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Abstract: The spreading of cancer cells, also known as metastasis, remains a lethal
and unstoppable aspect of cancer treatment. Several cancer studies have suggested
the remodeling of collagen fibers in the extracellular matrix (ECM) facilitates the
migration of cancer cells during metastasis. ECM remodeling refers to the follow-
ing activities: the ECM degradation caused by the enzyme matrix metalloproteinases
(MMPs) and the ECM alignment due to the cross-linking enzyme lysyl oxidase (LOX).
Such modifications of the collagen fibers induce changes in physical and biomechanical
properties of the ECM that a↵ect cancer cell migration through the ECM. However,
the underlying mechanism of how these changes will give way favorably for the direc-
tional motility of cancer cells through the pool of collagen fibers in the ECM remains
an open question. In this thesis, we employed the art of multiscale modeling of can-
cer to gain more insight into the complex interplay between metastatic cancer cells
and the ECM while it undergoes remodeling. Two in silico models following di↵erent
modeling approaches are proposed in this work. The first model is developed via the
continuum modeling approach. The mathematical model is a system of five coupled
partial di↵erential equations (PDEs). The second model is built via the open-source
software CompuCell3D upon the insight and framework gained from the continu-
ous model. Modeling method applied in CompuCell3D is a composite of discrete
and continuum modeling approach in which cells are treated as discrete while other
components such as the ECM and chemicals are described through continuum fields.
Both models include the e↵ect of LOX, an enzyme that has not been included in any
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relevant models with improved features showing the influential role of LOX as well
as MMPs on the remodeling of ECM and metastatic cancer migration.
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Chapter 1

Introduction

1.1 Cancer Metastasis in the Early Stage

Every year there are approximately 8.2 million cancer-related deaths worldwide.

Metastasis is the primary cause of cancer death. Cancer metastasis occurs when

the disease reaches its lethal stage via the uncontrolled spreading of cancer cells to

invade a nearby connective tissue and other key organs in the human body. The

metastasizing primary tumor cells are not the only agents that drive the progression

of metastasis. Instead, metastasis is a systematic process that involves the interac-

tion of cancer cells among a community of various biochemical and cellular factors

localized in the tumor microenvironment at both the primary and secondary tumor

sites [24]. Many recent cancer-related studies have pointed out that the primary tu-

mor microenvironment contains many important factors that determine whether the

primary tumor progresses and proceeds to metastasize or remains dormant, staying

a benign tumor [54, 6, 41, 87, 42]. In the early stage of metastatic cancer invasion,

cancer cells migration first takes place by breaking away from the primary tumor site

and breaching the basement membrane of the tumor. This thin barrier underlying

the tumor mass is made up of mostly type IV collagen fibers that separate the tumor

from the extracellular matrix (ECM) [48]. After perforating the basement membrane,

the escaped cancer cells then must invade the ECM and travel through a meshwork

of collagen fibers prior to intravasation into a blood vessel [20]. While maneuver-

ing through the ECM, the direction and behavior of the migrating cells are greatly

influenced by the physical and biomechanical properties of the ECM [70, 52, 62].
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1.2 Rationale

Recent cancer research has suggested the remodeling of collagen fibers in ECM facili-

tates the migration of cancer cells during metastasis. However, the mechanism of such

cancer migration through a remodeling ECM remains not well understood. Our work

considers mathematical modeling approach to unravel the complexity of many inter-

acting processes during ECM remodeling. Modeling serves as a tool for researchers

to formularize and quantitatively understand physical and chemical phenomena ob-

served in reality via the language of mathematics [73]. Mathematical modeling has

been a prominent practice in almost all fields of science and engineering in general and

in cancer system biology in particular. Scientists and researchers find benefit from a

well-developed mathematical model that could deliver one or more of the following

useful functions: test hypotheses, lead to new insights and new approaches, suggest

and refine experiments, interpret experiments, trace chains of causation, carry out

sensitivity analyses, and investigate coupling and feedback [14]. Numerous mathe-

matical models of cancer invasion have been established in the last twenty years and

are constantly being improved upon [33, 34, 60, 65, 66, 3, 4, 86, 2, 18, 19, 32, 39, 35,

72, 5, 68, 83, 63, 64, 1, 46, 85, 25, 28]. However, no model has yet considered the

enzyme LOX and its promising influence on metastasis in ECM. In our new math-

ematical models of metastatic cancer invasion, we not only added a new equation

for LOX but also extended the existing models with improved features showing how

LOX a↵ects ECM remodeling and metastatic cancer migration.

1.3 Objectives

This work aims to develop in silico models targeting a metastatic tumor microenvi-

ronment. Two in silico models following di↵erent modeling approaches are addressed

in this thesis to study the complex interplay between metastatic cancer cells and

the ECM while it undergoes remodeling. One model is developed via the continuum

2



modeling approach, while the other follows the hybrid continuum-discrete modeling

technique. The first model is a continuous system of five coupled partial di↵erential

equations (PDEs) reflecting the spatiotemporal dynamics and interconnection of the

following components: population density of cancer cells and concentrations for two

types of ECM collagen fibers and the enzymes MMP and LOX. Via the open-source

software CompuCell3D, the second model includes both discrete and continuous vari-

ables to simulate a multiscale tumor microenvironment in which cells are treated

as discrete while other components such as the ECM and chemicals are described

through continuum fields. The setting of both models assume that the primary tu-

mor is approaching the metastatic stage and that cancer cells have already penetrated

the basement membrane surrounding the tumor. These simulations consider malig-

nant cancer cells that are ready to detach away from the tumor mass and invade the

ECM.
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Chapter 2

Overview of the Tumor Microenvironment Components

The tumor microenvironment (TME) has emerged as an important tissue in the

study of cancer, especially in the prognostic guiding of tumor growth and tumor

behaviors [10]. TME is the domain that surrounds a tumor (Figure 2.1) including

multiple cellular components (e.g. fibroblast, macrophages, immune cells, inflamma-

tory cells, lymphocytes, and vascular endothelial cells) non-cellular components (ECM

and collagens) or biochemical components (e.g. growth factors, oxygen, glucose, and

remodeling enzymes) residing within that surrounding. TME and its diverse microen-

vironmental components, hence, are becoming interesting targets for the study and

modeling of cancer attracting both experimental and computational researchers.

2.1 Extracellular Matrix

In a TME, ECM acts as a sca↵old supporting the surrounding cells, helping them

communicate with each other and with the ECM itself through both physical and

biochemical signaling [11]. The direct interaction of ECM with tumor cells via adhe-

sion contact and the highly dynamic characteristics of ECM together promote cancer

growth and spread [7]. The ECM is an insoluble non-cellular environment outside the

cells present in all tissues of a human body [12]. Generally, ECM consists of water,

polysaccharides, and proteins. Various types of fibrous proteins are present in the

ECM including collagens, elastins, fibronectins, and laminins; among these, collagen

is the most abundant and the main structural protein in the ECM [31]. The collagen

fibers are constantly being remodeled [52]. The remodeling of collagen fibers results in

4



Figure 2.1: Dynamics during tumor evolution in TME involved multiple interacting
biophysical and biological processes among various components including blood ves-
sel, tumor cells, stromal cells like fibroblast and macrophage, ECM collagen fibers,
chemicals like remodeling enzymes, oxigen and growth factors. Components are la-
beld and key cancer-related processes are described in the boxes [37]

dynamic changes in the physical, chemical, and biomechanical properties of the ECM

[90]. ECM remodeling refers to the following two processes: (a) ECM degradation

caused by enzyme matrix metalloproteinases (MMPs) and (b) ECM alignment due to

cross-linking enzyme lysyl oxidase (LOX) (Figure 2.2). In a pathological condition,

like cancer, such changes in the ECM properties facilitate the movement of cells [71].

Via cell-ECM interaction and signaling pathways, these changes elicit cell responses

to secrete chemicals like MMPs and LOX to shape the orientation of ECM from a

barrier of randomly oriented fibers into a more propitious fibrous “expressway” for

migration [22, 88, 53].
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Figure 2.2: Influence of ECM remodeling on cancer migration

The directional motility of cells through the ECM is guided mainly by cells sensing

and responding to haptotactic and durotactic cues from the ECM components and

their properties and characteristics (Figure 2.3). Haptotaxis is the ability of cells to

sense and respond to a gradient of immobilized chemoattractants, while durotaxis is

the directional motility of cell up a gradient of mechanical sti↵ness. In our work,

we currently address only the e↵ect of haptotaxis on cell migration in term of the

gradient of fiber concentration as a surrogate for the ECM sti↵ness.

Figure 2.3: Directed migration of mesenchymal cells for various types of directional
cues [9].

2.2 Matrix Metalloproteinases

The family of MMPs is the most prominent enzymes in ECM remodeling, responsible

for proteolytic degradation of the collagen fibers in the ECM [17]. Here, we focus on

the collagen fibers residing in the interstitial ECM, which are mostly collagen type I

6



and are degraded by MMP-14, one of the MMP family members, secreted by cancer

cells [52]. As cancer cells becomes metastatic, they secretes MMPs to degrade the

collagen fibers in the ECM. MMPs hence first help the metastatic cell to detach away

from the primary tumor by breaching the basement membrane encapsulating the tu-

mor and then go on to generate spaces in the matrix for cells to maneuver through the

ECM more easily (Figure 2.4). Dysregulation of the activities of MMPs intervenes

in almost all cancer types [16] and in the hallmarks of cancer from migration and

initial invasion to angiogenesis and metastasis [36]. Due to its important role as a

driving factor for cancer progression, MMPs have been and continue to be appealing

and promising targets of cancer therapy despite the failure of several clinical trials

for MMP inhibitors conducted within the past three decades [23, 29, 16]. For sim-

plification, we lump all the family of MMPs together in this work, referring to them

collectively as MMP hereafter.

Figure 2.4: Proteolytic activities of MMP degrading and invading the microenviron-
ment of collagen [56].

2.3 Lysyl Oxidase

LOX oxidizes the primary amine substrates to reactive aldehydes (Figure 2.5). Via

this amine oxidase activity, collagens are crosslinked and aligned in the ECM [79].

Bundles of crosslinked collagen fibers sti↵en the ECM and aid the migration of can-

cer cells via growth factor signaling pathways, for instance, the transforming growth

7



factor-� (TGF-�) and the fibroblast growth factor (FGF) [27, 76]. Evidence of thick-

ening and aligned collagen fibers due to LOX has been observed in areas of active

tissue invasion and tumor vasculature [22, 70]. While the expression of LOX is found

to be upregulated during cancer invasion and metastasis [61, 55], the underlying

mechanism of how LOX modulates the cell-ECM interaction during invasion and

metastasis to facilitate cancer cells migration remains poorly understood.

Figure 2.5: Schematic of the oxidative deamination of lysine and hydroxylysine in
type I collagen by LOX [89].
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Chapter 3

Continuum Modeling of Metastatic Cancer Migration

through a Remodeling ECM

Most of the work in this chapter has been published in Processes journal in May,

2018 [57].

In the following sections, we derive and formulate a system of five partial di↵er-

ential equations (PDEs) to describe the local invasion and migration of cancer cells

through a remodeling ECM. We also briefly introduce the method used to numer-

ically solve our model in Matlab (R2017b, MathWorks, Natick, MA, USA, 2017)

and detail in Tables 3.1 and 3.2 all the parameter values applied in our simulation.

We present our results obtained from the numerical simulation and interpret our in

silico findings from a biological and pathological perspective. We analyze three case

studies to highlight the significance of adding the enzyme LOX into the model and

the impact from di↵erent modes of haptotaxis caused by LOX on the ECM and on

the migration of cancer cells. Lastly, we conclude with remarks on the potential use-

fulness of the proposed model to further clinical understanding of the critical role of

ECM remodeling in the early stages of cancer metastasis.

3.1 Formulation of the Model Equations

The setting of the model established in this work is an in silico metastatic tumor

microenvironment (Figure 3.1). The model aims to unravel the interconnection of the

main concepts of metastasis in the ECM: the spreading of cancer cells, the remodeling

9



of collagen fibers, and the reaction and transport dynamics of the chemicals involved.

We start the model time period just after cancer cells have penetrated the basement

membrane of the primary tumor (Figure 3.1A). At this stage, the malignant cancer

cells detach away from the primary tumor mass and squeeze through the gaps in

the degraded basement membrane. These motile cancer cells proceed to invade the

ECM and maneuver their way through a barrier of ECM collagen fibers undergoing

remodeling (Figures 3.1B–D). Such modification of the ECM facilitates the migration

of cancer cells via haptotactic sensing and response from cancer cells toward the

degraded and crosslinked areas of ECM collagen fibers. Beyond what our model

covers, the escaped cancer cells will eventually reach and intravasate nearby blood

vessels or invade other connective tissues to travel to other parts of the body and

initiate secondary tumors.

The model established in this section is a continuous system of five coupled partial

di↵erential equations (PDEs) describing the dynamics and interaction of cancer cells,

collagen fibers, and the enzymes MMP and LOX. Two population of collagen fibers are

considered: those that are oriented randomly and those that have been crosslinked.

Cancer Cells

The population balance of cancer cells in the system is governed by three main factors:

random di↵usion, proliferation, and haptotaxis due to the remodeling ECM collagen

fibers:

@c

@t
= Dc

@
2
c

@x2
+ �c(1� v1c� v2f � v3fcl)�

@

@x


⇢(1� v1c� v2f � v3fcl)c

@f

@x

�
+ g (3.1)

where c is the number of cancer cells per volume of the spacial domain x in one di-

mension at time t. The first term accounts for the di↵usive migration of cells with a

constant di↵usion coe�cient Dc. We assume any nutrient transport supplied to the

tumor from nearby blood vessels is una↵ected by the remodeling and thus is ignored

10



Figure 3.1: Dynamics in a metastatic tumor microenvironment: (A) The basement
membrane around the edge of the primary tumor (cluster of cancer cells in red) has
already been perforated by cancer cells. The surrounding collagen fibers are randomly
oriented in the extracellular matrix (ECM). (B) Enzymes metalloproteinase (MMP)
and lysyl oxidase (LOX) are secreted by cancer cells to degrade and cross-link collagen
fibers. MMP generates spaces for cancer cells to begin detaching away from the
primary tumor mass to invade the ECM. (C) Meanwhile, aligned and crosslinked
collagen fibers form a fibrous pathway along which cancer cells prefer to travel. (D)
Collagen fibers continue to be crosslinked to aid the maneuvers of cancer cells further
through the matrix.
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in our model. The second term is included to account for cell proliferation using a

first-order rate expression for c with specific reatction rate � as an exponential decay

function � = exp(�x
2
/✏), where ✏ is an adjustable parameter. The third and fourth

terms in the equation implement the haptotaxis e↵ect that directs motility of cancer

cells towards the area of remodeling ECM with ⇢ and ⇢cl denoting the haptotaxis pa-

rameters for non-crosslinked and crosslinked ECM collagen fibers, respectively. Based

on studies on cancer migration using live imaging, cancer cells are prone to move more

rapidly on collagen fibers in the collagen enriched area [22, 27]. Hence, we assume the

e↵ect of haptotaxis on motility of cancer cells toward the crosslinked area of ECM,

fcl, will be stronger than toward the area of degraded ECM that has not yet been

crosslinked. We incorporate the logistic growth factor (1 � v1c � v2f � v3fcl) in the

last three terms of (3.1) where v1, v2, and v3 are the occupied fractions of one unit

volume of physical space by the densities of cancer cells c, regular collagen fibers f ,

and crosslinked collagen fibers fcl, respectively. The logistic growth factor is imple-

mented to ensure the migration of cancer cells only into space that is not already

occupied by the c, f , and fcl present in the system domain [35]. The fourth term

g represents the attraction or the haptotactic migration of cancer cells toward the

crosslinked ECM collagen fibers:

g = � @

@x


⇢cl(1� v1c� v2f � v3fcl)c

@fcl

@x

�
. (3.2)

The term g is turned on or o↵ (g ⌘ 0) in the simulation to investigate the impact

of LOX on driving the ECM sti↵ness via cross-linking and how that influences the

overall migration behavior of cancer cells in the system.

Extracellular Matrix Collagen Fibers

Changes in the morphology and the biochemical and physical properties of a tumor-

associated ECM make a substantial impact on regulating cancer progression during

12



metastasis [12]. Since ECM collagen fibers do not di↵use [74] and can be treated as a

static structural support network, none of the terms incorporated in the ECM model

relate to motility. Instead, the dynamics of ECM is expressed via the remodeling of its

collagen fibers due to LOX and MMP. Under disease conditions like cancer, MMP and

LOX are known to be dysregulated and often overexpressed, especially in carcinoma.

While MMP digests the collagen fibers and generate spaces within the ECM, LOX

crosslinks and linearizes the fibers, hence further organizing the matrix of fibers.

Although they have di↵erent roles in ECM remodeling, both enzymes contribute

greatly to transforming ECM from a barrier of fibers into a more navigable fibrous

structure that facilitates the migration of cancer cells through the ECM [52, 53].

In our model, we include two species to distinguish the structure and function

of ECM collagen fibers. The randomly oriented collagen fibers that have not been

crosslinked are represented by f . The collagen fibers that are crosslinked, linearized,

and aligned are denoted by fcl. Assuming a domain of constant volume, the balances

for the two collagen fibers species are

@f

@t
= �↵fmf + µf (1� v1c� v2f � v3fcl)� h (3.3)

@fcl

@t
= �↵fmfcl + h (3.4)

where the first term in both models accounts for the degradation of collagen fibers by

the concentration of MMP, m, present in the system domain, ↵f is the MMP cleavage

rate of collagen fibers, and µf is the rate constant for production due to the regular

collagen synthesis in ECM. The logistic growth fraction (1�v1c�v2f�v3fcl) again is

incorporated in the source term to check for the availability of unoccupied space for

the normal synthesis of collagen fibers to take place. The term h is included in both

equations indicating the rate of converting regular collagen fibers into crosslinked

fibers. The h term depends on the presence of LOX, l, and collagen fibers according
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to

h = �ffl (3.5)

where �f is the reaction rate for cross-linking of collagen fibers by LOX. Like the g

term in Equation (3.1), the h term in Equations (3.3) and (3.4) is turned on and o↵

in the simulation depending on the existence of LOX in the system.

Enzyme MMP

The evolution of the chemical signal MMP in the system is modeled using reaction-

di↵usion dynamics
@m

@t
= Dm

@
2
m

@x2
� ↵mm+ �m c (3.6)

where the first term accounts for MMP di↵usion with a constant di↵usion coe�cient

Dm, the second term considers the natural decay of MMP with ↵m denoting the

MMP decay rate constant, and the third term accounts for the secretion of MMP by

cancer cells with a production rate constant �m. In reality, MMP is secreted by many

di↵erent types of cells in the malignant tumor microenvironment including cancer-

associated fibroblasts (CAFs), inflammatory cells, macrophages, and cancer cells [43].

However, the collagen fibers residing in the interstitial ECM are mostly collagen type

I, which is degraded mostly by MMP-1 secreted by CAFs and MMP-14 secreted by

cancer cells [67, 52]. In the current model, we have not included the existence of

CAFs. The secretion of MMP, generally, is considered from cancer cells.

Enzyme LOX

Similar to that for MMP dynamics, the reaction-di↵usion equation for LOX is con-

structed as
@l

@t
= Dl

@
2
l

@x2
� ↵ll + �lc (3.7)
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where Dl is the chemical di↵usion coe�cient of LOX, ↵l is the natural decay rate

constant for LOX, and �l is the rate constant for the secretion rate of LOX by cells

3.2 Nondimensionalization and Parameter Estimation

To numerically solve the system of PDEs, non-dimensionalization is first performed.

Nondimensionalization helps establish fewer parameters in turn allowing for a much

more e�cient way to analyze the system of PDEs. The dimensionless variables are

x̂ ⌘ x

L
, t̂ ⌘ t

⌧
, ĉ ⌘ c

co
, f̂ ⌘ f

fo
, f̂cl ⌘

fcl

fo
, m̂ ⌘ m

mo

, l̂ ⌘ l

lo
(3.8)

where parameters L, ⌧ , co, fo, mo, and lo are appropriate reference values for scaling

x, t, c, f and fcl, m, and l, respectively. Table 3.1 summarizes the reference values

and parameters that are available from the literature. Considering the early stages

of metastatic cancer cell invasion, the length scale L is taken to be 1 cm but could

be in the range of 0.1 to 1 cm. The residence time, ⌧ , is taken to be 32 h, which is a

representative average in vitro doubling time for the well-established human cancer

cell lines of A549 lung carcinoma cells, U87MG glioma cells, and MCF-7 and MDA-

MB 231 breast cancer cells [15, 47, 51, 59]. The di↵usion coe�cient of the cancer cell,

Dc, has been previously determined in an experiment of cell movement by [13]. The

di↵usion coe�cient for the MMP, Dm, is taken as the higher end value in the range

of di↵usion coe�cient for membrane proteins from 10�8 to 10�10 cm2 s�1 reported in

[40]. The haptotaxis parameter, ⇢, is taken from [3]. The reference chemical di↵usion

coe�cient, D, is from [13]. The reference concentration of ECM collagen fiber, fo,

is in the range of 10�11 to 10�8 M based on [84]. Again, the lower end value of fo,

which is 10�11, is applied in our model. A value of 0.1⇥ 10�9 M is taken from [1] as

an appropriate reference chemical concentration for both MMP and LOX, mo and lo,

respectively.
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Table 3.1: Parameter values available from literature used in the model of metastatic
invasion of cancer through remodeling ECM.

Term Description Value Unit Sources
L Reference length 1 cm [4]
⌧ Reference time 32 hours [15, 47, 51, 59]
co Reference number of cancer cells per volume 6.7⇥ 107 cells/cm3 [4]
fo Reference value for f, fcl 10�11 M [84]

mo, lo Reference value for m, l 0.1⇥ 10�9 M [1]
Dc Di↵usion coe�cient of cancer cells 10�9 cm2/s [13]
Dm Di↵usion coe�cient of MMP 10�8 cm2/s [40, 4, 21]
⇢ Haptotaxis coe�cient toward f 2600 cm2 M�1 s�1 [3]

Introducing the dimensionless quantities defined in (3.8) into Equations (3.1)–(3.7),

the model can be written as

@ĉ

@ t̂
=

✓
Dc⌧

L2

◆
@
2
ĉ

@x̂2
+ (�⌧)ĉ

�
1� (v1co)ĉ� (v2fo)f̂ � (v3fo)f̂cl

�

� @

@x̂

✓
⇢fo⌧

L2

◆�
1� (v1co)ĉ� (v2fo)f̂ � (v3fo)f̂cl

�
ĉ
@f̂

@x̂

�
+ ĝ

(3.9)

ĝ = � @

@x̂

✓
⇢clfo⌧

L2

◆�
1� (v1co)ĉ� (v2fo)f̂ � (v3fo)f̂cl

�
ĉ
@f̂cl

@x̂

�
(3.10)

@f̂

@ t̂
= �(↵f⌧mo)m̂f̂ +

✓
µf⌧

fo

◆�
1� (v1co)ĉ� (v2fo)f̂ � (v3fo)f̂cl

�
� ĥ (3.11)

@f̂cl

@ t̂
= �(↵f⌧mo)m̂f̂cl + ĥ (3.12)

ĥ = (�f⌧ lo)f̂ l̂ (3.13)

@m̂

@ t̂
=

✓
Dm⌧

L2

◆
@
2
m̂

@x̂2
� (↵m⌧)m̂+

✓
�m⌧co

mo

◆
ĉ (3.14)

@ l̂

@ t̂
=

✓
Dl⌧

L2

◆
@
2
l̂

@x̂2
� (↵l⌧)l̂ +

✓
�l⌧co

lo

◆
ĉ. (3.15)

The dimensionless parameters that emerge within parentheses are defined in Table

3.2. Values for these dimensionless parameters are obtained either through calculation

(if su�cient information is provided from literature listed in Table 3.1, these are

labeled as ”Calculated from”) or by being given tentative values that are reasonable
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for the model (those with related values obtained from other previous models are

listed as ”Estimated from” followed by the source).

Table 3.2: Dimensionless expression and values of parameters used in Matlab sim-
ulation of metastatic invasion of cancer through a remodeling ECM.

Term Description Value Sources

D̂c = Dc⌧/L2 Di↵usion coe�cient of cell 1.152⇥ 10�4 Calculated from [13]
�̂ = �⌧ Rate expression for tumor proliferation exp(�x̂2/✏̂), ✏̂ = 0.001 Assumed

⇢̂ = ⇢fo⌧/L2 Haptotaxis toward f 0.003 Calculated from [84, 13]
⇢̂cl = ⇢clfo⌧/L2 Haptotaxis toward fcl 0.05 Assumed

v̂1 = v1co Space fraction per unit ĉ 1 By definition from [35]

v̂2 = v2fo Space fraction per unit f̂ 1 By definition from [35]

v̂3 = v3fo Space fraction per unit f̂cl 1 By definition from [35]
↵̂f = ↵f⌧mo Rate constant for MMP cleavage of f 10 Estimated from [4]
µ̂f = µf⌧/fo Rate constant for production of f 0.15 Estimated from [1]

�̂f = �f⌧ lo Rate constant for LOX remodeling of f 18 Assumed
D̂m = Dm⌧/L2 Di↵usion of MMP 1.152⇥ 10�3 Calculated from [40, 15]
↵̂m = ↵m⌧ Rate constant for decay of MMP 1⇥ 10�3 Estimated from [4, 49]

�̂m = �mco⌧/mo Rate constant for secretion of MMP by cells 0.1 Estimated from [4]
D̂l = Dl⌧/L2 Di↵usion coe�cient of LOX 2.304⇥ 10�3 Assumed
↵̂l = ↵l⌧ Rate constant for decay of LOX 1⇥ 10�3 Assumed

�̂l = �lco⌧/lo Rate constant for secretion of LOX by cells 0.1 Assumed

3.3 Initial and Boundary Conditions

Some of the initial conditions for the concentrations in our models follow a similar

set of initial conditions proposed in several previous cancer invasion mathematical

models [2, 19, 35, 1]. The center of the primary tumor mass resides at the left edge of

the system domain x̂ = 0. Initially, it is assumed that a fixed cluster of cancer cells

already exists in the system domain from x̂ 2 [0, 0.25]. Additionally, at x̂ = 0.25 is

the edge where the basement membrane of the primary tumor resides before being

degraded. The initial distribution of the population density of cancer cells in the

system given by

ĉ(x̂, 0) =

8
>><

>>:

exp(�x̂
2

�
), x̂ 2 [0, 0.25]

0, x̂ 2 [0.25, 1]

(3.16)

where � is a positive constant given a value of 0.01 [4].

Initially, the ECM is a mesh of randomly oriented collagen fibers that are not yet
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crosslinked, so

f̂cl(x̂, 0) = 0 (3.17)

To ensure the physical space of the system domain is not congested, the initial

condition for the concentration of ECM collagen fibers must satisfy ĉ(x̂, 0)+ f̂(x̂, 0) 

1 [35], so

f̂(x̂, 0) = 1� ĉ(x̂, 0). (3.18)

We assume a zero concentration of MMP and LOX presented in the system ini-

tially:

m̂(x̂, 0) = 0 (3.19)

l̂(x̂, 0) = 0. (3.20)

Zero flux boundary conditions for symmetry are imposed on the left edge of the

spatial domain (x̂ = 0) for all components (ĉ, f̂ , f̂cl, m̂, and l̂). On the right edge

of the spatial domain, it is assumed that there are no cancer cells, crosslinked ECM

fibers, MMP, or LOX (ĉ, f̂cl, m̂, and l̂, respectively). On the other hand, there exists a

constant amount of non-crosslinked ECM fibers, f̂ , on the right edge. Hence, the set

of boundary conditions imposed on the system is taken as below

@ĉ

@x̂

����
x̂=0

=
@f̂

@x̂

�����
x̂=0

=
@f̂cl

@x̂

�����
x̂=0

=
@m̂

@x̂

����
x̂=0

=
@ l̂

@x̂

�����
x̂=0

= 0 (3.21)

ĉ(1, t̂) = f̂cl(1, t̂) = m̂(1, t̂) = l̂(1, t̂) = 0 (3.22)

f̂(1, t̂) = 1. (3.23)

3.4 Numerical Methods and Code Repository

The system of coupled PDEs (3.9)–(3.23) in this paper is numerically solved in the

domain ⌦ = [0, 1]⇥ (0, 20] utilizing the pdepe function, an internal PDE solver in
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Matlab that discretizes the equations in space to obtain a system of ordinary dif-

ferential equations in time that is then solved along the discrete grid points. This

function can handle solving initial-boundary value problems for systems of parabolic

and elliptic PDEs in one spatial variable x and time t [38]. The PDEs that the

function pdepe can solve must follow the general form

a1

✓
x, t, u,

@u

@x

◆
@u

@t
= x

�n
@

@x

✓
x
n
a2

✓
x, t, u,

@u

@x

◆◆
+ a3

✓
x, t, u,

@u

@x

◆
(3.24)

Our model follows this form with n = 0, indicating rectangular coordinates for pdepe.

To enable code reuse, we wrote the model in Matlab and shared the code in-

cluding parameter values and documentation in an open-source software repository

[58].

3.5 One Dimensional Results in MATLAB

In this section, we present and analyze in silico experimental results in one dimension

for three case studies of the model: (I) No LOX nor its e↵ects on ECM and cancer

cells (for all time steps: l̂ ⌘ 0, f̂cl ⌘ 0, ĥ ⌘ 0, and ĝ ⌘ 0); (II) LOX present but

without its e↵ect on the haptotactic migration of cancer cells toward the crosslinked

ECM fibers (for all time steps: ĝ ⌘ 0); (III) LOX present and including all of its

e↵ects on ECM fibers and cancer cells haptotactic migration. For all results, we have

dropped the ”hat” notation for convenience. Only dimensionless quantities were used

in the model equations.

Case I: LOX is Absent

In this case study, LOX is not present in the system, so l ⌘ 0. This leads to no

cross-linking of ECM collagen fibers, so h ⌘ 0 and fcl ⌘ 0. Hence, the term g in

(3.2), representing the haptotactic migration of cancer cells toward the crosslinked
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ECM collagen fibers, is also turned o↵ in the simulation, hence g ⌘ 0. The system of

PDEs is thus left with only three active species: c, f , and m.

The purpose of excluding LOX from the model in Case I is to validate our model

before further exploration by comparing our results with those obtained from a highly

cited published cancer invasion model [4]. The model in [4] included three PDEs for

c, f , and m. Our results (not shown here) in Case I for the same three components

combined with the same initial and boundary conditions used in [4] show the same

results as the published model.

We propose starting the initial condition from m = 0, deviating from [4], to

consider the onset of MMP secretion from cancer cells. Figure 3.2 shows the spatial

profiles of the tumor microenvironment at di↵erent dimensionless simulation times

(t = 0, 1, 10, and 20). The results obtained for the population density of cancer cells

capture a slow detachment of the cells away from the center the primary tumor mass

(the left edge of the spatial domain) as time evolves. We also observe that ECM fiber

concentration is low when and where MMP concentration is high. Such trends are

expected due to the fact that MMP degrades and digests ECM collagen fibers.

Case II: LOX is Present But Not Coupled to Haptotactic Migration of

Cancer Cells

In Case II, LOX, l, is introduced to the system. Since LOX is present, the rate of

cross-linking of collagen fibers, h, must be activated in the model. However, the

haptotactic migration e↵ect on the population density of cancer cells in Equation

(3.1) remains inactive in the simulation (g ⌘ 0).

Our primary aim for the settings in Case II is to confirm that LOX can perform

its main function on ECM via the activation of h, which transforms regular collagen

fibers to crosslinked ones. Meanwhile, in the absence of the attraction of cancer cells

toward the crosslinked fibers (g ⌘ 0), the migration of cancer cells is only influenced
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Figure 3.2: One dimensional numerical results for Case I when there is zero concen-
tration of LOX (l ⌘ 0) and hence, zero crosslinked ECM collagen fibers, fcl, in the
system. Results are snapshots of the system dynamics at four simulation times: (A)
t = 0, (B) t = 1, (C) t = 10, and (D) t = 20. For all four plots, the horizontal
axis, x, indicates a dimensionless spatial position, and the vertical axis, y, indicates
the dimensionless population density or concentration of the species indicated in the
legend.
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by haptotactic migration toward the pristine collagen fibers, f , which are present in

lower concentrations compared with Case I since they can be crosslinked.

In Figure 3.3, the slow detachment of cancer cells away from the center the primary

tumor mass and the e↵ect of ECM degradation by MMP are captured in similar

trends as in the Case I results and as in [4]. The main di↵erence between the results

of Cases I and II is the existence of the crosslinked ECM fibers and fcl dynamics.

With h active and g inactive, the concentration of regular ECM fibers decreases more

quickly and to a larger penetration distance due to cross linking (compare the regular

ECM fiber curve in Figure 3.3D with that in Figure 3.2D). This slightly reduces the

cancer cell haptotactic driving force. Additionally, the volume occupancy fractions of

other species are a↵ected by fcl in Case II.

Case III: LOX is Present and Is Coupled to Haptotactic Migration of

Cancer Cells

In Case III, LOX is present in the system, and both the h and g terms are turned

on in the model. In the simulation results (Figure 3.4), besides the recurrence of the

expected phenomena from Cases I and II, a peak for cancer cells evolves over time

away from the primary tumor (x > 0.25) (Figure 3.4C,D). The location of the peak

of cancer cell population density corresponds to trailing the wave of crosslinked ECM

fiber concentration. This suggests that cancer cells that have invaded the ECM via

migration are clustered in the area where there is a high concentration of crosslinked

ECM collagen fibers. Such behavior is the consequence of the haptotaxis e↵ect caused

by the directional motility of cancer cells toward the crosslinked ECM collagen fibers.

Additionally, a smaller, secondary peak appears to the left of the migrating cell front

where conditions are favorable for the secretion of new regular ECM fibers. Results

of Case III have confirmed the capability of our new model to successfully implement

the extended features to capture the cross-linking e↵ect that LOX performs on ECM.
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Figure 3.3: One dimensional numerical results for Case II when LOX (l 6⌘ 0) and its
e↵ect only on the ECM collagen fibers and not on the cancer haptotaxis (g ⌘ 0) is
considered in the modeled system. The results are snapshots of the system dynamics
at four simulation times: (A) t = 0, (B) t = 1, (C) t = 10, and (D) t = 20. For
all four plots, the horizontal axis, x, indicates a dimensionless spatial position, and
the vertical axis, y, indicates the dimensionless population density or concentration
of the species indicated in the legend.
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The results demonstrate how crosslinked fibers enhance the overall migration of cancer

cells.

Figure 3.4: One dimensional numerical results for Case III when LOX (l 6⌘ 0) and its
e↵ects both on the ECM collagen fibers and cancer cells motility are considered in the
modeled system. Results are snapshots of the system dynamics at four simulation
times: (A) t = 0, (B) t = 1, (C) t = 10, and (D) t = 20. For all four plots,
the horizontal axis, x, indicates a dimensionless spatial position, and the vertical
axis, y, indicates the dimensionless population density or concentration of the species
indicated in the legend.

3.6 Local Sensitivity Analysis

Local sensitivity assesses the impact of variations in each parameter on model outputs.

The Case III conditions discussed in Section 3.5 are used. All of the dimensionless

parameters listed in Table 3.2 are considered for the local sensitivity analysis, except

for v̂1, v̂2, and v̂3. The nominal values for the parameters are those listed in Table 3.2.

The sensitivity analysis is conducted by varying each parameter, Pj, at a time by a
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small perturbation �Pj while keeping the other parameters fixed. We define the

time-dependent local sensitivity index S(t) defined as

S(t) =
max

x

|Yi(Pj +�Pj, Pk 6=j, x, t)� Yi(Pj, Pk 6=j, x, t)|

�Pj

(3.25)

where Yi(P, x, t) is the model prediction of the output variable i at position x and

time t evaluated at parameter set P . The parameters and model equations are all

dimensionless, so Equation (3.25) is already normalized. Maximum deviations sorted

with respect to x from the nominal case Yi(Pj, Pk 6=j, x, t) allow for the straightforward

comparison of o↵sets over time due to parameter variations. �Pj is taken to be

an increase of 10%.

We consider S = 1 to be a baseline threshold for categorizing parameter e↵ects

to be sensitive (i.e., a parameter is labeled “sensitive” if S � 1). In Figure 3.5, we

show that, besides D̂c, D̂m, D̂l, ↵̂f , and �̂m, the model outputs up to simulation

time t = 20 are relatively insensitive to the other parameters. c is the output most

sensitive to changes in input parameters, especially D̂c, D̂m, D̂l, ↵̂f , and �̂m (Figure

3.5A). The two local sensitivity curves of parameters �̂m and ↵̂f consistently overlap

each other, indicating that any changes in these two parameters will influence the

model outputs with the same magnitudes over time (Figure 3.5A–C). Additionally,

�̂m and ↵̂f appear to impact the model outputs of c, f , and fcl more profoundly

than others. The outputs of m and l are the most sensitive to particularly the input

parameters relating to chemical production by cancer cells �̂m and �̂l, respectively

(Figure 3.5D–E). From visual inspection of Figure 3.5F, it is clear that the maximum

deviation from the baseline with respect to x occurs for t = 20 near x = 0, and that

�̂l is the most sensitive parameter for this scenario. The sensitivity index accounts for

the same visual detection in a more concise metric. The maximum with respect to x

is considered because the peaks may shift in di↵erent parameter variation scenarios

compared to the locations of the peaks in Figure 3.4, making it di�cult to choose an
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x-position a priori at which the sensitivities can be fairly compared.

Figure 3.5: Local sensitivity index as a function of time assessing the impacts of
10% one-at-a-time increases in dimensionless parameters listed in Table 3.2 on the
following model output variables: (A) the population density of cancer cells, (B)
the concentration of regular ECM fibers, (C) the concentration of crosslinked ECM
fibers, (D) the concentration of MMP, and (E) the concentration of LOX. (F) Model
output profiles for concentration of LOX as a function of position x at at simulation
time t = 20 corresponding to 10% changes in each parameter input. In (A–E), the
baseline marks the threshold value of S = 1. In (F) the baseline marks the nominal
LOX profile.
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Chapter 4

Hybrid Continuum-Discrete Modeling via CompuCell3D

of a Metastatic Tumor Microenvironment

In this chapter, we first introduce the algorithmic framework implemented behind the

operation of a CompuCell3D simulation and the main features of the software package.

CompuCell3D is the main tool we used to build a hybrid model for cancer migration

in a metastatic tumor microenvironment. The simulation developed in this work

consists of two types of interacting environments: (i) the discrete cell field representing

cancer cells; (ii) the chemical fields representing the ECM collagen and the remodeling

enzymes. Components in the chemical fields are modeled by continuous variables.

Cancer cells are modeled as discrete entities residing and confined to a fixed 2D

square lattice structure. The collective behavior and evolution of the cellular agent-

based structures are modeled following the framework of the cellular Potts model,

also called the Glazier-Granner-Hogeweg model in CompuCell3D. The focus of this

work is on the quantitative study of how di↵erent ECM configurations in term of

collagen fiber concentrations influence the spreading trajectories of cells, individually

and collectively, as well as cell migration e�ciency.

4.1 Introduction to CompuCell3D

CompuCell3D is a fully open-source multi-cell, multi-scale modeling environment.

One of the advantages using this software is that it does not require a user to

build sophisticated models from scratch, which also mean users are not required to

have advanced knowledge in programming. A CompuCell3D project often consists
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of CC3DML scripts (XML-based script) where cells’ properties and behaviors are

specified, Python scripts to determine cells’ functions, and .pi↵ files generated from

CellDraw for the model’s initial configuration. The biological aspects of the Compu-

Cell3D simulation are implemented based primarily on the Glazier-Graner-Hogeweg

(GGH) model. [80].

The Glazier-Graner-Hogeweg Model

Unlike other approaches to build physical models of tissues that ignore important

properties and characteristics at a single cell level, GGH model is a discrete cell-based

model. Due to its versatility and extensibility, the GGH model is able to not only

define a single biological model but also incorporate multiple interacting processes

and phenomenon at the cell level occurring at di↵erent length- and time-scales. The

biological elements in a GGH model, called generalized cells, reside on a cell lattice

which could be either two dimensional or three dimensional. Each generalized cell in

a GGH model can be considered as a single biological cell, a group of cells of the same

type, non-cellular components such as the ECM fibers, the di↵using chemical field

or the medium fluid in the surrounding. A model could comprise several di↵erent

cell types. Each cell type could be made up by one or more generalized cells. Each

generalized cell is assigned a unique index and is occupied by a group of one or many

pixels carrying the same index number as illustrated in Figure 4.1 [80]. .

The framework of a GGH model (Figure 4.2) utilizes the e↵ective energy or Hamil-

tonian to define the thermodynamics of behaviors and interactions among the gen-

eralized cells in the simulation. Moreover, the GGH model follows the Metropolis

algorithm to implement the stochastic changes in the cell evolution. The dynamics

of any chemical signals involved is described via a set of reaction-di↵usion partial

di↵erential equations (PDEs) being solved using one of the built-in PDE solver tools

in CompuCell3D [80].
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Figure 4.1: Example of a two-dimensional GGH cell-lattice configuration. Di↵erent
color denotes di↵erent cell type, J(⌧(�~i). Each cell type encompasses one or more
generalized cells represented by discrete entities, here in white or dark color. Each
generalized cell carries a unique index, �~i, here 4 or 7, and is a composite of one or
several pixels, i [80].

Figure 4.2: Flow chart of the GGH framework implemented in CompuCell3D [80].
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The Hamiltonian in Term of E↵ective Energy

The e↵ective energy is determined using the energy function Hamiltonian. This term

is considered the heart of the GGH model. [80] noted that the term ”energy” in the

e↵ective energy does not denote the actual physical energy of the cell but rather a

convenient convention to implement a relatively desirable series of cell’s properties

and behaviors.

The equation for the Hamiltonian used in CompuCell3D is

H =
X

~i,~jneighbors

J

✓
⌧(�~i), ⌧(�~j)

◆✓
1� �(�~i, �~j)

◆
+
X

�

�vol(�)

✓
v(�)� Vt(�)

◆2

(4.1)

Description of all variables and the two summation terms accounted in (4.1) are

listed in Table 4.1.

Table 4.1: Hamiltonian variables and descriptions

Variable Description
H E↵ective energy

~i and ~j Neighboring lattice sites
J Contact energy for a pair of cells
�~i Cell at site ~i
� Kronecker delta

�vol Inverse compressibility, behaves like a Young’s modulus
⌧(�) Cell type of cell �
v(�) Volume of cell �
Vt(�) Target volume

Summation 1 Contact energy for adhesive interactions
Summation 2 E↵ective energy from volume constraint

Metropolis Algorithm

The stochastic, modified Metropolis algorithm is implemented in the GGH framework

to perform the cell dynamics in the simulation. The algorithm calculates and assigns a

probability of movement to a given cell site (or pixel). Specifically, showing in Figure
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4.3 is one of the index-copy attempt examples that is applied every Monte Carlo step

(MCS) to all the pixels present in the simulation lattice, changing from type ~i to

type ~j. In the piecewise function shown in (4.2)), the probability of the index-copy

attemptl occurs with a probability of 100% if the copied pixel goes from the site of

higher to lower H, which results in a negative change in system e↵ective energy �H.

Otherwise, the probability reduces exponentially depending on the cell-membrane

fluctuation Tm (a fixed temperature-like parameter) specified in the XML file (see

Appendix B.1) [80]. Tm represents the probability of acceptance by the system for

an unfavorable thermodynamic move. From the expression defined in (4.2), higher

Tm will result in higher rate of acceptance of any move while lower Tm will be more

applicable for a deterministic model. which might cause the move to be trapped at

the local minima [50]. The stochastic, modified Metropolis algorithm is given as

P (�~i ! �~j) =

8
>><

>>:

1 �H  0

exp

✓
��H

Tm

◆
�H > 0

(4.2)

where P is the probability of cell movement, �H is the e↵ective energy change of the

system for every attempt of index-copy activity, and Tm is the amplitude parameter

of cell-membrane fluctuations.

Python Steppable

Steppables are CompuCell3D modules written in Python and are called at a fixed

interval of MCS (specified by users) during the a simulation. The built-in steppables

are mainly used to tailor cell parameters for adapting and responding to simulation

events, to solve PDEs, to customize simulation initial conditions, or to log simulation

data. Beyond the built-in steppables, CompuCell3D allows users to write their own

steppable(s) to account for distinct functions or phenomena that occur to certain

cell types or chemicals. This feature is what makes CompuCell3D a versatile tool
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Figure 4.3: GGH representation of an index-copy attempt for two cell site on a 2D
square lattice in CompuCell3D. The pixel in white color (source) attempts to replace
the pixel in grey (target). The probability of accepting the index copy is given by
(4.2) [80].

32



and attractive to users with or without strong experience in programming who might

want to build a simple biological model or a more advanced and complicated one that

requires flexibility from user-defined coding [80].

The Main CompuCell3D Environments for Users

Besides the computational kernel of CompuCell3D, the software package provides

three main user-friendly environments including: (i) Twedit++CC3D, a code gen-

erator and editor platform; (ii) CellDraw, where users can customize the shape and

compose the cell lattice as desired; (iii) CC3D player, a graphical user interface that

serves the purpose of running, replaying, and analyzing simulations.

Table 4.2 records the system of units suggested by CompuCell3D for properties

specified in the XML file.

Table 4.2: Fundamental properties and units in Compucell3D

Property Unit
Mass 10�15 kg
Length 10�6m
Time sec
Volume 10�18m3

Lambda volume 109kg ·m�4sec�2

Surface area 10�12m2

Energy 10�27kg ·m2sec�2

Contact energy 10�15 kg-sec�2

Chemotaxis strength 10�27kg ·m2sec�2

Di↵usion coe�cient 10�12m2sec�1

Rate constant for decay sec�1

Rate constant for secretion sec�1

Rate constant for uptake sec

4.2 Simulation Setup

Cell Size and Lattice Dimension

The lattice size of a CC3D model is assigned based on the spatial resolution of the

system being modeled. We start by setting a length scale of 2 µm for each pixel.
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Each generalized cell in our CC3D model is treated as one biological tumor cell. The

diameter of each cell is reported to be approximately 20 µm [77]. Hence, we set the

width of each generalized cell to 10 pixels corresponding to 20 µm. The target cell

size in the simulation is anticipated to be 400µm2 according to [50]. The simulated

tumor mass is a blob of multiple generalized tumor cells congregated in the center of

the simulation lattice in which the initial tumor centroid is positioned at (150,150)

as shown in the red border in Figure 4.4. The blob of tumor cells in the simulation

as a whole called a tumor mass is specified with an initial radius of 50 pixel. The

simulated tumor mass in our case is made up of approximately 69 generalized tumor

cells. This design makes our simulated tumor seems small compared to a realistic

tumor since the number of cells encompassed within one tumor could range from

thousands to millions of cells [77]. Clinically, tumors vary in shape and size. However,

tumor size matters when it comes to planning surgeries or treatment, whereas the

characteristics and migrating behavior of individual tumor cells, especially once they

start metastasizing, do not seem to be much impacted by the size of the tumor itself

[78, 69]. Additionally, our model considers a 2D cross-section of a tumor that has

hundreds of cells in 3D.

Most malignant tumor cells are located at a distance of at most 200 µm away

from the blood vessel [82]. The tumor cells reside near blood vessels to get access

to nutrients, or else the tumor cells either remain quiescent (dormant) or result in

necrosis (death) due to the lack of the blood supply. Hence, we choose a lattice size

of 300⇥ 300 pixels2 to ensure that each cell is able to travel a distance of at least 100

pixels which is equivalent to 200 µm before reaching the lattice boundaries.

Cell Motility and Time Scale

Regarding the cell migration speed, one approach considered by [81] and [50] in

order to relate simulation step from MCS to real time is to compare and match
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10	pixels

10	pixels 1	pixel

Spatial	scale:
1	pixel	=	2	μm

Lattice	size:	300	x	300	x	1	voxel	

Cell	maximum	speed:	0.048	pixel/MCS		(simulation)
vs.	4	μm/hr

Time	scale:
MCS	=	86.4	sec		

Total	number	of	cancer	cells:	69		

Figure 4.4: Spatial and temporal scales setting for the initial configuration of the
simulated tumor (in red borders) in CompuCell3D.

the migration speed of cells obtained from experiments with the speed measured

from the in silico generalized cells. Based on experiments done by [91], the migration

speed for a tumor cell could vary from 2 to 12 µm/hour. To ensure the level of

statistical significance, at least 10 simulations were performed repeatedly using a

tentative set of parameter values and without the haptotaxis e↵ect (which is known

as the chemotaxis plugin in CC3D manuals) turned on. We recorded a maximum

migration speed of 0.048± 0.00618 pixel/MCS for a simulated cancer cell. Matching

this recorded migration speed of 0.048 pixel/MCS to 4 µm/hr reported in [91], each

MCS corresponds to a time scale of 86.4 sec. From this new determined time scale, a

new set of simulated parameter values are calculated and are reported in Table 4.3.

These calculated parameters are mostly related to di↵usion and reaction properties

of chemical components accounted for in the simulation including the uncrosslinked

and crosslinked fibers and enzymes MMP and LOX. Re-running the simulation for

at least 10 more times with the new adjusted set of parameter values, a maximum

cell speed of 0.047± 0.00270 pixel/MCS was recorded confirming that the migration
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speed converged.

Chemical Fields

The chemicals involved in the hybrid model are similar to the continuous model, which

includes the uncrosslinked and crosslinked collagen fiber in the ECM and enzymes

MMP, and LOX. Their reaction-di↵usion models remain the same as (3.3)–(3.7) in-

troduced in Chapter 3. The PDEs are solved using the ReactionDi↵usionSolver –one

of the PDE solvers provided within CompuCell3D that is able to solve a system of N

coupled PDEs of the form

@c1

@t
= D1r2

c1 + f1(c1, c2, ..., cN) (4.3)

@c2

@t
= D2r2

c2 + f2(c1, c2, ..., cN) (4.4)

. . .

@cN

@t
= DNr2

cN + fN(c1, c2, ..., cN) (4.5)

where cj with j = 1, 2, ..., N represents the concentration of the chemical j, Dj is

the di↵usion coe�cient of chemical j, and fj is any functions with coupled variables

involving any set of the chemical species in the system.

In case of large di↵usion coe�cients and an unstable method being used within the

ReactionDi↵usionSolver, instability checks are performed for the equations of MMP

and LOX. Both have the calculated value of D �t

�x2 (where D is the di↵usion coe�cient

of each chemical, t is the time step, and x is the spatial step) exceed the instability

threshold of 0.25 for the 2D model. Hence, adjusting the step size is necessary for

the PDE solvers of each chemical term. This task can be done by adding to each

PDE solver in the XML file N number of <ExtraTimesPerMCS> (see Appendix

B.1), where N satisfies D�t/N

�x2 < 0.25 [80]. The larger value calculated for N , which
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is 175 for the case of the LOX di↵usion field, is used to rescale the step size of the

ReactionDi↵usionSolver for the other chemical fields as well. We did not have to

perform instability checks for the equations for uncrosslinked and crosslinked fibers

because their di↵usion constants are assumed to be zero since fibers do not di↵use.

Haptotaxis Strength toward Fields of Uncrosslinked and Crosslinked Fibers

It has been indicated that haptotaxis plays a vital role in the ability of cancer cells

to metastasize [45]. Haptotaxis is a directional behavior of motile cells up a gradient

of the chemoattractant that is bound on a surface, which are the concentrations

of uncrosslinked and crosslinked fibers in our case. We implement haptotaxis in

our simulation via the chemotaxis plugin in CompuCell3D. This plugin evaluates the

change in the system e↵ective energy �Hchem for pixel-copy attempts associated with

chemotactic motility. �Hchem is defined in CompuCell3D

�Hchem = ��

✓
c(~x)� c(~xsource)

◆
(4.6)

where � > 0 is the chemotaxis strength, or haptotaxis strength in our case, c(~x) and

c(~xsource) indicate the chemical concentrations at the destination and source pixels,

respectively, during the pixel-copy attempts [80]. Accounting for the e↵ective energy

due to chemotactic motility into the Hamiltonian of the GGH model in (4.1), the

total system energy calculated for each pixel-copy attempt now becomes

H =
X

~i,~jneighbors

J

✓
⌧(�~i), ⌧(�~j)

◆✓
1� �(�~i, �~j)

◆
+
X

�

�vol(�)

✓
v(�)� Vt(�)

◆2

�
X

~i

�c~i

(4.7)

where c~i is the chemical concentration at pixel ~i

Simulations were tested at di↵erent haptotaxis strength (�) varied from 0, 50, 100,

200, 500, 1000, 2000, and 5000 to determine the baseline of haptotaxis strength where

the direction of cell motility under influence of haptotaxis dominates the random
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motion e↵ect. Again for the purpose of statistical significance, 10 repeated simulations

were run up to 10000 MCS for each value of haptotaxis strength used. For � values

of 50, 100, and 200, the visual results (not shown here) from simulations are not

significantly di↵erent from the results without haptotaxis in which � = 0. Specifically,

these observations include that the tumor mass remains intact and none of the cells

show an intention of moving toward the haptotactic zones of fibers. This indicates

that a � value of equal to or less than 200 is not high enough for haptotaxis to influence

the cell motility in our case. On the other hand, for � values 500 –5000, at around

5000 MCS, an outward dissemination of cells away from the center of the tumor mass

is clearly noticed (Figure 4.5). In conclusion, a haptotaxis strength � = 500 is chosen

to be the baseline for the cell haptotactic motion to prevail over the free motion of

cells in the simulation.

In Figures 4.6 and 4.7, the simulations were conducted to confirm that haptotaxis

is performed stronger toward crosslinked fibers than toward the uncrosslinked ones.

The haptotaxis tests were performed under the two di↵erent cases of initial distri-

butions of uncrosslinked and crosslinked fiber concentrations: randomly distributed

in Figure 4.6 and uniformly in Figure 4.7. The initial average dimensionless con-

centration of both uncrosslinked and crosslinked fibers in both types of distributions

were set to 0.5. Most of the parameter values used in the simulations followed the

same conditions specified in Table 4.3, except that the rate constants for production

of fibers and LOX crosslinking of fibers were set to 0. The reason for turning o↵

these two terms in this test is to assure that half of the simulation domain was purely

crosslinked fibers on the left and the other half of the simulation domain is purely

uncrosslinked fibers on the right.

Qualitatively, we see that over time more cells are migrating to the left side of the

domain, which is the crosslinked fibers side. This phenomenon is much more profound

in Figure 4.7 where the initial concentration distribution of fibers is uniform.
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!=500 !=1000

!=2000 !=5000

Figure 4.5: Representative snapshots of the crosslinked fiber field at MCS = 5000
from four di↵erent simulations for varying values of haptotaxis strength �: 500, 1000,
2000, and 5000.
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Crosslinked fiber field Uncrosslinked fiber field

MCS = 0

MCS = 5000

MCS = 10000

Figure 4.6: Simulation snapshots of the crosslinked fiber field (left) and uncrosslinked
fiber field (right) at 0, 5000, 8000 MCS (top to bottom) testing the e↵ect of haptotaxis
for an initial randomly distributed crosslinked and uncrosslinked fibers restricted to
the left and right halves of the domain, respectively.
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Crosslinked fiber field Uncrosslinked fiber field

MCS = 0

MCS = 5000

MCS = 10000

Figure 4.7: Simulation snapshots of the crosslinked fiber field (left) and uncrosslinked
fiber field (right) at 0, 5000, 8000 MCS (top to bottom) testing the e↵ect of haptotaxis
for an initial uniformly distributed crosslinked and uncrosslinked fibers restricted to
the left and right halves of the domain, respectively.
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4.3 Partial Nondimensionalization and Parameter Estimation

For the hybrid model introduced in this chapter, non-dimensionalization is performed

for every chemical species in the reaction-di↵usion PDEs for fiber, crosslinked fiber,

MMP, and LOX in (3.3)–(3.7), respectively, following similar methods as in Section

3.2 of Chapter 3. We leave the time (t) and spatial (x) terms in units of MCS and

pixels, respectively. Hence, the subset of dimensionless variables used from (3.8) is

f̃ ⌘ f

fo
, f̃cl ⌘

fcl

fo
, m̃ ⌘ m

mo

, l̃ ⌘ l

lo
(4.8)

Introducing the dimensionless quantities defined in (4.8) into (3.3)–(3.7), the par-

tial dimensionless reaction di↵usion PDEs for all chemical fields utilized for Compu-

Cell3D model can be re-written. For the uncrosslinked fiber,

@f̃

@t
= �(↵fmo)m̃f̃ +

✓
µf

fo

◆�
1� (v1co)c̃� (v2fo)f̃ � (v3fo)f̃cl

�
� h̃ (4.9)

where c̃ represents the state of physical contact with the discrete cancer cell in the

lattice. c̃ = 1 if pixel x belongs to the cancer cell type which is cell type 1 in our case

(see Appendix B.1) . Otherwise, c̃ = 0 if pixel x is the Medium.

The remainder of the chemical field reaction-di↵usion PDEs follow as

@f̃cl

@t
= �(↵fmo)m̃f̃cl + h̃ (4.10)

h̃ = (�f lo)f̃ l̃ (4.11)

@m̃

@t
= Dm

@
2
m̃

@x2
� ↵mm̃+

✓
�mco

mo

◆
c̃ (4.12)

@ l̃

@t
= Dl

@
2
l̃

@x2
� ↵l l̃ +

✓
�lco

lo

◆
c̃ (4.13)

The partial dimensionless parameters that emerge within parentheses are defined
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in Table 4.3. Values for these partial dimensionless parameters are obtained through

calculation from information reported in [57], which are also Table 3.1 and 3.2 of this

document.

Table 4.3: Parameters values used in CompuCell3D model of cancer migration under
the haptotaxis e↵ect from a remodeling ECM

Property Value Unit/ID Comment
Lattice dimension 300⇥ 300⇥ 1 pixel3

Length per pixel 2 µm
Simulation time 10000 MCS
Boltzmann energy (kT ) 10�27 kg ·m2s�2 Assumed
Cell membrane fluctuation (Tm) 50 kT [81]
Pixel copy neighbor order 2 [80]
Adhesion contact neighbor order 2 [80]
Number density of cells 1.25⇥ 109 cells · cm3 Calculated from [50]
Radius of the tumor mass 50 pixel
Size per generalized cell 10⇥ 10⇥ 1 pixel3

Cell migration speed 4 µm · hr�1 [91]
0.048 pixel ·MCS�1 Determined

Real time per MCS 86.4 sec Calculated
Target cell size 400 µm2 [50]

100 pixel2 Calculated
Volume constraint of a cell 1 kT/L6 [50]
Contact energy (J)

medium-medium 0 kT/L2 [80]
medium-cell 32 kT/L2 [8, 50]
cell-cell 40 kT/L2 [8, 50]

Chemotaxis strength toward regular fiber 500 kT Baseline of haptotaxis strength
Chemotaxis strength toward crosslinked fiber 1000 kT Assumed
Di↵usion coe�cient of all fibers 0 pixel2MCS�1 Fibers do not di↵use
Rate constant for natural decay of all fibers 0 MCS�1 Assumed
Rate constant for MMP cleavage of fiber ↵̃f = ↵fmo 7.5⇥ 10�3 MCS�1 Calculated from [4, 57]
Rate constant for LOX remodeling of fiber �̃f = �f lo 1.35⇥ 10�2 MCS�1 Calculated from [57]
Rate constant for production of fiber µ̃f = µf/fo 1.13⇥ 10�4 MCS�1 Calculated from [1, 57]
Space fraction per unit volume of fiber concentration ṽ2 = v2fo 1 Calculated from [35, 57]
Di↵usion coe�cient of MMP Dm 21.6 pixel2MCS�1 Unit conversion from [40, 57]
Rate constant for decay of MMP ↵̃m = ↵m 7.5⇥ 10�7 MCS�1 Calculated from [50, 57]
Rate constant for secretion of MMP by cell �̃m = �mco/mo 7.5⇥ 10�5 MCS�1 Calculated from [49, 57]
Di↵usion coe�cient of LOX Dl 43.2 pixel2MCS�1 Assumed
Rate constant for decay of LOX ↵̃l = ↵l 7.5⇥ 10�7 MCS�1 Assumed
Rate constant for secretion of LOX by cell �̃l = �lco/lo 7.5⇥ 10�5 MCS�1 Assumed

4.4 Initial and Boundary Conditions

Initially, the ECM is a mesh of randomly oriented collagen fibers that are not yet

crosslinked. Hence

f̃cl(x, y, 0) = 0 (4.14)

We also assume a zero concentration of MMP and LOX present in the lattice
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initially

m̃(x, y, 0) = 0 (4.15)

l̃(x, y, 0) = 0 (4.16)

We apply Dirichlet-type boundary conditions along all the x and y boundaries.

Constant values of zero concentrations of crosslinked fibers, MMP, and LOX are as-

sumed at all the four walls of simulation boundaries. Meanwhile, suppose beyond the

simulation boundaries, there are blood vessels that surround the tumor microenviron-

ment. The outer layer of blood vessels consists of mostly collagen fibers. Hence, we

assume there is a constant nonzero amount of uncrosslinked ECM fibers, f̃ , residing

at all the simulation boundaries. Hence, the set of boundary conditions imposed on

each chemical field in the simulation is taken as

f̃cl(x = 0, x = 300, y = 0, y = 300, t) = 0 (4.17)

m̃(x = 0, x = 300, y = 0, y = 300, t) = 0 (4.18)

l̃(x = 0, x = 300, y = 0, y = 300, t) = 0 (4.19)

f̃(x = 0, x = 300, y = 0, y = 300, t) = 1 (4.20)

4.5 Methods of Quantifying Cell Migration

Following similar methods used in [50] to quantify the migration of the cancer cells

in the simulations, two di↵erent methods of distance measurements are considered in

our work: the Euclidean distance and the gyradius, or also known as the radius of

gyration. Each simulation being analyzed is run for a total of 10000 MCS ⇡ 10 days.

Euclidean distance is applied to determine the average displacement for a popula-

tion of 69 simulated cancer cells over a time course of 10000 MCS. The displacement

of a cell from its initial position at MCS = 0 also suggests how persistently on its mi-
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gration path the migrating cell maintains a certain direction. The population average

displacement (D̄) is given as

D̄ =
1

N

NX

j=1

q
(xj,10000 � xj,0)2 + (yj,10000 � yj,0)2 (4.21)

where N is number of cancer cells present in the simulation domain, which is 69 in

our case. The two terms (xj,time,yj,time) indicate the centroid position (also called the

center of mass in CompuCell3D) of the j
th cell at a given MCS here, the initial time

is chosen as MCS = 0 and the selected final time is MCS = 10000.

In cell migration, the gyradius quantity (Rg) characterizes the degree to which

the cell population has spread from the initial tumor centroid. Rg is evaluated at the

end of the simulation at 10000 MCS. The gyradius for a tumor mass of 69 tumor cells

with respect to the center of initial population at a given time is defined as

Rg =

vuut 1

N

NX

j=1

(xj,10000 � xmean)2 + (yj,10000 � ymean)2 (4.22)

where (xmean,ymean) represents the initial tumor centroid position which is (150,150)

in our case.

4.6 Results

Random Distribution of Fiber Concentration Diminishes the Invasion Rate

Multiple physical properties of the ECM including sti↵ness, crosslinking density, pore

size, and alignment of fibers have been indicated as important factors governing the

motility of cells through the matrix [30]. In the simulations testing the haptotactic

movement of cancer cells up gradients toward the uncrosslinked and crosslinked fibers

(Figures 4.6 and 4.7), the invasion extent of the disseminated cells is greater in the

uniform ECM than in the random ECM. Hence, in this section, we conducted sim-
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ulations for varying between two di↵erent distribution modes of fiber concentration,

random and uniform, in the 2D lattice to test if our model can recapitulate the e↵ect

of ECM fiber distribution on the spreading capability of cells. Both simulations with

the random and uniform ECM had initial fiber dimensionless concentrations with the

average value of 0.5. To implement this in the model, we set a value 0.5 everywhere

for the initial condition of fiber concentration in uniform ECM and a random value in

the range [0, 1] for concentration in each fiber pixel for the initial condition of random

ECM. Properties of cancer cells and the tumor mass as well as the other parameters

related to the continuous variables were kept fixed at values in Table 4.3. For each

condition, simulations were run for 10000 MCS and repeated 10 times for statistics.

Data relating to positions of every cancer cell were collected at the initial time when

MCS = 0 and at the final time when MCS = 10000 (⇡ 10 days).

Comparing the system evolution in Figures 4.8 and 4.9, in both of the ECM con-

ditions, cancer cells follow a similar invasion pattern of an arc shape as they disperse

in multiple directions. Since the contact energy between cells specified in Table 4.3

is set quite high (Jcell�cell = 40) indicating a weak cell adhesion, it is anticipated

that the cell invasion mode is going to result in a small cluster of cells or individual

cells. Rate of invasion appears to be higher in the case of uniform ECM (Figure

4.9) in comparison to random ECM (Figure 4.8). After 10000 MCS, the majority

of the disseminated cells in Figrue 4.9 have already reached the lattice boundaries

while those in Figure 4.8 are still a short distance away from reaching the boundaries.

Notice that higher invasion rate does not imply higher cell speed. Every cell has dif-

ferent migration trajectories. One that moves actively might not necessarily invade

e↵ectively as it is possible for a cell to move back to its previous position. To quanti-

tatively verify our observations, the invasion distance and the scattering level of cells

are quantified by the average displacement (D̄) and the gyradius (Rg), respectively.

Results shown in Figure 4.10 confirms that a greater migration (higher D̄ and Rg)
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is demonstrated in the condition where the concentration of ECM fibers is uniformly

distributed. Also, the numerical result from Figure 4.10 for cell displacement D̄ in

random ECM is found to agree to a certain extent with the experimental data for cell

invasion depth over 11 days of the SW620 colon cancer cell line reported from [75]

shown in Figure 4.11. Hence, we recommend the model of random ECM with the

initial condition of fiber concentration distributed randomly in the range [0, 1] with

other properties reported in Table 4.3 as the nominal case for further study beyond

the scope of the present thesis.

Increasing Fiber Concentration Enhances Migration E�ciency

Given that the way fiber concentration is distributed in the domain does have an

influence on cell movement, we propose that fiber concentration is another ECM at-

tribute regulating cell motility, beside other attributes of sti↵ness, crosslink density,

pore size, and alignment of fibers [30] as mentioned earlier. Varying fiber concen-

tration results in changing in pore size, which has been shown to be related to cell

migration [26]. Hence, in the next test, for each ECM distribution mode, random

or uniform, the initial condition of fiber concentration average value was set to 0.25,

0.5, or 0.75. In the case of random ECM, the selected average values of fiber con-

centrations 0.25, 0.5, and 0.75 are generated by keeping width of the distribution the

same while varying the random intervals of fiber concentration in the ranges [0, 0.5],

[0.25, 0.75], and [0.5, 1], respectively. Similar procedures as in previous tests were

followed. 10 repeated simulations were run to 10000 MCS, and cell’s positions were

collected, and analyzed to quantify the migration with D̄ and Rg for each condition.

As a result, though the e↵ect of varying fiber concentration might not be straight-

forwardly demonstrated in Figures 4.12 and 4.13, the quantitative results in Figures

4.14 and 4.15 clearly indicate that in both randomly and uniformly distributed ECM

initial fiber condition, an increasing in fiber concentration also leads to a higher mi-
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Fiber Crosslinked Fiber MMP LOX

MCS = 0

MCS = 3000

MCS = 5000

MCS = 10000

Figure 4.8: Simulation snapshots at four selected simulation times in MCS: 0, 3000,
5000, and 10000 (rows from top to bottom) showing the reaction-di↵usion dynamics
of the chemical fields: uncrosslinked fiber, crosslinked fiber, MMP, and LOX (columns
from left to right) and the trajectories of cancer migration over time through a ran-
domly distributed fiber.

48



Fiber Crosslinked Fiber MMP LOX

MCS = 0

MCS = 3000

MCS = 5000

MCS = 10000

Figure 4.9: Simulation snapshots at four selected simulation times in MCS: 0, 3000,
5000, and 10000 (rows from top to bottom) showing the reaction-di↵usion dynamics
of the chemical fields: uncrosslinked fiber, crosslinked fiber, MMP, and LOX (columns
from left to right) and the trajectories of cancer migration over time through a uni-
formly distributed fiber.
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Figure 4.10: Compared to the uniform distribution, the random distribution of fiber
concentration in the domain hinders the spreading capability of cancer cells resulting
in a lower cancer migration e�ciency. Cell migration metrics under the influence of
two di↵erent modes of fiber distribution, random and uniform, for the same average
dimensionless fiber concentration of 0.5. The migration is quantified in terms of the
population average net displacement (D̄) and the gyradius (Rg) for 69 simulated
cancer cells after 10000 MCS ⇡ 10 days. Error bars represent ± standard deviation
of 10 repeated runs.
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Figure 4.11: Data represent mean cell penetration depth over 11 days for a pair of
isogenic colon carcinoma cell lines SW480 and SW620 in a 3D culture called Alvetex
Sca↵old [75]. Error bars represent ± standard error of mean.
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gration e�ciency (largers values for D̄ and Rg). As in the previous analysis of Figure

4.8–4.10, the cancer cells have a greater migration e�ciency through the uniformly

distributed domains (Figure 4.15) than through the randomly distributed domains

(Figure 4.14).

Fiber�[0, 0.5]

MCS = 0

MCS = 10000

Fiber�[0.25, 0.75] Fiber�[0.5, 1]

Figure 4.12: CompuCell3D simulation snapshots at two selected simulation times:
0 and 10000 MCS (rows from top to bottom) depicting e↵ects on cancer spread for
varying initial fiber concentrations in a random ECM. The initial average fiber dimen-
sionless concentration is set to 0.25, 0.5, or 0.75 by varying the random distribution
range while keeping widths the same by randomly sampling within the ranges [0, 0.5],
[0.25,0.75], or [0.5, 1], respectively (columns from left to right).
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Fiber = 0.25

MCS = 0

MCS = 10000

Fiber = 0.5 Fiber = 0.75

Figure 4.13: CompuCell3D simulation snapshots at two selected simulation times:
0 and 10000 MCS (rows from top to bottom) depicting e↵ects on cancer spread
for varying initial fiber concentrations in a uniform ECM. The initial average fiber
dimensionless concentration is set to 0.25, 0.5, to 0.75 (columns from left to right).
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Figure 4.14: Cell migration metrics for varying the initial average fiber concentration
in a random ECM. The initial average fiber dimensionless concentration is set to 0.25,
0.5, to 0.75 by varying the random distribution range while keeping widths the same
by randomly sampling with the ranges [0, 0.5], [0.25,0.75], or [0.5, 1], respectively.
The migration is quantified in terms of the population average displacement (D̄) and
the gyradius (Rg) for 69 simulated cancer cells after 10000 MCS ⇡ 10 days. Error
bars represent ± standard deviation of 10 repeated runs. For random distribution of
fiber concentration, a low porosity ECM (high concentration of fibers) induces the
migration capability of cancer cells resulting in a higher cancer migration e�ciency.
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Figure 4.15: Cell migration metrics for varying the initial average fiber concentration
in a uniform ECM. The initial average fiber dimensionless concentration is set to
0.25, 0.5, to 0.75. The migration is quantified in terms of the population average
displacement (D̄) and the gyradius (Rg) for 69 simulated cancer cells after 10000
MCS ⇡ 10 days. Error bars represent ± standard deviation of 10 repeated runs. For
uniform distribution of fiber concentration, a low porosity ECM (high concentration
of fibers) induces the migration capability of cancer cells resulting in a higher cancer
migration e�ciency.

55



Chapter 5

Conclusions

In the first work presented in Chapter 3, a continuous model for reactions, di↵usion,

migration, and proliferation in the ECM undergoing dynamic remodeling has been

proposed and analyzed. Case I, which only covers cancer cells, ECM density, and

MMP concentration, has been verified and validated via comparison with a previous

model [4]. The extended features of considering the enzyme LOX and its e↵ect on

ECM and cancer migration are successfully implemented in our new model demon-

strated in Cases II and III. Simulation results of Case III confirmed the capability of

the model to capture the cross-linking e↵ect that LOX performs on ECM and how

cross-linked fibers enhance the overall migration of cancer cells. Based on the current

model, an additional PDE could be included to potentially aid in optimizing drug

transportation into the tumor through the remodeling ECM. This could result in a

better understanding of the various processes that take place within the specific mi-

croenvironment and in the determination of tissue and/or chemical factors that may

inhibit an administered drug from infiltrating the tumor [44].

In the second work presented in Chapter 4, a ybrid model for cancer migration has

been adopted by combining a continuum description of the fibers and remodeling en-

zymes encompassed within a metastatic tumor microenvironment and an agent-based

Glazier-Granner-Hogeweg model of stochastic behavior and movement for discrete in-

dividual cells on a 2D square lattice. Results obtained from the model suggest that

ECM fiber concentration is potentially a regulator of cell motility. For validation,

the quantitative measurement of cell displacement in random ECM from our model
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is found to be comparable to the experimental value of a similar quantity collected

from a 3D culture of colon carcinoma cell line [75]. Further, accounting for additional

biological activities could allow for the model to represent a more complex system.

Our models, in particular, include the role of the enzyme LOX in mathematical

modeling of cancer migration and provide a fundamental understanding for the in-

fluence of ECM remodeling on the migration e�ciency. Future extensions to models

of this kind could potentially guide patient-specific therapies by accounting for drug

actions on inhibiting the e↵ects of LOX or altering or slowing the remodeling rate of

the ECM to slow down or prevent metastasis.
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Appendix A

MATLAB Codes

A.1 PDEs Model Numerical Solution File

Contents

• solve pdepe CancerECM
• Author: Ye Nguyen
• Description of Input and output parameters or variables:
• Input
• Units of Input and output parameters or variables:
• Parameters value (either calculated or tentative)
• PDEs solver pdepe set up and called
• Parameters considered for localsensitivity CancerECM
• Retrive values for each variables from output soln
• Plotting
• Plot 1D numerical solution for the system at t = 0
• Legend set up:
• Plot 1D numerical solution for the system at t = 1
• Plot 1D numerical solution for the system at t = 10
• Plot 1D numerical solution for the system at t = 20
• Export fig
• Define system of PDEs
• Define PDEs system into the framework of pdepe
• Logistic growth/ physical space filling TERM
• Cases:
• Case 1: Withoutout LOX e↵ect
• Case 2: With LOX, NO haptotaxis e↵ect toward cross-link ECM
• Case 3: With LOX AND haptotaxis e↵ect toward cross-link ECM
• Model set up in pdepe form:
• Define the initial conditions at t = t0
• Anderson (2000) conditions for case 1
• Define the boundary condions at x = a = 0 and x = b = 1
• Zero-flux in the left edge
• Anderson (2000) conditions: Zero-flux in both edges
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solve pdepe CancerECM

% % Ouput are tumor cells density; density of non-crosslink and cross-link

% % ECM; concentration of enzyme MMPs and LOXs

% % in a metastatic tumor microenvironment.

% % The model describes the remodeling of ECM due to MMP and LOX and the

% % migration of tumor cells through a remodeling ECM

% The current model is inspired

% from the following primariy previous models of

% Anderson (2000), Gerisch (2008), and Andasari (2011)

% This new model is further improved with extended features

% related to LOX and its effect on the whole system.

function sol = solve_pdepe_CancerECM(varargin)

% default values first

ploton = 0;

Author: Ye Nguyen

Description of Input and output parameters or variables:

% x : Ind. spatial variable

% L : reference length

% t : Ind. simulation time variable

% tau : residence time

% c : Dep. tumor cells density variable

% co : ref. value for c

% D : reference chemical diffusion coefficient

% Dc : diffusion coefficient of tumor cells

% Dc_hat : dimensionless coefficient of Dc

% rho : haptotaxis toward regular ECM

% rho_hat : dimensionless rho

% rho_cl_hat : dimensionless haptotaxis toward cross-link ECM

% gamma : dimensionless proliferation of the primary tumor

% f : dep. non-cross-link ECM density variable

% f_cl : cross-link ECM density

% fo : reference parameter for f and f_cl
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% alpha_f_hat : dimensionless MMPs uptake rate of ECM for degradation

% beta_f_hat : dimensionless LOXs uptake rate of ECM for crosslinkings

% mu_f_hat : dimensionless remodeling rate of ECM

% m : MMPs concentration

% mo : ref value for m

% Dm : diffusion coefficient of enzyme MMPs

% Dm_hat : dimensionless Dm

% alpha_m : decay coefficient of MMPs

% alpha_m_hat : dimensionless alpha_m

% beta_m : secretion rate of MMPs

% beta_m_hat : dimensionless production rates of MMPs

% l : LOXs concentration

% Dl_hat : dimensionless diffusion coefficient of enzyme LOX

% alpha_l_hat : dimensionless decay coefficient of LOXs

% beta_l_hat : dimensionless production rates of LOXs

% epsilon : A positive constant used in I.C.s

Units of Input and output

% L : cm

% x : cm

% t : s

% t0 : s

% c : cells/cm3

% D : cm2/s

% Dc : cm2/s

% rho : cm^2/(s*M)

% gamma : s^(-1)

% f : M
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% f_cl : M

% fo : M

% m, mo : M

% Dm : cm2/s

% l : M

% Dl : cm2/s

% alpha_m : s^(-1)

% beta_m : s^(-1)

Parameter value (calculated or estimated)

co = 6.7*10^7 ; % cell/cm3 Anderson (2000)

fo = 10^(-11) ; % 10^-8 to 10^-11 from Anderson, 2000

mo = 0.1*10^(-9) ; % Andasari(2011)

L = 1 ; % 0.1 to 1 cm

D = 10^(-6) ; % Bray 1992

tau = 32*3600 ; % Anderson(2000)- 8 to 24 hours, take 8 hrs

Dc = 10^(-9) ; %Bray 1992

Dc_hat = Dc*tau/L^2 ; %10^(-3) to 10^(-5) Chaplain (2006)

rho = 2600 ; % Anderson

rho_hat = rho*fo*tau/(L^2);

rho_cl_hat = 0.05 ; % Estimated dominates over non-cross-link ECM

epsilon = 0.001 ; % positive constant used in gamma

alpha_f_hat = 10 ; % Anderson (2000)

mu_f_hat = 0.15 ; % Andasari (2000)

beta_f_hat = 18 ; % Estimated

Dm = 10^(-8) ; % 10^-8 to 10^-10, Anderson(2000), Kumar(2015)

Dm_hat = Dm*tau/L^2 ;

alpha_m = 0.002 ; % sec^(-1) Kumar (2018)

alpha_m_hat = 0.001 ; % estimated based on magnitude ratio between...

% secretion and degration rate in Kumar (2018),...

% i.e. 0.1/0.002~100

beta_m = 0.1 ; % sec^(-1) Kumar (2018) varied rates...
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% from 0.005, 0.1, and 0.5 s^-1

beta_m_hat = 0.1 ; % estimated (as alpha) by Anderson (2000)

Dl_hat = 2*Dm_hat ;

alpha_l_hat = alpha_m_hat ; % assumed equals alpha_m_hat

beta_l_hat = 0.1 ;

PDEs solver ”pdepe” set up

n = 0; %rectangular coordinate for pdepe

xmesh = linspace(0,1,100);

tspan = linspace(0,20,100);

% Read in chang in values if varargin is supplied to

% solve_pdepe_CancerECM(parameters,tspan,ploton)

if nargin > 0

parameters = varargin{1};

Parameters considered for localsensitivity CancerECM.m file

unpack parameters

Dc_hat = parameters(1);

epsilon = parameters(2);

rho_hat = parameters(3);

rho_cl_hat = parameters(4);

alpha_f_hat = parameters(5);

mu_f_hat = parameters(6);

beta_f_hat = parameters(7);

Dm_hat = parameters(8);

alpha_m_hat = parameters(9);

beta_m_hat = parameters(10);

Dl_hat = parameters(11);

alpha_l_hat = parameters(12);

beta_l_hat = parameters(13);

tspan = varargin{2};

ploton = varargin{3};

end
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PDEs solver ”pdepe” gets called

PDEs solver "pdepe

\end{par} \vspace{1em}

options = odeset(’RelTol’,1e-8,’AbsTol’,1e-10);

sol = pdepe(n,@mbpde,@mbic,@mbbc,xmesh,tspan,options);

Retrive values for each variables from output solution

c = sol(:,:,1);

f = sol(:,:,2);

f_cl = sol(:,:,3);

m = sol(:,:,4);

l = sol(:,:,5);

spaceCheck = 1-c-f-f_cl;

%desired output for global sensitivity may be

% cMaxwrtXatFinalT = max(sol(tspan(end),:,1)); % max with respect to x, not

% max change in output wrt x

% fMaxwrtXatFinalT = ...

% ...

% output = [cMaxwrtXatFinalT; fMaxwrtXatFinalT; ...]; % might need to be

% columns instead of rows

Plotting

if ploton == 1

Plot 1D numerical solution for the system at t = 0

%subplot_tight(2.5,2,1, [0.1 0.1])

subplot(2, 2, 1)

hold on

p1 = plot(xmesh,sol(1,:,1),’k’,...

xmesh,sol(1,:,2),’m--’,...

xmesh,sol(1,:,3),’b-.’,...

xmesh,sol(1,:,4),’r.’,...

xmesh,sol(1,:,5),’gh’)

% plot(xmesh, 1-sol(1,:,1)-sol(1,:,2)-sol(1,:,3),’c’)

p1(1).LineWidth = 2;

p1(2).LineWidth = 2;

p1(3).LineWidth = 2;

p1(4).LineWidth = 2;

ylim([0 1.1])
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xlabel(’$x$’,’Interpreter’,’latex’,’FontSize’,15)

ylabel(’$y$’,’Interpreter’,’latex’,’FontSize’,15,’Rotation’,0)

title(’$t = 0$’,’Interpreter’,’latex’,’FontSize’,15)

get(gca);set(gca,’FontSize’,15,’FontName’,’Arial’);

Legend set up:

ledg = legend(’cancer cells’,...

’regular ECM fibers’,...

’cross-linked ECM fibers’,...

’MMP’,...

’LOX’,...

’space check’,...

’position’,[50 50 450 0]) %[left right across height]

set(ledg,’location’,’east’);

ledg.FontSize = 12;

ledg.FontName =’Arial’;

Plot 1D numerical solution for the system at t = 1

%subplot_tight(2.5,2,2, [0.1 0.1])

subplot(2, 2, 2)

hold on

p2 = plot(xmesh,sol(5,:,1),’k’,...

xmesh,sol(5,:,2),’m--’,...

xmesh,sol(5,:,3),’b-.’,...

xmesh,sol(5,:,4),’r.’,...

xmesh,sol(5,:,5),’gd’)

% plot(xmesh, 1-sol(5,:,1)-sol(5,:,2)-sol(5,:,3),’c’)

p2(1).LineWidth = 2;

p2(2).LineWidth = 2;

p2(3).LineWidth = 2;

p2(4).LineWidth = 2;

ylim([0 1.1])

xlabel(’$x$’,’Interpreter’,’latex’,’FontSize’,15)

ylabel(’$y$’,’Interpreter’,’latex’,’FontSize’,15,’Rotation’,0)

title(’$t = 1$’,’Interpreter’,’latex’,’FontSize’,15)

get(gca);set(gca,’FontSize’,15,’FontName’,’Arial’);

Plot 1D numerical solution for the system at t = 10

%subplot_tight(2.5,2,3, [0.1 0.1])

subplot(2, 2, 3)
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hold on

p3 = plot(xmesh,sol(50,:,1),’k’,...

xmesh,sol(50,:,2),’m--’,...

xmesh,sol(50,:,3),’b-.’,...

xmesh,sol(50,:,4),’r.’,...

xmesh,sol(50,:,5),’gd’)

% plot(xmesh, 1-sol(50,:,1)-sol(50,:,2)-sol(50,:,3),’c’)

p3(1).LineWidth = 2;

p3(2).LineWidth = 2;

p3(3).LineWidth = 2;

p3(4).LineWidth = 2;

ylim([0 1.1])

xlabel(’$x$’,’Interpreter’,’latex’,’FontSize’,15)

ylabel(’$y$’,’Interpreter’,’latex’,’FontSize’,15,’Rotation’,0)

title(’$t = 10$’,’Interpreter’,’latex’,’FontSize’,15)

get(gca);set(gca,’FontSize’,15,’FontName’,’Arial’);

Plot 1D numerical solution for the system at t = 20

%subplot_tight(2.5,2,4, [0.1 0.1])

subplot(2, 2, 4)

hold on

p4 = plot(xmesh,sol(100,:,1),’k’,...

xmesh,sol(100,:,2),’m--’,...

xmesh,sol(100,:,3),’b-.’,...

xmesh,sol(100,:,4),’r.’,...

xmesh,sol(100,:,5),’gd’)

% plot(xmesh, 1-sol(100,:,1)-sol(100,:,2)-sol(100,:,3),’c’)

p4(1).LineWidth = 2;

p4(2).LineWidth = 2;

p4(3).LineWidth = 2;

p4(4).LineWidth = 2;

ylim([0 1.1])

xlabel(’$x$’,’Interpreter’,’latex’,’FontSize’,15)

ylabel(’$y$’,’Interpreter’,’latex’,’FontSize’,15,’Rotation’,0)

title(’$t = 15$’,’Interpreter’,’latex’,’FontSize’,15)

get(gca);set(gca,’FontSize’,15,’FontName’,’Arial’);

Export fig - NOTE; Rename cases

set(gcf, ’color’,’w’,’Units’,’inches’,’Position’, [0 0 10 7]);

saveas(gcf, ’Plots/Case.png’)
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export_fig (’Plots/Case’,’-m10’,’-painters’,’-png’)

end

Define system of PDEs

function [a1, a2, a3] = mbpde(x_hat,t_hat,u,DuDx)

Unpack variable y into descriptive variables

c = u(1);

f = u(2);

f_cl= u(3);

m = u(4);

l = u(5);

dcdx = DuDx(1);

dfdx = DuDx(2);

df_cldx = DuDx(3);

dmdx = DuDx(4);

dldx = DuDx(5);

Define PDEs system into the framework of ”pdepe”

Logistic growth/ physical space filling TERM

gamma = exp(-x_hat^2/epsilon);

spaceCheck = (1-c-f-f_cl);

growth = gamma*c*spaceCheck;

Cases:

Case 1: Withoutout LOX e↵ect

g = 0;

h = 0;

D_l = 0;

beta_l_hat = 0;

Case 2: With LOX, NO haptotaxis e↵ect toward cross-link ECM

g = 0;

h = beta_f_hat*f*l;

Case 3: With LOX AND haptotaxis e↵ect toward cross-link ECM

g = -rho_cl_hat*spaceCheck*c*df_cldx;

h = beta_f_hat*f*l;

77



Model set up in ”pdepe” form:

a1 = [1; 1; 1; 1; 1];

a2 = [Dc_hat*dcdx-rho_hat*spaceCheck*c*dfdx+g;...

0;...

0;...

Dm_hat*dmdx;...

Dl_hat*dldx];

a3 = [growth;...

-alpha_f_hat*m*f+mu_f_hat*spaceCheck-h;...

-alpha_f_hat*m*f_cl+h;...

beta_m_hat*c-alpha_m_hat*m;

beta_l_hat*c-alpha_l_hat*l];

end

Define the initial conditions at t = t0

function u0 = mbic(x)

sigma = 0.01; % a positive constant, Anderson (2000)

u0 = [exp(-x^2/sigma);...

1-exp(-x^2/sigma);...

0;...

0;...

0];

Anderson (2000) conditions for case 1

u0 = [exp(-x^2/sigma);...

1-0.5*exp(-x^2/sigma);...

0;...

0.5*exp(-x^2/sigma);...

0];

end

Define the boundary condions at x = a = 0 and x = b = 1

function [pa, qa, pb, qb] = mbbc(xa,ua,xb,ub,t)

Zero-flux in the left edge

pa = [0; 0; 0; 0; 0];

qa = [1; 1; 1; 1; 1];
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pb = [ub(1); ub(2)-1; ub(3); ub(4); ub(5)];

qb = [0; 0; 0; 0; 0];

Anderson(2000) conditions: Zero-flux in both edges

pa = [0; 0; 0; 0; 0];

qa = [1; 1; 1; 1; 1];

pb = [0; 0; 0; 0; 0];

qb = [1; 1; 1; 1; 1];

end

end

A.2 Local Sensitivity Analysis File

Contents

• Project: CancerECM mathematical models
• Parameters considered and their base case values:
• Simulation set up
• Create updated parameters
• Create Ycalc matrix for model output at time values
• Plotting

Project: CancerECM mathematical 1D model

clear all

Parameters considered and their base case values:

Dc_hat = 0.001 ;

epsilon = 0.001 ;

rho_hat = 0.003 ;

rho_cl_hat = 0.05 ;

alpha_f_hat = 10 ;

mu_f_hat = 0.15 ;

beta_f_hat = 18 ;

Dm_hat = 0.001 ;

alpha_m_hat = 0.001 ;

beta_m_hat = 0.1 ;

Dl_hat = 0.002 ;

alpha_l_hat = 0.001 ;

beta_l_hat = 0.1 ;

vector_of_default_parameters = [Dc_hat, epsilon, rho_hat, rho_cl_hat,...

alpha_f_hat, mu_f_hat, beta_f_hat,...
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Dm_hat, alpha_m_hat, beta_m_hat,...

Dl_hat, alpha_l_hat, beta_l_hat];

Simulation set up

xmesh = linspace(0,1,500);

tspan = linspace(0,20,100);

num_cases = 2;

number_of_scenarios = num_cases*length(vector_of_default_parameters);

% each of the 13 default params has two cases, up & down by

% sensitive_range*100%

sensitivity_range = 0.1;

for i = 1:number_of_scenarios+1

parameters(i,:) = vector_of_default_parameters;

end

Create updated parameters

for j = 1:length(vector_of_default_parameters)

parameters(j*num_cases,j) =...

vector_of_default_parameters(j)*(1+sensitivity_range);

parameters(j*num_cases+1,j) =...

vector_of_default_parameters(j)*(1-sensitivity_range);

end

Ycalc_baseline = solve_pdepe_CancerECM(parameters(1,:),tspan,0);

[a,b,~] = size(Ycalc_baseline);

% baseline has no change

normalized_change_Y1 =...

zeros(a,b,2*length(vector_of_default_parameters)+1);

normalized_change_Y2 =...

zeros(a,b,2*length(vector_of_default_parameters)+1);

normalized_change_Y3 =...

zeros(a,b,2*length(vector_of_default_parameters)+1);

normalized_change_Y4 =...

zeros(a,b,2*length(vector_of_default_parameters)+1);

normalized_change_Y5 =...

zeros(a,b,2*length(vector_of_default_parameters)+1);

for j = 2: number_of_scenarios+1
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Create Ycalc matrix for model output at time values

Ycalc = solve_pdepe_CancerECM(parameters(j,:),tspan,0);

% for this example Ycalc has five output vs. distance: Y1 vs. x, Y2,

% Y3, Y4 and Y5 corresponding to c, f, f_cl, m and l in CancerECM model

Y1(:,:,j) = Ycalc(:,:,1);

Y2(:,:,j) = Ycalc(:,:,2);

Y3(:,:,j) = Ycalc(:,:,3);

Y4(:,:,j) = Ycalc(:,:,4);

Y5(:,:,j) = Ycalc(:,:,5);

change_Y1(:,:,j) = abs(Ycalc(:,:,1)-Ycalc_baseline(:,:,1));

change_Y2(:,:,j) = abs(Ycalc(:,:,2)-Ycalc_baseline(:,:,2));

change_Y3(:,:,j) = abs(Ycalc(:,:,3)-Ycalc_baseline(:,:,3));

change_Y4(:,:,j) = abs(Ycalc(:,:,4)-Ycalc_baseline(:,:,4));

change_Y5(:,:,j) = abs(Ycalc(:,:,5)-Ycalc_baseline(:,:,5));

end

for j = 1:length(vector_of_default_parameters)

normalized_change_Y1(:,:,2*j) =...

change_Y1(:,:,2*j)./Ycalc_baseline(:,:,1)/sensitivity_range;

normalized_change_Y1(:,:,2*j+1) =...

change_Y1(:,:,2*j+1)./Ycalc_baseline(:,:,1)/sensitivity_range;

normalized_change_Y2(:,:,2*j) =...

change_Y2(:,:,2*j)./Ycalc_baseline(:,:,2)/sensitivity_range;

normalized_change_Y2(:,:,2*j+1) =...

change_Y2(:,:,2*j+1)./Ycalc_baseline(:,:,2)/sensitivity_range;

normalized_change_Y3(:,:,2*j) =...

change_Y3(:,:,2*j)./Ycalc_baseline(:,:,3)/sensitivity_range;

normalized_change_Y3(:,:,2*j+1) =...

change_Y3(:,:,2*j+1)./Ycalc_baseline(:,:,3)/sensitivity_range;

normalized_change_Y4(:,:,2*j) =...

change_Y4(:,:,2*j)./Ycalc_baseline(:,:,4)/sensitivity_range;

normalized_change_Y4(:,:,2*j+1) =...

change_Y4(:,:,2*j+1)./Ycalc_baseline(:,:,4)/sensitivity_range;

normalized_change_Y5(:,:,2*j) =...

change_Y5(:,:,2*j)./Ycalc_baseline(:,:,5)/sensitivity_range;

normalized_change_Y5(:,:,2*j+1) =...

change_Y5(:,:,2*j+1)./Ycalc_baseline(:,:,5)/sensitivity_range;

end

Plotting

Y1-cancer cells

subplot(4, 2, 1)
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for i = 1:length(tspan)

increasingchange=change_Y1(i,:,2:2:number_of_scenarios+1);

decreasingchange=change_Y1(i,:,3:2:number_of_scenarios+1);

[maxinc,index_maxinc]=max(increasingchange,[],2);

index_maxinc = reshape(index_maxinc,13,1);

increasingVStime(:,i)=reshape(maxinc,13,1)./sensitivity_range;

[maxdec,index_maxdec] = max(decreasingchange,[],2);

index_maxdec = reshape(index_maxdec,13,1);

decreasingVStime(:,i)=reshape(maxdec,13,1)./sensitivity_range;

end

hold on

for i = 1:7

plot(tspan,increasingVStime(i,:),’linewidth’,1)

end

for i = 8:13

plot(tspan,increasingVStime(i,:),’:’,’linewidth’,2)

end

plot(tspan, ones(size(tspan)),’k--’,’linewidth’,1)

ylim([0 3.5])

xlabel(’$t$’,’Interpreter’,’latex’,’FontSize’,15)

ylabel(’Sensitivity’,’Interpreter’,’latex’,’FontSize’,15)

title(’(A) cancer cells’,’Interpreter’,’latex’,’FontSize’,15)

Y2-regular ECM

subplot(4, 2, 2)

for i = 1:length(tspan)

increasingchange=change_Y2(i,:,2:2:number_of_scenarios+1);

decreasingchange=change_Y2(i,:,3:2:number_of_scenarios+1);

[maxinc,index_maxinc]=max(increasingchange,[],2);

index_maxinc = reshape(index_maxinc,13,1);

increasingVStime(:,i)=reshape(maxinc,13,1)./sensitivity_range;

[maxdec,index_maxdec] = max(decreasingchange,[],2);

index_maxdec = reshape(index_maxdec,13,1);

decreasingVStime(:,i)=reshape(maxdec,13,1)./sensitivity_range;

end

hold on
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for i = 1:7

plot(tspan,increasingVStime(i,:),’linewidth’,1)

end

for i = 8:13

plot(tspan,increasingVStime(i,:),’:’,’linewidth’,2)

end

plot(tspan, ones(size(tspan)),’k--’,’linewidth’,1)

ylim([0 1.5])

xlabel(’$t$’,’Interpreter’,’latex’,’FontSize’,15)

ylabel(’Sensitivity’,’Interpreter’,’latex’,’FontSize’,15)

title(’(B) regular ECM fibers’,’Interpreter’,’latex’,’FontSize’,15)

Y3-cross-linked ECM

subplot(4, 2, 3)

for i = 1:length(tspan)

increasingchange=change_Y3(i,:,2:2:number_of_scenarios+1);

decreasingchange=change_Y3(i,:,3:2:number_of_scenarios+1);

[maxinc,index_maxinc]=max(increasingchange,[],2);

index_maxinc = reshape(index_maxinc,13,1);

increasingVStime(:,i)=reshape(maxinc,13,1)./sensitivity_range;

[maxdec,index_maxdec] = max(decreasingchange,[],2);

index_maxdec = reshape(index_maxdec,13,1);

decreasingVStime(:,i)=reshape(maxdec,13,1)./sensitivity_range;

end

hold on

for i = 1:7

plot(tspan,increasingVStime(i,:),’linewidth’,1)

end

for i = 8:13

plot(tspan,increasingVStime(i,:),’:’,’linewidth’,2)

end

plot(tspan, ones(size(tspan)),’k--’,’linewidth’,1)

ylim([0 1.5])

xlabel(’$t$’,’Interpreter’,’latex’,’FontSize’,15)

ylabel(’Sensitivity’,’Interpreter’,’latex’,’FontSize’,15)

title(’(C) cross-linked ECM fibers’,’Interpreter’,’latex’,’FontSize’,15)

83



% set(gca,’Position’,[0.1 .1 0.5 0.1]) %[left bottom width height]

Y4-MMP

subplot(4, 2, 4)

for i = 1:length(tspan)

increasingchange=change_Y4(i,:,2:2:number_of_scenarios+1);

decreasingchange=change_Y4(i,:,3:2:number_of_scenarios+1);

[maxinc,index_maxinc]=max(increasingchange,[],2);

index_maxinc = reshape(index_maxinc,13,1);

increasingVStime(:,i)=reshape(maxinc,13,1)./sensitivity_range;

[maxdec,index_maxdec] = max(decreasingchange,[],2);

index_maxdec = reshape(index_maxdec,13,1);

decreasingVStime(:,i)=reshape(maxdec,13,1)./sensitivity_range;

end

hold on

for i = 1:7

plot(tspan,increasingVStime(i,:),’linewidth’,1)

end

for i = 8:13

plot(tspan,increasingVStime(i,:),’:’,’linewidth’,2)

end

plot(tspan, ones(size(tspan)),’k--’,’linewidth’,1)

ylim([0 1.5])

xlabel(’$t$’,’Interpreter’,’latex’,’FontSize’,15)

ylabel(’Sensitivity’,’Interpreter’,’latex’,’FontSize’,15)

title(’(D) MMP’,’Interpreter’,’latex’,’FontSize’,15)

Y5-LOX

subplot(4, 2, 5)

for i = 1:length(tspan)

increasingchange=change_Y5(i,:,2:2:number_of_scenarios+1);

decreasingchange=change_Y5(i,:,3:2:number_of_scenarios+1);

[maxinc,index_maxinc]=max(increasingchange,[],2);

index_maxinc = reshape(index_maxinc,13,1);

increasingVStime(:,i)=reshape(maxinc,13,1)./sensitivity_range;
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[maxdec,index_maxdec] = max(decreasingchange,[],2);

index_maxdec = reshape(index_maxdec,13,1);

decreasingVStime(:,i)=reshape(maxdec,13,1)./sensitivity_range;

end

hold on

for i = 1:7

plot(tspan,increasingVStime(i,:),’linewidth’,1)

end

for i = 8:13

plot(tspan,increasingVStime(i,:),’:’,’linewidth’,2)

end

plot(tspan, ones(size(tspan)),’k--’,’linewidth’,1)

ylim([0 1.5])

xlabel(’$t$’,’Interpreter’,’latex’,’FontSize’,15)

ylabel(’Sensitivity’,’Interpreter’,’latex’,’FontSize’,15)

title(’(E) LOX’,’Interpreter’,’latex’,’FontSize’,15)

YCalc of only Y5-LOX

p1 = subplot(4, 2, 6)

time = 100;

hold on

for j = 2:2:14

plot(xmesh,Y5(time,:,j),’linewidth’,1)

end

for j = 16:2:number_of_scenarios+1

plot(xmesh,Y5(time,:,j),’:’,’linewidth’,2)

end

plot(xmesh, Ycalc_baseline(time,:,5),’k--’,’linewidth’,1)

ylim([0 1.5])

xlabel(’$x$’,’Interpreter’,’latex’,’FontSize’,15)

ylabel(’Concentration’,’Interpreter’,’latex’,’FontSize’,15)

title(’(F) LOX at t = 20’,’Interpreter’,’latex’,’FontSize’,15)

Set up legend

hL = subplot(4, 2, 7.5);

poshL = get(hL,’position’);

leg1 = legend([p1],...

{’$\hat{D}_c$’,’$\hat{\epsilon}$’,’$\hat{\rho}$’,...

’$\hat{\rho}_{cl}$’,’$\hat{\alpha}_f$’,’$\hat{\mu}_f$’,...

’$\hat{\beta}_f$’, ’$\hat{D}_m$’,’$\hat{\alpha}_m$’,...
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’$\hat{\beta}_m$’, ’$\hat{D}_l$’,’$\hat{\alpha}_l$’,...

’$\hat{\beta}_l$’,’base line’},...

’Interpreter’,’latex’,...

’Orientation’,’horizontal’,’NumColumns’,7); % customize this

set(leg1,’Interpreter’,’latex’); %’location’,’northeastoutside’);

leg1.FontSize = 12

set(leg1,’position’,poshL); % Adjusting legend’s position

axis(hL,’off’);

Export fig - NOTE

set(gcf, ’color’,’w’,’Units’,’inches’,’Position’, [0 0 10 11]);

saveas(gcf, ’LocalSensitivity/FigureCombinedMATLAB.png’)

export_fig(’LocalSensitivity/LocalSensitivity’,’-m10’,’-painters’,’-png’)
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Appendix B

CompuCell3D Codes

B.1 XML File

<CompuCell3D Rev i s ion=”20171121” Vers ion=” 3 . 7 . 7 ”>

<Potts>

<!�� Basic p r op e r t i e s o f CPM (GGH) algor i thm ��>
<Dimensions x=”300” y=”300” z=”1”/>
<Steps>30001</Steps>
<Temperature>50.0</Temperature>
<NeighborOrder>2</NeighborOrder>
<LatticeType>Square</LatticeType>

</Potts>

<Plugin Name=”CellType”>

<!�� L i s t i n g a l l c e l l types in the s imu la t i on ��>
<CellType TypeId=”0” TypeName=”Medium”/>
<CellType TypeId=”1” TypeName=” c e l l ”/>

</Plugin>

<Plugin Name=”Volume”>
<VolumeEnergyParameters CellType=” c e l l ”
LambdaVolume=” 1 .0 ” TargetVolume=”100”/>

</Plugin>

<Plugin Name=”CenterOfMass”>
</Plugin>

<Plugin Name=”Pixe lTracker ”>
</Plugin>

<Plugin Name=”Contact ”>
<Energy Type1=”Medium” Type2=”Medium”>0.0</Energy>
<Energy Type1=”Medium” Type2=” c e l l ”>32.0</Energy>
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<Energy Type1=” c e l l ” Type2=” c e l l ”>40.0</Energy>
<NeighborOrder>2</NeighborOrder>

</Plugin>

<Plugin Name=”Chemotaxis”>
<ChemicalFie ld Name=” f i b e r ”
Source=”React ionDi f fus ionSo lverFE ”>

<ChemotaxisByType Lambda=” 500 .0 ” Type=” c e l l ”/>
</ChemicalField>

<ChemicalFie ld Name=” f i b e r c l ”
Source=”React ionDi f fus ionSo lverFE ”>

<ChemotaxisByType Lambda=” 1000 .0 ” Type=” c e l l ”/>
</ChemicalField>

</Plugin>

<Steppable Type=”React ionDi f fus ionSo lverFE ”>
<Di f f u s i o nF i e l d Name=” f i b e r ”>

<Dif fus ionData>
<FieldName>f i b e r </FieldName>
<Dif fus ionConstant>0</Di f fus ionConstant>
<ExtraTimesPerMCS>175</ExtraTimesPerMCS>
<AdditionalTerm>�7.50E�03⇤MMP⇤ f i b e r
�1.35E�02⇤LOX⇤ f i b e r
+1.13E�04⇤(1� f i b e r� f i b e r c l
�(CellType==1 ? 1 : 0))</AdditionalTerm>

</Di f fus ionData>

<BoundaryConditions>
<Plane Axis=”X”>

<ConstantValue PlanePos i t i on=”Min” Value=” 1 .0 ”/>
<ConstantValue PlanePos i t i on=”Max” Value=” 1 .0 ”/>

</Plane>
<Plane Axis=”Y”>

<ConstantValue PlanePos i t i on=”Min” Value=” 1 .0 ”/>
<ConstantValue PlanePos i t i on=”Max” Value=” 1 .0 ”/>

</Plane>
</BoundaryConditions>

</D i f f u s i onF i e l d>

<Di f f u s i o nF i e l d Name=” f i b e r c l ”>
<Dif fus ionData>

<FieldName>f i b e r c l </FieldName>
<Dif fus ionConstant>0</Di f fus ionConstant>
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<DecayConstant>0</DecayConstant>
<ExtraTimesPerMCS>175</ExtraTimesPerMCS>
<AdditionalTerm>�7.50E�03⇤MMP⇤ f i b e r c l
+1.35E�02⇤LOX⇤ f i b e r </AdditionalTerm>

</Di f fus ionData>

<BoundaryConditions>
<Plane Axis=”X”>

<ConstantValue PlanePos i t i on=”Min” Value=” 0 .0 ”/>
<ConstantValue PlanePos i t i on=”Max” Value=” 0 .0 ”/>

</Plane>
<Plane Axis=”Y”>

<ConstantValue PlanePos i t i on=”Min” Value=” 0 .0 ”/>
<ConstantValue PlanePos i t i on=”Max” Value=” 0 .0 ”/>

</Plane>
</BoundaryConditions>

</D i f f u s i onF i e l d>

<Di f f u s i o nF i e l d Name=”MMP”>
<Dif fus ionData>

<FieldName>MMP</FieldName>
<Dif fus ionConstant >21.6</Di f fus ionConstant>
<ExtraTimesPerMCS>175</ExtraTimesPerMCS>
<AdditionalTerm>�7.50E�07⇤MMP
+(CellType==1 ? 7 .50E�05: 0)</AdditionalTerm>

</Di f fus ionData>

<BoundaryConditions>
<Plane Axis=”X”>

<ConstantValue PlanePos i t i on=”Min” Value=” 0 .0 ”/>
<ConstantValue PlanePos i t i on=”Max” Value=” 0 .0 ”/>

</Plane>
<Plane Axis=”Y”>

<ConstantValue PlanePos i t i on=”Min” Value=” 0 .0 ”/>
<ConstantValue PlanePos i t i on=”Max” Value=” 0 .0 ”/>

</Plane>
</BoundaryConditions>

</D i f f u s i onF i e l d>

<Di f f u s i o nF i e l d Name=”LOX”>
<Dif fus ionData>

<FieldName>LOX</FieldName>
<Dif fus ionConstant >43.2</Di f fus ionConstant>
<ExtraTimesPerMCS>175</ExtraTimesPerMCS>
<AdditionalTerm>�7.50E�07⇤LOX

89



+(CellType==1 ? 7 .50E�05: 0)</AdditionalTerm>

</Di f fus ionData>

<BoundaryConditions>
<Plane Axis=”X”>

<ConstantValue PlanePos i t i on=”Min” Value=” 0 .0 ”/>
<ConstantValue PlanePos i t i on=”Max” Value=” 0 .0 ”/>

</Plane>
<Plane Axis=”Y”>

<ConstantValue PlanePos i t i on=”Min” Value=” 0 .0 ”/>
<ConstantValue PlanePos i t i on=”Max” Value=” 0 .0 ”/>

</Plane>
</BoundaryConditions>

</D i f f u s i onF i e l d>

</Steppable>

<Steppable Type=” B l o b I n i t i a l i z e r ”>
<Region>

<Gap>0</Gap>
<Width>10</Width>
<Radius>50</Radius>
<Center x=”150” y=”150” z=”0”/>
<Types>c e l l </Types>

</Region>
</Steppable>

</CompuCell3D>

B.2 Main Python File

import sys
from os import env i ron
from os import getcwd
import s t r i n g

sys . path . append ( env i ron [ ”PYTHONMODULEPATH” ] )

import CompuCellSetup

sim , s imthread = CompuCellSetup . getCoreS imulat ionObjects ( )

# add ex t ra a t t r i b u t e s here

CompuCellSetup . i n i t i a l i z e S imu l a t i o nOb j e c t s ( sim , s imthread )
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# De f i n i t i o n s o f a d d i t i o n a l Python�managed f i e l d s go here

#Add Python s t e p p a b l e s here
s t eppab l eReg i s t ry=CompuCellSetup . ge tSteppab l eReg i s t ry ( )

from HaptotaxisTest2DSteppables import HaptotaxisTest2DSteppable
s t eppab l e In s t ance=HaptotaxisTest2DSteppable ( sim , f r equency=1)
s t eppab l eReg i s t ry . r e g i s t e r S t e ppab l e ( s t eppab l e In s tance )

#⇤⇤⇤⇤⇤FIBER CONCENTRATINON CASES STUDY⇤⇤⇤⇤⇤⇤

from HaptotaxisTest2DSteppables \
import FiberConcentrationCaseARandom50

instanceOfFiberConcentrationCaseARandom50 \
=FiberConcentrationCaseARandom50 ( s imu l a t o r=sim , f r equency=1)

s t eppab l eReg i s t ry . r e g i s t e r S t e ppab l e \
( instanceOfFiberConcentrationCaseARandom50 )

#from Hapto tax i sTes t2DSteppab le s \
#import FiberConcentrationCaseAUniform50

#instanceOfFiberConcentrationCaseAUniform50 \
#=FiberConcentrationCaseAUniform50 ( s imu l a t o r=sim , f r e quency=1)

#s t e p pa b l eRe g i s t r y . r e g i s t e r S t e p p a b l e \
#( instanceOfFiberConcentrationCaseAUniform50 )

#from Hapto tax i sTes t2DSteppab le s \
#import FiberConcentrationCaseBRandom25

#instanceOfFiberConcentrationCaseBRandom25 \
#=FiberConcentrationCaseBRandom25 ( s imu l a t o r=sim , f r e quency=1)

#s t e p pa b l eRe g i s t r y . r e g i s t e r S t e p p a b l e \
#( instanceOfFiberConcentrationCaseBRandom25 )

#from Hapto tax i sTes t2DSteppab le s \
#import FiberConcentrationCaseBRandom50

#instanceOfFiberConcentrationCaseBRandom50 \
#=FiberConcentrationCaseBRandom50 ( s imu l a t o r=sim , f r e quency=1)

#s t e p pa b l eRe g i s t r y . r e g i s t e r S t e p p a b l e \
#( instanceOfFiberConcentrationCaseBRandom50 )

#from Hapto tax i sTes t2DSteppab le s \
#import FiberConcentrationCaseBRandom75

#instanceOfFiberConcentrationCaseBRandom75 \
#=FiberConcentrationCaseBRandom75 ( s imu l a t o r=sim , f r e quency=1)

#s t e p pa b l eRe g i s t r y . r e g i s t e r S t e p p a b l e \
#( instanceOfFiberConcentrationCaseBRandom75 )
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#from Hapto tax i sTes t2DSteppab le s \
#import FiberConcentrationCaseCUniform25

#instanceOfFiberConcentrationCaseCUniform25 \
#=FiberConcentrationCaseCUniform25 ( s imu l a t o r=sim , f r e quency=1)

#s t e p pa b l eRe g i s t r y . r e g i s t e r S t e p p a b l e \
#( instanceOfFiberConcentrationCaseCUniform25 )

#from Hapto tax i sTes t2DSteppab le s \
#import FiberConcentrationCaseCUniform75

#instanceOfFiberConcentrationCaseCUniform75 \
#=FiberConcentrationCaseCUniform75 ( s imu l a t o r=sim , f r e quency=1)

#s t e p pa b l eRe g i s t r y . r e g i s t e r S t e p p a b l e \
#( instanceOfFiberConcentrationCaseCUniform75 )

#⇤⇤⇤⇤⇤FIBER CONCENTRATINON CASES STUDY⇤⇤⇤⇤⇤⇤

from HaptotaxisTest2DSteppables import LogData
instanceOfLogData=LogData ( s imu l a t o r=sim , f r equency=100)
s t eppab l eReg i s t ry . r e g i s t e r S t e ppab l e ( instanceOfLogData )

#from Hapto tax i sTes t2DSteppab le s import ChemotaxisTest
#instanceOfChemotaxisTest=ChemotaxisTest ( s imu l a t o r=sim , f r e quency=1)
#s t e p pa b l eRe g i s t r y . r e g i s t e r S t e p p a b l e ( instanceOfChemotaxisTest )

CompuCellSetup . mainLoop ( sim , simthread , s t eppab l eReg i s t ry )

B.3 Steppables Python File

from PySteppables import ⇤
import CompuCell
import sys
import random

from PlayerPython import ⇤
import CompuCellSetup
from math import ⇤
import numpy as np
from random import uniform

class HaptotaxisTest2DSteppable ( SteppableBasePy ) :

def i n i t ( s e l f , s imu la tor , f r equency =1):
SteppableBasePy . i n i t ( s e l f , s imu la tor , f r equency )

def s t a r t ( s e l f ) :
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# any code in the s t a r t f unc t i on runs b e f o r e MCS=0
pass

def s tep ( s e l f , mcs ) :
pass

class FiberConcentrationCaseARandom50 ( SteppableBasePy ) :
def i n i t ( s e l f , s imu la tor , f r equency =1):

SteppableBasePy . i n i t ( s e l f , s imu la tor , f r equency )

def s t a r t ( s e l f ) :
f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
f i e l d f i b e r [ x , y , z ] = random . uniform (0 , 1)
f i e l d f i b e r c l [ x , y , z ] = 0

def s tep ( s e l f , mcs ) :
f i b e r c o n c e n t r a t i o n = 0
f i b e r c l c o n c e n t r a t i o n = 0

f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
f i b e r c o n c e n t r a t i o n += f i e l d f i b e r [ x , y , z ]
f i b e r c l c o n c e n t r a t i o n += f i e l d f i b e r c l [ x , y , z ]

f i leName=’CaseA Random 50 . csv ’
try :

f i l eHand l e , fu l lF i l eName=s e l f .open \
Fi l e InS imulat ionOutputDirectory ( f i leName , ”a” )

except IOError :
print ”Could not open f i l e ” , f i leName , ” f o r wr i t i ng . ”
return

print >>f i l eHand l e , mcs , ” , ” , \
f i b e r c on c en t r a t i o n , ” , ” , \
f i b e r c l c o n c e n t r a t i o n

f i l eHand l e . c l o s e ( )

def f i n i s h ( s e l f ) :
return

class FiberConcentrationCaseAUniform50 ( SteppableBasePy ) :
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def i n i t ( s e l f , s imu la tor , f r equency =1):
SteppableBasePy . i n i t ( s e l f , s imu la tor , f r equency )

def s t a r t ( s e l f ) :
f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

#⇤⇤⇤⇤Average 0.5 everywhere :
for x , y , z in s e l f . eve ryP ixe l ( ) :

f i e l d f i b e r [ x , y , z ] = 0 .5
f i e l d f i b e r c l [ x , y , z ] = 0

#⇤⇤⇤⇤Hal f 0 Hal f 1
#fo r x , y , z in s e l f . e v e r yP i x e l ( ) :
# i f x >=150:
# f i e l d f i b e r [ x , y , z ] = 1
# f i e l d f i b e r c l [ x , y , z ] = 0
# e l s e :
# f i e l d f i b e r [ x , y , z ] = 0
# f i e l d f i b e r c l [ x , y , z ] = 0

def s tep ( s e l f , mcs ) :
f i b e r c o n c e n t r a t i o n = 0
f i b e r c l c o n c e n t r a t i o n = 0

f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
f i b e r c o n c e n t r a t i o n += f i e l d f i b e r [ x , y , z ]
f i b e r c l c o n c e n t r a t i o n += f i e l d f i b e r c l [ x , y , z ]

f i leName=’ CaseA Uniform 50 . csv ’
try :

f i l eHand l e , fu l lF i l eName=s e l f .open \
Fi l e InS imulat ionOutputDirectory ( f i leName , ”a” )

except IOError :
print ”Could not open f i l e ” , f i leName , ” f o r wr i t i ng . ”
return

print >>f i l eHand l e , mcs , ” , ” , \
f i b e r c on c en t r a t i o n , ” , ” , \
f i b e r c l c o n c e n t r a t i o n

f i l eHand l e . c l o s e ( )
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def f i n i s h ( s e l f ) :
return

class FiberConcentrationCaseBRandom25 ( SteppableBasePy ) :
def i n i t ( s e l f , s imu la tor , f r equency =1):

SteppableBasePy . i n i t ( s e l f , s imu la tor , f r equency )

def s t a r t ( s e l f ) :
f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
f i e l d f i b e r [ x , y , z ] = random . uniform (0 , 0 . 5 )
f i e l d f i b e r c l [ x , y , z ] = 0

def s tep ( s e l f , mcs ) :
f i b e r c o n c e n t r a t i o n = 0
f i b e r c l c o n c e n t r a t i o n = 0

f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
f i b e r c o n c e n t r a t i o n += f i e l d f i b e r [ x , y , z ]
f i b e r c l c o n c e n t r a t i o n += f i e l d f i b e r c l [ x , y , z ]

f i leName=’CaseB Random 25 . csv ’
try :

f i l eHand l e , fu l lF i l eName=s e l f .open \
Fi l e InS imulat ionOutputDirectory ( f i leName , ”a” )

except IOError :
print ”Could not open f i l e ” , f i leName , ” f o r wr i t i ng . ”
return

print >>f i l eHand l e , mcs , ” , ” , \
f i b e r c on c en t r a t i o n , ” , ” , \
f i b e r c l c o n c e n t r a t i o n

f i l eHand l e . c l o s e ( )

def f i n i s h ( s e l f ) :
return

class FiberConcentrationCaseBRandom50 ( SteppableBasePy ) :
def i n i t ( s e l f , s imu la tor , f r equency =1):

SteppableBasePy . i n i t ( s e l f , s imu la tor , f r equency )
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def s t a r t ( s e l f ) :
f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
f i e l d f i b e r [ x , y , z ] = random . uniform (0 . 2 5 , 0 . 75 )
f i e l d f i b e r c l [ x , y , z ] = 0

def s tep ( s e l f , mcs ) :
f i b e r c o n c e n t r a t i o n = 0
f i b e r c l c o n c e n t r a t i o n = 0

f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
f i b e r c o n c e n t r a t i o n += f i e l d f i b e r [ x , y , z ]
f i b e r c l c o n c e n t r a t i o n += f i e l d f i b e r c l [ x , y , z ]

f i leName=’CaseB Random 50 . csv ’
try :

f i l eHand l e , fu l lF i l eName=s e l f .open \
Fi l e InS imulat ionOutputDirectory ( f i leName , ”a” )

except IOError :
print ”Could not open f i l e ” , f i leName , ” f o r wr i t i ng . ”
return

print >>f i l eHand l e , mcs , ” , ” , \
f i b e r c on c en t r a t i o n , ” , ” , \
f i b e r c l c o n c e n t r a t i o n

f i l eHand l e . c l o s e ( )

def f i n i s h ( s e l f ) :
return

class FiberConcentrationCaseBRandom75 ( SteppableBasePy ) :
def i n i t ( s e l f , s imu la tor , f r equency =1):

SteppableBasePy . i n i t ( s e l f , s imu la tor , f r equency )

def s t a r t ( s e l f ) :
f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
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f i e l d f i b e r [ x , y , z ] = random . uniform ( 0 . 5 , 1 )
f i e l d f i b e r c l [ x , y , z ] = 0

def s tep ( s e l f , mcs ) :
f i b e r c o n c e n t r a t i o n = 0
f i b e r c l c o n c e n t r a t i o n = 0

f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
f i b e r c o n c e n t r a t i o n += f i e l d f i b e r [ x , y , z ]
f i b e r c l c o n c e n t r a t i o n += f i e l d f i b e r c l [ x , y , z ]

f i leName=’CaseB Random 75 . csv ’
try :

f i l eHand l e , fu l lF i l eName=s e l f .open \
Fi l e InS imulat ionOutputDirectory ( f i leName , ”a” )

except IOError :
print ”Could not open f i l e ” , f i leName , ” f o r wr i t i ng . ”
return

print >>f i l eHand l e , mcs , ” , ” , \
f i b e r c on c en t r a t i o n , ” , ” , \
f i b e r c l c o n c e n t r a t i o n

f i l eHand l e . c l o s e ( )

def f i n i s h ( s e l f ) :
return

class FiberConcentrationCaseCUniform25 ( SteppableBasePy ) :
def i n i t ( s e l f , s imu la tor , f r equency =1):

SteppableBasePy . i n i t ( s e l f , s imu la tor , f r equency )

def s t a r t ( s e l f ) :
f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

#⇤⇤⇤⇤Average 0.25 everywhere :
for x , y , z in s e l f . eve ryP ixe l ( ) :

f i e l d f i b e r [ x , y , z ] = 0 .25
f i e l d f i b e r c l [ x , y , z ] = 0

#⇤⇤⇤⇤Hal f 0 Hal f 1
#fo r x , y , z in s e l f . e v e r yP i x e l ( ) :
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# i f x >=150:
# f i e l d f i b e r [ x , y , z ] = 0.5
# f i e l d f i b e r c l [ x , y , z ] = 0
# e l s e :
# f i e l d f i b e r [ x , y , z ] = 0
# f i e l d f i b e r c l [ x , y , z ] = 0

def s tep ( s e l f , mcs ) :
f i b e r c o n c e n t r a t i o n = 0
f i b e r c l c o n c e n t r a t i o n = 0

f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
f i b e r c o n c e n t r a t i o n += f i e l d f i b e r [ x , y , z ]
f i b e r c l c o n c e n t r a t i o n += f i e l d f i b e r c l [ x , y , z ]

f i leName=’ CaseC Uniform 25 . csv ’
try :

f i l eHand l e , fu l lF i l eName=s e l f .open \
Fi l e InS imulat ionOutputDirectory ( f i leName , ”a” )

except IOError :
print ”Could not open f i l e ” , f i leName , ” f o r wr i t i ng . ”
return

print >>f i l eHand l e , mcs , ” , ” , \
f i b e r c on c en t r a t i o n , ” , ” , \
f i b e r c l c o n c e n t r a t i o n

f i l eHand l e . c l o s e ( )

def f i n i s h ( s e l f ) :
return

class FiberConcentrationCaseCUniform75 ( SteppableBasePy ) :
def i n i t ( s e l f , s imu la tor , f r equency =1):

SteppableBasePy . i n i t ( s e l f , s imu la tor , f r equency )

def s t a r t ( s e l f ) :
f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

#⇤⇤⇤⇤Average 0.25 everywhere :
for x , y , z in s e l f . eve ryP ixe l ( ) :

f i e l d f i b e r [ x , y , z ] = 0 .75
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f i e l d f i b e r c l [ x , y , z ] = 0

#⇤⇤⇤⇤Hal f 0 Hal f 1
#fo r x , y , z in s e l f . e v e r yP i x e l ( ) :
# i f x >=150:
# f i e l d f i b e r [ x , y , z ] = 1
# f i e l d f i b e r c l [ x , y , z ] = 0
# e l s e :
# f i e l d f i b e r [ x , y , z ] = 0.5
# f i e l d f i b e r c l [ x , y , z ] = 0

def s tep ( s e l f , mcs ) :
f i b e r c o n c e n t r a t i o n = 0
f i b e r c l c o n c e n t r a t i o n = 0

f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

for x , y , z in s e l f . eve ryP ixe l ( ) :
f i b e r c o n c e n t r a t i o n += f i e l d f i b e r [ x , y , z ]
f i b e r c l c o n c e n t r a t i o n += f i e l d f i b e r c l [ x , y , z ]

f i leName=’ CaseC Uniform 75 . csv ’
try :

f i l eHand l e , fu l lF i l eName=s e l f .open \
Fi l e InS imulat ionOutputDirectory ( f i leName , ”a” )

except IOError :
print ”Could not open f i l e ” , f i leName , ” f o r wr i t i ng . ”
return

print >>f i l eHand l e , mcs , ” , ” , \
f i b e r c on c en t r a t i o n , ” , ” , \
f i b e r c l c o n c e n t r a t i o n

f i l eHand l e . c l o s e ( )

def f i n i s h ( s e l f ) :
return

class LogData ( SteppableBasePy ) :
def i n i t ( s e l f , s imu la tor , f r equency =10):

SteppableBasePy . i n i t ( s e l f , s imu la tor , f r equency )

def s t a r t ( s e l f ) :
IDCount = 1
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for c e l l in s e l f . ce l lL i s tByType ( 1 ) :
c e l l a t t r i b u t e=s e l f . g e tD i c t i ona ryAt t r i bu t e ( c e l l )

# Way to count the amount o f
#gen e r a l i z e d c e l l s f o r a g iven c e l l t ype

c e l l a t t r i b u t e [ ” id ” ] = IDCount
IDCount += 1

def s tep ( s e l f , mcs ) :

#⇤⇤⇤⇤⇤For every c e l l ID o f the same c e l l type ,
#l o g c e l l p o s i t i o n in term of xCOM and yCOM

for c e l l in s e l f . ce l lL i s tByType ( 1 ) :
c e l l a t t r i b u t e=s e l f . g e tD i c t i ona ryAt t r i bu t e ( c e l l )

#Log data in t o mu l t i p l e s epara t e cvs f i l e by c e l l ID
#fi leName=’Cel lPosition COM ’ \

#+s t r ( c e l l a t t r i b u t e [” id ” ] )+ ’ . csv ’

#Log a l l data in t o one cvs f i l e
f i l eName=’ CellPosition COM . csv ’

try :
f i l eHand l e , fu l lF i l eName=s e l f .open \

Fi l e InS imulat ionOutputDirectory ( f i leName , ”a” )
except IOError :

print ”Could not open f i l e ” , f i leName , ” f o r wr i t i ng . ”
return

c e l l a t t r i b u t e=s e l f . g e tD i c t i ona ryAt t r i bu t e ( c e l l )
print >>f i l eHand l e , c e l l . id , ” , ” , \

mcs , ” , ” , \
c e l l .xCOM, ” , ” , \
c e l l .yCOM

f i l eHand l e . c l o s e ( )

#⇤⇤⇤⇤⇤⇤Log MMP and LOX Concentrat ion
MMP = 0
fieldMMP=s e l f . g e tConcent ra t i onF i e ld ( ”MMP” )
for x in xrange ( s e l f . dim . x ) :

for y in xrange ( s e l f . dim . y ) :
for z in xrange ( s e l f . dim . z ) :

MMP += fieldMMP [ x , y , z ] ;

f i l eName=’MMPLOX. csv ’
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try :
f i l eHand l e , fu l lF i l eName=s e l f .open \

Fi l e InS imulat ionOutputDirectory ( f i leName , ”a” )
except IOError :

print ”Could not open f i l e ” , f i leName , ” f o r wr i t i ng . ”
return

print >>f i l eHand l e , mcs , ” , ” , MMP
f i l eHand l e . c l o s e ( )

def f i n i s h ( s e l f ) :
return

class ChemotaxisTest ( SteppableBasePy ) :
def i n i t ( s e l f , s imu la tor , f r equency =1):

SteppableBasePy . i n i t ( s e l f , s imu la tor , f r equency )

def s t a r t ( s e l f ) :
f i e l d f i b e r = s e l f . g e tConcent ra t i onF ie ld ( ” f i b e r ” )
f i e l d f i b e r c l = s e l f . g e tConcent ra t i onF ie ld ( ’ f i b e r c l ’ )

#for x , y , z in s e l f . e v e r yP i x e l ( ) :
# f i e l d f i b e r [ x , y , z ] = 0.5
# f i e l d f i b e r c l [ x , y , z ] = 0

# The h a l f unc ro s s l i n k and h a l f c r o s s l i n k t e s t
for x , y , z in s e l f . eve ryP ixe l ( ) :

i f x >=150:
#f i e l d f i b e r [ x , y , z ] = random . uniform (0 ,1)
f i e l d f i b e r [ x , y , z ] = 0 .5
f i e l d f i b e r c l [ x , y , z ] = 0

else :
f i e l d f i b e r [ x , y , z ] = 0
#f i e l d f i b e r c l [ x , y , z ] = random . uniform (0 ,1)
f i e l d f i b e r c l [ x , y , z ] = 0 .5

101



VITA

YEN T. NGUYEN

Candidate for the Degree of

Master of Science

Thesis: COMPUTATIONAL MODELING OF METASTATIC CANCER MIGRA-
TION THROUGH A REMODELING EXTRACELLULAR MATRIX

Major Field: Chemical Engineering

Biographical:

Education:
Completed the requirement for the Master of Science in Chemical En-
gineering at Oklahoma State University, Stillwater, Oklahoma in July 2018.

Completed the requirement for the Bachelor of Science in Chemical
Engineering at Oklahoma State University, Stillwater, Oklahoma in May
2017.

Experience & Honors:
OSU CEAT Academic Coach in 2015-2016
OSU ChE Grader in 2016
Undergraduate Research Assistant in 2016-2017
Graduate Teaching Assistant in 2017-2018
Women’s Faculty Council Students Research Award Winner in 2018
William Cunningham Award for National AIChE Student Design Compe-
tition–Team Category in 2017

Professional Membership:
American Institute of Chemical Engineers (AIChE)
Biomedical Engineering Society (BMES)
Society of Women Engineers (SWE)
Omega Chi Epsilon –The National Honor Society for Chemical Engineering
Pi Mu Epsilon –U.S. Honorary National Mathematics Society
Phi Kappa Phi –Honor Society


	Introduction
	Cancer Metastasis in the Early Stage
	Rationale
	Objectives

	Overview of the Tumor Microenvironment Components
	Extracellular Matrix
	Matrix Metalloproteinases
	Lysyl Oxidase

	Continuum Modeling of Metastatic Cancer Migration through a Remodeling ECM
	Formulation of the Model Equations
	Nondimensionalization and Parameter Estimation
	Initial and Boundary Conditions
	Numerical Methods and Code Repository
	One Dimensional Results in MATLAB
	Local Sensitivity Analysis

	Hybrid Continuum-Discrete Modeling via CompuCell3D of a Metastatic Tumor Microenvironment 
	Introduction to CompuCell3D
	Simulation Setup
	Partial Nondimensionalization and Parameter Estimation
	Initial and Boundary Conditions
	Methods of Quantifying Cell Migration
	Results

	Conclusions
	References
	MATLAB Codes
	PDEs Model Numerical Solution File
	Local Sensitivity Analysis File

	CompuCell3D Codes
	XML File
	Main Python File
	Steppables Python File


