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CHAPTER I 
 

 

INTRODUCTION 

 

 

 

Due to advancement in VLSI technology many industrial and business related 

applications makes use of floating point operations as a result of which floating point unit has 

become critical component of modern processor design as well as dedicated embedded systems. 

Special purpose applications such as graphics rendering has further demanded need of high speed 

& efficient floating point units as performance of the processor is often limited by high latency of 

floating point unit.  

Modern applications consist of several floating-point operations, which mainly include 

addition, subtraction, multiplication, division and square root [1]. These days focus is more on the 

implementation of high speed floating point adders and multipliers as a result of which latency of 

these operations has come down to 2 to 4 cycles, but at the same time latency associated with 

division and square root is large, in some cases latency for such operations is around 50-60 

cycles. This ignorance towards implementation of high-speed divider is due to instruction mix of 

the benchmarks, which are used to validate performance of processors. 
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Figure 1 - Distribution of FP instructions 

Figure1 shows average frequency of division and square root operations in benchmark 

suite as compared to other floating-point operations. All benchmark applications are compiled 

using O3 optimization. From figure1 we can observe that division and square root are very 

uncommon operations comprising only 3% of total floating point operations [2]. 

On the other hand floating point multiplication holds for 37% of the instructions & 

floating point addition accounts for 55% of the instructions. Due to this common view of division 

operation is that it is an infrequent operation which does not required high priority, but if we look 

into Figure2 which shows latency associated with floating point operations, it indicates that 

latency of divide operation is 20 cycle as compared to multiply and addition operations which has 

3 cycle of latency each. Distribution of stall time due to FP hardware shows that FP division is 

responsible for 40% of the latency, FP addition accounts for 42 % and FP multiply results in 

remaining 18%. This shows that slow division operation results in overall degradation of system 

performance.  
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Figure 2 - Distribution of unit stall time 

There is an extensive mathematical literature available for implementation of division 

algorithm but still implementation of these algorithms is considers as black box due to many 

parameters involved in it. Division algorithms can be divided into five classes such as digit 

recurrence, functional iteration, very high radix, table look up and variable latency. 

Some division algorithms don’t belong to any specific class; they make the use of more 

than one technique mentioned above to perform the operation. Out of algorithms mentioned 

above digit recurrence is the oldest class of high-speed division as a result of which lot of 

literature is published related to it. The most common and popular implementation of digit 

recurrence algorithm is SRT division algorithm, which has been named SRT division by Freiman 

taking its name from the initials of Sweeney, Robertson and Tocher, who developed the algorithm 

independently at the same time. 

Implementation work related to SRT division algorithms have been done previously 

without an actual implementation, Ercegovac and Lang provide comparison between different 
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division algorithms in terms of delay and area using full adder units and NAND gate units. 

Objective of this work is to provide accurate comparison between different SRT algorithms by 

actual RTL implementation of all of them, followed by synthesis and PNR of the design in order 

to get area, delay and power numbers associated with it. This work includes implementation of 

SRT Radix2, Radix4, Radix16 and Radix512 algorithms. More emphasis is given on the 

implementation of high Radix512 division algorithms and how the same hardware can be utilized 

to perform high radix multiplication to save area and maximize performance.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

 

Digit recurrence algorithm consists of n iterations, where each iteration produces one 

digit of the quotient. However, digit recurrence algorithms do have preprocessing as well as post 

processing steps, which are vital in order to, make sure that the dividend, divisor, quotient and 

remainder are presented correctly [3]. 

2.1. Digit Recurrence Algorithm 

Division operation starts by taking divisor d, dividend x and computes quotient q, and its 

remainder, r. the basic equation for division is recursive as follows: 

x = q . d + r   where r < d     (2.1.1) 

The quotient digit is one of the most interesting elements in the division process. In 

particular, quotients are most often implemented as redundant digit set. The reason behind doing 

so is that it simplifies the quotient digit selection. Unfortunately as radix increases, complexity of 

the quotient digit selection also increases.  
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Therefore as designers one of the challenges for division is to make right decision on 

which algorithm to chose for implementation and its circuit implications [4]. This tradeoff is 

noticeable in division due to variation in which division can be implemented.  

Digit recurrence algorithm of division works iteratively using following equation where 

wi is the partial remainder for iteration i, d is the divisor, r is the radix and qi is the quotient digit 

for iteration i 

wi+1 = r . wi = qi+1 .d       (2.1.2) 

Algorithm starts by assigning first partial remainder denoted by w[0] as dividend x. The 

quotient selection function is chosen based on comparison between the divisor and shifted partial 

reminder 

qi + 1 = QST ( r. wi, d)       (2.1.3) 

Where QST is the Quotient Selection Table. The QST can be implemented in various 

ways such as using ROM, PLA or combinational logic. All RTL implementation in this work use 

combinational logic to construct QST due to an obvious advantage of speed over other techniques 

as well as in order to avoid use of Macro block in the design.  

The most challenging step in the division procedure is the comparison between the 

divisor and remainder to determine the quotient bit.  If this is done by subtracting d from wi, one 

has to be careful if the result is negative. If so, a correction operation occurs restoring the 

remainder to the previous interaction, this method is called restoring division. Non-restoring 

division is an alternative for sequential division by having specific logic for not correcting the 

quotient; this is achieved by allowing a correlation factor within the algorithm. Unfortunately, 

because non-restoring division requires a correction factor, there may be some post processing 
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that is required if the final remainder is negative. Accordingly, it is necessary to have a correction 

step that adjusts the quotient as flows where m is the final iteration of the recurrence relation and 

r
-n

 is an ulp 

q = qm   if wi >= 0      (2.1.4) 

qm – r
-n

 if wi < 0      (2.1.5) 

Therefore, the process of division by recurrence can improve upon general division 

algorithms by taking advantage of flowing elements 

1. As Radix increases, it decreases the number of iterations assuming r = 2
k
 

2. Redundancy within the quotient digit set reduces and simplifies the QST 

3. Partial remainder can be implemented using redundant notation, which simplifies the 

computation of the partial reminder using carry-free adder. 

All the designs implemented in this work make the use of these choices and showing 

tradeoffs for these choices. 

2.2. Quotient Selection Table 

This section presents basic theoretical background required to design quotient digit 

selection function. Algorithm for division is challenging because the implementations for quotient 

digit selection vary from design to design. The basic idea of the QST is to choose the value of 

quotient digit qi+1, based on comparison between shifted partial remainder and the divisor. A 

symmetric SD digit set is utilized where the range of quotient is  

qi+1 belongs to {-a, -a+1...., -1, 0, 1,…., a-1, a} 
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Redundancy factor 



  is defined as   



 
a

r 1
,
1

2
  1

      (2.2.1)
 

Even though choosing the right function for a QST is complex, it can be easily 

formulated into two conditions called containment and continuity. The containment condition 

identifies selection interval for each quotient digit qi+1. On the other hand continuity condition 

details the range, which the quotient digit is selected. 

2.3. Containment condition 

Since the equation for recurrence involves subtraction and shifts from equation 2.1.2, it is 

important to note that the quotient digit selection becomes difficult. For example, if user decided 

to divide 300 / 5 in radix 10 and chooses qi to be 2, this will violate the bound available for next 

quotient digit making the computation cumbersome. In other words a quotient digit will need to 

be calculated for partial reminder of 200.  

The containment condition sets up the selection intervals necessary for computing the 

subsequent quotient digit. For given quotient digit qi+1 to be chosen as k, there should be bounds 

on an interval of allowable partial reminders, these regions are defined by the interval [Lk, Uk] 

such that Lk is the smallest value of partial remainder r.wj for which it is possible to choose qi+1 = 

k, whereas Uk is largest value of partial reminder r.wj for which it is possible to choose qi+1= k. 

In other words selection intervals are for quotient digit qi+1 =k is given by 

Uk = (k +



 ). d       (2.3.1) 

Lk = (k -



 ). d       (2.3.2)  
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Figure 3 - Robertson's PD Diagram 

Sometimes, this can be visualized by examining a graph of subsequent partial remainder, 

wi+1 versus the shifted partial remainder, r. wi. This visualization is represented in Robertson’s 

diagram as shown in figure3. Robertson’s plot the recurrence relationship for a given quotient 

digit qi+1, assuming the user is varying the shifted partial reminder and plotting or computing the 

subsequent partial remainder. The axis of Robertson’s diagram is bounded by axis ([ –rp.d ; 

rp.d;=p.d;p.d]) where the axis function defines the range of function such that the argument is 

defined as {[xmin; xmax;ymin; ymax]}. Interestingly, the redundancy introduced by using SD digit set 

imposes an overlap between quotient digits. For example, in figure3 there is an overlap between 

qi+1 = k-1 and qi+1 =k. This overlap will be useful in defining the continuity equation.  

2.4. Continuity Condition 

Since the containment condition defines range of subsequent partial reminder, choosing 

the correct quotient digit from this region is job of continuity condition. To satisfy the 

containment condition, the minimum value of x-axis of the Robertson’s diagram is chosen such 

that qi+1=k is our quotient digit. This can be defined as the following inequality where sk is the 

minimum value that user chooses before an implementation is devised. 

Lk <= sk <= Uk       (2.4.1) 
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Unfortunately, because the overlap that occurred in the containment condition, the 

quotient digit may be chosen as either k or k-1. For example, in figure3 an overlap exists between 

Lk, which is Lower bound for quotient digit k, and Uk-1, which is the largest bound on partial 

reminder for a quotient digit to be k-1 such that sk can either be k-1 or k. Since the containment 

equations are defined, it is easy to measure this overlap as  

Uk-1 –Lk = (k - 1+



 . d ) –  (k -



 .d ) = ( 2. 



  -1).d  (2.4.2) 

The simplest selection function is to make sk constant and do a comparison on the 

constant. Thus many implementations for QST’s resort to ROM or PLA elements. The constants 

should satisfy the following equation  

max (Lk) 



  mk 



  min (Uk-1) + ulp  

A second requirement of the selection in the continuity condition states that every value 

of r.w[i] must belong to at least one selection interval. This can be expressed as  



Uk1 Lk  r
n

      (2.4.3) 

As shown in Robertson’s diagram the term 



r -n   
reflects granularity of representable 

values, since r.w[i] is represented with n fractional digits. To simplify the derivations and to be 

independent of iteration i, the more conservative bound is  



U k1  Lk
 

By substituting the values of bound in above equation we get  



k1k        (2.4.4)  

which results in  



21  
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This proves that minimum bound on the redundancy factor 



  is 1/2 

2.5. On the fly conversion 

The use of the redundant representation complicates the use of SRT division. In most 

radix system that most digital devices employ, the digit set is restricted to 0, …., r-1. One of the 

benefits of using SD number system is that it simplifies the QST. Although SD numbering is 

useful, it unfortunately is cumbersome to convert from SD notation back to a conventional 

representation. 

Fortunately division algorithm implemented in this work calculates quotient bit with 

Most Significant Digit First. Arithmetic performed in this fashion is sometimes referred as online 

arithmetic. Since quotient is calculated as a fraction  



qi  qm.r
m        (2.5.1)

 

Therefore, using the correction factor and plugging it into the equation above results in 

the following form  



qi1qiqi1.r
i(i1)   



qi1 0   (2.5.2) 



qi1qir
j(rqi1)r

(i1)



qi1 0   (2.5.3) 

The later equation is formed since the quotient for that iteration is negative; hence 

subtraction is required for the conversion. If we substitute a variable for the correction factor, qmi 

the equation shown above is presented more efficiently as  



qi1qiqi1.r
i(i1)   



qi1 0   (2.5.4) 



qi1qmi(rqi1)r
(i1)  



qi1 0   (2.5.5) 
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With simple manipulation we can also convert the equation above into an equation for 

qmi such that qmi = qi – r
-n

. In other words, if the final remainder is negative, subtraction of an ulp 

from the quotient is performed to adjust the correction factor. Then qmi is calculated as follows 



qmi1qi(qi11)r
(i1)    



qi1 0  (2.5.6) 



qmi1qmi((r1)qi1)r
(i1)  



qi1 0  (2.5.7) 

Fortunately there is an easy algorithm to convert back redundant quotient into 

conventional representation for online algorithms. It is called as on-the-fly conversion. The basic 

idea behind on the fly conversion is to produce the conversion as the digits of the quotient are 

produced by performing a concatenation instead of any carries or borrows within a carry 

propagate adder. One element keeps tracks of the quotient, whereas other element keeps track of 

normal quotient-ulp.  

Since on-the-fly conversion involves concatenations, the MSDF enables the appropriate 

quotient digit to be converted by simple combinational logic and shifting as opposed to utilizing 

CPA. The algorithm can be summarized as follows 



qi1{qi,qi1}   if 



qi1 0     (2.5.8) 



qi1{qmi,(rqi1}  if 



qi1 0    (2.5.9) 

& 

 



qmi1{qi,qi11}  if 



qi1 0    (2.5.10) 



qmi1{qmi,((r1)qi1} if 



qi1 0    (2.5.11) 
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Figure 4 - On the fly conversion 

In order to implement on-the-fly conversion, it requires 2 registers to hold qi and qmi. 

These registers are shifted one digit left with insertion into the least-significant digit, depending 

on the value of qi+1. In other words, depending on what the subsequent quotient digit, the register 

either chooses q or qm and concatenates the current converted quotient digit into the least 

significant digits. The figure4 shows on the fly conversion technique implemented for Radix2 

division. In all the implementations, structure of on-the-fly technique remains the same except 

number of bits of quotient shifted in every iteration changes; number of bits shifted into 2 

registers depends on the radix of the divider.   

Two multiplexers are utilized to select either q or qm and combinational logic is used to 

select qin or qmin. In order to handle shifting after every cycle, the outputs of the multiplexor are 

shifted by one (multiplied by 2, which changes for other radix dividers) and either qin or qmin are 

inserted into the least significant bit during each load. 
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The final multiplexer choose the correct quotient once the final reminder is known. If the 

sign of final reminder is 1, it will choose qm since this register contains the proper corrected 

quotient. Finally qstar and qmstar are designated to qi+1 and qmi+1 respectively. 

For Radix2 on the fly conversion, the registers are updated according to the table1. The 

values in this table are computed utilizing the equations above for qmi and qi. The quotient digit 

set used for this example is {-1, 0, 1}. The values of Cshiftq and Cshiftqm are used to control the 

multiplexers. The values of qin and qmin is the concatenation element input into the register. The 

quotient is utilized as input to compare Cshiftq, Cshiftqm, qin and qmin. In order to simplify the logic, 

the quotient utilizes one hot logic encoding. 

(One hot logic is chosen to simplify the digital logic design; this doesn’t mean it is 

mandatory to use the same technique) 

Boolean two-level simplified expressions for control signal are as follows 

 

Cs h i f t Q qi1[0]

Cs h i f t Q M qi1[1]

qi n qi1[0]qi1[1]

q mi n~ (qi1[0]qi1[1] )

 

For example suppose conversion is required for the following Signed Digit number 



1101


1


00 to a conventional representation using on-the-fly conversion. Table2 shows the same 

example. At step i=0, the values of both registers are reset which is accomplished by using a flip-

flop with reset capabilities. In addition since division is online algorithm, on-the-fly conversion 

works from most significant bit to last significant bit. The last value in the register is the final 

converted value assuming a fractional number for qi and qmi, which is 0.78125 and 0.77334375 

respectively 
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It should be obvious that both these numbers are one ulp from each other (i.e. an ulp is 2
-7 

or 0.0078125) and 0.78125 is the conventional representation. 

qi+1 qin Cshiftq qi+1 qmin Cshiftqm qmi+1 

1 1 1 {qi,1} 0 0 {qi,0} 

0 0 1 {qi,0} 1 1 {qmi,1} 

-1 1 0 {qmi,1} 0 1 {qmi,0} 

Table 1 - Truth table for OTF logic 

i qi q qm 

0 - 0 0 

1 1 0.1 0.0 

2 1 0.11 0.10 

3 0 0.110 0.101 

4 1 0.1101 0.1100 

5 -1 0.11001 0.11000 

6 0 0.110010 0.110001 

7 0 0.1100100 0.1100011 

Table 2 - Signed Digit Conversion to Normal Representation 
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CHAPTER III 
 

 

METHODOLOGY 

 

 

 

In this section initially we describe how lower radix divider were built and problems 

associated with the techniques involved in it. It is followed by an explanation of operand scaling 

technique, and its implementation in higher radix division 

3.1 Division 

The division algorithm performs division between two double precision floating point 

numbers x and d, that produces quotient q 



q 
x

d
        (3.1.1) 

In the algorithm described in this work only the mantissa is calculated since sign and 

exponent calculation is pretty straightforward. The ranges of the operands are  



1

2
 d 1       (3.1.2) 



1

2
 x 1       (3.1.3) 
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So for the quotient we have - 



1

2
 q 1        (3.1.4) 

The IEEE double precision standard defines a format of 64 bits for this representation. 

These 64 bits are divided into 3 fields sign, exponent and mantissa consists of 1, 11 and 52 bits 

respectively. Because number in this format are normalized with the mantissa in the range 



1  x  2  with most significant bit is always 1 and can be omitted. Thus real mantissa consists of 

52 bit with 1 in most significant position, giving total of 53 bits, as our algorithms requires both 

the operands to be in the range of [1/2, 1] we divide the IEEE mantissa by 2 and increase their 

exponent respectively. This is similar to shifting the mantissa right by one bit, algorithm also 

requires 



dx so when this condition is not satisfied mantissa is further divide by 2 due to which 

x looks like:   x = 0. 0 x[-1]x[-2] x[-3]……..x[-53] number of bits of both operands are extended by 1 

bit from 53 to 54 bits to make sure it don’t lose the precision due to right shift [4]. 

3.2 Radix2 Division 

The Radix2 division SRT algorithm is most easy to implement. It produces one bit of 

quotient every iteration, requiring 25 or 54 clock cycles for single and double precision floating 

point respectively. This algorithm is an extension of non-restoring division with a quotient digit 

set of   {-1, 0, 1}. The equation used for this division is as follows 

wi+1 = 2. wi = qi+1 .d        (3.2.1) 

 SRT division was named after Sweeney, Robertson and Touher. Main objective of this 

algorithm is to speed up the division by allowing 0 as a quotient digit. This eliminates need of 

subtraction or addition when the value of quotient selected is 0 
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Now we will derive the containment and continuity conditions for Quotient Selection 

table. Using the equation of containment and 



 1 , the following condition exists 

L1 = 0  U1 = 2 . d      (3.2.2) 

L0 = -d  U0 =   d      (3.2.3)  

L-1 = -2d U-1 =  0      (3.2.4)  

To maximize the selection of quotient digit with value 0, most straight forward quotient 

selection table  



qi1 1   if 



d2w[i]2d     (3.2.5) 



qi1 0   if 



d2w[i]d     (3.2.6) 



qi11  if 



2d2w[i]d     (3.2.7) 

From the equation expressing number of bits of divisor required for QST we get 



2 
21

2(a)


1

2(11)
 

 

Consequently, a single set of selection constants can be used for whole range of divisor 

(it means quotient selection is independent of value of the divisor. So the equation becomes  



qi1 1    if 



1

2
 2w[i]      (3.2.8) 



qi1 0    if 




1

2
 2w[i] 

1

2
     (3.2.9) 



qi11  if 



2w[i] 
1

2
     (3.2.10) 

 

So we require 3 bits of partial remainder to find the quotient as sign bit, integer bit and 

first fraction bit. Truth table for implementation is shown in Table3 
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Sign Int f0 Result Quotient 

0 0 0 <1/2 0 

0 0 1 >=1/2 1 

0 0 0 >=1/2 1 

0 0 1 >=1/2 1 

0 1 0 <-1/2 -1 

0 1 1 <-1/2 -1 

0 1 0 <-1/2 -1 

0 1 1 >=1/2 0 
Table 3 - Truth table for Radix2 QST 

Each quotient bit is recoded into 2 bits as q+ and q- to simplify logical implementation.  

Hardware implementation of Radix2 divide is shown below in figure5 

Steps involved in Radix2 SRT divide are as follows 

a.  On reset operand x is loaded in. 2 bits are added to it at the start which serves as sign and 

integer bit. It acts as first partial remainder w [0] 

b.  Partial reminder is shifted by 2 every iteration  

c.  First 3 bits of partial reminder identifies correct quotient which is recoded into 2 bits as q+ 

and q- 

d.  Selected quotient chooses appropriate value of d from {d, 0, -d} 

e.  When  -d is selected multiplexor chooses inverted version of d & additional 1 required to 

produce its 2’s compliment is added as carry input to the CPA adder. 

f.  Redundant quotient bit is sent to OTF (On The Fly) converter. 

g.  When algorithm requires input operands to be of size greater than double precision, delay due 

to carry propagate adder becomes the critical path, CPA can be replaced by carry save format 

adder. 

Quotient q+ q- 

0 0 0 

1 0 1 

-1 1 0 
Table 4 - Quotient bit encoding for Radix2 
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Detailed RTL implementation of Radix2 divide is attached in appendix A.  

 

 

Figure 5 - Radix2 hardware block diagram 

 

3.3 Radix4 Division 

In Radix4 divider algorithm two possibilities exist for redundant quotient digit set with 

digit set can be {-2, 1,0, 1, 2} or {-3, -2, -, 1, 0, 1, 2, 3}. The case with a=2 has an advantage that 
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multiple of d required are easy to generated whereas with a=3 multiple of 3d is required which 

can not be generated using shifting of operand d and it needs to be split into (d and 2d) which 

requires an extra adder in the critical path. 

But for case a = 3 from equation providing condition on number of bits of divisor 



2 
21

2(a)

2(11)

2(31)

1

4      (3.3.1)
 

Number of bits of the divisor required are 2 as compared to the case with a= 2 where bits 

of divisor required are 3. 



2 
21

2(a)

2(2/3)1

2(21)

1

8     (3.3.2)
 

 Again similar to containment and continuity conditions derived for radix2, bounds on 

partial reminder in order to select correct quotient digit set are as follows 

U2 = 8/3.d L2 = 4/3.d 

U1 = 5/3.d L1 = 1/3.d 

U0 = 2/3.d L0 = -2/3.d 

U-1 = -1/3.d L-1 = -5/3.d 

U-2 = -4/3.d L-2 = -8/3. d 

As shifted partial remainder can reach maximum value of 8/3, it requires 2 bits of integer, 

1 bit of sign and 4 bits of fractions, In addition to this 3 bits divisor are required to identify 

correct quotient digit. 
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Table5 shows how value of quotient chosen based on partial reminder and bits of divisor. 

Table is derived from Roberson’s diagram for the continuity relationship [5] 

 



[di,di1)
a

 [8,9) [9, 10) [10,11) [11,12) 



L2(di1),U1(di)
b

m2(i)
 

36, 40 

   

3/4 

 

40,45 

 

7/8 

44,50 

 

1 

48,55 

 

1 



L1(di1),U0(di)
b

m1(i)
 

9, 16 

   

1/4 

 

10, 18 

 

1/4 

11,20 

 

1/4 

12, 22 

 

1/4 



L0(di1),U1(di)
b

m0(i)
 

-16, -9  

   

-1/4 

 

-18, -10 

 

-1/4 

-20, -11 

 

-1/2 

-22, -12 

 

-1/2 



L1(di1),U2(di)
b

m1(i)
 

 -40, -36 

   

-3/4 

 

-45, -40 

 

-7/8 

-50, -44 

 

-1 

-55, -48 

 

-1 



[di,di1)
a

 [12,13) [13, 14) [14,15) [15,16) 



L2(di1),U1(di)
b

m2(i)
 

52, 60 

   

5/4 

 

56, 65 

 

5/4 

60, 70 

 

1 

48,55 

 

1 



L1(di1),U0(di)
b

m1(i)
 

13, 24 

   

1/2 

 

14, 26 

 

1/2 

15, 28 

 

1/2 

16, 30 

 

1/2 



L0(di1),U1(di)
b

m0(i)
 

-24, -13  

   

-1/2 

 

-26, -14 

 

-1/2 

-28, -15 

 

-1/2 

-30, -16 

 

-1/2 



L1(di1),U2(di)
b

m1(i)
 

 -60, -52 

   

-5/4 

 

-65, -56 

 

-5/4 

-70, -60 

 

-5/4 

-75, -64 

 

-3/2 

Table 5 - Selection Intervals and mk constants [4] 
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Figure 6 - Hardware block diagram for QST 

Steps involved in Radix4 SRT divide are as follows 

a.  On reset operand x is loaded. 3 bits are added to it at the start which serves as sign and two 

integer bits. It acts as first partial remainder w[0] 

b.  Partial reminder is shifted by 4 (left shift by 2) every iteration & producing 2 bits of the 

quotient according to recurrence formula. 

c.  First 7 bits of partial reminder and 3 bits of divisor identifies correct quotient which is 

recoded into 4 bits as q2+, q+, q2- and q- as shown in table6. 

d.  Selected quotient chooses appropriate value of d from {2d, d, 0, -d, -2d} 

e.  When  -d or -2d is selected multiplexer chooses inverted version of d & additional 1 required 

to produce its 2’s compliment is added as carry input to the CPA adder. 

f.  Redundant quotient bit is sent to OTF (On-The-Fly) converter. 

g.  When algorithm requires input operands to be of size greater than double precision, delay due 

to carry propagate adder becomes the critical path, CPA can be replaced by carry save format 

adder 
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Quotient q
2+

 q
+
 q

-
 q

2-
 

-2 0 0 0 1 

-1 0 0 1 0 

0 0 0 0 0 

1 0 1 0 0 

2 1 0 0 0 
Table 6 – Quotient bit encoding for Radix4  

Detailed RTL implementation of Radix4 divide is attached in appendix A. We observed 

that as we jump from Radix2 to Radix4 complexity of the Quotient Selection Table increase as no 

of inputs bits to increases from 3 to 10. As calculation of quotient from QST is in critical path of 

the circuit, which in turn decides the frequency at which divider unit can work. Hardware 

implementation of Radix4 divide is shown in Figure 7. 

 

Figure 7 - Radix4 hardware block diagram 
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3.4 Radix16 division using operand scaling 

From the analysis of Radix2 & Radix4 division algorithm it is apparent that the quotient 

digit selection is more costly to implement as we make jump from Radix2 to Radix4. We have 

seen that even Radix4 decreases number of clock cycles by half as compared to Radix2, this 

advantage gets nullified by the fact that quotient selection table becomes more complex resulting 

in increase in cycle time, this trend continues as we move to higher radix division, which can be 

proved from substituting the value of redundancy factor and quotient digit set in the equation 

from section 3.2 & 3.3, for e.g. Raix8 number of bits of partial reminder and divisor required are 

9 and 5 bits respectively. 

We need way of speeding up the algorithm; one of the ways of speeding up the algorithm 

is to use prediction of quotient digit. This allows simultaneous calculation of quotient as well as 

residual, but problem associated with this technique is that this prediction requires even more 

complex quotient selection table, making this approach impractical to use unless the method is 

simplified.  

One way of simplifying this approach is to reduce the complexity of quotient selection 

table is by restricting the range of divisor. Since the overlap is largest close to d =1, it is 

convenient to restrict the range of divisor close to 1. Moreover in order to preserve the precision 

of quotient both operands need to prescale [6]. 

It is possible to apply the scaling techniques to Radix2 as well as Radix4 division. 

However, reduction in execution time is more noticeable if the radix is increased to a value where 

using conventional method of quotient selection table incurs heavy penalty. This work shows the 

Radix16 division algorithm using scaling techniques. The basic requirements of the algorithm are 

a simple scaling technique to make quotient digit selection function independent of divisor and 

using small number of bits from partial reminder. 
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Since there are many conflicting parameters involved in the scaling, quotient digit 

selection functions are discrete some trial and error is necessary to achieve trade-offs.  

Steps involved in the scaling algorithms for radix 16 are as follows 

a.  Quotient digit set taken into consideration is from {-10, -9, …., 9,10} it is decomposed into 

two components as qh = { -8, -4, -, 4, 8} and ql= {-2, -1, 0, 1, 2} respectively. Redundancy 

factor 



  for this algorithm is calculated as  



 
a

r 1

10

15

2

3       (3.4.1)
 

Thus, the value of 



  is within bounds of [1/2, 1].  Number of bits of divisor required 

could be calculated from the 3.2.1 as 



  6 so for scaling all divisors are shifted to a range, 

which is above value of 1 from [6/6, 7/6]. 

b.  The scaling should be obtained by two pass through adder as recursive algorithm requires 2 

redundant adders to add ql and qh components. The scaling factor can consists of up to four 

multiples of unscaled divisor d of the form 2
-i
.d. More specifically we want to transform the 

unscaled divisor into scaled divisor such that 

Z = M.d and 



1  Z 1    

M = 1 + b.2
-6

 with b integer, 



0b 64  

c.  Since the range of divider is now small, selection function is independent of divisor. 

qj+1 = SEL 



(y
^

)  for  



1  Z 1  

where, 



y
^

 is the redundant partial remainder 
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Consequently, 



mk m a x (Lk(1) ,Lk(1) )   

 (3.4.2)

 

mk  2
t
m i n (Uk1(1 ) ,Uk1(1 ) )   (3.4.3)   

Table7 is used to find out the value of M by which operand needs to be multiplied to get 

scaled operand. Maximum value that M can have is 127/64 where as 64/64 is the least value M 

can have in order to scale the divisor. 

Bits of divisor 

.1(d-2d-3d-4d-5d-6d-7) 

As divider is in range 0.5 

to 1 

Value of M Lookup table Multiplication by MUX 

000000 127/64 1.98438 (64/64+32/64+16/64+8/64)D 

000001 125/64  (64/64+32/64+16/64+8/64)D 

000010 123/64  (64/64+32/64+16/64+8/64)D 

000011 121/64  (64/64+32/64+16/64+8/64)D 

000100 120/64  (64/64+32/64+16/64+8/64)D 

000101 118/64  (64/64+32/64+16/64+8/64)D 

000110 116/64  (64/64+32/64+16/64+4/64)D 

000111 115/64  (64/64+32/64+16/64+2/64)D 

001000 113/64  (64/64+32/64+16/64+1/64)D 

001001 112/64  (64/64+32/64+16/64+0/64)D 

001010 110/64  (64/64+32/64+16/64+0/64)D 

001011 109/64  (64/64+32/64+8/64+4/64)D 

001100 107/64  (64/64+32/64+8/64+4/64)D 

001101 106/64  (64/64+32/64+8/64+2/64)D 

001110 104/64  (64/64+32/64+8/64+0/64)D 

001111 103/64  (64/64+32/64+8/64+0/64)D 

010000 102/64  (64/64+32/64+4/64+2/64)D 

010001 101/64  (64/64+32/64+4/64+1/64)D 

010010 99/64  (64/64+32/64+2/64+1/64)D 

010011 98/64  (64/64+32/64+2/64+0/64)D 

010100 97/64  (64/64+32/64+0/64+1/64)D 

010101 96/64  (64/64+32/64+0/64+0/64)D 

010110 95/64  (64/64+32/64+0/64+0/64)D 

010111 94/64  (64/64+32/64+0/64+0/64)D 

011000 93/64  (64/64+16/64+8/64+4/64)D 

011001 92/64  (64/64+16/64+8/64+4/64)D 

011010 91/64  (64/64+16/64+8/64+4/64)D 

011011 90/64  (64/64+16/64+8/64+2/64)D 
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011100 89/64  (64/64+16/64+8/64+1/64)D 

011101 88/64  (64/64+16/64+8/64+0/64)D 

011110 87/64  (64/64+16/64+8/64+0/64)D 

011111 86/64  (64/64+16/64+4/64+2/64)D 

100000 85/64  (64/64+16/64+4/64+1/64)D 

100001 84/64  (64/64+16/64+4/64+0/64)D 

100010 83/64  (64/64+16/64+2/64+1/64)D 

100011 82/64  (64/64+16/64+2/64+0/64)D 

100100 82/64  (64/64+16/64+2/64+0/64)D 

100101 81/64  (64/64+16/64+1/64+0/64)D 

100110 80/64  (64/64+16/64+0/64+0/64)D 

100111 79/64  (64/64+16/64+0/64+0/64)D 

101000 78/64  (64/64+32/64+4/64+2/64)D 

101001 78/64  (64/64+8/64+4/64+2/64)D 

101010 77/64  (64/64+8/64+4/64+1/64)D 

101011 76/64  (64/64+8/64+4/64+0/64)D 

101100 76/64  (64/64+8/64+4/64+0/64)D 

101101 75/64  (64/64+8/64+2/64+1/64)D 

101110 74/64  (64/64+8/64+2/64+0/64)D 

101111 74/64  (64/64+8/64+2/64+0/64)D 

110000 73/64  (64/64+8/64+1/64+0/64)D 

110001 72/64  (64/64+8/64+0/64+0/64)D 

110010 72/64  (64/64+4/64+0/64+0/64)D 

110011 71/64  (64/64+4/64+2/64+1/64)D 

110100 70/64  (64/64+4/64+2/64+0/64)D 

110101 70/64  (64/64+4/64+2/64+0/64)D 

110110 69/64  (64/64+4/64+1/64+0/64)D 

110111 69/64  (64/64+4/64+1/64+0/64)D 

111000 68/64  (64/64+4/64+0/64+0/64)D 

111001 67/64  (64/64+2/64+1/64+0/64)D 

111010 67/64  (64/64+2/64+1/64+0/64)D 

111011 66/64  (64/64+2/64+0/64+0/64)D 

111100 66/64  (64/64+2/64+0/64+0/64)D 

111101 65/64  (64/64+1/64+0/64+0/64)D 

111110 65/64  (64/64+1/64+0/64+0/64)D 

111111 64/64  (64/64+0/64+0/64+0/64)D 
Table 7 - Selection multiples for scaling 

Steps involved in radix 16 SRT divide are as follows 

a.  On reset operand x is loaded in. 5 bits are added to it at the start which serves as sign and four 

integer bit.  

b.  Multiple of d and x are created which are shifted versions of operands 
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q total qh ql Uk-

1(8288/8192) 
Lk(8288/8192) mk 

10 8 2 9.566 9.44 9.5 

9 8 1 8.57 8.43 8.5 

8 8 0 7.58 7.42 7.5 

7 8 -1 6.59 6.40 6.5 

6 4 2 5.60 5.39 5.5 

5 4 1 4.61 4.38 4.5 

4 4 0 3.62 3.37 3.5 

3 4 -1 2.63 2.36 2.5 

2 4 -2 1.64 1.34 1.5 

1 0 1 0.66 0.33 0.5 

0 0 0 -0.33 -0.66 -0.5 

-1 0 -1 -1.34 -1.64 -1.5 

-2 0 -2 -2.36 -2.63 -2.5 

-3 -4 1 -3.37 -3.62 -3.5 

-4 -4 0 -4.38 -4.61 -4.5 

-5 -4 -1 -5.39 -5.60 -5.5 

-6 -4 -2 -6.40 -6.59 -6.5 

-7 -8 1 -7.41 -7.58 -7.5 

-8 -8 0 -8.43 -8.57 -8.5 

-9 -8 -1 -9.44 -9.56 -9.5 
Table 8 - Quotient selection table for Radix16 

c.  First 6 bits of divisor are used to probe selection table to find appropriate multiples of d 

which are used to generate scaled divisor Z=M.d 

d.  Then multiples of x are chosen to generate scaled dividend M.x which serves as the initial 

partial reminder w[0], at the same time Z is assimilated into standard form using carry 

propagate adder. 

e.  According to the quotient selection table (Table8) shown above maximum bounds on partial 

remainder to get correct quotients are 9.5 < 



y
^

 < -9.5 so sign bit, 4 integer bits and 1 

fractional bit are sent to qst to chose correct values of ql and qh  

f.  Selected ql and qh chooses appropriate value of scaled divisor Z = M.d from pre-computed 

multiple of Z { -8, -4, 0, 4, 8} and {-2, -1, 0, 1, 2} 

g.  When negative multiple of scaled divisor is selected multiplexer chooses inverted version of 

d & additional 1 required to produce its 2’s compliment is added in ulp position of carry save 

adder. 
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h.  Redundant quotient bit is sent to OTF (On The Fly) converter. 

i.  When algorithm requires input operands to be of size greater than double precision, delay due 

to carry propagate adder, which assimilates scaled, divisor becomes the critical path, CPA 

can be replaced by carry save adder which results in increase in number of inputs to the carry 

save path in recursive path. 

 

Figure 8 - Radix16 hardware block diagram 



 

31 
 

3.5 Radix 512 division 

Previous algorithm showed that operand scaling is useful technique to reduce the complexity 

of quotient selection table by making selection function independent of bits of the divisor by 

scaling the operands. Operand scaling techniques multiplies both dividend and divisor by 

prescaling factor. When we go to radix, which are higher than radix 16 (for e.g.: radix 512) 

maintaining condition of minimum number of quotient digits in the set to satisfy bounds on 

redundancy factor requires quotient digit set to be {-255, 256}.  

 


a

r1

2 5 6

5 1 1

1

2

 

And if we use similar technique to radix 16 we require 8 different multiples of d, x and 

quotient needs to be split into 8 components as compared 2 components in radix 16. Moreover 8 

pre-computed multiples of d and x not only increases the redundant hardware, it also makes Carry 

Save Adder tree in the recursive path to grow big. As a result of which using same technique in 

radix 512 nullifies the advantage gained by computing 9 bits of quotient every iteration. 

There are several methods to accomplish the pre-scaling function. Some designs actually 

incorporate linear approximations to the function, so that for all values inside a given interval 

same scaling factor is used [7]. Although this method is useful, it requires extra iterations to 

acquire the approximation. Instead of using linear approximations this work uses table lookup 

that gets the best approximation to the function for given interval. This approximation called the 

Symmetric Bipartite Table Method (SBTM). Number of bits of divisor for which we need 

approximation are 14. There are various ways in which number for which approximation is 

required can be split up. In this setup 16 bits of divisor is split into 3 components as {5,4,5}. First 

two components form number which acts as in input to table a0 and first 5 and last 5 bits acts as 

an input to table 2 as shown in fig below. 
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Figure 9 - SBTM implementation 

Generally values generated by SBTM lookup table a0 and a1 needs to be added together 

however initial pre-scaling value can be stored in carry-save mode, so there is no need to 

incorporate the carry propagate adder saving clock cycle time. 

According to recursive algorithm for SRT 512 division  

w[i+1] = 512. w[i] + q[i+1] *d      (3.5.1) 

With quotient digit selection: 

qi+1 = [ 



y
^

 +1/2]       (3.5.2) 
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Where, w[i] is the residual after iteration i 

w[0] = M.x 

qj+1 is the quotient digit generated in the iteration qi ={ -511, …., 0, ….,511} 



y
^

 = {rw[j]}2 is partial remainder restricted till 2 fractional bits 

At the end, q must be rounded according to the sign of the residual of the last iteration. If 

last residual is positive we have to add 1 in the least significant position after rounding. We do 

not add anything if it is negative. 

To execute the recurrence two multiplications and one addition is required. The partial 

remainder w[i] and the quotient digit qi+1 both are in carry save presentation to avoid carry 

propagation adder in critical path. Multiplying a number by r = 512 = 2
9
 is equivalent to the 

shifting of it’s binary representation by 9 positions to the left. Shifting the scaled divisor by 

quotient value can’t perform the other multiplication as its not strictly in multiples of 2; so 

recoding one of the operands is used to perform other multiplication. Recoding the multiplier into 

radix 4 representation reduce the number of partial products and make the operation faster. The 

recoded operand is in Signed Digit representation and each digit can assume values {-2, -1, 0, 1, 

2}. 

In carry save representation of M both MSB’s are going to be 0 as we know the value of 

M is positive, but qs and qc can be positive or negative, since the sign is not known, the only 

solution is to extend partial reminder y by one bit the carry save representation of qi. This also 

requires appending 3 integer bits at the start. 
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3.5.1 Recoding 

In recursive algorithm concept of recoding is used. This is a standard radix 4 

multiplication. Every partial product is 2 positions left shifted with the respect to previous one, 

because of the radix 4 representations of the digits. Sign extension is required to get correct result. 

sssssssxxxxxxxxxxxxxxxx 

sssssxxxxxxxxxxxxxxxx00 

sssxxxxxxxxxxxxxxxx0000 

When a negative digit is encountered, we bit compliment the partial product (before the 

shift) and we put a 1 in the next product in correspondence of least significant bit of the actual 

product. If digit is -1 we have 

sssssssxxxxxxxxxxxxxxxx 

ssssscccccccccccccccc00 

sssxxxxxxxxxxxxxxxx0100 

And if the digit is -2 we have 

sssssssxxxxxxxxxxxxxxxx 

ssssscccccccccccccccc00 

sssxxxxxxxxxxxxxxxx1000 

Putting 1 for negative multiples of operand doesn’t change the complexity of the circuits. 

As shown in the following diagram these bits in the first and second shift extension are simple 

through M2 and M1. 

But this method cannot be used if the last partial product is negative; this problem will 

never occur during scaling as value of M is positive, but during calculation of quotient as well as 

during high radix multiplier last partial product can be positive or negative. In such case we bit 

compliment shifted partial product and add 1 in the least significant position 
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sssssssxxxxxxxxxxxxxxxx 

sssssxxxxxxxxxxxxxxxx00 

sssxxxxxxxxxxxxxxxx0000 

sxxxxxxxxxxxxxxxx111111 

00000000000000000000001 

As shown in the figure10 input to the each recoder pair is vi is in carry save format, so 

maximum value of vi can be 6, when both sum and carry bit of the input are 11. Input to the each 

recoder is vi is in the range of {0,6}. Recoding of the carry save operands is shown below. 

vi hi=0 hi=1 

 hi+1 gi+1 ti hi+1 gi+1 ti 

0 0 0 0 0 0 0 

1 0 0 1 0 1 -3 

2 1 0 -2 1 0 -2 

3 1 0 -1 1 0 -1 

4 1 0 0 1 0 0 

5 1 0 1 1 1 -3 

6 1 1 -2 1 1 -2 
Table 9 - Quotient recoding in Carry-Save format 

Final recoded output is Ri = ti+hi+gi 
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Figure 10 - Block diagram for recoder 

3.5.2 Adder 

Adder employed in Radix512 design can be split into components, first one calculates partial 

product depending on the output of recoder, and second component adds them. During 

calculations of scaled divisor and dividend 8 partial products are generated as pp0, pp1, pp2, pp3, 

pp4, pp5, pp6, pp7. During recursive algorithms as only 6 partial products are generated by 

quotient qi+1. Upper 2 partial products pp6, pp7 are replaced by shifted partial residual 512.ws[i] 

and 512.wc[i]. 

Cycle 1 2 3 4 5 

Operation Prescaling Prescaling Recurrence Recurrence Recurrence 

SBTM Register M M M M M 

W (Carry/Sum) M.d =Z M.x=W[0] W[1] W[2] W[3] 

Z - M.d M.d M.d M.d 
Table 10 - Division cycle timing chart 

Steps involved in divide512 algorithm are as follows 

a.  In cycle 1 that is termed as Prescaling, SBTM Register sends pre-scaling factor M in carry 

save format to one of the multiplexors, which in turn sends those value to the recoder. 
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Operand selector multiplexor chooses operand d, recoder outputs chooses correct multiple of 

operand (d in this cycle), which are added in CSA tree to form M.d n carry save format. 

b.  In cycle 2 that is also termed as Prescaling, SBTM Register sends prescaling factor M in 

carry save format to one of the multiplexers, which in turn sends those values to the recoder. 

Operand selector multiplexer chooses operand x, recoder outputs chooses correct multiple of 

operand (x in this cycle) which are added in CSA tree to form M.x in carry save format which 

is the initial partial reminder w[0], and in same cycle M.d is assimilated using carry propagate 

adder. 

c.  From cycle 3 onwards which is termed as Recurrence operation quotient qi+1 is sent to the 

recoder and operand selected is Z scaled divisor 
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Figure 11 - Radix512 hardware block diagram 

Quotient produced by recurrence algorithm is in Signed Digit representation, which is 

converted into standard representation using on the fly converter block. 

d.  While implementing radix 512 division for quad precision or some other industry floating 

point formats with large range if carry propagate adder involved in cycle 2 which assimilates 

scaled divisor M.d becomes critical path of the circuit, scaled operand can be stored in carry 

save format. ( Modification are shown in figure12)   
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Figure 12 - Radix512 hardware block diagram using Carry-Save format 

e.  In such case where prescaled divisor is stored in carry save format, number of partial 

products getting added in Carry Save Adder tree gets doubled as each partial product will be 

have its sum and carry version. 
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3.6 Recursive divide/multiplier unit 

This section describes modifications in the radix 512-division algorithm to accommodate 

high radix multiplier. . This unit reduces its overall area and power footprint by utilizing a low 

area sequential architecture, but still maintains high amounts of computation power by employing 

high radix and redundant digit encoding for each digit. 

Multipliers have been key and critical components for most application specific and 

general-purpose computer architectures. However, these architectures have been transitioning 

towards multiple cores that process large amount of data through parallel approaches to 

computation. Unfortunately, traditional arithmetic functional units that worked well for dingle 

core architectures have the side effect of incurring large amounts of area and power. 

Consequently, multi-core architecture needs new ways of thinking about increased throughput to 

handle large amounts of data. This section presents modification in the recursive high radix 

divide unit that is modified to handle both multiplication and division targeted at multi-core 

architectures. 

Multiplication involves the use of addition in some way to produce product p= x .y from 

a multiplicand x and multiplier y. Multipliers and even division have been workhorse of scientific 

computing [8]. High-speed multipliers are typically classified into two categories. The first 

known as parallel multiplication, involves the use of hardware to multiply an m bit number by an 

n bit number to completely produce an n+m product. On the other hand, serial or sequential 

multipliers compute the product sequentially usually utilizing storage elements so that hardware 

of the multiplier is reused during an iterative process. 

Although multipliers are important for processing scientific data; they tend to consume a 

significant amount of area and delay within computer architectures. Today’s architectures require 

significant amount of area to integrate multiple cores on a chip to satisfy Moore’s Law. 
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For example, the Niagara 2 architecture has significant resources allocated for supporting 

multiple threading [9]. Subsequently Sun Microsystems utilized architecture to reduce area in 

order to allow the integrating of floating point and graphics unit. Decisions such as these will 

continue to dominate as the number of threads and cores increase and multi-core architecture 

becomes more prevalent. Consequently, designers must design new computational blocks that 

still maintain the same level of algorithmic complexity, but also have smaller area and power 

footprints. 

Multipliers are an integral part in scientific computing, however they consume a large 

amount of resources. To reduce the size of the computation, it is common to have architectures 

that are designed to serially instead of parallel. Serial multipliers are typically computed by 

repetitively adding partial products to form the final product as follows: 



p[ j 1] (p[ j] x[ j].y).r1     (3.6.1) 

where  p is the product, 

y is the multiplicand 

x is the multiplier 

r is the radix. 

Although serial multiplication units are fairly simple to build in digital hardware, they 

tend to be significantly slower than the larger parallel multiplier architectures. More complex 

architectures, such as Goldschmidt and Newton Raphson algorithms, allow faster and more 

efficient multiplication and division algorithms to occupy the same functional unit. Although 

these quadratically converging algorithms are efficient, they have the disadvantage of using a 

significant amount of area, mainly for the parallel multiplier. In addition, traditional parallel 

multipliers also consumes large amount of power with their spurious switching activity [9]. 
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Although serial multiplication units are fairly simple to build in digital hardware, they 

tend to be significantly slower than larger parallel multiplier architectures. More complex 

architectures, such as Goldschmidt and Newton Raphson algorithms, allow faster and more 

efficient multiplication and division algorithms to occupy the same functional unit. Although 

these quadratically converging algorithms are efficient, they have the disadvantage of using a 

significant amount of area, mainly for the parallel multiplier. In addition, traditional parallel 

multipliers also consumes large amount of power with their spurious switching activity [9].  

Long standing argument that diminishing feature sizes justify larger area for more 

functionality is starting to lack any substance in today’s multicore environment. This is because 

many multi-core architecture needs additional blocks for other on chip and off chip 

communications. Therefore, multi-core architectures require substantial area for the use of local 

and off-chip routers and reducing the size of key and critical functional units such as multipliers 

and dividers, is paramount to promoting multi-core paradigms. On the other hand, the reduction 

in size of these arithmetic circuits should be tempered with not decreasing the efficiency of the 

unit too dramatically. 

One potential improvement for serial architectures is to compensate for the low 

algorithmic complexity of serial recursive multipliers by using higher radix and Signed Digit 

encoding. The advantage to this approach is that a designer can obtain lower power functional 

units while still maintaining high throughput. Recursive division algorithms have long had 

success in promoting high amounts of computing power by using a higher radix as shown by the 

following equation 

w[i+1] = r. w[i] – d. qi+1      (3.6.2) 
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Figure 13 - Radix512 hardware block diagram for integrated Mult-Div Unit 

The division architecture can easily be expanded into one that computes both division 

and multiplication by adding an extra data flow such that the prescaling operation is concatenated 

for a selection of multiplier. This is, since only a limited number of bits are utilized with lookup 

table for the scaled divisor, it can easily be modified to handle the lower elements of product, 

given the dividend is changed to the multiplicand [10]. 
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For the r=512 unit paper, 16 bit is assumed for the approximation within the SBTM unit, 

half of the product or 32 bits is produced after 1 cycle, That is the following operation is 

computed: 

Mplier 16 bits . Mcand 32 bits = Partial Product 48 bits 

A subsequent iteration can then incorporate into the datapath so that upper 16 bits of the 

product or the complete 64 bits of the product is produced. Since the multiplication algorithm is 

based closely on the radix 512-division algorithm, it is conceivable to easily modify the 

architecture to handle both multiplication as well as division within one unit. The major 

difference is for 32 bit multiplication requires 3 cycles, whereas, division requires 5 cycles. 

Moreover since multiplication has to shift multiplier by 16 bits, whereas, division shifts each 

partial reminder by 9 bits. Figure13 displays the combined architecture for 32-bit division and 

multiplication.  

Cycle 1 2 3 

Operation Iteration Iteration Iteration 

SBTM Register M M M 

W (Carry/Sum) Mcand.MplierL Mcand.MplierH - 

Z - - Mcand.MplierH 

Prod_mult_L  Mcand.MplierL Mcand.MplierL 

Carry - C C 
Table 11 - Multiplication cycle timing chart 
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CHAPTER IV 
 

 

RESULTS 

 

 

 

In order to quantify the architectures within the paper, the implementations were 

analyzed using the IBM cmos10lpe 65nm CMOS technology[11]. The standard cell library from 

Virage is utilized for the synthesis and place and route of the all architecture discuss in this work. 

All designs are coded in RTL Verilog and synthesized and place and routed using Synopsys tool 

chain. The power dissipation is calculated by running 1,000 different test vectors for each design.  

All radix dividers are compared against each other to get accurate estimate of power as 

well as area and speedup comparison. To compare the recursive divide/multiplication structure 

versus traditional multipliers, a 32-bit carry-save array and Dadda multiplier are designed and 

analyzed. Parallel multipliers are chosen for this comparison, because they are typically employed 

within multiplicative-dive architectures and consequently can give a good comparison to the 

proposed architecture within the paper. 

 



 

46 
 

4.1 Design Flow: 

Flowchart in figure14 shows steps involved in the design and implementation of 

architecture mentioned in this work [12] 

 

Figure 14 - Design Flow 
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4.1.1 Design Specifications 

There are lots of articles available on SRT division algorithm, which does nice job of 

explaining the concept and theory behind it. In the initial phase of the design algorithms are 

implemented in C language it get better understanding of concept. This is followed by paper 

calculations for small operands range of 8 bits and results obtained which are compared against C 

program to validate the result. A sample paper calculation for radix-512 division is shown below 

X = 0.84163E2 

D = 0.F7755D7 

Z    = M.D = 0000.FFFDF5A  

w[0] = M.X = 0000.88A4527  

 

1st Iteration: 512.WS[0]  0111.48A4E00 q = + 273 

512.WC[0]  0000.0000000 

-273. Z  FEEF.022C706    

WS[1]   FFFC.4AC1506 

WC[1]   0004.0010000 

 

2nd Iteration: 512.WS[1]  F895.83E0C00 q = + 150 

512.WC[1]        0800.2000000 

-150. Z  FF6B.01300DE    

WS[2]   1FFE.12CE8DE 

WC[2]   E002.9242400 

 

3rd Iteration: 512.WS[2]  FC25.9D1BC00 q = + 37 

512.WC[2]  0524.8480000 

-37. Z  FEB7.029F55A    

WS[3]   0FFE.D23095A 

WC[3]   F002.520A800 

 

Quotient = 0.88A5695  
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4.1.2 HDL Coding 

In next stage of implementation, designs are described at register transfer level using 

Verilog hardware description language. Hardware implementation is done at structural level to 

avoid potential problems in the synthesis of the design. All these design use MUX, registers, and 

adders as their basic building blocks. To reduce design efforts Perl scripts are developed which 

will generate building block of desired size.  

ModelSim is used for the simulation of Verilog netlist. It’s a very powerful tool that 

allows user to graphically analyze the design. Complex modules such as quotient selection table, 

recoder are tested independently to verify the their functionality against the truth table. Once 

individual unit testing is done, all the units are compiled to test the entire module. Control logic is 

built using state machine, which gets triggered from external world by start signal so that these 

design can be easily incorporated into bigger designs such as processor systems [13]. 

Testbench used for the testing for division algorithm instantiated two 1 dimensional array 

which were filled with user defined values to test the functionality of the design, all corner cases 

are taken into consideration in this mode of testing.  

For exhaustive testing system task functions in-built into verilog like $random () are used 

to generated vector for dividend and divisor. Output generated are written in .out file using 

$fopen, $fdisplay task functions. 

ModelSim is also used at pre-layout and post layout stage in order to check the 

functionality the design after synthesis and place route. It is used in conjunction with sdf 

annotation to make sure the design is meeting timing constraints set in design planning stage of 

the design. This part will be covered in detail at post-layout section. 
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ModelSim allows user to create .do file in which you can specify the constraints on the 

design like verilog files to compiled, adding waveforms of the design which needs to be analyzed 

as well as window configuration such as WaveRestoreZoom, name column width, signal name 

width, value column width etc. 

Commands to run the simulation: - vsim –do divide.do 

 

Figure 15 - ModelSim simulation snapshot 
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4.1.3 Logic synthesis 

Synthesis is the process of transforming hardware description at RTL level into structured 

netlist using cells from standard cell library. Behavior of the design remains the same after 

synthesis but now design is described as a collection of cells from standard cell library. Design 

compiler is the tool from Synopsys used for this process, which comes in two flavors as dc_shell, 

which is command line interface, which is preferred by most of the EDA designers, whereas other 

flavor is design_vision, which gives graphical representation of the design to inspect critical path 

of the design, generating schematic etc.  

For the successful synthesis of the design, design compiler required RTL description of 

the design as an input as well as .sdc file, which is (Synopsys Desgin Constraint) file. Synopsys 

design constraint file specifies information related to clock like Clock period, skew, latency, 

transition. Design compiler also allows you to put design constants such as don’t use attribute to 

prevent compiler toll from using some of the standard cells, delay associated with input and 

output ports, driving cell, output load etc. Design compiler generates following file formats and 

report: 

vh Synthesized netlist of the design 

sdc A constraint file that can be used to pass the constraints that we set in the synthesis 

script to place and route tools 

sdf It’s a standard delay format file that can be used for back-annotation with extracted 

timings from synthesized design 

ddc A Synopsys formatted binary database that can be used in design vision for further 

processing like viewing critical path, analyzing timing reports etc. 

rep These are generated reports from the synthesis tool which provides information 

related to timing, power as well as estimated area of the design 
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Figure 16 - Place and Route Design Flow 

Synopsys design compiler used tcl environment to run the scripts. Command used for 

running design compiler is 

 dc_shell-xg-t –f compile_dc_ultra.tcl 

Formality is logic equivalence tool, which is used to compare the synthesized netlist and 

RTL netlist for functionality matching. 
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4.1.4 Place and Route 

After this stage Synopsys IC compiler tool is used to perform place and route of the 

design. This tools requires synthesized netlist, target libraries, Synopsys design Constraint file as 

an inputs. Figure16 flow-chart shows design flow of IC compiler tool.  

After the place and route is done. Dynamic simulation can be run on the post-layout to 

confirm functionality as well as timing constraints of the design. This is done by back annotating 

sdf file generated by place and route tool. While performing post-layout simulation slight 

modifications are required to be done in the testbench as shown below: 

initial  begin 

$dumpfile(„divide2.vcd”); 

$dumpvars(0,stimulus.dut1); 

$sdf_annotate( “divide2.sdf”,dut1,,,”MAXIMUM”,,); 

end 

 

4.1.5 Post-Layout Analysis: 

Primetime basic is a sign-off quality static timing analysis tool from Synopsys. Static 

timing analysis is without the doubt the most important step in the design flow. It determines 

whether the design works at required speed. PrimeTime analyzes the timing delays in the design 

and flags violation that must be corrected. Four types of analysis is performed on the design, as 

follows: 

a.  From primary inputs to all flops in the design 

b.  From flop to flop 

c.  From flop to primary output of the design 

d.  From primary inputs to primary outputs of the design 
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One of the critical parts in the timing analysis of the design is setup and hold time 

violations. PrimeTime allows you to generate timing reports for flop-to-flop path group using –

delay_type option with max and min values to validate hold and setup time violations. If slow and 

fast timing libraries of the design are available then those libraries can also be preloaded in the 

PrimeTime tool to check corner cases of setup and hold time violations. Following commands are 

used to perform setup and hold time violations 

report_timing  –from [all_register-clock_pins] \ 

–to [all_registers –data_pins] \ 

-delay_type min  

report_timing  –from [all_register-clock_pins] \ 

–to [all_registers –data_pins] \ 

-delay_type max  

It is also used for power estimation of the design using switching activity file .vcd dump 

file generated during dynamic simulation. 

4.2 Comparison 

In this section we perform comparisons of different divide architectures with their delay, 

power and area numbers. As mentioned before the evaluations in the [4] are given in terms of 

delay and area of 2 inputs NAND gate, whereas in [7] are given in terms of full-adder units. As 

mentioned before aim of this work is get an accurate evaluation of these metrics by actual 

hardware implementation. All the work is implemented is IBM65nm technology but these 

evaluations can be extended to any library. 

 Timing 

(ns) 

Iterations #Cells Area 

(um2) 

Power  

Static (uw) Dynamic (mw) 

SP 1.01 25 348 1884 0.629 1.277 

DP 1.06 54 563 3220 1.087 2.066 

Table 12 - Radix2 Divide Results 
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 Timing 

(ns) 

Iterations #Cells Area 

(um2) 

Total Power (mw) 

Static (uw) Dynamic (mw) 

SP 1.54 13 442 2440 0.801 1.357 

DP 1.65 27 681 3955 1.652 2.231 

Table 13 - Radix4 Divide Results 

 

 Timing 

(ns) 

Iterations #Cells Area 

(um2) 

Power 

Static (uw) Dynamic (mw) 

SP 1.87 8 1545 5802 1.841 1.462 

DP 1.93 15 2210 8450 3.521 2.687 

Table 14 - Radix16 Divide Results 

 

 Timing 

(ns) 

Iterations #Cell

s 

Area  

(um2) 

Power 

Static (uw) Dynamic (mw) 

SP 1.96 5 705 9506 3.576 2.057 

DP 1.98 8 1008 16326 6.172 3.515 

Table 15 - Radix512 Divide Results 

 

 Timing 

(ns) 

Iterations #Cells Area  

(um2) 

Power 

Static (uw) Dynamic (mw) 

SP 1.96 5/3 836 11292 4.090 2.191 

DP 1.98 8/5 1333 20143 7.403 4.733 

Table 16 - Radix512 Mult-Div Results 

 

Next page shows graph of the delay and area of the design. Delay is calculated by multiplying 

number of iterations by clock cycle time.  
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The graph shows clearly that as complexity of the algorithm increases area consumed by 

design also increase but at the same delay required for the computation decreases. So using higher 

radix divider when speed is the priority is feasible choice 

 

Figure 17 - Delay Comparisons 

 

 

Figure 18 - Area Comparisons 
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Advantages gained by high radix divider are more visible in recursive multiply/divide 

structure. In recursive multiply/divide design increase in the area over conventional divide 512 

design for single precision and double precision is shown below 

Format Divide512 Mult-Div Unit % Area Increase 

Single Precision 9506 11292 18 

Double Precision 16326 20143 23 

Table 17 - Relative area increase 

 

Multiplier 

Arch 

Timing 

(ns) 

Iterations #Cells Area 

(um2) 

Power 

Static (uw) Dynamic (mw) 

Dadda 8.75 1 3250 12656 1.943 2.468 

Array 9.16 1 2105 11424 1.513 2.513 

Proposed 1.96 3 836 11292 4.090 2.191 

Table 18 - Single Precision Comparisons for various multiplier architectures 

 

Multiplier 

Arch 

Timing 

(ns) 

Iterations #Cells Area 

(um2) 

Power 

Static (uw) Dynamic (mw) 

Dadda 17.40 1 12325 50323 9.200 6.375 

Array 18.98 1 8562 46876 4.079 7.553 

Proposed 1.98 5 1333 20143 7.403 4.733 

 

Table 18 & 19 shows that proposed combinational mult/div unit achieves smaller area, 

delay and power footprints as compared to traditional parallel multiplier architectures. In addition 

to this it gives more functional power by allowing same hardware design to be used for both 

division as well as multiplication. 
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CHAPTER V 
 

 

CONCLUSION 

 

 

 

This work shows the comparison between different architectures of SRT division 

algorithm in terms of performance, area and power. It shows that using high radix divider is a 

practical option when performance has important priority. 

This work also shows modifications in high radix divider to come up with sequential 

architecture to handle both divide and multiplication. The proposed design utilizes multiplexers to 

select either the dividend/divisor or multiplicand/multiplier and employs a specialized shifter to 

allow the product to be shifted into the correct location. Results indicated the proposed design 

occupies less area and dissipates significantly less power than traditional multiplier. Moreover the 

proposed design integrates novel encoding methods to allow two’s complement operands to be 

employed for wither division or multiplication. Units similar to the proposed architecture can 

impact multicore architectures by allowing more area for communication and graphic blocks.  

This work also describes design flow that can be very efficient in the design of high-

speed arithmetic modules, especially to get accurate evaluations of different schemes and 

algorithms.
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In future, we will be analyzing the impact of new recoding schemes such as booth 3 and 

booth 4 on the existing architecture. It will be interesting to see tradeoff between complexity of 

recoder and number of partial product terms in Carry Save Adder tree. We will be integrating this 

multiplier/divide design in full function floating point core. Floating point unit core will be used 

in upcoming multi-core architecture project. 
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APPPENDICES 
 

 

Appendix A: It contains RTL implementation of different division architectures and proposed 

combinational multiplier/divide unit. 
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Appendix A 

RTL implementation of Radix2 Division 

 

 

 

module divide2 #(parameter WIDTH = 32, WIDTHP2 = WIDTH + 2, 

WIDTHM2 = WIDTH - 2) ( 

 

 input    clk, clear, state0, 

 input [WIDTH-1:0]   D, N, 

 output  [WIDTH-1:0]  Quo, 

 output  [WIDTH+1:0]  sum, carry, 

 output  [1:0]   q); 

  

 wire  [3:0]   w; 

wire [WIDTH+1:0]  Mux3Out, Mux2Out_ws, Mux2Out_wc, 

OnesCompD, ws, wc; 

inv #(WIDTHP2) i1 (OnesCompD, {2'b00,D}); 

mux31 #(WIDTHP2) m3 (Mux3Out, {{WIDTHP2}{1'b0}}, {2'b00, 

D}, OnesCompD, q);   

mux21 #(WIDTHP2) m2 (Mux2Out_ws, {sum[WIDTH:0], 1'b0}, 

{2'b00, N}, state0); 

reg_pos #(WIDTHP2) r1 (ws, Mux2Out_ws, clk, clear);   

mux21 #(WIDTHP2) m4 (Mux2Out_wc, {carry[WIDTH:0], 1'b0}, 

{{WIDTHP2}{1'b0}}, state0); 

reg_pos #(WIDTHP2) r2 (wc, Mux2Out_wc, clk, clear);   

cpa #(4) c1 ( .sum(w), .a(ws[WIDTH+1:WIDTHM2]), 

.b(wc[WIDTH+1:WIDTHM2]));  

qst qd1 (q, w[3], w[2], w[1]);// q = {+1, -1} else q = 0  

otf_mux #(WIDTH) ckt2 (.Q(Quo), .quot(q), 

.SignRemainder(w[3]),.clk(clk), 

.state0(state0)); // negedge 

csa #(WIDTHP2) d1 (.sum(sum), .carry(carry), .a(ws), 

.b(Mux3Out), .c({wc[WIDTH+1:1],q[1]})); 

endmodule 
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RTL implementation of Radix4 Division 

 

module divide4 #(parameter WIDTH = 32, WIDTHP3 = WIDTH + 3) 

( 

 

 input   clk, clear, state0, 

 input  [WIDTH-1:0] N, D, 

  

 output  [WIDTH+2:0]  sum, carry, 

 output  [3:0]   q,  

 output  [WIDTH-1:0]  Qstar);  

  

 wire  [WIDTH-1:0]  QMstar; 

 wire  [WIDTH+2:0]  sumN, carryN, sumN2, carryN2,  

    divi1, divi2, divi1c, divi2c, dive1,  

    mdivi_temp, mdivi;  

 wire  [7:0]  qtotal; 

 

 assign divi1 = {3'b0, D}; 

 assign divi2 = {2'b0, D, 1'b0};  

 assign dive1 = {3'b0, N}; 

 

 inv #(WIDTHP3) inv1 (divi1c, divi1); 

 inv #(WIDTHP3) inv2 (divi2c, divi2); 

mux21 #(WIDTHP3) mux1 (sumN, {sum[WIDTH:0], 2'b0}, 

dive1, state0); 

mux21 #(WIDTHP3) mux2 (carryN, {carry[WIDTH:0], 2'b0}, 

{{WIDTHP3}{1'b0}}, state0); 

 reg_pos #(WIDTHP3) reg1 (sumN2, sumN, clk, clear); 

 reg_pos #(WIDTHP3) reg2 (carryN2, carryN, clk, clear); 

cpa #(8) cpa1 (.sum(qtotal), .a(carryN2[WIDTH+2:WIDTH-

5]), .b(sumN2[WIDTH+2:WIDTH-

5])); 

 qst4 pd1 (q, qtotal[7:1], divi1[WIDTH-2:WIDTH-4]);

 // q = {+2, +1, -1, -2} else q = 0 

otf_mux #(WIDTH) otf1 (.Qstar(Qstar), .QMstar(QMstar), 

.q(q), .clk(clk), 

.state0(state0)); // negedge 

 assign ulp = q[2] | q[3]; 

 nor n1 (zero, q[3], q[2], q[1], q[0]); 

mux41hx #(WIDTHP3) mux3 (.y(mdivi_temp), .a(divi2c), 

.b(divi1c), .c(divi1), 

.d(divi2), .sel(q)); 

 

 



 

63 
 

 

mux21 #(WIDTHP3) mux4 (mdivi, mdivi_temp, 

{{WIDTHP3}{1'b0}}, zero); 

csa #(WIDTHP3) csa1 (.sum(sum), .carry(carry), 

.a(mdivi), .b(sumN2), 

.c({carryN2[WIDTHP3-1:1], 

ulp})); 

endmodule 

 

RTL implementation of Radix16 Division 

 

 

module divide16 #(parameter WIDTH = 32, WIDTHP5 = WIDTH + 

5, WIDTHP4 = WIDTH + 4, WIDTHM5 = WIDTH - 5)( 

 input  [WIDTH-1:0]    N, Din, 

 input    clk, clear, state0, state1,  

 output [WIDTH-1:0] Qstar); 

  

  

wire [WIDTHP4:0]  D, D32, D16, D8, D4, D2, D1, D0, 

M4_dop, M3_dop, M2_dop, M1_dop,  

X, X32, X16, X8, X4, X2, X1, X0, 

M4_xop, M3_xop, M2_xop, M1_xop,  

     M4_op, M3_op, M2_op, M1_op, 

     init_rws, init_rwc, rws2, rwc2,  

Z, Z_op, Z8, Z4, Z0, bar4Z, 

bar8Z, qh_op, Z2, Z1, bar1Z, 

bar2Z, ql_op, a_op, b_op, c_op, 

d_op, Sum_1, Sum_2, Carry_1, 

Carry_2, rws, rwc; 

 wire  [9:0]   quo; 

wire [2:0]  sel_qh, sel_ql, sel_M4, sel_M3, 

sel_M2; 

 wire  [1:0]   init_sel; 

 wire     ulp_qh, ulp_ql; 

  

 assign X = {5'b0,N}; 

 assign D = {5'b0,Din}; 

 

 assign D32 = {1'b0, D[WIDTHP4:1]};  

 assign D16 = {2'b0, D[WIDTHP4:2]}; 

 assign D8  = {3'b0, D[WIDTHP4:3]}; 

 assign D4  = {4'b0, D[WIDTHP4:4]}; 

 assign D2  = {5'b0, D[WIDTHP4:5]}; 

 assign D1  = {6'b0, D[WIDTHP4:6]}; 

 assign D0  = {{WIDTHP5}{1'b0}}; 
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mux51 #(WIDTHP5) mux_M4d (.y(M4_dop), .a(D8), .b(D4), 

.c(D2), .d(D1), .e(D0), 

.sel(sel_M4)); 

mux71 #(WIDTHP5) mux_M3d (.y(M3_dop), .a(D32), 

.b(D16), .c(D8), .d(D4), 

.e(D2), .f(D1), .g(D0), 

.sel(sel_M3)); 

mux71 #(WIDTHP5) mux_M2d (.y(M2_dop), .a(D32), 

.b(D16), .c(D8), .d(D4), 

.e(D2), .f(D1), .g(D0), 

.sel(sel_M2)); 

 assign M1_dop = D; 

 assign X32 = {1'b0, X[WIDTHP4:1]}; 

 assign X16 = {2'b0, X[WIDTHP4:2]}; 

 assign X8  = {3'b0, X[WIDTHP4:3]}; 

 assign X4  = {4'b0, X[WIDTHP4:4]}; 

 assign X2  = {5'b0, X[WIDTHP4:5]}; 

 assign X1  = {6'b0, X[WIDTHP4:6]}; 

 assign X0  = {{WIDTHP5}{1'b0}}; 

  

mux51 #(WIDTHP5) mux_M4x (.y(M4_xop), .a(X8), .b(X4), 

.c(X2), .d(X1), .e(X0), 

.sel(sel_M4)); 

mux71 #(WIDTHP5) mux_M3x (.y(M3_xop), .a(X32), 

.b(X16), .c(X8), .d(X4), 

.e(X2), .f(X1), .g(X0), 

.sel(sel_M3)); 

mux71 #(WIDTHP5) mux_M2x (.y(M2_xop), .a(X32), 

.b(X16), .c(X8), .d(X4), 

.e(X2), .f(X1), .g(X0), 

.sel(sel_M2)); 

 assign M1_xop = X; 

  

 //preparation of 2:1 MUX for all the M.d and M.x 

 //2:1_MUX for selection M4_op 

mux21 #(WIDTHP5) mux_M4 (.y(M4_op), .a(M4_dop), 

.b(M4_xop), .sel(state1)); 

mux21 #(WIDTHP5) mux_M3 (.y(M3_op), .a(M3_dop), 

.b(M3_xop), .sel(state1)); 

mux21 #(WIDTHP5) mux_M2 (.y(M2_op), .a(M2_dop), 

.b(M2_xop), .sel(state1)); 

mux21 #(WIDTHP5) mux_M1 (.y(M1_op), .a(M1_dop), 

.b(M1_xop), .sel(state1)); 

  

 //preparation of 5:1 MUX for qh 

 assign Z8 = {Z[WIDTH+1:0], 3'b0}; 

 assign Z4 = {Z[WIDTH+2:0], 2'b0}; 

 assign Z0 = {{WIDTHP5}{1'b0}}; 

 inv #(WIDTHP5) i1 (.y(bar4Z), .in(Z4)); 

 inv #(WIDTHP5) i2 (.y(bar8Z), .in(Z8)); 
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mux51 #(WIDTHP5) mux_qh (.y(qh_op), .a(bar8Z), 

.b(bar4Z), .c(Z0), .d(Z4), 

.e(Z8), .sel(sel_qh)); 

 

 //preparation of 5:1 MUX for ql 

 assign Z2 = {Z[WIDTH+3:0], 1'b0}; 

 assign Z1 = Z; 

 assign Z0 = {{WIDTHP5}{1'b0}}; 

 inv #(WIDTHP5) i3 (.y(bar1Z), .in(Z1)); 

 inv #(WIDTHP5) i4 (.y(bar2Z), .in(Z2)); 

mux51 #(WIDTHP5) mux_ql (.y(ql_op), .a(bar2Z), 

.b(bar1Z), .c(Z0), .d(Z1), 

.e(Z2), .sel(sel_ql)); 

 // Flow starts HERE 

 assign rws = {Sum_2[WIDTH:0],4'b0}; 

 assign rwc = {Carry_2[WIDTH:0],4'b0}; 

 assign init_sel = {~state0, state0 & state1}; 

  

  

mux21 #(WIDTHP5) mux_a (.y(a_op), .a(rwc2), .b(M4_op), 

.sel(state0)); 

mux21 #(WIDTHP5) mux_b (.y(b_op), .a(rws2), .b(M3_op), 

.sel(state0)); 

mux21 #(WIDTHP5) mux_c (.y(c_op), .a(qh_op), 

.b(M2_op), .sel(state0)); 

//preparation of 2:1 MUX for qh vs M2 

mux21 #(WIDTHP5) mux_d (.y(d_op), .a(ql_op), 

.b(M1_op), .sel(state0)); 

 //preparation of 2:1 MUX for ql vs M1 

csa #(WIDTHP5) csa1 (.sum(Sum_1), .carry(Carry_1), 

.a(c_op), .b(b_op), 

.c({a_op[WIDTHP4:1], 

ulp_qh}));  

  //CSA adder a_op, b_op, c_op 

csa #(WIDTHP5) csa2 (.sum(Sum_2), .carry(Carry_2), 

.a(d_op), .b(Sum_1), 

.c({Carry_1[WIDTHP4:1], 

ulp_ql})); 

//CSA adder Sum_1, Carry_1, d_op 

cpa #(37) cpa1 (.sum(Z_op), .a(Carry_2), .b(Sum_2)); 

//preparation of CPA for finding final value of Md 

cpa #(10) cpa2 (.sum(quo), .a(rwc2[WIDTHP4:WIDTHM5]), 

.b(rws2[WIDTHP4:WIDTHM5]));  

 //preparation of CPA for the QST 

  

mux31 #(WIDTHP5) mux_init1 (.y(init_rws), 

.a({{WIDTHP5}{1'b0}}), 
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.b(Sum_2), .c(rws), 

.sel(init_sel)); 

 

 

mux31 #(WIDTHP5) mux_init2 (.y(init_rwc), 

.a({{WIDTHP5}{1'b0}}), 

.b(Carry_2), .c(rwc), 

.sel(init_sel)); 

 reg_pos #(WIDTHP5) reg1 (.y(rws2), .in(init_rws), 

.clock(clk), .clear(clear)); 

 //registers for rws, rwc 

 reg_pos #(WIDTHP5) reg2 (.y(rwc2), .in(init_rwc), 

.clock(clk), .clear(clear)); 

 sel_m sel_m(sel_M4, sel_M3, sel_M2, D[WIDTH-2:WIDTHM5-

2]); //M selection table 

 qh_sel qh_sel (sel_qh, ulp_qh, quo[9:4]);  

 //qh/ql selection table 

 ql_sel ql_sel (sel_ql, ulp_ql, quo[9:4]); 

  

 reg_pos #(WIDTHP5) reg3 (.y(Z), .in(Z_op), 

.clock(state1 & state0), .clear(clear)); 

//Latching the value - z = M.d at falling edge of state1 

 otf_mux #(WIDTH) adj1 (.d(quo[9:4]), .clk(clk), 

.clear(clear), .Qstar(Qstar)); 

//On the fly conversion    

endmodule 

 

 

 

RTL implementation of Radix512 division 

 

module divide512 (p0, p1, Xin, Din, clk, state0, state1, 

clear, clear2, ctrl, zctrl, Qstar,pre_out); 

 

 input  [27:0] Xin, Din; 

input  clk, state0, state1, clear, 

clear2, ctrl; 

 input [1:0] zctrl; 

 wire  [13:0] quo_in; 

 output [27:0] Qstar; 

 output [43:0] pre_out; 

 input  [18:0]  p0,p1;  

 

 wire [29:0] sel_op, mux_selop, pre_op; 

 wire  [29:0]  X, D; 

 wire  [43:0]  ws, wc;      

 // 1 sign, 9 integer, 23 fractional bits 

 wire  [17:0]  Mrec_ab, Mrec_cd; 

 wire  [7:0]  P2, P1, M1, M2; 

wire [43:0]  pprod0, pprod1, pprod2, pprod3, 

pprod4, pprod5, pprod6, pprod7; 
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wire [43:0]  pre_cpaop, ws_reg, wc_reg, rwc_regip, 

rws_regip; 

 wire  [17:0]  sum1, carry1; 

 

 

 wire [13:0] sbtm_sr, sbtm_cr, sbtm_s, sbtm_c; 

 

 assign X = {2'b0, Xin};  assign D = {2'b0, Din}; 

 

// SBTM input and its register - positive clock 

 

 sbtm_add  sbtm1 (sbtm_s, sbtm_c, p0, p1); 

 reg14 reg14_1 (sbtm_sr, sbtm_s, clk, clear); 

 reg14 reg14_2 (sbtm_cr, sbtm_c, clk, clear); 

 

mux21x18 mux_rec1 (Mrec_ab,{4'b0,rws_regip[39:26]}, 

{2'b0, sbtm_sr, 2'b0}, state0); 

mux21x18 mux_rec2 (Mrec_cd,{4'b0, rwc_regip[39:26]}, 

{2'b0, sbtm_cr, 2'b0}, state0); 

recoder recoder(P2, P1, M1, M2, Mrec_ab, Mrec_cd); 

//[7:0] Preamble  [4:0] Recursion 

// Select other operand  

 mux31x30 mux_select (mux_selop, D, X, pre_op, zctrl); 

 //select D, X, or Z on pos edge | in sync with sbtm 

 

 reg30 reg1 (sel_op, mux_selop, clk & clear2, clear); 

 

pprod_gen pprod_gen (pprod0, pprod1, pprod2, pprod3, 

pprod4, pprod5, pprod6, pprod7, P2, 

P1, M2, M1, sel_op, state0); 

csa_tree csa_tree(ws, wc, pprod0, {pprod1[41:0], 

M2[0], M1[0]}, {pprod2[39:0], M2[1], 

M1[1], 2'b0},  

 {pprod3[37:0], M2[2], M1[2], 4'b0}, 

{pprod4[35:0], M2[3], M1[3], 6'b0}, 

{pprod5[33:0], M2[4], M1[4], 8'b0},  

 {pprod6[31:0], M2[5], M1[5], 10'b0}, 

{pprod7[29:0], M2[6], M1[6], 12'b0}, 

rwc_regip, rws_regip, state0, P2[5], 

P1[5]); 

 

  

 reg44 regws (ws_reg, ws, clk, clear);    

  //Register for rws 

 reg44 regwc (wc_reg, wc, clk, clear); 

 

// assign ws_out=ws; 

// assign wc_out=wc;   

// For Z 

// assign pre_cpaop= wc_reg+ws_reg; 

 

 cpa44 cpa44 ( pre_cpaop, ws_reg,wc_reg); 
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 assign pre_op = pre_cpaop[42:13]; 

 assign pre_out=pre_cpaop; 

 

 

mux21x44 mux1 (rws_regip, {{4{ws_reg[43]}}, 

ws_reg[43:13], 9'b0}, {ws_reg[34:0], 

9'b0}, ctrl); 

mux21x44 mux2 (rwc_regip, {{4{wc_reg[43]}}, 

wc_reg[43:13], 9'b0}, {wc_reg[34:0], 

9'b0}, ctrl); 

csa18 csa18(sum1, carry1, rws_regip[43:26], 

rwc_regip[43:26], 

{16'b0,1'b1,1'b0});   

//csa to add rws, rwc,0.5 

 cpa14 cpa14_2 (quo_in, sum1[13:0], carry1[13:0]); 

 otf_mux otf_mux (quo_in[11:2], clk, Qstar, clear2); 

 

endmodule // divide512 

 

 

RTL implementation of Radix512 mult/div unit 

 

 

module divide512 (Xin, Din, Mult, Mulcnd_in, clk, state0, 

state1, clear, clear2, ctrl, zctrl, opern, Qstar, mul_op); 

 

 input  [27:0] Xin, Din; 

 input [27:0] Mult, Mulcnd_in; 

 input   clk, state0, state1, clear, clear2, 

ctrl, opern; 

 input [1:0] zctrl; 

 output [27:0] Qstar; 

 output [55:0] mul_op; 

  

 

 wire  [13:0] quo_in; 

 wire [29:0] operand_r, mux_selop, pre_op, operand; 

 wire  [29:0]  X, D, Mulcnd; 

 wire  [43:0]  ws, wc; 

 wire  [17:0]  Mrec_ab, Mrec_cd; 

 wire [17:0] Multrec_ab, Multrec_abr, Divrec_ab, 

Divrec_cd; 

 wire  [7:0]  P2, P1, M1, M2; 

 wire  [43:0]  pprod0, pprod1, pprod2, pprod3, 

pprod4, pprod5, pprod6, pprod7; 

 wire  [43:0]  pre_cpaop, ws_reg, wc_reg, rwc_regip, 

rws_regip, mult_ws, mult_wc; 

 wire  [17:0]  sum1, carry1; 

 wire [13:0] sbtm_s, sbtm_c, sbtm_sr, sbtm_cr; 
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 wire [15:0] mul_l_r, cpa_mul_l; 

  

 assign X = {2'b0, Xin};  assign D = {2'b0, Din}; 

 

 

 assign Mulcnd = {2'b0, Mulcnd_in}; 

 

// SBTM input and its register - positive clock 

 sbtm_add  sbtm1 (Din[26:13], sbtm_s, sbtm_c); 

 reg14 reg14_1 (sbtm_sr, sbtm_s, clk, clear); 

 reg14 reg14_2 (sbtm_cr, sbtm_c, clk, clear); 

 

// For Division Recoding 

mux21x18 mux_div1 (Divrec_ab,{4'b0,rws_regip[39:26]}, 

{2'b0, sbtm_sr, 2'b0}, state0); 

mux21x18 mux_div2 (Divrec_cd,{4'b0, rwc_regip[39:26]}, 

{2'b0, sbtm_cr, 2'b0}, state0); 

 

// For MultL/ MultH Recoding 

mux21x18 mux_mul (Multrec_ab,{Mult[15:0], 2'b0}, 

{4'b0,Mult[27:14]}, state1);   

// Send lower half when state1=0 

 reg18 reg18_1 (Multrec_abr, Multrec_ab, clk, clear); 

mux21x18 mux_rec1 (Mrec_ab, Divrec_ab, Multrec_abr, 

opern); 

// opern = 0   division 

mux21x18 mux_rec2 (Mrec_cd, Divrec_cd, 18'b0, opern);  

// opern= 1 multiplication 

 

recoder recoder(P2, P1, M1, M2, Mrec_ab, Mrec_cd, 

state0, state1, opern, hi8, gi8); 

// Select other operand  

 mux31x30 mux_select1 (mux_selop, D, X, pre_op, zctrl); 

//select D, X, or Z on positive edge | in sync with sbtm 

mux21x30 mux_select2 (operand, mux_selop, Mulcnd, 

opern); 

 

 reg30 reg1 (operand_r, operand, clk & clear2, clear); 

 

pprod_gen pprod_gen (pprod0, pprod1, pprod2, pprod3, 

pprod4, pprod5, pprod6, pprod7,  

 P2, P1, M2, M1, operand_r, state0, 

opern, hi8, gi8); 

 

csa_tree csa_tree (ws, wc, pprod0, {pprod1[41:0], 

M2[0], M1[0]},  

 {pprod2[39:0], M2[1], M1[1], 2'b0}, 

{pprod3[37:0], M2[2], M1[2], 4'b0},  

 {pprod4[35:0], M2[3], M1[3], 6'b0}, 

{pprod5[33:0], M2[4], M1[4], 8'b0},  
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 {pprod6[31:0], M2[5], M1[5], 10'b0}, 

{pprod7[29:0], M2[6], M1[6], 12'b0},  

    rwc_regip, rws_regip, mult_ws,mult_wc,  

state0, P2, P1, M2, M1, opern, 

 operand_r); 

 

 

 

 reg44 regws (ws_reg, ws, clk, clear); 

//Register for rws 

 reg44 regwc (wc_reg, wc, clk, clear); 

// For Z 

cpa16 cpa16 ( cpa_mul_l, carry, ws_reg[15:0], 

wc_reg[15:0], carry_r); 

reg16 reg_mul_l (mul_l_r, cpa_mul_l, (clk & opern), 

clear); 

 dff dff (carry_r, carry, (clk & opern), clear); 

  

cpa44 cpa44 (pre_cpaop, cout, ws_reg, wc_reg, 

carry_r); 

 

 assign pre_op = pre_cpaop[42:13]; 

assign mult_ws = {{16{ws_reg[43]}}, ws_reg[43:16]}; 

 assign mult_wc = {16'b0, wc_reg[43:16]}; 

 

mux21x44 mux1 (rws_regip, {{4{ws_reg[43]}}, 

ws_reg[43:13], 9'b0}, {ws_reg[34:0], 

9'b0}, ctrl); 

mux21x44 mux2 (rwc_regip, {{4{wc_reg[43]}}, 

wc_reg[43:13], 9'b0}, {wc_reg[34:0], 

9'b0}, ctrl); 

 

csa18 csa18(sum1, carry1, rws_regip[43:26], 

rwc_regip[43:26], 

{16'b0,1'b1,1'b0}); 

//csa to add rws, rwc,0.5 

 cpa14 cpa14_2 (quo_in, sum1[13:0], carry1[13:0]); 

 otf_mux otf_mux (quo_in[11:2], clk, Qstar, clear2); 

 

 assign mul_op = {pre_cpaop[39:0], mul_l_r}; 

  

endmodule 
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