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CHAPTER I 

INTRODUCTION 

A large number of systems can be described reasonably well by 

discrete-time linear models with time delays. However, the elusive nature 

of the time delays affect the usefulness of these models for prediction and 

controller design. Furthermore, if the system parameters are unknown, the 

presence of the unknown delay poses not only a problem for parameter 

estimation but also for the estimation of the time delay itself. 

If the structure of a model describing the system and the time delay 

are known, a number of alternatives exist for parameter estimation 

(Goodwin and Sin, 1984; Ljung, 1987; Mendel, 1985; Astrom and 

Wittenmark, 1984). All the parameter estimation schemes are based on 

the assumption that the model order and the time delays are known. 

Among these variables, the model is most sensitive to the time delay. 

The main purpose of this research is to develop a new and 

systematic procedure for the recursive estimation of constant or slowly 

varying system parameters and time delay. The usefulness of this 

algorithm lies in the ability to identify time delays without increasing the 

computational effort, unlike some of the other existing methods. The new 

technique provides consistent and unbiased estimates of the parameters 

and the time delay. 

The proposed estimation scheme is based on the estimation of 

parameters and time delay in the frequency domain. The transformation to 
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the frequency domain provides two advantages. First, it provides a good 

understanding of the system since many analyses, e.g., identifiability and 

persistency of excitation, are carried out in the frequency domain. Second, 

the transformation to the frequency domain parameterizes the delay term. 

For systems with no delay or known delay, the frequency domain model 

remains linear in the parameters if the time domain model is linear in the 

parameters. However, if the time delay is unknown, the transformed model 

is no longer linear in the time delay parameter. The Fourier Transform will 

be adopted to transform the time domain model into the frequency domain. 

The Fourier transform being complex, renders the transformed model 

complex. The complex equation describing the frequency domain model 

can be described by two real equations. The problem then is to develop a 

multi-input multi-output nonlinear recursive estimator in the frequency 

domain. A finite length of data is transformed into the frequency domain 

using the Fast Fourier Transform (FFT). The parameters and time delay 

are then recursively estimated at each frequency. Since most of the real 

signals are made up of a limited number of frequencies, their spectrum is 

finite and the Fourier Transform has a data compression effect. 

The Frequency Domain estimator is equally applicable to systems 

with no delays, known delays and unknown delays. Typical discrete time 

systems described by linear difference equations (ARX models) with: 

1. no delays and unknown parameters and 

2. unknown delays and unknown parameters will be considered. 

The examples presented in this thesis are: 

1. frequency domain estimation of systems with no delays and 

unknown parameters. 
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2. frequency domain estimation of systems with unknown delays 

and unknown parameters. 

Chapter II of this thesis is a summary of the literature review. 



CHAPTER II 

LITERATURE REVIEW 

A considerable amount of information on various parameter 

estimation techniques is available in the literature (e.g., Ljung, 1987; Ljung 

and Soderstrom, 1985; Astrom and Wittenmark, 1984; Goodwin and Sin, 

1984; Mendel, 1986). The major assumptions in all these schemes are: 

1. The model structure is known (generally linear form). 

2. The order of the model is known i.e., the structural indices are 

known. 

3. The pure delay is known. 

Given a model of the form 

where 

q-1 is the backward shift operator defined by 

q-1y(t) = y(t-1) 

(2.1) 

then d is the pure delay and is assumed to be known. The only unknowns 

in the model are the coefficients ai and bi where 

m, n are known. 

4 

(2.2) 

(2.3) 
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Such a model can describe many processes reasonably well. But the 

usefulness of these models for parameter estimation is seriously hindered 

by the elusive nature of the time delays. 

If the delay is unknown, two alternatives exist. First, a model of a 

certain order is chosen and fitted to the data by estimating the parameters. 

The next step is of model validation where diagnostic checks are applied to 

identify a lack of proper fit. This could be based on minimization of certain 

"goodness of fit" measures e.g., some function of error between the model 

output and that of the actual system. If the model is found inadequate, the 

model order is increased and the above procedure is repeated. The 

procedure is iterative and could be quite time consuming. 

Alternately, time domain and frequency domain methods exist for 

estimating the plant order and transfer functions respectively. The time 

domain techniques for identifying the order of an Autoregressive Moving 

Average (ARMA) process is based on correlation analysis and computing 

the generalized partial autocorrelation (GPAC) arrays (Woodward and 

Gray, 1979; Bednar and Coberly, 1976). Once the model order has been 

established, the next step is to estimate the parameters. This again is a two 

step process and involves considerable effort. 

The frequency domain and spectral methods, e.g., power spectrum 

analysis (Gabr, 1987; Gabr and Subbarao, 1984), essentially provide 

magnitude and phase information of the autoregressive moving average 

type of systems (ARMA). Models of different orders are then fitted 

iteratively until the errors are minimized. Both these approaches can be 

categorized as preliminary system identification procedures. Ljung (1987) 

presents a method for nonparameteric identification of a system. Called 
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the Emperical Transfer Function Estimation (ETFE), it essentially computes 

the system transfer function at various frequencies. 

If the model structure and the structural indices are assumed known, 

a number of alternatives exist. One approach is to use an 

overparameterized model (Kurz and Goedecke, 1981 ). For example, if the 

true system is 

y(t) + a1y(t-1) + ~y(t-2) = b3u(t-3) + b4u(t-4) + e(t) (2.4) 

where n = 2, m = 1 , and d = 3, choose the overparameterized model as 

y(t) + a1 y(t-1) + a2y(t-2) = b0u(t) + b1 u(t-1) + b2u(t-2) + b3u(t-3) + 

b4u(t-4) + b5u(t-5) + e(t) (2.5) 

where the parameters b0, b1, b2 and b5 act as indicator functions. The 

delays are estimated closest to an integer by utilizing computationally 

elaborate means of rejecting extraneous estimated parameters. The major 

drawback of this approach is expanding the B(q- 1) polynomial to 

incorporate dummy parameters contributes significantly to the computation 

and cost overhead by increasing the dimension of the model. Furthermore, 

the upper bound on the delay is assumed to be known. 

As an example, consider the third order system described by 

equation (2.4) where a1 = 0.5, a2 = 0.25, b3= 0.125 and b4 = 1.0. To use the 

overparameterized model for estimation of the unknown parameters and 

time delay, the maximal order of the delay has to be known. In this case it is 

d = 3. If the maximum value of the delay is incorrectly assumed, the 

parameters will be incorrectly estimated since a different model is being 

fitted to the data. A judicious choice of model for estimating the parameters 

of equation (2.4) is to use equation (2.5). However, this increases the 
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computation burden considerably, since, in this case five parameters must 

be estimated instead of two. The resulting covariance matrix is also 5 by 5 

instead of 2 by 2 thereby adding to the high cost in computation and time. 

Figure 1 shows the estimated parameters of the B(q-1) polynomial when 

the noise to signal ratio is 1 0 percent. Parameters b0, b1, b2, b3 and b5 are 

close to zero. The pure delay of the system cannot be inferred with 

confidence from the figure, since the true system could have had the 

leading coefficients of the B(q-1) polynomial close to zero. 

Ljung (1984) has shown that if there is a mismatch between the 

model order and the true system, the parameter estimates are biased. Lee 

and Hang (1984) have shown by simulation that the performance of the 

method of overparameterization used in the estimation of unknown or time 

varying delays is extremely sensitive to the presence of noise and step 

disturbances. Another major drawback of the estimation schemes based 

on overparameterization is that the upper bound on the delay has to be 

known in advance. If the delay drifts or falls outside this interval, this 

approach breaks down. Further, expanding the model to incorporate 

dummy parameters contributes significantly to the computational expense 

by increasing the dimension of the model. In the case of 

overparameterization, one has to pay the price of increasing computation 

as time delay increases. 

In the case of continuous time systems (Agarwal and Canudas, 

1986) the time delay and continuous time parameters are estimated by 

approximating the time delay in the frequency domain by a rational transfer 

function. Derivation of the process inputs and outputs are constructed 

using multiple filters. The system is discretized and the parameters 

estimated. The model becomes nonlinear in the desired parameters and 
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hence a nonlinear estimation scheme has to be used. This approach is 

quite tedious and cannot be applied to systems that are discrete to begin 

with. Other attempts include assuming a constant delay and estimating the 

parameters in the time domain by minimizing certain cost functions. These 

get complicated because of multiple minima of the cost function that is 

minimized (Pupeikis, 1985). 

Methods which circumvent this problem resort to such techniques as 

identification of several different model structures from the available data 

followed by the selection of one. These methods involve expensive 

computation and restrict themselves to off-line procedures (Rao and 

Sivakumar, 1976) 

More recently, Juricic (1987) took the same approach with a 

stochastic setting. The basic idea is estimating different models that belong 

to a model set by observing their outputs simultaneously. The parameters 

and the time delay are deduced from the model that fits the process output 

in the best way. Again, the major assumption is that the unknown delay 

belongs to a finite set D = (01, 0 2 ... , On). The need to observe the outputs of 

all the models may be extremely costly since n estimators have to run in 

parallel. 

In the proposed study, the unknown parameters and time delay will 

be estimated in the frequency domain. The main idea behind transforming 

the system to the frequency domain is to parameterize the delay term. In 

fact, a number of papers on the use of orthogonal polynomials for 

parameter estimation exist in the literature. King and Paraskevopoulos 

(1974), have used Laguerre polynomials for parameter identification; 

Chebyshev series and Legendre series have been utilized by 

Paraskevopoulos (1983, 1985); Jacobi series has been used by Liu and 
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Shin (1985); and the Walsh series has been used by Palanisamy and 

Battacharya (1981 ). 

Chou and Horng (1986) have used the shifted Chebyshev series for 

identification and analysis of time-varying systems. Shih and Kung (1986) 

have extended the use of shifted Chebyshev series to analysis and 

parameter estimation of non-linear systems. Later, Horng and Ho (1987) 

developed a new and more convenient set of discrete orthogonal 

polynomials called discrete pulse orthogonal functions (DPOF's) and have 

used them in the analysis, parameter estimation and optimal control of 

linear time-varying digital systems. 

LaMaire et al., (1987) have developed a robust frequency domain 

estimator for use in adaptive control systems which can identify both a 

nominal model of a plant as well as the frequency domain bounding 

function on the error associated with the model. Again their work is limited 

to transfer function type of models without time delay. 

Among the estimation techniques based on the transform approach 

available in the literature, the real transforms Rn ~ Rn work well for 

systems with known or no time delays. However, for systems with time 

delays present it can be shown that the delay cannot be uniquely identified 

under such transformations. This is because the delay term becomes a 

coefficient of all the parameters of the input polynomial upon 

transformation. The time delay and the system parameters therefore 

cannot be uniquely identified. This problem can be overcome with complex 

transformations such as the Fourier transforms. Since, the transformed 

equations are complex, they provide two equations which uniquely identify 

the time delay and the system parameters. The Discrete Fourier 
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Transform which is a transformation to the complex domain is the basis of 

the estimation technique to be presented. 



CHAPTER Ill 

STATEMENT OF THE PROBLEM 

A method for recursive estimation of the system parameters and 

time-delay based on nonlinear parameter estimation techniques is 

developed. The frequency domain estimation is based on transforming the 

original data sequence into the discrete frequency domain. The 

parameters and the time delay are recursively estimated using a nonlinear 

estimator which is to be developed for the frequency domain. Performance 

measures or "goodness of fit" will be developed upon which the estimation 

will be based. The advantage of using Fourier polynomials (Transforms) 

over the other orthogonal polynomials is that there are efficient and fast 

means of computing the coefficients using Fast Fourier Transforms (FFT) 

as compared to the other orthogonal polynomials. Furthermore, for 

systems to be identified, depending on the type of application, the Discrete 

Fourier Transform (OFT) may already be available as the output of some 

other data/signal processing. Coupled with the fact that the OFT can be 

computed efficiently and that most signals are band-limited and can be 

adequately described by a few frequencies, the present method results in 

an effective and practical parameter and delay estimation procedure. OFT 

is a linear transformation which para·meterizes the time delay. However 

with unknown delays present, the equations are no longer linear in the 

transformed parameters. A nonlinear parameter estimation technique 

(multi-input multi-output) is developed in the frequency domain analogous 

1 1 
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to the recursive nonlinear parameter estimator for single-input single­

output systems in the time domain (Goodwin and Sin, 1984). An attractive 

feature of the proposed methodology is that the size of the time-delay does 

not increase the computation as is the case with the other methods in the 

reviewed literature. 

Finally, an on-line version based on infrequent parameter and delay 

updates in order to obtain a nominal set of parameters can be developed. 

On-line estimation and update at every time step can be accomplished but 

will involve considerable computation but is not important since most 

studies (Shimkin and Feuer, 1988) show that controllers can be 

guaranteed to be stable only if the controller parameters are batch 

adjusted. 

The method can be applied to the preliminary identification (off-lihe) 

or the online estimation of slowly varying parameters on an infrequent 

basis. 

In the next section of the thesis, the proposed research study is 

identified. 

Problem Statement 

The following is the statement of the proposed research study. 

Given a linear discrete-time system with an unknown parameters and time 

delay 

"Develop a recursive method to estimate discrete-time system 
parameters and delay in the frequency domain." 

The degree of the input polynomial B(q-1), and the output polynomial 

A(q-1) are assumed known. The presence of the unknown delay make the 

equations nonlinear in the parameters and hence the estimators 
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developed will be nonlinear. The background theory for the estimation 

procedure is developed. A performance measure for estimating the 

parameters is formulated which will enable the estimation problem 

involving complex variables to be reduced to a regular multi-input multi­

output estimation problem with real variables. The next step is to establish 

some of the properties of the estimator. The parameters and time delay 

are also shown to be identifiable under transformation to the frequency 

domain. Finally, a number of simulation studies are conducted to 

substantiate the developed method. Simulation studies will also be used to 

show that the frequency domain estimator provides unbiased estimates in 

the presence of noise. 

The next chapter will present the basic theory for the frequency 

domain estimation of parameters and delay. 



CHAPTER IV 

BASIC THEORY AND ALGORITHM 

DEVELOPMENT 

Discrete Fourier Polynomials 

The main idea of using a transformation is to simplify the original 

problem by parameterizing the delay term. The problem is then solved in 

the transformed domain, and if necessary inverted back to the original 

domain. Orthogonal transformations are especially useful and a number of 

papers on linear transforms can be found in literature. In this development 

the Discrete Fourier Polynomials will be used. 

The Discrete Fourier Polynomials (DFP) are given by: 

kn -i2xtkn 
WN = e N n = 0, 1 , ... , N-1 (4.1) 

i =IT 

where N is the number of points or degree of the function, and k is the 

argument representing the various frequencies. The discrete polynomials 

W~ constitute a complete set of orthogonal basis functions. 

Any element f(n) of the data sequence { f} can be expressed in terms 

of the discrete Fourier polynomial as a weighted sum: 

1 N-1 k 
f(n) = - I F(k) W ~ 

N k=O 
(4.2) 

14 
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The set { F } constitutes the 'weighting pattern' or the Fourier spectrum of 

the sequence { f }. The elements of { F } are given by (Oppenheim and 

Schafer, 1975) 

N-1 
F(k) = L f(n) w-~n (4.3) 

n=O 

Equations (4.2) and (4.3) constitute a transform pair. The number of data 

points, N, does not add to the computational complexity, the choice of N is 

based on the following assumptions: 

1. The observed data is processed in contiguous blocks each 

containing N data points. 

2. Within a particular block, L, the parameters and time-delay are 

assumed constant. 

3. The parameters and time-delay are permitted to change over 

blocks. 

4. The parameters and time-delay are estimated recursively within a 

data block. 

With these assumptions, the procedure can be used on-line, for updating 

the parameters on an infrequent basis. 

Estimation Of Parameters 

Two cases will be considered 

1. Systems without delays and 

2. Systems with delays 

Consider the linear discrete time system described by the difference 

equation 

A(q-1)y(n) = B(q-1 )u(n) + e(n) (4.4) 
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where 

A( -1) 1 -1 -n q = + a1q + ... + anq 

B(q-1) = ba+b1q-1 + ... + bmq-m (4.5) 

q·1 is the backward shift operator and c:(n) is the residue at instant n 

and assumed to be a sequence of white noise independent of the input. 

The input and output sequences can then be represented by the 

discrete fourier polynomials (the factor ~is neglected since it does not 

affect the computation). 

N-1 
u(n) = I U(k) wk~ = < .!J, Y:4J (n) > 

k=O 

where <.,.> denotes the inner product and 

.U = [U(O) U(1) .. U(N-1 )]T 

W ( ) _ [Won w1 n w(N-1 )n1r -Nn- N• N ... N 

(4.6) 

(4.8) 

.U. is an N dimensional vector of the Discrete Fourier Spectrum of the 

input and WN(n) is a vector of the discrete fourier basis functions. Similarly 

one can represent 

N-1 
y(n) = L Y(k) ~ = < Y. WN (n)> 

k=O 
(4.9) 

From the definition (4.1) the following useful properties can be found. 

If WN (n) forms the basis vector for a function indexed by n, then the 

basis vector for the function advanced by j is given by WN (n+j). WN (n+j) is 

related toWN (n) by the transformation 

( 4.1 0) 
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where the shifting transformation T has a diagonal form and is given by 

-oj 
WN 0 0 0 

0 
-1j 

WN 0 0 

li= 0 0 
-2j 

WN 0 

0 0 0 
-(N-1)j 

W N (4.11) 

Then 

y(n+j) = < Y, WN (n+j) > = < Y, Ti WN (n)> (4.12) 

u(n+j) = < !J, WN (n+j) > = <!..!, Ti WN (n)> (4.13) 

Similarly, the basis vector for the function retarded by j is given by WN (n-j). 

WN (n-j) is related toWN (n) by the transformation 

'J1.N (n-j) = ri 'J1.N (n) 

where 

0 

0 

w1j 
N 

0 

0 0 

0 

0 

0 

w(N-1 )j 
N 

Rewriting equation (4.4) with index t, 

y(t) = -a1y(t-1) ... -any(t-n) + b0u(t) + b1u(t-1) ... 

+ bmu(t-m) + e(t) 

Using (4.5) and (4.9) and the shifting property (4.14) gives, 

(4.14) 

(4.15) 

(4.16) 



1 8 

< Y, WN > = -[<Y, T-1Wn(n)> ... <Y, T-nwN(n)>].a 

+ [<!.!, WN(n) > ... <.U, T-mwN(n)>].Q 

+ <E, WN(n) > (4.17) 

at every instant t where 

and 

.E = [E(O) E(1) ... E(N-1 )f 

is the transformed vector of the residue. In (4.17), if the coefficients of the 

same basis function W ~(n), k = 0, ... , N-1 are equated, the following over-

determined system of equations are obtained 

(4.18) 

where 

~=Y 

.!:IN = [-<T"1 ,Y>, ... <T"n,Y>,.!.J, ... , <T-m,.!.J>] 

6 = (a .Q]T 

YN = E 

~ can now be treated as the observation vector, HN as the observation 

matrix and 6 as the parameter vector. Since OFT is a complex 

transformation, ~· liN and .EN are all complex. The problem then becomes 

an estimation problem in the complex domain. 

The (n+m+ 1) parameters denoted as the (n+m+ 1) dimensional 

vector fr have to be estimated from the N complex equations (or 2N real 

equations) given by ( 4.18). The transformed measurements become 

complex and is denoted by theN dimensional vector Y N' The (N X n+m+ 1) 
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matrix HN which forms the observation matrix is also complex. Its elements 

are complex but are assumed to be known. The number of spectral lines or 

the elements~ must be as large as twice the number of parameters (i.e.,~ 
> n+m+ 1 ). In other words, HN has minimal rank (n+m+ 1 ). The vector V N 

represents the unknown transformed errors. 

It is not possible to determine .e. uniquely from (4.18) because of the 

errors~· However, if there are more frequencies (or measurements) than 

the unknown parameters, an attempt can be made to choose an estimator 

of .e. that minimizes in some arbitrarily chosen way the effect of the errors. 

For least-squares estimation, the estimator is chosen to minimize the sum 
A 

of the square of the error. More precisely, ftLs is defined as the least-

square estimator of~ given the data Y N if it minimizes 

(4.19) 

where 

V~ is the complex conjugate of V N' 

A 

The least-squares estimator iiLs can be determined by locating the 
dJ 

stationary point of ( 4.19). To do this, the first-order partial derivatives ---1§. 
dB. 

(i.e., the gradient) is formed and equated to zero. The resulting system of 
A 

linear equations are solved for ~Ls· From (4.19) it follows that: 

(4.20) 

(4.21) 

and the least-squares estimator satisfies the equation: 
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(4.22) 

This can be written as: 

(4.23) 

Note that the second partial derivative is: 

02JLS T * 
o!!2 = HN ~ (4.24) 

This matrix is positive-definite as long as HN has minimal rank. The solution 

of (4.21) is unique and minimizes JLs· Note that equation (4.21) indicates 
A 

that ~s must be chosen such that the residue r: 

(4.25) 

is orthogonal to the columns of the observation matrix H~. Equation (4.22) 

can be written as: 

(4.26) 

This system is referred to as the normal equation. Since HN has been 

assumed to have minimal rank, the inverse of [H~ THN] exists and the least-

squares estimator is found to be: 

(4.27) 

Properties of the Least-Sguares Estimator 

1. The error in the estimator eLS is a linear function of the 

measurement errors V N' This follows since: 
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- A *T -1 *T _eLS = _e - ftLs = _e - [HN HN] HN [H~ + V N] 

= -(H~THN)"1H~TVN (4.28) 

2. Using (4.28) it follows immediately that the residue rN can be 

written as: 

But the matrix 

[1- u (H*TH )-1H*T] WN-N -N -N 

(4.29) 

is symmetric and idempotent. Thus it is an orthogonal projection 

matrix. 

3. Since the left hand side of equation (4.37) is a real vector, it 

suggests that: 

is a real matrix. 

The information matrix HN, and the observation vector, Y N being all 

complex introduces numerical and computational difficulties. For example, 
*T * in equation (4.27) HN and HN are complex. A complex matrix multiplication 

must be performed to compute the product of these two matrices. Next, the 

inverse of the product matrix has to be determined to obtain the pseudo­

inverse of the information matrix. The pseudo-inverse matrix is then post 

multiplied by H~- Finally, the result obtained is post-multiplied by the 
A 

observation vector to obtain the parameter estimates B.Ls· Even though HN, 
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H~, andY N are complex, the right hand side of the equation (4.27), has to 

be a real quantity since the parameter vector~ is real. 

The difficulty of dealing with complex numbers can be avoided if each 

of the N complex equations is treated as two real equations. The following 

performance measure is proposed for estimating the parameters. 

Performance Measure 

The best estimates of 8 can be obtained by minimizing the penalty 

function 

J = ~NT~N 

where ~N * is the complex conjugate of :-LN and 

By defining 

then ( 4.19) can be written as 

N-1 
J = L D(k)T D(k) 

k=O 

(4.30) 

( 4.31) 

It will now be shown how ER(k) and E1(k) can be determined. Considering 

the kth equation of (4.18) 
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Y(k) = -a1 ~ Y(k) -~ W~Y(k) ... -an WnNk Y(k) + 

k mk b0U(k) + b1 W N U(k) ... +bmW N U(k) +. E(k) ( 4.32) 

Equating the real and imaginary parts of ( 4.32) gives: 

n 
ER(k) = 1: [Y R(k)CU) + Y1(k)S(j)]ai 

j=O 

m 
-1: [UR(k)C(j) + U1(k)S(j)Jb1. 

j=O 

n 
E1(k) = L [Y1(k)CU) + Y R(k)S(j)]ai 

j::O 

n 
-L [U,(k)C(j) + UR(k)SU)]bj 

j=O 

with the following definitions 

U(k) = UR(k) + i U1(k) 

wj~ = e-i2n:jk!N = CU) + i SO) 

Putting (4.33) and (4.34) in the form 

Z(k) = <1> T(k)e + D(k) 

where 

Z(k) = [Y R(k) Y1(k)]T 

we obtain 

(4.33) 

(4.34) . 
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-(YR(k) C(1) + Y1(k) S(1 )) ... -(YR(k) C(n) + Y1(k) S(n)) 

<I>= 
-(Y1(k) C(1)- YR(k) S(1 )) ... -(Y1(k) C(n)- YR(k) S(n)) 

UR(k) (UR(k) C(1) + U1(k) S(1 )) ... (UR(k) C(m) + U1(k) S(m)~ T 

U1(k) (U1(k) C(1)- UR(k) S(1 )) ... (U1(k) C(m)- UR(k) S(m)) J (4.35) 

and .Q.(k) as previously defined. Clearly, we require (m+n+ 1 )/2 distinct 

equations (or frequencies) to solve for the unknown parameters. This 

means that: 

rank_mN = rank [<1>(1) ... <j>(N)]T = m+n+ 1 

If N > (m+n+ 1 )/2, then we have an overdetermined system of equations. It 

is clear that <I>N is of rank m+n+ 1 if we have (m+n+ 1 )/2 distinct spectral lines 

for the input data sequence. 

The best estimate of <1> can be obtained by minimizing the cost 

function (4.30). This is accomplished by setting: 

&J/09 = 0 

whereupon the Least Squares Estimate of the parameter gives 

(4.36) 

where _m~ is the pseudo-inverse of _mN. 

It is not difficult to see that a considerable data compression can be 

achieved by using the Fourier transform. Since any real signal consists of a 

finite number of frequency components, it can be accurately represented 

by the few spectral lines that describe the input and output signals. Hence, 

even if one had a large number of data points in the time domain, 



25 

depending on the frequency content of the signal, the number of data 

points in the frequency domain will generally be fewer and equal to the 

number of spectral lines of the input sequence. 

A great amount of effort is required in computing the pseudo-inverse 

for large spans of N. However, the recursive form of the least-square can 

be used. The recursive form of the least-squares estimates require the 

same number of computations as the batch form for the same number of 

data. The batch form however requires a large N by N matrix to be 

inverted, while the recursive form only requires a 2 by 2 matrix inversion. It 

is important to realize the the recursion now is not in timet, but in frequency 

k. The major advantage of using the recursive form is in estimating the 

system parameters and time delay. In this case, the system equations in 

the frequency domain are nonlinear and the nonlinear sequential least 

squares which is to be developed in the next chapter can be easily 

employed to estimate the parameters and time dealy. 

Recursive Least-Squares Estimation 

There is a technique for calculating the parameter estimates when 

one more frequency term is added to the frequency spectrum. Then (4.36) 

becomes: 

(4.37) 

Now 

_rfl~ +~~-.T ~~-.T 
- .:±'N -N 'i'N + 1 'l'N + 1 ( 4.38) 
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Defining 

-1 T 
p(N) = <I> N <I> (4.39) 

It follows that 

(4.40) 

Using the matrix inversion Lemma (Sage, 1968), (4.40) can be written as: 

The new parameter estimate using (4.37) is 

Since 

S _ <I> # y _ [<I>N:1]-1 <I> T y . 
-(N+1) - - N+1 -N+1 - <I> -N+1 -N+1 

-N+1 

<I>~YN = P(N)-1 ~(N) 

B(N+1) = P(N+1) [P(N)-1B(N) + <I>N+1 YN+1] 

using (4.40), (4.46) becomes 

( 4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 
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(4.49) 

The required recursion. In general for any frequency k, the equation can 

be written as 

~ (k) = ~ (k-1) - P(k)<j>(k)[Z(k) - <!> T (k)~(k-1)] (4.50) 

with the covariance P(k-1) given by 

P(k) = P(k-1 )-P(k-1 )<j>(k)[ <l>T(k)P(k-1 )<l>(k)+l]-1 <j>(k)P(k-1) (4.51) 

P( -1 ) = P 0 = al; a is any large positive number. 

The above development can be applied with equal ease to 

parameter estimation problems with unknown parameters but known 

delays. 

Generalized Least-Squares Problem 

The least-squares cost function can be generalized by introducing a 

symmetric, positive-definite weighting matrix W 

T * J= VN WVN 

N-1 
= L W(k) (ER 2(k) + E,2(k)) 

k=O 

and ER(k) and E1(k) as previously defined. 

(4.52) 

(4.53) 

W(k), the elements of W can be chosen to emphasize (or de­

emphasize) the influence of the various frequency content of the data 

points. The introduction of the weighting matrix W makes no substantial 

differences in the development. 



where 

Equation (4.42) can be rewritten as: 

N-1 
J = L, oT(k) R-1 D(k) (4.54) 

k=O 

D(k) = [ER(k) E1(k)]T 

a = [ Vf> ( k) w (0k ) ] 

28 

(4.55) 

Following a development similar to the least-squares problem it can 

be shown that the recursive equations for parameter and covariance 

update for: 

8(k) = 8(k-1) - P(k) <j>(k) (Z(k) - <!> T (k) 8(k-1)] (4.56) 

P(k) = P(k-1) - P(k-1) <j>(k) [ <!> T (k) P(k-1) <j>(k) + R]-1 <j>(k) P(k-1) ( 4.57) 

In the next chapter, the theory developed for the frequency domain 

estimation of parameters is extended to estimate unknown parameters and 

also the time delay. This however leads to a nonlinear estimation problem 

in the frequency domain. 



CHAPTERV 

IDENTIFICATION OF PARAMETERS AND DELAY 

When the system parameters and time delay are unknown, the 

frequency domain estimator can be employed to estimate them. However, 

when the system time delay is unknown, the transformed frequency 

domain equations describing the system are non-linear in the time-delay 

parameters. A nonlinear parameter estimator in the frequency domain has 

to be developed. A brief review of the theory of nonlinear least-square 

theory is presented. 

Nonlinear Least-Squares 

A linear model is often too restrictive and it is therefore useful to 

examine a nonlinear model. Suppose the n parameters .ft are related to the 

measurement data y_ according the the equation 

y_ = bOO) + Y (5.1) 

where h(.ft) represents some nonlinear continuously differential function of 

~. The least-squares estimator of ft given y_ is defined as the value of 8 that 

is minimized 

(5.2) 

where, for convenience, the weighting matrix has been chosen as an 

identity matrix. 

29 
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Assuming some reference value, ft*, the objective function ILs is 

expanded in a Taylor series 

(~ - ~*) 

A necessary condition for~* to minimize ILs is 

a1 
__.6§. (~*) = 0 
a~ 

(5.3) 

(5.4) 

An additional necessary condition for minima is that the matrix (il:~~sJ 
evaluated at .fi.* must be positive-semidefinite. The sufficient conditions for 

()21 ()21 
!t to minimize ILs are ~s = 0 and ~s is positive-definite. To determine ax oft 

• A 
the least-squares estrmate e, set 

oiLS = -2[Y.- .b_OO))~b e = 0 
a~ oft 

(5.5) 

which can be rearranged as 

[ah "] r dft e [y - .b!.e)J = o (5.6) 

The residual [Y.- h(S)] must be orthogonal to the columns of db. In a linear 
d.{! 

problem, h(l!) = .l:ilill and il~ {h(ID) = Hand equation (5.2) becomes 
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T 1\ 
H [Y. - H 8) = 0 (5.7) 

Equation (5.7) represents a linear equation in ,a and has a solution 

(5.8) 

However, when h is nonlinear, (5.6) represents a system of nonlinear 

algebraic equations for which, in general, there is no closed form solution. 

One is, consequently, compelled to solve (5.6) numerically to find least­

squares estimates when nonlinear systems are involved. 

To obtain the estimates, suppose that the initial estimate ft* of ft is 

available. For example, the expected value E[.a] would provide such an 

estimate. Using ft*, the system equations (5.1) is expanded out in a Taylor 

series 

y_ = .b(Jl*) + [ ~~(.!)*) ] (Jl- .!l*l + o (lift - .!t II) + Y. (5.9) 

For the norm 118- 8*11 sufficiently small, the higher order terms can be 

neglected and (5.9) can be written as 

(5.1 0) 

By defining 

H = an (8*) - a.a - (5.11) 

Since (5.1 0) represents linear system, the least-squares estimate of ft is 

given by 
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(5.12) 

Thus, an approximation of the least-squares estimate is provided by (5.12). 

In addition, equation (5.12) suggests an interative procedure for refining 

the estimate. Suppose that the linearization (5.9) is performed relative toft* 
A 

and the new estimate ft is computed using (5.12). A necessary condition for 
A e to be the least-squares estimate is that the orthogonality condition (5.6) 

A A 
must be satisfied. In general, e may not satisfy (5.6) but, hopefully, .e. will 

A 

provide an improvement over ft*. If it does provide an improvement, the e 
can be used to replace ft* and the linearization of (5.9) repeated. Then, a 

A 

new estimate e is computed, the orthogonality condition tested, and if 

necessary, the procedure is repeated. Since equation (5.12) is derived 

from (5.6), the orthogonality condition is also contained in equation (5.12). 

The iterations are terminated when l:iT[y- h (g*)] vanishes (i.e., the gradient 

vanishes). 

The iteration procedure can be modified by introducing a step size 

parameter A so that 

(5.13) 

The above procedure is known as Gauss' method and the step size 

parameter A serves as a control on the correction made to !!*. It can greatly 

influence the convergence or divergence of the iterations. 

Instead of linearizing the measurement equation (5.1 ), the objective 

function ILs can be approximated as a quadratic cost function and then 
A 

minimized. Ignoring the higher order terms than the second in (5.3), ft that 

minimizes the resulting quadratic cost function 
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I (8) = I (8*) + [aiLS (8 * )] (8- 8*) LS - LS - {)ft - - -

+ 1 (8 - 8*)T ~ ( 8 *) (8 - 8*) [al2 J 
2 - - a.e2 - - - (5.14) 

satisfies 

(5.15) 

A 

when solved for ft gives 

A [ai2Ls J-1 [aiLs JT .e = .e· - a.e2 (.a*) a.e (.a*) (5.16) 

Since 

a~~s (l!') = -21i - .!J(ll'W ~: (l!') (5.17) 

the second derivation of the objective function is 

{ 

n 
()12 al!~s (ll') = -2 L !Y; - h;(O') 1 

i=1 

(5.18) 

Since {5.16) is only an approximation, it is reasonable to introduce a step 
A 

size parameter to insure that the estimate ft actually reduces the value of 
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the cost function relative toft*. Then letting .t! = ~; evaluated at~*, equation 

(5.16) becomes 

The above least-squares estimate provides the basis for an iterative 

search procedure. It is called the Newton or Newton-Raphson procedure 
a2h. 

(Sorenson, 1980; Luenberger, 1973). If the terms [yi - hi (!!*)] 0~21 (8*) 

are neglected, the two methods are identical. If the reference value ~* is a 
1\ 

"good" approximation of .e,, the residual should be small so that neglecting 

this term may be justified. Further, to ensure that the sufficient condition for 
()21 

minimization of ILs ~s has to be positive definite. Since equation (5.18) . ae. 
may not always be positive-definite (Speedy, Brown and Goodwin, 1970). 

a2h. a21 
Neglecting [yi - hi (.fi*)] T --f (.fi*) ensures that ~s is positive definite. a.e. a.e. 

a21 
Another well-known procedure is obtained when ~s is replaced by a .e. 

1\ 

the identity matrix in (5.16). In this case, the estimate ft is obtained from the 

reference value!!* by a step taken in the negative gradient direction. Since 

the gradient defines the direction in which the cost increases most rapidly in 

the neighborhood of B.*, the search direction defined by 

Jl = Jl* + A[a~~J 
'A < 0 (5.20) 
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is called the steepest descent method. The step size is chosen to ensure 

that the cost is reduced. 

A hierarchy of search procedures have been defined in which the 

steepest descent or gradient search method is the simplest and the 

Newton method the most complicated. In fact, in the Gauss and Newton's 

[
d21LS ]-1 methods, the gradient vector is automatically scaled by a.e.2 (9*) so 

that the search for the next estimate moves in the optimal direction. The 

Newton method is quite complicated since it requires the computation of 

a2~. When the initial estimate .e.* is poor, the steepest descent method often a .e. 

exhibits superior performance in the sense that the estimates approach the 

true value rapidly. However, the gradient method is known to converge 

very slowly in the vicinity of the minima. Whereas the Newton method 

converges very rapidly near the minimum. 

In the next section, the methodology for sequentially implementing 

the nonlinear least-squares in the frequency domain is presented. 

Estimation Of System Parameters And Delay 

The frequency domain parameter estimation technique developed in 

the previous chapter will be extended in this section for estimating the 

unknown parameters and time delay of a discrete time system. Consider 

the class of linear discrete time systems described by 

(5.22) 

where dis the pure unknown time delay, and 
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which makes the number of unknown "parameters" m+n+2. Following a 

development similar to ( 4.17) of the last chapter the following equation is 

obtained 

< Y, WN (n) > = - [<Y, T-1WN (n) > ... <Y, T-nwN (n)>}a 

+ <.E, WN (n) > (5.23) 

or 

< Y, WN (n) > - [<Y, T -1wN (n) > ... <Y, T -n WN (n)>}.a 

(5.24) 

However the shifting transformation matrix T -(d+D, (j = O,m) contains the 

unknown delay parameter d, which makes the equation (5.23) and hence 

the problem nonlinear. If, instead of the OFT, any other real orthogonal 

transformation is used then, Y, r-i, U, and E are all real. Since rd is a 

product matrix of the .b vector, unique identification of d and .b is not possible 

due to loss of identifiability. Only estimates of the product of d and bi = (0, .. 

m) can be obtained. With OFT this problem does not arise. Since, for each 

frequency k, a complex equation is obtained, a unique solution ford and b 
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d and b. exists and the estimation of d and .b. is possible as shown below. 

The kth equation of (5.22) can be written as 

Y(k) = - a1W~Y(k)- a2W~kY(k) ... - anW~Y(k) 

+ b0Wd~U(k) + b1 W (d~1 )kU(k) ... + bmW (d~m)kU(k) 

+ E(k) 

Equating the real and imaginary parts of (5.25) gives 

n 
ER(k) = L [Y R(k)C(j) + Y1(k)SO)]a1. 

j=O 

m 
- :L [UR{k)C(d+D + u1(k)S(d+j)]bi 

j=O 

n 
E1(k) = L [Y1(k)C(j) - Y R(k)S(j)]ai 

j=O 

m 
- L [U,(k)C(d+j) - UR(k)S(d+j)]bj 

j=O 

(5.25) 

(5.26) 

(5.27) 

with the equations (5.26) and (5.27) now being nonlinear in the parameters. 

Again defining 

and 

D(k) = (ER(k) E1(k)]T 

Z(k) = (Y R(k) Y1(k)]T 



n 
Z(k,S) = - L [Y R(k)CG) + Y1(k)SU)]ai 

j=O 

n 
-L [Y1(k)CU) - Y R(k)S(j)]ai 
j=O 

m 
-L [UR(k)C(d+j) + Ul(k)S(d+j)]bj 

j=O 

m 
-L [UI(k)C(d+j) + UR(k)S(d+j)]bj 

j=O 

Performance Measure 
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(5.28) 

To obtain an estimate of the parameters, the following performance 

measure is proposed. The best estimate of e = (.a.. Q.,d) is obtained by 

minimizing the the penalty function 

J = .ETf* 

N-1 
= L D(k)T D(k) 

k=O 

N-1 
= L (Z(k) -Z(k,e)f [Z(k) -Z(k,e)] 

k=O 
(5.29) 

Any nonlinear minimization technique can be adopted to minimize 

the performance measure J. However for computational ease over large 

spans of frequencies, a procedure similar to the Sequential Prediction Error 

method (Goodwin and Sin, 1984) is developed. The important difference 

being that the data is being processed sequentially at various frequencies k 

(instead of time t). The error D(k) being a vector, the algorithm has to be 

developed for a vector case. 



Nonlinear Frequency Domain Parameter 

Estimation Algorithm 
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In the development of the nonlinear algorithm both the system 

equations and the Performance measure are linearized using the Taylor's 

series. The nonlinear frequency domain estimation scheme is developed 

here. Following a development similar to the Nonlinear Sequential 

Prediction Error method in the time domain the Nonlinear Frequency 

Domain Estimator (NFDE) will be developed for a multi-input multi-output 

case. Consider the scalar criterion of goodness of fit 

with 

where 

with 

and 

N 
VN(e) = 1/N L, l[Z(k,e),Z(k)] 

k=O 

I[Z(k,e),Z(k)] = ~ [Z(k,e) -Z(k)]T [Z(k,e) -Z(k)] 

= ~ II Z(k,e) -Z(k) II~ 

Z(k) E R2x1 

Z(k, 8) e R2x1 

(5.30) 

(5.31) 



n 
Z(k,8) = - L [Y R(k) CU) + Y1(k)SU)]ai 

j=O 

n 
-L [Y1(k) CU) - Y R(k)S(j)]ai 

j=O 

m 
+ :L [UR(k)C(d+D + U1(k)S(d+Dlbi 

j=O 

m 
+ L [U,(k)C(d+j) - UR(k)S(d+j)]bj 

j=O 

Then (5.30) can be expressed as 

(N+ 1 )V N+ 1 (8) = NV N(8) 
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+ d [Z(N+ 1 ,8)- Z(N+ 1 )]T [Z(N+ 1 ,8) - Z(N+ 1 )] (5.32) 

Approximating Z(N+ 1 ,8) by using a first order Taylor's series about 8(N) 

gives 

Z(N+ 1 ,8) = Z(N+ 1 ,8 (N)) + Z'(N+ 1) (8 - 8 (N)] (5.33) 

where 

(5.34) 

at 8 = e (N) 

Substituting (5.33) into (5.32) gives 
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(N+ 1 )V N(8) = 
1 

NV N(8) + 2 [Z(N+ 1 ,8(N)) + Z'(N+ 1) 

[8- 8 (N)]- Z(N+ 1 )]T* 

Z(N+ 1 ,8(N)) + Z'(N+ 1) [8- 8 (N)]- Z(N+ 1 )] (5.35) 

+ NVN(8) + ~ ['I'(N)T8- Z(N+1)]T['I'T(N)8- Z(N+1)] 

where 

'I'(N) = Z'(N+ 1) 

- 10ZR(N+1 )/881 ... 0ZR(N+1 )/08p I 
- 8ZR(N+1 )/081 ... 0ZR(N+1 )/08p 

at e = 8 (N) (5.36) 

with p = m+n+2 and 

X(N+ 1) = Z(N+ 1) - Z(N+ 1 , 8(N)) + 'I'(N) T e (N) (5.37) 

Differentiating (4.35) with respect to 8 gives 

where 

V N'(8) = d/d8 V N(8) (5.39) 

Expanding V N'(8) in a first order Taylor's series about 8(N) gives 

(5.40) 

with the Hessian matrix 
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VN" = 

Substituting (5.40) into (5.38) and noting that V N '(8) is zero in view of 

optimality of 8(N) gives 

(N+ 1 )V N' =NV N" [8- 8 (N)] - 'lf(N) [X(N+ 1) - 'lf(N) T 8] (5.41) 

Now the value, 8 (N+1) of 8 optimizing VN+1(8) gives V'N+1(8) = 0. and hence 

from (5.41) satisfies 

NVN" [8 (N+1)- 8 (N)]- 'lf(N) [Z(N+1)- 'lf(N)T8 (N+1)] = 0 (5.42) 

that is 

[NVN" + 'lf(N) 'lf(N)T] 8(N+1) = NVN" 8(N) + 'lf(N) X (N+1) (5.43) 

= [NVN" + 'lf(N) 'lf(N)T] 8(N) + 'lf(N) [X(N+1)- 'lf(N)T8(N)] 

or 

8(N+1) = 

8(N) + [NVN" + 'lf(N) 'lf(N)T] -1 'lf(N) [X(N+1)- 'lf(N)T8(N)] (5.44) 

This is the basic form of the algorithm. For computational reasons, it can 

be shown that VN an be computed iteratively. Differentiating (5.38) w.r.t. 8 

gives 

(5.45) 

defining 



and using the Matrix Inversion Lemma 

gives 

P(N) = [P-1 (N-1) + 'lf(N) 'lf(N) Tr1 

= P(N-1) - P(N-1) 'V(N) 

* [I +'lf(N)TP(N-1)'lf(N)r1 'V(N)TP(N-1) 

Finally the algorithm can be summarized as 

1\ 

S{k) = S(k-1)- P(k) 'lf(k) [Z(k) -Z(k,S) S(k-1)] 
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(5.46) 

(5.47) 

P(k) = P(k-1)- P(k-1) 'V(k) [\VT(k) P(k-1) 'lf(k) + W1 'V(k) P(k-1) (5.48) 

Equations (5.47) and (5.48) provide recursive estimates of the 

parameter estimates and the covariance of these estimates at the various 

frequencies. The parameter and covariance update equations for the 

nonlinear case are structurally similar to the equation ( 4.50) and ( 4.51) 

developed in the previous chapter. The only difference being that the 

information vector <1> has now been replaced by 'V the derivative of Z(k,e) 

w.r.t e in the nonlinear case. 

In some cases, it is not feasible to utilize the least-squares based 

algorithms due to the computations involved in updating and storing the 

covariance matrix. This is especially so when the number of parameters is 

large. In such cases, it is possible to replace the covariance matrix by an 

identity matrix to obtain a variation of gradient algorithm called the 

Normalized Least-Mean-Square Algorithm. 
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8(k) =a (K-1) + ~(~) <l>(k) [y(k+1)- <I>T(k) 8 (K-1)] 
C+<j> (k)<j>(k) 
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(5.49) 

where ~(k) is a scaler gain, usually taken to be a small positive constant. 

This algorithm is suggested by Albert and Gardiner (1967), Nagumo 

and Noda (1967) and others. It is also called as the projection algorithm 

(Goodwin and Sin, 1984). The Normalized Least-Mean-Square (NLMS), 

has been developed for a system linear in the parameters. The variant 

obtained in this thesis is a nonlinear version of the algorithm 

where 

8(k) = a (K-1) + i'(k) [Z(k)- z(k, 8 (K-1 ))] 
l+'lf (k)'lf(k) 

1\ 

'lf(k) = dZ (k,S) I e = e (K-1) 
de 

(5.50) 

(5.51) 

It is possible to simplify the algorithm even further by removing the 

normalization all together. This leads to a variation of the Least-Mean­

Square Algorithm (LMS) (Widrow and Hoft, 1960) 

e(k) =a (K-1) + ~-t(k) <j>(k) [y(k)- q,T(k) 8 (K-1)1 (5.52) 

The nonlinear variant is obtained by replacing <j>(k) by the gradient 'Jf(k) 

8(k) = e (K-1) + !-l(k) 'lf(k) [Z(k)- Z(k, e (K-1)] (5.53) 

This is similar to the stochastic approximation scheme proposed by 

Robbins and Tomro (1951 ). 

Getting back to the problem on hand, the transformed equation for 

the discrete time system with unknown parameters and time delay (5.28) is 
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in the same form as the equation used in the development of the nonlinear 

frequency domain estimator. The parameter and delay estimates can 

therefore be recursively computed by solving (5.47) and (5.48) 

sequentially. Even though the original system with unknown parameters 

and time delay is described by a linear difference equation in the time 

domain, the transformed equation becomes nonlinear in the time delay 

parameter. The estimation procedure being nonlinear, the convergence of 

the parameter estimates depends on the how close the initial estimates are 

to the actual values. On startup, it might therefore be necessary to iterate a 

few times until good estimates are obtained. 

In the next chapter some important properties of the estimator will be 

derived and presented. 



CHAPTER VI 

PROPERTIES OF THE FREQUENCY 

DOMAIN ESTIMATOR 

An important question that arises is how do we know whether or not 

the results obtained from the an estimator are good? A good parameter 

estimator should possess certain properties. The properties of the 

estimator must therefore be studied. An important property desired in any 

estimator is unbiasedness. The estimates provided by a unbiased 

estimator will converge to their true values on the average. 

Further, the identifiability conditions of the system must be preserved 

under any transformation, otherwise the true parameters of the system can 

never be estimated. Since the transformation is to the frequency domain, 

the identifiability conditions can be readily established. It will be shown that 

the system that is identifiable does not suffer loss of identifiability of 

parameter and delay when transformed to the frequency domain. It should 

be noted that other real transformations like Laguerre polynomials cannot 

be used to explicitly identify the parameters and delay. 

The following definitions and theorems are presented. 

Theorem I 

Given that E[x(n)] = e where E is the expectation operator, the 

expected value of the Fourier transform of the signal i.e. , 

46 
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Proof 

By definition 

00 

(6.1) 

n=-oo 

00 

(6.2) 

n=-oo 

The order of expectation and summation may be interchanged since they 

are linear operators and it is assumed that the series converges uniformly. 

Interchanging the order of expectation and summation, 

00 

(6.3) 

n=-oo 

=0 

Defjnjtjon 1: (Mendel,1984) 

A 

Estimator e(n) is an unbiased estimator of deterministic e if 

A 

E[e(n)] = e for all n 

or of random e if 

A 

E[e(n)] = E[ e] for all n 

In terms of the estimation error, e(n), unbiased ness means, that 

-
E[e(n)] = e for all n 
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Theorem II 

The Least-Squares Frequency Domain Estimator 

1\ T -1 T 
_eLS = ~ <I>N) <I>N .YN (6.4) 

is unbiased if yN is zero mean and if yN and HN are statistically independent. 

Proof 

Since Y N = <I>N ,a + vN and the least-squares estimator in the frequency 
1\ 

domain is given by (6.4), ftLs can be written as 

= ~ ~r1 <I>~ ~N _e + VN) 

= .e + ~ <I>Nr1 <I>T YN 

Taking the expectation on both sides of (6.2), it follows that 

for <I>N and V N are statistically independent, 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

In deriving (6.8) the fact that <I>N and yN are statistically independent has 

been used. Recall that if two random variables, a and b, are statistically 

independent, the probability density function p(a,b) = p(a)p(b); thus the 

expected value E[a,b] = E[a] E[b]. The second term in (6.8) is zero since 

E[V N] = 0 and therfore 

1\ 

E [.eLs1 = .e for all N (6.9) 
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In the case of estimation of parameters depending on the 

interrelationships between the parameter vector ft, the observation matrix 

H and the measurement noise vector V, a number of situations can occur 

as shown in Table I. Given the system 

A(q-1)y(n) = B(q-1)u(n) + c(n) (6.1 0) 

with E [c(n)] = 0, the frequency domain model is given by equation 

where E[D(k)] = 0 by Theorem I. 

The observation matrix <I>N is random and ft is deterministic. This is a 

case of A.2.b of Table I. The least-squares estimate in the frequency 

domain is given by 

~(k) = r<f)T <I> 1-1 <I> T y 
~ ~-K -K -K 

Now 

However, since <I>K and V K are statistically dependent and are related by a 

complicated relationship, the estimator will be biased. 

The next definition and theorem establish that the unknown 

parameters and time delay of the frequency domain model are identifiable. 

The next definition and theorem establish the identifiability properties 

in the frequency domain. Identifiability is a concept that is central to 

identification problems. Loosely speaking, the problem is whether the 
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identification procedure will yield a unique value of the parameter ft and/or 

whether the resulting model is equal to the true system. 

Definition II: (Ljung, 1987) 

The system 

y(z) = G(z,e) U(z) + H(z,e) V(z) 

is globally identifiable at e* if and only if 

G(z,e) = G(z,e*) 

and 

H(z,e) = H(z,e*) (6.9) 

for almost all z. For local identifiability, only e confined to a sufficiently small 

neighborhood of e* is considered. 

Theorem Ill 

Given the Equation Error Model structure 

the model structure is strictly globally identifiable. The above equation can 

be written as 

00 00 

y(t) = I g(n) [q-n u(t)] + I b(n) [q-n e(t)] (6.1 0) 
n=1 n=O 

= G(q) u(t) + H(q) e(t) (6.11) 



with 

G(z,e) = ~ 

1 
H(z,e) = A(z) 
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(6.12) 

Equality of H in (6.9) implies that the A-polynomials must coincide, which in 

turn implies that the 8-polynomials must coincide for G to be equal. It is 

thus immediate to verify that equation (6.9) holds for all 9* in the model 

structure (6.12). Consequently, the structure (6.12) is strictly globally 

identifiable. 

with 

and 

In case of system with unknown delay, the model structure is 

G(z,e) =~ 
1 

H(z,e) = A(z) 

(6.13) 

(6.14) 

Once again, equality of H in (6.12) implies that the A-polynomials 

must coincide. For equality of the G transfer function, the 8-polynomials 

have to coincide and 

z-d = z-d* (6.15) 
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i.e., 

(6.16) 

Equation (6.13) and (6.14) can be satisfied only if d = d*. Hence equation 

(6.9) holds good for all 8* in the model structure and the Equation Error 

Model structure with unknown time delay is globally and locally identifiable. 



CHAPTER VII 

EXAMPLE PROBLEMS 

The frequency domain estimation technique will be applied to 

estimate two classes of problems. One will be to estimate unknown 

parameters. The other will be to estimate the unknown parameters and 

also the time delay. In simulating both cases the effect of noise on the 

estimates is investigated. The length of the sequences used in the 

transforming the data to the frequency domain is also considered. 

Examples showing the effect of various input sequences on the estimation 

of parameters and the time delay will be presented. 

Estimation of Parameters 

In the first set of six examples, the unknown parameters of a second 

order system are estimated. The effects of the various input sequences 

and measurement noise on the parameter estimates are investigated. A 

summary of these example problems is presented in Table II. 

Consider the system described by the difference equation: 

(7.1) 

where a1 = 0.125, a2 = 0.5 and b0 = 1.0 and are assumed constant. For 

efficient computation using the Fast Fourier Transform (FFT), the number 

of OFT points N = 2r, where r is any positive integer. Using equation (4.1) 

and (4.2), the system (7.1) can be written as 

53 
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rYR(k)J- = 1-[YR(k) C1) + Yl(k) 8(1 )] _ [YR(k) C(2) + Yl(k) 8(2)] _ UR(k) 1 

~l(k) = L-[YI(k) C(1)- YR(k) 8(1 )] - [YI(k) C(2)- YR(k) 8(2)]- Ul(k) J 

GD + [~~~~~] (7.2) 

where 91, 92 , and 93 are the parameters to be estimated. The initial 
" 

estimates of the parameters are .e. = (0.1 0, 0.40, 0. 75] and the covariance 

matrix Po is initialized to 1 03*1. 

In Example 1, the input sequence u(t) = t exp(-t/5) is used for 

identification purposes. The measurement noise e(t) is assumed to be zero. 

Figure 3 shows the estimate of the parameters obtained for (7.2) as the 

transformed data at the various frequencies is processed sequentially 

when the block size or the number of points for the FFT used is N = 64. 

After the initial transients, the parameters quickly converge to their true 

values. 

Example 2 illustrates the effect of noise on the parameter estimates. 

In this case, the same problem of Example 1 is considered. However, the 

measurement noise is assumed to be present. To illustrate the effect of 

noise, the system is corrupted with noise e(t) where E(t) is a uniformly 

distributed random sequence whose strength is 1 0 percent of the 

maximum value of the output y(t) (i.e., E(t) e ymax * [-0.1, 0.1 ]). Figure 4 

shows the estimate of the parameters as the data at the various 

frequencies is processed recursively. In this case, the estimates converge 

to their true values in a mean sense. 

In the next two examples, a square-wave input is used for 

identification. The square wave input has unit amplitude and a period of 32 

sampling intervals. For Example 3, the measurement noise is assumed 
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absent. Figure 5 shows the estimated parameters as the data is processed 

sequentially. As in Example 1, except for the initial transients, the 

parameters converge very quickly to their true values and remain constant. 

With Example 4, measurement noise is assumed present. As with 

Example 2, the strength of the noise is assumed to be 1 0 percent of the 

signal. With the same square-wave input sequence, Figure 6 shows the 

estimate of the parameters. Notice that after the initial transients, the 

parameters converge to their true values in a mean sense. The estimates 

obtained in this case are superior to those obtained using an exponential 

input. This is due to the fact that the square wave has more frequency 

content than the exponential input. 

Example 5 investigates the estimation of parameters of the second 

order system with a sinusoidal input. The input sequence used for 

identification is a sum of sinusoids 

() . 2n . 4n . 8n . 3n . 5n . 7n 
u t = s1nNt +StnNt + stnNt +StnNt + stnNt +StnNt (7.3) 

Since the number of unknown parameters is three, to ensure that they can 

be estimated, the input sequence is chosen as a sum of three sinusoid 

sequences. This prevents the iobservation matrix from being singular. 

Figure 7 shows the estimate of the system parameters at the various 

frequencies when measurement noise is absent. Figure 8 shows the 

estimate of the same parameters with sinusoidal input with measurement 

noise, which has been defined previously. 



Estimation of Parameters and 

Delay (First Order) 
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In this set of six examples, the estimation of both the system 

parameters and time delay of a first order system is considered. The 

effects of the various input sequences and measurement noise on the 

estimates are investigated. The number of OFT points used for 

transforming the data (block size) in N = 64. Table Ill presents a summary 

of the various examples. 

Consider the system described by the difference equation: 

y(t) + a1 y(t-1) = b0u(t-d) (7.4) 

where a1 = 0.5, b0 = 1.0 and d ::::; 3 and are assumed constant. Using 

equation (5.6), the system (7.4) can be transformed to the frequency 

domain and written as: 

and 
1\ z (k,8) = l-- [Y R(k)C(1) + Y1(k)S(1 )] 81 

- [Y,(k)C(1) - y R(k)S(1 )] 81 

+ [UR(k)C(83) + U1(k)S(83)]J 
+ [U1(k)C(83) - U1(k)S(83)] (7.5) 

with 81, 82 and 83 are the parameters to be estimated. The parameters and 

the time delay are estimated using the Nonlinear Least-Square Frequency 

Domain Estimator given by equations (5.14), (5.25) and (5.26). The initial 

estimates of the parameters are 8 = (0.4, 0.75, 2.0) and the covariance 

matrix was initialized to P 0 = diag (1 0,1 0,1 03). When measurement noise is 
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assumed present, the system output is corrupted with noise E(t) where E(t) is 

a uniformly distributed random sequence whose strength is 10 percent of 

the maximum value of the output y(t) (i.e., E(t) e ymax * [-0.1, 0.1 ]). 

Example 7 uses the exponential input u(t) = t exp(-t/5) and has no 

measurement noise. Figure 9 shows the estimate of the parameters 

obtained for (7.5) as the data at the various frequencies is processed 

sequentially. After the initial transients, the parameters converge to their 

true values. An interesting observation is that the parameters converge 

only after the time delay has been correctly identified. 

Figure 10 shows the estimate of the parameters and time delay for 

example 8 which uses the exponential input and has measurement noise, 

as the data is processed sequentially. With noise present, the parameters 

converge to their true values in a mean sense. Since a block of data of 

length N is being processed, the estimates d(k) of the time delay within a 

block need not be an integer. However, the final estimate for a block of 

data, d(N-1) must be an integer. 

In the next two examples, a square-wave input is used for 

identification of the system parameters and time delay. The square wave 

has unit amplitude and a period of 32 sampling intervals. Figure 11 shows 

the estimate of the parameters and time delay with no measurement noise. 

A comparison of Figure 11 and Figure 9 shows that the estimates and time 

delay obtained using the square-wave input converge faster than those 

obtained using an exponential input. This can be attributed to the richer 

frequency content of the square wave. The effect of measurement noises 

are included in example 10. Figure 12 shows the estimate of the 

parameters and time delay in a noisy environment using the square wave. 

Again the estimates now converge in a mean sense. The estimates 
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obtained with noise for square wave converge faster as compared to a 

decaying exponential input sequence. 

Example 11 investigates the estimation of parameters and time 

delay of the first order system using sinusoidal inputs. The input sequence 

used for identification is a sum of sine terms given by (7.3). The input with 

three frquencies is chosen to ensure that the three parameters a1, b0 and d 

can be estimated. Figure 13 shows the estimate of the system parameters 

and time delay. When the parameters and time delay are estimated with 

sinusoidal input in the presence of noise, the estimate obtained are noisy 

and converge to their true values in a mean sense. 

The next six examples investigate the effect of increasing the 

number of OFT points. The same first-order system without time delay 

(7.2) and with time-delay described by (7.4) is considered. The number of 

OFT points or the block size used is N = 128. Table IV presents a summary 

of the various examples using different inputs for the system with no delay 

and Table V presents the summary for system with unknown delay. 

Figure 14 shows the estimates of the parameters with an exponential 

input. The estimates converge in about 32 frequency steps. Figure 15 

presents the estimated parameters in the presence of noise. 

With a square wave input of period of 32 sampling intervals, estimate 

of parameters obtained are as shown in Figure 16. Figure 17 shows the 

estimated parameters and time delay in a noisy environment. 

When the sinusoidal input (7.3) is used the parameter estimates 

obtained are as in Figure 18 and the estimated parameters and time delay 

are shown in Figure 19. 

In the final six examples of this chapter, the effect of increasing the 

number of OFT points on the parameter and delay estimates for the first 
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order system with time delay. For an exponential input, Figure 19 presents 

the estimates for a noiseless case and Figure 20 provides the estimates in 

the presence of noise. Figures 21 and 22 provide the corresponding 

estimates for a square wave input. Finally, Figures 23 and 24 present the 

estimates when a sinusoidal input is used for estimation. 

From the above examples the following conclusions can be drawn. 

The quality of the estimates depends on the strength of signal to 

measurement noise ratio. In the presence of measurement noise, the 

estimates deteriorate. The estimates obtained are nevertheless unbiased 

and value of the estimates wanders about the true value. Also, the mean 

value of the estimates converge to the true values. 

In the case of estimation of parameters and time delay, the 

parameter estimates begin to converge to their true values after the delay 

has been identified. This is quite reasonable to expect since a wrong delay 

·value implies a wrong structural indices for the model and hence a different 

set of parameters are fitted to minimize the error between the true and 

incorrectly estimated model. 

The increase in the number of DFT points does not make a 

significant improvement in the quality of estimates since it merely increases 

the frequency resolution of the signal spectrum. A slight improvement in 

the estimates may be expected since finite signals are better represented 

in the frequency domain with more DFT points. 

One of the problems with nonlinear minimization problems is that of 

parameter convergence. The convergence of the estimates depend on the 

starting points or initial guesses for the estimates. Since the estimation of 

parameters and time delay is inherently nonlinear, the convergence of the 

estimates depend on the initial guesses for these parameters. Initial values 
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should be close to the true parameter otherwise the estimates may never 

converge at all. 

Further, in the nonlinear estimation problem the choice of the initial 

covariance matrix plays an important role in the quality of the estimates. 

Simulation studies show that setting the initial covariance to an arbitrarily 

large value may lead to biased estimates. Careful consideration has to be 

given to the gradients of the Performance Measure hypersurface in 

adjusting the initial values of the covariance matrix P 0 . Examining equation 

(7.5) shows the Performance Hypersurface has the smallest gradient with 

respect to the delay parameter. hence to accelerate convergence of the 

delay estimates over the parameter estimates, the element of the initial 

covariance matrix corresponding to the delay term must be chosen much 

larger than corresponding parameter covariances. Further justification to 

the above mentioned choice of covariances can be argued based on the 

magnitude of the parameters and delay since delay magnitudes are 

generally larger than parameter magnitudes for stable systems. 

The quality of the estimated parameters depend on the type of input 

signal. An input signal that is rich and contains a large number of 

frequencies will provide better estimates. The good input signal 

accelerates parameter convergence. 

Finally, the number of data points also has an effect on the 

parameter estimates. As the number of data points increase better 

estimates are obtained if the unknown parameters are constant. However, 

if the unknown parameters are slowly varying, a proper choice of the 

datapoints has be made so as to satisfy the assumptions made in 

developing the procedure. 



CHAPTER VIII 

IMPROVING PARAMETER CONVERGENCE 

In estimating the parameters and time delay, the unknown 

parameters converge to their true values only after the delay has 

converged to its true value. If the correct value of the delay is not 

estimated, the parameters estimates will never converge. This is quite 

reasonable to expect because without the correct time delay the order of 

the system identified is different from the true system which leads to a 

different set of parameters being estimated. 

When the time delays are identified due to presence of disturbance, 

measurement noises or even round off errors, generally, the time delays 

estimated are not exact but approach the true value. Since the time delay 

is the most critical parameter, small errors can cause the parameter 

estimates to deviate from their true values significantly. 

To improve the parameter estimates the following procedure is 

recommended. When the variance of the delay estimates (which can be 

obtained from the covariance matrix P(k)) is small and less than a 

predefined bound o a small positive number, the delay estimate d(k) is 

rounded off to the nearest integer. The elements in the covariance matrix 

corresponding to the delay term are then set to zero. This reduces the rank 

of the covariance matrix and prevents the delay term from being updated. 

The covariance matrix is then reset and the estimation continued. This 

keeps the delay bound to an integer. The resetting of the covariance matrix 

61 
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revitalizes the estimation algorithm. Once the delay is fixed the estimation 

now reduces to the case of a known delay. A further restriction is imposed 

that for causal systems, the time delay d(k) ~ 0. 

The time delay and the parameters example problem 7 of the last 

chapter are estimated with these modifications. Figure 25 shows the 

estimates of the time delay and the parameters at the various frequencies 

as they are estimated recursively. Referring to Figure 25, at about k = 40, 

the delay has been identified and rounded off to 3, the nearest integer. The 

elements in the covariance matrix corresponding to the time delay are set 

to zero and the covariance matrix reset to rejuvenate the estimation 

process. Notice that once the delay has been fixed, and the covariance 

matrix reset, the system parameters "jump" to their true values. 

To investigate the effect of noise, the system is Example problem 6 

which is a noise corrupted version of Example 7 is considered. The noise 

level is the same as in the previous examples. Figure 26 shows the 

estimated time delay and parameters. The parameter estimates are 

deteriorated as compared to the noise free case. However, the estimates 

converge in a mean sense. 

Figure 27 shows the improved estimates of parameters and time 

delay of the example problem 9 where the input is a square wave and the 

measurement noises are assumed absent. In this case the time delay and 

the parameters converge much faster than the previous case (Figure 26) 

with the exponential input. This is due to the fact that a square wave input is 

more suitable for identification purposes than an exponential signal. 

The above problem,is corrupted with measurement noise to obtain 

Example 10. With the improved estimation scheme, the estimate of the 

parameters are as shown in Figure 28. Again as in the noiseless case, a 
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square wave input provides better estimates with faster convergence as 

compared to an exponential input signal. With a sinusoidal input and when 

the improved algorithm is used, the parameter estimates when no 

measurement noise is present are shown in Figure 29. Figure 30 shows 

the corresponding parameter estimates in the presence of measurement 

noise. 

Finally, the improved technique is applied to the estimation of 

parameters and delay of the second order system. The second order 

system considered is described by the difference equation 

y(t) + a1 y(t-1) + a2 y(t-2) = b0 u(t-d) + b1 u(t-d-1) (7.6) 

where a1 = 0.25; a2 = 0.5; b0 = 1.0; and b1 = 0. 75. and the unknown time 

delay, d=3, are all assumed constant. Table VII present a summary of the 

example problems studied for this case. 

Figure 31 shows the improved estimates in an ideal case whereas 

Figure 32 provides the estimates in a noisy environment for an exponential 

input. With a square wave input, the noise free estimates are provided by 

Figure 33. Finally, with noise present, the improved estimates are as 

shown in Figure 34. 

A number of techniques have been proposed in this chapter for 

improving the parameter estimates. On comparing the results of the the 

various simulation studies, the modified estimation techniques definitively 

provide better estimates. Further, the figures show that the estimates 

converge more quickly to their true values with the improved estimation 

technique. 



CHAPTER IX 

SUMMARY AND CONCLUSIONS 

A method for recursive identification of the discrete time system 

parameters and time delay has been presented. The method is based on 

transforming the original time domain model and the data into the 

frequency domain. Transformation into the frequency domain results in the 

parameterization of the delay term. However, the transformed equations 

are nonlinear in the delay term. An efficient method for recursively 

estimating the time delay and the parameters from these nonlinear 

equations is presented. This led to the development of the sequential 

linear and nonlinear frequency domain estimator. In addition parameter 

convergence was improved and also accelerated by incorporating 

enhancements in to the estimation technique. 

Special cases of the nonlinear estimator were developed which lead 

to variants of the Normalized Least Mean Square (LMS) in the frequency 

domain. These algorithms are required greatly reduced computational 

effort. 

Some important properties of the estimator were also established. It 

was shown by simulation studies that, as in the time domain, the frequency 

domain estimator provides unbiased estimates in the presence of white 

noise. In the presence of measurement noise, the parameters converge to 

their true values in a mean sense. It is shown that the identifiability of the 

parameters and time-delay is preserved when the model is transformed to 
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the frequency domain. The time delay and the parameters were shown to 

be identifiable. 

The simulation studies showed that the parameter estimates depend 

upon the type of input signals. A signal which is rich with a number of 

frequency components is shown to provide better estimates than an input 

with few frequency components. In the ideal case with no noise, the 

estimates quickly converged to their true values. The estimates 

deteriorated in the presence of noise. However they converged to their 

true values in the mean sense. In the case of estimation of time delays and 

parameters, the estimation of the correct time delay was critical to obtain 

good parameter estimates. If the time delay was not identified, the true 

parameters were never identified. In estimation, the time delay converges 

to its true value before the parameter estimates. Also, if more data points 

were used in computing the OFT, slightly better estimates were obtained. 

Finally, the present method provides advantages in terms of 

computation as compared to some of the other methods. 

Overparameterization or multiple models in a class require the covariance 

matrix has to be expanded or several estimation algorithms run 

simultaneously and additional computations done to extract the time delay. 

Moreover the computational expense in these methods is proportional to 

the size of the delay. With the proposed method, the computational effort 

remains the same, independent of the size of the delay. Transformation to 

the frequency domain has the effect of data compression. This requires 

greatly reduced computation since data at only a finite number of 

frequencies (which make up the input and output signals) have to be 

processed to estimate the parameters. In recursively estimating the 

parameters, the transformed data does not have to be processed 
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sequentially at the various frequencies. Instead, it can be processed in any 

convenient order. 

Recommendations For Future Work 

In the development of the theory for the frequency domain estimator, 

the assumption made was that the parameters and time delay were slowly 

varying and that for a given block of data they remained constant. If 

however, the parameters were changing, the parameter sequence can be 

simply treated as another time sequence multiplying the data sequence. 

Hence the parameters can no longer can be factored out while computing 

the Fourier transforms. Instead, in taking the Fourier transform a 

convolution of the parameter sequence and the data sequence is obtained. 

For such cases similar parameter estimation techniques need to be 

developed. 

One of the problems of nonlinear minimization is that of parameter 

convergence. The convergence of the estimates depend on the inital 

guesses and also the choice of the initial covariance matrix. The initial 

covariance matrix plays an important role in the quality of the estimates. 

Careful consideration has to be given to the gradients of the Performance 

Hypersurface in adjusting the initial values of the covariance matrix for 

nonlinear estimation problem requires further study. 
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TABLE I 

INTERRELATIONSHIPS BETWEEN e, <l>(k) AND V(K) 

A. e is deterministic. 

1. <l>(k) is deterministic. 

2. <l>(k) is random. 

a. <l>(k) and V(k) are statistically independent. 

b. <l>(k) and ~(k) are statistically dependent. 

B. e is random. 

1. <l>(k) is deterministic. 

2. <l>(k) is random. 

a. <I>(k) and ~(k) are statistically dependent. 

b. <l>(k) and ~(k) are statistically dependent. 
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TABLE II 

ESTIMATION OF PARAMETERS OF SYSTEM WITH NO DELAY, 
NUMBER OF OFT POINTS, N = 64 

73 

Example Order Noise Input 

1 2 No Exponential 

2 2 Yes Exponential 

3 2 No Square 

4 2 Yes Square 

5 2 No Sinusoids 

6 2 Yes Sinusoids 
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TABLE Ill 

ESTIMATION OF SYSTEM PARAMETERS AND TIME DELAY, 
NUMBER OF OFT POINTS, N = 64 

Order Noise Input 

1 No Exponential 

1 Yes Exponential 

1 No Square 

1 Yes Square 

1 No Sinusoids 

1 Yes Sinusoids 



TABLE IV 

ESTIMATION OF PARAMETERS OF SYSTEM WITH NO DELAY, 
NUMBER OF OFT POINTS, N = 128 
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Example Order Noise Input 

13 2 No Exponential 

14 2 Yes Exponential 

15 2 No Square 

16 2 Yes Square 

17 2 No Sinusoids 

18 2 Yes Sinusoids 



76 

TABLE V 

ESTIMATION OF SYSTEM PARAMETERS AND TIME DELAY, 
NUMBER OF OFT POINTS, N = 128 

Example Order Unknown Delay Noise Input 

19 1 No Yes Exponential 

20 1 No Yes Exponential 

21 1 No Yes Square 

22 1 Yes Yes Square 

23 1 Yes Yes Sinusoids 

24 1 Yes Yes Sinusoids 
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TABLE VI 

ESTIMATION OF SYSTEM PARAMETERS AND TIME DELAY, 
IMPROVED ALGORITHM, NUMBER OF OFT POINTS, N = 64 

Order Noise Input 

1 No Exponential 

1 Yes Exponential 

1 No Square 

1 Yes Square 

1 No Sinusoid 

1 Yes Sinusoid 
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33 

34 
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TABLE VII 

ESTIMATION OF SYSTEM PARAMETERS AND TIME DELAY, 
IMPROVED ALGORITHM, NUMBER OF OFT POINTS, N = 64 

Order 

2 

2 

2 

2 

Noise 

No 

Yes 

No 

Yes 

Input 

Exponential 

Exponential 

Square 

Square 
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Figure 2. Parameter Estimates for System with no Delay, Exponential 
Input, N=64 
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Figure 3. Parameter Estimates for System with no Delay, Exponential 
Input and Noise, N=64 
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Figure 4. Parameter Estimates for System with no Delay, Square 
Wave Input, N=64 
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Figure 5. Parameter Estimates for System with no Delay, Square 
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Figure 6. Parameter Estimates for System with no Delay, Sinusoidal 
Input, N=64 
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Figure 7. Parameter Estimates for System with no Delay, Sinusoidal 
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Figure 1 0. Parameter Estimates for System with Unknown Delay, 
Square Wave Input, N=128 
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Figure 11. Parameter Estimates for System with Unknown Delay, 
Square Wave Input and Noise, N=128 
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Figure 12. Parameter Estimates for System with Unknown Delay, 
Sinusoidal Input, N=64 
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Figure 13. Parameter Estimates for System with Unknown Delay, 
Sinusoidal Input and Noise, N=64 
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Figure 15. Parameter Estimates for System with no Delay, Exponential 
Input and Noise, N=128 
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Figure 16. Parameter Estimates for System with no Delay, Square Wave 
Input , N=128 
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Figure 17. Parameter Estimates for System with no Delay, Square Wave 
Input and Noise, N=128 
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Figure 18. Parameter Estimates for System with no Delay, Sinusoidal 

Input, N=128 
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Figure 19. Parameter Estimates for System with no Delay, Sinusoidal 
Input and Noise, N=128 
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Figure 20. Parameter Estimates for System with Unknown Delay, 
Exponential Input, N=128 
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Figure 21. Parameter Estimates for System with Unknown Delay, 
Exponential Input and Noise, N=128 
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Figure 22. Parameter Estimates for System with Unknown Delay, 

Square Wave Input, N=128 
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Figure 23. Parameter Estimates for System with Unknown Delay, 

Square Wave Input, N;::::;128 
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Figure 24. Parameter Estimates for System with Unknown Delay, 
Sinusoidal Input, N=128 
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Figure 25. Parameter Estimates for System with Unknown Delay, 
Sinusoidal Input and Noise, N=128 
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Figure 26. Parameter Estimates for System with Unknown Delay, 

Exponential Input, N=64 (Improved Algorithm) 
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Figure 27. Parameter Estimates for System with Unknown Delay, Exponential 

Input and Noise, N=64 (Improved Algorithm) __.. 
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Figure 28. Parameter Estimates for System with Unknown Delay_ Square 

Wave Input, N=64 (Improved Algorithm) 
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Figure 29. Parameter Estimates for System with Unknown Delay, Square 

Wave Input, N=64 (Improved Algorithm) _... 
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Figure 30. Parameter Estimates for System with Unknown Delay, Sinusoidal 

Input, N=64 (Improved Algorithm) _... 
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Figure 31. Parameter Estimates for System with Unknown Delay, Sinusoidal 

Input and Noise, N=64 (Improved Algorithm) __. 
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Figure 32. Parameter Estimates for Second Order System with Unknown 

Delay, Exponential Input, N=64 (Improved Algorithm) 
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Figure 33. Parameter Estimates for Second Order System with Unknown 
Delay, Exponential Input and Noise, N=64 
(Improved Algorithm) 
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Figure 34. Parameter Estimates for Second Order System with Unknown 
Delay, Square Wave Input, N=64 (Improved Algorithm) 
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Figure 35. Parameter Estimates for Second Order System with Unknown 
Delay, Square Wave Input and Noise, N=64 
(Improved Algorithm) 
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