA(1) = B(C + 1 THEN ; (Insert "THEN"
(3) AA(1) = B(C + 1 THEN (Replace ";" by "THEN"

Since B is not an array, correction string (1) does not satisfy
the semantic context and is therefore rejected. (2) and (3)
are also rejected because they both fail to satisfy the left
context check. Thus, no correction strings are saved. The
message:

...NO CORRECTIONS ON THE PRESENT POSITION WERE SUCCESSFUL
THEREFORE, THE NEXT POSITION ON THE LEFT WILL BE TRIED,

is written to indicate that the backward movement of the parser
is in process.

84

At this point the partial parse stack is:

<expression>
^subscript head>

(4.63) <replace>
<variable>

<statement list>

If the top symbol of the parse stack were a terminal, backing
up the parser by one step would simply mean taking the symbol
on the top of the parse stack and adding it to the head of
the input string (where it originally came from). However,
the top symbol on the parse is not always a terminal. For
example, in the present case, the symbol on the top of the
parse stack is the non-terminal expression which is the
reduction of the terminals

C + 1 .

Therefore backing up the parser implies undoing this reduction,
or "unreducing". In other words, the partial parse stack
should be changed to __

1
+
C

^subscript head>
<replace>
<variable>

^statement list>

Now the top symbol on the parse stack is a terminal. The
backward movement of the parser by one symbol is completed
if the symbol on the top of the parse stack is moved to the
head of the input string.

85

The most difficult part of moving the parser backwards
is "unreducing" the non-terminal on the top of the parse
stack. For a bottom-up left-to-right parser "unreducing"
amounts to top-down right-to-left parsing. For example,
in our case, the problem was to find how much of BUFFOR,
viz. ,

AA(1) = B (C + 1

from right-to-left was reduced to the non-terminal ^expression/
Given <expression> , finding out that

<expression>==^ * C + 1

by scanning BUFFOR) amounts to parsing top-down right-to-left.
Therefore, "unreducing" would call for a new parser and a
new parsing table. This can be avoided by using the following
method.

Instead of asking how much on the top of BUFFOR
corresponds to the symbol on the top of the parse stack,
we ask how much on the top of the parse stack corresponds to
all of BUFFOR. BUFFOR consists of the terminals since the
end of the last substructure. In Section 4.5, it was
mentioned that the end of the parsing of a substructure is
indicated by the presence of one or more of the following
symbols (and no others).

<statement list> , <basic statements ,
< group head > , /procedure head > and <if clause>.

Therefore, all the symbols on the parse stack corres
ponding to the terminals in BUFFOR are identified they can
be deleted and the parsing of the present substructure can
be repeated by taking the terminals from (the bottom of)
BUFFOR rather than the input string. Also, the parsing can
be stopped when the top of BUFFOR is reached and the top

86

terminal of BUFFOR can be added to the head of the input
string. For example, in the stack configuration (4.63)
the symbols

[̂['expressions , ^subscript head> , <^replaceS and <[variable>

correspond to the terminal string (4.62) which is the present
contents of BUFFOR. The procedure UNSTACK removes the above
symbols from the parse stack leaving only

<statement list>.

Then UNSTACK sets the switch

RESTACKING = true,
BUF_PTR_LMT = BUF_PTR - 1, and

(In our present case, BUF_PTR = 9, therefore, BUF_PTR_LMT = 8)
BUF_PTR = 0.

Now, we proceed with reparsing of the segment (4.61) starting
from the symbol "AA". As the parsing continues BUF_PTR is
incremented by 1 and the next token is taken from BUFFOR.
When

BUF_PTR = BUF_PTR_LMT (8, in the present case)

the process of restacking stops and the procedure RESTACK sets

RESTACKING = false.

By this time the partial parse stack has the form;

+
C

^subscript head>
<[replace>
<variable>

^statement list>.

87

The terminal "1" is on the top of the stack BUFFOR. To
complete the process of backing the parser the terminal ”1"
has to be pushed back on the input stack. In error correction
mode TOKEN_IN_ADVANCE plays the role of the input stack.
Therefore the terminal ”1" is pushed on the stack TOKEN_IN_
ADVANCE (by RESTACK).

4.7 THE PROCEDURES
The procedures constituting the error correction algo

rithm have been referrenced in Section 4.2 through 4.6. An
alphabetic list of these procedures is given in table 4.1. A
flow chart of PARSE, the procedure central to all the procedures,
is given in Figure 4.2. Figure 4.3 gives an overview of the
correction algorithm.

4.8 HEURISTICS
We shall conclude this chapter with a few heuristic aids

for correcting errors in XPL language.

First, we shall consider the case of an unmatched
END ;

statement. There is no local error in the above statement. The
global error is caused by one of the following two cases:

1. the <group head > of a cfgroup> statement is
missing or incorrectly specified,

2. the <(procedure head> of a ^[procedure definition>
statement is missing or incorrectly specified.

In either case, the best solution is to delete the statement
"END;", since it is too late to go back and correct the < group
head> or the ^procedure head>. Our error correction algorithm
would find the following corrections;

88

; END (interchanging "END" and ";")
; (deleting "END")
RETURN ; (replacing "END" by "RETURN")

Instead, in our implementation an ad hoc procedure, UNMATCHED_
END, is given control and the standard error correction is
bypassed.

The next case will be illustrated by examples. Consider
the incorrect statement;

A B + 1 ;
The automatic correction algorithm.will find the following
corrections:

A = B + 1 ; (inserting "=" before B)
A = + 1 ; (replacing B by "=")

Obviously, the former correction is more "natural" than the
latter. Also, for the incorrect statement:

A = B IF A < 0 ...
the corrections selected by the automatic correction algorithm
are:

A = B ; IF A < 0 ... (inserting before "IF")
A = B ; A < 0 ... (replacing "IF" by ";")

In this case, the latter correction will introduce an error in
the next statement.

In our implementation the problem is solved in the
following way. For an incorrect string

*0*1 " • *k •*• *n
if the correction string

*0*1 *•• ®’*k *•• *n

89

(obtained by inserting a token s’ before t̂) is saved as one
of the successful corrections, then the correction string

t^t^ ...

(obtained by replacing tĵ by the token s’) is not generated,

TABLE 4.1

Procedure Called by Calls Function
ABORT_
STATEMENT
CONTEXT_
CHECK

CORRECTION
DECISION
PARSE

CORRECTION_ PARSE,
DECISION CON TEXT CHECK

CORRECTION_DECISION
TRY_AGAIN, REPORT_
CORRECTION, SAVE_
CORRECTION.
WRITE_MESSAGE,
UNSTACK, ABORT_
STATEMENT,
GET CARD,

Aborts the offending statement,

Checks: 1) right context, 2) left
context and 3) semantic context. If
a correction satisfies all three then
calls SAVE_CORRECTION to save it.
1) If no corrections backs up the parser
by one symbol. If the backing up has
reached the beginning of the state
ment, declares the failure of the
error correction scheme and deletes
the symbols up to the next semi
colon. 2) If any corrections reports
them. In case of multiple correc
tions, indicates which correction
was chosen.

ERROR

GET CARD

PARSE,
SYNTHESIZE

SCAN, CHAR

STACK DUMP Prints error message. For syntactic
error writes out the contents of
the parse stack.
Reads source cards. During standard
mode lists the cards as they are
read, but during error-correction
mode, the listing is delayed
until the correction algorithm has
finished trying to correct the error.

Modified from the procedure (with the same name) in XCOM.

91

Procedure Called by Calls Funct ion:
NEXT LEGAL TRY AGAIN
TOKEN

Among syntactically equivalent
terminals considers only one.
Also, skips over the terminals
with invalid context.

PARSE MAIN_
PROCEDURE

STACKING, REDUCE,
ERROR, RESTACK
CONTEXTCHECK,
CORRECTION_DECISION,
STORE_INFORMATION,
SCOOP_OR_SCAN,
TRY AGAIN.

Decides which move: stack, reduce,
accept or error. If stack, stacks
the token; if reduce, calls reduce;
if accept returns to MAIN_PROC;
if error, enters error correction
made.

REDUCE PARSE

REPORT_ CONTEXT
CORRECTION CHECK
RESTACK

RESTORE
STACKS

PARSE

TRY_AGAIN,
ABORT STATEMENT

PR_OK,
SYNTHESIZE

TRY AGAIN

If no production applicable returns
the value false. Otherwise, calls
SYNTHESIZE to perform the semantic
analysis for the production.
Prints out the current correction
that has satisfied the right context.
Restacks the parse stack to the
position one symbol before the pre
vious position of correction.
Restores the parser as it was
before the latest correction was
tried.

SAVE_ CONTEXT_CHECK
CORRECTION

If a correction satisfies the right
context, and the semantic context
SAVE CORRECTION is called to save it.

Modified from the procedure (with the same name) in XCOM.

92

Procedure Called by Calls Function
SCOOP_OR
SCAN

PARSE SCAN In standard mode calls SCAN. In
error correction mode gets the
next TOKEN IN ADVANCE.

STACKING PARSE

STORE_ PARSE
INFORMATION
SYNTHESIZE^ REDUCE

SCAN

ENTER,
ID LOCKUP,

Returns the value Q, in case of
illegal symbol pair;
1, if they symbol is to be stacked;
2, if a reduction is to be performed.
Sets the error flag. Reads the
symbols in advance for right context.
Performs semantic analysis (does
not produce any code). In case of
a semantic error, attempts to resolve
it and in error correction mode turns
the switch SEMANTICS to false.

TRY_AGAIN PARSE, RESTACK NEXT_LEGAL_TOKEN,
CONTEXT CHECK RESTORE STACKS

UNMATCHED_ PARSE
END

Arranges to:
1) insert a legal token,
2) replace by a legal token,
3) delete,
4) interchange

Deletes (ad noc) unmatched "end;"
statement.

Modified from the procedure (with the same name) in XCOM.

93

Procedure Called by Calls Function
UNSTACK CORRECTION_

DECISION
Peels off the parse stack to the place
corresponding to the end of the
previous statement. BUF_PTR_LMT,
the pointer indicating the position
to be corrected is set one position
back.

WRITE_
MESSAGE

CORRECTION
DECISION

The valid corrections, if any, are
printed.

Modified from the procedure (with the same name) in XCOM.

Cut TüK:j;i
of next
ynbol,

Stack [11 ena.l ̂üï.acKii:,':
d o c is lo iT ^ lm K ^ j Return,

f iiT m rm iit i i iT r T ifH 'i~

;̂07IL:

/ Reduce

CO:T?:ÜAT_SYNTHRSJZ;; s

Call
CGNTHIXI
CH3CK

Unmatched
A A T ' r P4 t /v./Ai..:, B

L

'p9ëm90i A

Abort I Call
ïï’ î ' T X » 8 C O R R E C T I O N '

g DECISION.

Figure 4.2 Flow Chart of PARSF,

Hall COITTEXnd of
statement ?

btacK
overflow iiet’orn

f NO
 .-.™"'Y
Error
return. AijijE etc, uet

the next TOKEN
ind BOD fron
the Birfors.

RESTAOK.

V NO

Set END CE
true;

and BOD on the
Buffors,
Call SCOOP OH
SCAN.

Figure 4.2 (continued)

Parse

Generate
a CS,

Right
context OK

?

Left :
oontext 0"9

Semantic
i.nalys is

3

■'ac;: no
the narser.

Save
the CS.nerat

SSVSRAL Choose the
"best" one.uctur savedreach

Announce
the CS
selected.

Abort tne
substructure

CS = correction string
Figure 4.3

CHAPTER FIVE
CONCLUSION

5.1 SIGNIFICANCE OF THIS RESEARCH
In this thesis we have presented an algorithm for cor

recting syntactic errors. The significance of this research
consists of the following results:

5.11 Locating the Error
High-quality error correction must not insist on making

a correction where the existence of an error is detected but
rather must solve the problem of actually finding the error.
There are two reasons why the existence of error sometimes
is not detected at the occurrence of the error: 1) the nature
of the error, 2) the nature of the parser. There are parsers
which are quite efficient in parsing correct programs but do
not detect the existence of errors as early as certain other
parsers. The error-correction algorithm to be used in such
parsers will be of little use if it insists on making a
correction where the existence of error was detected.

5.12 Testing the Corrections
A correction candidate must undergo through testing before

it is selected as the final correction. A hasty and lenient test
could select a candidate that may allow the parsing to continue
correctly for a short time but later cause spurious errors.
Therefore, a correction candidate must be tested in a context
large enough to ensure the "goodness" of the candidate but not

97

98

so large as to make the test very time-consuming. Most of the
existing error-correction algorithms use only syntactic context
for testing the correction candidates. In our algorithm the
candidates are also tested in semantic context.

5.2 THE PERFORMANCE OF THE IMPLEMENTATION
The EXPL compiler is running with no major bugs. Many

sample EPL programs have been run, typical examples of which
are given in Appendix D. One program was run both under EXPL
and the PL/1 F compilers to demonstrate how the PL/1 F compiler
fails to correct errors which are not detected at the point
of their occurrence. EXPL is capable of correcting such
errors by moving to the left of the point where the error was
detected.

5.21 Correction Speed
Since the vast variety of possible errors precludes

definition of anything like a "typical" or "average" error,
it is difficult to extract from our results answers to questions
such as "how long does EXPL take to correct an error". The
answers depend very much on the particular error. In order
to get a rough estimate of the correction speed of EXPL, an
XPL program with 30 statements was run several times, each
time with a different number of "bugs". All times are relative
to the IBM system 360/50.

With no errors the compilation time was 3.23 seconds.
Figure 5.1 shows compilation time vs. number of errors per 30
cards.

The curve is almost linear and rises monotonically and
not sharply.

99

m
vcoo0)w
c•H
0}
a+>
a
0
•H4->cSr-4•Ha
1u

6

5

4

3

1 32 4 5 6
Errors /30 cards

FIGURE 5.1

The correction speed can be improved by about 100 per
cent by the following modification. At present the algorithm
does not stop after it finds a correction that satisfies all
the tests. It finds all the corrections. If there are several
alternates the algorithm is provided with a criterion by which
it selects the "best" correction. For example, the criteria
given in Section 3.22 select the "best" correction according
to the priority;

1) interchange the error-causing symbol and the one to
its right (highest priority),

2) delete the error-causing symbol,
3) replace the error-causing symbol by another symbol,
4) insert a symbol in front of the error-causing symbol.

100

Instead of finding all the corrections and then selecting the
best one vie can arrange the finding of the corrections accord
ing to the given criterion. With this modification the algorithm
can stop after finding the first correction since it is the
"best" one. This, on the average, will save about 50 percent
of the time (which amounts to doubling the speed). The only
disadvantage is that the user will not be able to see all the
possible corrections.

5.3 EXTENSIONS
Our algorithm could be made more effective by adding

several additional features. In our algorithm the scanner
does not participate in correcting errors. The correction
algorithm works on the tokens of the symbols rather than
the symbols themselves. This makes the errors involving a
missing space or a misplaced space immune to our algorithm.
As indicated in Chapter Three, statements like

DEC LARE A FIXED ;
IPX = Y THEN Y = 0 ;

are not correctable by our algorithm. To be able to correct
such errors we may need to:

1) Concatenate terminals to form one or more new terminals,
e.g., DEC and LARE concatenated should give DECLARE.

2) A substring of a terminal may be recognized as a
differnet terminal e.g., in "IFX", "IF" is a terminal
in itself.

This can be done by involving the scanner in the cor
rection process. The question then arises: how can the scanner
know when and where to make a correction? To provide the
scanner with its own error detection facility would slow down

l o i

the error correction process. Therefore the scanner should
only convert terminal symbols into tokens as usual and retain
approximately one record of the latest input in a buffer. The
syntactic analyzer can carry out the error correction procedure
with the following modification. At a given point in the sub
structure if no correction is available before the point to be
corrected is moved to the left the scanner should be called
to attempt to correct the error at that point. The scanner
can take certain actions. For example:

1) concatenate the last two terminal symbols if the
cancatenated symbol is a legal terminal in the
language

2) Split the terminal symbol into two terminal symbols.

In case the scanner is successful in getting new terminal
symbol(s) from the old one(s) the syntactic analyzer can repeat
the error correction process with the new tokens. Otherwise,
the point to be corrected will be moved to the left as usual.

In the following (PL/1) statement:
...IFX = Y THEN ...

the existence of error is detected at the symbol "THEN" by
the syntactic analyzer. At this point no corrections are
available. The actions of the scanner will also fail. Finally,
when the point to be corrected is shifted to the symbol "IFX"
the scanner will be able to correct the error.

We have demonstrated that EXPL can correct errors better
than other compilers that were available for our testing. We
do not, however, claim that our error correction algorithm
is the best possible one. Also, our algorithm is not yet
perfected; there is scope for improving our algorithm which we
mentioned in this and in the last chapter.

BIBLIOGRAPHY

Aho, A.V. and J.D. (1972)
The Theory of Parsing, Translation, and Compiling.
Volume I & II
Prentice-Hall, Englewood Cliffs, N.J.

Aho, A.V., P.J. Denning, and J.D. Ullman (1972)
Weak and mixed strategy precedence parsing.
Journal of ACM Vol. 19, No. 2, pp 225-243

Abrahams, P.W. (1972)
A syntax-directed parser for Recalcitrant Grammars.
International Journal of Computer Mathematics
Vol. 3, No. 2, September '72.

Beals, A.J. (1969)
The generation of a deterministic parsing algorithm.
Report No. 304, Department of Computer Science,
University of Illinois, Urbana.

Beals, A.J., J.E. Lafrance, and R.S. Northcote (1969)
The automatic generation of Floyd production syntactic
analyzers. Report No. 350. Department of Computer
Science, University of Illinois, Urbana.

Bell, J.R. (1969)
A new method for determining linear precedence functions
for precedence grammars.
Communications of ACM Vol. 12, No. 10, pp 316-333.

Burgess, C.J. (1972)
Compile-time error diagnostics in syntax-directed
compilers.
The Computer Journal Vol. 15, No. 4, Nov. '72.

Brooker, R.A., and D. Morris (1963)
The compiler-compiler.
Annual Review in Automatic Programming, Vol. 3.
Pergamon, Elmsford, N.Y‘. , pp 229-275

Cheatham, T.E. (1965)
The TGS-II translator-generator system.
Proc. IFIP Congress 65. Spartan, N.Y., pp 592-593

Cheatham, T.E. (1967)
The Theory and Construction of Compilers (2nd ed.)
Computer Associates, Inc., Wakefield, Mass.

Cheatham, T.E., and K. Sattley (1964)
Syntax-directed compiling.
Proc. AFIPS Spring Joint Computer Conference,
Vol. 25. Spartan, New York, pp 31-57

Cocke, J., and J.T. Schwartz (1970)
Programming Languages and Their Compilers (2nd ed.)
Courant Institute of Mathematical Sciences, New York
University, N.Y.

Conway, R.W., et al. (1970)
PL/C. A high performance subset of PL/I.
Technical Report 70-55. Department of Computer Science,
Cornell University, Ithaca, N.Y.

DeRemer, F.L. (1968)
On the generation of parsers for BNF grammars; an algorithm.
Report No. 276. Department of Computer Science,
University of Illinois, Urbana.

Earley, J. (1966)
Generating a recognizer for a BNF grammar.
Computation Center Report, Carnegie-Mellon University,
Pittsburgh.

Feldman, J.A. (1966)
A formal semantics for computer languages and its application
in a compiler-compiler.
Communications of ACM Vol. 9, No. 1, pp 3-9

Fischer, M.J. (1969)
Some properties of precedence languages.
Proc. ACM Symposium on Theory of Computing, pp 181-190

Feldman, J.A., and D. Cries (1968)
Translator writing systems.
Communications of ACM Vol. 11, No. 2, pp 77-113

Floyd, R.Nv. (1963)
Syntactic analysis and operator precedence.
Journal of ^ Vol. 10, 316-333

Floyd, R.W. (1964a)
Bounded context syntactic analysis.
Communications of ACM Vol. 7, No. 2, pp 62-67

Floyd, R.W. (1964b)
The syntax of programming languages — a survey.
IEEE Trans. on Electronic Computers EC-13, No. 4,
pp 346-353

Floyd, R.W. (1967)
Assigning meanings to programs.
Proc. Symposia in Applied Mathematics, Vol 19.
American Mathematical Society, Providence.

Foster, P.M. (1970)
Automatic syntax analysis.
American Elsevier, New York.

Freeman, D.N. (1964)
Error correction in CORC, the Cornell computing language.
Proc. AFIPS Fall Joint Computer Converence, Vol. 26.
Spartan, New York, pp 15-34

Graham, S.L. (1970)
Extended precedence languages, bounded right context
languages and deterministic languages.
IEEE Conference Record of 11th Annual Symposium on.
Swithching Theory and Automata Theory, pp 175-180.

Gray, J.N. (1969)
Single pass precedence analysis.
IEEE Conference Record of 10th Annual Symposium on
Swithching Theory and Automata Theory, pp 106-117.

Gries, D. (1971)
Compiler Construction for Digital Computers.
Wiley, New York.

Griffiths, T.V., and S.R. Petrick (1965)
On the relative efficiencies of context-free grammar
recognizers.
Communications of ACM Vol. 8, No. 5, pp 289-300

Hopcroft, J.E., and J.D. Ullman (1969)
Formal languages and their relations to automata.
Addison-Wiley, Reading, Mass.

Hopgood, F.R.A. (1969)
Compiling Techniques. American Alsevier, New York.

Irons, E.T. (1961)
A syntax-directed compiler for ALGOL 60.
Comm. ACM 4:1. pp 51-55.

Irons, E.T. (1963a)
An errer correcting parse algorightm.
Communications ACM 6:11, ; ; 669-673.

Irons, E.T. (1963b)
The structure and use of the syntax-directed compiler.
Annual Review in Automatic Programming, Vol. 3.
Pergamon, Elmsford, N.Y., pp. 207-227.

James, E.B. and D.P. Partridge (1973)
Adaptive correction of program statements.
Communications ACM 16;1

James, Lewis R. (1972)
Technical Report CSRG 13.
A syntax-directec error recovery method. University of Toronto

Knuth, D.E. (1965)
On the translation of languages from left to right.
Information and Control 8:6, pp 607-639.

Knuth, D.E. (1968b)
Semantics of context-free languages. Math. Systems Theory
2:2, ;; 127 - 146. Also see Math. Systems Theory 5:1,
pp 95-96.

LaFrance, J. (1970)
Optimization of error recovery in syntax-directed parsing
algorithms. ACM SIGPLAN Notices 5:12. pp 2-17.

Lalonde, V/.R., E.S. Lee, and J.J. Horning (1971)
An LALR(k) parser generator.
Proc. IFIF Congress 71, TA-3. North-Holland, Amsterdam,
pp 153-157.

Lee, J.A.N. (1967)
Anatomy of ^ Compiler. Van Nostrand Reinhold, New York.

Lévy, J.P. (1971)
Automatic correction of syntax errors in pargramming
languages. Cornell University

Lewis, P.M., II, and D.J. Rosenkrantz (1971)
An ALGOL compiler designed using automata theory.
Proc. Symposium on Computers and Automata, Microwave
Research Institute Symposia Series, Vol. 21. Polytechnic
Institute of Brooklyn., New York, pp 75-88.

Lewis, P.M., II, and R.E. Stearns (1968)
Syntax-directed transduction. J. ACM 15:3, ;; 464-488.

Lucas, P., and K, Walk (1969)
On the formal description of PL/I.
Annual Review in Automatic Programming, Vol. 6, No. 3.
Pergamon, Elmsford, N.Y., pp 105-182.

McClure, R.M. (1965)
TMG-a syntax-directed compiler.
Proc. ACM National Conference, Vol. 20. pp 262-274.

McClure, R.M. (1972)
An appraisal of compiler technology
AFIPS conference proceedings, Vol. 40 pp.1-9.

McKeeman, W.M., J.J. Horning, and D.B. Wortman (1970)
A Compiler Generator. Prentice-Hall, Englewood Cliffs, N.J.

Morgan, J.L. (1970)
Spelling correction in systems programs.
Communications ACM 13:2, pp 90-93.

Peterson, Thomas G. (1972)
Syntax error detection, correction and recovery parsers.
Stevens Institute of Technology

Rich, L.V. (1972)
Error detection, analysis and recovery in XPL base compilers
Government Reports Announce, Vol. 72, No. 9, May 10,
pp 105, Navel Post Graduate School, Monterey, California

Rosenkrantz, D.J., and R.E. Stearns (1970)
Properties of deterministic top-down grammars.
Information and Control 17:3, ; ; 226-256,

Rustin, R. ed. (1970)
Dubugging techniques in large systems
Courant computer science symposium 1.

Stearns, R.E., and P.M. Lewis, II (9169)
Property grammars and table machines.
Information and Control 14:6, pp 524-549.

Williams, J.H. (1970)
Technical Report No. 58
Bounded context parsable grammars. University of Wisconsin

Wirth, N. (1968)
PL 360-a programming language for the 360 computers.
J. ^ 15;1, ; ; 37-34.

Wirth, N., and H. Weber (1966)
EULER-a generalization of ALGOL and its formal definition,
Parts 1 and 2, Communications ACM 9:1-2, pp 13-23, and
89-99.

APPENDIX A
A BNF GRAMMAR FOR XPL

1 .
2.
3.
4.
5.
6 .
7.
8 .
9.

10 .
1 1 .
12 .
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

^program> ;
^statement

<basic statement^

;= ^statement list) EOF
list) ::=< statement)

I <statement list><statement>
<statement> :;= <basic statement)

\ <if statement)
;:= <assignment> ;

I <group> ;
I ^procedure definition) ;
< return statement) ;
< call statement) ;
<go to statement) ;
«^declaration statement) ;

/ if statement)
J
I<if clause) : ; =

< true part) :;=

I
\
\
\
\
I label definition basic
<if clause) <statement>

<if clause)<true partXstatement)
«^label definitionxif statement)
IF ̂ expression) THEN

< basic statement) ELSE

statement

<• group) ; : = <group head)<’ending>
< group head) : : = DO;

I DO 4step definition);
I DO <while clausc>;
i DO case selector^;
I <'group head)<statement>

<step definition): : =<variable)<replace><expressionXiteration
control)

< iteration control):;= TO <expression)
I TO <expression) BY <expression>

awhile clause)
crease selector)
< procedure
<■ procedure

^procedure
< parameter
^parameter
pending) ; : =

<label

WHILE <expression>
CASE ^expression)

definition): :=fprocedure headxstatement 1 istXending)
head) : ;= procedure name);

I <:procedure nameX'type);
\ ^procedure name)<parameter list);
I ^procedure namexparameter list)<type);

< label definition) PROCEDURE
^parameter head)«ridentifier>)(
<parameter head)<identifier>.,

END
1 END <identifier)
1 <label definitionXending)

definition): := <identifier);

name)
list)
head)

1

44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.

<return statement> : ;= RETURN
I RETURN ̂ expression/»
CALL <variable>

: = ̂ go to><identifier>
<̂ call statement^ ;
</go to statement^
<fgo to> ; ; = GO TO

1 GOTO
^declaration statement>; ; = DECLARE^declaration element'̂

I ^declaration statementXdeclaration element)
^declaration element)» ;; = <type declaration)

I <r ident if ier) LITERALLY<str ing>
<[type declaration) :: = ^identifier specification)<type>

1 Abound head)<:nuraber>)<type>
I <type declarationXinitial list>

<type) FIXED
I CHARACTER
I LABEL
Î <bit beadXnumber))

dbit head) ; ; = BIT (
<bound head) ;:= <identifier specification)(
^identifier specification) ^identifier)

I ^identifier list><’identifier>)
<fidentifier list) ;:= (

I ^identifier listX'identifier>,
^initial list) ::= ^initial head><rconstant>)
^initial head) ::= INITIAL

I ^initial head) <fconstant>,
assignment) : := < variable><replace><expression)

I <left part)/assignment)
< replace) ; := =
<fleft part) ;: = ^variable),
^expression) ::= <Tlogical factor)

I expression)t<logica 1 factor)
<logical factor) ::=<logical secondary)

I -^logical factor) & ^logical secondary)
<logical secondary) :;= ^logical primary)

I -i<logical primary)
^logical primary) ;:= <string expression)

1 <string expression)<relation><stringXexpression)
<relation')

I

I

<

>=
n<
>

<string expression) ^arithmetic expression)
1 <string expression><arithmetic expression)

^arithmetic expression) ; ;= <term>
I ^arithmetic expression) + <^term>
I ^arithmetic expression) - <term>
1 + <term)
I -•Cerm)

97. <'term> <̂ priinary>
98. I <term> * <primary>
99. I <term> / <primary>
100. 1 <^term> MOD <:̂ primary>
101. <^primary> :; = <̂ coiistant>
102. I <variable>
103. 1 (<expi’ession>)
104. <constant> :;=^string>
105. 1 <nuniber>
106. <variable> : ; = <^identifiex’>
107. I <subscript head><'expression>)
108. ^subscript head> : := <identifier> (
109. I ^subscript head><'expression>

APPENDIX B
LIST OF IMPORTANT PROCEDURES IN EXPL

:Naxoi"ivoai ixaw uNa
/* Q3isnvHX3 Hoavas aivoioNi oi */ :iN Naniaa

/* 0^ > xaoMi'Adi 31 i m oû ao »/ îqnj
tx3QNi~Aai Naniaa

N3H1 0=*-aiyiN 31
îxaüNi Aa i=xaoNi i s v i

Î0N3
i(JN3

i { Z*3iIW)lHS=3lIü
:Z61 3 3il8=310IN

:i+iaiHS=iaiHS
ÎÜÙ

iONa
io=iaiHS

t|3Nn~lD)31AB=3iia
t (1 •3Nn~To>aiS9ns=3Nn to

iO Q
N3H1 t=iaiHS 31

:xaoNi ISVI - xaoNi“Aai oi i=i ua
:t+X30NI"Aai = X30NI"Aai N3H1

tt=X3üNI Aai I EE=X30N1 Adi I SZ=X3QN1 Abl \ ail303=X30Nl Adi 31
asia :9t=xaoNi'Aai N3Hi 9=X3ü n i“i s v i ai
asia t£Z=x3ûNi*Aai n 3h i tz=xaoNi Aai ai

:z=xaoMi A d i
N3H1 t=X3QNI~Aai 3 0>irtl“aid 30 8 3l

ÎI+XaûNl~Aai=X3QNl Abi
/♦ isaa 3H1 aaAo dixs qnv 3a i iviNasaadaa 3hi

asn SN3X01 iNaivAinoa o h o v i n a s onhowv */ îz-i n >x 3üni Aai aiiHM üû
/* iNawaovidaa ao NoiiaasNi

aoa Ni oasn aa oi loawAS ixaw 3hi ao Naxoi a Hi aNikaaiao */
îoaxia aanoaoobd :va>i3i“ivoai ixan

/***/
/********** **********/
/********** N3XÜ1 1V031 1X3N **********/
/********** **********/
/***/

t s x o v i s ' a a o i s a a owa
:o=a id ssaoons

iON3
l(l)%0VlS"3AVS = (I)X0Vi$ aSbVd

tdS 01 Z=i ÜÜ
iaid~3Avs=bid ana

ÎQ08 3AVS=00a
tN3%0l"3AVS=NaX01

tdS 3AVS=dS
/* aa103130

svM boaaa 3hi n3h m s v m ii sv aasava 3h i ao snivis ani aaoisaa */
taanoaoobd : s x o v i s 'a a o is a a

/***/
/********** **********/
/ * * * * * * * * * * s x 3 v is "a a o is a a * * * * * * * * * * /
/********** **********/
/***/

/***/
/********** **********/
/********** TR_AGAIN **********/
/********** **********/
/***/

TPY.AGAIN:
PROCEDURE; /* INITIATE THE GENERATION OF THE NEXT CORRECTION

STRING */
IF 5TACK_MESSEC_UP THEN

00;
CALL RESTORE_STACKS;
STACK_MESSED_UP=FALSE;
SEMANTIC S = TRUE;

END;

DC FCREVEP;

IP -.INSERTEC THFN
DO;

IF NEXT_LEGAL_T0KEN<NT-1 THEN
DO; /* MAKE THE INSERTION */

SUCCESS_PTR=0;
TOKEN = TR Y_INDEX;
BCD=V (TRY_ INDEX I ;
RETURN;

END;
ELSE /* RE-INTITIALIZE cQR REPLACEMENT */
DO;

IF MARK<0 THEN
CO;

FINISHED_TRYING=TRUE;
RETURN ;

END;
INSERTED = TRUE ;
SHIFTED;
LAST_IN0EX=-1;
TRY_INOEX=-l;
C1_LINE=C1(PARSE_STACK(SP)) ;
61 TE=BYTE(CI_LINE);

END;
END;

ELSE
DO;

IF -REPLACED THEN
DO;

IF NEXT_LEGAL_T0KEN<NT-1 THEN
DO;

IF INSERTI0NS>0 THEN
d o ; /* IF A TOKEN WAS A SUCCESSFUL INSERTION

DO NOT TRY IT FOR REPLACEMENT */
I=INSERTI0NS-1;
DO WHILE TRY_INDEX-=INSERT_TOKEN(I) & I>=0;

1=1- 1;
END;

END;
ELSE i=-l;
IF K O THEN

DO;
SUCCESS_PTR=l;
TOKEN=TRY_INDEX;
8CD=V(TRY_INDEXJ;
RETURN;

END;
END;

ELSE
DO;

REPLACED=TRUE;
SHIFT=0;
LAST_INDEX=-1;
TRY_INDEX=-l;
Cl_L INE=Cl(PARSE_STACKt SPH ;
BITF=BYTE(C1_LINE);

END;
ENC;

ELSE
DO ;

IF ^DELETED THEN
DO;

DELETED = TRUE ;
SUCCESS_PTR=2;
TOKEN=TOKEN_IM.AOVANCE(0);
BCD=BCD_IN_ADVANCE{C) ;
RETURN;

END;
ELSE

on ;
IF -.INTERCHANGED THEN

DO; /* INTERCHANGE THE SYMBOLS */
INTERCHANGED=TRUE;
SIJCCESS_PTR=l;
TEMP=SAVE_ TOKEN;
SAVE_T0KEN=T0KEN_lN_ADVANCE(0) ;
TOKEN_IN_ADVANCE(0)=TEMP;
t q k e n= s a v e_t o k e n ;
TEMP_BCD=SAVE_BCD;
SAVE_BCD=BCD_I N_ADVANCE 10) ;
BCD_IN_ADVANCE(0)=TEMP_BCD;
3CD-SAVE_3C0;
RETURN;

END;
ELSE

DO; /* CHANGE THEM BACK THE WAY THEY WERE */
TEMP=SAVE_TOKEN;
SAVE_T0KFN=T0KEN_IN_ADVANCE(O);
TOKEN_IN_ADVANCE(0)=TEMP;
FINISHED_TPY ING=TRUE;
TEMP_8C0=SAVE_BC0;
SAVE_BCD=BCD_IN_ADVANCE(0) ;
RC0_IN_ADVANCE(0)=TEMP_BCD;
RETURN;

END;
END;

END;
END;

END; /* OF CO FOREVER*/

END TRY_AGAIN;

/********************* **/
/********** **********/
y********** SAVE_CORRECTICN **********/
/********** **********/
/********** ***/

SAVE_CORPECTION:
PROCEDURE;

/* AFTER A CORRECTION THAT ALLOWS THE REQUIRED RIGHT CONTEXT WE STORE
THE PARTIAL PARSE_STACK FOR THAT CORRECTION FOR LATER USE IN CASE WE
DECIDE THAT IT IS THE FINAL CORRECTION «/

IE ^INSERTED THEN
DO; /* RECORD SUCCESSFUL INSERTION */

INSERT_TOKEN(INSERTIONS)=TRY_INOEX;
INSERT ICNS=INSERT IONS+1;

END;

ELSE
IF -^REPLACED THEM

DO; /* RECORD THE SUCCESSFUL REPLACEMENT */
REPLACE_TOKEN(REPLACEMENTSI=TRY_INDEX ;
RFPL ACE MENTS=REPLACE MENTS+1;

END;
ELSE

IF ^INTERCHANGED THEN
/* RECORD THE SUCCESSFUL DELETION */

DO;
DE LET ION=l;

END;
ELSE

IF -.F INISHEO.TRYING THEN
/* RECORD SUCCESSFUL INTERCHANGE */
DO;

INTERCHANGE 5=1;
END;

STMT_PTR=BUF_PTR-1 ;
on 1=0 TO STMT.PTR;

CnPR_STMT(n=BCO_BUFm ;
END;

END SAVE_COPRECTION;

/***/
/********** **********/
/********** WRITE_MESSAGE **********/
/********** **********/
/**************************** ***********************************/

WP TTFLMFSSAGE:
PROCEDURE;

CORRECTIDNS= REPLACEMENTS ♦ DELETION + INSERTIONS + INTERCHANGES;

IF CDRRECTICNS=0 THEN
RETURN;

ELSE IF CCRPECTI0NS=1 THEN

DO; /*** UNIQUE CORRECTION ***/
IF INSERTI0NS=1 THEN

DO ;
DOUBLE_SPACE;
OUTPUT:'ACTION------ : 'j|V(INSERT.TOKEN(0))|1
• WAS INSERTED BEFORE • I I SAVE.BCO j | • IN LINE NO. • I ! LI NE_NO;
INSERT 10NS=0;

END;

ELSE IF REPLACEMENTS:! THEN
DO;

DOURLE.SPACE;
OUTPUT:'ACTION : '||SAVE_BCO II» WAS REPLACED BY '
1|V(REPLACE_TOKENIO))11' IN LINE NO. »llLINE_NO;
RFPLACEMENTS:0;

END;

ELSE IF DELETION:! THEN
DO;

DOUBLE_SPACE;
OUTPUT:'ACT ION-------: '|)SAVE_BCD I I ' WAS DELETED' I I
' IN LINE NO. »!1LINE_N0;
DELETION=0;

END;

ELSE IF INTERCHANGES:! THEN
DO;

DCUBLE_SPACE;
OUTPUT:'ACTION------ : '||V(TEMP)||' AND • H S AV E_BCD| I
• ARE INTERCHANGED 'II* IN LINE NC.•I ILINE_NO;
INTERCHANGES:0;

END;

END; /*** OF UNIQUE CORRECTION ***/

ELSE /**** IF DELTA > 1 ******/
DT;

OUTPUT:' ************ NO UNIQUE CORRECTION*;

I =0;
IF INTERCHANGE S=1 THEN

DC;
1=1 + 1;
OUTPUT:'CORRECTION NO. » 1 11 1 IX41 I SAVF.BCDI 1• AND •
I |V(T0KEN_IN_ADVANCE(0))l I ' INTERCHANGED*;
INTERCHANGES=0;

END;
IF DELETION=I THEN

DO;
I: l+l;
OUTPUT = *CORRECTION NC. * 1 1 11JX4|ISAVE_BCDlI

• DELETED';
DELETI0N=0;

END;

DO WHILE REPLACEMENTS > 0 ;
1 =1+1 ;
REPLACE MENTS=RFPLACEMENTS-l;
OUTPUT:'CORRECT ION NO. * I I 111X41 I SAVE.BCDI I
' REPLACED BY * I IV(REPLACE_TQKEN(REPLACEMENTS) »;

END;

DO WHILE INSERTIGNS>0;
1= 1 + 1 ;
I NSERT IONS= INSERT IONS-1 ;
OUTPUT='CORRECTION NO. * ||I|IX4I I V (INSERT_TOKEN<
INSERTIONS))! I' INSERTED BEFORE '||SAVE_BCD;

END;

PND; /* OF IF DELTA > 1 */

END WRITF_MESSAGE;

/************************* **************************************/
/♦***♦**♦** **********/
/********** STORE.INFQRMATION **********/
/♦♦♦*****#* **********/
/ * f

STOPF_INFnRMATICN: PROCEDURE; /* SAVE THE PRESENT INPUT SYMBOL AND
READ s y m bols UP TO AND ONE AFTER THE NEAREST DELIMITER */

DECLARE I FIXED;
ATTEMPTED=TRUE; /* ERROR CORRECTION MODE FLAG ON ♦/
L INE_NO=CARD_COUNT ;
SAVE_SP=SP;
SAVE_P TR=BUF_PTR;
SAVE_TOKEN=TOKEN;
SAVE_BCD=BCD;

DO 1=0 TO BUF_PTR;
SAVE_8UF(I)=BUFF0R(I);

END;

DO 1=2 TO Sp;
SAVE_STACK(I)=PARSE_STACK< n ;
END;

i=o;

IF STOPTT (TOKEN) &T0KEN^=SEMIC0L0N THEN
no; /* IN CASE NO SYMBOLS NEED TO BE READ IN ADVANCE */

MARK=-1;
REPLACEO=TRUE;
DELETED=TRUE;

END;
ELSE

DO;
no WHILE ^STOPIT(TOKEN); /* READ UNTIL THE

BEGINNING OF NEXT STATMENT */
CALL s c a n;
TOKEN_IN_ADVANCE(I)=TGKEN;
BCD_IN_ADVANCE(I)=BCD;
MARK=I;
1= 1+ 1 ;

END;

IF TOKEN=SEMICOLCN I BCD='THEN* THEN
00;

CALL SCAN;
TOKEN_IN_ADVANCE(1)=TCKEN;
BCD_IN_ADVANCE(I)=BCD;
MARK=I;

END;
END;

TRY_INDEX=-1;
LAST_INDEX=-l;
SHIFT=0;
C1_LINE=CI (PARSE_STACK(SP));
8ITE=RYTE(C1_LINE);

END STORE_INFORMATION;

îiN3W3iViS iaoav ÜN3
i»3Q0W aaVONVlS NI S3wnS3a DNI$W9d,=4ndinO

:ûN3
t1-dS=dS

:((dS)%3ViS dSdVdlIdÜiS*- 311HM 00
îS»DViS~3yüiS3d 11V3

:3\ii=indino
ti03idüev------ *ll3Nn=3Ml

:0N3
t (n30NVAQV“Nl“QD9| | 1X1 |3NI l=3Nil

t ÛN3
‘.VX=3N11

Î3NÎi=indinu
ÎÜQ

N3H1 08<(3NIl)HiON31 31
i1-xavw üi 0=1 00

1 Q0a~3A VS II IX I I 3NI 1=3N 11
N3Hi Z- < iwl did 3fia 3 1

ti ------N3113V«=3N11
/* lN3d3iViS 9NI0N333Ü 3H1 313130 */ t380033083

:iN3W3iViS"idjav
/***/
/********** **********/
/********** 1N3W31V1S idoav **********/
/****♦***♦♦ **********/
/***/

iXOViSNO 0N3
ÎO=aid~3Q9 3S13
:l-=did 308

N3H1 0>iWl“aid"30 8 31
:(0)803308=N3Xüi

ÎÜN3
:%-dS=dS

t { (dS)X3ViS~3SaVd)Td0iS>- 31IHM 00
i30ai=0NIXDVlS3'd

il-bid~3AVS=iWl aid 308
î ÜN3

t.l03SS3D30S 3a3M NOllISOd lN3S3ad 3H1 NO SNOI 1338803 ON "', = 108100
î.'03181 39 11IM 1331 3H1 NO NOIlISÛd 1X3N 3H1 ‘380383H1 ,=10dl0U

tou
N3H1 II ,0.)31Aa)1081N33 3l

/* 1N3W31V1S 1N3S388 3H1 30 9NIS8Vd 3H1
01 0N10NDdS38803 X3V1S 3S8Vd 3H1 K083 S109WÂS 3H1 IIV 3A0W38 */

Î38033308d :X3W1SN0
/***********♦***/
/***♦♦***♦* **********/
/********** X3V1SN0 **********/
/********** **********/
f ***/

:ONd
Î(U>»3V1S ««ÜD= t IU3V1S IS VI
ill)MDvis~aaoo=(i»i3viS asavd

îdS 01 2=1 00
tdS = dS“iSVl
tdS ddüO=dS

/* N01i33ay03 3Hi üi ONlQdODOV S%3ViS 3dÜiS3d */
ÎUQ

N3Hi 0<SN0!lD3yiî03 3Î
iOü
3S13

ixDViSNn nvD
N3Hi 0=<%ÜVW 3 0=<iwi"%ld"3nw 3 0=SN0Ii33ddOD 31

i30VSS3k 311 «M IIVO

i 3anQ3'J0dd
:N0IS lD30“lMOIlD3aaüD

/***/
/********** **********/
/********** NOISI330“N01 i03aa00 **********/
/********** **********/
/***/

tNCIi03aaü3 iaOd3ü ÜN3
i,333NVH]a31NI 3NI39 3aV «

I|aO0~3AVSII• ÜNV •f |G09~dW3il II '''",=indinO
N3H1 O N U ai“G3HSINI 3*- 31

3S13
i,G3i3iaO 0NI38 SI .||G39“3AVS1|i •••••=iOdinu

N3H1 039NVH3a31NI^ 31
3S13

i038 3AVSIt « a03 » | |
,iN3W33vid3a V sv Q9iai SI . 111X3QNi“AaiJA11 • '"',=indinu

N3H1 033Vld3a^ 3l
3 S13

îG39~3AVS||i aa0339,||
I N O i i a a s N i a o 3 G B i a i 3 N 1 3 9 s i . 11(X 3G N i ~ A a i > a i 11 • • • • . = i n d i n o

N3Hi oaiaasNi- 31
/* 1X31N03 3I13ViNAS

IHOia 3H1 G3I3SUVS SVH H3IHM NÛIi33Wa03 3H1 laOdSa */ Î3dnû33üad
:NGIi33adü3“ia0d3b

/***/
/********** **********/
/********** N3ii33aao3 laodaa **********/
/********** **********/
/*** **** ******/

/* WRITE THE CORRECTED STATEMENT */
LINE=* CORRECTED STATEMENT --- •;
no 1=0 TO STMT_PTR;

IF LENGTHILY NE) > 80 THEN
DO;

OUTPUT=LINE;
LINE=X4:

END;
L TNE=LIME) IXII |CORR_STMT<I) ;

END;
OUTPLT=LINE :

END;
IF CnPRECTI 0NS=0 THEN

CALL AGORT_STATEMENT;

IF MARK<C THEN
DO;

t o k e n =s a v e_t g k e n ;
BCO=SAVE_BCn;

END;
ELSE
DO;

BCO=BCD_IN_ADVANCE(MARK);
TCKEN=TOKEN_IN_ADVANCE(MAPK);

END;

ATTEMPTEC=FALSE;
SPIT_CARD=TRUE;
CALL GET_CAPD;
SPIT_CARC=FALSE;
RUF_PTR=-l;
BUF_PTR_LMT = 0;

END;

/* RFSET THE FLAGS FOR NEXT TIME */
SEM_ANAL=0;
SEM_CHECK=FALSE;
REPLACED: FALSE;
OELETEO=FALSE;
INSERTED=FALSE;
INTERCHANGED: FALSE;
FINISHED_TRYING=FALS E ;

END CORRECT ICN.CECIS ION;

/***/
/********** **********/
/********** UNMATCHEC_END **********/
/********** **********/
/***/

UNN!ATCHED_END:
PROCEDURE;
/* AD HOC c o r r e c t i o n FOR UN MATCHED END : IS TO DELETETE END ; */

ATTEMPTED=TRUE;
CALL SCAN;
3CD_IM_ADVANCE(0)=*EN0*;
BCD_IN_ADVANCE(1)
8CD_IN_ADVANCE(2) = BCD ;
T0KEN_IN_ACVANCE(2)=T0KEN:
MAPK=2;
BUF_PTR_LMT=-2;
3UF_PTR=-l;
CALL COPRECTION_DECISION;

FND UNMATCHED.END;

/***/
/********** **********/
/********** CONTEXT.CHECK **********/
/********** **********/
/***/

CONTEXT.CHECK:
PROCEDURE; /* CHECK IF PARSE STACK HAS PROPER FORM */
IF f i n i s h e d.t r y i n g t h e n

00;
CALL CORRECTION.DECI SION;
r e t u r n;

END;
I = SP;

/* CHECK THE LEFT CONTEXT
on WHTLF ST0P2(PARSE_STACKm) ;

Î =1-1;
END;
IF I-. = D THEN

DO; /* IN CASE LEFT CONTEXT IS NOT SATISFIED */
IF CONTROL!BYTE!'0*)) THEN
00;

CALL REPORT.CORRECTION;
OUTPUT:

». IMPROPER STACK CONFIGURATION- CORRECTION REJECTED';
CALL STACK.DUMP;

END;
IF SFM.CHECK THEN

DO;
SEM_CHECK=FALSE;
mUF_PTR=SAVE_PTR;

END;

IF ATTEMPTED THEN
CALL TRY_AGAIN;

END;
ELSE

IF -.SEH_CHECK THEN
DO; /* IF LEFT CONTEXT IS OK PREPARE FOR SEMANTIC CHECK */

SP=LAST_SP;
DO 1=2 TO SP;

PARSE_STACK(i;=LAST_STACK(I);
END;

IF ATTEMPTED fi CONTROL(BYTE(•0•)) TEEN
CALL REPORT_CORRECTION;

PUF_LMT=BUF_PTR+1 ;
BUFFOR(BUF_LMT)=TOKEN;
RCO_BLF(0UF_LMT)=8CD;
SEM_CEECK=TRUE;
T0KEN=BUFF0R(0);
BCD=BCD_BUFI0);
BUF_PTR=0;
RETURN;

END;
ELSE

DO; /* RETURNED FROM SEMANTIC CHECK */
SEM_ANAL=SEM_ANAL+l;
SEM_CHECK=FALSE;
IF ATTEMPTED THEN

DO ; /* IN ERROR CORRECTION MODE */
IF SEMANTICS THEN

DO;
CALL SAVE.CORRECTION ;
CORR_SP=SP;
DO 1=2 TO SP;

CORR_STACK(I > = P AR SE_S TACK (I);
END;

END;
ELSE
IF CONTROL (BYTE! ' O')) THEN
OUTPUT:
' CORRECTION REJECTED FOR SEMANTIC

BUF_PTR=SAVE_PTR;
CALL Tk Y_AGâ î N î
RETURN;

END;
ELSE

DO; /* IN STANDARD MODE */
SEM_ANAL=0;
TOKEN=0UFFOR(BUF_LMT);
eCC=BCO_BUF(BUF_LMT);
BUF_PTR=-l;
LAST_SP=SP ;
DO 1=2 TO SP;

LAST_STACK(I)=PARSE_STACK(I);
END;

FNC;
END;

END C0NTEXT_CHECK;

/***/
/********** **********/
/********** RESTACK **********/
/********** **********/
/***/

restack:
PROCEDURE; /* RESTACK THE PARSE STACK TO CNE SYMBOL BEFORE LAST TIME */

TF BUF_PTR_LMT>BUF_PTR THEN
DO;

BUF_PTR=8UF_PTR+1;
TQKEN=BUFFQR(BUF_PTR) ;
RETURN;

END;

SAVE_PTR=BUF_PTR;
SAVE_SP=SP;
DO 1=2 TO SP;

SAVF_STACK(I)=PARSE_STACK(I);
END;

mark=mark+i;
DO 1=0 TO MARK-l;

TOKEN_IN_ADVANCE(MARK-n=TOKEN_TN_ADVANCE(MARK-I-1)
BCD_I N_ ADV ANCE (M ARK-n=BCD_IN_ ADVANCE (MARK-I-1) ;

END;

TOKEN_(N_AOVANCE(0)=SAVE_TOKEN;
BCD_IN_ADVANCE(0)=SAVE_RCD;
SAVE_T0KEN=BUFF0R(BUF_PTR_LMT+1);
SAVE_BCD = BCD_eUF(8UF_PTR_LMT + I) ;

LAST_INDEX=-l;
TRY_INDEX=-1;
SHIFT=0;
C1_LINE=C1(PARSE_STACK(SP)) ;
BIt e =BYTE(C1_LINE);

FINISHED_TRY ING=FALSE;
RESTACKING=F ALSE;
IMSERTFD=FALSE;
RFPLACED=FALSE;
DELETED=FALSe;
TMTEP.CHANGED=FALSE;

CALL TRY_AGAIN;

FND r f s t a c k ;

/***/
/********** **********/
/********** SCOOP_OR_SCAN **********/
/********** **********/
/***/

SCCCP_OR_SCAN:
PROCEDURE;

/* IN STANCARC MODE JUST SCAN NEXT SYMBOL */

IP -ATTEMPTED THEN
CALL SCAN;

ELSE /* IN ERROR CORRECTION MODE GET THE NEXT TOKEN THAT IS ALREADY
READ IN */

IF SUCCESS_PTR=0 THEN

DO;
SUCCESS_PTR=l;
TOKEN=SAVE_TOKEN;
BCD=SAVE_BCD;

END;
ELSE

DO;
BCD=eCD_IN_ADVANCE<SUCCESS_PTR-l);
TOKEN=TOKFN_IN_ADVANCE(SUCCESS_PTR-I);
SUCCESS_PTR=SUCCESS_PTR+1;

FND;

END s c c o p_ or_ s c a n ;

ÎÜN3
tüNd

ÎNQIS ID30~N0I133«bOD 11V3
3S13

îNIV9V~Abi 1193
N3H1 0NUai~Q3HSlNl3- 31

:0N3
îN0IiVWa03NI“33015 1193

tu* {N3M011AI llXi I
((dS 1X3915 3SbVd>Ml. :ÜI9d 1U8WAS 1993111,130333 1193

: 00
N3H1 031dW3119- 31

ÎQQ
3 513

ÎQN3
ÎX03H3“1X31N03 1193
i3S193=lWlS“30“0N3

*.0Ü
N3H1 ,N3H1,=^(X30NI“A31)A 3 i î , =-(X3QNI“A31) A 3 IWlS'dO QN3 31

iOQ
3513

:ÜN3
îN3ni3d

— — —- 0313099 Nûll911dW03 ,i|
, QM9 Q3Wn559 W9390bd 30 0 N 3 -------- NO 1139 • =iridinO

î, üNOOd 303 *********=indino
tco

N3H1 31I303=N3XU1 31

/**************************** 0 3593 *************/
î 9N1X391S 3593 00
:9Nllldd03 311HM OU

t33003 3033
: 35393

/**************************** ***********************************/
/********** **********/
/********** 35393 **********/
/********** **********/
/***/

on ; /***** CASE 1 ********/

IF ATTEMPTED & -.SEM_CHECK G SUCCESS_PTR=MARK + 2
I ATTEMPTED G SEM_CHECK G BUF_PTR=BUF_LMT
I -«ATTEMPTED G END_OF_STMT THEN

DO;
END_OF_STMT=FALSE;
CALL CCNTEXT_CHECKî

END ;
ELSE

DO;
IF TOKEN=SEMI COLON | BCD=*THEN* THEN

ENO_nF_STMT=TRUE;
IF SEM.CHECK THEN

00;
SP=SP+1;
IF SP=STACKSIZE THEN

DO;
CALL ERROR!'STACK OVERFLOW***COMPILATION ABORTED***'

,2);
RETURN; /* THUS ABORTING COMPILATION. */

e n d ;
PARSE.STACK(SP)=TOKEN;
VAR!SP)=BCD;
FIXV(SP)=NUMBER_VALUE;
FI XL! SP) =CARDS-l;
BUF_PTR=BUF_PTR + l;
TOKEN=BUFFOR!GUF_PTR) ;
BC0=BCD_BUF1BUF_PTR) ;

END;
ELSE

00;
IF -.!RESTACK ING G BUF_PTR_LMT<OI THEN
DO;

SP=SP+l:
IF SP=STACKSIZE THEN
00;

CALL ERROR!
'STACK OVERFLOW***COMPILATION ABORTED***',2);
RETURN; /* THUS ABORTING COMPILATION. */

END ;
P AR S E.S IA CK {S P i=T OK EN ;

END;
IF ATTEMPTED THEN

STACK_MESSEO_UP=TRUE;
IF RE STACKING THEN

CALL RESTACK;
ELSE

DO;
BUF_PTR=BUF_PTR + 1;
BUFFOR !BUF_PTR)=TOK EN;
8CD_0UF!BUF_PTR) = 0CC;
CALL SCOOP_OR_SCAN;

END;
END;

END;
END; /* END OF CASE I */

/ * ** * * * * * CA SE 2 * * * * * * * * * /
IF -.REDUCE THEN

DO;
IF END_OF_STMT & V(TR Y_I NDEX)-.^'; • & V(TRY.TNDEX)-.='THEN* THEN

00;
E\D_CF_STHT=FALSE;
CALL CGNTEXT_CHECK;

END;
ELSE

o n ;
TF V(PARSE_STACK(SP))='<ENOING>‘ t TOKEN=SEMICOLON &

-.ATTEMPTED THEN /* AD HOC CORRECTION FOR UN MATCHED END; */
CALL UNMATCHEO_END;

ELSE
DO;

IF -.ATTEMPTED THEN
00;

CALL ERROR!* NO PRODUCTION APPLICABLE',1);
CALL STORE_INFORMATICN;

END;
IF -.FINISHEO.TRYING THEN
CALL t r y. a g a i n ;

ELSE
CALL c q r r e c t i o n _ c e c i s i o n ;
END;

END;
END;

ELSE
no;

STACK_MESSED_UP=TRUE;
END ;

END; /******** OF CASE STACKING ***********/
END; /******** OF 00 WHILE COMPILING *******/
FND PARSE;

MAIN.PRnCFOURE :
PROCEDURE;

CALL INITIALIZATION;
CLOCK!I» = TIME;
CCMPILING=TRUE;
SEMANTICS=TRUE;
BUF_PTR=- 1;
CALL PARSE;
IF ATTEMPTED THEN

OUTPUTS' LAST ERROR WAS NOT CORRECTED*
ELSE

OUTPUT:' DONE WITH COMPILING';
CLOCK!21 = TIME;
/* CLOCKO) GETS SET IN PRINT_SUMMARY */
CALL PRINT_SUMMARV;

END MATN_PRGCEOURE;

CALL m a IN_PRGCEDURE;
CLOCK! 0) = TIME; /* KEEP TRACK OF TIME IN EXECUTION */

RETURN SEVERE_ERRORS
OF ECF EOF

APPENDIX C

SAMPLE EXPL RUNS

* *• *
♦ X P U SYNTAX A N A L Y S I S AND LWROK CORKHCTIDN *

• . * *» *' e************* ****** + *****$**********

TODAY I S AUGUST 7 , 1 9 7 3 . CLOCK T I K E - 1 5 : 4 8 : 5 . 0 0 .

; 1 I d e c l a r e a f i x e d ;
I 2 { DECLARE C A R O S (I O O) CHARACTER. (I . J I K) F I X E D . TEMP CHARACTER:
: I

<=** ERROR, i l l e g a l SYMUQL P A I R : 1 < I D C N T I F I E R >
; LAST P R E V I O U S ERROR ft AS DETECTED ON L I N E 0 . **■*
; p a r t i a l p a r s e TO T H I S P O I N T I S :

CSTATENENT L 1 S T > < DE CL A RA T IO N S T A T E KE NT) , < I D E N T I F I E R L I S T) < 1 D E N T 1 F I E R >)

A C T I O N :) KAS REPLACED GY . I N L I N E N O , 2
; CORRECTED S T A T E M E N T ------------ DECLARE CARDS C 10 0 J CHARACTER , { I . U . K > F I X E D . TF.KP
j CHARACTER :

3 1 DELCARE < P . O) F I X E D :
I

♦ t * ERROR, i l l e g a l SYMBOL P A I R ; < V A R I A 8 L E > F I X E D
LAST P R E V I O U S ERROR NAS DETECTED ON L I N E 2 . * * *

P A R T I A L PARSE TO T H I S P O I N T I S :
< ST ATE HENT L I 5 T > < V A R I A G L E >

i
A C T I O N : DELCARE V A S REPLACED BY DECLARE I N L I N E NO. 3

CORRECTED STATEMENT ------ DECLARE (P , 0) F I X E D :
4 J DECLARE A A (2 1 F I X E D :
0 1 0 0 1=1 , s : e n d ;

I
•♦- ERROR, NO PRODUCTI ON A P P LI C AB L E

- L AST P R E V I O U S ERROR WAS DETECTED ON L I N E 3 , * * ♦
P A R T I A L PARSE TO T H I S P O I N T I S :

CSTATcKENT L I S T > 0 0 < V A R I A 8 L E > < REP LACE > < E X PRES SI ON> ,

: A C T I O N ----------------- : , WAS REPLACED BY TO I N L I N E N O , 5
\ CORRECTED--------STATEMENT --- DO I = 1 TO 5 :
; 6 1 A: A A I 2) :

i I
1 * 4 * ERROR, NO PRODUCTI ON APP LI CA B LE
i LAST P R E V I O U S ERROR WAS DETECTED ON L I N E 5 , * * *
i p a r t i a l p a r s e TO T H I S P O I N T I S :
' <STATEMENT L I S T) < L A 8 E L D E F I N I T I O N) <EXPRCSSI ON>
I
1. Oi
' A C T I O N — ------- ; : Y'AS REPLACED BY = I N L I N E NO, C
I CORRECTED--------STATEMENT --- A = AA (2) :

? I return; I
8 (EOF OEF I

DONE WI TH C O M P I L I N G
END OF CHECKI NG AUGUST 7 , 1 9 7 3 , CLOCK T I K E = 1 5 : 4 0 : 1 0 . 6 1 .

; 6 CARDS WERE CHECKED.

i

4 ERRORS (4 SE VERE) WERE DETECTED.
THE CAST DETECTED ERROR WAS ON L I N E 6 .

SYMBOL TABLE DUMP

A ; F I X E D DECLARED ON L I N E 1 AND REFERENCED I T I MES
AA : ARRAY DECLARED ON L I NE 4 AND REFERENCED 3 T I M E S
c a r d s : ARRAY DECLARED ON L I N E 2 AND REFERENCED 0 T I M E S
I : F I X E D DECLARED CN L I N E 2 AND REFERENCED 1 T IMES
J : F I X E D DECLARED ON L I N E 2 AND REFERENCED 0 T I MES
K : F I X E D DECLARED ON L I N E 2 AND REFERENCED 0 1 IMES
P ; F I X E D DECLARED ON L I NE 3 AND REFERENCED 0 TI MES
0 : F I X E D DECLARED ON L I N E 3 AND REFERENCED 0 T IM E S
TEMP : CHARACTER DECLARED ON L I N E 2 AND REFERENCED 0 T I M E S

TOTAL T I M E I N CHECKER
SET UP T I M E
ACTUAL C HE CKI NG T I ME
C L E AN - UP T I M E AT END

1 5 : 4 8 : 1 0 . 6 0 .
1 5 : 4 8 : 5 . 6 5 .
0 : 0 : 4 . 9 6 .
0 : 0 : 0 . 1 9 .

CHECKI NG r a t e : 9 6 CARDS PER M IN UT E .

TEST: P R O C E D U R E G P T I O N S (R A I N J ;

STMT LEVEL NEST
1
2
3
4
5
6
8
9
10

TEST: PROCEDURE OPTICNSCMAIN) ;
DECLARE A FIXEC;

DECLARE CARDS!ICO) CHARACTER,
TEMP CHARACTER;

DELCARE (P,Q) FIXED;
DECLARE AA{2) FIXED ;
DO 1=1 ,5; END;
A: AAI2);
RETURN;
END TEST;

(1,J)K) FIXED,

T E S T : P R O C E D U R E O P T I O N S I R AI N) ;

COMPILER DIAGNOSTICS.

SEVERE ERRORS.

IEM0673I 4 INVALID USE OF FUNCTION NAME ON LEFT HAND SIDE CF I

WARNINGS.

OPTION IN STATEMENT NUMBER 4

IEM0725I 4 STATEMENT NUMBER 4 HAS BEEN DELETED DUE TO A SEVER!

IEM0Î24I 3 INVALID ATTRIBUTE IN DECLARE OR ALLOCATE STATEMENT

IEM0031I 8 OPERAND MISSING IN CR FOLLOWING STATEMENT NUMBER 8

IEM012BI 3 LENGTH OF BIT OR CHARACTER STRING MISSING IN STATE!

IEM0152I 3 TEXT BEGINNING 'KIFIXEC* IN STATEMENT NUMBER 3 HAS

IEM0128I 3 LENGTH OF BIT OR CHARACTER STRING MISSING IN STATE!

ERRORS.

TEM0030 I 4 EQUAL SYMBOL HAS BEEN INSERTED IN ASSIGNMENT STATE

IEM0080I 8 EQUAL SYMBOL HAS BEEN INSERTED IN ASSIGNMENT STATE!

IEM0557I 2 THE MULTIPLE DECLARATION CF IDENTIFIER •A* IN STAT

I E M 0 7 6 4 I ONE OR MORE FIXED BINARY ITEMS CF PRECISION 15 CR

ARE FLAGGED '*********' IN THE XREF/ATR LIST.

PAGE

NAME ON LEFT HAND SIDE CF ECUAL SYMBOL, OR IN REPLY KEYTO OR STRING

BER 4

BEEN DELETED DUE TC A SEVERE ERROR NOTED ELSEWHERE.

CLARE OR ALLOCATE STATEMENT NUMBER 3 . ATTRIBUTE TEXT DELETED.

CLLOWING STATEMENT NUMBER 8 . DUMMY OPERAND INSERTED,

TER STRING MISSING IN STATEMENT NUMBER 3 . LENGTH 1 INSERTED.

• IN STATEMENT NUMBER 3 HAS BEEN DELETED.

TER STRING MISSING IN STATEMENT NUMBER 3 . LENGTH I INSERTED.

NSERTED IN ASSIGNMENT STATEMENT NUMBER 4

NSERTED IN ASSIGNMENT STATEMENT NUMBER 8

N CF IDENTIFIER •A* IN STATEMENT NUMBER 2 HAS BEEN IGNORED.

ÎV ITEMS CF PRECISION 15 CR LESS HAVE BEEN GIVEN HALFWORD STORAGE. THEY

' IN THE XREF/ATR LIST.

* c
» *
t X p L S Y N T A X A N A L Y S I S AND ERROR C O R R E C T I O N ** • *
* *
**

T O D A Y I S S E P T E M B E R 5 , 1 9 7 3 . CL OCK T I M E = 1 6 : 3 1 : 4 3 . 0 0 .

1
2
3
4
5
6
7

/ * T H I S PROGRAM READS N CARDS (N = 1 0) , SORTS THEM I N A L P H A B E T I C A L
(C O L L A T I N G) O R D E R , AND P R I N T S T H E M . * /

D E C L A R E N L I T E R A L L Y « 1 0 ' :
D E C L A R E CARDS (N) C H A R A C T E R , < I , L , K) F I X E D , T EM P C H A R A C T E R :

O U T P U T = « I N P U T c a r d s : « ;
DO 1=1 , n ;

* * * E R R O R , NO P R O D U C T I O N A P P L I C A B L E
L A S T P R E V I O U S ERR OR WAS D E T E C T E D ON L I N E 0 . * * *

P A R T I A L P A R S E T O T H I S P O I N T I S :
K S T A T E M E N T L I S T > DO < V A R I A D L E > < R E P L A C E > < E X P R E S S I O N > ,

A C T I O N ----------------: , WAS R E P L A C E D BY T O I N L I N E N O , 7
C O R R E C T E D S T A T E M E N T ------- DO I = 1 TO 1 0 J

8 i O U T P U T , C A R D S (I) = I N P U T ; / * R E A D AND L I S T * /
9 1 D E C L A R E Y F I X D :

1
* * * E R R O R , I L L E G A L S YMBO L P A I R : < I 0 E N T 1 F I E R > < I D E N T I F I E R >

L A S T P R E V I O U S ERR OR WAS D E T E C T E D ON L I N E 7 . * * *
P A R T I A L P A R S E TO T H I S P O I N T I S :

C S T A T E M E N T L I S T > < G R C UP HEAO> D E C L A R E < I D E N T I F I E R >

A C T I O N ---------------: F I X D WAS R E P L A C E D BY F I X E D I N L I N E N O . 9
C O R R E C T E D S T A T E M E N T D E C L A R E Y F I X E D :

10 I e n d ;
11 1
Î2 ! K,L= n;
1 3 ; DO W H I L E K « L ;

I
♦ * * E R R O R , I L L E G A L S Y M B O L P A I R : < <

L A S T P R E V I O U S ERR OR WAS D E T E C T E D ON L I N E 9 . * * *
P A R T I A L P A R S E TO T H I S P O I N T I S :

K S T A T E M E N T L I S T > DO W H I L E K S T R I N G E X P R E S S I O N) <
* * * * * * * * * * * * NO U N I Q U E C O R R E C T I O N

C O R R E C T I O N N O . 1 < D E L E T E D
C O R R E C T I O N N O . 2 < R E P L A C E D BY =

C O R R E C T E D S T A T E M E N T -------- DO W H I L E K < L :
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22

L = - n ;
DO 1 = 1 TO K :

L = i - i ;
I F C A R D S (L) > C A R D S (I) T HEN

d o ;
T E M P = C A R 0 S (L) :
C A R O S (L) = C A R D S (I) ;
C A R D S ! 1) = T E M P ;
K=L:

2 3 I
2 4 I
2 5 I
2 6 1

e n d ;
e n d ;

e n d ;
I F

/ * O F SORT L O O P * /

I
* * * E R R O R , I L L E G A L S Y MB OL P A I R : I F ;

L A S T P R E V I O U S ERR OR WAS D E T E C T E D ON L I N E 1 3 . * » *
P A R T I A L P A R S E T O T H I S P O I N T I S :

< S T A T E M E N T L I S T) I F
* * * * * * * * * * * * NO U N I Q U E C O R R E C T I O N

C O R R E C T I O N N O . 1 I F D E L E T E D
C O R R E C T I O N N O . 2 I F R E P L A C E D BY R E T U R N
C O R R E C T I O N N O . 3 I F R E P L A C E D BY DO

C O R R E C T E D S T A T E M E N T --------- :
2 7 I

O U T P U T = • S ORT ED C A R D S : ' :
0 0 1 =1 TO n ;

O U T P U T = C A R O S (I) ;
END ;

3 2 | E O F EOF
DONE V. ' ITH C O M P I L I N G

END OF C H E C K I N G S E P T E M B E R S , 1 9 7 3 . CLOCK T I M E = 1 6 : 3 1 : 4 7 . 6 6 .

2 6 I
2 9 I
3 0 I
31 I

3 2 C ARDS WERE C H E C K E D .
4 ERRORS (4 S E V E R E) WERE D E T E C T E D .
T H E L A S T D E T E C T E D ERR OR WAS ON L I N E 2 6 .

SYMBOL T A B L E DUMP

C ARDS ; ARRAY D E C L A R E D ON L I NE 5 AND R E F E R E N C E D Ü T I M E S .
I : F I X E D DE C L A R E D ON L I N E 5 AND R E F E R E N C E D 9 T I M E S .
K : F I X E D D E C L A R E D ON LT NE 5 AND R E F E R E N C E D 4 T I M E S .
L : F I X E D D E C L A R E D ON L I NE 5 AND R E F E R E N C E D 8 T I M E S .
T E M P : C H A R A C T E R D E C L A R E D 0 N L I NE 5 AND R E F E R E N C E D 2 T I M E S .
Y ; F I X E D D E C L A R E D ON L I NE 9 AND R E F E R E N C E D 0 T I M E S .

T O T A L T I M E I N CHECKER
S E T UP T I M E
ACT UAL C H E C K I N G T I M E
C L E A N - U P T I M E AT END

1 6 : 3 1 : 4 7 . 7 9 .
1 6 : 3 1 : 4 3 . 3 5 .
0 : 0 : 4 . 3 3 .
0:0:0.11.

C H E C K I N G r a t e : 4 4 3 C A R D S PER M I N U T E .

<: y. I» L SYNTAX ANAL YS IS AND ERROR CORRECTION*<■ *

TODAY I S AUGUST 7 , 1 9 7 3 . CLOCK T I M E = 1 5 : 4 6 : 1 6 . 1 0 .

1 I DECLARE (A . B . C , > F I X E D :
I

*tŸ ERROR. I LL EGAL SYMBOL P A I R : , I
LAST PRE VI OUS ERROR WAS DETECTED ON L I N E 0 . * * *

p a r t i a l p a r s e t o t h i s P O I N T I S :
DECLARE < I DENT I H E R L I S T > < I D E N T I F 1 E R > ,

A C T I O N------------- : . WAS DELETED I N L I N E NC, 1
CORRECTED STATEMENT -------- DECLARE (A . Ü « C) F I X E D :

2 I A = / B + I ;
1

* * * ERROR, i l l e g a l SYMBOL P A I R : = /
LAST P RE VI OUS ERROR WAS DETECTED CN L I N E 1 .

PART I / i . PARSE TO T H I S P O I N T I S :
CSTATEMENT L I S T > < V A R I A B L E > =

NO UNIQUE CORRECTION
CORRECTION NO. 1 / DELETED
c o r r e c t i o n n o . 2 <N'JM3ER> INSERTED BEFORE /
CORRECTION NO. 3 < S T R I N G > INSERTED DCF ORE /

CORRECT 1.0 S T A T E M E N T A = B + 1 :
3 I DECLARE I F I X D ;

I
ERROR, I LL E G A L SYMBOL P A I R : <1 DENT I F I E R > < I 0 E N T I F 1 E R >
I A S I P RE VI OUS ERROR WAS DETECTED ON L I N E 2 .

p a r t i a l p a r s e TO t h i s p o i n t i s :
CSTATEMENT L 1 S T > DECLARE C l O E N T I f 1 E R >

ACT IO N------------- : F I X D WAS REPLACED BY F I X E D IN L I N E NO. 3
CORRECTED STATEMENT DECLARE I F I X E D :

4 I I F F 1 THEN ;
i

* * * ERROR. ÎTJLEGAL s y m b o l P A I R : < I 0 E N T I F 1 E R > <NUMOER>
LAST P RE V I OU S ERROR WAS DETECTED ON L I N E 3 . * * *

P AR TI AL PARSE TO T H I S P O I N T I S :
CSTATEMENT L I S T > C I D E N T I F I E R)

A CT I ON--------------: I F F WAS REPLACED BY I F I N L I N E NO, 4
CORRECTED STATEMENT ------ I F I THEN

5 I I F O . C t h e n ; ELSE B ;
I

* * * ERROR. NO PRODUCTION APPLI CABLE
LAST PREVI OUS ERROR WAS DETECTED ON L I N E 4 .

P A R TI A L PARSE TO T H I S PO I NT I S :
CSTATEMENT L I S T > I F CEXPRESSI ON> ,

ACTION’-------------- : . WAS RCPLACEO OY = I N L I N E NO. S
CORRECTED STATEMENT ------ I F B = C THEM

I
♦ ERROR. NO PRODUCTION APPLI CABLE

LAST PREVI OUS ERROR WAS DETECTED ON L I N E 5 . * * *
P A R T I A L PARSE TO T H I S POI NT I S :

<STATCMf.NT L1ST> < I F CL AUSE) <TRUE P A R T) <EXPRESS I ON)
t NO UNIQUE CORRECTION

CORRECTION NO. 1 B DELETED
CORRECTION N D . 2 - 0 REPLACED BY 0 0
CORRECTION NO. 3 B REPLACED BY Î
CORRECTION NO. A RETURN I NSERTED BEFORE B
CORRECTION NO. S CALL I NSERTED BEFORE B

CORRECTED STATEMENT ------ ELSE
6 I DECLARE F F I X D , K F I X E D :

I
ERROR, I LL E GA L SYMBOL P A I R : < I D E N T I F I E R) < I D E N T I F I £ R) '
LAST PRE VI OUS ERROR WAS DETECTED ON L I N E 5 . * * *

PARTI / L PARSE TO T H I S POI NT I S :
CSTATEMENT L I S T) DECLARE < I D E N T I F I E R)

A C T I O N--------------; F I X D WAS REPLACED BY F I X E D IN L I N E NO, 6
CORRECTED STATEMENT ------ DECLARE F F I X E D , X F I X E D :

r I A A . , ;
I

* * * ERROR. I LL E G A L SYMBOL P A I R : < I D E N T I F I E R) < 1 0 : N T I F I E R)
LAST PREVI OUS ERROR WAS DETECTED ON L I N E 6 . * * *

P AR T I AL PARSE 1 0 T H I S POI NT I S :
(STATEMENT L I S T) (I D E N T I F I E R)

ACT I OtJ—** — A A t « # — ABORTED
PARSI NG RESUf-^CS I N STANDARD MCOE

c ! p r o c e d u r e : aa:1
e r r o r , i l l e g a l SYMBOL P A I R : (STATEMENT L I S T) PROCEDURE
LAST PREVI OUS ERROR WAS DETECTED ON L I N E 7.

P A R T I A L PARSE TO T H I S POI NT I S :
(STATEMENT U S D

ACT IO N------------- PROCEDURE : AA i ------------- ABORTED
PARSI NG RESUMES I N STANDARD MODE

9 1 DECLARE A A (4) F I X E D ;
10 I AA(1 -) 2 ;

I
* * * ERROR, ILLEGAL SYMBOL P A I R : =)

LAST PREVI OUS ERROR WAS DETECTED ON L I N E ' 8 . * * *
P A R T I A L PARSE TO T H I S POI NT I S :

(STATEMENT L I S T) (S U B S C R I P T HEAD) (S T R I N G E X PR E SS IO N)

A C T I O N -------------- :) AND = ARE INTERCHANGED I N L I N E N O . 10
CORRECTED STATEMENT ------ AA I I > = 2 ;

11 I END:
ACT I ON—— END % ABORTED
PARSI NG RESUMES I N STANDARD MODE

12 I A A A = (I i ;
I

ERROR. I LL EGAL SYMBOL P A I R : (I D E N T I F I E R) (I D E N T I F I E R)
LAST PREVI OUS ERROR WAS DETECTED ON L I N G 1 0 .

P A R T I A L PARSE TO T H I S P O I N T I S :
(STATEMENT L I S T) (I D E N T I F I E R)

* * * * * * * * , * , * NO UNIQUE CORRECTI ON
CORRECTION N O . I AA AND = INTERCHANGED
CORRECTION NO, 2 AA DELETED

CORRECTED STATEMENT A = AA (I) :
13 I r e t u r n ;
14 |EOF EOF

DONC WI TH C O MP I L I N G
ENü Of- CHECKI NG AUGUST 7 , 1 9 7 3# CLOCK T I M E = 1 5 : 4 6 : 2 1 . 4 0 .

14 CAROS WERE CHECKED.
I t ERRORS (1 1 SEVERE) WERE DETECTED.
THE LAST d e t e c t e d ERROR WAS OR L I N E 1 2 .

SYMBOL TABLE DUMP

A F I X E D DECLARED ON L I N E 1 AND REFERENCED 2 T IMES
AA ARRAY DECLARED ON L I NE 9 AND REFERENCED 2 T I M E S
B F I XCD DECLARED ON L I N E 1 AND REFERENCED 3 T IMES
C F I X E D DECLARED ON L I N E 1 AND REFERENCED 1 T I MES
F F I XEO DECLARED ON L I K E 6 AND REFERENCED 0 I IMES
I F I XEO DECLARED ON L I NE 3 AND REFERENCED 0 I IMES
K F I X E D DECLARED ON L I N E 6 AND REFERENCED 0 T I M E S

TOTAL T I M E I N CHECKER
SET UfJ TIME
ACTUAL CHECKI NG T IME
CL EAN- UP T I M E AT END

1 5 : 4 6 : 2 1 . 5 8 .
1 5 : 4 6 : 1 6 . 3 1 .
0 : 0 : 5. 1 7 .
0:0:0.1 0.

CHECKING r a t e ; 1 62 CARDS PER M I N U T E .

