
 
 

UNIVERSITY OF OKLAHOMA  

GRADUATE COLLEGE  

  

 

  

CLIMATE CHANGE DRIVES DIVERGENT OUTCOMES FOR STREAM FISHES IN THE 

RED RIVER  

  

 

  

  

  

A THESIS  

SUBMITTED TO THE GRADUATE FACULTY  

in partial fulfillment of the requirements for the  

Degree of  

MASTER OF SCIENCE IN GEOGRAPHY 

  

  

  

 

 

  

  

By  

KENNETH GILL  

Norman, Oklahoma  

2018    

 

  



 
 

CLIMATE CHANGE DRIVES DIVERGENT OUTCOMES FOR STREAM FISHES IN THE 

RED RIVER  

  

  

A THESIS APPROVED FOR THE DEPARTMENT OF GEOGRAPHY AND 

ENVIRONMENTAL SUSTAINABILITY  

   

  

 

 

 

 

 

 

BY  

  

 

 

  

Dr. Thomas M. Neeson, Chair 

Dr. Bruce Hoagland  

Dr. Rebecca Loraamm  

  

  

   

 

  

  

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

© Copyright by KENNETH GILL 2018  

All Rights Reserved.



iv 
 

 

Acknowledgements  

  I would like to thank Dr. Thomas Neeson and Dr. Rachel Fovargue for their invaluable 

assistance and contribution towards this project. Additionally, I would like to thank Dr. Bill 

Matthews and Dr. Edie Marsh Matthews as well as the members of the Oklahoma Department of 

Wildlife Conservation for their consultation.  

 Completion of this project would not have been possible without inspiration from Mr. 

Bob Lewis and Ms. Allison Rugila who introduced me to the necessity of environmental 

stewardship. Lastly, I would like to the thank Captain Alyson Goolsby and the United States Air 

Force for support in the completion of my degree.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

Table of Contents 

Acknowledgements .......................................................................................................................iv  

List of Tables and Figures ............................................................................................................vi   

Abstract ........................................................................................................................................vii   

Chapter 1: Introduction and Literature Review on Species Distribution Modeling.......................1   

Overview ..............................................................................................................................1   

Literature Review ................................................................................................................2   

Summary and Introduction to Chapter 2 .............................................................................9   

Chapter 2: Species Distribution Modeling....................................................................................11   

Introduction ........................................................................................................................11   

Methods...............................................................................................................................13   

Results ................................................................................................................................21   

Discussion............................................................................................................................40   

Chapter 3: Concluding Thoughts.................................................................................................44   

Bibliography .......................................................................................................................46   

Appendix 1 ..................................................................................................................................52  

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

List of Tables and Figures 

Table 1……………………………………………………………………………..………4  

Table 2……………………………………………………………………………………..7   

Table 3……………………………………………………………………………………14    

Table 4…………………………………………………………………………………....18  

Table 5……………………………………………………………………………………24  

Table 6………………...……………………………………………………………….…38  

Figure 1……………..……………………………………………………………………35  

Figure 2…………………..………………………………………………………………26 

Figure 3………………..…………………………………………………………………27  

Figure 4…………………..…………………………………………………………..…..28   

Figure 5………………..…………………………………………………………………29    

Figure 6………………..………………………………………………………………....30  

Figure 7……………..……………………………………………………………………31  

Figure 8…………….………………………………………………………………….…32  

Figure 9……………..……………………………………………………………………33  

Figure 10…………………………………………………………………………………34 

Figure 11…………………………………………………………………………………35 

Figure 12…………………………………………………………………………………36 

Figure 13…………………………………………………………………………………37 

 

 

 

 

 

 

 



vii 
 

 

Abstract 

Climate change is expected to alter the distributions of stream fishes in ecosystems 

around the world, but climate projections vary widely among competing climate models. 

Conservation practitioners face the challenge of designing conservation strategies that are robust 

to the uncertainty surrounding future climatic conditions. Here, we use species distribution 

models (SDMs) for 31 fish species in the Red River basin to quantify the variation in potential 

species distributions across 9 different climate scenarios. We created SDMs by pairing historical 

fish occurrence records with a set of temporally dynamic South-Central Climate Adaptation 

Science Center (SC-CASC) built climate covariates and temporally static lithospheric and 

anthropogenic covariates that are known to drive species’ distributions. We find that the range 

width of most fish species in the Red River Basin will contract by 2050 and 2070; this was true 

for both MAXENT and BRT models and across all climate scenarios. However, species also 

varied dramatically in the uncertainty associated with their future distributions, with the range in 

outcomes across climate scenarios being more than 10 times higher for some species than for 

others. Our analysis also revealed that the greatest absolute changes in range width are projected 

to occur for those species which have historically been the most widespread. This comprehensive 

assessment on Red River stream fishes suggests a general decline in range width across the basin 

due to climate change and anthropogenic stressors. 
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Chapter 1: Introduction and Literature Review on Species 

Distribution Modeling 

Overview 

Climate change is expected to drive large shifts in the distributions of stream fishes in 

ecosystems around the world (Buisson et al. 2008). To conserve and enhance freshwater 

biodiversity, practitioners are increasingly interested in developing conservation strategies based 

on predicted future fish distributions in the face of climate change. However, global climate 

models show a range of possible future environmental conditions depending on climate model 

choice, greenhouse gas emission scenarios and mathematical downscaling techniques (Hawkins 

and Sutton 2009). Given this uncertainty in future environmental conditions, conservation 

practitioners have a need for understanding how variability in future climate conditions may 

drive uncertainty in future species’ distributions, and a need for conservation strategies that are 

robust to these uncertainties.  

In this thesis, I explore how variability and uncertainty across future climate scenarios 

may drive uncertainty in projected stream fish distributions in the Red River of the south-central 

United States. I draw on recent high-resolution models of climate and hydrology (Xue et al. 

2016; Gaitan et al. 2016) constructed for the Red River basin. The species distribution models 

produced incorporate these recent high-resolution models, as well as a broader suite of landscape 

covariates, to project stream fish distributions across a range of future climate scenarios. Here, I 

begin with a literature review to summarize existing work on species distribution models and 

their potential for characterizing fish under climate scenarios.  
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Literature review 

The purpose of this literature review is to establish which species distribution modeling 

techniques may be the most predictive for stream fish species within the Red River basin 

temporally with respect to climate change. Currently, there is little to no literature on the Red 

River basin for fish species distribution modeling; however, species distribution models have 

been constructed for other river basins that are climatically, hydrologically, and biologically 

similar. Thus, this literature review analyzes species distribution modeling efforts in similar 

semi-arid river basins across the globe during the past two decades. Additionally, this Red River 

project spans a large future temporal scale and discusses how fish distributions are projected to 

alter with respect to climate change. 

Environmental planners seek to incorporate as much data into their decision-making 

process. It is the responsibility of researchers and conservation practitioners to produce the most 

effective and accurate data to decision makers so that their choices are accurate and informed. In 

the case of species distribution modeling of stream fish, biodiversity information is extremely 

impactful. Vertebrate stream fish are keystone species in most aquatic environments which 

provide countless ecosystem services contributing both to overall water quality and the 

biodiversity of its respective ecosystem (Vorosmarty 2000). Many stream fish species, 

particularly in the Red River basin, are either endangered or endemic to a region which is 

experiencing heavy urbanization (Perkin and Gido 2012). Anthropogenic threats from warming 

temperatures, dam construction and water scarcity pose an existential threat to stream 

ecosystems and water quality. As such, the decision-making processes behind water resource 

allocation is vital both to fish populations and water quality for human consumption.  
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Species distribution models (SDMs) are a regression based approaches to interpolating 

historical species occurrence data against a set of environmental covariates to construct a 

spatially projected probability of occurrence map (Merow et al. 2013). Utilization of projected 

occurrence maps are to inform conservation and biodiversity planners about the most probable 

locations in which a species may occur. In turn, conservation planners use the projected range of 

occurrence maps to decide which areas are targets for conservation and conversely which areas 

are suitable for resource extraction and urban development.  

Species distribution models present the middle ground between the actual distribution of 

a species and the projected range of suitability for the species. Conflicting research has been 

produced asserting that SDMs are only suitable for determining a possible range of suitability 

(Gomes et al. 2018) rather than producing a map of the actual distribution of a species 

(VanDerWal et al. 2009). As no models are perfect, researchers aim to model suitable range and 

realized occurrence based on model selection, model calibration and the empirical suitability of 

environmental covariates used. As such, SDMs are used with the risk of over/under prediction of 

probability of occurrence based off of species presence records (Fitzpatrick et al. 2013). There 

are a number of competing methods of species distribution modeling that have gradually become 

more effective and accurate as the field has progressed.  

Species distribution modeling for freshwater stream fish is a particularly difficult task; 

fish are mobile and have a wide set of variables that drive their distribution, dispersal and 

lifespan (Labay and Hendrickson 2014). Due to the complexity of both the physical habitat 

structure of fish –dendritic ecological networks – and their complex life cycles, there is a broad 

range of species distribution modeling techniques used in modern literature (Bond et al. 2011). In 

addition to selecting the most appropriate SDM for current climate conditions, SDM literature 
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has shifted to modeling climate change on a multi-temporal platform, adding in another 

dimension of complexity in narrowing down the most appropriate SDM technique (Bond et al. 

2011).   

In the case of species distribution models for stream fish, there is a fair amount of 

conflicting literature on which models are most effective. This issue is apparent for three 

reasons: (1) unique spatial configuration of hierarchical structure of catchments and dendritic 

streams, (2) the high level of difficulty in obtaining spatially continuous bioclimatic covariates 

and (3) species detectability issues when collecting historic species collection data along a 

stream network (Domisch et al. 2015).  

I reviewed 12 papers which examine a large range of species distribution modeling 

projects. In scale, some of the larger projects mapped projected fish occurrence for the better part 

of a continent (Annis et al. 2012; Labay and Hendrickson 2014; Domisch et al. 2015) down to 

sub-basins of dendritic ecological networks (Hernandez 2015). Each paper reviewed utilized a 

different number of fish species, differing species distribution models and a wide array of 

bioclimatic covariates.  

Table 1: Results from Stream Fish SDM Literature Review. The first column gives the title of the 

study followed by a set of key statistics gathered from each paper. The scale, SDM used and 

number of covariates used are highlighted.  

Study Source Region Fish 

Surveyed 

SDM Total 

Covariates 

Climate 

Covaria

tes 

Litho

spher

ic 

Cova

riates 

Hydr

ologic 

Cova

riates 

Other 

Cova

riates 

Modeling fish species 

distributions 

throughout the 

Arkansas, Red and 

White River basins 

(Annis et al. 
2012) 

Arkansas/ 
White/ Red 

basins 

220 BRT 55 1 46 8 0 

Using species 

distribution models to 

infer potential climate 

change-induced range 

shifts of freshwater 

fish in south-eastern 

Australia 

(Bond et al. 

2011a) 

South Eastern 

Australia 

43 BRT 42 16 24 2 0 
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Climate-change 

winners and losers: 

stream 

macroinvertebrates of 

a submontane region 

in Central Europe 

(Domisch, 

Jähnig, and 

Haase 2011) 

Central 

Europe 

38 GLM/

GAM

/GBM

/ANN 

10 5 2 3 0 

Final report: 

conservation 

assessment and 

mapping products for 

GPLCC priority fish 

taxa  

(Labay and 

Hendrickson 
2014) 

US Great 

Plains 

28 MAX

ENT 

24 15 4 3 2 

Relative effects of 

temperature vs. 

physical factors 

(Buisson L., 

Blanc L., and 
Grenouillet G. 

2007) 

SW France 28 GLM 8 2 2 4 0 

A comparison of 

statistical approaches 

for modelling fish 

species distributions 

(Olden Julian 

D. and 
Jackson 

Donald A. 

2002) 

South Central 

Ontario 

27 LRA/

LDA/
CFT/

ANN 

11 0 3 4 4 

Low mountain ranges: 

summit traps for 

montane freshwater 

species under climate 

change 

(Sauer et al. 

2011) 

Central 

Europe 

23 GLM/

GAM

/GBM
/CTA/

ANN/

MAR
S 

12 8 3 1 0 

Comparative 

performance of 

generalized additive 

models and 

multivariate adaptive 

regression splines for 

statistical modelling of 

species distributions 

(Leathwick et 

al. 2005) 

New Zealand 15 GAM

/MAR
S 

17 3 5 1 8 

Development and 

evaluation of species 

distribution models for 

fourteen native central 

U.S. fish species 

(Bouska, 

Whitledge, 

and Lant 

2015) 

Central U.S. 14 GLM/

GBM/

CTA/

RF/M
ARS 

28 6 19 3 0 

Use of ecological niche 

modelling to predict 

distributions of 

freshwater fish species 

in Kansas 

(McNyset K. 

M. 2005) 

Eastern 

Kansas 

12 GAR

P 

12 3 7 2 0 

Species distributions 

represent intraspecific 

genetic diversity of 

freshwater fish in 

conservation 

assessments 

(Hermoso 
Virgilio et al. 

2016) 

Daly River 
Basin, 

Australia 

4 MAR
S 

10 0 8 2 0 

Ecological niche 

modeling of 

Pteronotropis hubbsj, 

the Bluehead Shiner: 

Evaluating the effects 

of spatial filtering and 

Maxent features 

across various spatial 

extents 

(Hernandez 
2015) 

SE Texas/ 
NW Louisiana 

1 MAX
ENT 

14 6 3 4 1 

 

The history of species distribution modeling can be classified into 3 main developmental 

stages. The first stage of SDM development, envelope regression techniques (such as BIOCLIM 
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and DOMAIN) were the most popular methods (Leathwick et al. 2006). These models’ results 

were overly reliant on the spatial locality and species analyzed. In many cases these SDMs 

would over-predict species occurrence in the bottom 5th and top 5th percentile of range 

(Carpenter et al. 1993). These original models “elucidate spatial and temporal patterns” of 

species occurrence records and identify the corresponding variables correlated to that specific 

site (Carpenter et al. 1993; Leathwick et al. 2006). In this sense, these models were not as 

statistically robust as they exclusively analyzed environmental covariates independently rather 

than taking the cumulative effect of the covariates between each occurrence record. Modern 

methods of species distribution models are proven to outperform these classical models 

(Stockman et al. 2006; Khatchikian et al. 2011). The latter is supported by the fact that none of 

the reviewed studies utilized these methodologies.  

Computing power and storage limitations restricted the mathematical development of 

SDMs for some time but the research gradually shifted away from the classical models – also 

known as climate envelope models – and moved towards the utilization of linear additive models 

and multivariate linear regression models (Guthery et al. 2003). These multivariate and additive 

models took shape in the early 21st century as computing power exploded. Some of the most 

common techniques produced during this time period were the General Additive Model (GAM), 

General Linear Model (GLM) and the Multivariate Adaptive Regression Splines (MARS) 

techniques (Bouska et al. 2015). Each of these techniques produced superior area under the curve 

(AUC) scores than their predecessors (Khatchikian et al. 2011). AUC serves as the main metric 

for model evaluation – ranging in value from 0 to 1 representing the statistical randomness of the 

results. In essence, the closer that a model’s output is to 1 the better the model does at isolating 

areas where presences are likely to occur (Elith et al. 2006).  
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The third stage can be interpreted as a slight deviation from multivariate regression 

modeling of machine learning methods and quadratic methods were added (Leathwick et al. 

2006). As time progressed, more sophisticated computational techniques like Maxent (Phillips, 

2006) and Boosted Regression Trees (BRT; Elith et al. 2008)  became more widely used. Maxent 

and BRT are two of the more commonly used species distribution modeling techniques in 

geography.  Based on the literature review (Table 1), Maxent and Boosted Regression Trees 

(BRT) are often used as stand-alone methods in their respective studies.  

Presently, the four most commonly used species distribution modeling techniques 

stratified against the results of the literature review – this table was derived from a recent study 

evaluation model performance for “range-shifting” species (Table 2; Elith et al. 2010). 

Table 2: Top SDM occurrence in literature review for “range-shifting” species. This table 

summarizes the types of SDMs used from Table 1. BRT and Maxent are the two models used 

most often in the Great Plains/ Red River Basin. 

Species Distribution Modeling 

Method 

Occurrence in Stream Fish Literature Review 

Boosted Regression Trees (BRT) (Annis et al. 2012; Bond et al. 2011a) 

Maximum Entropy Modeling 

(MAXENT) 

(Labay and Hendrickson 2014; Hernandez 2015) 

Generalized Additive Model 

(GAM) 

(Domisch, Jähnig, and Haase 2011; Sauer et al. 2011; Leathwick et al. 2005) 

 

Generalized Linear Model (GLM) 

(Domisch, Jähnig, and Haase 2011; Buisson L., Blanc L., and Grenouillet G. 

2007; Sauer et al. 2011; Bouska, Whitledge, and Lant 2015) 

 

 These studies focus on factors surrounding dendritic ecological networks (DENs) and 

incorporated climatic, lithospheric and hydrologic variables in one facet or another. Additionally, 

some research included other covariates ranging from a spatial ranking of habitat suitability – 

such as the National Fish Habitat Assessment Project (NFHAP) – to weighted measures of 
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distance to coastlines (Leathwick et al. 2005; Labay and Hendrickson 2014). In most cases, the 

past and projected climate data were derived from WorldClim, which produced 19 global 

bioenvironmental covariates and can be downscaled to most projects (Fick and Hijmans 2017). 

WorldClim’s datasets utilize a number of global climate models to spatially interpolate both past 

and future datasets. In the cases where WorldClim was not used in SDM studies, studies 

typically incorporated a downscaled global climate model similar to the methodology used to 

create the rasters by WorldClim.org (Domisch et al. 2011). Dendritic ecological networks 

heavily rely on elevation, slope and aspect in order to create comprehensive networks outlining 

areas likely to be stream beds. Every study included slope into their model in order to help 

isolate the DEN. On a relative scale, stream fish theoretically would be found in the lower points 

of the slope layers in the channels; this seemingly auto-correlated feature is crucial to stream fish 

species distribution models as it delineates stream channels from land. Additionally, geological/ 

soil type layers were heavily utilized in these models as they serve as a proxy for conductivity – 

one of the most influential factors which drives fish assemblage in stream fish populations 

(Taylor et al. 1993). 

The most predictive covariates in these studies are stream flow, stream direction and 

Strahler stream order. Each of these variables provided inputs to the models to isolate which 

streams were larger (depth and width) versus smaller. The categorical stream order classification 

also assisted in the development of cascading input where the higher stream order channels were 

more likely to contain larger fish.  

Empirically, the larger a project (spatially or fish surveyed) the larger the number of 

bioclimatic covariates used. Published projects sought to include justification and reasoning for 

the quantity of covariates selected while larger watershed assessment projects incorporated a 
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“black box” method of covariate inclusion (Annis et al. 2012). The proverbial “sweet spot” in the 

number of covariates used rests at the point where each covariate has a significant contribution to 

the production of the model. The “black box” approach is used over large swaths of land because 

each covariate is likely to have a broader range of values as the area of study increases.  

Regardless of the scale of the project, the general consensus seems to be that each covariate 

selected for an SDM should have a hypothesized reason for inclusion either to isolate the 

species’ habitat or assist in driving the projected distribution.  

Overall, Maxent and BRT both produce high AUC scores while being relatively 

parsimonious, making them prime candidates for my application of projecting fish species 

distributions across climate scenarios in the Red River. Maxent’s strengths are that it has been 

used in studies that are biogeographically similar to the Red River basin (Labay and Hendrickson 

2014; Hernandez 2015) and is an extremely highly accredited model across the broad spectrum 

of biogeography (Fitzpatrick et al. 2013). Boosted Regression Trees (BRT), like Maxent, is a 

SDM that has been used on stream fish within the Red River basin in the past (Annis et al. 2012) 

and has been used on a dynamic temporal scale for modeling climate change effects (Bond et al. 

2011).  

Summary and Introduction to Chapter 2 

 This literature review illustrates that species distribution models are powerful quantitative 

tools for understanding the environmental covariates that drives species’ distributions, and for 

estimating the future distributions of species across climate scenarios. Based on the literature 

review, I conclude that Maxent and BRT models are the most appropriate SDMs for stream 

fishes. In Chapter 2, I use both of these models to characterize future distributions of stream 

fishes in the Red River, and their variability across climate scenarios. Throughout the analysis, 
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my aim is to inform conservation science in the basin by quantifying the uncertainty and 

variability in future stream fish distributions across a range of future climate conditions. 
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Chapter 2: Species Distribution Modeling 

Introduction 

Climate change and resource uncertainty are widely expected to impact societies and 

ecosystems throughout the 21st century (Adger et al. 2003). These existential threats to societies 

and ecosystems around the world are exemplified by global mean temperature rise, climate 

variability and increased agricultural mechanization (Hansen et al. 2006). Specifically, 

freshwater aquatic ecosystems face the added pressures of agricultural water extraction, 

anthropogenic barrier fragmentation and pollution (Strayer and Dudgeon 2010). Riverine 

ecosystems will be exacerbated by climate change and development as direct human response to 

mitigate these issues loses pace (Vorosmarty et al. 2000).  

Arid and semi-arid river basins in particular may be strongly impacted by climate change 

because of limited freshwater availability (Zamani Sabzi et al. 2018) and are susceptible to a 

greater frequency and severity of droughts (Altieri and Nicholls 2017). Drought and decreasing 

availability of freshwater threaten the diversity, distribution and habitat suitability of stream fish 

in Great Plains of central North America (Labay and Hendrickson 2014, Perkin and Gido 2011). 

As resource managers work to allocate water supply, the Red River basin in the south-central 

plains of the United States exhibits the hallmarks of a drought-prone river basin facing 

considerable water resource uncertainty. As water demand from agricultural and municipal users 

continues to increase, less and less water remains available for stream fish habitat (Labay and 

Hendrickson 2014). 

Overuse of water resources paired with anthropogenic barrier construction, increased 

urbanization and drought lead to stream habitat fragmentation (Perkin and Gido 2011). 
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Continued human interference within the Red River basin could prove to be detrimental to some 

vulnerable stream fish in the basin. Stream fish provide essential ecosystem services to humans – 

for water quality – and each fishes’ respective food chains as keystone species contributing to 

biodiversity. Endangered species like the Leopard Darter (P. pantherina) continue to lose habitat 

from anthropogenic barriers (Bouska and Paukert 2009) while sportfish like the Black Bullhead 

(A. melas) and Blue Catfish (I. furcatus) are heavily impacted by shifts in distributional range 

(Rypel 2009). Based on surrounding research, Red River stream fish are in need of conservation 

strategies that provide resource managers and environmental planners with vital information to 

enhance outcomes for these species (Annis et al. 2012).  

To understand how changing climate and reduced water availability may alter the 

distributions of stream fishes, researchers employ mathematical species distribution models.  

Species distribution models take into account bioclimatic covariates and interpolate them against 

historic distributions of species in order to produce a probability of occurrence suitability map 

(Elith et al. 2006). There are a number of different SDM methodologies used which can produce 

distributional projections for static species and “range-shifting” species alike (Elith et al. 2010). 

The data input into SDMs involves a level of uncertainty requiring empirical vetting of both 

covariates and occurrence records to ensure model validity.  

In addition to the options of SDMs available for research, climate change modeling 

incorporates a degree of uncertainty with general circulation model (GCM) and representative 

concentration pathway (RCP) selection. Over the past few decades, the quantity of GCMs 

available have drastically increased to incorporate more variables at work in the climate system 

(Hayhoe et al. 2017). The selection of GCM and RCP scenarios is defined by the geographic and 

temporal scale of the research.  
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In this paper, we use two SDMs (Maxent and BRT) to project stream fish distributions 

across the Red River basin across nine climate scenarios. First, we used a number of spatial 

variables describing the recent historical environment to fit a SDM for each species. We then 

projected the distribution of each species under three GCMs (CCSM4, MIROC5 and 

MPI_ESM_LR) regionally downscaled for the Red River Basin over three RCP (26, 45 and 85) 

greenhouse gas emission scenarios (Gaitan et al. 2016). These future climate scenarios 

incorporate our fitted species distribution models and projected values for climatic and 

hydrologic variables under future climate scenarios. The projections are aimed to provide the 

most accurate futures for our study region and temporal scale (2050 average and 2070 average). 

Using these projected future distributions, we summarized inter- and intra-species variability in 

future stream fish distributions across climate scenarios. The outputs of the species distribution 

models is intended to assist decision makers in risk assessment of biodiversity in the Red River 

Basin. The results from this project will serve as a framework of reference for other 

environmental planners as they seek to assess the impacts of climate change and urbanization 

within their own localities.  

Methods 

Selection of fish species and historical data 

There are over 150 species of fish in the Red River Basin (Annis et al. 2012). For our 

analysis, we selected a subset of 31 of these species that collectively span a range of spawning 

modalities, range width, conservation status and societal value (e.g., sportfish; Table 3). 

Furthermore, the species selected for this study were chosen to be representative of the basin or 

are target species for conservation efforts. Final selection of the 31 species was based on 

consultation with Dr. Bill Matthews and Dr. Edie Marsh Matthews, University of Oklahoma, and 

members of the Oklahoma Department of Wildlife Conservation (Kurt Kuklinksi and Trevor 
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Starks). Thus, our species list is generally representative of the management priorities of the 

Oklahoma Department of Wildlife Conservation and the Texas Parks and Wildlife Department. 

Table 3: The 31 stream fish species used in this analysis. For each species, column headings give 

common and scientific name; spawning guild based on its method of reproduction; and 

conservation status according to the USGS species of Greatest Conservation Need (SGCN); IUCN 

Red List, and NatureServe conservation status assessment 

Common Name Scientific Name Spawning Mode SGCN Tier IUCN Red List NatureServe 

Pelagic 

Broadcast 

Spawners 
     

Plains Minnow 
Hybognathus 

placitus 

Pelagic Broadcast 

(Hoagstrom and Turner 

2015) 

Species of Concern Least Concern Apparently Secure 

Prairie chub 
Macrhybopsis 

australis 

Pelagic Broadcast 

(Hoagstrom and Turner 

2015; Perkin and Gido 

2011) 

Under Review in 

the Candidate or 

Petition Process 

Vulnerable Vulnerable 

Red River 

Shiner 
Notropis bairdi 

Pelagic Broadcast 

(Hoagstrom and Turner 

2015) 

N/A Least Concern Apparently Secure 

Shoal Chub 
Macrhybopsis 

hyostoma 

Pelagic Broadcast (Perkin 

and Gido 2011) 
N/A Least Concern Secure 

Silver Chub 
Macrhybopsis 

storeriana 

Pelagic Broadcast (Perkin 

and Gido 2011) 
N/A Least Concern Secure 

Riverine 

Spawners 
     

Bigeye Shiner Notropis boops 

Riverine Species 

(Hoagstrom, Brooks, and 

Davenport 2011) 

N/A Least Concern Secure 

Blackspot 

Shiner 

Notropis 

atrocaudalis 

Riverine Species 

(Hoagstrom, Brooks, and 

Davenport 2011) 

N/A Least Concern Apparently Secure 

Bluehead Shiner 
Pteronotropis 

hubbsi 
Riverine Species 

Under Review in 

the Candidate or 

Petition Process 

Near 

Threatened 
Vulnerable 

Chub Shiner Notropis potteri 

Riverine Species 

(Hoagstrom, Brooks, and 

Davenport 2011) 

N/A Least Concern Apparently Secure 

Emerald Shiner 
Notropis 

atherinoides 

Riverine Species (Taylor 

2010) 
N/A Least Concern Secure 
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Kiamichi Shiner 
Notropis 

ortenburgeri 

Riverine Species 

(Hoagstrom, Brooks, and 

Davenport 2011) 

N/A N/A Vulnerable 

Ouachita Shiner 
Lythrurus 

snelsoni 
Riverine Species Species of Concern Least Concern Vulnerable 

Peppered Shiner 
Notropis 

perpallidus 

Riverine Species 

(Hoagstrom, Brooks, and 

Davenport 2011) 

Under Review in 

the Candidate or 

Petition Process 

Vulnerable Vulnerable 

Plains Killifish 
Fundulus 

zebrinus 

Broadcast Demersal 

(Hoagstrom, Brooks, and 

Davenport 2011) 

N/A Least Concern Secure 

Red Shiner 
Cyprinella 

lutrensis 

Crev. Spawning Ad. Eggs 

(Hoagstrom, Brooks, and 

Davenport 2011) 

N/A Least Concern Secure 

Rocky Shiner Notropis suttkusi 

Riverine Species 

(Hoagstrom, Brooks, and 

Davenport 2011) 

Under Review in 

the Candidate or 

Petition Process 

N/A Vulnerable 

Sand Shiner 
Notropis 

stramineus 

Riverine Species (Taylor 

2010) 
N/A Least Concern Secure 

Suckermouth 

Minnow 

Phenacobius 

mirabilis 
Riverine Species N/A Least Concern Secure 

Egg Burriers/ 

Attachers 
     

Channel Darter 
Percina 

copelandi 

Egg Burrier (Hoagstrom, 

Brooks, and Davenport 

2011) 

N/A Least Concern Apparently Secure 

Creole Darter 
Etheostoma 

collettei 

Egg Burrier/Attacher 

(Hoagstrom, Brooks, and 

Davenport 2011) 

N/A Least Concern Apparently Secure 

Leopard Darter 
Percina 

pantherina 

Egg Burrier (Hoagstrom, 

Brooks, and Davenport 

2011) 

Threatened Endangered Imperiled 

Orangebelly 

Darter 

Etheostoma 

radiosum 

Egg Burrier/Attacher 

(Hoagstrom, Brooks, and 

Davenport 2011) 

N/A Least Concern Secure 

Red River 

Pupfish 

Cyprinodon 

rubrofluviatilis 

Egg Attacher (Hoagstrom, 

Brooks, and Davenport 

2011) 

N/A Least Concern Secure 

Generalist 

Species 
     

Blue Catfish 
Ictalurus 

furcatus 
Nesting N/A Least Concern Secure 
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Black Bullhead Ameiurus melas Nesting N/A Least Concern Secure 

Green Sunfish 
Lepomis 

cyanellus 
Nesting N/A Least Concern Secure 

Largemouth 

Bass 

Micropterus 

salmoides 

Nesting (Hoagstrom, 

Brooks, and Davenport 

2011) 

N/A Least Concern Secure 

Smallmouth 

Bass 

Micropterus 

dolomieu 

Nesting (Hoagstrom, 

Brooks, and Davenport 

2011) 

N/A Least Concern Secure 

Spotted Bass 
Micropterus 

punctulatus 

Nesting (Hoagstrom, 

Brooks, and Davenport 

2011) 

N/A Least Concern Secure 

Striped Bass Morone saxatilis Nesting N/A Least Concern Secure 

Western 

Mosquitofish 
Gambusia affinis 

Livebearer (Hoagstrom, 

Brooks, and Davenport 

2011) 

N/A Least Concern Secure 

We then grouped the 31 fish species into four spawning guilds: pelagic broadcast 

spawners, riverine spawners, those that bury or attach their eggs, and generalist species (Table 

3). Our intent behind the creation of different guilds was to identify groups of species that might 

be expected to respond to environmental covariates in a similar way. For example, pelagic 

broadcast spawners require long stretches of free-flowing river for successful recruitment (Perkin 

and Gido 2011); thus, we hypothesize that all species in this spawning guild should respond to 

fragmentation in a similar manner. A number of the fish selected are listed as a “Species of 

Concern” or “Threatened” by the USGG’s Species of Greatest Conservation Need (SGCN) list 

or are listed as a priority species by the states of Texas, Oklahoma, Louisiana or Arkansas. 

Ancillary to these region-specific classifications, a number of species are listed by the 

International Union for Conservation Nature (IUCN) as “Nearly Threatened,” “Vulnerable,” or 

“Endangered.” Overall, the above list is a tabulation to best reflect how Red River fish will be 

affected by both anthropogenic induced fragmentation and climate change. 
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For each of the 31 species, we gathered historical occurrence records from the Global 

Biodiversity Information Facility (GBIF, www.gbif.org). GBIF serves as one of the most 

extensive biogeographical resources in the world (Beck et al. 2014), collecting species 

occurrence data from peer reviewed research articles’ collections and museum collections.  We 

automated the collection of our species occurrence records from GBIF using the R package 

“dismo” (Hijmans and Elith 2017). This method of collection included removal of duplicate 

records and eliminated abundance records. The historical occurrence records have a statistically 

random relative occurrence rate (ROR) as observed within the GBIF relative observation trends 

function ranging from 30 to 1576 historical records per fish. Verifying that each species’ 

occurrence points are statistically random (ROR) is a necessary step in production of unbiased 

Maxent and BRT models (Merow et al. 2013). 

Overview of modelling approach 

Our modeling approach proceeded in three steps. First, we used a suite of spatial 

variables describing the recent historical environment to fit a species distribution model (SDM) 

for each species. The variables selected (Table 2) for our SDM analysis are environmental 

factors within the Red River Basin which are known to drive the distribution of the 31 fish 

species selected for modeling and are commonly used for modeling stream fish distributions 

(Annis et al. 2012; Bond et al. 2011; Labay and Hendrickson 2014; Hernandez 2015). As a 

second step, we projected the distribution of each species under future climate scenarios using 

our fitted species distribution models and projected values for climatic and hydrologic variables 

under future climate scenarios. Third, we summarized inter- and intra-species variability in 

future stream fish distributions across climate scenarios. 
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Table 4: Bioclimatic covariates selected to predict distribution. Each covariate is accompanied 

by its data source and data source for inclusion. Variables are indicated as either continuous or 

categorical and whether or not they remain static across the future climate scenarios 

Name Source Type 

Change to 

2050/2070 

Climatic Covariates    

Annual Mean Temperature CASC Data Continuous Dynamic 

Annual Mean Rainfall CASC Data Continuous Dynamic  

Mean Temperature of Wettest Quarter CASC Data Continuous Dynamic 

Mean Temperature of Driest Quarter CASC Data Continuous Dynamic 

Hydrologic Covariates    

Mean Annual Flow CASC Data Continuous Dynamic 

Mean Flow of Wettest Quarter CASC Data Continuous Dynamic 

Mean Flow of Driest Quarter CASC Data Continuous Dynamic 

Strahler Stream Order NHD Continuous Static 

Lithospheric Covariates    

National Anthropogenic Barrier Density NABD Continuous Static 

Topography USGS Continuous Static 

Lithology Type USGS Categorical Static 

Land Cover NLCD Categorical Static 

National Fish Habitat Action Plan Disturbance Index NFHAP Categorical Static 

 

For both historical and future species distribution models, we used a set of climatic and 

hydrologic variables derived from recent high-resolution studies of climate and hydrology for the 

basin (Xue et al. 2016; Gaitan et al. 2016). Climate variables are used in almost every species 

distribution modeling project, regardless of temporal dimension or type of species modeled (Fick 

and Hijmans 2017). For stream fish species, climatic variables that indirectly contribute to 

stream flow are used most often and are often the most predictive variables (Labay and 
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Hendrickson 2014). We included “Mean Temperature of Driest Quarter” and “Mean 

Temperature of Wettest Quarter” as duplicate proxies for stream flow for this reason.  

We used climatic and hydrologic variables which delineate the ecosystem for conditions 

of specific locality. Table 4 encapsulates an appropriate list of variables which drive fish 

occurrence within the Red River Basin (Annis et al. 2012; Labay and Hendrickson 2014, 2014; 

Perkin and Gido 2012). The climatic and hydrologic variables in our model were produced by 

McPherson et al. fitted to the dimensions of our historical variables gathered from 

WorldClim.org (Fick and Hijmans 2017).  

We also used lithospheric and anthropogenic covariates that were static across historical 

and future climate scenarios. Lithospheric (and anthropogenic) datasets are also included in the 

models to delineate dendritic ecological networks which actualize the locations of streams (i.e. 

low points). The lithology type (soil type) layer is included to serve as a proxy for conductivity – 

one of the most important variables driving fish assemblages in the Red River basin (Taylor, et 

al. 1993).  Barrier density is calculated using the National Anthropogenic Barrier database and 

modeling tool RivEX which created a dataset indicative of the level of fragmentation in the 

basin. Fragmentation is one of the most detrimental anthropogenic factors driving unnatural 

stream fish distribution change (Perkin and Gido 2012). The National Fish Habitat Action Plan 

Index is also used for categorical analysis on anthropogenic effect in the basin as it characterizes 

stream reach length and human disturbance (Tingley III et. al 2013). Land use is also 

interpolated to meet the raster grain requirements and used in the model. Land use is utilized as a 

general way to define areas with heavy urbanization versus areas less developed. Each of the 

rasters produced are reclassified in order to standardize the resolution among all 13 covariates.  

Species Distribution Models 
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For each of the 31 species in our data set, we fit both a Maxent and BRT model to fit 

historical distributions as a function of all landscape covariates (Table 2). We chose to use both 

Maxent and BRT models because they are the most frequently used and most appropriate choices 

for modeling fish distributions (Hernandez 2015; Labay and Hendrickson 2014; Annis et al. 

2012; Bond et al. 2011b), and frequently give complementary projections (Olden and Jackson 

2002). An analysis isolating the Bluehead Shiner (Pteronotropis hubbsi) in the Red River Basin 

found that optimizing the regularization multiplier between 1.5x – 2.0x is necessary to prevent 

over-prediction while staying under the target training omission rate of 30% (Hernandez 2015). 

Thus, we optimized the regularization multiplier within Maxent and BRT to give more predictive 

power to the covariates that have the most influence and to penalize the variables which do not 

influence the model outputs. Additionally, we used a jackknife approach in our Maxent and BRT 

models for a qualitative analysis on the most influential covariates. By increasing the 

regularization multiplier, our model generally produced a broader range of projected occurrence 

probabilities and is better fitted with respect to model area under the curve (AUC) values 

(Hernandez 2015; Radosavljevic and Anderson 2014). 

To project fish distributions under future climate scenarios, we coupled our fitted Maxent 

and BRT models for each species with projected climatic and hydrologic variables from all 

combinations of three global climate models (GCMs) and three representative concentration 

pathways (RCPs) downscaled from South Central Climate Adaptation Science Center, (SC-

CASC; Xue et al. 2016; McPherson et al. 2015). Thus, we explored a total of nine future climate 

scenarios. For each of the 31 fish species tested, one Maxent and one BRT model was produced 

across each GCM/RCP scenario. The objective of running multiple models per fish for each 

technique is to best tabulate the projected distribution for each fish based off of a range of future 
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climate scenarios. Each SDM incorporated trained results from historical model runs and 

parameterized for use in the model runs for future climate scenarios (2050 and 2070). The 

GCM/RCP scenarios we used selected are the same used in other ongoing Red River Basin 

projects (Gaitan et al. 2016). Each fish has 9 SDMs modeled (per technique) with respect to each 

time period. The historical SDMs serve purely as a baseline for each model but are also a useful 

representation of the current distribution of each species. Each SDM output is analyzed mutually 

exclusive from one another but the synthesis of the outputs’ range delivers the best- and worst-

case scenario for each fish. The 9 SDM outputs from each respective modeling technique are 

identical one another in terms of parameter set-up. 

Results 

Overall, we found that historical distributions of stream fishes were well explained by 

both Maxent and BRT models. The majority of model outputs produced an area under the curve 

(AUC) value of 0.85 or greater; on average 22 of 31 species for Maxent and 31 of 31 species for 

BRT. Values between 0.7 and 0.9 are considered ‘usable’ while values above 0.9 are considered 

excellent (Swets 1988). Additionally, the variable which contributed most to the generation of 

each model varied among species. In the Maxent models, the lithology type contributed most 

with an average of 29.14% across models. In BRT, topography was on average the most 

predictive with an influence of 25.82% (Table 5). Despite the fact that the lithology and 

topography layers contributed greatly to model generation, the mean temperature of the driest 

quarter averaged a relative influence of 21.37% in Maxent and 17.20% in BRT. Each of the 

species distribution raw output maps were produced through R-code and represent the projected 

distribution of each species (to 2050 or 2070) with respect to its SDM modeling technique, GCM 

and RCP scenario (Fig. 1, Appendix 1).  
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We found that species differed markedly in projected changes to their distributional range 

under future climate scenarios, and also in the variability of these projected outcomes across 

climate scenarios (Figs. 2-5). For example, both the Maxent model and BRT model suggest that 

the distributional range of N. atrocaudalis or P. hubbsi should increase or remain similar in the 

future. Conversely, both SDMs suggest that M. punctulatus, L. cyanellus, and M. salmoides will 

be more narrowly distributed in the future. For some species, like M. saxatilis, projected changes 

to their distribution are similar across all nine climate scenarios; ranging from a maximum of -

0.52% delta in proportion of cells with a >50% occurrence (under GCM MPI_ESM_LR and 

RCP 85) to a minimum of -1.59% delta in proportion of cells with a >50% occurrence (under 

GCM MIROC5and RCP 45) in 2050 under BRT. For other species, like G. affinis, changes to 

their projected range width vary widely across the nine climate scenarios. For this species, its 

distribution is projected to increase to encompass an additional 7.5% of the basin under the most 

optimistic climate scenario (under GCM MIROC5 and RCP 45) in 2050 under Maxent. 

However, the most pessimistic climate scenario is dramatically different, and suggests that its 

future distribution will contract and fail to include 32% of the basin where it historically 

occurred (under GCM MPI_ESM_LR and RCP 45). With regard to future time period overall, 

we found that projected fish distributions in 2070 (Figs. 3, 5) represent an extension of the trends 

in distributional change observed in 2050 (Figs. 2, 4).   

We also found that the greatest absolute changes in distributional range under future 

climate scenarios occurred for the most widely distributed species (Figs. 6-9). For example, G. 

affinis, L. cyanellus and C. lutrensis are all widely distributed species within the basin but are 

projected to drastically decrease in distribution. Conversely, absolute changes to the 

distributional range of several species that were historically narrowly distributed (e.g., P. 
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pantherina, N. ortenburgeri, and M. australis) were small because those species were rare to 

begin with. Each GCM and RCP scenario within both Maxent and BRT produced similar futures 

for all 31 fish species; the majority of fish in each model run are projected to decrease in 

occurrence. For example, in the RCP26-MPI_ESM_LR models for both Maxent and BRT the 

majority of fish show a loss in distribution regardless of the magnitude of their historical range. 

Model outputs like RCP45-CCSM4 and RCP85-CCSM4 for both Maxent and BRT show similar 

trends to the latter. Despite the swooping downward trend in future distribution, some models 

produced more favorable results across the board; RCP45-MIROC5 predicts that a number of 

stream fishes will increase in projected occurrence (Fig. 3).  

Despite differences in how individual species fared among climate scenarios, the average 

change in range width across the entire fish community was similar across climate scenarios 

(Figs. 10-13). Each of the 9 methods showed similar results among all 31 fish species regardless 

of temporal scale, dynamic covariate variability and greenhouse gas emission scenario. Overall, 

Maxent models produced a larger range of projected occurrence while BRT models range in 

outputs is smaller. Note that RCP26-MIROC shows that model outputs for all 31 species are 

extremely similar despite change in temporal scale and modeling method (BRT v.s. Maxent). 

The majority of other GCM and RCP scenarios follow this trend as well.   

 

 

 

Table 5: Average relative influence of each covariate within both Maxent and BRT models. 

These values are based solely off of the historical Maxent and BRT models and were then 

projected into the 2050 and 2070 models.  
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Name 

Change to 

2050/2070 

Maxent Avg. Relative 

Influence 

BRT Avg. Relative 

Influence 

Climatic Covariates    

Annual Mean Temperature Dynamic 4.74% 6.77% 

Annual Mean Rainfall Dynamic  8.03% 5.48% 

Mean Temperature of Wettest Quarter Dynamic 4.64% 11.69% 

Mean Temperature of Driest Quarter Dynamic 21.37% 17.20% 

Hydrologic Covariates    

Mean Annual Flow Dynamic 2.63% 5.10% 

Mean Flow of Wettest Quarter Dynamic 1.09% 2.45% 

Mean Flow of Driest Quarter Dynamic 12.00% 11.41% 

Strahler Stream Order Static 0.66% 2.48% 

Lithospheric Covariates    

National Anthropogenic Barrier Density Static 1.87% 0.96% 

Topography Static 9.46% 25.82% 

Lithology Type Static 29.14% 8.75% 

Land Cover Static 2.35% 0.73% 

National Fish Habitat Action Plan 

Disturbance Index 

Static 1.93% 1.08% 
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Figure 1: Example of raw model output from Maxent. Historical distribution (left) is each 

respective GCM/RCP scenario’s historical occurrence and used for Maxent and BRT model 

training. Projections using SC-CASC climatic and hydrologic variables alter the distribution for 

species in 2050 (middle) and 2070 (right). 
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Figure 2: Variability in species’ distributional shifts across 9 future climate scenarios in the Red 

River. For each species, the horizontal axis gives the difference in the proportion of raster cells 

with > 50% projected occurrence between the year 2050 and the recent historical period (year 

1970 to 2000) based on our Maxent models. The endpoints of each bar give the minimum and 

maximum value of Delta_2050 observed across the 9 climate scenarios.  
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Figure 3: Variability in species’ distributional shifts across 9 future climate scenarios in the Red 

River. For each species, the horizontal axis gives the difference in the proportion of raster cells 

with > 50% projected occurrence between the year 2070 and the recent historical period (year 

1970 to 2000) based on our Maxent models. The endpoints of each bar give the minimum and 

maximum value of Delta_2070 observed across the 9 climate scenarios.  
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Figure 4: Variability in species’ distributional shifts across 9 future climate scenarios in the Red 

River. For each species, the horizontal axis gives the difference in the proportion of raster cells 

with > 50% projected occurrence between the year 2050 and the recent historical period (year 

1970 to 2000) based on our BRT models. The endpoints of each bar give the minimum and 

maximum value of Delta_2050 observed across the 9 climate scenarios.  
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Figure 5: Variability in species’ distributional shifts across 9 future climate scenarios in the Red 

River. For each species, the horizontal axis gives the difference in the proportion of raster cells 

with > 50% projected occurrence between the year 2070 and the recent historical period (year 

1970 to 2000) based on our BRT models. The endpoints of each bar give the minimum and 

maximum value of Delta_2070 observed across the 9 climate scenarios. 
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Figure 6: Comparison of historical vs. future range width for each species in the year 2050 as 

projected by our Maxent models. Each point on these scatterplots represents a species. Points 

that fall below the 1:1 line indicate that the range width of that species is projected to contract 

across the Red River Basin. Alternatively, points that lie above the trend line indicate that the 

range width of that species is projected to increase across the Red River Basin.  
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Figure 7: Comparison of historical vs. future range width for each species in the year 2070 as 

projected by our Maxent models. Each point on these scatterplots represents a species. Points 

that fall below the 1:1 line indicate that the range width of that species is projected to contract 

across the Red River Basin. Alternatively, points that lie above the trend line indicate that the 

range width of that species is projected to increase across the Red River Basin.  
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Figure 8: Comparison of historical vs. future range width for each species in the year 2050 as 

projected by our BRT models. Each point on these scatterplots represents a species. Points that 

fall below the 1:1 line indicate that the range width of that species is projected to contract across 

the Red River Basin. Alternatively, points that lie above the trend line indicate that the range 

width of that species is projected to increase across the Red River Basin.  
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Figure 9: Comparison of historical vs. future range width for each species in the year 2070 as 

projected by our BRT models. Each point on these scatterplots represents a species. Points that 

fall below the 1:1 line indicate that the range width of that species is projected to contract across 

the Red River Basin. Alternatively, points that lie above the trend line indicate that the range 

width of that species is projected to increase across the Red River Basin.  
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Figure 10: Summary of the variability among species in changes to their range width across 

climate scenarios (horizontal axis) in the year 2050 as projected by our Maxent models. Each 

segment of the boxplot expresses the range of the delta of projected occurrence (50% or greater) 

for each of the respective GCM/RCP scenarios among all 31 fish. 
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Figure 11: Summary of the variability among species in changes to their range width across 

climate scenarios (horizontal axis) in the year 2070 as projected by our Maxent models. Each 

segment of the boxplot expresses the range of the delta of projected occurrence (50% or greater) 

for each of the respective GCM/RCP scenarios among all 31 fish. 
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Figure 12: Summary of the variability among species in changes to their range width across 

climate scenarios (horizontal axis) in the year 2050 as projected by our BRT models. Each 

segment of the boxplot expresses the range of the delta of projected occurrence (50% or greater) 

for each of the respective GCM/RCP scenarios among all 31 fish. 
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Figure 13: Summary of the variability among species in changes to their range width across 

climate scenarios (horizontal axis) in the year 2070 as projected by our BRT models. Each 

segment of the boxplot expresses the range of the delta of projected occurrence (50% or greater) 

for each of the respective GCM/RCP scenarios among all 31 fish. 
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Table 6: Average contribution of each climatic, hydrologic and lithospheric covariate averaged 

for each GCM/ RCP scenario for both Maxent and BRT. Contributions were calculated mutually 

exclusive from one another with respect to modeling techniques. 

 

 

 

Covariates

Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT

Annual Mean Temp. 0.25 1.37 0.04 3.68 0.21 1.69 0.26 1.39 1.34 1.16

Annual Mean Rainfall 8.72 2.95 21.15 2.67 24.57 3.31 0.71 1.32 0.90 1.00

Mean Temp. of Wettest Qtr. 15.03 50.61 37.44 42.14 24.69 59.17 6.21 3.66 1.30 6.21

Mean Temp.of Driest Qtr. 37.25 3.79 3.36 9.23 6.33 6.72 6.86 10.81 4.17 6.75

Mean Annual Flow 1.64 1.05 2.64 2.47 1.29 0.70 5.18 0.03 0.58 0.36

Mean Flow of Wettest Qtr. 13.68 9.27 15.17 12.60 25.96 3.42 20.77 3.00 23.31 0.44

Mean Flow of Driest Qtr. 0.92 6.22 0.20 1.36 0.70 2.36 4.34 0.26 5.23 2.18

Strahler Stream Order 2.65 1.21 0.45 0.68 1.54 0.82 2.99 0.02 0.27 0.15

NABD Density 0.33 2.87 1.26 0.15 3.05 4.27 0.10 0.33 0.16 0.47

Topography 5.12 10.67 1.03 22.88 1.57 7.60 10.83 10.83 5.05 15.71

Lithology Type 2.54 1.67 1.89 1.30 2.02 0.35 2.22 0.09 6.75 0.44

Land Cover 9.79 5.28 9.38 0.41 7.36 4.29 39.28 67.06 50.73 64.16

NFHAP Disturbance Index 2.07 3.05 5.99 0.43 0.71 5.30 0.26 1.19 0.28 0.94

H. placitus M. australis N. bairdi M. hystoma M. storeriana

Pelagic Broadcast Spawners

Covariates

Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT

Annual Mean Temp. 29.74 5.84 0.07 0.37 0.00 4.47 1.29 5.74 1.92 2.24 21.25 0.80

Annual Mean Rainfall 0.88 4.86 16.16 22.27 25.04 18.79 0.05 1.95 1.90 1.53 6.00 10.99

Mean Temp. of Wettest Qtr. 0.61 0.49 0.07 0.47 0.00 0.20 20.18 11.88 2.21 5.28 0.05 5.69

Mean Temp.of Driest Qtr. 31.79 33.61 34.58 17.89 0.12 6.01 3.39 2.08 20.93 10.90 1.18 14.53

Mean Annual Flow 0.90 0.02 1.17 0.00 5.70 0.77 5.70 1.69 2.30 4.44 1.97 0.03

Mean Flow of Wettest Qtr. 16.79 5.64 21.38 6.08 51.57 2.06 19.41 1.34 19.91 3.97 23.80 4.13

Mean Flow of Driest Qtr. 0.15 0.16 0.60 3.47 0.23 2.94 3.58 1.36 3.22 4.77 3.66 0.03

Strahler Stream Order 0.47 0.55 0.19 1.26 0.05 0.63 0.58 1.29 2.57 1.49 0.09 0.09

NABD Density 0.08 1.02 0.19 0.21 7.95 9.60 4.08 1.72 0.42 5.52 1.36 0.03

Topography 14.35 45.00 15.56 45.25 0.15 52.00 6.33 16.94 12.32 30.17 0.06 48.96

Lithology Type 4.64 0.82 3.06 0.69 6.21 1.96 3.21 2.57 8.89 0.50 4.34 0.01

Land Cover 1.44 1.46 6.74 0.93 2.63 0.15 30.53 48.02 16.27 9.46 32.65 7.96

NFHAP Disturbance Index 1.02 0.53 0.24 1.11 0.36 0.42 1.94 3.44 7.71 19.74 3.60 6.74

Riverine Spawners

N. ortenburgeriN. boops N. atrocaudalis P. hubbsi N. potteri N. atherinoides

Covariates

Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT

Annual Mean Temp. 1.87 15.89 21.25 0.80 0.09 1.51 0.20 0.97 11.22 0.92 1.96 2.45 0.44 1.15

Annual Mean Rainfall 2.64 19.62 6.00 10.99 7.73 2.84 5.10 1.99 6.55 0.53 11.63 7.13 4.08 4.88

Mean Temp. of Wettest Qtr. 6.45 31.86 0.05 5.69 2.71 4.55 4.66 15.35 0.08 4.34 6.21 10.56 1.78 18.82

Mean Temp.of Driest Qtr. 2.32 14.39 1.18 14.53 68.86 39.01 52.89 19.30 23.34 26.55 28.29 35.97 58.65 28.92

Mean Annual Flow 0.09 1.27 1.97 0.03 0.68 0.48 1.01 0.44 4.70 0.91 4.01 0.27 0.72 4.46

Mean Flow of Wettest Qtr. 66.72 12.00 23.80 4.13 8.58 24.35 8.39 7.49 19.22 6.03 10.42 6.58 13.61 12.89

Mean Flow of Driest Qtr. 0.40 0.00 3.66 0.03 0.66 1.41 2.77 1.28 0.13 0.27 0.53 4.93 3.14 1.56

Strahler Stream Order 6.79 0.01 0.09 0.09 0.81 1.87 1.86 2.10 0.03 0.01 7.45 1.47 9.13 2.30

NABD Density 1.35 0.19 1.36 0.03 0.15 0.55 0.07 0.46 0.03 1.03 1.56 0.93 0.10 0.54

Topography 7.49 0.67 0.06 48.96 2.14 18.07 12.09 43.97 20.82 35.74 14.35 25.90 1.00 22.57

Lithology Type 8.01 0.08 4.34 0.01 5.20 3.07 4.43 3.17 4.20 0.00 9.04 1.64 2.16 0.58

Land Cover 0.43 3.72 32.65 7.96 1.94 2.04 5.71 2.75 1.45 0.35 0.86 1.44 2.83 0.48

NFHAP Disturbance Index 0.26 0.30 3.60 6.74 0.45 0.25 0.86 0.71 10.37 23.31 3.71 0.73 2.41 0.34

Riverine Spawners (Cont.)

P. mirabilisL. snelsoni N. perpallidus F. zebrinus C. lutrensis N. suttkusi N. stramineus
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Covariates

Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT

Annual Mean Temp. 27.16 41.42 2.72 0.89 0.18 5.93 20.72 53.00 0.15 1.83

Annual Mean Rainfall 0.46 0.14 36.93 8.04 1.95 0.68 1.45 1.34 30.83 2.49

Mean Temp. of Wettest Qtr. 0.00 3.45 7.79 0.12 0.00 3.51 0.78 0.72 7.10 35.62

Mean Temp.of Driest Qtr. 1.90 4.46 3.75 32.33 0.33 2.76 35.11 24.21 27.92 22.98

Mean Annual Flow 3.30 0.25 3.06 0.07 2.41 0.11 0.61 0.10 1.16 0.03

Mean Flow of Wettest Qtr. 21.75 0.26 33.44 32.26 77.92 1.27 8.69 2.97 17.59 17.30

Mean Flow of Driest Qtr. 3.12 1.94 0.01 0.09 1.11 8.90 0.46 0.50 0.83 0.60

Strahler Stream Order 0.75 0.06 1.73 0.54 7.15 4.24 0.26 0.21 2.58 0.62

NABD Density 0.23 1.02 5.21 0.74 0.79 38.41 0.29 0.64 1.34 0.67

Topography 8.75 6.85 0.62 22.65 0.37 14.49 32.03 10.18 0.28 10.07

Lithology Type 1.59 0.10 3.85 1.41 6.80 0.43 2.02 0.29 2.56 0.33

Land Cover 17.24 12.50 0.60 0.13 1.06 1.47 0.11 2.77 5.25 5.51

NFHAP Disturbance Index 18.72 27.56 0.66 0.73 0.06 17.81 2.60 3.07 2.44 1.95

Egg Burriers/ Attachers

P. copelandi E. collettei P. pantherina E. radiosum C. rubrofluviatilis

Covariates

Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT Maxent BRT

Annual Mean Temp. 0.00 0.46 1.06 2.68 2.38 8.78 0.27 0.56 0.81 23.56 2.02 14.38 0.28 2.42 1.31 1.56

Annual Mean Rainfall 0.16 5.24 2.55 2.33 1.32 4.72 1.16 1.25 1.55 7.77 2.93 7.63 9.19 6.99 2.17 1.82

Mean Temp. of Wettest Qtr. 4.48 1.63 2.93 9.69 0.60 6.02 2.73 3.58 1.96 1.88 0.17 1.64 0.31 12.74 1.40 4.95

Mean Temp.of Driest Qtr. 10.20 13.73 27.23 10.21 24.73 19.95 34.21 21.50 10.40 13.60 41.08 39.57 5.15 17.83 47.06 9.26

Mean Annual Flow 1.14 0.03 1.58 0.94 1.12 0.69 5.40 0.03 2.51 0.30 3.82 0.19 5.41 0.08 1.47 0.48

Mean Flow of Wettest Qtr. 42.43 1.38 34.61 28.14 15.93 5.82 25.42 11.66 59.14 10.72 16.35 18.73 34.93 0.25 18.63 15.25

Mean Flow of Driest Qtr. 5.16 4.95 2.12 0.48 1.62 2.79 1.73 2.74 0.36 11.27 0.73 3.72 4.36 0.37 3.84 4.05

Strahler Stream Order 0.77 0.69 1.11 1.43 0.11 0.87 0.65 0.66 0.68 0.53 0.43 2.86 2.46 0.05 0.46 1.07

NABD Density 1.65 0.28 0.16 0.33 0.04 0.26 0.42 0.87 1.10 1.02 0.22 0.35 0.42 0.99 0.65 0.70

Topography 2.14 25.88 9.67 38.63 41.74 45.70 17.59 48.05 11.89 5.29 19.72 6.10 4.87 11.97 13.48 52.98

Lithology Type 10.30 0.04 10.89 0.27 5.89 2.88 4.71 4.30 4.76 0.13 3.20 0.36 16.19 0.54 3.46 3.47

Land Cover 21.38 44.46 5.98 3.90 3.80 0.68 3.17 1.80 0.23 2.96 6.12 3.31 17.28 43.82 4.58 2.69

NFHAP Disturbance Index 0.18 1.23 0.11 0.99 1.58 0.85 2.64 3.00 5.76 20.97 3.97 1.15 0.88 1.96 1.72 1.72

M. punctulatus M. saxatilis G. affinis

Generalist Species

I. furcatus A. melas L. cyanellus M. salmoides M. dolomieu
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Discussion 

Our analysis of fish species distributions under nine future climate scenarios highlights a 

wide range of outcomes across species and across scenarios in the Red River. We found that the 

range width of most fish species in the Red River Basin will contract by 2050 and 2070; this was 

true for both Maxent and BRT models and across all GCM/RCP scenarios (Figs. 2-5). Species 

also varied dramatically in the uncertainty associated with their future distributions, with the 

range in outcomes across climate scenarios being more than 10 times higher for some species 

(e.g., Lepomis cyanellus) than for others which showed little variability across scenarios (e.g., 

Notropis suttkusi) Our analysis also revealed that the greatest absolute changes in range width 

are projected to occur for those species which have been the most widespread historically (Figs. 

6-9). 

We observed a range of outcomes across species with high societal value (e.g., sportfish), 

species of greatest conservation need, and other focal species. In some cases, species of 

conservation importance are projected to expand their ranges under future climate scenarios. The 

Bluehead Shiner (P. hubbsi), for example, is listed as “Vulnerable” by NatureServe and “Near 

Threatened” by IUCN. Our Maxent models suggest that the future range of this species will 

increase by 2050 under most climate scenarios (Fig. 2), while our BRT models predict small 

positive changes in all climate scenarios (Fig. 4). In other cases, our models project substantial 

habitat loss for species of conservation importance like the endangered Leopard Darter (P. 

pantherina). For this species, a significant loss in habitat is found in Maxent models, paired with 

a small predicted loss found in our BRT models. Similar dichotomies can be found in the 

predicted distributions of valuable sportfish. For example, the Blue Catfish (I. furcatus) is 

projected to increase in distribution in most models for 2050 and 2070 while the Largemouth 
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Bass (M. salmoides) is projected to decrease in distribution in all our models. Interestingly, some 

sportfish project differently between our two modeling techniques: Maxent models show that the 

Black Bullhead (A. melas) will decrease in distribution while BRT predicts that A. melas will 

increase in distribution (Figs. 2-5).  

The projected occurrence rates for most species were generally higher in the Maxent 

models than in the BRT models. However, the proportional change in projected occurrence was 

similar in both models. Maxent models were more optimistic and had higher raw projected 

occurrence values when compared to BRT. Despite this, the change in the proportion of cells 

with a > 50% occurrence was similar between both Maxent and BRT (Figs. 2-5). Nearly all of 

our model outputs showed a definitive decrease in generalist species. For example, G. affinis, C 

lutrensis, A. melas and M. salmoides will experience drastic loss in occurrence. Species of 

greatest conservation need (P. pantherina, H. placitus and L. snelsoni) had mixed outputs but 

generally followed the decreasing trend in occurrence.  

The relative importance of each environmental covariate differed greatly among fish 

species (Table 6). Species with limited historical ranges endemic to the Red River Basin were 

heavily influenced by lithospheric covariates.  Generalist species like. G. affinis and C. lutrensis, 

on the other hand, were more heavily influenced by variables representing climatic extremes. 

Species with a smaller quantity of documented historical occurrence were heavily influenced by 

topography, anthropogenic barriers and land cover (Table 6). In this sense, these fish species (P. 

hubbsi, P. pantherina and N. ortenburgeri) have lower projected occurrence as categorical 

covariates were more susceptible to drive results. This influence of lithospheric covariates can be 

explained by their localized collinearity driving the distribution to a greater extent than it does 

for historically more widely distributed fish (De Marco and Nóbrega 2018).  Alternatively, 
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generalist species with more historical occurrence points were heavily impacted by dynamic 

climatic variables. “Mean Temperature of Driest Quarter” and “Mean Flow of Driest Quarter” 

were among the most influential covariates for generalist species. As the SC-CASC data shows a 

general increase in temperature and decrease in flow, the models suggest a decrease in range for 

the generalist species. In all, the anthropogenic restriction of biological parameters within these 

fish drives change in occurrence. Additionally, we found that SC-CASC projected seasonally 

extreme temperatures and reduced streamflow are key drivers in future fish distributions within 

the basin.  

Model performance shows that each GCM/RCP scenario under both BRT and Maxent 

was statistically similar; each respective model run returned a statistically significant AUC value. 

Variable contribution toward model projections varied across fish species, temporal scale and 

GCM/RCP scenarios but standalone variables (from jackknife variable analysis) were rarely 

statistically predictive of a specific fish. The compilation of the 13 variables used in each model 

was necessary both to accurately calculate model projections and to construct a statistically 

significant model.  

Our analysis of projected fish species distributions under future climate scenarios 

highlights opportunities for conservation practitioners and decision-makers to make pro-active 

investments in fish conservation. Climate change conservation strategies vary greatly (Pacifici et 

al. 2015; Hannah et al. 2002)  and require inputs from various methodologies. This project is one 

of many climate change focused papers primed to provide conservation recommendations. 

Increased climatic volatility and reduced streamflow within the basin will limit the distribution 

of generalist species within the basin causing damage to ecological biodiversity and stream 

health. Despite the difficulty in accurately creating predictive SDMs that account for climate 
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change (Elith and Leathwick 2009), these results show that definitive actions mitigating ill 

effects of climate change will improve the outlook for aquatic ecosystems (Lawler 2009). 

Anthropogenic factors such as barriers and land use directly impact SGCN species (Table 1); 

removal of key anthropogenic barriers (Perkin et al. 2015) paired with improved land use 

planning (Labay and Hendrickson 2014) can mitigate the negative effects driving occurrence loss 

for these key species.  
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Chapter 3: Conclusions 

This project demonstrates the ability to utilize downscaled GCM/RCP scenarios for 

future species distribution model output creation with both Maxent and BRT. In the first chapter, 

I reviewed various species distribution modeling techniques for stream fishes within semi-arid 

stream basins. I found that both Maxent and BRT were the most effective species distribution 

modeling techniques for the size and scale of our project. These techniques were utilized for 31 

different stream fish species within the Red River basin over 13 covariates through 2050 and 

2070.  

In the second chapter we utilized both Maxent and BRT species distribution modeling 

techniques to produce projected occurrence distribution maps for 2050 and 2070. These outputs 

can be utilized as key input for future conservation projects. Additionally, the results of this 

project isolate specific environmental covariate factors which are projected to impact future 

stream fish distribution the greatest. We found that rainfall and streamflow volatility during the 

driest quarter of each year show that large scale climate change mitigation is necessary for the 

survival of biodiversity success within the basin. Additionally, anthropogenic factors like barrier 

construction and land use further constrain the distribution of vulnerable species endemic to the 

Red River. The results of this project provide quantitative results crucial to conservation 

managers specific to the Red River basin and are expected results based off of previous research 

(Perkin et al. 2015).  

Model performance shows that utilizing both Maxent and BRT SDM techniques can be 

effective approaches in determining the future distribution of our select stream fishes. Similar 

steps through the species distribution modeling method and covariate selection can be utilized 
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for other semi-arid stream systems. Mainstream integration of conservation practices requires 

multi-level approach cooperation from the state level action plan with the implementation of best 

management practices from conservation practitioners (Labay and Hendrickson 2014). Based off 

of our results, carefully orchestrated implementation of barrier dam removal, water resource 

reallocation and land use management has the potential to positively impact the range width and 

population status of key stream fish species within the Red River Basin.  

Data gathered from this study could serve as a springboard to additional research focused 

on species targeted for greatest conservation need or valuable sportfish. Future analysis on 

stream fishes in Red River basin could include a year by year analysis on each fish as their 

distribution changes with respect to climate change. Additionally, future studies could take into 

account different types of SDM techniques, stream fishes or environmental covariates. These 

future analyses could further refine the temporal changes for specific species distribution with 

respect to climate change and anthropogenic effects.  
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Appendix 1: Raw Model Outputs 

Maxent: Ameiurus melas  
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BRT: Ameiurus melas  
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Maxent: Cyprinella lutrensis 
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BRT: Cyprinella lutrensis 
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Maxent: Cyprinodon rubrofluviatilis 

 



65 
 

 



66 
 

 

 



67 
 

BRT: Cyprinodon rubrofluviatilis 
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Maxent: Etheostoma collettei 
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BRT: Etheostoma collettei 
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Maxent: Etheostoma radiosum 
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BRT: Etheostoma radiosum 
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Maxent: Fundulus zebrinus 
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BRT: Fundulus zebrinus 
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Maxent: Gambusia affinis  
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BRT: Gambusia affinis 

 



92 
 

 

 



93 
 

 

 



94 
 

Maxent: Hybognathus placitus 
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BRT: Hybognathus placitus 
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Maxent: Ictalurus furcatus 
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BRT: Ictalurus furcatus 
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Maxent: Lepomis cyanellus 
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BRT: Lepomis cyanellus 
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Maxent: Lythrurus snelsoni 
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BRT: Lythrurus snelsoni 
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Maxent: Macrhybopsis australis 
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BRT: Macrhybopsis australis 
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Maxent: Machrybopsis hyostoma 

 



125 
 

 

 



126 
 

 

 



127 
 

BRT: Machrybopsis hyostoma 
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Maxent: Macrhybopsis storeriana 
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BRT: Macrhybopsis storeriana 
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Maxent: Micopterus dolomieu 
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BRT: Micropterus dolomieu 
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Maxent: Micropterus punctulatus 
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BRT: Micropterus punctulatus 
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Maxent: Micropterus salmoides 
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BRT: Micropterus salmoides 
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Maxent: Morone saxatilis 
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BRT: Morone saxatilis 
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Maxent: Notropis atherinoides 
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BRT: Notropis atherinoides 
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Maxent: Notropis atrocaudalis 
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BRT: Notropis atrocaudalis 
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Maxent: Notropis bairdi 
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BRT: Notropis bairdi 
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Maxent: Notropis boops 
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BRT: Notropis boops 
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Maxent: Notropis ortenburgeri 
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BRT: Notropis ortenburgeri 
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Maxent: Notropis perpallidus 
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BRT: Notropis perpallidus 
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Maxent: Notropis potteri 
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BRT: Notropis potteri 
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Maxent: Notropis stramineus 
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BRT: Notropis stramineus  
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Maxent: Notropis suttkusi  
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BRT: Notropis suttkusi 
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Maxent: Percina copelandi 
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BRT: Percina copelandi 
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Maxent: Percina pantherina 
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BRT: Percina pantherina 
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Maxent: Phenacobius mirabilis 
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BRT: Phenacobius mirabilis 
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Maxent: Pteronotropis hubbsi 
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BRT: Pteronotropis hubbsi 
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