

STUDY OF RECURSIVE DIVIDE ARCHITECTURES

IMPLEMENTATION FOR DIVISION AND

MULTIPLICATION

By

AMEY P PHADKE

 Bachelor of Engineering in Electronics

 University of Pune

 Pune, India

 2007

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

December, 2011

ii

STUDY OF RECURSIVE DIVIDE ARCHITECTURES

IMPLEMENTATION FOR DIVISION AND

MULTIPLICATION

 Thesis Approved:

 Dr. James E. Stine

 Thesis Adviser

 Dr. Chris Hutchens

Dr. Louis G. Johnson

 Dr. Sheryl A. Tucker

 Dean of the Graduate College

iii

iv

TABLE OF CONTENTS

Chapter Page

1. .. I

NTRODUCTION .. 1

2. .. R

EVIEW OF LITERATURE .. 5

2.1. DIGIT RECURRENCE ALGORITHM .. 5

2.2. QUOTIENT SELECTION TABLE .. 7

2.3. CONTAINMENT CONDITION .. 8

2.4. CONTINUITY CONDITION ... 9

2.5. ON THE FLY CONVERSION .. 11

3. .. M

ETHODOLOGY ... 16

3.1 DIVISION .. 16

3.2 RADIX2 DIVISION ... 17

3.3 RADIX4 DIVISION ... 20

3.4 RADIX16 DIVISION USING OPERAND SCALING ... 25

3.5 RADIX 512 DIVISION .. 31

3.5.1 Recoding .. 34

3.5.2 Adder .. 36

3.6 RECURSIVE DIVIDE/MULTIPLIER UNIT.. 40

4. .. R

ESULTS .. 45

4.1 DESIGN FLOW: ... 46

4.1.1 Design Specifications ... 47

v

4.1.2 HDL Coding ... 48

4.1.3 Logic synthesis ... 50

4.1.4 Place and Route ... 52

4.1.5 Post-Layout Analysis: .. 52

vi

4.2 COMPARISON ... 53

5. .. C

ONCLUSION ... 57

REFERENCES .. 59

APPPENDICES... 60

vii

LIST OF TABLES

Table Page

Table 1 - Truth table for OTF logic ... 15

Table 2 - Signed Digit Conversion to Normal Representation .. 15

Table 3 - Truth table for Radix2 QST .. 19

Table 4 - Quotient bit encoding for Radix2 ... 19

Table 5 - Selection Intervals and mk constants [4] .. 22

Table 6 – Quotient bit encoding for Radix4 .. 24

Table 7 - Selection multiples for scaling ... 28

Table 8 - Quotient selection table for Radix16 .. 29

Table 9 - Quotient recoding in Carry-Save format .. 35

Table 10 - Division cycle timing chart .. 36

Table 11 - Multiplication cycle timing chart ... 44

Table 12 - Radix2 Divide Results .. 53

Table 13 - Radix4 Divide Results .. 54

Table 14 - Radix16 Divide Results .. 54

Table 15 - Radix512 Divide Results .. 54

Table 16 - Radix512 Mult-Div Results .. 54

Table 17 - Relative area increase ... 56

Table 18 - Single Precision Comparisons for various multiplier architectures.............................. 56

viii

LIST OF FIGURES

Figure Page

Figure 1 - Distribution of FP instructions .. 2

Figure 2 - Distribution of unit stall time .. 3

Figure 3 - Robertson's PD Diagram ... 9

Figure 4 - On the fly conversion .. 13

Figure 5 - Radix2 hardware block diagram ... 20

Figure 6 - Hardware block diagram for QST ... 23

Figure 7 - Radix4 hardware block diagram ... 24

Figure 8 - Radix16 hardware block diagram ... 30

Figure 9 - SBTM implementation .. 32

Figure 10 - Block diagram for recoder... 36

Figure 11 - Radix512 hardware block diagram ... 38

Figure 12 - Radix512 hardware block diagram using Carry-Save format 39

Figure 13 - Radix512 hardware block diagram for integrated Mult-Div Unit 43

Figure 14 - Design Flow .. 46

Figure 15 - ModelSim simulation snapshot ... 49

Figure 16 - Place and Route Design Flow ... 51

Figure 17 - Delay Comparisons ... 55

Figure 18 - Area Comparisons ... 55

1

CHAPTER I

INTRODUCTION

Due to advancement in VLSI technology many industrial and business related

applications makes use of floating point operations as a result of which floating point unit has

become critical component of modern processor design as well as dedicated embedded systems.

Special purpose applications such as graphics rendering has further demanded need of high speed

& efficient floating point units as performance of the processor is often limited by high latency of

floating point unit.

Modern applications consist of several floating-point operations, which mainly include

addition, subtraction, multiplication, division and square root [1]. These days focus is more on the

implementation of high speed floating point adders and multipliers as a result of which latency of

these operations has come down to 2 to 4 cycles, but at the same time latency associated with

division and square root is large, in some cases latency for such operations is around 50-60

cycles. This ignorance towards implementation of high-speed divider is due to instruction mix of

the benchmarks, which are used to validate performance of processors.

2

Figure 1 - Distribution of FP instructions

Figure1 shows average frequency of division and square root operations in benchmark

suite as compared to other floating-point operations. All benchmark applications are compiled

using O3 optimization. From figure1 we can observe that division and square root are very

uncommon operations comprising only 3% of total floating point operations [2].

On the other hand floating point multiplication holds for 37% of the instructions &

floating point addition accounts for 55% of the instructions. Due to this common view of division

operation is that it is an infrequent operation which does not required high priority, but if we look

into Figure2 which shows latency associated with floating point operations, it indicates that

latency of divide operation is 20 cycle as compared to multiply and addition operations which has

3 cycle of latency each. Distribution of stall time due to FP hardware shows that FP division is

responsible for 40% of the latency, FP addition accounts for 42 % and FP multiply results in

remaining 18%. This shows that slow division operation results in overall degradation of system

performance.

3

Figure 2 - Distribution of unit stall time

There is an extensive mathematical literature available for implementation of division

algorithm but still implementation of these algorithms is considers as black box due to many

parameters involved in it. Division algorithms can be divided into five classes such as digit

recurrence, functional iteration, very high radix, table look up and variable latency.

Some division algorithms don’t belong to any specific class; they make the use of more

than one technique mentioned above to perform the operation. Out of algorithms mentioned

above digit recurrence is the oldest class of high-speed division as a result of which lot of

literature is published related to it. The most common and popular implementation of digit

recurrence algorithm is SRT division algorithm, which has been named SRT division by Freiman

taking its name from the initials of Sweeney, Robertson and Tocher, who developed the algorithm

independently at the same time.

Implementation work related to SRT division algorithms have been done previously

without an actual implementation, Ercegovac and Lang provide comparison between different

4

division algorithms in terms of delay and area using full adder units and NAND gate units.

Objective of this work is to provide accurate comparison between different SRT algorithms by

actual RTL implementation of all of them, followed by synthesis and PNR of the design in order

to get area, delay and power numbers associated with it. This work includes implementation of

SRT Radix2, Radix4, Radix16 and Radix512 algorithms. More emphasis is given on the

implementation of high Radix512 division algorithms and how the same hardware can be utilized

to perform high radix multiplication to save area and maximize performance.

5

CHAPTER II

REVIEW OF LITERATURE

Digit recurrence algorithm consists of n iterations, where each iteration produces one

digit of the quotient. However, digit recurrence algorithms do have preprocessing as well as post

processing steps, which are vital in order to, make sure that the dividend, divisor, quotient and

remainder are presented correctly [3].

2.1. Digit Recurrence Algorithm

Division operation starts by taking divisor d, dividend x and computes quotient q, and its

remainder, r. the basic equation for division is recursive as follows:

x = q . d + r where r < d (2.1.1)

The quotient digit is one of the most interesting elements in the division process. In

particular, quotients are most often implemented as redundant digit set. The reason behind doing

so is that it simplifies the quotient digit selection. Unfortunately as radix increases, complexity of

the quotient digit selection also increases.

6

Therefore as designers one of the challenges for division is to make right decision on

which algorithm to chose for implementation and its circuit implications [4]. This tradeoff is

noticeable in division due to variation in which division can be implemented.

Digit recurrence algorithm of division works iteratively using following equation where

wi is the partial remainder for iteration i, d is the divisor, r is the radix and qi is the quotient digit

for iteration i

wi+1 = r . wi = qi+1 .d (2.1.2)

Algorithm starts by assigning first partial remainder denoted by w[0] as dividend x. The

quotient selection function is chosen based on comparison between the divisor and shifted partial

reminder

qi + 1 = QST (r. wi, d) (2.1.3)

Where QST is the Quotient Selection Table. The QST can be implemented in various

ways such as using ROM, PLA or combinational logic. All RTL implementation in this work use

combinational logic to construct QST due to an obvious advantage of speed over other techniques

as well as in order to avoid use of Macro block in the design.

The most challenging step in the division procedure is the comparison between the

divisor and remainder to determine the quotient bit. If this is done by subtracting d from wi, one

has to be careful if the result is negative. If so, a correction operation occurs restoring the

remainder to the previous interaction, this method is called restoring division. Non-restoring

division is an alternative for sequential division by having specific logic for not correcting the

quotient; this is achieved by allowing a correlation factor within the algorithm. Unfortunately,

because non-restoring division requires a correction factor, there may be some post processing

7

that is required if the final remainder is negative. Accordingly, it is necessary to have a correction

step that adjusts the quotient as flows where m is the final iteration of the recurrence relation and

r
-n

 is an ulp

q = qm if wi >= 0 (2.1.4)

qm – r
-n

 if wi < 0 (2.1.5)

Therefore, the process of division by recurrence can improve upon general division

algorithms by taking advantage of flowing elements

1. As Radix increases, it decreases the number of iterations assuming r = 2
k

2. Redundancy within the quotient digit set reduces and simplifies the QST

3. Partial remainder can be implemented using redundant notation, which simplifies the

computation of the partial reminder using carry-free adder.

All the designs implemented in this work make the use of these choices and showing

tradeoffs for these choices.

2.2. Quotient Selection Table

This section presents basic theoretical background required to design quotient digit

selection function. Algorithm for division is challenging because the implementations for quotient

digit selection vary from design to design. The basic idea of the QST is to choose the value of

quotient digit qi+1, based on comparison between shifted partial remainder and the divisor. A

symmetric SD digit set is utilized where the range of quotient is

qi+1 belongs to {-a, -a+1...., -1, 0, 1,…., a-1, a}

8

Redundancy factor



 is defined as



 
a

r 1
,
1

2
  1

 (2.2.1)

Even though choosing the right function for a QST is complex, it can be easily

formulated into two conditions called containment and continuity. The containment condition

identifies selection interval for each quotient digit qi+1. On the other hand continuity condition

details the range, which the quotient digit is selected.

2.3. Containment condition

Since the equation for recurrence involves subtraction and shifts from equation 2.1.2, it is

important to note that the quotient digit selection becomes difficult. For example, if user decided

to divide 300 / 5 in radix 10 and chooses qi to be 2, this will violate the bound available for next

quotient digit making the computation cumbersome. In other words a quotient digit will need to

be calculated for partial reminder of 200.

The containment condition sets up the selection intervals necessary for computing the

subsequent quotient digit. For given quotient digit qi+1 to be chosen as k, there should be bounds

on an interval of allowable partial reminders, these regions are defined by the interval [Lk, Uk]

such that Lk is the smallest value of partial remainder r.wj for which it is possible to choose qi+1 =

k, whereas Uk is largest value of partial reminder r.wj for which it is possible to choose qi+1= k.

In other words selection intervals are for quotient digit qi+1 =k is given by

Uk = (k +



). d (2.3.1)

Lk = (k -



). d (2.3.2)

9

Figure 3 - Robertson's PD Diagram

Sometimes, this can be visualized by examining a graph of subsequent partial remainder,

wi+1 versus the shifted partial remainder, r. wi. This visualization is represented in Robertson’s

diagram as shown in figure3. Robertson’s plot the recurrence relationship for a given quotient

digit qi+1, assuming the user is varying the shifted partial reminder and plotting or computing the

subsequent partial remainder. The axis of Robertson’s diagram is bounded by axis ([–rp.d ;

rp.d;=p.d;p.d]) where the axis function defines the range of function such that the argument is

defined as {[xmin; xmax;ymin; ymax]}. Interestingly, the redundancy introduced by using SD digit set

imposes an overlap between quotient digits. For example, in figure3 there is an overlap between

qi+1 = k-1 and qi+1 =k. This overlap will be useful in defining the continuity equation.

2.4. Continuity Condition

Since the containment condition defines range of subsequent partial reminder, choosing

the correct quotient digit from this region is job of continuity condition. To satisfy the

containment condition, the minimum value of x-axis of the Robertson’s diagram is chosen such

that qi+1=k is our quotient digit. This can be defined as the following inequality where sk is the

minimum value that user chooses before an implementation is devised.

Lk <= sk <= Uk (2.4.1)

10

Unfortunately, because the overlap that occurred in the containment condition, the

quotient digit may be chosen as either k or k-1. For example, in figure3 an overlap exists between

Lk, which is Lower bound for quotient digit k, and Uk-1, which is the largest bound on partial

reminder for a quotient digit to be k-1 such that sk can either be k-1 or k. Since the containment

equations are defined, it is easy to measure this overlap as

Uk-1 –Lk = (k - 1+



 . d) – (k -



 .d) = (2.



 -1).d (2.4.2)

The simplest selection function is to make sk constant and do a comparison on the

constant. Thus many implementations for QST’s resort to ROM or PLA elements. The constants

should satisfy the following equation

max (Lk)



 mk



 min (Uk-1) + ulp

A second requirement of the selection in the continuity condition states that every value

of r.w[i] must belong to at least one selection interval. This can be expressed as



Uk1 Lk  r
n

 (2.4.3)

As shown in Robertson’s diagram the term



r -n
reflects granularity of representable

values, since r.w[i] is represented with n fractional digits. To simplify the derivations and to be

independent of iteration i, the more conservative bound is



U k1  Lk

By substituting the values of bound in above equation we get



k1k (2.4.4)

which results in



21

11

This proves that minimum bound on the redundancy factor



 is 1/2

2.5. On the fly conversion

The use of the redundant representation complicates the use of SRT division. In most

radix system that most digital devices employ, the digit set is restricted to 0, …., r-1. One of the

benefits of using SD number system is that it simplifies the QST. Although SD numbering is

useful, it unfortunately is cumbersome to convert from SD notation back to a conventional

representation.

Fortunately division algorithm implemented in this work calculates quotient bit with

Most Significant Digit First. Arithmetic performed in this fashion is sometimes referred as online

arithmetic. Since quotient is calculated as a fraction



qi  qm.r
m (2.5.1)

Therefore, using the correction factor and plugging it into the equation above results in

the following form



qi1qiqi1.r
i(i1)



qi1 0 (2.5.2)



qi1qir
j(rqi1)r

(i1)



qi1 0 (2.5.3)

The later equation is formed since the quotient for that iteration is negative; hence

subtraction is required for the conversion. If we substitute a variable for the correction factor, qmi

the equation shown above is presented more efficiently as



qi1qiqi1.r
i(i1)



qi1 0 (2.5.4)



qi1qmi(rqi1)r
(i1)



qi1 0 (2.5.5)

12

With simple manipulation we can also convert the equation above into an equation for

qmi such that qmi = qi – r
-n

. In other words, if the final remainder is negative, subtraction of an ulp

from the quotient is performed to adjust the correction factor. Then qmi is calculated as follows



qmi1qi(qi11)r
(i1)



qi1 0 (2.5.6)



qmi1qmi((r1)qi1)r
(i1)



qi1 0 (2.5.7)

Fortunately there is an easy algorithm to convert back redundant quotient into

conventional representation for online algorithms. It is called as on-the-fly conversion. The basic

idea behind on the fly conversion is to produce the conversion as the digits of the quotient are

produced by performing a concatenation instead of any carries or borrows within a carry

propagate adder. One element keeps tracks of the quotient, whereas other element keeps track of

normal quotient-ulp.

Since on-the-fly conversion involves concatenations, the MSDF enables the appropriate

quotient digit to be converted by simple combinational logic and shifting as opposed to utilizing

CPA. The algorithm can be summarized as follows



qi1{qi,qi1} if



qi1 0 (2.5.8)



qi1{qmi,(rqi1} if



qi1 0 (2.5.9)

&



qmi1{qi,qi11} if



qi1 0 (2.5.10)



qmi1{qmi,((r1)qi1} if



qi1 0 (2.5.11)

13

Figure 4 - On the fly conversion

In order to implement on-the-fly conversion, it requires 2 registers to hold qi and qmi.

These registers are shifted one digit left with insertion into the least-significant digit, depending

on the value of qi+1. In other words, depending on what the subsequent quotient digit, the register

either chooses q or qm and concatenates the current converted quotient digit into the least

significant digits. The figure4 shows on the fly conversion technique implemented for Radix2

division. In all the implementations, structure of on-the-fly technique remains the same except

number of bits of quotient shifted in every iteration changes; number of bits shifted into 2

registers depends on the radix of the divider.

Two multiplexers are utilized to select either q or qm and combinational logic is used to

select qin or qmin. In order to handle shifting after every cycle, the outputs of the multiplexor are

shifted by one (multiplied by 2, which changes for other radix dividers) and either qin or qmin are

inserted into the least significant bit during each load.

14

The final multiplexer choose the correct quotient once the final reminder is known. If the

sign of final reminder is 1, it will choose qm since this register contains the proper corrected

quotient. Finally qstar and qmstar are designated to qi+1 and qmi+1 respectively.

For Radix2 on the fly conversion, the registers are updated according to the table1. The

values in this table are computed utilizing the equations above for qmi and qi. The quotient digit

set used for this example is {-1, 0, 1}. The values of Cshiftq and Cshiftqm are used to control the

multiplexers. The values of qin and qmin is the concatenation element input into the register. The

quotient is utilized as input to compare Cshiftq, Cshiftqm, qin and qmin. In order to simplify the logic,

the quotient utilizes one hot logic encoding.

(One hot logic is chosen to simplify the digital logic design; this doesn’t mean it is

mandatory to use the same technique)

Boolean two-level simplified expressions for control signal are as follows

 

Cs h i f t Q qi1[0]

Cs h i f t Q M qi1[1]

qi n qi1[0]qi1[1]

q mi n~ (qi1[0]qi1[1])

For example suppose conversion is required for the following Signed Digit number



1101


1


00 to a conventional representation using on-the-fly conversion. Table2 shows the same

example. At step i=0, the values of both registers are reset which is accomplished by using a flip-

flop with reset capabilities. In addition since division is online algorithm, on-the-fly conversion

works from most significant bit to last significant bit. The last value in the register is the final

converted value assuming a fractional number for qi and qmi, which is 0.78125 and 0.77334375

respectively

15

It should be obvious that both these numbers are one ulp from each other (i.e. an ulp is 2
-7

or 0.0078125) and 0.78125 is the conventional representation.

qi+1 qin Cshiftq qi+1 qmin Cshiftqm qmi+1

1 1 1 {qi,1} 0 0 {qi,0}

0 0 1 {qi,0} 1 1 {qmi,1}

-1 1 0 {qmi,1} 0 1 {qmi,0}

Table 1 - Truth table for OTF logic

i qi q qm

0 - 0 0

1 1 0.1 0.0

2 1 0.11 0.10

3 0 0.110 0.101

4 1 0.1101 0.1100

5 -1 0.11001 0.11000

6 0 0.110010 0.110001

7 0 0.1100100 0.1100011

Table 2 - Signed Digit Conversion to Normal Representation

16

CHAPTER III

METHODOLOGY

In this section initially we describe how lower radix divider were built and problems

associated with the techniques involved in it. It is followed by an explanation of operand scaling

technique, and its implementation in higher radix division

3.1 Division

The division algorithm performs division between two double precision floating point

numbers x and d, that produces quotient q



q 
x

d
 (3.1.1)

In the algorithm described in this work only the mantissa is calculated since sign and

exponent calculation is pretty straightforward. The ranges of the operands are



1

2
 d 1 (3.1.2)



1

2
 x 1 (3.1.3)

17

So for the quotient we have -



1

2
 q 1 (3.1.4)

The IEEE double precision standard defines a format of 64 bits for this representation.

These 64 bits are divided into 3 fields sign, exponent and mantissa consists of 1, 11 and 52 bits

respectively. Because number in this format are normalized with the mantissa in the range



1  x  2 with most significant bit is always 1 and can be omitted. Thus real mantissa consists of

52 bit with 1 in most significant position, giving total of 53 bits, as our algorithms requires both

the operands to be in the range of [1/2, 1] we divide the IEEE mantissa by 2 and increase their

exponent respectively. This is similar to shifting the mantissa right by one bit, algorithm also

requires



dx so when this condition is not satisfied mantissa is further divide by 2 due to which

x looks like: x = 0. 0 x[-1]x[-2] x[-3]……..x[-53] number of bits of both operands are extended by 1

bit from 53 to 54 bits to make sure it don’t lose the precision due to right shift [4].

3.2 Radix2 Division

The Radix2 division SRT algorithm is most easy to implement. It produces one bit of

quotient every iteration, requiring 25 or 54 clock cycles for single and double precision floating

point respectively. This algorithm is an extension of non-restoring division with a quotient digit

set of {-1, 0, 1}. The equation used for this division is as follows

wi+1 = 2. wi = qi+1 .d (3.2.1)

 SRT division was named after Sweeney, Robertson and Touher. Main objective of this

algorithm is to speed up the division by allowing 0 as a quotient digit. This eliminates need of

subtraction or addition when the value of quotient selected is 0

18

Now we will derive the containment and continuity conditions for Quotient Selection

table. Using the equation of containment and



 1 , the following condition exists

L1 = 0 U1 = 2 . d (3.2.2)

L0 = -d U0 = d (3.2.3)

L-1 = -2d U-1 = 0 (3.2.4)

To maximize the selection of quotient digit with value 0, most straight forward quotient

selection table



qi1 1 if



d2w[i]2d (3.2.5)



qi1 0 if



d2w[i]d (3.2.6)



qi11 if



2d2w[i]d (3.2.7)

From the equation expressing number of bits of divisor required for QST we get



2 
21

2(a)


1

2(11)


Consequently, a single set of selection constants can be used for whole range of divisor

(it means quotient selection is independent of value of the divisor. So the equation becomes



qi1 1 if



1

2
 2w[i] (3.2.8)



qi1 0 if




1

2
 2w[i] 

1

2
 (3.2.9)



qi11 if



2w[i] 
1

2
 (3.2.10)

So we require 3 bits of partial remainder to find the quotient as sign bit, integer bit and

first fraction bit. Truth table for implementation is shown in Table3

19

Sign Int f0 Result Quotient

0 0 0 <1/2 0

0 0 1 >=1/2 1

0 0 0 >=1/2 1

0 0 1 >=1/2 1

0 1 0 <-1/2 -1

0 1 1 <-1/2 -1

0 1 0 <-1/2 -1

0 1 1 >=1/2 0
Table 3 - Truth table for Radix2 QST

Each quotient bit is recoded into 2 bits as q+ and q- to simplify logical implementation.

Hardware implementation of Radix2 divide is shown below in figure5

Steps involved in Radix2 SRT divide are as follows

a. On reset operand x is loaded in. 2 bits are added to it at the start which serves as sign and

integer bit. It acts as first partial remainder w [0]

b. Partial reminder is shifted by 2 every iteration

c. First 3 bits of partial reminder identifies correct quotient which is recoded into 2 bits as q+

and q-

d. Selected quotient chooses appropriate value of d from {d, 0, -d}

e. When -d is selected multiplexor chooses inverted version of d & additional 1 required to

produce its 2’s compliment is added as carry input to the CPA adder.

f. Redundant quotient bit is sent to OTF (On The Fly) converter.

g. When algorithm requires input operands to be of size greater than double precision, delay due

to carry propagate adder becomes the critical path, CPA can be replaced by carry save format

adder.

Quotient q+ q-

0 0 0

1 0 1

-1 1 0
Table 4 - Quotient bit encoding for Radix2

20

Detailed RTL implementation of Radix2 divide is attached in appendix A.

Figure 5 - Radix2 hardware block diagram

3.3 Radix4 Division

In Radix4 divider algorithm two possibilities exist for redundant quotient digit set with

digit set can be {-2, 1,0, 1, 2} or {-3, -2, -, 1, 0, 1, 2, 3}. The case with a=2 has an advantage that

21

multiple of d required are easy to generated whereas with a=3 multiple of 3d is required which

can not be generated using shifting of operand d and it needs to be split into (d and 2d) which

requires an extra adder in the critical path.

But for case a = 3 from equation providing condition on number of bits of divisor



2 
21

2(a)

2(11)

2(31)

1

4 (3.3.1)

Number of bits of the divisor required are 2 as compared to the case with a= 2 where bits

of divisor required are 3.



2 
21

2(a)

2(2/3)1

2(21)

1

8 (3.3.2)

 Again similar to containment and continuity conditions derived for radix2, bounds on

partial reminder in order to select correct quotient digit set are as follows

U2 = 8/3.d L2 = 4/3.d

U1 = 5/3.d L1 = 1/3.d

U0 = 2/3.d L0 = -2/3.d

U-1 = -1/3.d L-1 = -5/3.d

U-2 = -4/3.d L-2 = -8/3. d

As shifted partial remainder can reach maximum value of 8/3, it requires 2 bits of integer,

1 bit of sign and 4 bits of fractions, In addition to this 3 bits divisor are required to identify

correct quotient digit.

22

Table5 shows how value of quotient chosen based on partial reminder and bits of divisor.

Table is derived from Roberson’s diagram for the continuity relationship [5]



[di,di1)
a

 [8,9) [9, 10) [10,11) [11,12)



L2(di1),U1(di)
b

m2(i)

36, 40

3/4

40,45

7/8

44,50

1

48,55

1



L1(di1),U0(di)
b

m1(i)

9, 16

1/4

10, 18

1/4

11,20

1/4

12, 22

1/4



L0(di1),U1(di)
b

m0(i)

-16, -9

-1/4

-18, -10

-1/4

-20, -11

-1/2

-22, -12

-1/2



L1(di1),U2(di)
b

m1(i)

 -40, -36

-3/4

-45, -40

-7/8

-50, -44

-1

-55, -48

-1



[di,di1)
a

 [12,13) [13, 14) [14,15) [15,16)



L2(di1),U1(di)
b

m2(i)

52, 60

5/4

56, 65

5/4

60, 70

1

48,55

1



L1(di1),U0(di)
b

m1(i)

13, 24

1/2

14, 26

1/2

15, 28

1/2

16, 30

1/2



L0(di1),U1(di)
b

m0(i)

-24, -13

-1/2

-26, -14

-1/2

-28, -15

-1/2

-30, -16

-1/2



L1(di1),U2(di)
b

m1(i)

 -60, -52

-5/4

-65, -56

-5/4

-70, -60

-5/4

-75, -64

-3/2

Table 5 - Selection Intervals and mk constants [4]

23

Figure 6 - Hardware block diagram for QST

Steps involved in Radix4 SRT divide are as follows

a. On reset operand x is loaded. 3 bits are added to it at the start which serves as sign and two

integer bits. It acts as first partial remainder w[0]

b. Partial reminder is shifted by 4 (left shift by 2) every iteration & producing 2 bits of the

quotient according to recurrence formula.

c. First 7 bits of partial reminder and 3 bits of divisor identifies correct quotient which is

recoded into 4 bits as q2+, q+, q2- and q- as shown in table6.

d. Selected quotient chooses appropriate value of d from {2d, d, 0, -d, -2d}

e. When -d or -2d is selected multiplexer chooses inverted version of d & additional 1 required

to produce its 2’s compliment is added as carry input to the CPA adder.

f. Redundant quotient bit is sent to OTF (On-The-Fly) converter.

g. When algorithm requires input operands to be of size greater than double precision, delay due

to carry propagate adder becomes the critical path, CPA can be replaced by carry save format

adder

24

Quotient q
2+

 q
+
 q

-
 q

2-

-2 0 0 0 1

-1 0 0 1 0

0 0 0 0 0

1 0 1 0 0

2 1 0 0 0
Table 6 – Quotient bit encoding for Radix4

Detailed RTL implementation of Radix4 divide is attached in appendix A. We observed

that as we jump from Radix2 to Radix4 complexity of the Quotient Selection Table increase as no

of inputs bits to increases from 3 to 10. As calculation of quotient from QST is in critical path of

the circuit, which in turn decides the frequency at which divider unit can work. Hardware

implementation of Radix4 divide is shown in Figure 7.

Figure 7 - Radix4 hardware block diagram

25

3.4 Radix16 division using operand scaling

From the analysis of Radix2 & Radix4 division algorithm it is apparent that the quotient

digit selection is more costly to implement as we make jump from Radix2 to Radix4. We have

seen that even Radix4 decreases number of clock cycles by half as compared to Radix2, this

advantage gets nullified by the fact that quotient selection table becomes more complex resulting

in increase in cycle time, this trend continues as we move to higher radix division, which can be

proved from substituting the value of redundancy factor and quotient digit set in the equation

from section 3.2 & 3.3, for e.g. Raix8 number of bits of partial reminder and divisor required are

9 and 5 bits respectively.

We need way of speeding up the algorithm; one of the ways of speeding up the algorithm

is to use prediction of quotient digit. This allows simultaneous calculation of quotient as well as

residual, but problem associated with this technique is that this prediction requires even more

complex quotient selection table, making this approach impractical to use unless the method is

simplified.

One way of simplifying this approach is to reduce the complexity of quotient selection

table is by restricting the range of divisor. Since the overlap is largest close to d =1, it is

convenient to restrict the range of divisor close to 1. Moreover in order to preserve the precision

of quotient both operands need to prescale [6].

It is possible to apply the scaling techniques to Radix2 as well as Radix4 division.

However, reduction in execution time is more noticeable if the radix is increased to a value where

using conventional method of quotient selection table incurs heavy penalty. This work shows the

Radix16 division algorithm using scaling techniques. The basic requirements of the algorithm are

a simple scaling technique to make quotient digit selection function independent of divisor and

using small number of bits from partial reminder.

26

Since there are many conflicting parameters involved in the scaling, quotient digit

selection functions are discrete some trial and error is necessary to achieve trade-offs.

Steps involved in the scaling algorithms for radix 16 are as follows

a. Quotient digit set taken into consideration is from {-10, -9, …., 9,10} it is decomposed into

two components as qh = { -8, -4, -, 4, 8} and ql= {-2, -1, 0, 1, 2} respectively. Redundancy

factor



 for this algorithm is calculated as



 
a

r 1

10

15

2

3 (3.4.1)

Thus, the value of



 is within bounds of [1/2, 1]. Number of bits of divisor required

could be calculated from the 3.2.1 as



  6 so for scaling all divisors are shifted to a range,

which is above value of 1 from [6/6, 7/6].

b. The scaling should be obtained by two pass through adder as recursive algorithm requires 2

redundant adders to add ql and qh components. The scaling factor can consists of up to four

multiples of unscaled divisor d of the form 2
-i
.d. More specifically we want to transform the

unscaled divisor into scaled divisor such that

Z = M.d and



1  Z 1

M = 1 + b.2
-6

 with b integer,



0b 64

c. Since the range of divider is now small, selection function is independent of divisor.

qj+1 = SEL



(y
^

) for



1  Z 1

where,



y
^

 is the redundant partial remainder

27

Consequently,



mk m a x (Lk(1) ,Lk(1))

 (3.4.2)

 

mk  2
t
m i n (Uk1(1 ) ,Uk1(1 )) (3.4.3)

Table7 is used to find out the value of M by which operand needs to be multiplied to get

scaled operand. Maximum value that M can have is 127/64 where as 64/64 is the least value M

can have in order to scale the divisor.

Bits of divisor

.1(d-2d-3d-4d-5d-6d-7)

As divider is in range 0.5

to 1

Value of M Lookup table Multiplication by MUX

000000 127/64 1.98438 (64/64+32/64+16/64+8/64)D

000001 125/64 (64/64+32/64+16/64+8/64)D

000010 123/64 (64/64+32/64+16/64+8/64)D

000011 121/64 (64/64+32/64+16/64+8/64)D

000100 120/64 (64/64+32/64+16/64+8/64)D

000101 118/64 (64/64+32/64+16/64+8/64)D

000110 116/64 (64/64+32/64+16/64+4/64)D

000111 115/64 (64/64+32/64+16/64+2/64)D

001000 113/64 (64/64+32/64+16/64+1/64)D

001001 112/64 (64/64+32/64+16/64+0/64)D

001010 110/64 (64/64+32/64+16/64+0/64)D

001011 109/64 (64/64+32/64+8/64+4/64)D

001100 107/64 (64/64+32/64+8/64+4/64)D

001101 106/64 (64/64+32/64+8/64+2/64)D

001110 104/64 (64/64+32/64+8/64+0/64)D

001111 103/64 (64/64+32/64+8/64+0/64)D

010000 102/64 (64/64+32/64+4/64+2/64)D

010001 101/64 (64/64+32/64+4/64+1/64)D

010010 99/64 (64/64+32/64+2/64+1/64)D

010011 98/64 (64/64+32/64+2/64+0/64)D

010100 97/64 (64/64+32/64+0/64+1/64)D

010101 96/64 (64/64+32/64+0/64+0/64)D

010110 95/64 (64/64+32/64+0/64+0/64)D

010111 94/64 (64/64+32/64+0/64+0/64)D

011000 93/64 (64/64+16/64+8/64+4/64)D

011001 92/64 (64/64+16/64+8/64+4/64)D

011010 91/64 (64/64+16/64+8/64+4/64)D

011011 90/64 (64/64+16/64+8/64+2/64)D

28

011100 89/64 (64/64+16/64+8/64+1/64)D

011101 88/64 (64/64+16/64+8/64+0/64)D

011110 87/64 (64/64+16/64+8/64+0/64)D

011111 86/64 (64/64+16/64+4/64+2/64)D

100000 85/64 (64/64+16/64+4/64+1/64)D

100001 84/64 (64/64+16/64+4/64+0/64)D

100010 83/64 (64/64+16/64+2/64+1/64)D

100011 82/64 (64/64+16/64+2/64+0/64)D

100100 82/64 (64/64+16/64+2/64+0/64)D

100101 81/64 (64/64+16/64+1/64+0/64)D

100110 80/64 (64/64+16/64+0/64+0/64)D

100111 79/64 (64/64+16/64+0/64+0/64)D

101000 78/64 (64/64+32/64+4/64+2/64)D

101001 78/64 (64/64+8/64+4/64+2/64)D

101010 77/64 (64/64+8/64+4/64+1/64)D

101011 76/64 (64/64+8/64+4/64+0/64)D

101100 76/64 (64/64+8/64+4/64+0/64)D

101101 75/64 (64/64+8/64+2/64+1/64)D

101110 74/64 (64/64+8/64+2/64+0/64)D

101111 74/64 (64/64+8/64+2/64+0/64)D

110000 73/64 (64/64+8/64+1/64+0/64)D

110001 72/64 (64/64+8/64+0/64+0/64)D

110010 72/64 (64/64+4/64+0/64+0/64)D

110011 71/64 (64/64+4/64+2/64+1/64)D

110100 70/64 (64/64+4/64+2/64+0/64)D

110101 70/64 (64/64+4/64+2/64+0/64)D

110110 69/64 (64/64+4/64+1/64+0/64)D

110111 69/64 (64/64+4/64+1/64+0/64)D

111000 68/64 (64/64+4/64+0/64+0/64)D

111001 67/64 (64/64+2/64+1/64+0/64)D

111010 67/64 (64/64+2/64+1/64+0/64)D

111011 66/64 (64/64+2/64+0/64+0/64)D

111100 66/64 (64/64+2/64+0/64+0/64)D

111101 65/64 (64/64+1/64+0/64+0/64)D

111110 65/64 (64/64+1/64+0/64+0/64)D

111111 64/64 (64/64+0/64+0/64+0/64)D
Table 7 - Selection multiples for scaling

Steps involved in radix 16 SRT divide are as follows

a. On reset operand x is loaded in. 5 bits are added to it at the start which serves as sign and four

integer bit.

b. Multiple of d and x are created which are shifted versions of operands

29

q total qh ql Uk-

1(8288/8192)
Lk(8288/8192) mk

10 8 2 9.566 9.44 9.5

9 8 1 8.57 8.43 8.5

8 8 0 7.58 7.42 7.5

7 8 -1 6.59 6.40 6.5

6 4 2 5.60 5.39 5.5

5 4 1 4.61 4.38 4.5

4 4 0 3.62 3.37 3.5

3 4 -1 2.63 2.36 2.5

2 4 -2 1.64 1.34 1.5

1 0 1 0.66 0.33 0.5

0 0 0 -0.33 -0.66 -0.5

-1 0 -1 -1.34 -1.64 -1.5

-2 0 -2 -2.36 -2.63 -2.5

-3 -4 1 -3.37 -3.62 -3.5

-4 -4 0 -4.38 -4.61 -4.5

-5 -4 -1 -5.39 -5.60 -5.5

-6 -4 -2 -6.40 -6.59 -6.5

-7 -8 1 -7.41 -7.58 -7.5

-8 -8 0 -8.43 -8.57 -8.5

-9 -8 -1 -9.44 -9.56 -9.5
Table 8 - Quotient selection table for Radix16

c. First 6 bits of divisor are used to probe selection table to find appropriate multiples of d

which are used to generate scaled divisor Z=M.d

d. Then multiples of x are chosen to generate scaled dividend M.x which serves as the initial

partial reminder w[0], at the same time Z is assimilated into standard form using carry

propagate adder.

e. According to the quotient selection table (Table8) shown above maximum bounds on partial

remainder to get correct quotients are 9.5 <



y
^

 < -9.5 so sign bit, 4 integer bits and 1

fractional bit are sent to qst to chose correct values of ql and qh

f. Selected ql and qh chooses appropriate value of scaled divisor Z = M.d from pre-computed

multiple of Z { -8, -4, 0, 4, 8} and {-2, -1, 0, 1, 2}

g. When negative multiple of scaled divisor is selected multiplexer chooses inverted version of

d & additional 1 required to produce its 2’s compliment is added in ulp position of carry save

adder.

30

h. Redundant quotient bit is sent to OTF (On The Fly) converter.

i. When algorithm requires input operands to be of size greater than double precision, delay due

to carry propagate adder, which assimilates scaled, divisor becomes the critical path, CPA

can be replaced by carry save adder which results in increase in number of inputs to the carry

save path in recursive path.

Figure 8 - Radix16 hardware block diagram

31

3.5 Radix 512 division

Previous algorithm showed that operand scaling is useful technique to reduce the complexity

of quotient selection table by making selection function independent of bits of the divisor by

scaling the operands. Operand scaling techniques multiplies both dividend and divisor by

prescaling factor. When we go to radix, which are higher than radix 16 (for e.g.: radix 512)

maintaining condition of minimum number of quotient digits in the set to satisfy bounds on

redundancy factor requires quotient digit set to be {-255, 256}.

 


a

r1

2 5 6

5 1 1

1

2

And if we use similar technique to radix 16 we require 8 different multiples of d, x and

quotient needs to be split into 8 components as compared 2 components in radix 16. Moreover 8

pre-computed multiples of d and x not only increases the redundant hardware, it also makes Carry

Save Adder tree in the recursive path to grow big. As a result of which using same technique in

radix 512 nullifies the advantage gained by computing 9 bits of quotient every iteration.

There are several methods to accomplish the pre-scaling function. Some designs actually

incorporate linear approximations to the function, so that for all values inside a given interval

same scaling factor is used [7]. Although this method is useful, it requires extra iterations to

acquire the approximation. Instead of using linear approximations this work uses table lookup

that gets the best approximation to the function for given interval. This approximation called the

Symmetric Bipartite Table Method (SBTM). Number of bits of divisor for which we need

approximation are 14. There are various ways in which number for which approximation is

required can be split up. In this setup 16 bits of divisor is split into 3 components as {5,4,5}. First

two components form number which acts as in input to table a0 and first 5 and last 5 bits acts as

an input to table 2 as shown in fig below.

32

Figure 9 - SBTM implementation

Generally values generated by SBTM lookup table a0 and a1 needs to be added together

however initial pre-scaling value can be stored in carry-save mode, so there is no need to

incorporate the carry propagate adder saving clock cycle time.

According to recursive algorithm for SRT 512 division

w[i+1] = 512. w[i] + q[i+1] *d (3.5.1)

With quotient digit selection:

qi+1 = [



y
^

 +1/2] (3.5.2)

33

Where, w[i] is the residual after iteration i

w[0] = M.x

qj+1 is the quotient digit generated in the iteration qi ={ -511, …., 0, ….,511}



y
^

 = {rw[j]}2 is partial remainder restricted till 2 fractional bits

At the end, q must be rounded according to the sign of the residual of the last iteration. If

last residual is positive we have to add 1 in the least significant position after rounding. We do

not add anything if it is negative.

To execute the recurrence two multiplications and one addition is required. The partial

remainder w[i] and the quotient digit qi+1 both are in carry save presentation to avoid carry

propagation adder in critical path. Multiplying a number by r = 512 = 2
9
 is equivalent to the

shifting of it’s binary representation by 9 positions to the left. Shifting the scaled divisor by

quotient value can’t perform the other multiplication as its not strictly in multiples of 2; so

recoding one of the operands is used to perform other multiplication. Recoding the multiplier into

radix 4 representation reduce the number of partial products and make the operation faster. The

recoded operand is in Signed Digit representation and each digit can assume values {-2, -1, 0, 1,

2}.

In carry save representation of M both MSB’s are going to be 0 as we know the value of

M is positive, but qs and qc can be positive or negative, since the sign is not known, the only

solution is to extend partial reminder y by one bit the carry save representation of qi. This also

requires appending 3 integer bits at the start.

34

3.5.1 Recoding

In recursive algorithm concept of recoding is used. This is a standard radix 4

multiplication. Every partial product is 2 positions left shifted with the respect to previous one,

because of the radix 4 representations of the digits. Sign extension is required to get correct result.

sssssssxxxxxxxxxxxxxxxx

sssssxxxxxxxxxxxxxxxx00

sssxxxxxxxxxxxxxxxx0000

When a negative digit is encountered, we bit compliment the partial product (before the

shift) and we put a 1 in the next product in correspondence of least significant bit of the actual

product. If digit is -1 we have

sssssssxxxxxxxxxxxxxxxx

ssssscccccccccccccccc00

sssxxxxxxxxxxxxxxxx0100

And if the digit is -2 we have

sssssssxxxxxxxxxxxxxxxx

ssssscccccccccccccccc00

sssxxxxxxxxxxxxxxxx1000

Putting 1 for negative multiples of operand doesn’t change the complexity of the circuits.

As shown in the following diagram these bits in the first and second shift extension are simple

through M2 and M1.

But this method cannot be used if the last partial product is negative; this problem will

never occur during scaling as value of M is positive, but during calculation of quotient as well as

during high radix multiplier last partial product can be positive or negative. In such case we bit

compliment shifted partial product and add 1 in the least significant position

35

sssssssxxxxxxxxxxxxxxxx

sssssxxxxxxxxxxxxxxxx00

sssxxxxxxxxxxxxxxxx0000

sxxxxxxxxxxxxxxxx111111

00000000000000000000001

As shown in the figure10 input to the each recoder pair is vi is in carry save format, so

maximum value of vi can be 6, when both sum and carry bit of the input are 11. Input to the each

recoder is vi is in the range of {0,6}. Recoding of the carry save operands is shown below.

vi hi=0 hi=1

 hi+1 gi+1 ti hi+1 gi+1 ti

0 0 0 0 0 0 0

1 0 0 1 0 1 -3

2 1 0 -2 1 0 -2

3 1 0 -1 1 0 -1

4 1 0 0 1 0 0

5 1 0 1 1 1 -3

6 1 1 -2 1 1 -2
Table 9 - Quotient recoding in Carry-Save format

Final recoded output is Ri = ti+hi+gi

36

Figure 10 - Block diagram for recoder

3.5.2 Adder

Adder employed in Radix512 design can be split into components, first one calculates partial

product depending on the output of recoder, and second component adds them. During

calculations of scaled divisor and dividend 8 partial products are generated as pp0, pp1, pp2, pp3,

pp4, pp5, pp6, pp7. During recursive algorithms as only 6 partial products are generated by

quotient qi+1. Upper 2 partial products pp6, pp7 are replaced by shifted partial residual 512.ws[i]

and 512.wc[i].

Cycle 1 2 3 4 5

Operation Prescaling Prescaling Recurrence Recurrence Recurrence

SBTM Register M M M M M

W (Carry/Sum) M.d =Z M.x=W[0] W[1] W[2] W[3]

Z - M.d M.d M.d M.d
Table 10 - Division cycle timing chart

Steps involved in divide512 algorithm are as follows

a. In cycle 1 that is termed as Prescaling, SBTM Register sends pre-scaling factor M in carry

save format to one of the multiplexors, which in turn sends those value to the recoder.

37

Operand selector multiplexor chooses operand d, recoder outputs chooses correct multiple of

operand (d in this cycle), which are added in CSA tree to form M.d n carry save format.

b. In cycle 2 that is also termed as Prescaling, SBTM Register sends prescaling factor M in

carry save format to one of the multiplexers, which in turn sends those values to the recoder.

Operand selector multiplexer chooses operand x, recoder outputs chooses correct multiple of

operand (x in this cycle) which are added in CSA tree to form M.x in carry save format which

is the initial partial reminder w[0], and in same cycle M.d is assimilated using carry propagate

adder.

c. From cycle 3 onwards which is termed as Recurrence operation quotient qi+1 is sent to the

recoder and operand selected is Z scaled divisor

38

Figure 11 - Radix512 hardware block diagram

Quotient produced by recurrence algorithm is in Signed Digit representation, which is

converted into standard representation using on the fly converter block.

d. While implementing radix 512 division for quad precision or some other industry floating

point formats with large range if carry propagate adder involved in cycle 2 which assimilates

scaled divisor M.d becomes critical path of the circuit, scaled operand can be stored in carry

save format. (Modification are shown in figure12)

39

Figure 12 - Radix512 hardware block diagram using Carry-Save format

e. In such case where prescaled divisor is stored in carry save format, number of partial

products getting added in Carry Save Adder tree gets doubled as each partial product will be

have its sum and carry version.

40

3.6 Recursive divide/multiplier unit

This section describes modifications in the radix 512-division algorithm to accommodate

high radix multiplier. . This unit reduces its overall area and power footprint by utilizing a low

area sequential architecture, but still maintains high amounts of computation power by employing

high radix and redundant digit encoding for each digit.

Multipliers have been key and critical components for most application specific and

general-purpose computer architectures. However, these architectures have been transitioning

towards multiple cores that process large amount of data through parallel approaches to

computation. Unfortunately, traditional arithmetic functional units that worked well for dingle

core architectures have the side effect of incurring large amounts of area and power.

Consequently, multi-core architecture needs new ways of thinking about increased throughput to

handle large amounts of data. This section presents modification in the recursive high radix

divide unit that is modified to handle both multiplication and division targeted at multi-core

architectures.

Multiplication involves the use of addition in some way to produce product p= x .y from

a multiplicand x and multiplier y. Multipliers and even division have been workhorse of scientific

computing [8]. High-speed multipliers are typically classified into two categories. The first

known as parallel multiplication, involves the use of hardware to multiply an m bit number by an

n bit number to completely produce an n+m product. On the other hand, serial or sequential

multipliers compute the product sequentially usually utilizing storage elements so that hardware

of the multiplier is reused during an iterative process.

Although multipliers are important for processing scientific data; they tend to consume a

significant amount of area and delay within computer architectures. Today’s architectures require

significant amount of area to integrate multiple cores on a chip to satisfy Moore’s Law.

41

For example, the Niagara 2 architecture has significant resources allocated for supporting

multiple threading [9]. Subsequently Sun Microsystems utilized architecture to reduce area in

order to allow the integrating of floating point and graphics unit. Decisions such as these will

continue to dominate as the number of threads and cores increase and multi-core architecture

becomes more prevalent. Consequently, designers must design new computational blocks that

still maintain the same level of algorithmic complexity, but also have smaller area and power

footprints.

Multipliers are an integral part in scientific computing, however they consume a large

amount of resources. To reduce the size of the computation, it is common to have architectures

that are designed to serially instead of parallel. Serial multipliers are typically computed by

repetitively adding partial products to form the final product as follows:



p[j 1] (p[j] x[j].y).r1 (3.6.1)

where p is the product,

y is the multiplicand

x is the multiplier

r is the radix.

Although serial multiplication units are fairly simple to build in digital hardware, they

tend to be significantly slower than the larger parallel multiplier architectures. More complex

architectures, such as Goldschmidt and Newton Raphson algorithms, allow faster and more

efficient multiplication and division algorithms to occupy the same functional unit. Although

these quadratically converging algorithms are efficient, they have the disadvantage of using a

significant amount of area, mainly for the parallel multiplier. In addition, traditional parallel

multipliers also consumes large amount of power with their spurious switching activity [9].

42

Although serial multiplication units are fairly simple to build in digital hardware, they

tend to be significantly slower than larger parallel multiplier architectures. More complex

architectures, such as Goldschmidt and Newton Raphson algorithms, allow faster and more

efficient multiplication and division algorithms to occupy the same functional unit. Although

these quadratically converging algorithms are efficient, they have the disadvantage of using a

significant amount of area, mainly for the parallel multiplier. In addition, traditional parallel

multipliers also consumes large amount of power with their spurious switching activity [9].

Long standing argument that diminishing feature sizes justify larger area for more

functionality is starting to lack any substance in today’s multicore environment. This is because

many multi-core architecture needs additional blocks for other on chip and off chip

communications. Therefore, multi-core architectures require substantial area for the use of local

and off-chip routers and reducing the size of key and critical functional units such as multipliers

and dividers, is paramount to promoting multi-core paradigms. On the other hand, the reduction

in size of these arithmetic circuits should be tempered with not decreasing the efficiency of the

unit too dramatically.

One potential improvement for serial architectures is to compensate for the low

algorithmic complexity of serial recursive multipliers by using higher radix and Signed Digit

encoding. The advantage to this approach is that a designer can obtain lower power functional

units while still maintaining high throughput. Recursive division algorithms have long had

success in promoting high amounts of computing power by using a higher radix as shown by the

following equation

w[i+1] = r. w[i] – d. qi+1 (3.6.2)

43

Figure 13 - Radix512 hardware block diagram for integrated Mult-Div Unit

The division architecture can easily be expanded into one that computes both division

and multiplication by adding an extra data flow such that the prescaling operation is concatenated

for a selection of multiplier. This is, since only a limited number of bits are utilized with lookup

table for the scaled divisor, it can easily be modified to handle the lower elements of product,

given the dividend is changed to the multiplicand [10].

44

For the r=512 unit paper, 16 bit is assumed for the approximation within the SBTM unit,

half of the product or 32 bits is produced after 1 cycle, That is the following operation is

computed:

Mplier 16 bits . Mcand 32 bits = Partial Product 48 bits

A subsequent iteration can then incorporate into the datapath so that upper 16 bits of the

product or the complete 64 bits of the product is produced. Since the multiplication algorithm is

based closely on the radix 512-division algorithm, it is conceivable to easily modify the

architecture to handle both multiplication as well as division within one unit. The major

difference is for 32 bit multiplication requires 3 cycles, whereas, division requires 5 cycles.

Moreover since multiplication has to shift multiplier by 16 bits, whereas, division shifts each

partial reminder by 9 bits. Figure13 displays the combined architecture for 32-bit division and

multiplication.

Cycle 1 2 3

Operation Iteration Iteration Iteration

SBTM Register M M M

W (Carry/Sum) Mcand.MplierL Mcand.MplierH -

Z - - Mcand.MplierH

Prod_mult_L Mcand.MplierL Mcand.MplierL

Carry - C C
Table 11 - Multiplication cycle timing chart

45

CHAPTER IV

RESULTS

In order to quantify the architectures within the paper, the implementations were

analyzed using the IBM cmos10lpe 65nm CMOS technology[11]. The standard cell library from

Virage is utilized for the synthesis and place and route of the all architecture discuss in this work.

All designs are coded in RTL Verilog and synthesized and place and routed using Synopsys tool

chain. The power dissipation is calculated by running 1,000 different test vectors for each design.

All radix dividers are compared against each other to get accurate estimate of power as

well as area and speedup comparison. To compare the recursive divide/multiplication structure

versus traditional multipliers, a 32-bit carry-save array and Dadda multiplier are designed and

analyzed. Parallel multipliers are chosen for this comparison, because they are typically employed

within multiplicative-dive architectures and consequently can give a good comparison to the

proposed architecture within the paper.

46

4.1 Design Flow:

Flowchart in figure14 shows steps involved in the design and implementation of

architecture mentioned in this work [12]

Figure 14 - Design Flow

47

4.1.1 Design Specifications

There are lots of articles available on SRT division algorithm, which does nice job of

explaining the concept and theory behind it. In the initial phase of the design algorithms are

implemented in C language it get better understanding of concept. This is followed by paper

calculations for small operands range of 8 bits and results obtained which are compared against C

program to validate the result. A sample paper calculation for radix-512 division is shown below

X = 0.84163E2

D = 0.F7755D7

Z = M.D = 0000.FFFDF5A

w[0] = M.X = 0000.88A4527

1st Iteration: 512.WS[0] 0111.48A4E00 q = + 273

512.WC[0] 0000.0000000

-273. Z FEEF.022C706

WS[1] FFFC.4AC1506

WC[1] 0004.0010000

2nd Iteration: 512.WS[1] F895.83E0C00 q = + 150

512.WC[1] 0800.2000000

-150. Z FF6B.01300DE

WS[2] 1FFE.12CE8DE

WC[2] E002.9242400

3rd Iteration: 512.WS[2] FC25.9D1BC00 q = + 37

512.WC[2] 0524.8480000

-37. Z FEB7.029F55A

WS[3] 0FFE.D23095A

WC[3] F002.520A800

Quotient = 0.88A5695

48

4.1.2 HDL Coding

In next stage of implementation, designs are described at register transfer level using

Verilog hardware description language. Hardware implementation is done at structural level to

avoid potential problems in the synthesis of the design. All these design use MUX, registers, and

adders as their basic building blocks. To reduce design efforts Perl scripts are developed which

will generate building block of desired size.

ModelSim is used for the simulation of Verilog netlist. It’s a very powerful tool that

allows user to graphically analyze the design. Complex modules such as quotient selection table,

recoder are tested independently to verify the their functionality against the truth table. Once

individual unit testing is done, all the units are compiled to test the entire module. Control logic is

built using state machine, which gets triggered from external world by start signal so that these

design can be easily incorporated into bigger designs such as processor systems [13].

Testbench used for the testing for division algorithm instantiated two 1 dimensional array

which were filled with user defined values to test the functionality of the design, all corner cases

are taken into consideration in this mode of testing.

For exhaustive testing system task functions in-built into verilog like $random () are used

to generated vector for dividend and divisor. Output generated are written in .out file using

$fopen, $fdisplay task functions.

ModelSim is also used at pre-layout and post layout stage in order to check the

functionality the design after synthesis and place route. It is used in conjunction with sdf

annotation to make sure the design is meeting timing constraints set in design planning stage of

the design. This part will be covered in detail at post-layout section.

49

ModelSim allows user to create .do file in which you can specify the constraints on the

design like verilog files to compiled, adding waveforms of the design which needs to be analyzed

as well as window configuration such as WaveRestoreZoom, name column width, signal name

width, value column width etc.

Commands to run the simulation: - vsim –do divide.do

Figure 15 - ModelSim simulation snapshot

50

4.1.3 Logic synthesis

Synthesis is the process of transforming hardware description at RTL level into structured

netlist using cells from standard cell library. Behavior of the design remains the same after

synthesis but now design is described as a collection of cells from standard cell library. Design

compiler is the tool from Synopsys used for this process, which comes in two flavors as dc_shell,

which is command line interface, which is preferred by most of the EDA designers, whereas other

flavor is design_vision, which gives graphical representation of the design to inspect critical path

of the design, generating schematic etc.

For the successful synthesis of the design, design compiler required RTL description of

the design as an input as well as .sdc file, which is (Synopsys Desgin Constraint) file. Synopsys

design constraint file specifies information related to clock like Clock period, skew, latency,

transition. Design compiler also allows you to put design constants such as don’t use attribute to

prevent compiler toll from using some of the standard cells, delay associated with input and

output ports, driving cell, output load etc. Design compiler generates following file formats and

report:

vh Synthesized netlist of the design

sdc A constraint file that can be used to pass the constraints that we set in the synthesis

script to place and route tools

sdf It’s a standard delay format file that can be used for back-annotation with extracted

timings from synthesized design

ddc A Synopsys formatted binary database that can be used in design vision for further

processing like viewing critical path, analyzing timing reports etc.

rep These are generated reports from the synthesis tool which provides information

related to timing, power as well as estimated area of the design

51

Figure 16 - Place and Route Design Flow

Synopsys design compiler used tcl environment to run the scripts. Command used for

running design compiler is

 dc_shell-xg-t –f compile_dc_ultra.tcl

Formality is logic equivalence tool, which is used to compare the synthesized netlist and

RTL netlist for functionality matching.

52

4.1.4 Place and Route

After this stage Synopsys IC compiler tool is used to perform place and route of the

design. This tools requires synthesized netlist, target libraries, Synopsys design Constraint file as

an inputs. Figure16 flow-chart shows design flow of IC compiler tool.

After the place and route is done. Dynamic simulation can be run on the post-layout to

confirm functionality as well as timing constraints of the design. This is done by back annotating

sdf file generated by place and route tool. While performing post-layout simulation slight

modifications are required to be done in the testbench as shown below:

initial begin

$dumpfile(„divide2.vcd”);

$dumpvars(0,stimulus.dut1);

$sdf_annotate(“divide2.sdf”,dut1,,,”MAXIMUM”,,);

end

4.1.5 Post-Layout Analysis:

Primetime basic is a sign-off quality static timing analysis tool from Synopsys. Static

timing analysis is without the doubt the most important step in the design flow. It determines

whether the design works at required speed. PrimeTime analyzes the timing delays in the design

and flags violation that must be corrected. Four types of analysis is performed on the design, as

follows:

a. From primary inputs to all flops in the design

b. From flop to flop

c. From flop to primary output of the design

d. From primary inputs to primary outputs of the design

53

One of the critical parts in the timing analysis of the design is setup and hold time

violations. PrimeTime allows you to generate timing reports for flop-to-flop path group using –

delay_type option with max and min values to validate hold and setup time violations. If slow and

fast timing libraries of the design are available then those libraries can also be preloaded in the

PrimeTime tool to check corner cases of setup and hold time violations. Following commands are

used to perform setup and hold time violations

report_timing –from [all_register-clock_pins] \

–to [all_registers –data_pins] \

-delay_type min

report_timing –from [all_register-clock_pins] \

–to [all_registers –data_pins] \

-delay_type max

It is also used for power estimation of the design using switching activity file .vcd dump

file generated during dynamic simulation.

4.2 Comparison

In this section we perform comparisons of different divide architectures with their delay,

power and area numbers. As mentioned before the evaluations in the [4] are given in terms of

delay and area of 2 inputs NAND gate, whereas in [7] are given in terms of full-adder units. As

mentioned before aim of this work is get an accurate evaluation of these metrics by actual

hardware implementation. All the work is implemented is IBM65nm technology but these

evaluations can be extended to any library.

 Timing

(ns)

Iterations #Cells Area

(um2)

Power

Static (uw) Dynamic (mw)

SP 1.01 25 348 1884 0.629 1.277

DP 1.06 54 563 3220 1.087 2.066

Table 12 - Radix2 Divide Results

54

 Timing

(ns)

Iterations #Cells Area

(um2)

Total Power (mw)

Static (uw) Dynamic (mw)

SP 1.54 13 442 2440 0.801 1.357

DP 1.65 27 681 3955 1.652 2.231

Table 13 - Radix4 Divide Results

 Timing

(ns)

Iterations #Cells Area

(um2)

Power

Static (uw) Dynamic (mw)

SP 1.87 8 1545 5802 1.841 1.462

DP 1.93 15 2210 8450 3.521 2.687

Table 14 - Radix16 Divide Results

 Timing

(ns)

Iterations #Cell

s

Area

(um2)

Power

Static (uw) Dynamic (mw)

SP 1.96 5 705 9506 3.576 2.057

DP 1.98 8 1008 16326 6.172 3.515

Table 15 - Radix512 Divide Results

 Timing

(ns)

Iterations #Cells Area

(um2)

Power

Static (uw) Dynamic (mw)

SP 1.96 5/3 836 11292 4.090 2.191

DP 1.98 8/5 1333 20143 7.403 4.733

Table 16 - Radix512 Mult-Div Results

Next page shows graph of the delay and area of the design. Delay is calculated by multiplying

number of iterations by clock cycle time.

55

The graph shows clearly that as complexity of the algorithm increases area consumed by

design also increase but at the same delay required for the computation decreases. So using higher

radix divider when speed is the priority is feasible choice

Figure 17 - Delay Comparisons

Figure 18 - Area Comparisons

56

Advantages gained by high radix divider are more visible in recursive multiply/divide

structure. In recursive multiply/divide design increase in the area over conventional divide 512

design for single precision and double precision is shown below

Format Divide512 Mult-Div Unit % Area Increase

Single Precision 9506 11292 18

Double Precision 16326 20143 23

Table 17 - Relative area increase

Multiplier

Arch

Timing

(ns)

Iterations #Cells Area

(um2)

Power

Static (uw) Dynamic (mw)

Dadda 8.75 1 3250 12656 1.943 2.468

Array 9.16 1 2105 11424 1.513 2.513

Proposed 1.96 3 836 11292 4.090 2.191

Table 18 - Single Precision Comparisons for various multiplier architectures

Multiplier

Arch

Timing

(ns)

Iterations #Cells Area

(um2)

Power

Static (uw) Dynamic (mw)

Dadda 17.40 1 12325 50323 9.200 6.375

Array 18.98 1 8562 46876 4.079 7.553

Proposed 1.98 5 1333 20143 7.403 4.733

Table 18 & 19 shows that proposed combinational mult/div unit achieves smaller area,

delay and power footprints as compared to traditional parallel multiplier architectures. In addition

to this it gives more functional power by allowing same hardware design to be used for both

division as well as multiplication.

57

CHAPTER V

CONCLUSION

This work shows the comparison between different architectures of SRT division

algorithm in terms of performance, area and power. It shows that using high radix divider is a

practical option when performance has important priority.

This work also shows modifications in high radix divider to come up with sequential

architecture to handle both divide and multiplication. The proposed design utilizes multiplexers to

select either the dividend/divisor or multiplicand/multiplier and employs a specialized shifter to

allow the product to be shifted into the correct location. Results indicated the proposed design

occupies less area and dissipates significantly less power than traditional multiplier. Moreover the

proposed design integrates novel encoding methods to allow two’s complement operands to be

employed for wither division or multiplication. Units similar to the proposed architecture can

impact multicore architectures by allowing more area for communication and graphic blocks.

This work also describes design flow that can be very efficient in the design of high-

speed arithmetic modules, especially to get accurate evaluations of different schemes and

algorithms.

58

In future, we will be analyzing the impact of new recoding schemes such as booth 3 and

booth 4 on the existing architecture. It will be interesting to see tradeoff between complexity of

recoder and number of partial product terms in Carry Save Adder tree. We will be integrating this

multiplier/divide design in full function floating point core. Floating point unit core will be used

in upcoming multi-core architecture project.

59

REFERENCES

[1] S.F.Oberman, Michael Flynn “Division Algorithms and Implementations” in IEEE

Transactions on Computers vol. 46 August 1997

[2] S.F.Oberman, Michael Flynn “Design issues in Division and Other Floating Point

Operations” in IEEE Transactions on Computers vol. 46 Feb 1997

[3] J.E.Stine, Digital Computer Arithmetic Datapath Design using Verilog HDL. Springer

2004

[4] M.D.Ercegovac, T.Lang, Division and Square Root: Digit Recurrence Algorithms and

Implementations Kluwer 1994

[5] A.Nannarelli, “Implementation of a Radix-512 divider.” Master’s thesis, University of

California, Irvine, 1995.

[6] M.D.Ercegovac, T.Lang “Simple Radix-4 Division with Operand Scaling” in IEEE

Transactions on Computers, September 1990

[7] M.D.Ercegovac, T.Lang, “Very High Radix Division Root with Selection by Rounding

and Prescaling,” IEEE Transactions on Computers, Vol C-43, 1994.

[8] S.F.Oberman, H.Al-twaijry, and M.J.Flynn,”The SNAP Project: Design of Floating Point

Arithmetic Units” in proceedings of the 13th Symposium on Computer Arithmetic,

1997

[9] E.de Angel and E.E.Swartzlander, Jr.”Low Power parallel multipliers” in VLSI signal

Processing, IX [workshop on], 1996

[10] J.E. Stine, A.Phadke, S.Tike”A Recursive-Divide Architecture for Multiplication and

Division” in ISCAS 2011

[11] Virage Standard Cell Book, Virage Logic Corporation

[12] Design Compiler user guide, Synopsys

[13] IC compiler design planning user guide

[14] ModelSim Manual, Mentor Graphics

60

APPPENDICES

Appendix A: It contains RTL implementation of different division architectures and proposed

combinational multiplier/divide unit.

61

Appendix A

RTL implementation of Radix2 Division

module divide2 #(parameter WIDTH = 32, WIDTHP2 = WIDTH + 2,

WIDTHM2 = WIDTH - 2) (

 input clk, clear, state0,

 input [WIDTH-1:0] D, N,

 output [WIDTH-1:0] Quo,

 output [WIDTH+1:0] sum, carry,

 output [1:0] q);

 wire [3:0] w;

wire [WIDTH+1:0] Mux3Out, Mux2Out_ws, Mux2Out_wc,

OnesCompD, ws, wc;

inv #(WIDTHP2) i1 (OnesCompD, {2'b00,D});

mux31 #(WIDTHP2) m3 (Mux3Out, {{WIDTHP2}{1'b0}}, {2'b00,

D}, OnesCompD, q);

mux21 #(WIDTHP2) m2 (Mux2Out_ws, {sum[WIDTH:0], 1'b0},

{2'b00, N}, state0);

reg_pos #(WIDTHP2) r1 (ws, Mux2Out_ws, clk, clear);

mux21 #(WIDTHP2) m4 (Mux2Out_wc, {carry[WIDTH:0], 1'b0},

{{WIDTHP2}{1'b0}}, state0);

reg_pos #(WIDTHP2) r2 (wc, Mux2Out_wc, clk, clear);

cpa #(4) c1 (.sum(w), .a(ws[WIDTH+1:WIDTHM2]),

.b(wc[WIDTH+1:WIDTHM2]));

qst qd1 (q, w[3], w[2], w[1]);// q = {+1, -1} else q = 0

otf_mux #(WIDTH) ckt2 (.Q(Quo), .quot(q),

.SignRemainder(w[3]),.clk(clk),

.state0(state0)); // negedge

csa #(WIDTHP2) d1 (.sum(sum), .carry(carry), .a(ws),

.b(Mux3Out), .c({wc[WIDTH+1:1],q[1]}));

endmodule

62

RTL implementation of Radix4 Division

module divide4 #(parameter WIDTH = 32, WIDTHP3 = WIDTH + 3)

(

 input clk, clear, state0,

 input [WIDTH-1:0] N, D,

 output [WIDTH+2:0] sum, carry,

 output [3:0] q,

 output [WIDTH-1:0] Qstar);

 wire [WIDTH-1:0] QMstar;

 wire [WIDTH+2:0] sumN, carryN, sumN2, carryN2,

 divi1, divi2, divi1c, divi2c, dive1,

 mdivi_temp, mdivi;

 wire [7:0] qtotal;

 assign divi1 = {3'b0, D};

 assign divi2 = {2'b0, D, 1'b0};

 assign dive1 = {3'b0, N};

 inv #(WIDTHP3) inv1 (divi1c, divi1);

 inv #(WIDTHP3) inv2 (divi2c, divi2);

mux21 #(WIDTHP3) mux1 (sumN, {sum[WIDTH:0], 2'b0},

dive1, state0);

mux21 #(WIDTHP3) mux2 (carryN, {carry[WIDTH:0], 2'b0},

{{WIDTHP3}{1'b0}}, state0);

 reg_pos #(WIDTHP3) reg1 (sumN2, sumN, clk, clear);

 reg_pos #(WIDTHP3) reg2 (carryN2, carryN, clk, clear);

cpa #(8) cpa1 (.sum(qtotal), .a(carryN2[WIDTH+2:WIDTH-

5]), .b(sumN2[WIDTH+2:WIDTH-

5]));

 qst4 pd1 (q, qtotal[7:1], divi1[WIDTH-2:WIDTH-4]);

 // q = {+2, +1, -1, -2} else q = 0

otf_mux #(WIDTH) otf1 (.Qstar(Qstar), .QMstar(QMstar),

.q(q), .clk(clk),

.state0(state0)); // negedge

 assign ulp = q[2] | q[3];

 nor n1 (zero, q[3], q[2], q[1], q[0]);

mux41hx #(WIDTHP3) mux3 (.y(mdivi_temp), .a(divi2c),

.b(divi1c), .c(divi1),

.d(divi2), .sel(q));

63

mux21 #(WIDTHP3) mux4 (mdivi, mdivi_temp,

{{WIDTHP3}{1'b0}}, zero);

csa #(WIDTHP3) csa1 (.sum(sum), .carry(carry),

.a(mdivi), .b(sumN2),

.c({carryN2[WIDTHP3-1:1],

ulp}));

endmodule

RTL implementation of Radix16 Division

module divide16 #(parameter WIDTH = 32, WIDTHP5 = WIDTH +

5, WIDTHP4 = WIDTH + 4, WIDTHM5 = WIDTH - 5)(

 input [WIDTH-1:0] N, Din,

 input clk, clear, state0, state1,

 output [WIDTH-1:0] Qstar);

wire [WIDTHP4:0] D, D32, D16, D8, D4, D2, D1, D0,

M4_dop, M3_dop, M2_dop, M1_dop,

X, X32, X16, X8, X4, X2, X1, X0,

M4_xop, M3_xop, M2_xop, M1_xop,

 M4_op, M3_op, M2_op, M1_op,

 init_rws, init_rwc, rws2, rwc2,

Z, Z_op, Z8, Z4, Z0, bar4Z,

bar8Z, qh_op, Z2, Z1, bar1Z,

bar2Z, ql_op, a_op, b_op, c_op,

d_op, Sum_1, Sum_2, Carry_1,

Carry_2, rws, rwc;

 wire [9:0] quo;

wire [2:0] sel_qh, sel_ql, sel_M4, sel_M3,

sel_M2;

 wire [1:0] init_sel;

 wire ulp_qh, ulp_ql;

 assign X = {5'b0,N};

 assign D = {5'b0,Din};

 assign D32 = {1'b0, D[WIDTHP4:1]};

 assign D16 = {2'b0, D[WIDTHP4:2]};

 assign D8 = {3'b0, D[WIDTHP4:3]};

 assign D4 = {4'b0, D[WIDTHP4:4]};

 assign D2 = {5'b0, D[WIDTHP4:5]};

 assign D1 = {6'b0, D[WIDTHP4:6]};

 assign D0 = {{WIDTHP5}{1'b0}};

64

mux51 #(WIDTHP5) mux_M4d (.y(M4_dop), .a(D8), .b(D4),

.c(D2), .d(D1), .e(D0),

.sel(sel_M4));

mux71 #(WIDTHP5) mux_M3d (.y(M3_dop), .a(D32),

.b(D16), .c(D8), .d(D4),

.e(D2), .f(D1), .g(D0),

.sel(sel_M3));

mux71 #(WIDTHP5) mux_M2d (.y(M2_dop), .a(D32),

.b(D16), .c(D8), .d(D4),

.e(D2), .f(D1), .g(D0),

.sel(sel_M2));

 assign M1_dop = D;

 assign X32 = {1'b0, X[WIDTHP4:1]};

 assign X16 = {2'b0, X[WIDTHP4:2]};

 assign X8 = {3'b0, X[WIDTHP4:3]};

 assign X4 = {4'b0, X[WIDTHP4:4]};

 assign X2 = {5'b0, X[WIDTHP4:5]};

 assign X1 = {6'b0, X[WIDTHP4:6]};

 assign X0 = {{WIDTHP5}{1'b0}};

mux51 #(WIDTHP5) mux_M4x (.y(M4_xop), .a(X8), .b(X4),

.c(X2), .d(X1), .e(X0),

.sel(sel_M4));

mux71 #(WIDTHP5) mux_M3x (.y(M3_xop), .a(X32),

.b(X16), .c(X8), .d(X4),

.e(X2), .f(X1), .g(X0),

.sel(sel_M3));

mux71 #(WIDTHP5) mux_M2x (.y(M2_xop), .a(X32),

.b(X16), .c(X8), .d(X4),

.e(X2), .f(X1), .g(X0),

.sel(sel_M2));

 assign M1_xop = X;

 //preparation of 2:1 MUX for all the M.d and M.x

 //2:1_MUX for selection M4_op

mux21 #(WIDTHP5) mux_M4 (.y(M4_op), .a(M4_dop),

.b(M4_xop), .sel(state1));

mux21 #(WIDTHP5) mux_M3 (.y(M3_op), .a(M3_dop),

.b(M3_xop), .sel(state1));

mux21 #(WIDTHP5) mux_M2 (.y(M2_op), .a(M2_dop),

.b(M2_xop), .sel(state1));

mux21 #(WIDTHP5) mux_M1 (.y(M1_op), .a(M1_dop),

.b(M1_xop), .sel(state1));

 //preparation of 5:1 MUX for qh

 assign Z8 = {Z[WIDTH+1:0], 3'b0};

 assign Z4 = {Z[WIDTH+2:0], 2'b0};

 assign Z0 = {{WIDTHP5}{1'b0}};

 inv #(WIDTHP5) i1 (.y(bar4Z), .in(Z4));

 inv #(WIDTHP5) i2 (.y(bar8Z), .in(Z8));

65

mux51 #(WIDTHP5) mux_qh (.y(qh_op), .a(bar8Z),

.b(bar4Z), .c(Z0), .d(Z4),

.e(Z8), .sel(sel_qh));

 //preparation of 5:1 MUX for ql

 assign Z2 = {Z[WIDTH+3:0], 1'b0};

 assign Z1 = Z;

 assign Z0 = {{WIDTHP5}{1'b0}};

 inv #(WIDTHP5) i3 (.y(bar1Z), .in(Z1));

 inv #(WIDTHP5) i4 (.y(bar2Z), .in(Z2));

mux51 #(WIDTHP5) mux_ql (.y(ql_op), .a(bar2Z),

.b(bar1Z), .c(Z0), .d(Z1),

.e(Z2), .sel(sel_ql));

 // Flow starts HERE

 assign rws = {Sum_2[WIDTH:0],4'b0};

 assign rwc = {Carry_2[WIDTH:0],4'b0};

 assign init_sel = {~state0, state0 & state1};

mux21 #(WIDTHP5) mux_a (.y(a_op), .a(rwc2), .b(M4_op),

.sel(state0));

mux21 #(WIDTHP5) mux_b (.y(b_op), .a(rws2), .b(M3_op),

.sel(state0));

mux21 #(WIDTHP5) mux_c (.y(c_op), .a(qh_op),

.b(M2_op), .sel(state0));

//preparation of 2:1 MUX for qh vs M2

mux21 #(WIDTHP5) mux_d (.y(d_op), .a(ql_op),

.b(M1_op), .sel(state0));

 //preparation of 2:1 MUX for ql vs M1

csa #(WIDTHP5) csa1 (.sum(Sum_1), .carry(Carry_1),

.a(c_op), .b(b_op),

.c({a_op[WIDTHP4:1],

ulp_qh}));

 //CSA adder a_op, b_op, c_op

csa #(WIDTHP5) csa2 (.sum(Sum_2), .carry(Carry_2),

.a(d_op), .b(Sum_1),

.c({Carry_1[WIDTHP4:1],

ulp_ql}));

//CSA adder Sum_1, Carry_1, d_op

cpa #(37) cpa1 (.sum(Z_op), .a(Carry_2), .b(Sum_2));

//preparation of CPA for finding final value of Md

cpa #(10) cpa2 (.sum(quo), .a(rwc2[WIDTHP4:WIDTHM5]),

.b(rws2[WIDTHP4:WIDTHM5]));

 //preparation of CPA for the QST

mux31 #(WIDTHP5) mux_init1 (.y(init_rws),

.a({{WIDTHP5}{1'b0}}),

66

.b(Sum_2), .c(rws),

.sel(init_sel));

mux31 #(WIDTHP5) mux_init2 (.y(init_rwc),

.a({{WIDTHP5}{1'b0}}),

.b(Carry_2), .c(rwc),

.sel(init_sel));

 reg_pos #(WIDTHP5) reg1 (.y(rws2), .in(init_rws),

.clock(clk), .clear(clear));

 //registers for rws, rwc

 reg_pos #(WIDTHP5) reg2 (.y(rwc2), .in(init_rwc),

.clock(clk), .clear(clear));

 sel_m sel_m(sel_M4, sel_M3, sel_M2, D[WIDTH-2:WIDTHM5-

2]); //M selection table

 qh_sel qh_sel (sel_qh, ulp_qh, quo[9:4]);

 //qh/ql selection table

 ql_sel ql_sel (sel_ql, ulp_ql, quo[9:4]);

 reg_pos #(WIDTHP5) reg3 (.y(Z), .in(Z_op),

.clock(state1 & state0), .clear(clear));

//Latching the value - z = M.d at falling edge of state1

 otf_mux #(WIDTH) adj1 (.d(quo[9:4]), .clk(clk),

.clear(clear), .Qstar(Qstar));

//On the fly conversion

endmodule

RTL implementation of Radix512 division

module divide512 (p0, p1, Xin, Din, clk, state0, state1,

clear, clear2, ctrl, zctrl, Qstar,pre_out);

 input [27:0] Xin, Din;

input clk, state0, state1, clear,

clear2, ctrl;

 input [1:0] zctrl;

 wire [13:0] quo_in;

 output [27:0] Qstar;

 output [43:0] pre_out;

 input [18:0] p0,p1;

 wire [29:0] sel_op, mux_selop, pre_op;

 wire [29:0] X, D;

 wire [43:0] ws, wc;

 // 1 sign, 9 integer, 23 fractional bits

 wire [17:0] Mrec_ab, Mrec_cd;

 wire [7:0] P2, P1, M1, M2;

wire [43:0] pprod0, pprod1, pprod2, pprod3,

pprod4, pprod5, pprod6, pprod7;

67

wire [43:0] pre_cpaop, ws_reg, wc_reg, rwc_regip,

rws_regip;

 wire [17:0] sum1, carry1;

 wire [13:0] sbtm_sr, sbtm_cr, sbtm_s, sbtm_c;

 assign X = {2'b0, Xin}; assign D = {2'b0, Din};

// SBTM input and its register - positive clock

 sbtm_add sbtm1 (sbtm_s, sbtm_c, p0, p1);

 reg14 reg14_1 (sbtm_sr, sbtm_s, clk, clear);

 reg14 reg14_2 (sbtm_cr, sbtm_c, clk, clear);

mux21x18 mux_rec1 (Mrec_ab,{4'b0,rws_regip[39:26]},

{2'b0, sbtm_sr, 2'b0}, state0);

mux21x18 mux_rec2 (Mrec_cd,{4'b0, rwc_regip[39:26]},

{2'b0, sbtm_cr, 2'b0}, state0);

recoder recoder(P2, P1, M1, M2, Mrec_ab, Mrec_cd);

//[7:0] Preamble [4:0] Recursion

// Select other operand

 mux31x30 mux_select (mux_selop, D, X, pre_op, zctrl);

 //select D, X, or Z on pos edge | in sync with sbtm

 reg30 reg1 (sel_op, mux_selop, clk & clear2, clear);

pprod_gen pprod_gen (pprod0, pprod1, pprod2, pprod3,

pprod4, pprod5, pprod6, pprod7, P2,

P1, M2, M1, sel_op, state0);

csa_tree csa_tree(ws, wc, pprod0, {pprod1[41:0],

M2[0], M1[0]}, {pprod2[39:0], M2[1],

M1[1], 2'b0},

 {pprod3[37:0], M2[2], M1[2], 4'b0},

{pprod4[35:0], M2[3], M1[3], 6'b0},

{pprod5[33:0], M2[4], M1[4], 8'b0},

 {pprod6[31:0], M2[5], M1[5], 10'b0},

{pprod7[29:0], M2[6], M1[6], 12'b0},

rwc_regip, rws_regip, state0, P2[5],

P1[5]);

 reg44 regws (ws_reg, ws, clk, clear);

 //Register for rws

 reg44 regwc (wc_reg, wc, clk, clear);

// assign ws_out=ws;

// assign wc_out=wc;

// For Z

// assign pre_cpaop= wc_reg+ws_reg;

 cpa44 cpa44 (pre_cpaop, ws_reg,wc_reg);

68

 assign pre_op = pre_cpaop[42:13];

 assign pre_out=pre_cpaop;

mux21x44 mux1 (rws_regip, {{4{ws_reg[43]}},

ws_reg[43:13], 9'b0}, {ws_reg[34:0],

9'b0}, ctrl);

mux21x44 mux2 (rwc_regip, {{4{wc_reg[43]}},

wc_reg[43:13], 9'b0}, {wc_reg[34:0],

9'b0}, ctrl);

csa18 csa18(sum1, carry1, rws_regip[43:26],

rwc_regip[43:26],

{16'b0,1'b1,1'b0});

//csa to add rws, rwc,0.5

 cpa14 cpa14_2 (quo_in, sum1[13:0], carry1[13:0]);

 otf_mux otf_mux (quo_in[11:2], clk, Qstar, clear2);

endmodule // divide512

RTL implementation of Radix512 mult/div unit

module divide512 (Xin, Din, Mult, Mulcnd_in, clk, state0,

state1, clear, clear2, ctrl, zctrl, opern, Qstar, mul_op);

 input [27:0] Xin, Din;

 input [27:0] Mult, Mulcnd_in;

 input clk, state0, state1, clear, clear2,

ctrl, opern;

 input [1:0] zctrl;

 output [27:0] Qstar;

 output [55:0] mul_op;

 wire [13:0] quo_in;

 wire [29:0] operand_r, mux_selop, pre_op, operand;

 wire [29:0] X, D, Mulcnd;

 wire [43:0] ws, wc;

 wire [17:0] Mrec_ab, Mrec_cd;

 wire [17:0] Multrec_ab, Multrec_abr, Divrec_ab,

Divrec_cd;

 wire [7:0] P2, P1, M1, M2;

 wire [43:0] pprod0, pprod1, pprod2, pprod3,

pprod4, pprod5, pprod6, pprod7;

 wire [43:0] pre_cpaop, ws_reg, wc_reg, rwc_regip,

rws_regip, mult_ws, mult_wc;

 wire [17:0] sum1, carry1;

 wire [13:0] sbtm_s, sbtm_c, sbtm_sr, sbtm_cr;

69

 wire [15:0] mul_l_r, cpa_mul_l;

 assign X = {2'b0, Xin}; assign D = {2'b0, Din};

 assign Mulcnd = {2'b0, Mulcnd_in};

// SBTM input and its register - positive clock

 sbtm_add sbtm1 (Din[26:13], sbtm_s, sbtm_c);

 reg14 reg14_1 (sbtm_sr, sbtm_s, clk, clear);

 reg14 reg14_2 (sbtm_cr, sbtm_c, clk, clear);

// For Division Recoding

mux21x18 mux_div1 (Divrec_ab,{4'b0,rws_regip[39:26]},

{2'b0, sbtm_sr, 2'b0}, state0);

mux21x18 mux_div2 (Divrec_cd,{4'b0, rwc_regip[39:26]},

{2'b0, sbtm_cr, 2'b0}, state0);

// For MultL/ MultH Recoding

mux21x18 mux_mul (Multrec_ab,{Mult[15:0], 2'b0},

{4'b0,Mult[27:14]}, state1);

// Send lower half when state1=0

 reg18 reg18_1 (Multrec_abr, Multrec_ab, clk, clear);

mux21x18 mux_rec1 (Mrec_ab, Divrec_ab, Multrec_abr,

opern);

// opern = 0 division

mux21x18 mux_rec2 (Mrec_cd, Divrec_cd, 18'b0, opern);

// opern= 1 multiplication

recoder recoder(P2, P1, M1, M2, Mrec_ab, Mrec_cd,

state0, state1, opern, hi8, gi8);

// Select other operand

 mux31x30 mux_select1 (mux_selop, D, X, pre_op, zctrl);

//select D, X, or Z on positive edge | in sync with sbtm

mux21x30 mux_select2 (operand, mux_selop, Mulcnd,

opern);

 reg30 reg1 (operand_r, operand, clk & clear2, clear);

pprod_gen pprod_gen (pprod0, pprod1, pprod2, pprod3,

pprod4, pprod5, pprod6, pprod7,

 P2, P1, M2, M1, operand_r, state0,

opern, hi8, gi8);

csa_tree csa_tree (ws, wc, pprod0, {pprod1[41:0],

M2[0], M1[0]},

 {pprod2[39:0], M2[1], M1[1], 2'b0},

{pprod3[37:0], M2[2], M1[2], 4'b0},

 {pprod4[35:0], M2[3], M1[3], 6'b0},

{pprod5[33:0], M2[4], M1[4], 8'b0},

70

 {pprod6[31:0], M2[5], M1[5], 10'b0},

{pprod7[29:0], M2[6], M1[6], 12'b0},

 rwc_regip, rws_regip, mult_ws,mult_wc,

state0, P2, P1, M2, M1, opern,

 operand_r);

 reg44 regws (ws_reg, ws, clk, clear);

//Register for rws

 reg44 regwc (wc_reg, wc, clk, clear);

// For Z

cpa16 cpa16 (cpa_mul_l, carry, ws_reg[15:0],

wc_reg[15:0], carry_r);

reg16 reg_mul_l (mul_l_r, cpa_mul_l, (clk & opern),

clear);

 dff dff (carry_r, carry, (clk & opern), clear);

cpa44 cpa44 (pre_cpaop, cout, ws_reg, wc_reg,

carry_r);

 assign pre_op = pre_cpaop[42:13];

assign mult_ws = {{16{ws_reg[43]}}, ws_reg[43:16]};

 assign mult_wc = {16'b0, wc_reg[43:16]};

mux21x44 mux1 (rws_regip, {{4{ws_reg[43]}},

ws_reg[43:13], 9'b0}, {ws_reg[34:0],

9'b0}, ctrl);

mux21x44 mux2 (rwc_regip, {{4{wc_reg[43]}},

wc_reg[43:13], 9'b0}, {wc_reg[34:0],

9'b0}, ctrl);

csa18 csa18(sum1, carry1, rws_regip[43:26],

rwc_regip[43:26],

{16'b0,1'b1,1'b0});

//csa to add rws, rwc,0.5

 cpa14 cpa14_2 (quo_in, sum1[13:0], carry1[13:0]);

 otf_mux otf_mux (quo_in[11:2], clk, Qstar, clear2);

 assign mul_op = {pre_cpaop[39:0], mul_l_r};

endmodule

VITA

Amey P Phakde

Candidate for the Degree of

Master of Science

Thesis: STUDY OF RECURSIVE DIVIDE ARCHITECTURES

IMPLEMENTATION FOR DIVISION AND MULTIPLICATION

Major Field: Electrical Engineering

Biographical:

Education: Received Bachelor of Engineering degree in Electronics from

University of Pune, Pune, India in August 2007. Completed the

requirements for the Master of Science in Electrical Engineering at

Oklahoma State University, Stillwater, Oklahoma in Dec, 2011.

Experience: Employed by Oklahoma State University, Department of Electrical

and Computer Engineering as a graduate teaching assistant in Fall’09,

Spring’10 and Fall’10, and as a graduate research assistant ;Oklahoma

State University, Department of Electrical and Computer Engineering,

 Spring’11 and Fall’11. Worked as Hardware Design Engineer, Aftek,

 Pune, India

Professional Memberships: Student Member,

ADVISER’S APPROVAL: Dr. James Stine

Name: Amey P Phadke Date of Degree: December, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: STUDY OF RECURSIVE DIVIDE ARCHITECTURES

 IMPLEMENTATION FOR DIVIDE AND MULTIPLICATION

Pages in Study: 69 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Multipliers have been key and critical components for most application-specific and

general-purpose computer architectures. However, these architectures have been

transitioning towards multiple cores that can process large amounts of data through

parallel approaches to computation. Unfortunately, traditional arithmetic functional units

that worked well for single-core architectures have the side effect of incurring large

amounts of area and power. Consequently, multi-core architecture need new ways of

thinking about increased throughput to handle large amounts of data. This work discusses

implementation of different divider algorithms and presents a recursive high radix divide

unit that is modified to handle both multiplication and division targeted at multi-core

architectures. Results are obtained with a 65nm technology and show a significant

decrease in area and power while still maintaining a low total latency by utilizing high

radix encoding within the functional unit.

