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Abstract 

Due to cancer heterogeneity, identifying new clinical markers to more effectively predict 

prognosis of cancer patients plays an important role to improve efficacy of cancer 

treatment. Objective of this study is to develop and test a new quantitative imaging (QI) 

marker to predict prognosis of early stage non-small cell lung cancer (NSCLC) patients 

after surgery. For this purpose, this study includes following research tasks or steps. First, 

a new computer-aided detection (CAD) scheme was developed to automatically segment 

lung and tumor regions from the chest computed tomography (CT) images of all the slices 

simultaneously using an adaptive pixel value thresholding and/or region growing method. 

Next, CAD scheme was used to compute a large number of image features related to 

tumor shape, size, circularity, density heterogeneity, and lung background tissue patterns. 

Then, a machine learning approach was applied to build a multi-feature fusion based 

prediction model, which enables to produce a CAD-generated quantitative image (QI) 

marker for predicting diseases-free survival (DFS) of the NSCLC patients within 3 years 

after surgery. In order to achieve more robust result of training and testing the machine 

learning model, a leave-one-case-out (LOCO) cross-validation method was used. A 

feature selection process using a correlation-based feature subset evaluator and a 

synthetic minority oversampling technique (SMOTE) were embedded in LOCO based 

training process. Finally, prediction performance of the QI marker or prediction model 

was evaluated using the receiver operating characteristic (ROC) and other statistical data 

analysis. In summary, the goal of this study is to select more effective image features 

computed from both segmented lung tumors and emphysema related background regions 

for producing a new CAD-generated QI marker and demonstrate the feasibility of 
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applying this new QI marker to yield higher performance in predicting prognosis of early 

stage NSCLC patients
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Chapter 1: Introduction 

Lung Cancer 

Lung cancer is one of the leading cancer that has the highest mortality rate, An estimated 

1,685,210 Americans are expected to die from lung cancer in 2016, accounting for 

approximately 27 percent of all cancer deaths, which is more than a quarter of cancer 

deaths in U.S. Currently, the most important cause of lung cancer is smoking (resulting 

in nearly 85% of lung cancer cases in U.S). Lung cancer has poor prognosis; nearly 90% 

of lung cancer patients die of this disease. Lung is a relatively large human organ that 

may involve many other chronic lung diseases, and the lung tumors can often grow for a 

long time before they are found. Even when some abnormal symptoms, such as coughing 

and fatigue, do occur many people are likely to consider these symptoms due to other 

chronic lung diseases. For this reason in the normal clinical practice, it is difficult to detect 

early-stage lung cancer (stage 1) that has a better prognosis. Hence, a large number of 

patents with the lung cancer are currently detected and diagnosed at the advanced stage 

with the low survival rate. Therefore, great effort has been made to import lung cancer 

screening program using low-dose computed tomography (CT) image modality for the 

last decade[1]. In July 29, 2103 U.S. Preventive Services Task Force issued a draft 

recommendation in favor of lung cancer screening for long-term smokes using low-dose 

CT tests. Meanwhile, the trend of using CT for screening and/or detecting other types of 

lung diseases (e.g., chronic obstructive pulmonary diseases) is also on the rise. As a result, 

more early stage lung cancer are detected during the regular lung cancer screening or 

other incident finding. In lung cancer, there are two major categories based on the size of 

the cancer cell when seen under microscope: small cell lung cancer and non-small cell 
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lung cancer which are treated differently. Over 75% of lung cancer cases are non-small-

cell lung cancer (NSCLC); hence this study was focused on prognosis of NSCLC 

patients[2]. NSCLC has three sub types of adenocarcinoma, squamous cell carcinoma, 

and large cell carcinoma which differ in size, shape and chemical make-up, but have 

similar prognosis. Research shows that COPD patients who are smokers have a higher 

risk of getting lung cancer. However, there is increasing evidence that even those non-

smokers with COPD have a greater risk of developing lung cancer. The link between the 

two could be that smoking is an acknowledged cause of COPD and a cause of lung cancer. 

But, recent evidence suggests that COPD itself is an independent risk factor for 

developing lung cancer, separate from any smoking history. 

Computed Tomography (CT) Image Modality 

             X-ray Computed Tomography (CT), formerly known as Computerized Axial 

Tomography (CAT), was introduced into clinical practice in 1972 by G.N.Housefield. 

Currently, high-resolution CT is an important diagnosis tool in clinical radiology 

specifically in lung cancer imaging. Due to CT’s higher accuracy, wide accessibility and 

cost-effectiveness, it remains the most popular imaging modality whereas many other 

advanced imaging modalities including, Positron Emission Tomography (PET), PET-CT 

and magnetic resonance imaging (MRI) has been investigated and applied in lung cancer 

imaging[3]. 

             On the contrary to the conventional X-ray imaging techniques, CT is a slice-

imaging (or cross-sectional imaging) modality that is capable of acquisition of images 

from whole body in spiral and axial scanning modes, which provide three-dimensional 

information from internal organs and tissues of interest. A large volume of body can be 
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scanned through this modality towards imaging of multiple slices simultaneously. Cross-

sectional image of the anatomy is obtained through reconstruction of X-ray projected data 

by a computer. There are two types of reconstruction techniques: analytical 

reconstruction and iterative reconstruction. Filtered back-projection is an analytical 

projection method that has been widely used for CT scanners. 

            Throughout the time, development in X-ray, detector and scanner technology 

have led to a renaissance of CT. Up to now, CT scanner have 4generation. Frist generation 

CT scanner use single X-ray source and single detector that translate and rotate to scan 

anatomy with a small fan beam. Second generation CT scanner have multiple detector. 

Source and detector translate while scanning via fan beam over a larger rotating array of 

detector using wide fan beam, while the fourth generation scanner have rotating X-ray 

source and a larger fan beam[4]. The two earlier generation are considered a 

translation/rotation systems, and the two latest generation are considered as continuous 

rotation system which have improved scanning speed, acquisition of image data, as well 

as image quality (i.e. 3D spatial resolution). 

Lung Cancer Staging 

What is staging? 

  Cancer staging determine how much the disease has grown or spread 

within patient’s body. Staging provide information on the extent or the severity of the 

cancer. Staging can be determined through tests such as laboratory tests, imaging test, 

physical exams, and pathology reports[5]. Cancer patients will be staged when they are 
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diagnosed with the cancer, and they will be referred to this stage even if the cancer has 

progressed or has got worse. 

   Cancer staging is important as: 

 Knowing the cancer stage helps physicians in making decisions for the treatment. 

 It is used in providing cancer prognosis for patients. 

 Aids is figuring out beneficial clinical trials for treating patients. 

 It also enables exchanging information about patients, evaluating and comparing data 

gathered from different clinical trials. 

Common Staging Factors 

Based on National Cancer Institute fact sheet the most common factors used in 

determination of cancer stage are: 

 Location of the primary tumor and the cell type (e.g., adenocarcinoma, squamous cell 

carcinoma) 

 Tumor size and/or extent(reach) 

 Involvement of regional lymph node (the spread of cancer to nearby lymph nodes). 

 Number of tumors (the primary tumor and the presence of metastatic tumors, or 

metastases) 

 Tumor grade (how closely the cancer cell and tissue resemble normal cells and tissue) 

 

What Is Stage I Non-Small Cell Lung Cancer? 

The American Joint Committee on Cancer (AJCC) TNM staging for lung cancer is 

included in appendix A. Here NSCLC staging is focused specifically. The information 

gathered from three T, N and M factors will be combined to determine an overall stage 
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(0, I, II, III or IV) for NSCLC cases. Lower stage indicates a better outlook for patient. 

Stage I NSCLC cases are divided into two groups[5]. 

 Stage IA: The tumor is not large than 3cm, has not reached membranes 

surrounding the lungs, does not affects main branches of the bronchi, and has not spread 

to lymph nodes or distant sites. 

 Stage IB: The cancer has not spread to lymph nodes or distant sites and has one 

or more of the following properties: 

 The tumor is larger than 3cm across but not larger than 5cm. 

 The tumor has grown into a main bronchus, but is not within 2cm of the carina (and it is 

not larger than 5cm). 

 The tumor is partially clogging the airways (and is not larger than 5cm). 

Lung Cancer Recurrence and Its’s Prognostic Factors 

 As it was mentioned earlier patients diagnosed with lung cancer at early stages 

(such as stage I) will have better prognosis and early cancer detection and treatment can 

improve the survival rate of lung cancer patient. However, lung cancer patient may still 

suffer from cancer recurrence after surgical resection of the malignant tumor. Based on 

different studies 30% to 60% of stage I NSCLC patients have cancer recurrent. 

This indicates that the mortality rate among the stage I NSCLC patient is much higher 

that many other types of cancer (e.g., breast cancer) detected at early stage. 

According to the date from the National Cancer Institute’s Surveillance, Epidemiology, 

and End Results database, current 5-Years survival rates are 49% and 45% for Stage IA 

and Stage IB NSCLC patients, respectively[1]. Identifying or developing effective 
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clinical markers or prediction models will not only lead to an accurate and reliable cancer 

prognosis for patients who went through a surgical resection, but also aid in effective 

treatment management. As through a reliable marker, patients with high risk of cancer 

recurrence will be identified, specific adjuvant chemotherapy will be applied after surgery 

to prevent or minimize the risk of cancer recurrence for such patient. Currently there is 

no clinical standards for assessing the risk of post-surgery recurrence of date. Great 

number of prognostic factors has been examined due to the growing number of literature 

in identifying factors with predictive capability of patient survival. 

The overall prognosis for patients with COPD and lung cancer is worse than that of 

patients with lung cancer without COPD. Certainly those patients denied surgery, or 

offered only limited resection because of impaired pulmonary function, may not have the 

option of surgical cure. In addition, nonsurgical treatment options (limited by scant 

available supporting data and often reserved for poor surgical candidates) such as 

radiation therapy, radiofrequency ablation, stereotactic body radiotherapy, and 

cryotherapy have resulted in poorer survival and increased rates of local recurrence 

compared with surgical treatment. The impact of COPD on survival after resection of 

lung cancer is uncertain. One series demonstrated that for patients with stage I disease 

and low predicted postoperative FEV1 values (less than 40%), 5-year survival post 

resection is significantly lower, compared with patients with better lung function (35 vs. 

65%)[6]. Given that the immediate postoperative mortality and rates of tumor recurrence 

were similar in the two groups, the increased 5-year mortality in the high-risk group was 

presumed to be due to non-oncological factors. This lower survival rate for patients with 

severely limited respiratory reserve is consistent with reports by other groups. 
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 Current international standard, Response Evaluation Criteria in Solid Tumors 

(RECIST) guideline suggests that the response of the tumor to the targeted treatment is 

evaluated based on the tumor size (measured by the longest diameter of the tumor) and 

their suitability for accurate repeated measurements. According to RECIST, the sum of 

the longest diameter (LD) for all identified lesions is considered as a reference to evaluate 

the tumor response to the treatment. However to subjectively measure tumor size in one-

dimension and evaluate the size change during the multiple (sequential) CT image 

examination is not reliable, as there will be larger inter-reader variability, and that this 

method has low correlation to the clinical outcome of the patients. As a result, identifying 

new quantitative image markers computed from CT images has received increasing 

interest recently. 
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Chapter 2: Materials  

Dataset 

 The test dataset for this study was retrospectively acquired under an institutional 

review board approved data collection protocol from the first affiliated Hospital of 

Guangzhou Medical University, Guangzhou China. The dataset includes image of 

thoracic CT examination of 107 patients who underwent lung cancer diagnosis and 

treatment in the hospital. All of the patients in this dataset were diagnosed with the 

verified stage I NSCLC. Based on the current clinical guideline, a lung surgery was 

performed on each patient to reset verified malignant lung tumor. After lung surgery, the 

tumor specimens were extracted. Table shows the demographic information of 107 

patients along with corresponding subjectively assigned scores in the cases of this testing 

dataset. 

Table 1: Demographic information of the patients 

Cancer recurrence  Age Yes No 

      

total 
 

Male      

 <= 60 6 23  

 >60 9 24  
Total  15 47 62 

     
Female <= 60 4 19  

 >60 7 15  
Total  11 34 45 

 

  

Among these 107 stage I NSCLC patients, 62 are male and 45 are female. The age of 

these patients ranged from 39 to 85 years old. The average age 61 years old with a 

standard deviation of 9.2. Among these patients, 52 are younger than 60 years old and 55 
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are older than 60 year old. These 107 patients were divided in to two groups with and 

without cancer recurrence within the 3 years after the lung cancer surgery. Specifically, 

26 patients were assigned to cancer recurrence group and 81 were in progression-free 

survival (without cancer recurrence) group. The table summarizes the distribution of 

these two groups of cases in tumor and cancer cell characteristics. 

Table 2: Distribution of two groups of cases in tumor and cancer cell characteristics 

            

  All CT image of these patients were acquired using a 16-detector based Toshiba 

Aquilion CT machine. In the CT image scanning protocol, X-ray tube voltage ranged 

 Cancer recurrence Yes  No      Total 
 

Tumor Density      

 uniform 7 16  23 

 necrosis 12 37  49 

 vacuoles 7 25  32 

 inanition 0 3  3 

      
Cell type      

 

Squamous Cell 

Carcinoma 7 13  20 

 Adenocarcinoma 16 63  79 

 other 3 5  8 

      
Tumor Size      

 <= 3cm 13 61  74 

 >3cm & <=5cm 13 20  33 

      
Tumor Boundary      

 smooth 1 4  5 

 lobulation 4 22  26 

 spiculation 21 55  76 

      
Relation to pleura      

 Normal 4 18  22 

 Last card pleura 6 28  34 

 pleura indentation 16 35  51 
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from 120 to 140KVP and the current ranged from 140 to 340mAs depending on patent 

body size. The CT image slices were reconstructed with an image size of 512x512 pixels 

with pixel size ranged from 0.51 to 0.74mm also depending on the patient body size. The 

image slice thickness of all CT images in this dataset was 2mm. 
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Chapter 3: Methods 

The CAD model is developed to automatically segment the lung region from all the slices 

of the CT scan. Once the lung is segmented from the original image tumor region is 

segmented using a semi-automated method. After the tumor is segmented we apply the 

density mask to get the emphysema in the lung tissue. Using the tumor and emphysema 

region total of 51 features are computed. 

Segmentation of Lung 

The CAD model operates on all the slices simultaneously and performs a series of 

operation to segment lung region. It reads in the first slice and gets the slice thickness 

information present in the Dicom header. If the slice thickness is less than 5mm, the image 

is passed through a low pass filter or else it will directly proceed to the next step. Next, 

we try to separate background noise from the lung tissue, for that we set the background 

pixel values to -200Hu. Then we apply multilevel thresholding to remove the background 

pixels. Once the background pixels are removed using rescale intercept we get back the 

original pixel values for the lung tissue. Then we perform region labelling to remove 

unwanted artifacts and also to fill in small cavities in the lung tissue formed due to 

thresholding. Even the improperly identified airways are removed by region labelling. 

Once this is done we get the segmented lung tissue[7]. The same procedure is repeated 

for all the slices iteratively to get the complete segmented lung tissue. 
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Figure 2: Segmentation of the Lung region 

   

Figure2: Flowchart to segment Lung tissue 
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Segmentation of Lung Tumors 

 In this collected image dataset, each tumor center and diameter on the targeted CT 

image slice have been previously identified and marked by the radiology during the 

original CT image reading and interpretation. Using the slice number and the location the 

seed point is given. Based on this seed point, region growing algorithm is applied to 

compute the tumor. The marked tumor seed in the center slice was mapped in to the next 

adjunct CT image slices to segment the tumor area depicting on the next slice. This 

mapping process was iteratively performed until the scheme either reached the slice 

without remaining tumor area being detected and segmented by the CAD scheme or 

reached a slice with a distance larger than tumor diameter from center slice. Specifically, 

in each involved image slice, first a conventional region growing algorithm was applied 

with an empirically selected threshold of CT number (-450 HU)[8]. This step works well 

in segmentation of well-circumscribed lung nodules. However, this dataset contained 

other types of nodules such as Juxtapleural and Vascularized nodules are nodules 

connected to vessels or other structures. In order to provide a more accurate segmentation 

for such nodules two other image processing steps were applied. 

 In order to remove the attachment of Juxtapleural tumors from chest wall, 

modified convex hull function based algorithm was applied (initially introduced by 

Kuhgnik et al de[9]. According to the anatomical fact that lung is mostly convex, the 

convex hull function could efficiently and adaptively remove thoracic lesions 

(Juxtapleural tumors) from the chest wall. However, applying the convex hull function 

algorithm is also likely to generation a few minor (isolated) regions due to image noise. 
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The scheme then applied a region labeling algorithm to remove small regions while 

maintaining the segmented tumor region. 

 

Figure 3: Segmentation of tumor region 

 Next, to remove vessels and structures connected to tumor regions, distance based 

morphological operation as proposed by Kuhgnik et al were applied. After tumor were 

segmented using the initial region growing algorithm and convex hull function the 

scheme fitted a rectangular window to the initial tumor boundary that was also centered 

on tumor. Then a Euclidean distance transform of the initial window was taken which 

converted it into distance map E that contains the minimum distance of each pixel of the 

tumor region to the tumor boundary pixels. Afterwards, a seed optimization was done by 

searching for the pixel C with the longest distance in the neighborhood of the initial given 

seed, and a new radius for the tumor was calculated based on this new seed: 

r =E(c) 
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Using this process, a normalized distance map E was obtained 

E=E/r 

A small window was placed to cover the targeted tumor. If a region growing starts from 

the center C, it reaches the boundary of the image through the vasculature and the result 

would not be smoothly detected tumor. Distance based morphological operation was 

performed on the distance map to remove vascular connections. The erosion and dilation 

were based on the shortest distance of each pixel to the tumor boundary. To perform 

erosion and dilation, and adaptive threshold was calculated from the normalized distance 

map E with the initial value of 1. The threshold was lowered from 1 to a value with which 

the boundaries of the window were reached. 

Condition and the region growing algorithm was reapplied on this slice to segment the 

tumor region. The similar semi-automated tumor segmentation and performance 

evaluation method has been reported in the previous studies to segment lung nodules and 

breast masses to reduce or minimize the erroneous measurement results of the features 

values computed. 

Density Mask 

Previous studies have indicated that lung cancer and chronic obstructive pulmonary 

disease (COPD) are closed associated and both of them are primarily caused by cigarette 

smoking [10], [11]. Around 50%-90% of lung cancer patients suffer from COPD. Among 

the variety of COPD symptoms, emphysema is an important one with higher association 

to lung cancer [11].  However, whether and how the emphysema of the NSCLC patients 

affect their prognosis or risk of cancer recurrence has not been well investigated before. 
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This study aims to investigate this issue by integrating emphysema related features to the 

QI marker or prediction model to predict prognosis of NSCLC patients. For this purpose, 

a density mask is applied on the lung tissue to analyze the emphysema present in the 

patients. For this we apply a threshold based on the lung attenuation for all the slices to 

get the total emphysema. Previous studies have reported two different threshold values -

910HU and -950HU for the density mask. So both the thresholds are tested in this 

study[12][13]. First -910HU threshold value is applied to get the emphysema region in 

the lung and all the emphysema related features are computed then -950HU is applied 

and the features are calculated. 

 

Quantitative Tumor and Emphysema related Features 

 The CAD scheme extracted a total of 56 features in which 35 are tumor-related 

morphological, CT number distribution and texture features and 21 are emphysema 

related features from the CT image. The initial 35 features extracted from the tumor 

region were: 

1. Tumor volume: This is the total volume of all the tumor voxels. It is calculated by 

number of pixels inside tumor region X (pixel size)3, Where (pixel size)3 is the voxel 

volume. 

2. Density or Mean pixel values within the tumor: It is related to the degree of tumor 

density and heterogeneity within the tumor. 

3. Standard deviation of density: It computes the standard deviation of all the pixel values 

within the tumor. 

4. 2D Volume: This feature calculates the volume in the central region of the tumor 
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5. Tumor diameter marked by the radiologist: This feature is assessed and measured 

using RECIST. 

6. Convexity: It describes the smoothness of edges of the tumor, which can be calculated 

as follows:    

                        Convexity = 
𝑻𝒖𝑚𝑜𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 𝑎𝑟𝑒𝑎

𝑐𝑜𝑛𝑣𝑒𝑥 𝑟𝑒𝑔𝑖𝑜𝑛 𝑎𝑟𝑒𝑎
  

7. Max radius: All the possible radii between the center and all the tumor surface pixels are 

computed, among them the maximum radius is considered as the max radius. 

8. Contrast: It is the difference between the mean of inner ring tumor pixels and the mean 

of surrounding outer ring boundary pixels. 

                    Contrast = 𝐼𝑖𝑛𝑛𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ - 𝐼𝑜𝑢𝑡𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

9. Skewness: Skewness measures the asymmetry of the probability distribution curve of all 

the tumor pixel values about its mean.                       

                    Skewness = √𝑵 ∗ 
∑ (Ii − 𝐼)̅3𝑁

𝑖=1

∑ (Ii − 𝐼)̅
3
2

 𝑁
𝑖=1

                            

10. Kurtosis: Kurtosis measures the “tailed-ness” of the tumor density distribution when 

comparing to the standard normal distribution:              

                      Kurtosis = √𝑵 ∗ 
∑ (Ii − 𝐼)̅4𝑁

𝑖=1

∑ ((Ii − 𝐼)̅2)2𝑁
𝑖=1

  

11. STD ratio: It is defined as the ratio of STD of tumor intensity to the tumor boundary 

intensity. 
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12. STD RL: It is the ratio of the standard deviation and average of all the radii between 

center and tumor surface pixels. 

 

                 STD RL =  
STD of radii

mean of radii
  

 

13. Energy: It is a sum of the squared tumor pixel values. 

                       Energy = ∑ 𝐼𝑖
2𝑁

𝑖=1   

14. Entropy: It describes the randomness/ uncertainty in an image. 

                  Entropy = ∑ 𝑷𝒊
𝑵𝒍
𝒊=𝟏 𝒍𝒐𝒈𝟐𝑷𝒊   

Where P is the first order histogram of tumor pixels with 𝑁𝑙 discrete intensity levels. 

15. Maximum CT number within tumor pixels: It is the maximum value of all the tumor 

pixels. 

16. Mean absolute deviation: It is defined as the mean absolute deviation between the tumor 

pixel value and the average tumor intensity: 

                   Mean absolute deviation = 
𝟏

𝑵
 ∑ |𝑰𝒊 −  𝑰|𝑵

𝒊=𝟏  

17. Median: It is the median value of all the tumor pixels. 

18. Minimum CT number within tumor pixels: It is the minimum value of all the tumor 

pixels. 

19. Range of pixel values within tumor: It measures difference between the maximum and 

minimum values of all the tumor pixels. 

20. RMS: It is the root mean square value of tumor pixels. 

21. Uniformity: It is the measure of histogram randomness and can be computed as follows: 
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                         Uniformity = ∑ 𝑷𝒊
𝟐𝑵𝒍

𝒊=𝟏  

22. Auto Correlation of tumor pixels: It computes the autocorrelation between the tumor 

pixels. 

23. Tumor Cluster Shade of central tumor region: It measures the skewness of central 

region of the tumor.  

24. Tumor Cluster Prominence: It is the measure of asymmetry of the tumor region. 

25. Tumor pixels dissimilarity: It measures the dissimilarity between tumor pixels. It is 

calculated as follows; 

             Dissimilarity = ∑ 𝑷𝒊,𝒋
𝑵−𝟏
𝒊,𝒋=𝟎 |𝒊 − 𝒋| 

26. Homogeneity: It measure the homogeneity in the tumor pixels. It is calculated as 

following: 

           Homogeneity = ∑
𝑃𝑖,𝑗

1+(𝑖−𝑗)2
𝑁−1
𝑖,𝑗=0  

 

27. Maximum Probability: It is calculated as max𝑃𝑖,𝑗. 

28. Variance: It is calculated as following: 

          Variance = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇𝑖)
2𝑁−1

𝑖,𝑗=0  

 

The GLRL was computed through a package developed by Wei using a zigzag method 

in four steps to: 1) determine direction, 2) perform zigzag scan, 3) obtain new sequences, 

and 4) calculate run-length matrix. From each GLRL matrix, the scheme computed 7 

texture features. Since each texture feature had different values in each of 4 directions, 

the final value was represented as the mean of 4 values calculated in 4 directions. Run-
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length matrix of p (i, j) is the number of runs with pixels of gray level I and run length j 

in an image. For such run length matrix M is the number of gray levels and N is the 

maximum run length, 𝑛𝑟 is the total number of runs and 𝑛𝑝 is the number of pixels in the 

image[8]. 

Following are the features extracted: 

 

29. Short Run Emphasis (SRE): Calculated using 

SRE =  
1

𝑛𝑟
∑ ∑

𝑃(𝑖,𝑗)

𝑗2
𝑁
𝑗=1

𝑀
𝑖=1   and tends to emphasis on short runs. 

30. Long Run Emphasis (LRE): Calculated using 

 LRE =   
1

𝑛𝑟
∑ ∑ 𝑃(𝑖, 𝑗). 𝑗2𝑁

𝑗=1
𝑀
𝑖=1   and tends to emphasis on long runs. 

31. Gray-Level Non-Uniformity(GLN): Calculated using 

GLN =
1

𝑛𝑟
∑ (∑ 𝑃(𝑖, 𝑗))𝑁

𝑗=1
2𝑀

𝑖=1 , and increases as the gray-level outlier dominates the 

histogram. 

32. Run-Length Non-Uniformity (RLN): Calculated using 

RLN =
1

𝑛𝑟
∑ (∑ 𝑃(𝑖, 𝑗))𝑀

𝑗=1
2𝑁

𝑖=1 , measures the non-uniformity of the run lengths. This 

feature will have low values if the runs are equally distributed throughout the lengths. 

33. Run Percentage (RP): calculate using 
𝑛𝑟

𝑛𝑝
 will have its lowest value in the images with 

most linear structures. 

34. Low Gray-Level Run Emphasis (LGRE): It extracts gray level information in the run-

length matrix, and is calculated using 
1

𝑛𝑟
∑ ∑

𝑃(𝑖,𝑗)

𝑖2
𝑁
𝑗=1

𝑀
𝑖=1  
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35. High Gray-Level Run Emphasis (HGRE): It extracts gray level information in the run-

length matrix, and is calculated using 
1

𝑛𝑟
∑ ∑ 𝑃(𝑖, 𝑗). 𝑖2𝑁

𝑗=1
𝑀
𝑖=1  

 

Similarly for the emphysema 21 features are computed. Two set of similar features for 

two different density masks applied to compute the emphysema are calculated. 

The following are the features computed for the emphysema 

 

Table 3: Emphysema features 

 

Feature class                   Feature description 

Shape    

emphysema volume, 

emphysema percentage, 

convexity     
             

Density   

Energy, Entropy, Minimum, Maximum, mean, 

median, range, Uniformity, density STD, 

skewness, kurtosis 
             

Texture   

7 gray level texture based 

features were computed        

 

Feature Selection 

The initial feature pool includes total 56 features in which 35 are tumor related features 

and 21 are emphysema related features. In order to reduce dimensionality of the feature 

space and increase robustness of the multi-feature based risk prediction model, a CFS 

Subset Evaluation attribute selection in WEKA data mining software package with a 

Best-first heuristic feature [14] was applied to select a subset of effective and non-

redundant feature from the initial pool of 51 image feature based on the important sorting 

of feature in predicating the risk of cancer recurrence. The feature selection method used 
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in this study, evaluated the worth of a subset of features with respect to discriminative 

power of each individual feature along with degree of the redundancy between features. 

As a result, a small and optimal set of 8 image features was built. Among them, 5 are 

computed from the segmented tumors (which are Stdratio, Max, dissimilarity, HGRE, 2D 

volume and max tumor diameter as discussed in previous subsection of Quantitative 

Tumor and Emphysema related Features) and 3 are computed from emphysema regions.   

 

Machine Learning Model 

Next, a machine learning method was selected and applied to combine the selected 

optimal features and build the prediction model or QI marker to predict prognosis of 

NSCLC patients. Although many different machine learning classifiers can be used for 

this purpose, in this study, due to unbalanced test dataset, random forest tree based 

classifier was selected and built [15]. Random Forest (RF) has become an attractive 

ensemble method in data mining. As a classifier integration method, RF have the features 

of classifying fast and training simple and is suitable for feature selection according to 

variable importance[16]. The primary advantage of a random forest is its unexcelled 

accuracy among current algorithms and it has methods for balancing error in class 

population in unbalanced datasets[19]. 

Specifically, three random forest classifiers or models were built in this study. The first 

model was built to combine 6 selected tumor features and predict the likelihood or risk 

of a stage I NSCLC patient having cancer recurrence after cancer surgical treatment. In 

this study, WEKA data mining software package was used to build the classifier. Due to 
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unbalanced data (26 positive and 81 negative cases), in order to achieve a more balanced 

optimization results in predicting the cases in two classes, a synthetic minority 

oversampling technique (SMOTE) [17] was applied to add synthetic data to double the 

“positive” test cases from 26 to 52. As a result, total 133 cases were used to build and 

optimize the random forest tree based classifier. The second model was built using 3 

selected emphysema related QI features and the third model was built using 9 QI features 

by combining 6 tumor related features and 3 emphysema related features to predict the 

cancer recurrence risk, respectively. The same training and testing method applied in the 

first random forest model using 6 tumor related QI features only was applied to build the 

second and the third models [18]. 

Performance Assessment and Data Analysis 

First, all the selected 6 tumor features and 3 emphysema features were processed 

individually by using receiver operating characteristic (ROC) fitting program (ROCKIT) 

to compute the area under the ROC (AUC). AUC was used as an assessment index to 

analyze their performance to predict or classify the test cases of the dataset into two 

classes namely, positive for the cases with cancer recurrence after surgery within 3 years 

and negative for cases without cancer recurrence within 3 years. The correlation 

coefficient of AUC values between these features were also computed and compared. 

Next, in order to evaluate performance of a random forest model, a leave-one-case-out 

(LOCO) cross-validation method was applied. Each of 107 cases in the dataset was 

selected as an independent testing case in LOCO process to yield a CAD or QI marker 

generated likelihood score to predict the risk of cancer recurrence. AUC value was 

calculated using the likelihood or prediction scores of these 107 original test cases and 
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the ROCKIT program. Then, the prediction performance levels or AUC values of three 

random forest classifier based QI markers or models built using 5 tumor related QI 

features, 3 emphysema related features, and total 8 QI features, were compared.   

 

In addition, besides the AUC values, an operation threshold was applied to divide the 

cases into two groups with high and low risk of having cancer recurrence. From the 

classification result, a confusion matrix was generated. Then, from the confusion matrix, 

the prediction accuracy, and positive prediction and negative prediction values (PPV and 

NPV), sensitivity, specificity were also calculated and compared by using the three 

different random forest models.   

 

  



25 

 

Chapter 4: Results 

The table 4 shows the AUC values for the selected 6 tumor related features individually 

in predicting the cancer recurrence. Next table show the AUC values for the selected 3 

features each related to emphysema computed using the threshold -910HU(Emphysema1) 

and emphysema computed using the threshold -950HU(Emphysema2). The result 

indicate that tumor features 1 and 5 had the maximum and comparable AUC values. In 

the Emphysema related features, feature 3 of Emphysema1 and feature 2 of Emphysema2 

had highest AUC values. Tables summarize the correlation coefficients calculated 

between each tumor feature and emphysema features. 90% of the absolute values of the 

correlation coefficients is much smaller than r < 0.5, which indicates that the features 

used in the predictor are not highly correlated or redundant. This result demonstrates that 

combination of these features has the potential to add supplementary information or has 

discriminatory power to significantly increase performance in predicting the risk of lung 

cancer recurrence. 
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Table 4:  comparing AUC values of individual tumor related features 

                        

Feature       AUC        STD 95% CI 
 

1 0.78 0.06 [0.64, 0.88] 

2 0.64 0.05 [0.53, 0.74] 

3 0.59 0.06 [0.46, 0.72] 

4 0.67 0.05 [0.55, 0.77] 

5 0.67 0.05 [0.56, 0.77] 

6 0.76 0.05 [0.64, 0.86] 
 

1 Stdratio, 2 Max, 3 dissimilarity, 4 HGRE, 5 2D volume, 6 max tumor diameter 

 

Table 5: comparing AUC values of individual Emphysema1 related features 

                         Feature        AUC            STD  95% CI 
 

1 0.632 0.07 [0.48, 0.76] 

2 0.57 0.06 [0.44, 0.69] 

3 0.66 0.06 [0.52, 0.78] 
 

1 entropy of emphysema1, 2 auto correlation of emphysema1, 3 uniformity of 

emphysema1 

 

Table 6: comparing AUC values of individual Emphysema2 related features 

                              

Feature     AUC     STD        95% CI 
 

1 0.56 0.07 [0.41, 0.70] 

2 0.55 0.07 [0.41, 0.69] 

3 0.59 0.06 [0.46, 0.71] 
 

1 Entropy of emphysema2, 2 Uniformity of emphysema2, 3 homogeneity of emphysema2  

As mentioned in previous chapter, the performance of the classifier were evaluated based 

on their AUC values. AUC value for the tumor feature based classifier involving 5 

selected tumor features was 0.794 with a standard error of 0.05 and a 95% confidence 

interval (CI) of [0.68, 0.87], Whereas the AUC values for the Emphysema related features 

were 0.700 with a standard error of 0.07 and 95% confidence interval of [0.54, 0.82] and 
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0.71 with a standard error of 0.05 and 95% confidence interval of [0.59, 0.81] for 

Emphasema1 and Emphysema2 respectively. However, this difference is not statistically 

significant difference (p value = 0.4). The results shows that the emphysema features or 

tumor features alone to build a machine learning classifier did not have a significant AUC 

value, using combined feature based classifier enabled to yield a significantly higher 

AUC value. 

Table 7: comparing correlation coefficients between tumor features and emphysema1 

features 

 

 Standard deviation ratio, Maximum CT number in tumor region, Dissimilarity in tumor region, HGRE, 2D volume, 

max tumor diameter, Entropy of Emphysema1, Autocorrelation of Emphysema, Uniformity of Emphysema. 

Feature 1 2 3 4 5 6 7 8 9

2 -0.1504

3 -0.16111 0.363701

4 -0.11218 0.419922 0.378207

5 -0.21653 0.304951 0.69608 0.47185

6 -0.31725 0.121846 0.016811 -0.06618 -0.0099

7 0.017228 -0.02379 -0.1381 0.070104 -0.04891 -0.07496

8 -0.07462 -0.00328 0.175647 -0.08576 0.063511 0.051291 -0.93565

9 -0.12426 0.411489 0.446326 0.990371 0.506635 -0.06431 0.05221 -0.05909
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Table 8: comparing correlation coefficients between tumor features and emphysema2 

features 

 

Standard deviation ratio, Maximum CT number in tumor region, Dissimilarity in tumor region, HGRE, 2D 

volume, max tumor diameter, Entropy of Emphysema1, Autocorrelation of Emphysema, Uniformity of 

Emphysema. 

Table 9 shows the AUC values of obtained by tumor, emphysema, combining tumor with 

emphysema1 and combining tumor with emphysema2. The results showed that the 

maximum AUC = 0.86 ± 0.3, which is significantly higher than the AUC values generated 

using either tumor features or emphysema features as computed by the ROCKIT program. 

Figure shows and compares the ROC curves generated using tumor features emphysema 

features and the optimal fusion of both. The figure below compares the ROC curves for 

combined features ROC, Tumor features based ROC and emphysema features based 

ROC. 

 

 

Feature 1 2 3 4 5 6 7 8 9

1 -0.14635

2 -0.16666 0.364177

3 -0.12274 0.421638 0.378202

4 -0.21429 0.304107 0.696751 0.473599

5 -0.31162 0.119946 0.017282 -0.06418 -0.01211

6 -0.37869 -0.05219 0.090315 0.072765 0.119675 0.108774

7 0.154233 0.08307 -0.03264 -0.05396 -0.04879 -0.01945 -0.93568

8 -0.1398 0.416407 0.445853 0.990999 0.510468 -0.06134 0.078142 -0.05254
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Table 9: Comparing Performance of different Image Markers 

Classifier Performance 

Tumor with Emphysema1 0.865 ± 0.03 

Tumor with Emphysema2 0.823 ± 0.05 

Tumor 0.79 ± 0.04 

Emphysema1 0.70 ± 0.06 

Emphysema2 0.71 ± 0.05 

 

 

Figure 4: ROC curves comparing tumor feature based classifier, emphysema feature 

based classifier and combine feature based classifier 
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Table 9, Table 10, Table 11, Table 12 shows the confusion matrices obtained using 

tumor and emphysema feature fusion, and their individual feature based classifiers. The 

feature fusion marker predicts 84 cases as no cancer recurrence cases, among them 70 

cases are DFS. Similarly this marker predicts 23 cases as cancer recurrences cases and 15 

of them are cancer recurrence cases. This marker yields an overall prediction accuracy of 

79% with prediction sensitivity of 91% and corresponding specificity of 64%. For the 

tumor feature based marker 84 and 23 are no cancer recurrence and cancer recurrence 

cases are predicted, among which 63 cases have no cancer recurrence and 16 cases have 

cancer recurrence. Therefore the PPV and NPV are 75% and 69% respectively with an 

overall prediction accuracy of 73%. Similarly for Emphysema 1, the overall prediction 

accuracy is 72% with prediction sensitivity of 82% and corresponding specificity of 

44%.For the Emphesema2 the overall prediction accuracy is 76% with prediction 

sensitivity of 87% and corresponding specificity of 51%. 

Table 10: Confusion matrix generated using the feature fusion based image marker 

            Actual 

Prediction 

DFS-Yes Cancer Recurrence 

DFS-Yes 70 14 PPV = 0.83 

Cancer Recurrence 8 15 NPV = 0.65 

                                         Sensitivity = 89%          Specificity = 51% 

 

Table 11: Confusion matrix generated using the tumor feature based image marker 

            Actual 

Prediction 

DFS-Yes Cancer Recurrence 

DFS-Yes 63  21 PPV = 0.75 

Cancer Recurrence 7 16 NPV = 0.69 

                                          Sensitivity = 90%          Specificity = 43% 



31 

 

 

Table 12: Confusion matrix generated using the emphysema1 feature based image 

marker 

            Actual 

Prediction 

DFS-Yes Cancer Recurrence 

DFS-Yes 66 15 PPV = 0.81 

Cancer Recurrence 14 12 NPV = 0.46 

                                         Sensitivity = 82%          Specificity = 44% 

                                                                 

 

 

 

Table 13: Confusion matrix generated using the emphysema2 feature based image 

marker 

            Actual 

Prediction 

DFS-Yes Cancer Recurrence 

DFS-Yes 65 16 PPV = 0.80 

Cancer Recurrence 9 17 NPV = 0.65 

                                         Sensitivity = 87%          Specificity = 51% 
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Chapter 5: Discussion 

This study demonstrated feasibility of developing a new quantitative imaging (QI) marker 

to predict prognosis of early stage non-small cell lung cancer (NSCLC) patients after 

surgery among the stage I NSCLC patients. The study yielded higher prediction 

performance and also has a number of unique characteristics, which are discussed as 

follows in this section.    

Prediction of lung cancer recurrence risk after initial surgery among the stage I NSCLC 

patients has high clinical impact on overall efficiency of treatment management and lung 

cancer screening program. Specifically, due to the recent promotion of lung cancer 

screening programs using low-dose CT examinations, identifying lung cancer prognostic 

factors will have a more important role in reaching the ultimate goal of reducing cancer 

mortality rate. Although developing CAD schemes of lung nodules using chest CT 

images has been well investigated previously by many research groups, but in this study 

a new CAD scheme is developed to predict the cancer risk by generating new quantitative 

image feature. 

A new set of tumor related features along with lung emphysema features were computed 

from the CT images and a machine learning classifier was built to predict lung cancer 

prognosis. Using best-first heuristic feature search algorithm, 8 non-redundant features 

were selected from the pool of 51 features. The study also showed that optimally 

combining multiple image features using a machine learning classifier can significantly 

increase the prediction performance. 
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Quantitative image features analysis method can be more efficient and reliable to 

integrate these features by eliminating inter and intra observer variations. This study 

applies CAD scheme on predicting lung cancer recurrence risk after surgery for stage I 

NSCLC patients by generating new quantitative imaging marker.  In this study we 

combined tumor features to emphysema based features to generate new quantitative 

imaging marker. 

Apart from the data analysis mentioned before, several other experiments were performed 

that gave interesting features. First the optimal feature selection is important in 

developing a CAD- based quantitative image feature analysis scheme. Training random 

forest network with all the 51 features yielded a lower performance that the classifier 

training using 9 selected features 

Second, when using original dataset of 107 cases to train two classifiers, the tumor feature 

based classifier yielded and the emphysema based classifier yielded a maximum value of 

which are significant advantage of using a SMOTE method to generate synthetic data and 

balance the number of training cases in two risk classes in training a machine learning 

classifier. 

Despite the promising results, this preliminary study had a few limitations.  First the size 

of the dataset is small, which cannot represent the general population of stage I NSCLC 

patients. Hence, the robustness of the reported results needs to be tested in future studies 

with a new large and more diverse datasets acquired from different CT machines and 

other image scanning protocols. 
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Second, only 35 tumor related features and 21 emphysema related features were 

computed. Other lung background image features i.e. features related to COPD which 

may also provide some supplementary prediction information, have not been incorporated 

into the quantitative image feature analysis scheme. 

Third, in this study a semi-automatic scheme was performed to segment lung tumors. The 

segmentation results were visually examined. As a results, a small fraction of tumor 

segmentation boundary contours were manually corrected when the substantial errors 

were visually detected. Due to the lack of “ground-truth” and the potential inter-observer 

variability, this is not an optimal tumor segmentation method, which may create errors in 

computing tumor related features. However, it is believe that this semi-automated 

segmentation is an efficient approach to perform this proof-of-concept study. 

Fourth, we compared two different threshold levels to apply the density mask for 

computing emphysema. We analyzed their performance individually and also by 

combining them to the tumor features. We used AUC to analyze the performance. 

Individually the emphysema computed by applying -910HU had an AUC value of 

whereas for the emphysema computed with -950 had an AUC value of. But this difference 

is not statistically significant. So by using emphysema computed using -910HU had a 

better performance than the other. 
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Chapter 6: Conclusion 

Although early stage non-small cell lung cancer (NSCLC) patients have relatively 

higher survival rates (i.e., five-year survival rates of 49% and 45% for stage IA and IB 

stage NSCLC patients, respectively), cancer recurrence rates after surgery of resecting 

malignant tumors may vary from 30% to 60%. In order to more effectively treat and 

manage stage I NSCLC patients, it is important to develop an effective clinical marker or 

predictive model to more accurately predict cancer prognosis (i.e., risk of cancer 

recurrence or likelihood of disease-free survival (DFS)) after cancer surgery. As a result, 

patients with a higher risk of cancer recurrence should receive specific or targeted 

chemotherapy after surgery to minimize the risk of cancer recurrence. Thus, it is 

important to identify or develop more effective clinical markers to stratify early stage 

NSCLC patients into high and low risk of cancer recurrence. 

Aiming to better address and/or help solve this clinical issue, we in this study 

investigated a new computer-aided quantitative image analysis method to predict the risk 

of lung cancer recurrence or DFS of the stage I NSCLC patients after lung cancer surgery. 

For this purpose, we developed a new computer-aided detection (CAD) scheme to 

automatically segment lung regions and the malignant tumors depicting on CT images 

acquired before surgery and compute image features related to tumor shape, size, 

circularity, density heterogeneity, and lung background tissue patterns. After selecting 

optimal features, we train and build a machine learning based classifier to generate a new 

quantitative imaging marker to predict DFS of lung cancer patients. The goal of this study 

is to test feasibility of applying this new quantitative imaging (QI) marker to predict DFS 

of the early stage NSCLC patients.   
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