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CHAPTER I 

INTRODUCTION 

The date palm originated in Saudi Arabia, Iraq, Iran, 

and some of the northern African countries. The date is 

still the traditional agricultural product of its native 

countries. Spanish missionaries introduced the date palm to 

North America. In the United states, most date fruits are 

grown in California, with relatively limited production. 

The Kingdom of Saudi Arabia is the world's largest producer 

of dates, with an annual harvest of more than 480,000 tonnes 

from over 8 million trees representing more than 50 

varieties (Saudi Arabia Ministry of Agr. & Water 1987). 

While most Americans have limited interest in date fruits, 

Saudians are the world's highest consumers. Annual per 

capita consumption averages over 40 kg. 

In the United States, most date processing plants are 

located in California. Plants in Saudi Arabia and the 

United States differ in size and processing operations. 

Processing steps before washing such as harvesting, field 

grading, transportation to plants, and grading are called 

preprocessing. Processing includes the steps from washing 

to packaging. 

There are hundreds of date fruit varieties which vary 
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in texture, color, moisture content, sugar content, size, 

and shape. Overall, date fruits can be categorized into 

three types by moisture content; soft, semi-dry, and dry. 

2 

In general, grading is based on color, size, surface 

defects, and texture. Color is an important factor in 

distinguishing between acceptable date fruits and damaged or 

immature dates. The color of acceptable dates is 

characteristic and relatively uniform. Size is affected by 

variety and the condition of the producing trees. Dates are 

rejected if they are significantly larger or smaller than 

the subjective average size of the dates or contain surface 

defects. Texture is a useful factor for identifying 

overdried "hard" dates. Moisture content is the main 

criterion in date grading in the United States. Uniformity 

of shape is also an important factor in identifying 

overdried dates and dates with surface defects. 

The criteria for grading dates are based on visual 

judgment. Therefore, successful automation requires a 

system which can obtain results similar to those of manual 

graders. Early in the development of digital computers, 

researchers have attempted to design machines with "vision" 

capability (Horn 1987). Coupling a video camera with a 

specialized computer has enabled the development of machines 

capable of visual interpretation. Such machine vision 

systems have gained acceptance in food production 

industries. Many systems have been installed in food 

processing plants for inspection and grading. 
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Researchers continue to study the use of specialized 

machine vision for agricultural products that rely on visual 

inspection. Because color and texture are critical criteria 

in date grading, and since they are based on visual 

perception, color machine vision incorporating texture 

analysis is a potentially useful method for inspecting 

dates. 

Statement of Problem 

In recent years, engineers have made substantial 

progress in automating inspection of fruits and vegetables. 

Date fruits, however, are still graded by hand. 

Manual date inspectors use elasticity, surface texture, 

and color as the main grading criteria (Chesson et al. 

1979). Elasticity is used as an indication of moisture 

content and is determined by touch. Surface texture and 

color indicate moisture and sugar content. These features 

are defined visually. Color is a difficult criterion, 

because perception is affected by lighting intensity and 

distribution, as well as the color spectrum of the light 

source (Davies and Perkins 1991). 

Manual grading of dates carries disadvantages. 

Accuracy fluctuates during the workday as worker 

concentration varies. Cost is high and the labor supply is 

unstable. Automating the grading process is highly desired 

by the date industry. 



Objectives 

The overall objective of this research is to 

investigate the potential of computer vision for inspecting 

and grading dates. Specific objectives are to: 

1. Develop image processing techniques to grade dates into 

quality classes based on color and texture analysis, 

2. Evaluate the accuracy of the techniques by comparison 

with manual inspection. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

As background for the development of a machine vision 

approach to the grading of date fruits, literature was 

reviewed in a number of areas. Pertinent regions covered 

were computer vision applications, date fruits, color, and 

texture analysis. 

Computer Vision Applications 

over the last decade, computer vision has been used 

effectively in food processing applications. Sarkar and 

Wolfe (1985a, b) developed a method to sort fresh market 

tomatoes. They used an area-scan camera with a 530-nm 

interference filter to obtain images of stem and blossom 

ends of individual tomatoes. A light spot surrounded by a 

dark ring identified the stem end and distinguished it from 

the blossom end. Boundary chain code was used to define the 

shape of tomatoes. Size of tomatoes was calculated from the 

area within the chain-coded boundary. Tomato color was 

determined from gray levels within four windows. The system 

sorted tomatoes into two classes ("acceptable" or "reject"), 

with a 3.5% error rate. Error rate increased with more 
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classes or with small tomatoes. 

Rehkughler and Throop (1985) used machine vision to 

sort apples for bruise defects. They used a line-scan 

camera to obtain images. Bruise shape analysis was 

performed by calculating a thinness ratio (ratio of area to 

the square of the perimeter). By thresholding thinness 

ratio between a minimum and a maximum value, clusters of 

circular shape were identified as apple bruises. 

Correlation between measured and predicted areas was 0.84. 

The system was able to classify 30 apples per minute into 

USDA standard grades (XFancy, Fancy, Utility, and Cull). 

6 

Davenel et al. (1988) developed a machine vision system 

to grade Golden Delicious apples for defects. An area-scan 

camera was used with a 550-nm band-pass filter to enhance 

the contrast between good and defective apples. The system 

operated at high speed (5 apples/s), but with a high overall 

error rate (31%). 

Rehkughler and Throop (1989) used image thresholding 

techniques to segment bruised apple tissue. The system 

identified bruised areas with correlation coefficients of 

0.64 to 0.73, with respect to human inspection. Using 

thresholding, the system was able to differentiate between 

bruises and other defects such as scab, bird pecks, insect 

stings, and hail damage. 

Varghese et al. (1991) developed a comprehensive vision 

system to sort apples based on color, surface defects, 

shape, and size. Color classification accuracy was 100%. 



Surface defects were detected with 85% accuracy. 

Kaplan et al. (1984) describe a machine vision system 

for grading lemons. The system had nine production lines, 

each capable of grading 7.5 fruits per second. Grading 

decisions were based on lemon size, color, color contrast, 

and blemish size. The system was capable of grading lemons 

with 100% accuracy. 
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Sunkist developed a machine to grade oranges and lemons 

(Johnson 1985). The system used line-scan cameras to detect 

surface defects, analyze fruit color, and estimate fruit 

size. The system was capable of sorting ten fruits per 

second. 

McClure and Morrow (1987) used a vision system to 

measure the size and shape of potatoes. The system measured 

the three axes with 1% error for the major axis, 0% error 

for the intermediate axis, and 2% error for the minor axis. 

Marchant et al. (1988) presented a machine vision system to 

sort potatoes for size and shape. The system was capable of 

sorting 40 potatoes per second. Tao et al. (1990) also 

described a machine vision system for grading potato size, 

shape, color, damage, disease, and blemishes. Two color 

cameras were used to collect images. Accuracy of the system 

was 90% for green grade detection and 89% for shape 

separation, compared to manual inspection. 

Miller and Delwiche (1988) developed a machine vision 

system to identify maturity of peaches based on color. 

Accuracy of the system was 65%, compared with manual 
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inspection. They later used a machine vision system for 

detecting and identifying peach defects (Miller and Delwiche 

1989). Sample correlation coefficients between predicted 

and measured defect areas ranged from 0.51 to 0.91 for 

surface cuts and scars, respectively. Overall error in 

identifying defects ranged from 26% to 43%. 

Computer vision has been investigated as a method for 

grading bell peppers for orientation and shape (Wolfe and 

Swaminathan 1987). Six area-scan cameras were used to 

obtain six orthogonal views of samples. A Hough transform 

was applied to locate stem and blossom end centers. 

Accuracy of the Hough transform with preprocessing ranged 

from 81% to 95%. The system was capable of defining the 

shape with a 23% overall error rate. Wolfe and Hoernlein 

(1988) measured the ratio of red area to total area on bell 

peppers by using image processing techniques. Various band­

pass filters were tested. Best performance was obtained at 

650 nm, where the correlation coefficient between predicted 

and measured areas was 0.985. 

Delwiche et al. (1990) developed a machine vision 

system to classify defective and acceptable prunes. A line­

scan camera was used to collect images. Algorithms were 

simplified to achieve an inspection rate of 20 prunes per 

second. Classification error was 0% and 1.8% for acceptable 

and defective prunes, respectively. 

A machine vision system for grading carrots for surface 

defects, size, and shape has been reported (Howarth and 
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Searcy 1989). Howarth et al. (1990) used machine vision 

techniques to.identify tip shape. By using the Marquardt 

method (nonlinear least squares), tip shape was described by 

six parameters. The system was capable of grading carrots 

into five classes with a 14% error rate. 

A raisin grading system using computer vision has been 

reported by Okamura et al. (1991). A gradient operator was 

used to detect edges. Texture was determined from wrinkle 

edge density. Angularity, elongation, size, area, and 

luminance were measured as grading criteria. Accuracy of 

the system for three grade classifications was 84% in 

grading substandard raisins, 66% in grading thin-fleshed 

raisins, and 78% in grading fine-wrinkled raisins. The 

accuracy of the system when using two grade classifications 

was 77% in grading thin-fleshed raisins and 78% in grading 

fine-wrinkled raisins. 

Date Fruits 

Previous researchers have attempted to design methods 

to sort dry and semi-dry dates. Chesson et al. (1979) 

developed a vacuum system for separating dates. The system 

contained a press wheel and a drum with three zones of 

variable surface vacuum. The system was capable of 

separating 98% of high-moisture fruit from fresh dates. The 

accuracy of separating freshly harvested dates into three 

classes (Waxy, Number 1 Dry, and Number 2 Dry) was 65%, 70%, 

and 66%, respectively. The date industry requires a minimum 
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accuracy of 85%. Huxsoll and Reznik (1969) used mechanical 

methods to sort dates. Their system required that 

individual dates slide down a 1. 5-m tube inclined at 40 to 

50 degrees from horizontal, onto a metal impingement plate. 

Differences in sliding velocity related to lower friction 

and impingement reaction allowed dry dates to travel farther 

than soft dates and fall into different channels. 

Davies and Perkins (1991) studied the effect of 

lighting intensity and color spectrum on manual grading of 

dates. They noted that increasing the illumination level 

from 62 to 140 footcandles enhanced the visual inspection of 

dates. The combination of cool white and daylight 

fluorescent lighting over a medium green background produced 

the best color contrast between different grades. Their 

previous work showed that using the upper red color spectrum 

for illumination enhanced the contrast between grades. 

Dull et al. (1991) used near-infrared spectrophotometry 

to measure moisture content of whole dates (Deglet Noor 

variety). They measured the radiation that passed through 

the date samples and developed a relationship between 

transmittance and moisture content. Their method was 

capable of grading dates with 74% accuracy. 

The earliest work on sorting dates with machine vision 

was done in 1986 by the VARTEC Co. in California. The 

algorithms in this project were developed to estimate 

moisture content from surface texture. Unfortunately, this 

work is undocumented and no longer active (Brown 1991). 
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Wulfsohn et al. (1989) studied the use of image 

processing techniques on two date varieties (Medjool and 

Zahidi). Their work addressed separating "good" dates from 

"defective" dates using thresholding techniques. A color 

camera was used to collect date images. They found that 

specular reflectance (glare) was a major problem. Relative 

reflectance was .measured in the range of 400 to 1100 nm for 

good and defective dates. The largest differences between 

dry dates and dates with blister defects occurred at 600 nm 

for Medjools and in the 450-600 nm range for the Zahidi 

variety. An infrared cutoff filter was then used for 

obtaining images of both varieties, and an infrared cutoff 

filter combined with an optical filter for Medjools. They 

noted that the red-band image was most effective for 

detecting defective Medjool dates. The green-band image 

performed best with Zahidi dates. 

Color 

Color is the basic description of the visible spectrum 

in terms of electromagnetic radiation. The visible spectrum 

comprises the wavelengths from 400 nm to 700 nm. The human 

eye perceives the color of an object by determining the 

nature of the light reflected from the object in view. 

Sir Isaac Newton discovered the nature of color in 

1704. He showed that sunlight consists of a spectrum of 

colors. The visible colors, so-called primary colors, are 

combinations of red, green, and blue. In 1931, the CIE 



12 

(Commission Internationle de l'Eclairage - the International 

Commission on Illumination) specified the wavelengths of 

primary colors to be 435.8, 546.1, and 700 nm for blue, 

green, and red, respectively. However, humans distinguish 

color based on intensity, hue, and saturation. Intensity 

refers to the brightness of chromatic light. Hue represents 

pure colors that the eye senses such as yellow, orange, red, 

green, etc. Saturation indicates the amount of white light 

mixed with hue. Colors such as lavender (violet+ white) 

are less saturated, whereas the pure colors are totally 

saturated. Chromaticity refers to hue and saturation 

combined. In 1976, CIE developed a chromaticity scale. 

RGB (red, green, blue) and HSI (hue, saturation, 

intensity) are the most commonly used color models. Figure 

1 shows the RGB color cube. The color values have been 

normalized to present a unit cube. The RGB color values are 

at the axis-bound corners of the cube. Yellow, magenta, and 

cyan are at the extended corners. 

while white is at the far corner. 

Black is at the origin, 

The line between the 

black and white corners represents the gray scale. 

The RGB color model is commonly used in cameras, 

television sets, and monitors. Color cameras work in the 

same way as black-and-white cameras, but the image is 

triplicated by separating red, green, and blue signals. The 

RGB model is desirable for obtaining and displaying images, 

but it is computationally intensive when processing the 

image. The RGB model does not represent the human visual 
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Figure 1. RGB Color Cube. 

system. Therefore, processing one component of the RGB 

model to determine the color of an object is meaningless. 

For example, examining the green band of an RGB image of a 

violet object does not support specifying its color. 

The HSI model mimics the human visual system. Figure 2 

shows the color representation scheme. The hue, H, of color 

point Pis the angle between the red axis and CP vector. 

Thus, when H = o0 , the color is red, when His 120° the 

color is green, when His 240° the color is blue, etc. 

Saturation, s, is proportional to the distance from the 

center of the triangle, c, and P. The color is fully 

saturated when the distance between C and Pis at its 

maximum. The perpendicular line passing through the center 

of the HSI color triangle represents the intensity (Fig.2b). 
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Processing the HSI color images is faster and less 

complicated. Each band of HSI system contains meaningful 

information related to the human visual system. Therefore, 

each band can be processed separately. As an example of the 

HSI color model, consider pure red paint. Hue is the red 

color. Since the red is not diluted with white, the paint 

is fully saturated. By adding white color, the paint 

becomes less saturated.· The red color becomes light red. 

Intensity of the paint can be controlled by dimming the 

lights in the room. The intensity decreases as the light 

dims until it becomes black. 

Blue 

. Yellow 

<a> 

Green 

White 

Black 
(b) 

Green Intensity 

Figure 2. (a) HSI Color Triangle, (b) HSI Color Solid. 



The RGB model can be converted to the HSI model. The 

following expressions show the relationship between HSI 

values and RGB values (Gonzalez and Woods 1992). 

I = (1/3)*(R+G+B) (1) 

s = 1 - {3 [MIN (R,G,B)]}/(R+G+B) (2) 

cos-1 { 
(0.5)*[(R-G)+(R-B)] 

} H = (3) 
[(R-G) 2 + (R-G) (G-B)]o.s 

H = 360° - H; if [(B/I) > (G/I) ] (4) 
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Color images contain more information than black-and­

white images. However, color ima~e processing is used less 

frequently than monochrome processing due to increased 

hardware cost, processing complexity, and greater processing 

time. 

Monochrome systems are fully capable of meeting the 

needs of most industrial inspection applications. However, 

many agricultural inspection applications require color 

processing capabilities. Fruits and vegetables are 

typically inspected for color, shape, size, texture, 

defects, etc. Food inspection applications using both true 

color machine vision and black-and-white systems with color 

filters have been reported. 

Unklesbay et al. (1986) studied the color distribution 

of beef ribeye steaks after heat processing. They 

classified steaks into five "doneness" categories (rare, 

medium-rare, medium, medium-well, and well) according to 



16 

traditional internal temperature specification. Images were 

obtained by using a black-and-white vision system through 

three color filters (red, green, blue). The mean, standard 

deviation, skewness, and kurtosis of the R, G, and B 

histograms were determined and used as grading criteria. 

The authors found that the mean and standard deviation were 

most successful in identifying steak doneness classes. 

Accuracy was 80%. 

Meyer et al. (1988) compared the ability of a black­

and-white and a color imaging system to determine the 

percent residue cover on the soil surface. Video and 35-mm 

film cameras were used to obtain field images on tape and 

slides. Images were then transferred to a computer vision 

system. Red and near-infrared high-pass filters were tested 

on the black-and-white system to provide better contrast. 

The authors found that the color system produced higher 

accuracy than the black-and-white system in all cases. 

Ruzhitsky and Ling (1992) developed a machine vision 

system for tomato seedling inspection. A black-and-white 

camera was used with two color filters centered at 671 and 

800 nm. The gray-level ratio from the two images [Icx,y)SOo/ 

Icx,y) 671 J, called the radiant energy sensitivity, was used 

as a feature in classifying tomato seedlings. 

Slaughter and Harrell (1987) reported the use of color 

vision to identify orange fruits in the tree canopy. The 

system was designed to control a picking arm for fruit 

harvest. They used a color decoder to transform recorded 
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video images into RGB images. Look-up tables for each of 

the three color images were developed to distinguish between 

oranges and background. Processing requirements were too 

demanding for real-time operation. 

Color machine vision has been used for detection and 

classification of fungal-damaged soybeans (Wigger et al. 

1988). Ratios of the red, green, and blue color bands were 

used to detect surface color differences. The system was 

able to differentiate between healthy and fungal-damaged 

soybeans with 98% accuracy. Comparing plant pathology 

classification with computer vision classification, fungal­

damaged soybeans were correctly classified in 77 to 91% of 

tested samples. 

Liao et al. {1991) used a color machine vision system 

to classify corn kernel hardness. The system correctly 

measured the vitreous and fl.oury endosperm area of a corn 

kernel, which black-and-white images could not identify. 

The system was capable of classifying 4.3 kernels per 

minute. Ahmad and Reid {1991) reported the study of color 

representation, color calibration, and color quantification 

in corn due to water and nitrogen stress. They considered 

the correlation of color changes with stages of plant 

growth. 

Singh et al. (1992) described a color machine vision 

system to evaluate peach maturity. Classification by color 

machine vision, manual inspection, and colorimeter were 

compared. Machine vision grading agreed with manual 
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classification in 46% of the tests, and with colorimeter 

results in 66% of the tests. ,A look-up table was designed 

using Bayes decision theory to partition the red-green plane 

of the RGB color space into six categories. Algorithms were 

developed for real-time inspection. The system was capable 

of classifying 5-10 fruits per second. 

Texture Analysis 

For more than 25 years, texture analysis has been 

investigated by researchers. Texture analysis is a very 

important technique for characterizing digital images. 

Researchers have developed a number of techniques for 

texture analysis and classification. Their aim was to 

extract texture features for use in object classification. 

Statistical and structural techniques are the two main 

approaches used to analyze texture. Both are based on 

characterization of the stochastic properties of the gray­

level distribution. Statistical analysis characterizes 

texture as being fine, coarse, grainy, etc. The structural 

approach deals with the arrangement of image primitives, and 

is more difficult and complicated. 

Several statistical approaches have been investigated, 

such as autocorrelation function, Fourier Transform, co­

occurrence, gray-level run length, and texture spectrum. 

The autocorrelation function is a feature which 

describes the size of the tonal primitives. It is defined 

as: 
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ACF(m,n) = Ei Ej A(i,j) A(i-m,j-n) (5) 

where: 

A(i,j) is the gray-level image, 

T is the region length, -T~(m,n)~T. 

As the autocorrelation function spreads (larger values of m · 

and n), coarser textures are detected by the function. 

Pratt (1991) showed equations that measure the 

autocorrelation spread: 
T T 

S(u,v) = Lm=O rn=-T (m-lm>u (n-ln>v ACF(m,n) (6) 

where: 
T T 

lm = Lm=O Ln=-T m ACF(m,n) 
T T 

ln = Lm=O Ln=-T n ACF(m,n) 

S(l,1), S(2,2), and S(0,2) and S(2,0) represent the cross­

relation, the second-degree spread, and the profile spreads, 

respectively. Resolution selection is critical in detecting 

texture. For example, a region may exhibit coarse texture 

at low resolution and fine texture at high resolution. The 

autocorrelation function is not a powerful procedure for 

classifying texture. It cannot accurately specify the 

texture of images, because different images may have the 

same autocorrelation function value. 

The Fourier Transform (FT) is a well-known technique 

used in signal processing applications. Han and Feng (1991) 

extracted thirty-three features from the FT of egg shell 

images to detect cracks. The authors used multivariate 

discriminant analysis to analyze the 33 features. They 
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found that cracks were detected with an 88% success ratio. 

Han et al. (1992) used the same procedure for inspection of 

corn kernel stress cracks. Classification accuracy was 96%. 

Although the FT is a powerful technique, it is 

computationally intensive. 

The number of edges per unit area has been used to 

classify textures. The approach can be implemented by 

producing an edge map array E(i,j) such that E(i,j) = 1 for 

a detected edge and E(i,j) = O, otherwise. The following 

equation defines the texture measure: 

(7) 

where Wis the width of the region. Okamara et al. (1991) 

used the edge density approach to classify raisins. 

Haralick et al. (1973) presented the most commonly used 

texture features derived from the co-occurrence matrix. The 

co-occurrence matrix is known as a gray-tone spatially­

dependent matrix. 

The co-occurrence matrix can be specified according to 

relative frequencies. Assume the distance between two 

pixels A(j,k) and A(m,n) is d at angle 0. Then, P.(a,b;d,0) 

represents the co-occurrence matrix in which each pixel is 

quantified over a range O<(a,b)<G-1, where G is the gray 

level. It is necessary to limit the number of angles and 

distances to reduce computation. Figure 3 shows the 

geometry for measuring co-occurrence matrices for a unit 

distance and four angles: o0 , 45°, 90°, and 135°. Figure 4a 
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shows a gray-level image matrix with four gray tones. The 

co-occurrence matrices in four directions are illustrated in 

Figure 4b. The distance, d, is the measured distance 

between a pair of pixels. Thus, when d = 1, the texture­

context information is extracted from the two nearest 

neighboring pixels [i.e. A(i,j) and A(i,j+l)J, when d = 2, 

texture-context information is extracted from the two next 

neighboring pixels [i.e. A(i,j) and A(i,j+2)], etc. This 

method will be described in detail in Chapter VI. 

The features of the co-occurrence matrix have been used 

successfully in many applications. For example, Han and 

Hayes (1988) used the co-occurrence matrix to measure crop 

cover based on the textural difference between soil and 

canopy. 

0 . • 
. 0 • 

0 . . 
• • • 0 • 
. . • • 0 

k 

• 
. . . 
. . 0 
. 0 • 
0 • 

Figure 3. Four Directions of 
the Co-occurrence 
Matrix. 

j 
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0 0 1 1 
A(j,k) 0 0 1 1 

0 2 2 2 
2 2 3 3 

(a) 

4 2 1 0 4 1 0 0 
P(j,k;OO) 2 4 0 0 P(j,k;45°) 1 2 2 0 

1 0 6 1 0 2 4 1 
0 0 1 2 0 0 1 0 

6 0 2 0 2 1 3 0 
P(j,k;90o) 0 4 2 0 P(j,k;135°) 1 2 1 0 

2 2 2 2 3 1 0 2 
0 0 2 0 0 0 2 0 

(b) 

Figure 4. Obtaining the Co-occurrence sets. 
(a) Gray-level Image Matrix, 
(b) Four Co-occurrence Matrices. 

Galloway (1975) derived five texture features from a 

gray-level run-length matrix (GLRLM). Consecutive pixels 

with the same gray-level represent a run. The run length is 

the number of pixels in the run. The GLRLM can be defined 

in four ~irections: horizontal, +45°, vertical, and -45°. 

Figure 5 illustrates the GLRLM sets in the horizontal and 

vertical directions. The five features derived from GLRLM 

were used to measure the size of broccoli heads (Wilhoit et 

al. 1990). Wilhoit et al. applied a GLRLM to distinguish 

the broccoli head from leaves. An exponential relationship 

· between head area and numerical texture measure was 

obtained. The error of head diameter measurement was less 
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1 1 1 1 1 1 1 1 
4 4 4 4 4 4 4 4 

A(j ,k) 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
4 4 4 4 4 4 4 4 

(a) 

k 1 2 3 4 5 6 7 8 k 1 2 3 4 5 6 7 8 
j j 
1 0 0 0 0 0 0 0 4 1 8 0 8 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 • 2 0 0 0 0 0 0 0 0 

I 3 0 0 0 0 0 0 0 0 direction 3 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 2 4 16 0 0 0 0 0 0 0 ' 

(b) 

Figure 5. Obtaining the GLRLM Sets. 
(a) Gray-level Image Matrix, 
(b) Horizontal and Vertical Run-Length 

Matrices. 

than 10%. 

He and Wang (1991) proposed new features based on 

texture spectrum techniques. In this approach, a texture 

unit represents a pixel and its nearest neighbors. The 

texture spectrum is the distribution of texture units and 

characterizes the texture of an image. Figure 6 illustrates 

the development of a texture unit. The texture spectrum 

method will be described in detail in Chapter VI. 

He and Wang (1991) evaluated the performance of texture 

spectrum features for discriminating images of six natural 

textures (beach sand, water, pressed cork, fur hide of an 

unborn calf, beach sand, and pressed calf leather). They 

found that the use of six texture features allowed 

discrimination of the six image categories. 



where: 0 

Ei = { ; 
if Vi< VO 
if Vi= VO 
if Vi> VO 

Vl V2 V3 

VB VO V4 

V7 V6 V5 

3x3 neighborhood 

Texture unit number (NTu) = Li=~ Ei 3(i-l) 

63 28 45 2 0 2 

88 40 35 ~---~~- ..- 6095 2 0 

67 40 21 2 1 0 

V = (40,63,28,45,35,21,40,67,88) ______. 
TU= (2,o,2,o,0,1,2,2) ______. NTu=6095 

Figure 6. Texture Unit. 
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Several researchers have studied different approaches 

to texture analysis in an attempt to identify the most 

effective method. Weszka et al. (1976) showed a comparative 

study of the Fourier spectrum, co-occurrence matrix, and 

GLRLM. They found that performance of the Fourier spectrum 

approach was significantly inferior to that of co-occurrence 

matrix and GLRLM. They also demonstrated that co-occurrence 

matrix was superior to GLRLM. He and Wang (1991) compared 

the performance of three texture spectrum features with that 



of five features of the co-occurrence matrix on synthetic 

aperture radar (SAR) images. They concluded that for the 

example used, texture spectrum features performed more 

effectively in classifying textures. 

Color and Texture 
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Biological materials are rarely separated on the basis 

of one criterion. The classification usually depends on 

color, texture, shape, size, etc. Combining color and 

texture techniques, then, should improve classification, 

compared with either technique alone. Harms et al. (1986) 

extracted both co-occurrence matrix features and GLRLM 

features from RGB color images for blood cell analysis. 

They found that this combination provided more information 

and more accurate identification than texture analysis with 

a black-and-white system. 

Krutz et al. (1991) showed the advantage of applying 

texture analysis to color images, as compared with gray­

level images, for identifying weed seeds. Gray-level run­

length features and twelve features of co-occurrence matrix 

were extracted from gray-level and RGB images. For one 

particular feature, identification accuracy increased from 

43% using gray-level images to 90% when using RGB images. 

The best performance for a single feature was 88% correct 

identification when using gray-level images and 97% when 

using RGB images. 

Shearer and Holmes (1987) used a co-occurrence matrix 
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to discriminate between plant cultivars. Eleven features 

were derived from HSI components. The classification 

accuracy was 81, 64, and 81% for intensity, saturation, and 

hue, respectively. Accuracy was increased to 90% by 

combining three features from the intensity with four 

features from the hue component. 



CHAPTER III 

DATE INSPECTION 

Introduction 

The date palm originated in Saudi Arabia, Iraq, Iran, 

and some of the northern African countries. Spanish 

missionaries introduced the date palm to North America. In 

the United States, most date fruits are grown in California. 

The United States date production is about 18,000 tonnes, 

worth 14 million dollars annually (Wulfsohn et al. 1989). 

Several date varieties are grown in the United States 

including Barhee, Khadrawy, Medjool, Zahidi, and Deglet 

Noor. Barhee is a soft date with a sweet taste. The 

popularity of this variety has increased in recent years. 

Annual production of a Barhee palm is about 300 pounds (136 

kg). The Khadrawy variety is also a soft date, but not as 

popular. Khadrawy palm production ranges from 100 to 150 

pounds (45 to 68 kg) per year. Medjool is a soft date from 

Morocco. It has the largest fruit size among commercial 

varieties. Annual production of this variety is 100 to 150 

pounds (45 to 68 kg) per palm. 

The Zahidi variety is a semi-dry date, popular in the 

United States. A Zahidi palm produces 200 to 300 pounds (91 

to 136 kg) of dates per year. Deglet Noor, a semi-dry date, 
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is the most popular variety in the United States. It 

accounts for more than 80% of United States production. A 

single tree produces 200 to 300 pounds (91 to 136 kg) of 

dates annually. 

Date Identification 
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In the United States, date fruits are inspected and 

graded manually using United States Department of 

Agriculture (USDA) standards. The USDA grading standards 

define six classes of date fruits (USDA 1977): Natural, 

Waxy, Number 1 Dry, Number 2 Dry, Utility (substandard), and 

Cull. The United States date industry, however, uses only 

five classes (Chesson et al. 1979). Utility class is not 

recognized. The moisture content of each class varies with 

variety (soft, semi-dry, or dry) and seasonal weather 

conditions (wet or dry). 

The description of date classes for the Deglet Noor 

variety follows USDA grading standards. Natural dates are 

soft and pliable, and have smooth skin with uniform color 

and little variation between dates. Moisture content is 23% 

or higher. They may require dehydration to prepare them for 

packing. 

Waxy dates are generally firm, but slightly pliable. 

Waxy dates show mild surface wrinkles at the tips. Color of 

individual dates is uniform, but color among dates is quite 

varied (lighter or darker). Moisture content ranges from 20 

to 23%. 



Number 1 Dry dates are usually firm. Fruits of this 

class have a moisture content of 15-19%, with moderate 

surface wrinkle and a reasonably uniform color. They 

require hydration to prepare for packing. 
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Number 2 Dry dates are firm and contain less than 15% 

moisture content. The fruits have a very wrinkled surface, 

and show a fairly uniform color. Preparation for packing 

usually requires hydration. 

Utility dates do not meet the characteristics of the 

above classes, but are still edible. This class is not used 

by the United States date industry. 

Culls comprise dates with surface defects and poorly 

developed dates.· These dates cannot be used for human 

consumption. Dates of this class can be used for animal 

feed or other production such as alcohol and inedible syrup. 

The date industry occasionally combines two or more 

USDA classes into one grade. Dole Dried Fruit and Nut 

Company, Thermal, CA, for example, classifies Deglet Noors 

into three grades; A, B, and c. Grades A and care Natural 

and Cull dates, respectively. Grade B includes Waxy, Number 

1 Dry, and Number 2 Dry dates. 

Date Fruits 

In this research, the Deglet Noor variety was examined. 

Dole Dried Fruit and Nut Company, Thermal, CA provided dates 

which were manually classified by a grading expert following 

USDA grading standards (Davies 1992). Dates from the 1991 



and 1992 harvests were used. The 1991 crop was softer and 

more mature. The season was relatively cool. Date 

production was approximately 30% Grade A, 45% Grade B, and 

25% Grade C (Davies 1992). 

The 1992 growing season was hot. Fruit dried early, 

and the harvest was completed six weeks ahead of schedule. 

Date production was approximately 5% Grade A, 50% Grade B, 

and 45% Grade C (Davies 1992). Figures 7 and 8 show date 

fruits from the 1991 and 1992 crops. 

Figure 7. Representative Dates From the 1991 crop. 
Classes (from Left to Right) are Natural, 
Number 1 Dry, Number 2 Dry, and Cull. 
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Figure 8. Representative Dates From the 1992 Crop. 
Classes (from Left to Right) are Natural, 
Waxy, Number 1 Dry, Number 2 Dry, and Cull. 



CHAPTER IV 

EQUIPMENT 

Introduction 

A computer vision system for automated date grading is 

composed of two functions: image acquisition and image 

analysis. This chapter describes hardware components used 

for images acquisition. The main components are the 

lighting system, camera, image digitization hardware, and 

microcomputer. 

Illumination 

Lighting is one of the most important components in a 

machine vision system. Appropriate lighting reduces 

processing time and the use of expensive hardware and 

software. Lighting should enhance the acquired images in a 

way that simplifies later processing. High contrast between 

inspected features and their backgrounds is desired. 

Several illumination techniques have been defined which are 

generally useful for specific types of applications. These 

techniques include front lighting, back lighting, and 

structured lighting. 

Front lighting is the most widely used method in 

machine vision applications. In this technique, the light 
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source and camera are on the same side of the target object. 

Front lighting is often used for texture or surface feature 

inspection. Back lighting is widely used for dimensional 

measurements. The object is positioned between the camera 

and a uniform light source. The camera views a sharp 

silhouette. 

Structured lighting is most often used to extract 

three-dimensional information. The structured lighting can 

be achieved with directed light. In this technique, the 

camera and light source are on the same side of the target 

object. The light source projects a plane of light at an 

angle with respect to the camera line of sight. The line of 

light created traces the cross-sectional profile of the 

object. By moving the object or using a series of lines of 

light, the machine vision system can use triangulation to 

calculate a three-dimensional map of the object. 

Illumination Sources 

Light source selection is an important factor in 

lighting system design. Illumination uniformity over the 

field-of-view (FOV) and spectral composition of the light 

are primary considerations. Various types of illumination 

sources are available. Incandescent, fluorescent, xenon 

strobe, and laser are the major illumination sources used in 

machine vision applications. Each of these sources has 

unique physical properties, including spectral distribution 

and color temperature. These properties are commonly used 
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for describing light sources. Color temperature of a light 

source is the temperature at which a blackbody radiator 

should be operated to have the same chromaticity as that of 

light source (North American Philips Lighting 1984). 

Incandescent tungsten bulbs are widely used in machine 

vision applications. They operate at a oolor temperature of 

about 2850° K. Their highest radiant energy is in the 

infrared region (800-2000 nm). Tungsten halogen bulbs have 

a more constant visible output. Their color temperature is 

about 3200° K. In some applications, halogen bulbs are 

coupled with fiber-optic bundles to direct light to specific 

locations. 

Fluorescent lamps are designed in various shapes and 

sizes. Fluorescent lamps generate more ultraviolet energy 

than incandescent bulbs. Their color temperature is about 

3500° K (white). Generally, fluorescent lamps are useful in 

inspecting highly reflective parts, because they produce a 

diffuse light. The non-uniform spectral distribution of 

fluorescent lamps causes problems in color systems, because 

the relative outputs in the blue (350-480 nm) and green 

(480-600 nm) regions of spectrum are larger than the 

response of the red region (600-780 nm). 

Xenon tubes are most widely used for inspecting moving 

parts. A xenon tube generates a 1 to 200-microsecond pulse 

which illuminates and freezes the motion of the objects. 

Spectral distribution ranges from 200 to 2000 nm. Color 

temperature is 6000-7000° K, which is similar to daylight 
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(about 6500° K). 

Lasers are used mostly as structured light sources to 

project a line or spot on the target. The use of lasers has 

increased in recent years. 

Lighting System 

For this research, directional front lighting was 

configured to enhance the object surface texture. The light 

source consisted of two light projectors, each equipped with 

a 250W tungsten halogen bulb. The light projector generated 

a uniform light output. 

Figure 9 shows the lighting system as a part of the 

machine vision system. The projectors were positioned on 

opposite sides of the object and inclined about 50 above 

horizontal. Light projected slightly above parallel with an 

object surface causes surface depressions to appear dark 

with highlights from wrinkle ridges or raised points. A 

single light projector can illuminate only about half of the 

field-of-view (FOV) under 50 orientation, because the date 

fruit is cylindrical in shape. Two light projectors were 

used to illuminate all of the FOV. 

A natural wax coating on the surface of some dates 

caused specular reflection. A single polarizing filter 

placed in front of the camera was used to reduce the effect. 
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Figure 9. Block Diagram of Machine Vision system. 

Image Sensor 
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Image sensors used in machine vision applications fall 

into two general categories; Vidicon and solid-state 

cameras. A Vidicon camera utilizes an electron beam to scan 

a photoconductive layer onto which an optical image is 

formed. Solid-state devices consist of a monolithic array 

of closely spaced photodetectors, which are typically 

charge-coupled devices (CCDs). CCDs are manufactured in 

different geometric configurations ranging from linear 

arrays to matrices with various resolutions. 
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Color CCD cameras use either a single sensor overlaid 

with a primary color vertical stripe filter, or use three 

CCDs, one for each primary color. Color cameras with three 

CCDs are more accurate in terms of color separation. 

For date inspection, a Sony Model XC-711 color camera 

was used. Red~ Green, and Blue (RGB) outputs were available 

in parallel as RS-170 signals. The camera used a single CCD 

with 768 (horizontal) and 493 (vertical) pixels. A 50-mm 

(f/1.7) c-mount lens was used. 

Signal Digitization 

A Data Translation Model DT2871 color frame grabber was 

used with an Everex 80486/33e microcomputer for image 

acquisition and processing. The DT2871 had three A/D 

converters which simultanensly digitized the RGB input 

signals into frames with 480 rows, 512 pixels per row, and 8 

bits per pixel, in 1/30 s. The frame grabber was capable of 

converting the RGB signals into HSI (Hue, Sa~uration, and 

Intensity) signals in real time. A library of C language 

subroutines, Aurora, (Data Translation 1991) provided a 

variety of image processing functions, as well as control of 

image digitization and display. 



CHAPTER V 

IMAGE ANALYSIS 

Introduction 

Image analysis encompasses the extraction and 

quantification of image features. The selected features 

should provide a useful description of the inspected object. 

The complexity and difficulty of image analysis can be 

reduced through optimization of the inspection environment. 

Environmental variables include the type of illumination and 

the object background.· 

Image analysis consists of three major functions (Jain 

1989). These functions are imag~ segmentation, feature 

extraction, and image classification. Image segmentation 

involves identifying the region-of-interest (ROI) and 

separating it from the background. The feature extraction 

technique calculates the properties (features) of the 

object. Image blassification assigns the object to one of a 

set of classes, on the basis of measured features. 

Image Segmentation 

Image segmentation involves the use of various 

techniques such as thresholding, boundary detection, 

filtering, template matching, and clustering to define a 
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meaningful region. In this study, image segmentation was 

defined by a 64x64-pixel ROI over the date surface. The ROI 

covered an area of 0.88 cm2 • Locations of the ROI are 

specified in the next chapter. 

Feature ·. Extraction 

Feature ext~action is the procedure of generating 

descriptions of an object in terms of measurable features. 

A feature may be described as a parameter that characterizes 

the relationship between pixels. Extracted features utilize 

the relevant properties of the object, and may be used with 

a classifier to assign the object to a class or grade. 

In this project, surface color and texture were the 

features of interest. Three different approaches to surface 

description were investigated. These approaches are the 

first-order histogram (Pratt 1991) , .the co-occurrence 

matrix, and the texture spectrum. The first-order histogram 

consists of simple statistical features such as the mean of 

histogram. The co-occurrence matrix is the most commonly 

used method for identifying texture (Haralick et al. 1973). 

Texture spectrum is a new technique, presented as a powerful 

texture analysis method by He and Wang (1991). 

The aim of this research is to investigate the 

potential of machine vision color and texture measurements 

for use in automated date grading. Color and texture 

features may be extracted from the RGB component images or 

from the HSI representation. The HSI color system is 



preferred, because it enables faster processing and mimics 

human visual perception. Each color component of the HSI 

image is processed separately. 
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In my preliminary work, Saudian dates (Sifri variety) 

were classified into four grades using thresholding 

techniques. I found that the red and green bands of the RGB 

color system were most effective for classifying dates. 

Processing RGB color system components has potential for 

good classification .. 

First-Order Histogram 

First-order histogram features are of interest, because 

they can be computed quickly. The preliminary investigation 

showed that the mean of the histogram of red and green bands 

could be used to separate dates into four classes with 70% 

accuracy. The mean of each color band (H, s, I, R, G, and 

B) histogram was measured. 

f1 =. (1/D) Ei Ej A(i,j) 

where A(i,j) is the image array and D (area) is 64x64 

pixels. 

co-occurrence Matrix 

The image, A, can be represented as a function in 

LxXLy; A: LxXLy ~L9, where Lx=(O,l, ... ,Nx-1) and 

(8) 

Ly=(O,l, ••• ,Ny-1) are the horizontal and vertical spatial 

domains, respectively. L9=(0,l, ••• ,G-l) is the set of gray 

levels, Nx and Ny are the horizontal and vertical sizes of 
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the image, and G is the number of gray levels. 

The texture-context information in an image, A, is 

specified by the matrix of relative frequencies, Pab' with 

which two neighboring resolution cells separated by 

distance, d, occur on the image; one with gray level, a, and 

the other with gray level, b. The matrix of relative 

frequencies called the co-occurrence matrix is a function of 

the distance, d, betwe.en the neighboring resolution cells, 

as well as a function of the angular relationship, 8, 

between them. The co-occurrence matrix, P(a,b;d,8), can be 

considered as .the joint probability distribution (Pratt 

1991). 

Feature values are dependent on the parameters d and 8 

used to compute the co-occurrence matrix. The direction of 

date surface texture (wrinkles) tends to parallel the major 

axis. · Intensity variation is greatest perpendicular to 

surface texture, therefore, 8 perpendicular to the major 

axis is preferred. The distance between neighboring 

resolution cells was selected to be one (d = 1), because it 

is the optimal distance (Haralick et al. 1973). Thus, when 

d = 1, the texture-context information is extracted from the 

two nearest neighbor pixels, i.e. A(i,j) and A(i,j+l). When 

d = 2, texture-context information is extracted from the 

next two neighboring pixels, i.e. A(i,j) and A(i,j+2), etc. 

The co-occurrence matrix was computed from: 



P(a,b;d=l,8=0)=#{[(j,k), (m,n))€(L~ x Ly)X 
(L~ x Ly), j-m=O, 1k-nl=d, 
A(J,k)=a, A(m,n)=b} (9) 
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where# denotes the number of elements in the set, and 

A(j,k) and A(m,n) are a pair of pixels separated by 

distance, d, at an angle, 8. Size of the matrix, P, ranges 

from o to G-1, where G is the number of gray levels 

[O<(a,b)<G-1). 

The processed matrix, P, should contain a reasonably 

large occupancy level in order to obtain sufficient 

statistical confidence in measuring the features of the co­

occurrence matrix. This condition can be achieved either by 

selecting a large spatial region or restricting the number 

of gray levels. The first approach is susceptible to error 

if the texture changes over a large region. The second 

approach reduces accuracy in measurement of low gray-level 

texture. One heuristic approach is to use 16 gray levels in 

a region 30 to 50 pixels square (Pratt 1991). In this 

study, a 64x64-pixel region with 32 gray levels was used. 

This selection is more helpful in identifying tiny wrinkles 

on the date surface than Pratt's selection. 

The co-occurrence matrix was normalized before texture 

extraction. Additional matrices were pre-computed for later 

use in computing texture features. These additions were 

marginal probability matrices and the sum and difference 

matrices. 
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Matrix normalization: 

P(i,j) 
P(i,j) = 

L L P(i,j) 
(10) 

Marg'inal probability matrices: 

Row sum 

( 11) 

Column sum 

(12) 

Sum & difference matrices: 

Px+yCk) = r r P(i,j); 0~ k ~ 2(N-1) 
k=i+j 

(13) 

Px-yCk) = r r P(i,j); 0~ k ~ (N-1) 
k=li-jl 

(14) 

The following texture features are computed from the 

above matrices (Haralick et al. 1973). These texture 

features (f2 - f 14 ) are described in Table I. 

Angular second moment: 

Correlation: 

where µx and µy, and ax and ay are the means and the 

standard deviations, respectively, of Px and PY. 

Variance: 

(15) 

(16) 

(17) 



· Inverse difference moment: 

P(i,j) 

1 + (i-j) 2 

Entropy: 

f6 = -Li Lj P(i,j) Log2 P(i,j) 

Sum entropy: 

Difference entropy: 

N-1 
fa = -Li Px-y ( i) Log2 Px-y (i) 

Information measures of correlation: 

f 6 - HXYl 
fg = 

MAX (HX, HY) 

flO = {l _ e[-2.0(HXY2 - fS)]}l/2 

Where: 

HX (entropy of PX) = r. l. Px(i) 

HY (entropy of Py) = r. l. Py(i) 

Log2 

Log2 

Px(i) 

Py(i) 

HXYl = -r r P(i,j) Log2 [Px(i) Py(j)] 

HXY2 - -r r Px(i) Py(j) Log2 [Px(i) Py(j)] 

Sum average: 

l"2(N-1) 
fll = Li i 

Contrast: 

N-1 2 N-1 N-1 rn n [Li rj P(i,j)] 
li-jl=n 
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(18) 

(19) 

(20) 

( 21) 

(22) 

(23) 

(24) 

(25) . 

( 26) 

(27) 

(28) 

(29) 
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Sum variance: 

( 30) 

Difference variance: 

f 14 = variance of Px-y ( 31) 

Texture Spectrum 

Texture spectrum features have been applied 

successfully to the processing of radar images (He and Wang 

1991), but have not been demonstrated for surface texture of 

biological materials. Texture spectrum is defined as the 

frequency of occurrence (histogram) of texture units in a 

region. Texture unit value is computed from the 

relationship between a central pixel and its eight nearest 

neighbors. There is no unique way to label the eight 

nearest neighbors. One approach is to select the eight 

pixels in a clockwise order (Fig,. 10). This work employed 

eight ordering ways, 1 - 8, based on the starting neighbor 

[from top-left (a) to middle-left (h)]. Texture unit values 

vary, based on the ordering way, j, where j = 1,2, ... ,8 (the 

ordering ways a, b, .•• ,h are represented, respectively, by 

j = 1,2, •.. ,8). Figure 10 shows a method of computing 

texture units under the ordering ways, j = 1 and j = 3. 

NTu;j=l = (lx1)+(2x3)+(0x9)+(0x27)+(1x81)+(2x243) 

+(2x729)+(0x2187) = 2032 
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a b C g h a 

h Q d f Q b 

g f e e d C 

Ordering way 1 Ordering way 3 

• t' 8 . 3 ( i-1) Texture unit number {NTu) = Li=l Ei 

99 120 80 1 2 0 --.j=l 2032 

98 99 96 -., -.j=3 4219 0 0 

102 111 99 2 2 1 

3x3 data image E1 - E8 values 

Figure 10. Obtaining Texture Units Using Two Different 
Ordering Ways. 

NTu;j=3 = {Oxl)+{Ox3)+{lx9)+{2x27)+(2x8l)+(Ox243) 

+(1X729)+(2X2187) = 4219, 

where NTu;j=l and NTu;j=3 are texture units under ordering 

ways 1 and 3, respectively. A square region of 64x64 pixels 

and 256 gray levels was used in this work to obtain the 

texture spectrum. 

The following texture spectrum features (He and Wang 

1992) were extracted from date images. 

Black-white symmetry: 

f1s = (1-

3279 , 
Li=O 1S(i)-S(6560-i) I 

6560 , 
L i=O S ( 1) 

]xlOO (32) 
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where S(i) is the occurrence frequency of texture unit, i. 

Geometric symmetry: 

JxlOO (33) 
6560 . 

2 X Li=O Sj (i) 

where Sj(i) is the occurrence frequency of the texture unit, 

i, in the texture spectrum under the ordering way, j. 

Degree of direction: 

· 6560 . 
.3 4 ri=O 1sj(i)-Sk(i) I 

= [1-(1/6)lj=l Lk=j+l ---.------JxlOO (34) 

6560 , 
2 X L i=O Sj ( l.) 

Orientation features: 

f1a = r S(i)*HM(i) (35) 

f19 = r S(i)*VM(i) ( 36) 

f20 = r S(i)*DMl(i) (37) 

f21 = r S(i)*DM2(i) (38) 

where HM(i) denotes the horizontal measure of the texture 

unit, i, computed by: 

HM(i) = P(a,b~c) X P(e,f,g) 

where P(a,b,c) represents the number of elements having the 

same value in Ea, Eb, and Ee (Figs. 6 and 10). 

O if value of a< value of Q 
Ea = { 21 if value of a = value of Q 

if value of a> value of Q. 

Similarly, VM(i), DMl(i), and DM2(i) denote the vertical, 
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first diagonal, and second diagonal measures of the texture 

unit, i, respectively. These measures can be computed from: 

VM(i) = P(a,h,g) X P(c,d,e) 

DMl(i) = P(h,a,b) X P(d,e,f) 

DM2(i) = P(b,c,d) x P(f,g,h). 

Central symmetry: 

6560 
f22 = Li=O S(i) X [K(i) ] 2 (39) 

where K(i) is the number of pairs having the same value in 

elements (Ea, Ee), (Eb, Ef), (Ee, E9), and (Ea, Ef) (Figs. 6 

and 10). 

The texture features described above were extracted 

from the color image components; R, G, B, H, s, and I. For 

example, the feature f 10 computed from the green band is 

denoted G10 • Table I lists the physical interpretation of 

each feature, given a 64x64-pixel region. 

Image Classification 

Image classification is the most critical step in 

pattern recognition application. There are three main 

approaches. They are neural networks, syntactic, and 

statistical. Neural networks are based on a model of the 

brain's computational process. The syntactic approach 

utilizes the structure of a pattern in a discrimination 

process. The statistical approach can be subdivided into 

parametric and nonparametric methods. Parametric methods 

are appropriate when samples have an approximately normal 
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DESCRIPTION OF FEATURES 
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Feature Description 

fl 

· f2 

f3 

f4 

f5 

f6 

f7 

f8 

f9-
f10 

fll 

Mean is a measure of image brightness. 

Angular second moment is a measure of the 
image homogeneity. It produces high values for 
high frequencies of occurrence in the matrix. 

Correlation is a measure of the intensity of 
linear dependencies in the image. It gives high 
values if frequencies of occurrence are located in 
the (63,63) corner. Most of the contribution 
comes from the values close to the diagonal, (O,O) 
to ( 63, 63) . 

Sum of squares (variance) is a measure of the 
variance of image intensity derived from the co­
occurrence matrix. It gives zero value if the 
gray levels in the image have the same intensity. 

Inverse difference moment measures image contrast. 
It gives high values if frequencies of occurrence 
are located around the (O,O) to (63,63) diagonal. 

Entropy is a measure of the scattered patterns in 
the image. For example, an image with half black 
and half white has a lower entropy than an image 
with a black and white checker-board pattern. 

Sum entropy is a measure of the scattered patterns 
in the right diagonal, (0,63) to (63,0). 

Difference entropy is a measure of the scattered 
patterns in the left diagonal, (O,O) to (63,63). 

Information measures of correlation are a very 
complex measure and do not have a physical 
interpretation, except that (f9) is a ratio of 
entropies. 

Sum average is a measure of frequencies of 
occurrence concentrated in the right diagonal, 
(O,O) to (63,63). It gives high values if the 
frequencies of occurrence are located in the 
(63,63) corner. 



TABLE I (Continued) 

Feature Description 

f12 This feature measures the contrast in the co­
occurrence matrix. It gives high values if most 
frequencies are concentrated in the two corners, 
(0,63) and (63,0). 

f13 Sum variance is a measure of the variance of the 
frequencies occurring around the right diagonal, 

· ( o , o) to ( 6 3 , 6 3 ) • 

f14 Difference variance measures the variance of the 
frequencies occurring around the left diagonal, 
( o , 6 3 ) to ( 6 3 , o ) . 
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f15 Black-white symmetry is a measure of the symmetry 
between the left half and the right half of the 
texture spectrum.· The feature values were 
normalized from o to 100. This feature gives low 
value if the two halves are symmetrical. 

f16 Geometric symmetry is a measure of the shape 
regularity of the image. The feature values were 
normalized from Oto 100. A value of 100 means 
that the image and its image rotated 100° are 
identical. 

f17 Degree of direction measures the degree of linear 
structure within the image. The feature values 
were normalized from Oto 100. A high value 
indicates that the image has some linear 
structure. 

f18- Orientation features are measures of the image 
f21 structure. The feature (f18) measures the 

micro-horizontal structure. A high value of (f18) 
means that the micro-structure of the image is 
horizontal. The same description can be applied 
to the other three features (f19-f21), which 
measure the vertical, first diagonal, and second 
diagonal micro-structure of the image, 
respectively. 

f22 This feature measures the central symmetry of 
texture unit. 
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distribution within each class. The Bayes classifier is an 

example of a parametric classifier. Nonparametric methods 

are appropriate when data distributions are not normal. The 

SAS software package provides discriminant analysis 

procedures for both parametric and nonparametric methods 

(SAS Institute Inc. 1988). 

Bayes Classifier 

The Bayes classifier function is specified by the mean 

vector and the covariance matrix of each class (Gonzalez and 

Woods 1992). The Bayes decision function is 

di(x)=ln(qi)-(1/2)ln(ICOVil) 

( 40) 

where: 

is the prior probability of membership in class, 

i, 

is the covariance matrix within class, i, 

is the determinant .of covi, 

is the number of variables, 

mi is the p-dimensional vector containing variable 

means in class, i, 

x is the p-dimensional vector containing the 

variable of an observation, 

ln() is the natural log, 

The observation xis classified into class, i, when the 

value of decision function, di(x), is the largest. 
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Nonparametric 

Nonparametric classification functions are based on the 

estimated probability density of the class. The nearest­

neighbor and the kernel are the two main methods used to 

estimate nonparametric probability density. The nearest 

neighbor and kernel densities at a point are estimated from 

cells located at that point. The nearest neighbor method 

fixes the number, k, of design set points and obtains the 

volume which contains the nearest k. From this number and 

volume, the probability density may be estimated. The 

kernel method, on t.he other hand, fixes the volume and 

obtains the value of kin this volume. Again, from the 

values of k and volume, the kernel probability density may 

be estimated {Hand 1982)~ The kernel method uses uniform, 

normal, Epanechnikov, biweight, or triweight kernels to 

estimate the nonparametric probability density. 

Nonparametric probability density is used to generate a 

discriminant function for classifying observations into 

classes. Either within-class covariance matrices or the 

pooled covariance matrix can be used to compute the squared 

distance between two observations. An observation is 

assigned to class, i, when the value of the squared distance 

is the smallest. 



CHAPTER VI 

EXPERIMENTAL PROCEDURE 

Introduction 

Experiments were conducted to assess the performance of 

machine vision date classification. More specifically, the 

classification performance of the co-occurrence matrix and 

texture spectrum method was investigated. 

Date Fruits 

Manually inspected date fruits classified according to 

the USDA grading standards by an industry expert grader were 

provided by Dole Dried Fruit and Nut Company, Thermal, CA. 

Four classes from the 1991 crop (Waxy class unavailable) and 

five classes from the 1992 crop were received. Dole 

typically combines three USDA classes (Waxy, Number 1 Dry, 

and Number 2 Dry) into one grade {Grade B). Grades A and C 

are Natural and Cull dates, respectively. 

The dates were stored at 5°c and 60% relative humidity. 

A sample of 100 fruits was randomly selected from each 

class, for a total of 400 and 500 fruits from the 1991 and 

1992 crops, respectively. 
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Image Acquisition 

Groups of 40 or 50 dates (ten from each class) were 

removed from storage for image acquisition. Four 

representative images of the surface of each date were 

acquired, two from each of two opposite sides. Two images 

of the surface of a randomly selected side were obtained 

first. The date was then rotated 180°, and another pair of 

images was acquired (Fig. 11). Image FOV was approximately 

8.0 by 6.6 cm, corresponding to a pixel resolution of 0.15 

mm. 

A region-of-interest (ROI) of 64 by 64 pixels was 

selected from each image to obtain color and texture 

features. This region covered an area of 0.88 cm2 • The ROI 

was small enough to fit within the date boundary in all 

images, accommodating size variation among date classes. 

Location of the ROI was manually defined for each 

image, but was generally centered on the major axis (Fig. 

11). The ROI was located above the minor axis of the date 

for the first and third images, and below the minor axis for 

the second and fourth images. Each ROI occupied 

approximately 15% of the total projected area of the date. 

Calibration 

A square section of metal (25 cm2 ) coated with barium 

sulfate was used as a reference for calibrating the machine 

vision system. Barium sulfate is a highly reflective 

material. Prior to image acquisition, HSI color images of 



(a) (b) 

Figure 11. Location of the ROI on Each Image. 
A Pair of Images of the Surface 
of a Randomly Selected Side Was 
Obtained (a6, the Date Was Then 
Rotated 180, and Another Pair of 
Images Was Acquired (b). 
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the reference were acquired to assign initial setpoints. 

These setpoints were the mean and standard deviation of the 

H, S, and I histograms. The HSI color system was used, 

because it is more sensitive to changes in light intensity 

than the RGB color system. HSI color images of the 

reference were repeated every two hours during image 

acquisition. If necessary, the position of the light 

source was adjusted, so that the mean and standard deviation 

of the H, s, and I histograms matched the initial setpoints. 

Feature Extraction 

Twenty-two features were extracted from the ROI in each 

color band (H, S, I, R, G, and B) immediately after image 
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acquisition, for a total of .132 (22 x 6) features. The ROI 

in each color band was stored for future use. Features were 

combined and organized into SAS dataset files. The 

normality of the data was then checked. Bar graphs of each 

set of 400 regions-of-interest of within-class features were 

plotted to test the distribution. Also, a statistical test 

for normality was computed by applying the univariate 

Procedure {SAS Institute Inc. 1988). This approach compares 

the shape of a normal distribution with the shape of the 

sample distribution. This comparison results in a p-value, 

which ranges from zero to one. A p-value close to zero 

indicates that the data distribution is not normal 

{Schlotzhauer and Littell 1987). 

Image Classification 

Eighteen models, incorporating various subsets of the 

features, were investigated •. The purpose of the models was 

to allow comparison of various features for classification 

accuracy. Two models used the mean of color band 

histograms, eight used features of the co-occurrence matrix, 

and eight used texture spectrum features. Table II 

summarizes the features used in each model. 

SAS discriminant analysis was used to classify feature 

observations for each model into four or five classes (SAS 

Institute Inc. 1988). Discriminant analysis was used to 

obtain a function which could be used to classify additional 

observations. Figure 12 summarizes the overall procedure. 
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TABLE II 

MODEL FEATURES 

Model Features Notes 

HSI-1 Hi,Si,Ii Mean of H,S,and I histograms. 

HSI-2 H2 - Hi4 Features of CCM extracted from H. 

HSI-3 S2 - Si4 Features of CCM extracted from s. 

HSI-4 I2 - Ii4 Features of CCM extracted from I. 

HSI-5 H2 - Hi4 Combination of HSI-2, HSI-3, and 
S2 - Si4 HSI-4. 
I2 - Ii4 

HSI-6 His - H22 Features of TS extracted from H. 

HSI-7 Sis - S22 Features of TS extracted from s. 

HSI-8 Iis - I22 Features of TS extracted from I. 

HSI-9 His - H22 Combination of HSI-6, HSI-7, and 
Sis - S22 HSI-8. 
Iis - 1 22 

RGB-1 Ri,Gi,Bi Mean of R,G,and B histograms. 

RGB-2 R2 - Ri4 Features of CCM extracted from R. 

RGB-3 G2 - Gi4 Features of CCM extracted from G. 

RGB-4 B2 - Bi4 Features of CCM extracted from B. 

RGB-5 R2 - Ri4 Combination of RGB-2, RGB-3, and 
G2 - Gi4 RGB-4. 
B2 - Bi4 

RGB-6 Ris - R22 Features of TS extracted from R. 

RGB-7 Gis - G22 Features of TS extracted from G. 

RGB-8 Bis - B22 Features of TS extracted from B. 

RGB-9 Ris - R22 Combination of RGB-6, RGB-7, and 
Gis - G22 RGB-8. 
Bis - B22 

CCM Co-occurrence matrix. 
TS Texture spectrum. 
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Figure 12. Color/Texture Date Classification Procedure. 
CCM and TS Denote the Co-occurrence Matrix 
and Texture Spectrum, Respectively. 



CHAPTER VII 

RESULTS AND DISCUSSION 

Introduction 

A total of 900 date fruits from the 1991 and 1992 crops 

were tested. This consisted of 100 fruits in each of the 4 

and 5 classes from the 1991 and 1992 crops, respectively. 

Four images were acquired from each individual date. A 

64x64-pixel region-of-interest (ROI) was selected from each 

image, as described in Chapter VI. Each of the 3600 

regions-of-interest (900 x 4) was processed for feature 

extraction. Twenty-two features were computed from six 

color bands (H, S, I, R, G, and B) of each ROI, for a total 

of 132 features (22 x 6). 

Resulting feature values from the intensity band of the 

100 regions-of-interest in the Natural Class of the 1992 

crop are summarized in Table III as a representative 

example. This table consists of the minimum, maximum, mean, 

and standard deviation of each feature. 

Data Distribution 

The SAS software package offers discriminant analysis 

procedures using both parametric and nonparametric methods 

(SAS Institute Inc. 1988). Parametric methods are 
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TABLE III 

FEATURE SUMMARY STATISTICS 

(Intensity Band, Natural Class) 

Features MIN MAX MEAN STD 

Il 47.43 184.83 94.87 20.17 
I2 0.02 0.37 0.12 0.06· 
I3 278.90 9,714.10 1,986.40 1,271.80 
I4 8.93 304.61 62.82 40.11 
I5 0.50 0.88 0.78 0.07 
I6 5.73 34.11 14.27 4.27 
I7 1.19 173.22 27.77 29.01 
I8 0.98 2.13 1.63 0.23 
I9 1.06 2.49 1.84 0.28 
IlO 0.46 1.41 0.74 0.19 
Ill 0.32 7.96 1.52 1.11 
I12 0.06 0.34 0.20 0.06 
Il3 0.99 1. 00 1. 00 0.01 
I14 0.01 0.02 0.01 0.02 
I15 10.93 29.03 19.74 3.28 
I16 95.50 96.98 96.09 0.28 
I17 97.35 98.24 97.65 0.15 
I18 0 49,156,792 1,883,210 4,915,163 
I19 0 51,509,638 1,928,597 4,947,298 
I20 0 73,195,104 3,170,336 7,630,323 
I21 0 72,954,452 3,140,530 7,604,655 
I22 2,787 947,594,501 40,257,961 97,899,826 

appropriate for data that have a normal distribution. 

Nonparametric methods are appropriate when data 

distributions vary from normal. Choice of appropriate 

method was based on analysis of the data distribution within 

each class. 

Plotting the within-class data histogram is a visual 

method for presenting and estimating data distribution. Bar 

graphs of each set of 400 feature values (100 dates x 4 

regions-of-interest within each class) were plotted to check 
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for normality. As an example, the data distribution of the 

feature values extracted from the intensity band in the 

Natural Class of the 1992 crop will be described in the 

following section. 

Data distribution of the first feature, I 1 , was found 

to be normal (Fig. 13), with a p-value of 0.85 (p-value 

close to one indicates normal distribution). Most of the 

features extracted from the co-occurrence matrices (I2 -

I 14 ) appeared normally distributed, with the exception of 

features such as I 13 , which had skewed distributions. 

Figures 14 and 15 show the normal (p = 0.93) and skewed 

(p = 0.46) distributions of the data for features I 12 and 

I 13 , respectively. Three of the texture spectrum features 

(I15 , I 16 , and I 17 ) appeared normally distributed. The other 

five (I18 - I 22 ) did not. Figures 16 and 17 show the 

distribution of features I 15 (p = 0.93) and r 21 (p = 0.41), 

respectively. 

It appeared that the data distribution of some features 

changed from one class to another and from one color band to 

another. While the data from one date class appeared 

normally distributed, they were skewed in another class. 

The same condition existed among color bands. Therefore, 

nonparametric discriminant analysis was judged to be 

appropriate. 
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Figure 13. Data Histogram of the Feature, I 1 , in the 
Natural Class of the 1992 Crop. 
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Figure 14. Data Histogram of the Feature, I 12 , in the 
Natural Class of the 1992 Crop. 
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Figure 15. Data Histogram of the Feature, I 13 , in the 
Natural Class of the 1992 Crop. 
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Figure 16. Data Histogram of the Feature, I 15 , in the 
Natural Class of the 1992 Crop. 
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Figure 17. Data Histogram of the Feature, r 21 , in the 
Natural Class of the 1992 Crop. 
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Discriminant Analysis 

The SAS software package provides a nonparametric 

discriminant analysis procedure under the DISCRIM option, 

using kernel methods (SAS Institute Inc. 1988). Several 

kernels presented by the SAS software package including 

uniform, normal, Epanechnikov, biweight, and triweight were 

used for cla$sification. The multivariate discriminant 

procedure using the Epanechnikov kernel (Hand 1982) was the 

most effective, in terms of classification accuracy. Figure 

18 shows a SAS program for the nonparametric discriminant 

procedure using the Epanechnikov kernel to classify date 

fruits into five classes. 

PROC format; 

RUN; 

value classname 
1 = 'NATURAL ' 
2 = 'WAXY ' 
3 = 'DRY-N0.-1' 
4 = 'DRY-N0.-2' 
S = 'CULL 'i 

DATA Int; 
INFILE 'A:DATE92.INT'; 
INPUT features i2 i3 i4 is i6 i7 iB i9 

ilO ill il2 il3 il4; 
FORMAT features classname.; 

PROC discrim data= Int 
method= npar kernel= epa pool= yes r = 3.03 
listerr; 

class features; 
var i2 i3 i4 is i6 i7 iB i9 ilO ill il2 il3 il4; 

title 'The features of CCM from Int band'; 
titl2 'Using Epanechnikov-kernel Discriminant 

Analysis'; 
RUN; 

Figure 18. SAS program for nonparametric discriminant 
analysis. 
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In this program a nonparametric method (method= npar) 

was used to classify the 1992 crop into five classes 

(classname), using the Epanechnikov kernel (kernel= epa). 

The classification was based on the intensity features (i2 -

i 14 ) extracted from the co..;occurrence matrix. The pooled 

covariance matrix was used in calculating the squared 

distances (pool= yes). An observation is assigned to 

class, i, when the value of squared distance is the 

smallest. The squared distance between two observation 

vectors, x and y, in class i was computed from: 

di2 (x,y) = (x-y)' cov-1 (x-y) (41) 

where COV is the pooled covariance matrix. The value of 

smoothing parameter (r = 3.03) depends on kernel type, 

number of variables (features), and number of samples of the 

within-class data set. The smoothing parameter using the 

Epanechnikov kernel was computed from: 

r = ( AK/ni) 1/ (p+4 > 

AK = 
2P+2 p 2 (p+2) (p+4) I'(p/2) 

2p+l 
00 

r (x) = / 0 tx-l e-t dt 

Where: 

p is number of variables (features), 

(42) 

(43) 

ni is number of samples of within-class data set, and 

r is the gamma function. 

Eighteen models were constructed using the features 

from the HSI and RGB color systems (Table II). Model HSI-1 

consisted of three features; mean of the H, S, and I 
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histograms. Models HSI-2, HSI-3, and HSI-4 were composed of 

hue, saturation, and intensity features, respectively, 

extracted from the co-occurrence matrices. Each model 

consisted of 13 features. All the features (39) of Models 

HSI-2, HSI-3, and HSI-4 were.included in Model HSI-5. 

Models HSI-6, HSI-7, and HSI-8 were composed of hue, 

saturation, and intensity features, respectively, extracted 

from the texture spectrum. Each model was constructed using 

8 features. Model HSI-9 consisted of all the features (24) 

of Models HSI-6, HSI-7, and HSI-8. The same description can 

be applied to the RGB models (RGB-1 - RGB-9). 

The nonparametric discriminant analysis procedure (Fig. 

18) was applied to each model. Both the 1991 and 1992 crops 

were classified according to the USDA grading standards 

(five classes) and the Industry grading standards (three 

grades). 

Comparison of Regions-of-Interest 

The classification accuracy for data sets from the four 

regions of interest is summarized in Tables IV, V, VI, and 

VII. These tables present the classification accuracy of 

the 1991 and 1992 crops using the USDA and Industry grading 

standards, respectively. Tables XIV to XXIX (Appendix) list 

the specific classification accuracy of the 1991 and 1992 

crops according to the USDA and Industry grading standards, 

respectively. Each table consists of the classification 

accuracy of each class or grade and the total 
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TABLE IV 

CLASSIFICATION ACCURACY, 1991 CROP 

(USDA Grading Standards) 

Model ROI-1 ROI-2 ROI-3 ROI-4 MEAN STD 

HSI-1 60.5% 60.3% 60.0% 60.8% 60.4% 0.3% 

HSI-2 75.3% 70.8% 70.5% 76.0% 73.1% 2.5% 
HSI-3 70.5% 75.5% 70.5% 73.5% 72.5% 2.1% 
HSI-4 74.8% 77.0% 72.3% 75.8% 74.9% 1. 7% 

HSI-5 91.0% 94.3% 90.5% 95.3% 92.8% 2.0% 

HSI-6 48.0% 52.0% 46.5% 56.3% 50.7% 3.8% 
HSI-7 44.3% 48.0% 46.5% 47.5% 46.6% 1.4% 
HSI-8 55.8% 52.0% 56.8% 61. 0% 56.4% 3.2% 

HSI-9 76.0% 75.3% 74.3% 87.8% 78.3% 5.5% 

RGB-1 61.0% 62.0% 57.0% 62.0% 60.5% 2.1% 

RGB-2 72.0% 75.3% 70.3% 76.8% 73.6% 2.6% 
RGB-3 74.0% 72.5% 67.3% 71.8% 71.4% 2.5% 
RGB-4 74.3% 74.5% 66.0% 73 .. 0% 71.9% 3.5% 

RGB-5 95.3% 97.5% 95.8% 96.5% 96.3% 0.8% 

RGB-6 54.3% 56.0% 59.3% 56.3% 56.4% 1.8% 
RGB-7 60.3% 55.5% 58.8% 54.5% 57.3% 2.3% 
RGB-8 51.0% 58.0% 51.8% 55.8% 54.1% 2.9% 

RGB-9 86.3% 87.3% 85.8% 85.5% 86.2% 0.7% 

ROI-1 - Classification accuracy of first ROI. 
ROI-2 - Classification accuracy of second ROI. 
ROI-3 - Classification accuracy of third ROI. 
ROI-4 - Classification accuracy of fourth ROI. 
MEAN - Average classification accuracy of four regions-of-interest. 
STD - Standard deviation. 



Model 

HSI-1 

HSI-2 
HSI-3 
HSI-4 

HSI-5 

HSI-6 
HSI-7 
HSI-8 

HSI-9 

RGB-1 

RGB-2 
RGB-3 
RGB-4 

RGB-5 

RGB-6 
RGB-7 
RGB-8 

RGB-9 

ROI-1 
ROI-2 
ROI-3 
ROI-4 
MEAN 
STD 

TABLE V 

CLASSIFICATION ACCURACY, 1992 CROP 

(USDA Grading Standards) 

ROI-1 

66.0% 

70.0% 
69.2% 
72.8% 

92.8% 

49.8% 
42.6% 
59.4% 

85.8% 

57.0% 

77.8% 
73.6% 
74.8% 

99.2% 

46.8% 
59.2% 
52.4% 

80.0% 

ROI-2 

67.8% 

69.6% 
73.2% 
71. 6% 

94.0% 

51. 0% 
39.2% 
59.6% 

81.2% 

54.2% 

79.2% 
72.4% 
78.4% 

98.2% 

59.8% 
61. 0% 
53.4% 

88.6% 

ROI-3 

63.8% 

70.8% 
69.6% 
68.8% 

92.8% 

46.2% 
41.4% 
55.2% 

80.0% 

55.8% 

79.6% 
72.4% 
76.6% 

98.4% 

47.4% 
52.2% 
50.4% 

81.8% 

ROI-4 

65.6% 

67.8% 
77.0% 
73.4% 

90.4% 

48.4% 
42.8% 
59.4% 

74.8% 

60.0% 

75.8% 
75.8% 
77.6% 

97.8% 

53.4% 
58.0% 
49.8% 

83.2% 

- Classification accuracy of first ROI. 
- Classification accuracy of second ROI. 
- Classification accuracy of third ROI. 
- Classification accuracy of fourth ROI. 

MEAN 

65.8% 

69.6% 
72.3% 
71. 7% 

92.5% 

48.9% 
41.5% 
58.4% 

80.5% 

56.8% 

78.1% 
73.6% 
76.9% 

98.4% 

51.9% 
57.6% 
51.5% 

83.4% 
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STD 

1.4% 

1.1% 
3.2% 
1. 8% 

1. 3% 

1.8% 
1. 4% 
1.8% 

3.9% 

2.1% 

1. 5% 
1.4% 
1. 3% 

0.5% 

5.3% 
3.3% 
1. 5% 

3.2% 

- Average classification accuracy of four regions-of-interest. 
- Standard deviation. 
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TABLE VI 

CLASSIFICATION ACCURACY, 1991 CROP 

(Industry Grading Standards) 

Model ROI-1 ROI-2 ROI-3 ROI-4 MEAN STD 

HSI-1 70.5% 69.3% 72.3% 74.3% 71.6% 1.9% 

HSI-2 80.8% 76.0% 75.7% 84.5% 79.3% 3.7% 
HSI-3 78.3% 79.8% 77.7% 81.7% 79.4% 1.5% 
HSI-4 81.5% 83.7% 81. 3% 83.0% 82.4% 1.0% 

HSI-5 92.7% 95.8% 92.0% 96.7% 94.3% 2.0% 

HSI-6 55.8% 55.5% 50.2% 64.2% 56.4% 5.0% 
HSI-7 55.0% 59.5% 59.0% 57.0% 57.6% 1.8% 
HSI-8 65.5% 59.3% 65.8% 66.3% 64.3% 2.9% 

HSI-9 81.7% 78.7% 79.0% 90.3% 82.4% 4.7% 

RGB-1 69.0% 70.7% 65.7% 74.8% 70.0% 3.3% 

RGB-2 79_.8% 82.0% 77.3% 82.7% 80.5% 2.1% 
RGB-3 81.8% 79.5% 75.5% 81.0% 79.5% 2.4% 
RGB-4 79.3% 78.3% 74.3% 77.7% 7'7.4% 1.9% 

RGB-5 97.2% 97.5% 97.0% 97.8% 97.4% 0.3% 

RGB-6 60.5% 61.0% 68.7% 62.7% 63.2% 3.3% 
RGB-7 68.3% 61. 3% 65. 0% · 59.5% 63.5% 3.4% 
RGB-8 57.5% 64.8% 60.8% 62.5% 61.4% 2.7% 

RGB-9 90.8% 89.5% 89.2% 88.5% 89.5% 0.8% 

ROI-1 - Classification accuracy of first ROI. 
ROI-2 - Classification accuracy of second ROI. 
ROI-3 - Classification accuracy of third ROI. 
ROI-4 - Classification accuracy of fourth ROI. 
MEAN - Average classification accuracy of four regions-of-interest. 
STD - Standard deviation. 



Model 

HSI-1 

HSI-2 
HSI-3 
HSI-4 

HSI-5 

HSI-6 
HSI-7 
HSI-8 

HSI-9 

RGB-1 

RGB-2 
RGB-3 
RGB-4 

RGB-5 

RGB-6 
RGB-7 
RGB-8 

RGB-9 

ROI-1 
ROI-2 
ROI-3 
ROI-4 
MEAN 
STD 

TABLE VII 

CLASSIFICATION ACCURACY, 1992 CROP 

(Industry Grading Standards) 

ROI-1 

77.2% 

80.8% 
79.2% 
82.2% 

96.4% 

66.0% 
56.8% 
71.6% 

91.9% 

68.4% 

86.7% 
82.7% 
85.7% 

99.3% 

64.7% 
68.3% 
68.8% 

87.1% 

ROI-2 

78.3% 

81.1% 
83. 9% · 
81.1% 

96.1% 

60.0% 
54.8% 
71. 3% 

86.2% 

67.4% 

89.6% 
80.6% 
87.8% 

98.7% 

73.2% 
73.9% 
68.8% 

93.2% 

ROI-3 

74.9% 

83.1% 
80.0% 
80.9% 

96.6% 

55.3% 
56.7% 
69.2% 

89.3% 

67.7% 

88.1% 
81.7% 
86.6% 

99.9% 

61.9% 
69.8% 
64.3% 

87.9% 

ROI-4 

79.8% 

77.4% 
86.9% 
81. 3% 

94.1% 

63.6% 
59.6% 
72.9% 

83.3% 

72.0% 

85.8% 
83.7% 
88.9% 

99.3% 

68.8% 
70.6% 
63.9% 

87.8% 

- Classification accuracy of first ROI. 
- Classification accuracy of second ROI. 
- Classification accuracy of third ROI. 
- Classification accuracy of fourth ROI. 

MEAN 

77.6% 

80.6% 
82.5% 
81. 4% 

95.8% 

61.2% 
56.9% 
71. 3% 

87.7% 

68.9% 

87.5% 
82.1% 
87.2% 

99.3% 

67.1% 
70.6% 
66.4% 

89.0% 

71 

STD 

1. 8% 

2.0% 
3.1% 
0.5% 

1. 0% 

4.0% 
1. 7% 
1. 3% 

3.2% 

1.8% 

1. 4% 
1.2% 
1. 2% 

0.4% 

4.3% 
2.0% 
2.3% 

2.5% 

- Average classification accuracy of four regions-of-interest. 
- Standard deviation. 



classification from a set of regions-of-interest at one 

location on the date. 
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The classifications of date fruits from regions-of­

interest at different locations on the date were 

inconsistent. While the classification of a set of regions­

of-interest at one location was the highest in one model, it 

became the lowest in another. This variation existed among 

the models in one season, between models from two seasons, 

and between models from two classification standards (USDA 

or Industry). For example, the standard deviations of 

Models RGB-5 and RGB-6 of the 1992 crop were 0.5% and 5.3%, 

respectively. The standard deviations of Model RGB-9 were 

0.7% and 3.2% for the 1991 and 1992 crops, respectively. 

While the standard deviation of Model HSI-6 for classifying 

the 1992 crop was 1.8% using the USDA grading standards, it 

increased to 4.0% using the Industry grading standards. 

Analysis of variance showed no significant difference at the 

99% confidence level among classifications of the 1991 crop 

from regions-of-interest at different locations on the date 

using the USDA grading standards and the Industry grading 

standards (Table VIII). The same condition was true for the 

1992 crop (Table VIII). 

The U.S. date industry requires that the classification 

accuracy for all grades be no less than 85% (Chesson et al. 

1979). Only two models, HSI-5 and RGB-5, achieved this 

requirement, using the USDA grading standards. The total 

classification accuracy of Model RGB-9 for the 1991 crop was 



Source 

ROI 

Error 

Total 

ROI 

Error 

Total 

ROI 

Error 

Total 

ROI 

Error 

Total 

TABLE VIII 

ANALYSIS OF VARIANCE FOR COMPARISON OF 
REGIONS-OF-INTEREST 

DF ss MS F 

(USDA Grading Standards, 1991) 

3 0.0132 0.0044 o. 21## 

68 1.415 0.0208 

71 1.428 

(USDA Grading Standards, 1992) 

3 0.0068 0.0022 0.09## 

68 1.672 0.0246 

71 1. 679 

· ( Industry Grading standards, 1991) 

3 0.0104 0.0035 0. 2211 

68 1.061 0.0156 

71 1. 071 

(Industry Grading Standards, 1992) 

3 0.0032 0.0011 0. 07## 

68 0.9818 0.0144 

71 0.9850 

DF Degree of freedom. 
ss Sum of squares. 
MS Mean square. 
## Not significant at 1% level. 
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Pr>F 

0.8882 

0.9644 

0.8809 

0.9736 
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higher than the minimum, however, classification accuracy of 

some individual classes was not. Figure 19 shows the 

classification accuracy of Model RGB-9 with the 1991 crop, 

using the USDA grading standards. Note that the 

classification accuracy of the Natural and Cull Classes from 

the four regions-of-interest was higher than 85%, but it was 

less than 85% in Classes Number 1 Dry (NlD) and Number 2 Dry 

(N2D). 

Using the Industry grading standards, the 

classification accuracy of Model RGB-9 for both crop seasons 

increased to 93.2%. The classification accuracy of each 

grade {Grade A, Grade B, and Grade C) was higher than 85% 

for the 1991 crop {Fig. 20). The same condition existed 

with the 1992 crop, with the exception of Grade c in the 

fourth ROI {Fig. 21). Figures 20 and 21 show the 

classification accuracy of RGB-9 using the Industry grading 

standards with the 1991 and 1992 crops. 

Variations in color and surface texture within date 

classes were the main factors affecting classification 

accuracy. Figure 22 shows five representative dates from 

the Cull Class of the 1992 crop. This photograph 

illustrates the variation in brightness and surface texture 

within date classes. Variations in color cannot be seen 

directly in the black-and-white photograph, however, they 

can be detected from variations in overall brightness. As 

previously stated, date inspectors use surface texture, 

color, and firmness as grading criteria. These dates might 
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Figure 19. Model RGB-9 Classification of the 1991 Crop 
From the Four Sets of Regions-of-Interest, 
USDA Grading Standards. 
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Figure 20. Model RGB-9 Classification of the 1991 Crop 
From the Four Sets of Regions-of-Interest, 
Industry Grading Standards. 
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Figure 22. Representative Dates From the Cull Class of 
the 1992 Crop. 



be combined into one class on the basis of the firmness 

criterion, which was not used in this project. 

79 

Figure 23 consists of two photographs of a pair of 

dates. The first (a) was taken from one side. The dates 

were then rotated 180°, and the second photograph (b) was 

taken. It is clear that the brightness (an indication of 

color) and surface texture vary widely within a single date. 

The variations of color and surface texture over the surface 

of an individual fruit were the main cause of the 

differences among the classification of sets of four 

regions-of-interest. 

(a) (b) 

Figure 23. Opposite Sides of Two Individual Dates. 
Pair Shown in (a) were Rotated 180°, (b). 
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Comparison of HSI and RGB Color Systems 

Using USDA grading standards, there was no significant 

difference between the classifications of the HSI and RGB 

models at the 99% confidence level for the 1991 and 1992 

crops (Table IX). Figures 24 and 25 show the classification 

accuracy of the HSI and RGB models using the USDA grading 

standards for the 1991 and 1992 corps, respectively. 

Using Industry grading standards, there was also no 

significant difference between the classifications of the 

HSI and RGB models at the 99% confidence level for the 1991 

and 1992 crops (Table IX). Figures 26 and 27 show the 

classification accuracy of the HSI and RGB models using the 

Industry grading standards for the 1991 and 1992 crops, 

respectively. In general, classification accuracy of the 

RGB models was slightly higher than that of the HSI models. 

It appeared that the RGB models extracted from the co­

occurrence matrices and the texture spectrum were more 

accurate than the HSI models. However, the classification 

accuracy of HSI-1 was higher than that of RGB-1. Note that 

HSI-1 and RGB-1 consisted of the mean of the color band 

histograms. 

The HSI color system yielded better performance than 

the RGB color system from the models using the mean of color 

bands histograms (HSI-1, RGB-1). On the other hand, the 

classification accuracy of features extracted from 

transformed data (i.e. the co-occurr~nce matrix or texture 

spectrum) is stronger using the RGB color system. 



Source 

Color 

Error 

Total 

Color 

Error 

Total 

Color 

Error 

Total 

Color 

Error 

Total 

DF Degree 
ss Sum of 

TABLE IX 

ANALYSIS OF VARIANCE FOR COMPARISON OF 
HSI AND RGB COLOR SYSTEMS 

DF ss MS F 

(USDA Grading Standards, 1991) 

1 0.0108 0.0108 0.53## 

70 1.4174 0.0202 

71 1.4282 

(USDA Grading Standards, 1992) 

1 0.0169 0.0169 0. 74## 

82 1. 8756 0.0229 

83 1.8925 

(Industry Grading Standards, 1991) 

1 0.0049 0.0049 0. 32## 

70 1. 0659 0.0152 

71 1.0708 

(Industry Grading Standards, 1992) 

1 0.0122 0.0122 0. 88## 

70 0.9728 0.0139 

71 0.9850 

of freedom. 
squares. 

MS Mean square. 
## Not significant at 1% level. 
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Pr>F 

0.4680 

0.3931 

0.5743 

0.3516 
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Figure 25. Classification by the HSI and RGB Models (9 
Models From Each) of the 1992 Crop, USDA 
Grading Standards. 
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Comparison of Color and Black-and-White 

Classification accuracy of color models extracted from 

the co-occurrence matrix (RGB-5} and from the texture 

spectrum (RGB-9} was compared with accuracy of black-and­

white models (HSI-4 and HSI-8) represented by the intensity 

band of the HSI color system. Classification accuracy of 

the color and black-and-white models was found to be 

significantly different at 99% confidence level in both crop 

seasons, using the USDA grading standards and Industry 

grading standards (Table X}. Figures 28 and 29 show the 

classification accuracy of the color model, RGB-5, and 

black-and-white model, HSI-4, for the 1991 and 1992 crops, 

using the USDA grading standards. 

For the 1991 crop, the highest classification accuracy 

of the black-and-white model was 77%, which is less than the 

date industry requirement (85%), while accuracy of the color 

model was 97.5%. Classification accuracy of the black-and­

white model increased to 83.7% using the Industry grading 

standards, but is still below the industry minimum (85%). 

Figures 30 and 31 show the classification accuracy of the 

color and black-and-white models using the Industry grading 

standards for the 1991 and 1992 crops, respectively. It 

appeared that color information is important for automated 

date inspection (Deglet Noor variety). 



Source 

System 

Error 

Total 

System 

Error 

Total 

System 

Error 

Total 

System 

Error 

Total 

DF Degree 
ss Sum of 

TABLE X 

ANALYSIS OF VARIANCE FOR COMPARISON OF 
COLOR AND BLACK-AND-WHITE 

DF ss MS F 

(USDA Grading Standards, 1991) 

1 0.0907 0.0907 370.49** 

6 0.0015 0.0002 

7 0.0922 

(USDA Grading Standards, 1991) 

1 0.1431 0.1431 633.71** 

6 0.0014 0.0002 

7 0.1445 

(Industry Grading Standards, 1991) 

1 0.0450 0.0450 608. 79** 

6 0.0004 0.00007 

7 0.0454 

(Industry Grading Standards, 1992) 

1 0.0643 0.0643 225a.00** 

6 0.0002 0.00003 

7 0.0644 

of freedom. 
squares. 

MS Mean square. 
** Significant at 1% level. 
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Pr>F 

0.0001 

0.0001 

0.0001 

0.0001 
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Figure 28. Classification of Color Model (RGB-5) and 
Black-and-White Model (HSI-4) for the 1991 
Crop, USDA Grading Standards. 
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Comparison of USDA Grading Standards 

and Industry Grading Standards 

92 

The USDA grading standards define six classes of date 

fruits, of which the U.S. date industry uses only five. The 

five classes are Natural, Waxy, Number 1 DRY, Number 2 Dry, 

and Cull. The Dole Dried Fruit and Nut Company combines 

Waxy, Number 1 Dry, and Number 2 Dry classes into one grade 

(Grade B) to form three grades; A, B, and C (Industry 

grading standards). 

The classification accuracy of all eighteen models 

improved when applied to the Industry grading standards in 

the 1991 and 1992 crops. This improvement was significant 

at the 99% confidence level (Table XI). Figures 32 and 33 

compare date classification accuracy using the USDA and 

Industry grading standards for the 1991 and 1992 crops, 

respectively. Classification improvement when using 

Industry grading standards ranged from 1.1 to 11.2 

percentage points for the 1991 crop and from 1 to 16 

percentage points for the 1992 crop. The greatest 

improvement occurred with the HSI-1 model for the 1992 crop, 

for which classification accuracy increased from 65.8% to 

77.6%. It should also be noted that model HSI-1 included 

only three features. 



TABLE XI 

ANALYSIS OF VARIANCE FOR COMPARISON OF 
USDA GRADING STANDARDS AND 
INDUSTRY GRADING STANDARDS 

Source DF ss MS F 

(1991 Crop) 

Season 1 0.1503 0.1503 8.54** 

Error 142 2.4990 0.0176 

Total 143 2.6493 

(1992 Crop) 

Season 1 0.3778 0.3778 20.14** 

Error 142 2.6641 0.0188 

Total 143 3.0419 

DF : Degree of freedom. 
ss Sum of squares. 
MS . M~an square. . 
** Significant at 1% level. 
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Pr>F 

0.0040 

0.0001 



100-

'o' cf:! ........ 80-
>-
&} 
I... 
::::, 60-0 

~ 
C 
0 

~ 40-
0 
..:: ·w 
rJ 20-
0 

0 

- '5 
:t::: 
·=«· 

- -·-·-- ------ ---·-- ---· ~- ii 

I 
I I I I 

1 2 3 4 5 

85% 

' ---- ------ ------ ------

I I I I 

6 7 8 

-1 
It 
c---:·· 

i -~ 

I 
II\ .:::t 

I 
9 

Classification Models 

I D USDA Standards - Industry Standards 

94 

Figure 32. HSI Model Classification of the 1991 Cr op Using 
the USDA Gradi ng Standards and the I ndust ry 
Grading Standards. 
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Comparison of Co-occurrence Matrix 

and Texture Spectrum Models 

96 

The texture spectrum models (HSI-6 - HSI-9 and RGB-6 -

RGB-9) performed poorly when compared with the co-occurrence 

matrix models (HSI-2 - HSI-5 anq RGB-2 - RGB-5). 

Classification accuracy of the texture spectrum and the co­

occurrence matrix models was found to be significantly 

different at the 99% confidence level for both crop seasons, 

using both USDA and Industry grading standards (Table XII). 

Figures 34 and 35 show the classification accuracy of the 

texture spectrum and the co-occurrence matrix models using 

the USDA grading standards for the 1991 and 1992 crops, 

respectively. The highest classification accuracy of a 

texture spectrum model was 86.2% (RGB-9) for the 1991 crop, 

while the accuracy of the corresponding co-occurrence matrix· 

model was 96.3%. 

Classification accuracy was slightly improved by using 

the Industry grading standards.· Accuracy of the texture 

spectrum and co-occurrence matrix models increased to 89.5% 

and 97.4%, respectively. Figures 36 and 37 show the 

classification accuracy of the texture spectrum and the co­

occurrence matrix models using the Industry grading 

standards for the 1991 and 1992 crops, respectively. 

It should be noted that the texture spectrum Model RGB-

9 included 24 features, while the co-occurrence matrix Model 

RGB-5 included 39 features. Only nine features of the 

RGB-9, (R15- R17, G15- G17, and B15- B17) had strong 



source 

Approach 

Error 

Total 

Approach 

Error 

Total 

Approach 

Error 

Total 

Approach 

Error 

Total 

TABLE .XII 

ANALYSIS OF VARIANCE FOR COMPARISON OF 
CO-OCCURRENCE MATRIX AND 

TEXTURE SPECTRUM 

OF 

1 

62 

63 

1 

62 

63 

ss MS F 

(USDA Grading Standards, 1991) 

0.4933 

0.8742 

1.3676 

0.4933 

0.0141 

34. 99** 

(USDA Grading Standards, 1992) 

0.6344 

0.9815 

1.6159 

0.6344 

0.0158 

40.07** 

(Industry Grading Standards, 1991) 

1 

62 

63 

0.4331 

0.6158 

1.0489 

0.4331 

0.0099 

43. 61 ** 

(Industry Grading Standards, 1992) 

1 

62 

63 

0.3980 

0.5439 

0.9419 

0.3980 

0.0088 

45. 36** 

DF Degree of freedom. 
ss sum of squares. 
MS Mean square. 
**: Significant at 1% level. 
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Pr>F 

0.0001 

0.0001 

0.0001 

0.0001 
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Figure 35. Classification Performance of the Co-occurrence 
Matrix and the Texture Spectrum Models for 
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discriminating power. The discriminating power of the other 

fifteen features was very small. These features are 

sensitive to small changes in image data (equations 35 -

39). On the other hand, most of the features of the co­

occurrence matrix Model RGB-5 had strong discriminating 

power. 

It appeared that the weak discriminating power of 

texture spectrum features was due to the locality of 

texture-context, large range of texture unit values, and 

large number of gray levels (256). The texture spectrum 

method detects local texture. Texture unit computation 

considers only the eight nearest neighbors. The texture 

unit value ranged from o to 6560. This large range was very 

sensitive to small changes in image data. For example, the 

gray levels of the eight nearest neighbors of the pixel, 

Q = 99, in clockwise order a - h were 99, 120, 80, 96, 99, 

111, 102, and 98, respectively (Fig. 10). The computed 

texture unit was 2032. Changing the value of the eighth 

neighbor from 98 to 99 would raise the texture unit to 4219. 

It appeared that the sensitivity of the texture unit 

was reduced by changing the number of gray levels from 256 

to 32. From the above .example, if the vaiue of the eighth 

neighbor was changed while using 32 gray levels, the texture 

unit value would be unchanged (4146). Accordingly, 

sensitivity of the texture spectrum features would be 

reduced. 

In the work by He and Wang (1991), the texture spectrum 
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method performed more effectively in classifying radar 

images than the co-occurrence matrix. Each pixel in a radar 

image represents a relatively large area (hectares). Thus, 

texture-context extracted from the eight nearest neighboring 

pixels has meaningful information. In date images, the 

texture-context extracted from the eight nearest neighboring 

pixels has poorly defined information, because most of 

wrinkles (texture) have a width larger than 3 pixels. In 

general, by obtaining more texture spectrum features, using 

image data with 32 gray levels, and using large pixel 

resolution, performance of the texture spectrum method would 

be comparable to that of the co-occurrence matrix. 

Comparison of 1991 and 1992 Crops 

Using the USDA grading standards, there was no 

significant difference between the classifications of the 

1991 and 1992 crops at the 99% confidence level (Table 

XIII). Note that the 1991 and 1992 crops were composed of 4 

and 5 classes, respectively. The 1991 crop was softer and 

more mature, the result of a season which was relatively 

cool. The 1992 season, in contrast, was hot. Figure 38 

shows the classification accuracy of the RGB models for the 

1991 and 1992 crops, using the USDA grading standards. The 

highest classification accuracy was 96.3% and 98.4% (RGB-5) 

for the 1991 and 1992 crops. 

Using the Industry grading standards, classification 

accuracy increased to 97.4% and 99.3% for the 1991 and 1992 



TABLE XIII 

ANALYSIS OF VARIANCE FOR COMPARISON OF 
1991 AND 1992 CROPS 

Source DF ss MS F 

(USDA Grading Standards) 

Season ·1 0.0002 0.0002 o. 01## 

Error 142 3.1072 0.0219 

Total 143 3.1075 

(Industry Grading Standards) 

Season 1 

Error 142 

Total 143 

DF Degree of freedom. 
ss: Sum of squares. 
MS Mean square. 

0.0446 

2.0558 

2.1005 

** Significant at 1% level. 
##: Not significant at 1% level. 

0.0446 3. 08** 

0.0145 
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Pr>F 

0.9154 

0.0813 
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crops. However, the classification accuracy for both crop 

seasons was found to be significantly different at the 99% 

confidence level (Table XIII). Figure 39 shows the 

classification accuracy of the RGB models for the 1991 and 

1992 crops, using the Industry grading standards. Accuracy 

with the 1992 crop was superior to that of the 1991 crop. 

Sample sizes for Grade B dates were 200 and 300 for the 1991 

and 1992 crops, respectively, while sample sizes for Grade A 

and Grade C dates were 100. This difference was the main 

cause of the variation between the classification of the 

1991 and 1992 crops. 

Performance 

An Everex 486/33e microcomputer was used to compute the 

features of the first-order histogram, co-occurrence matrix, 

and texture spectrum. The features of the first-order 

histogram were processed in 0.09 s (666 fruits per minute). 

Features of the co-occurrence matrix (39) were computed in 

4.2 s (14 fruits per minute). In a practical design, only 

the features which had the most discriminating power (less 

than ten features) should be used. Texture spectrum 

features (24) were processed in 5.1 s (11 fruits per 

minute). Only nine features had strong discriminating 

power. Processing time reduced to 3.2 s (18 fruits per 

minute) using only nine features. 
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CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

summary 

Image processing techniques were developed to grade 

dates into quality classes based on color and texture 

analysis. Three surface color and texture approaches were 

investigated, namely; first-order histogram, co-occurrence 

matrix, and texture spectrum. 

Date fruits manually classified according to the USDA 

grading standards (five classes) and Industry grading 

standards (three grades) from two crop seasons (1991 and 

1992) were tested. Four images were acquired from each 

date. A 64x64-pixel region-of-interest (ROI) was selected 

from each image. Twenty-two features were extracted from 

the ROI in each color band of hue, saturation, and intensity 

(HSI) and red, green, and blue (RGB), for a total of 132 

features. 

Eighteen models were constructed. Two models used 

features of the first-order histogram, eight used features 

of the co-occurrence matrix, and eight used texture spectrum 

features. A nonparametric multivariate discriminant 

analysis procedure was used to classify feature observations 

for each model into classes or grades. 

108 
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Conclusions 

Classification accuracy varied among the eighteen 

models. Highest classification accuracy was 65.8%, 98.4%, 

and 84.4% from the first-order histogram, co-occurrence 

matrix, and texture spectrum methods, respectively, using 

the USDA grading standards with the 1992 crop. Accuracy 

increased to 77.6%, 99.3%, and 89.0% using the Industry 

grading standards with the same crop. There was no 

significant difference at the 99% confidence level in 

classification accuracy of observat1ons obtained from 

regions-of-interest at four different locations on the date, 

using either USDA grading standards or Industry grading 

standards. Processing only one ROI was sufficient to 

evaluate surface features. These results indicate that 

sufficient grading accuracy may be achieved by processing a 

relatively small percentage of the date surface. 

There was no significant difference in classification 

accuracy of the RGB and HSI models for either crop season, 

using both USDA and Industry grading standards. In general; 

classification accuracy of the RGB models extracted from the 

co-occurrence matrix or texture spectrum was higher than 

that of the HSI models. RGB models extracted from the 

first-order histogram, on the other hand, performed less 

favorably than HSI models. Results suggest that the RGB 

color system should be used with models extracted from the 

co-occurrence matrix or texture spectrum. The HSI color 

system should be selected for models extracted from the 



first-order histogram. 

Accuracy of color and black-and-white models was 

significantly different. The highest classification 

accuracy of the black-and-white models represented by the 

intensity band of the HSI color system was 77%, which is 

below the date industry accuracy standard of 85%. 
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The classification accuracy of all models improved when 

applied to the Industry grading standards. The largest 

improvement was 16 percentage points. Several models met 

the date industry minimum accuracy standard (85%) using the 

Industry grading standards, while they did not when using 

the USDA grading standards. 

Classification accuracy of the co-occurrence matrix 

models was significantly greater than that of the texture 

spectrum models. There was no significant difference in 

classification accuracy between the 1991 and 1992 crops, 

using USDA grading standards. 

The features of the first-order histogram, co­

occurrence matrix, and texture spectrum were processed in 

0.09, 4.2, and 5.1 s, respectively. 

Recommendations For Further Research 

The objectives of this project have been completed, and 

a foundation has been laid for future work. This section 

presents recommendations for additional research on the date 

grading system. 

A 64x64-pixel (0.88 cm2 ) ROI appears to be sufficient 
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for evaluation of date surface features. The texture 

spectrum features are sensitive to pixel spatial and 

intensity resolutions, which were 0.15 mm and 256 gray 

levels (8 bits), respectiv~ly. Improved accuracy from 

texture spectrum features might be achieved by lowering both 

spatial and intensity resolutions. A spatial resolution of 

0.3 mm and intensity of 32 gray levels (5 bits) is 

suggested. 

Classification accuracy of the HSI first-order 

histogram model was 65.8% and 77.6% using the USDA and 

Industry grading standards. This model consisted of the 

mean of the color band histograms. Fast computation (real 

time) is the main advantage of this model. Additional 

features, such as standard deviation and areas defined using 

thresholding techniques might allow classification accuracy 

of the model to meet the date industry requirment (85%). 

Neural networks are an alternative method which has 

been applied to classification and pattern recognition. 

Comparing the performance of neural networks to that of the 

nonparametric multivariate discriminant method (using 

Epanechnikov kernel) is suggested. 
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TABLE XIV 

CLASSIFICATION ACCURACY OF FIRST ROI 

(1991 Crop, USDA Grading Standards) 

Model Nat N1D N2D Cull TOTAL 

HSI.-1 84.0% 44.0% 62.0% 52.0% 60.5% 

·HSI-2 77.0% 79.0% 67.0% 78.0% 75.3% 
HS.I-3 87.0% 77.0% 60.0% 58.0% 70.5% 
HSI-4 83.0% 76.0% 61.0% 79.0% 74.8% 

HSI-5 94.0% 96.0% 87.0% 87.0% 91.0% 

HSI-6 45.0% 35.0% 59.0% 53.0% 48.0% 
HSI~7 76.0% 18.0% 48.0% 35.0% 44.3% 
HSI-8 86.0% 37.0% 38.0% 62.0%. 55.8% 

HSI-9 88.0% 62.0% 77.0% 77.0% 76.0% 

RGB--1 77.0% 55.0% 61.0% 51.0% 61.0% 

RGB-2 84.0% 71.0% 57.0% 76.0% 72.0% 
RGB"-3 87.0% 74.0% 57.0% 78.0% 74.0% 
RGB-4 89.0% 69.0% 69.0% 70.0% 74.3% 

RGB-5 98.0% 97.0% 90.0% 96.0% 95.3% 

RGB-6 85.0% 29.0% 71.0% 32.0% 54.3% 
RGB-7 81.0% 47.0% 52.0% 61.0% 60.3% 
RGB-8 69.0% 56.0% 51.0% 28.0% 51.0% 

RGB-9 96.0% 79.0% 82.0% 88.0% 86.3% 

Nat - Classification accuracy of Natural Class. 
NlD - Classification accuracy of Number 1 Dry Class. 
N2D - Classification accuracy of Number 2 Dry Class. 
Cull - Classification accuracy of Cull Class. 
TOTAL - Average classification accuracy of all classes. 
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TABLE XV 

CLASSIFICATION ACCURACY OF SECOND ROI 

(1991 Crop, USDA Grading Standards) 

Model Nat NlD N2D Cull TOTAL 

HSI-1 74.0% 48.0% 62.0% 57.0% 60.3% 

HSI-2 77.0% 75.0% 62.0% 69.0% 70.8% 
HSI-3 85.0% s1.-0% 73.0% 63.0% 75.5% 
HSI-4 88.0% 75.0% 71.0% 74.0% 77.0% 

HSI-5 97.0% 94.0% 95.0% 91.0% 94.3% 

HSI-6 41.0% 58.0% 49.0% 60.0% 52.0% 
HSI-7 78.0% 17.0% 34.0% 63.0% 48.0% 
HSI-8 81.0% 36.0% 50.0% 41.0% 52.0% 

HSI-9 86.0% 72.0% 75.0% 68.0% 75.3% 

RGB-1 74.0% 64.0% 50.0% 60.0% 62.0% 

RGB-2 85.0% 70.0% 67.0% 79.0% 75.3% 
RGB-3 82.0% 71.0% 66.0% 71.0% 72.5% 
RGB-4 86.0% 76.0% 77.0% 59.0% 74.5% 

RGB-5 97.0% 98.0% 99.0% 96.0% 97.5% 

RGB-6 60.0% 53.0% 53.0% 58.0% 56.0% 
RGB-7 68.0% 48.0% 47.0% 59.0% 55.5% 
RGB-8 86.0% 49.0% 59.0% 38.0% 58.0% 

RGB-9 93.0% 88.0% 80.0% 88.0% 87.3% 

Nat - Classification accuracy of Natural Class. 
NlD - Classification accuracy of Number 1 Dry Class. 
N2D - Classification accuracy of Number 2 Dry Class. 
Cull - Classification accuracy of Cull Class. 
TOTAL - Average classification accuracy of all classes. 
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TABLE XVI 

CLASSIFICATION ACCURACY OF THIRD ROI 

(1991 Crop, USDA Grading Standards) 

Model Nat NlD N2D Cull TOTAL 

HSI-1 79.0% 43.0% 58.0% 60.0% 60.0% 

HSI-2 75.0% 68.0% 76.0% 63.0% 70.5% 
HSI-3 85.0% 79.0% 57.0% 61.0% 70.5% 
HSI-4 85.0% 67.0% 62.0% 75.0% 72.3% 

HSI-5 94~0% 90.0% 95.0% 83.0% 90.5% 

HSI-6 24.0% 48.0% 61.0% 53.0% 46.5% 
HSI-7 70.0% 22.0% 25.0% 69.0% 46.5% 
HSI-8 83.0% 42.0% 50.0% 52.0% 56.8% 

HSI-9 77.0% 81. 0% 68.0% 71. 0% 74.3% 

RGB-1 ·12.0% 40.0% 47.0% 69.0% 57.0% 

RGB-2 82.0% 67.0% 64.0% 68.0% 70.3% 
RGB-3 75.0% 80.0% 46.0% 68.0% 67.3% 
RGB-4 82.0% 67.0% 61.0% 54.0% 66.0% 

RGB-5 98.0% 95.0% 94.0% 96.0% 95.8% 

RGB-6 86.0% 42.0% 52.0% 57.0% 59.3% 
RGB-7 66.0% 63.0% 56.0% 50.0% 58.8% 
RGB-8 82.0% 30.0% 67.0% 28.0% 51.8% 

RGB-9 95.0% 80.0% 83.0% 85.0% 85.8% 

Nat - Classification accuracy of Natural Class. 
NlD - Classification accuracy of Number 1 Dry Class. 
N2D - Classification accuracy of Number 2 Dry Class. 
Cull - Classification accuracy of Cull Class. 
TOTAL - Average classification accuracy of all classes. 
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TABLE XVII 

CLASSIFICATION ACCURACY OF FOURTH ROI 

(1991 Crop, USDA Grading Standards) 

Model Nat N1D N2D Cull TOTAL 

HSI-1 81.0% _55.0% 32.0% 75.0% 60.8% 

HSI-2 84.0% 72.0% 67.0% 81.0% 76.0% 
HSI-3 86.0% 84.0% 52.0% 72.0% ,73. 5% 
HSI-4 81.0% 83.0% 56.0% 83.0% 75.8% 

HSI-5 97.0% 100.0% 91. 0% 93.0% 95.3% 

HSI-6 56.0% 52.0% 40.0% 77.0% 56.3% 
HSI-7 64.0% 19.0% 53.0% 54.0% 47.5% 
HSI-8 70.0% 64.0% 58.0% 52.0% 61.0% 

HSI-9 90.0% 89.0% 81.0% 91.0% 87.8% 

RGB-1 81.0% 55.0% 39.0% 73.0% 62.0% 

RGB-2 84.0% 70.0% 73.0% 80.0% 76.8% 
RGB-3 88.0% 73.0% 54.0% 72.0% 71.8% 
RGB-4 82.0% 82.0% 66.0% 62.0% 73.0% 

RGB-5 100.0% 95.0% 95.0% 96.0% 96.5% 

RGB....;6 69.0% 44.0% 59.0% 53.0% 56.3% 
RGB-7 72.0% 49.0% 56.0% 41.0% 54.5% 
RGB-8 74.0% 48.0% 54.0% 47.0% 55.8% 

RGB-9 89.0% 84.0% 78.0% 91.0% 85.5% 

Nat - Classification accuracy of Natural Class. 
NlD - Classification accuracy of Number 1 Dry Class. 
N2D - Classification accuracy of Number 2 Dry Class. 
cull - Classification accuracy of Cull Class. 
TOTAL - Average classification accuracy of all classes. 
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TABLE XVIII 

CLASSIFICATION ACCURACY OF FIRST ROI 

(1991 Crop, Industry Grading Standards) 

Model A B C TOTAL 

HSI-1 84.0% 75.5% 52.0% 70.5% 

HSI-2 77.0% 87.5% 78.0% 80.8% 
HSI-3 87.0% 90.0% 58.0% 78.3% 
HSI-4 83.0% 82.5% 79.0% 81.5% 

HSI-5 94.0% 97.0% 87.0% 92.7% 

HSI-6 45.0% 69.5% 53.0% 55.8% 
HSI-7 76.0% 54.0% 35.0% 55.0% 
HSI-8 86.0% 48.5% 62.0% 65.5% 

HSI-9 88.0% 80.0% 77.0% 81.7% 

RGB-1 77.0% 79.0% 51.0% 69.0% 

RGB-2 84.0% 79.5% 76.0% 79.8% 
RGB-3 87.0% 80.5% 78.0% 81.8% 
RGB-4 89.0% 79.0% 70.0% 79.3% 

RGB-5 98.0% 97.5% 96.0% 97.2% 

RGB-6 85.0% 64.5% 32.0% 60.5% 
RGB-7 81.0% 63.0% 61.0% 68.3% 
RGB-8 69.0% 75.5%. 28.0% 57.5% 

RGB-9 96.0% 88.5% 88.0% 90.8% 

A - Classification accuracy of Grade A. 
B - Classification accuracy of Grade B. 
C - Classification accuracy of Grade C. 
TOTAL - Average classification accuracy of all grades. 
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TABLE XIX 

CLASSIFICATION ACCURACY OF SECOND ROI 

(1991 Crop, Industry Grading Standards) 

Model A B C ,TOTAL 

HSI-1 74.0% 77.0% 57.0% 69.3% 

HSI-2 77.0% 82.0% 69.0% 76.0% 
HSI-3 85.0% 91.5% 63.0% 79.8% 
HSI-4 88.0% 89.0% 74.0% 83.7% 

HSI-5 97.0% 99.5% 91.0% 95.8% 

HSI-6 41.0% 65.5% 60.0% 55.5% 
HSI-7 78.0% 37.5% 63.0% 59.5% 
HSI-8 81.0% 56.0% 41.0% 59.3% 

HSI-9 . 86. 0% 82.0% 68.0% 78.7% 

RGB-1 74.0% 78.0% 60.0% 70.7% 

RGB-2 85.0% 82.0% 79.0% 82.0% 
RGB-3 82.0% 85.5% 71.0% 79.5% 
RGB-4 86.0% 90.0% 59.0% 78.3% 

RGB-5 97.0% 99.5% 96.0% 97.5% 

RGB-6 60.0% 65.0% 58.0% 61.0% 
RGB-7 68.0% 57.0% 59.0% 61.3% 
RGB-8 86.0% 70.5% 38.0% 64.8% 

RGB-9 93.0% 87.5% 88.0% 89.5% 

A - Classification accuracy of Grade A. 
B - Classification accuracy of Grade B. 
C - Classification accuracy of Grade c. 
TOTAL - Average classification accuracy of all grades. 



TABLE XX 

CLASSIFICATION ACCURACY OF THIRD ROI 

(1991 Crop, Industry Grading Standards) 

Model 

HSI-1 

HSI-2 
HSI-3 
HSI-4 

HSI-5 

HSI-6 
HSI-7 
HSI-8 

HSI-9 

RGB-1 

RGB-2 
RGB-3 
RGB-4 

RGB-5 

RGB-6 
RGB-7 
RGB-8 

RGB-9 

A 

79.0% 

75.0% 
85.0% 
85.0% 

94.0% 

24.0% 
70.0% 
83.0% 

77.0% 

72.0% 

82.0% 
75.0% 
82.0% 

98.0% 

86.0% 
66.0% 
82.0% 

95.0% 

B 

78.0% 

89.0% 
87.0% 
84.0% 

99.0% 

73.5% 
38.0% 
62.5% 

89.0% 

56.0% 

82.0% 
83.5% 
87.0% 

97.0% 

63.0% 
79.0% 
72.5% 

87.5% 

C 

60.0% 

63.0% 
61.0% 
75.0% 

83.0% 

53.0% 
69.0% 
52.0% 

71.0% 

69.0% 

68.0% 
68.0% 
54.0% 

96.0% 

57.0% 
50.0% 
28.0% 

85.0% 

A - Classification accuracy of Grade A. 
B - Classification accuracy of Grade B. 
C - Classification accuracy of Grade C. 
TOTAL - Average classification accuracy of all grades. 

TOTAL 

72.3% 

75.7% 
77.7% 
81.3% 

92.0% 

50.2% 
59.0% 
65.8% 

79.0% 

65.7% 

77.3% 
75.5% 
74.3% 

97.0% 

68.7% 
65.0% 
60.8% 

89.2% 
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TABLE XXI 

CLASSIFICATION ACCURACY OF FOURTH ROI 

(1991 Crop, Industry Grading Standards) 

Model A B C TOTAL. 

HSI-1 81.0% 67.0% 75.0% 74.3% 

HSI-2 84.0% 88.5% 81.0% 84.5% 
HSI-3 86.0% 87.0% 72.0% 81.7% 
HSI-4 81.0% 85.0% 83.0% 83.0% 

HSI-5 97.0% 100.0% 93.0% 96.7% 

HSI-6 56.0% 59.5% 77.0% 64.2% 
HSI-7 64.0% 53.0% 54.0% 57.0% 
HSI-8 70.0% 77.0% 52.0% 66.3% 

HSI-9 90.0% 90.0% 91.0% 90.3% 

RGB-1 81.0% 70.5% 73.0% 74.8% 

RGB-2 '34.0% 84.0% 80.0% 82.7% 
RGB-3 88.0% 83.0% 72.0% 81.0% 
RGB-4 82.0% 89.0% 62.0% 77.7% 

RGB-5 100.0% 97.5% 96.0% 97.8% 

RGB-6 69.0% 66.0% 53.0% 62.7% 
RGB-7 72.0% 65.5% 41.0% 59.5% 
RGB-8 74.0% 66.5% 47.0% 62.5% 

RGB-9 89.0% 85.5% 91.0% 88.5% 

A - Classification accuracy of Grade A. 
B - Class-ification accuracy of Grade B. 
C - Classification accuracy of Grade c. · 
TOTAL - Average classification accuracy of all grades. 
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TABLE XXII 

CLASSIFICATION ACCURACY OF FIRST ROI 

(1992 Crop, USDA Grading Standards) 

Model Nat ·waxy N1D N2D Cull TOTAL 

HSI-1 87.0% 41.0% 85.0% 60.0% 57.0% 66.0% 

HSI-2 80.0% 68.0% 61.0% 60.0% 81.0% 70.0% 
HSI-3 87.0% 67.0% 64.0% 68.0% 60.0% 69.2% 
HSI-4 82.0% 47.0% 82.0% 83.0% 70.0% 72.8% 

HSI-5 94.0% 86.0% 96.0% 92.0% 96.0% 92.8% 

HSI-6 57.0% 29.0% 53.0% 41.0% 69.0% 49.8% 
HSI-7 74.0% 9.0% 38.0% 65.0% 27.0% 42.6% 
HSI-8 85.0% 45.0% 57.0% 57.0% 53.0% 59.4% 

HSI-9 94.0% 73.0% 89.0% 84.0% 89.0% 85.8% 

RGB-1 59.0% 47.0% 71.0% 43.0% 65.0% 57.0% 

RGB-2 89.0% 53.0% 83.0% 88.0% 76.0% 77.8% 
RGB-3 84.0% 56.0% 81.0% 75.0% 72.0% 73.6% 
RGB-4 91.0% 54.0% 77.0% 79.0% 73.0% 74.8% 

RGB-5 100.0% 99.0% 100.0% 99.0% 98.0% 99.2% 

RGB-6 64.0% 47.0% 23.0% 30.0% 70.0% 46.8% 
RGB-7 83.0% 50.0% 60.0% 59.0% 44.0% 59.2% 
RGB-8 57.0% 25.0% 60.0% 46.0% 74.0% 52.4% 

RGB-9 88.0% 78.0% 76.0% 74.0% 84.0% 80.0% 

Nat - Classification accuracy of Natural Class. 
Waxy - Classification accuracy of .waxy _Class. 
NlD - ·Classification accuracy of Number 1 Dry Class. 
N2D - Classification accuracy of Number 2 Dry Class. 
Cull - Classification accuracy of Cull Class. 

·TOTAL - Average classification accuracy of all classes. 
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TABLE XXIII 

CLASSIFICATION ACCURACY OF SECOND ROI 

(1992 Crop, USDA Grading Standards) 

Model Nat Waxy NlD N2D Cull TOTAL 

HSI-1 83.0% 44.0% 82.0% 62.0% 68.0% 67.8% 

HSI-2 74.0% 77.0% 62.0% 52.0% 83.0% 69.6% 
HSI-3 86.0% 81.0% 60.0% 66.0% 73.0% 73.2% 
HSI-4 79.0% 66.0% 67.0% 75.0% 71.0% 71.6% 

HSI-5 95.0% 95.0% 91.0% 95.0% 94.0% 94.0% 

HSI-6 45.0% 45.0% 57.0% 45.0% 63.0% 51.0% 
HSI-7 75.0% 27.0% 26.0% 41.0% 27.0% 39.2% 
HSI-8 75.0% 53.0% 50.0% 59.0% 61.0% 59.6% 

HSI-9 83.0% 72.0% 81.0% 86.0% 84.0% 81.2% 

RGB-1 58.0% 40.0% 53.0% 48.0% 72~0% 54.2% 

RGB-2 94.0% 76.0% 69.0% 75.0% 82.0% 79.2% 
RGB-3 76.0% 69.0% 72.0% 72.0% 73.0% 72.4% 
RGB-4 90.0% 65.0% 78.0% 80.0% 79.0% 78.4% 

RGB-5 100.0% 99.0% 96.0% 100.0% 96.0% 98.2% 

RGB-6 68.0% 34.0% 59.0% 60.0% 78.0% 59.8% 
RGB-7 83.0% 45.0% 58.0% 52.0% 67.0% 61.0% 
RGB-8 64.0% 31.0% 48.0% 55.0% 69.0% 53.4% 

RGB-9 96.0% 86.0% 84.0% 85.0% 92.0% 88.6% 

Nat - Classification accuracy of Natural Class. 
Waxy - Classification accuracy of Waxy Class. 
NlD - Classification accuracy of Number 1 Dry Class. 
N2D - Classification accuracy of Number 2 Dry Class. 
Cull - Classification accuracy of Cull Class. 
TOTAL - Average classification accuracy of all classes. 
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TABLE XXIV 

CLASSIFICATION ACCURACY OF THIRD ROI 

{1992 Crop, USDA Grading Standards) 

Model Nat waxy N1D N2D Cull TOTAL 

HSI-1 82.0% 46.0% 82.0% 50.0% 59.0% 63.8% 

HSI-2 83.0% 70.0% 63.0% 55.0% 83.0% 70.8% 
HSI-3 87.0% 73.0% 61.0% 65.0% 62.0% 69.6% 
HSI-4 81.0% 64.0% 64.0% 64.0% 71.0% 68.8% 

HSI-5 96.0% 94.0% 89.0% 90.0% 95.0% 92.8% 

HSI-6 34.0% 42.0% 55.0% 37.0% 63.0% 46.2% 
HSI-7 76.0% 19.0% 32.0% 59.0% 21.0% 41.4% 
HSI-8 85.0% 47.0% 41.0% 47.0% 56.0% 55.2% 

HSI-9 94.0% 73.0% 71.0% 72.0% 90.0% 80.0% 

RGB-1 64.0% 44.0% 63.0% 47.0% 61.0% 55.8% 

RGB-2 96.0% 77.0% 70.0% 80.0% 75.0% 79.6% 
RGB-3 78.0% 68.0% 68.0% 73.0% 75.0% 72.4% 
RGB-4 89.0% 73.0% 71.0% 71.0% 79.0% 76.6% 

RGB-5 100.0% 99.0% 97.0% 96.0% 100.0% 98.4% 

RGB-6 49.0% 24.0% 47.0% 48.0% 69.0% 47.4% 
RGB-7 80.0% 42.0% 52.0% 20.0% 67.0% 52.2% 
RGB-8 56.0% 38.0% 43.0% 48.0% 67.0% 50.4% 

RGB-9 86.0% 83.0% 78.0% 70.0% 92.0% 81.8% 

Nat - Classification accuracy of Natural Class. 
Waxy - Classification accuracy of Waxy Class. 
NlD - Classification accuracy of Number 1 Dry Class. 
N2D - Classification accuracy of Number 2 Dry Class. 
Cull - Classification accuracy of Cull Class. 
TOTAL - Average classification accuracy of all classes. 
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TABLE XXV 

CLASSIFICATION-ACCURACY OF FOURTH ROI 

(1992 Crop, USDA Grading Standards) 

Model Nat . Waxy N1D N2D Cull TOTAL 

HSI-1 84.0% 37.0% 76.0% 56.0% 75.0% 65.6% 

HSI-2 72.0% 69.0% 57.0% 67.0% 74.0% 67.8% 
HSI-3 90.0% 75.0% 64.0% 77.0% 79.0% 77.0% 
HSI-4 80.0% 67.0% 68.0% 83.0% 69.0% 73.4% 

HSI-5 94.0% 94.0% 81. 0% 93.0% 90.0% 90.4% 

HSI-6 59.0% 22.0% 44.0% 45.0% 72.0% 48.4% 
HSI-7 62.0% 12.0% 40.0% 55.0% 45.0% 42.8% 
HSI-8 77.0% 48.0% 57.0% 55.0% 60.0% 59.4% 

HSI-9 78.0% 57.0% 80.0% 82.0% 77.0% 74.8% 

RGB-1 64.0% 43.0% 68.0% 48.0% 77.0% 60.0% 

RGB""".2 90.0% 59.0% 76.0% 82.0% 72.0% 75.8% 
RGB-3 80.0% 70.0% 71.0% 84.0% 74.0% 75.8% 
RGB-4 95.0% 63.0% 76.0% 76.0% 78.0% 77.6% 

RGB-5 100.0% 99.0% 96.0% 96.0% 98.0% 97.8% 

RGB-6 70.0% 40.0% 33.0% 62.0% 62.0% 53.4% 
RGB-7 84.0% 45.0% 60.0% 50.0% 51.0% 58.0% 
RGB-8 48.0% 22.0% 58.0% 61.0% 60.0% 49.8% 

RGB-9 89.0% 78.0% 81.0% 89.0% 79.0% 83.2% 

Nat - Classification accuracy of Natural Class. 
Waxy - Classification accuracy of Waxy Class. 
NlD ~ Classification accuracy of Number 1 Dry Class. 
N2D - Classification accuracy of Number 2 Dry Class. 
Cull - Classification accuracy of Cull Class. 
TOTAL - Average classification accuracy of all classes. 
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TABLE XXVI 

CLASSIFICATION ACCURACY OF FIRST ROI 

(1992 Crop, Industry Grading Standards) 

Model A B c, TOTAL 

HSI-1 87.0% 87.7% 57.0% 77.2% 

HSI-2 80.0% 81.3% 81.0% 80.8% 
HSI-3 87.0% 90.7% 60.0% 79.2% 
HSI-4 82.0% 94.7% 70.0% 82.2% 

HSI-5 94.0% 99.3% 96.0% 96.4% 

HSI-6 57.0% 72.0% 69.0% 66.0% 
HSI-7 74.0% 69.3% 27.0% 56.8% 
HSI-8 85.0% 76.7% 53.0% 71.6% 

HSI-9 94.0% 92.7% 89.0% 91.9% 

RGB-1 59.0% 81.3% 65.0% 68.4% 

RGB-2 89.0% 95.0% 76.0% 86.7% 
RGB-3 84.0% 92.0% 72.0% 82.7% 
RGB-4 91.0% 93.0% 73.0% 85.7% 

RGB-5 100.0% 100.0% 98.0% 99.3% 

RGB-6 64.0% 60.0% 70.0% 64.7% 
RGB-7 83.0% 78.0% 44.0% 68.3% 
RGB-8 57.0% 75.3% 74.0% 68.8% 

RGB-9 88.0% 89.3% 84.0% 87.1% 

A - Classification accuracy of Grade A. 
B - Classification accuracy of Grade B. 
C - Classification accuracy of Grade C. 
TOTAL - Average classification accuracy of all grades. 
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TABLE XXVII 

CLASSIFICATION ACCURACY OF SECOND ROI 

(1992 Crop, Industry Grading Standards) 

Model A B C TOTAL 

HSI-1 83.0% 84.0% 68.0% 78.3% 

HSI-2 74.0% 86.3% 83.0% 81.1% 
HSI-3 86.0% 92.7% 73.0% 83.9% 
HSI-4 79.0% 93.3% 71.0% 81.1% 

HSI-5 95.0% 99.3% 94.0% 96.1% 

HSI-6 45.0% 72.0% 63.0% 60.0% 
HSI-7 75.0% 62.3% 27.0% 54.8% 
HSI-8 75.0% 78.0% 61.0% 71.3% 

HSI-9 83.0% 91.7% 84.0% 86.2% 

RGB-1 58.0% 72.3% 72.0% 67.4% 

RGB-2 94.0% 92.7% 82.0% 89.6% 
RGB-3 76.0% 92.7% 73.0% 80.6% 
RGB-4 90.0% 94.3% 79.0% 87.8% 

RGB-5 100.0% 100.0% 96.0% 98.7% 

RGB-6 68.0% 73.7% 78.0% 73.2% 
RGB-7 83.0% 71. 7% 67.0% 73.9% 
RGB-8 64.0% 73.3% 69.0% 68.8% 

RGB-9 96.0% 91. 7% 92.0% 93.2% 

A - Classification accuracy of Grade A. 
B - Classification accuracy of Grade B. 
C - Classification accuracy of Grade c. 
TOTAL - Average classification accuracy of all grades. 
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TABLE XXVIII 

CLASSIFICATION ACCURACY OF THIRD ROI 

(1992 Crop, Industry Grading Standards) 

Model A B C TOTAL 

HSI-1 82.0% 83.7% 59.0% 74.9% 

HSI-2 83.0% 83.3% 83.0% 83.1% 
HSI-3 87.0% 91.0% 62.0% 80.0% 
HSI-4 81.0% 90.7% 71.0% 80.9% 

HSI-5 96.0% 98.7% 95.0% 96.6% 

HSI-6 34.0% 69.0% 63.0% 55.3% 
HSI-7 76.0% 73.0% 21.0% 56.7% 
HSI-8 85.0% 66.7% 56.0% 69.2% 

HSI-9 94.0% 84.0% 90.0% 89.3% 

RGB-1 64.0% 78.0% 61.0% 67.7% 

RGB-2 96.0% 93.3% 75.0% 88.1% 
RGB-3 78.0% 92.0% 75.0% 81.7% 
RGB-4 89.0% 91.7% 79.0% 86.6% 

RGB-5 100.0% 99 .. 7% 100.0% 99.9% 

RGB-6 49.0% 67.7% 69.0% 61.9% 
RGB-7 80.0% 62.3% 67.0% 69.8% 
RGB-8 56.0% 70.0% 67.0% 64~3% 

RGB-9 86.0% 85.7% 92.0% 87.9% 

A - Classification accuracy of Grade A. 
B - Classification accuracy of Grade B. 
C - Classification accuracy of Grade c. 
TOTAL - Average classification accuracy of all grades. 
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TABLE XXIX 

CLASSIFICATION ACCURACY OF FOURTH ROI 

(1992 Crop, Industry Grading Standards) 

Model A B C TOTAL 

llSI-1 84.0% 80.3% 75.0% 79.8% 

HSI-2 72.0% 86.3% 74.0% 77.4% 
HSI-3 90.0% 91. 7% 79.0% 86.9% 
HSI-4 80.0% 95.0% 69.0% 81.3% 

HSI-5 94.0% 98.3% 90.0% 94.1% 

HSI-6 59.0% 59.7% 72.0% 63.6% 
HSI-7 62.0% 71.7% 45.0% 59.6% 
HSI-8 77.0% 81.7% 60.0% 72.9% 

HSI-9 78.0% 95.0% 77.0% 83.3% 

RGB-1 64.0% 75.0% 77.0% 72.0% 

RGB-2 90.0% 95.3% 72.0% 85.8% 
RGB-3 80.0% 97.0% 74.0% 83.7% 
RGB-4 95.0% 93. 7% - 78.0% 88.9% 

RGB-5 100.0% 100.0% 98.0% 99.3%· 

RGB-6 70.0% 74.3% 62.0% 68.8% 
RGB-7 84.0% 76.7% 51.0% 70.6% 
RGB-8 48.0% 83.7% 60.0% 63.9% 

RGB-9 89.0% 95.3% 79.0% 87.8% 

A ~ Classification accuracy of.Grade A. 
B - Classification accuracy of Grade B. 
C - Classification accuracy of Grade C. 
TOTAL - Average classification accuracy of all grades. 
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