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Abstract 

 
FIR filters are preferred for many Digital Signal Processing applications as they have 

several advantages over IIR filters such as the possibility of exact linear phase, shorter 

required wordlength and guaranteed stability. However, FIR filter applications impose 

several challenges on the implementations of the systems, especially in demanding 

considerably more arithmetic operations and hardware components. This dissertation 

focuses on the design and implementation of FIR filters in hardware to reduce the space 

required without loss of performance. 

In this dissertation, a variable precision algorithm based on sensitivity analysis is 

proposed for reducing the wordlength of the coefficients and/or the number of nonzero 

bits of the coefficients to reduce the complexity required in the implementation. Further 

space savings is possible if the proposed algorithm is associated with our optimal 

structures and derived scaling algorithm. We also propose a structure to synthesize FIR 

filters using the improved prefilter equalizer structure with arbitrary bandwidth, and our 

proposed filter structure reduces the area required. Our improved design is targeted at 

improving the prefilters based on interpolated FIR filter and frequency masking design 

and aims to provide a sharp transition-band as well as increasing the stopband 

attenuation. We use an equalizer designed to compensate the prefilter performance. In 

this dissertation, we propose a systematic procedure for designing FIR filters 

implementations. Our method yields a good design with low coefficient sensitivity and 

small order while satisfying design specifications. The resulting hardware 

implementation is suitable for use in custom hardware such as VLSI and Field 

Programmable Gate Arrays (FPGAs).  
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Chapter 1 Introduction 
 
 
For a digital FIR filter realization, developing efficient algorithms with minimal 

hardware and negligible performance degradation is strongly desired from the viewpoint 

of IC implementation. The factors that impact the performance of an FIR filter in terms of 

the amount of hardware circuitry required are the number of operations such as additions 

and multiplications. Therefore, the development of the techniques to reduce the number 

of operations required has become very attractive, especially for FPGA and VLSI 

implementation. Finding efficient methods that maximize the performance while keeping 

the cost as low as possible is one of the goals of digital filter design.  

This thesis focuses on the design and implementation of FIR filters as described 

above. Before starting the discussion in detail, some basic filtering concepts upon which 

our methods rely are reviewed. 

 

1.1 Basic FIR Digital Filter Structure 

A linear time invariant (LTI) FIR filter [1] is one of the basic building blocks 

common to most DSP systems. The output of an FIR filter is a sequence generated by 

convolving the sequence of the input samples with N filter coefficients. The filter 

expression can be described by 

1

0

( ) ( ) ( )
N

k

y n h k x n k
−

=

= −∑ ,        (1.1)  

where N is the length of the filter (i.e. N-1 is the order), ( )h k denotes the thk coefficient, 

and ( )x n k−  denotes the sampled input data at time n k− . As depicted in [2][3], except  
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( )x n

1Z − 1Z − 1Z − 1Z −
( )y n

( 1 )h N − ( 2 )h N − ( 2 )h (1)h ( 0 )h

 

Figure 1-1 Transposed form FIR filter 

 
for a global broadcast input, the  transpose form FIR filter has several advantages over 

direct-form structures for high speed and parallel implementation. In this dissertation this 

form structure is used to realize our FIR filter. Figure 1-1 shows the block diagram for a 

transposed form FIR filter.  From this diagram, we can see that N multiplications and N-1 

additions are required to compute each value in the output sequence. 

 

1.2 Area Estimation of FIR Digital Filter Implementation 

Before implementing a filter, it is helpful to know the computational complexity by 

estimating N, b, and A, where N is the length of the filter and thus the number of 

multipliers, b denotes the wordlength used for the multiplier coefficients, and A is the 

number of adders. As the multipliers usually contribute most to the area complexity [3], it 

is essential to keep them as simple as possible. This can be achieved by minimizing the 

wordlength and/or the number of the multiplications. Multiplications can be implemented 

in many ways. An efficient hardware realization of the multiplication algorithm with only 

shifts and additions is depicted in Figure 1-2. Obviously, its hardware complexity heavily 

depends on the parameters N and b.   
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Figure 1-2 Basic Hardware Realization of Multiplication [5] 

 
 

So, Nb is often used to characterize the hardware complexity of the desired digital filter 

implementation. As a result, implementation techniques can be designed to minimize Nb. 

The conventional approach to FIR digital filter design is characterized by the 

following set of parameters: 

cδ -     the passband ripple, 

sδ -     the stopband ripple, 

cTω - passband edge, 

sTω - stopband edge. 

The required number of multipliers for linear-phase FIR filters is estimated as [6] 

1020log ( ) 132
14.6( )

c s

s c

N
T T
δ δπ

ω ω
− −

≈
−

        (1.2) 
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Table 1-1 Multiplier Size of Virtex Family [7]  
 

Multiplier 
Size 

CLBs required in Virtex and 
Spartan II 

8*8 24 

10*10 35 

12*12 48 

16*16 80 

32*32 300 
 

For a direct realization of a linear-phase FIR filter, the number of multiplication is 

approximately half of the filter order because of coefficient symmetry. The number of 

additions and delay elements are both equal to the filter order.   

For a straightforward implementation, a multiplier is needed for each tap. For 

FPGAs and VLSI, a reasonable hardware estimate can be developed for most 

applications. One can easily find how many multipliers are required for an FIR filter from 

equation (1.2) and from the published device characteristic description. For example, 

Table 1-1 shows how many (Configurable Logic Blocks) CLBs are needed for multipliers 

of the different multiplier sizes using Virtex devices.  A CLB includes a pair of flip-flops 

and two independent 4-input function generators. These elements offer flexibility in 

implementing logic functions. 

In general, a large number of coefficients are required for an FIR filter. As the filter 

length increases, the implementation demands more arithmetic operations and hardware 

components, which makes it hard to fulfill the performance and the silicon area 

requirements simultaneously. For FPGAs, using an estimate of the area of the desired 

filter, vendor supplied tables such as the one shown in Table 1-2 can be used to help in 

the selection of an appropriate device for a specified filter design. 
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            Table 1-2 The Capacity of the Virtex Family of FPGAs [7] 

Device Gates CLBs 

XCV50 57,906 16*24=384 

XCV100 108,904 20*30=600 

XCV150 164,674 24*36=864 

XCV200 236,666 28*42=1176 

XCV300 322,970 32*48=1536 

XCV400 468,252 40*60=2400 

XCV800 888,439 56*84=4704 
 

 

1.3 Approaches to Reduce the Implementation Complexity 

 As described in the previous section, the number of multipliers and the length of the 

multiplier coefficients are key factors in an FIR filter implementation. To reduce area, the 

implementation can be improved by modifying the filter structure and the design 

algorithm as well as by focus on implementation techniques. Many techniques[8]-[15] 

have been proposed in the past few years that focused on minimizing the number of the 

necessary operations to reduce the computational complexity of the hardware. Two main 

approaches are used. One approach is to reduce the complexity of each multiplication by 

minimizing the number of bits or nonzero bits used to represent the filter 

coefficients[16]-[22]. For a fixed-point implementation, the finite wordlength behavior in 

digital filters is extremely important since the cost and the complexity of a digital filter 

depend heavily on the necessary wordlength. Reducing the wordlength reduces the area 

consumed in the digital filter implementation at the cost of increasing the filter output 

quantization noise power. Several techniques [23]-[27] have been reported that attempt to 
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reduce such noise while making the wordlength as short as possible. Another approach 

[28]-[30] tries to reduce the number of multiplications required in implementing the 

filtering operation of equation (1.1) by using more efficient structures for the filter 

design. Other different studies also have been proposed. For example, the well-known 

Distribution Arithmetic (DA) method [5] trades memory for combinational elements, 

resulting a design suitable for implementation in Look-UP Table (LUT) based FPGA, the 

smaller the order of the filter (i.e. the smaller number of multiplications), the smaller the 

LUT size needed. Thus, more space can be reduced.   

Almost all methods of the above implementation use the same number of bits for 

each coefficient in the filter. Although these techniques using uniform coefficient lengths 

can give sufficiently accurate results to meet the filter requirements in practical filter 

design, many unnecessary bits are used in uniform quantization, which requires more 

area in the implementation. For example, to take advantage of their FPGA devices, Actel 

uses a constant multiplier method (CMULT) to implement FIR filters [31]. However, the 

implementations still always require relatively large area, which limits the applicability. 

Therefore, the question arises whether there is some way to reduce the area consumption 

further for digital filter implementations that can benefit computationally from the 

properties of the filter. A few researchers have used variable numbers of bits for the 

coefficients [32]-[36]. 

1.4 Scope of this Thesis 

In this dissertation, a coefficient sensitivity measure is proposed to reduce area.  We 

show that the frequency response of a filter has different sensitivities to different 

coefficients depending on the coefficient value, as well as the structure (i.e. the 
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coefficient location). Thus, a higher precision can be used for some coefficients and a 

lower precision for others based on their different sensitivities. Consequently, the average 

wordlength required by the filter can be reduced, and hence the overall size and 

complexity of the system implementation can be reduced without impacting the overall 

filter performance.  

Furthermore, relatively simple structures that reduce the arithmetic operations are 

also proposed. The scheme of pre-filter equalizer structure for narrow band filters is 

explored in [29][30]. The attractiveness of this cascade structure is that it has good 

performance and implementation. In this dissertation, an improved prefilter and equalizer 

structure is proposed to design arbitrary wide-band filters. New pre-filter structures are 

introduced that use the masking technique, interpolated filter and delay-complementary 

concepts [37][38][39] to improve the performance of the desired digital FIR filters and 

greatly reduce computational complexity of the filter realization.  

In this dissertation, the problems of reducing the computational complexity of the 

FIR filter are considered at two levels: algorithm development and structure exploration. 

For an existing filter, low–space implementation requires reduction of the wordlength 

and/or the number of nonzero bits in the coefficients to reduce the complexity of the 

filter. Hence, at the algorithm level, we develop a variable precision method, as well as a 

scaling algorithm to achieve this goal. At the structure level, two issues are considered to 

assist in improving the performance of designed FIR filters and reducing the space 

required. We develop a variable precision equalizer and improve the prefilter structure 

for arbitrary bandwidth FIR filters.  
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In chapter 2, a method is proposed that allows an FIR filter to be efficiently 

implemented using variable wordlength coefficients. The resulting algorithm, which we 

call the Variable Precision Method (VPM) [40], maintains computational performance 

while reducing area required. The sensitivity analysis is provided, as well as the examples 

that demonstrate the feasibility of our VPM to realize filters using variable precision 

coefficients to reduce area are given.   

In chapter 3, a scaling approach is proposed to improve the performance of the fixed-

point filter and to minimize the quantization error.  The goal of the scaling operation is to 

adjust the real filter coefficients in order to constrain the coefficient values to an 

appropriate range more suitable for finite precision arithmetic. We will consider how to 

determine the Scale Factor (SF) and how to constrain the SF so that it changes the filter 

coefficients into the optimal values, which can be represented using a small number of 

nonzero bits while keeping the error noise low. 

In chapter 4, a prefilter and equalizer structure is presented. The realization is a 

cascade connection of a prefilter with good frequency response and relatively simple 

structure, and an equalizer with reduced order to achieve the low cost implementation. 

For a narrow filter design, an RRS based structure is presented. Furthermore, for the 

arbitrary wide band filter, two other kinds of structure based chebyshev polynomial 

prefilter and halfband prefilter are investigated. To demonstrate the effectiveness of our 

design methods, examples are given. In additional, we discuss the performance in terms 

of the coefficients’ sensitivity and the possibility of using shorter wordlength, and thus 

the resulting hardware area is reduced greatly. 
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In chapter 5, the novel architecture takes into account the interpolated FIR filter 

implementation, and a frequency response masking technique is proposed. The resulting 

architecture development is divided into two levels. The first level is targeted at 

improving the prefilters based on the frequency masking technique and aims to provide a 

sharp transition-band, as well as increasing the stopband attenuation. The second level is 

targeted at reducing the complexity of the equalizers required. As the result, our two-level 

design allows arbitrary width filters to be realized in simple circuit.  

In chapter 6, our conclusions are given along with an outline of areas for future 

research. 
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Chapter 2  Variable Precision Method 
 

 
 
When a digital filter is implemented using a digital system, it essentially involves 

quantization of signals and coefficients in the system. As the result, the consideration of 

finding good quantized coefficients attracts a great deal of attention. The conventional 

quantization methods [41] always use uniform wordlength coefficients. However, there 

is some inefficiency existing in the implementation, because not all the coefficients have 

the same influence on filter frequency response. To reduce the redundancy cost of digital 

filter implementation, an area efficient method referred to as the Variable Precision 

Method (VPM) is proposed. 

Next, how to predict the variable precision of the quantized coefficients that are 

required to meet the specification becomes the key problem. Since the frequency 

response of a filter has different sensitivities to different coefficients depending on the 

coefficient value, as well as the filter structure, different coefficients can be set to 

different precisions based on the sensitivities. Thus, in this chapter a method is presented 

for finding appropriate variable precision fixed-point digital filters based on the 

coefficient sensitivity analysis to obtain the minimum wordlength for each coefficient. 

The method can provide benefits in reducing the space required for any existing FIR 

filter, especially to enhance ASIC and FPGA FIR filter designs since these 

implementations enable flexibility in the precision of the signal at each stage of the 

algorithm [42]. 

In this chapter, the energy of quantization error on the output is used as the method 

of measuring the filter performance and the analysis of coefficient sensitivity is used to 
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determine the variable coefficient precision. The definition of the coefficient sensitivity 

and the variable precision coefficient estimation process for an FIR filter is explained in 

Section 2.1 and 2.2, respectively. In Section 2.3, an algorithm to determine the optimal 

set of variable coefficients is described. Section 2.4 shows examples with the 

comparisons of the computational complexity to other approaches. Section 2.5 provides 

our conclusions.     

 

2.1 Sensitivity of the Frequency Response to Coefficient Quantization 

To estimate the length of each coefficient, we start by evaluating the sensitivity 

( )enS n of the frequency response to each of the coefficients. In this chapter, we use the 

magnitude coefficient sensitivity ( )enS n , as the computed sensitivity analysis. This 

sensitivity reflects the degree of influence on the frequency response of a digital filter 

that any one of the coefficients will exert under small perturbations. To make 

straightforward computation and observation, the coefficient sensitivity [43] is defined 

by setting each coefficient, in turn, to some nearest fixed number, yielding in each case a 

response ( )j
nH e ω% . 

 21( ) | ( ) ( ) |
2

j j
en nS n H e H e d

π ω ω

π
ω

π −
= −∫ % ,                   (2.1) 

which is the sensitivity of the transfer function ( )jH e ω with respect to the variation in one 

of the multiplier coefficients, where ( )jH e ω  is the frequency response with infinite-

precision coefficients, and ( )j
nH e ω% is the frequency response with the nth coefficient 

changed to its nearest fixed number. 
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The real justification in this chapter for using the ( )enS n  measure is that the 

coefficient sensitivity is indicative of the choice of the coefficient wordlength.  In other 

words, more bits can be assigned to sensitive coefficients, and fewer to others, allowing 

the average wordlength to be reduced and thus the area of implementation to be reduced.  

The detail of its application will be discussed in section 2.3.  

 

2.2 Analysis of Coefficient Quantization Effects in FIR Filters 

 

2.2.1 Estimation of Quantization Error Based on Uniform Wordlength 
 
According to conventional statistical approaches, the coefficient wordlength is 

uniform and the quantiation step size for rounding of the coefficients in the fixed point 

arithmetic is Q, and quantization error will have a uniform probability of lying between   

–Q/2 and Q/2 for an arbitrary set of coefficients.  The statistical errors in the coefficients 

can be characterized by zero mean and variance of 2 2
0 /12Qσ = . If the error of each 

coefficient quantization is independent, then the output quantization noise can be 

determined as [44] 

2 2
0e Sσ σ≥              (2.2) 

where 2
eσ is the filter output quantization variance and 2

0σ  is the variance of the uniform 

coefficient quantization (determined by smallest quantization step size). This equation 

can be used as a predictor of the actual output noise power.  

S is the filter sensitivity, which also reflects the influence on the filter frequency 

response when filter coefficients are varied for arbitrary structure, and is defined as  
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2
( )

( )
j

i i

H e
S

h

ω∂
=

∂∑                    (2.3) 

Since some of the coefficients are more sensitive than others, the corresponding 

coefficient sensitivity can be given in terms of weighted units in the form of ( )i enw S i . 

However, it is relatively difficult to select weight units to describe an actual digital filter, 

hence an improved error prediction is developed.    

2.2.2 Quantization Error for Variable Precision Coefficient FIR Filter  

A more meaningful method for examining the changes in the frequency response due 

to coefficient quantization can also be obtained as described in this section.  

    As noted in [41], the transfer function of a direct-form FIR filter can be written as 

                    
1

0
( ) ( )

N
j j n

n
H e h n eω ω

−
−

=

= ∑                                  (2.4) 

Quantization of the filter coefficients results in a new transfer function 

 
1 1

0 0

( ) [ ] ( [ ] [ ])
N N

j j n j n

n n

H e h n e h n e n eω ω ω
− −

− −

= =

= = +∑ ∑%% ,       (2.5) 

Thus, the FIR filter with quantized coefficients can be modeled as a parallel 

connection of two FIR filters as shown in Figure 2-1, where ( )jH e ω  represents the 

desired FIR filter with unquantized coefficients, and ( )jE e ω  is the FIR filter representing 

the error in the transfer function due to coefficient quantization.  

E(ejw)

H(ejw)
x(n) y(n)

 

Figure 2-1 Model of the FIR filter with Quantized Coefficients [41] 



 14

For convenience, we consider the design of an odd length-N, symmetric FIR filter, 

hence, the filter coefficients satisfy,  

[ ] [ 1], 0 1h n h N n n N= − − ≤ ≤ −        (2.6) 

so that the frequency response may be rewritten as 

               
( 3) / 2

( 1) / 2

0

( ) [( 1) / 2] 2 [ ]cos((( 1) / 2 ) )
N

j j N

n

H e h N h n N n eω ωω
−

− −

=

⎡ ⎤
= − + − −⎢ ⎥

⎣ ⎦
∑   (2.7) 

Substituting  

[ ] [( 1) / 2 ], 0 ( 1) / 2g n h N n n N= − − ≤ ≤ −       (2.8) 

and canceling the delay factor yields the filter magnitude response as 

 
( 1) / 2

1

( ) [0] 2 [ ]cos( )
N

j

n

G e g g n nω ω
−

=

= + ∑       (2.9) 

Quantizing the coefficients of this filter leads to the new magnitude frequency response: 

 
( 1) / 2

1

( ) [0] 2 [ ]cos( )
N

j

n

G e g g n nω ω
−

=

= + ∑% % %     (2.10) 

From (2.9) and (2.10), the magnitude response of the quantization error can be 

derived as 

 ( 1) / 2

1

( ) ( ) ( )

[0] 2 [ ]cos( )

j j j

N

n

E e G e G e

e e n n

ω ω ω

ω
−

=

= −

= + ∑

%

          (2.11) 

where 

[ ] [ ] [ ], 0,...,( 1) / 2.e n g n g n n N= − = −%    (2.12) 
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A realistic quantization error can be derived if we assume e[n] are statistically 

independent random variables with expected value 0.  The expression for the variance of 

( )jE e ω , 2 ( )Eσ ω , is simply given by 

                                   

2 *

( 1) / 2
2

1

( 1) / 2
2

1

( 1) / 2
2 2

1

( 3) / 2 ( 1) / 2

1 1

( ) ( ) ( )

( [0] 2 [ ]cos( ))

[0] 4 [0] [ ]cos( )

4 [ ]cos ( )

8 [ ] [ ]cos( )cos( )

j j
E

N

n

N

n

N

n

N N

n m n

E E e E e

E e e n n

E e e e n n

E e n n

E e n e m n m

ω ωσ ω

ω

ω

ω

ω ω

−

=

−

=

−

=

− −

= = +

⎡ ⎤= ⎣ ⎦
⎡ ⎤

= +⎢ ⎥
⎣ ⎦
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

⎡ ⎤
+ ⎢ ⎥

⎣ ⎦
⎡ ⎤

+ ⎢ ⎥
⎣ ⎦

∑

∑

∑

∑ ∑

       (2.13) 

Now define the mutual correlation in the form as 

 [ ]( , ) [ ] [ ] , 0 ( 1) / 2er n k E e n e n k n N k= + ≤ ≤ − −            (2.14) 

Equation (2.13) is then rewritten as 

 

( 1) / 2
2 2

1
( 1) / 2

1
( 3) / 2 ( 1) / 2

1 1

( ) (0,0) 4 ( ,0)cos ( ))

4 (0, )cos( )

8 ( , )cos( )cos( )

N

E e e
n

N

e
n

N N

e
n m n

r r n n

r n n

r n m n m

σ ω ω

ω

ω ω

−

=

−

=

− −

= = +

= +

+

+

∑

∑

∑ ∑
  (2.15) 

Here assume that the error due to the quantization of different coefficients is 

independent and uniformly distributed, that is, the correlation function ( , )er n k  can be 

expressed in the form 

  

22 , 0( , ) 12
0, 0

nd

e
kr n k
k

−⎧
=⎪= ⎨

⎪ ≠⎩
      (2.16) 
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where nd  is the least important nonzero bit in the digit presentation of the nth coefficient. 

Thus, we can rewrite equation (2.15) to yield 

      
02 2( 1) / 2

2 2

1

2 2( ) cos ( )
12 3

nd dN

E
n

nσ ω ω
− −−

=

= + ∑     (2.17) 

Equation (2.17) will be used to evaluate the quantization error as described in 

Section 2.3. It is expressed by using variable precision coefficients. Of course it also can 

be used for uniform wordlength coefficient filters if the least important nonzero bit, nd , 

in the digit representation of the coefficients are the same in each case. 

Comparing equation (2.17) with equation (2.2), it can be seen that the quatization 

noise of the digital filter can be computed more efficiently by using equation (2.17), 

especially for the special case of variable coefficients since different quantization steps 

are implied in equation (2.17). Consequently, it is possible to choose variable wordlength 

coefficients, such that a few coefficients are quantized to greater precision while others 

can be chosen with fewer bits and thus reduce the filter average wordlength. Since the 

filter implementation complexity is related to the adder cost and the multiplier size as 

described in the previous chapter, a reduction in the average wordlength leads to a 

reduction in the hardware cost for the filter realization.    

 

2.3 Description of the Algorithm  

The proposed method is based on the fact that the frequency response of a filter has 

different sensitivities to different coefficients depending on the filter response itself, i.e. 

the coefficient values. It is wise to vary the wordlength so that more bits will be used for 
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the highly sensitive coefficients while fewer bits are used for the less sensitive 

coefficients. Our procedure of acquiring an ideal digital filter with the variable precision 

coefficients starts by using one of the conventional design methods to obtain a set of real 

coefficients. The order of the filter in the beginning can be determined by using the 

method as introduced in equation (1.2) based on the filter specifications and making sure 

that the filter response still lies within the required specification after the coefficients are 

quantized. If not, some adjustment of the initial choice of the filter order or coefficient 

precision must be made.   As a result, a low space filter implementation can be realized 

without introducing additional inaccuracy into the filter response.  

Figure 2-2 illustrates the algorithm for determining the optimal set of variable length 

coefficients. The procedure for obtaining the optimal variable coefficients starts by 

evaluating the sensitivity of each coefficient. First, each coefficient is set to the closest 

power of two. Then, the frequency response of the new quantized filter is evaluated. 

Equation (2.1) is used to determine the sensitivity of each coefficient. 

After determining the sensitivities of the coefficients, the quantized coefficient nd  is 

determined considering the rounding error obtained by equation (2.17). If the frequency 

response does not meet the specification at the end of this step, one more nonzero bit is 

added to the most sensitive coefficient, i.e. the most sensitive coefficient is set to the 

closest sum or difference of two powers of two. Then, the frequency response of the 

modified filter and the sensitivity of the corresponding coefficient are reevaluated. The 

procedure is repeated until all the coefficients are set to their optimal one or more 

nonzero bits with the specification satisfied. Additional details of the algorithm are 

shown in Figure 2-2. 
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Design a filter with real coefficients

Set all coefficients to zero

Evaluate the sensitivity of 
each coefficient

Determine the quantization step 
of  each coefficient
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Re-determine the quantization step 
of  the corresponding coefficient
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N

 

Figure 2-2 Algorithm for Variable Precision Coefficients [40] 
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2.4 Applications of the Proposed Algorithm to FIR Filter Designs  

Example 2.1: A half-band FIR filter H(z) with the passband and stopband edge 

frequency at 0.45pTω = pTω =o.45π and sTω =0.55π  respectively, and the ripple in the 

passband not to exceed 0.1 db, while the stopband attenuation should be at least 50db. 

The required order is N-1=22. 

The half-band filter was generated using the method given in [45]. The internal 

structure used to implement the fixed filter is the transposed structure.  

The matched double precision coefficient filter is generated as shown in Table 2-1 as 

well as the resulting set of variable wordlength coefficients of the desired filter. The 

coefficients are initially quantized to 12 bits per coefficient. The frequency response of 

the corresponding fixed-point filter is shown in Figure 2-3. When the technique 

presented in this work is employed, which in turn reduces the average wordlength needed 

with the same performance and less noise introduced, the frequency response of the filter 

with a set of variable wordlength coefficients is observed (see Figure 2-3).  

The results given in Table 2-2 show the comparison of VLSI implementations 

between the general FIR digital filter with 12 bits per coefficient and the variable 

wordlength coefficient FIR digital filter as implemented in the Actel device SXA72. The 

comparison indicates that the area being used on the device by using our proposed 

variable precision technique has been reduced by 16.52% over the uniform method. In 

addition, the critical path is reduced by the proposed method. It shows that variable 

precision method is feasible in practice and can improve the filter performance in terms 

of area, speed and power. There is no additional hardware required but the average 

coefficient length is reduced.    
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Table 2-1 The Results of Quantized FIR Filter & Wordlength of Each Tap [28] 
Index of taps Ideal value Implementation value Wordlength (bits) 

h0 -0.002315 -0.001953 11 
h1 0 0 0 
h2 0.005412 0.005859 11 
h3 0 0 0 
h4 -0.015866 -0.015625 8 
h5 0 0 0 
h6 0.038545 0.039063 9 
h7 0 0 0 
h8 -0.089258 -0.089844 10 
h9 0 0 0 
 h10 0.312379 0.312500 6 
 h11 0.500 0.5 3 
 h12 0.312379 0.312500 6 
 h13 0 0 0 
 h14 -0.089258 -0.089844 10 
 h15 0 0 0 
 h16 0.038545 0.039063 9 
 h17 00 0 0 
 h18 -0.015866 -0.015625 8 
 h19 0 0 0 
 h20 0.005412 0.005859 11 
 h21 0 0 0 
 h22 -0.002315 -0.001953 11 
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Figure 2-3 Example 2-1 Filter Design 
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     Table 2-2 Comparison of VLSI Implementation 
Measure FIR_12 FIR_var 
SEQ 1243   

    (61.78%) 
1244  

     (61.83%) 
COMB 2644 

    (65.71%) 
2001  

     (49.73%) 
LOGIC 3887 

    (64.40%) 
3245  

     (53.76%) 
t_pd 39.4  37.5 

 
where SEQ refers to the sequential cell of the device, COMB is combinatorial cell., 

LOGIC means the cells being used (SEQ + COMB) and t_pd is the computation time of 

the critical path. 

We still need to determine what the proper coefficient word-length should be. The 

algorithm developed by using coefficient sensitivity analysis helps us achieve this goal. 

Figure 2-4, generated by our software allows the user to consider the filter power noise 

when two correlated coefficients are changed. This also allows us to study the impact 

when more than one coefficient is varied. Figure 2-4 (a) shows the mean noise of the 

filter output. The vertical axes of both of (a) and (b) indicate the noise in db when 

wordlength of the coefficients is changed. In this example, we consider the effect of the 

wordlength of b2 and b4 on filter performance. Figure 2-4 (a) shows that only if the 

wordlength of b2 is greater than 6 bits and the wordlength of b4 is greater than 6 bits, will 

the mean noise output be less than -40 db (our target noise level).  Thus, if we choose at 

least 6 bits for these two coefficients, then the filter performance will not be impacted 

significantly. Figure 2-4(b) shows the noise variance output if the wordlength of the 

coefficients is changed. In this case, the graph shows that if the wordlength is greater than 
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(a) Mean Noise for Variations in 2 Selected Coefficients 

 

 

(b) Power Noise Analysis for Variations in 2 Selected Coefficients 

Figure 2-4 Output Noise Analysis with the Combination of two Coefficients 
Considered 
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8 bits, the performance of the system will be acceptable.  Combining the results of Figure 

2-4 (a) and Figure 2-4 (b), we determine that the wordlength of the coefficients should be 

greater than 8 bits.  

Example 2.2: To illustrate the advantage of the proposed variable coefficient 

algorithm based on sensitivity analysis over the other methods, the filter provided by 

Nielsen [32] with the following specification is adopted: the filter order N, is 67, the 

passband frequency is 0.2 * sf , the ripple on the passband is no more than 0.1db, the 

stopband frequency is 0.3* sf , and the attenuation of the stopband should be below 

90db.   

The double precision filter, ( )h n , is generated by the Parks-McClellan method as 

given in the Matlab “remez” (or “firpm”) method. The second column of Table 2-3 

shows the values generated when each coefficient is set to its closest power of two. The 

third column gives the initial sensitivity of each coefficient, which is the basis of 

determining the variable precision coefficients. The results of the Nielsen algorithm are 

given in the fourth column, and the results from the proposed sensitivity algorithm are 

given in the last column for comparison. Figure 2-5 shows the performance of the 

corresponding frequency responses of the quantized digital filters with variable length 

coefficients produced using both Nielsen’s algorithm and our proposed algorithm, as 

well as the frequency response of the filter with double precision coefficients.  
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Table 2-3 The Results of Proposed Algorithm as well as the Results of Nielsen Method  

Real Coefficient Closest 
power of 

two 

Sensitivity Nielsen method 
coefficients representation 

Variable precision 
coefficients representation 

h(34)=32765.0156 
h(35,33)=21386.3712 
h(36,32)=992.9455 
h(37,31)=-6826.4739 
h(38,30)=-941.9129   
h(39,29)=3753.0633 
h(40,28)=862.0648 
h(41,27)=-2346.7999 
h(42,26)=-760.4611 
h(43,25)=1522.7395 
h(44,24)=645.6166 
h(45,23)=-986.6937 
h(46,22)=-526.4166 
h(47,21)=624.1586 
h(48,20)=411.0701 
h(49,19)=-378.5124 
h(50,18)=-306.2521 
h(51,17)=215.8401 
h(52,16)=216.5513 
h(53,15)=-112.6784 
h(54,14)=-144.2876 
h(55,13)=51.3508 
h(56,12)=89.6510 
h(57,11)=-18.1667 
h(58,10)=-51.1279 
h(59,9)=2.6714 
h(60,8)=26.0694 
h(61,7)=2.7570 
h(62,6)=-11.3053 
h(63,5)=-3.2459 
h(64,4)=3.8829 
h(65,3)=2.4990 
h(66,2)=0.0785 
h(67,1)=-0.2136 

215 
214 
210 
-213 
-210 
212 
210 
-211 
-29 
211 
29 
-210 

-29 
29 
29 
-29 
-26 
28 
28 
-27 
-27 
26 
27 
-24 
-26 
21 
25 
21 
-23 
-22 
22 
21 
0 
0 

4.0251e-06 
0.0067 
4.1883e-05 
0.0018 
1.1071e-04 
4.6252e-04 
2.1840e-04 
4.0299e-04 
3.3510e-04 
6.7265e-04 
1.8021e-04 
5.0315e-05 
1.9444e-05 
1.5127e-04 
1.3612e-04 
1.6523e-04 
6.7775e-05 
5.4164e-05 
5.3204e-05 
2.0664e-05 
2.1967e-05 
1.7060e-05 
3.4595e-05 
2.9222e-06 
1.7361e-05 
9.0552e-07 
7.9986e-06 
1.0210e-06 
4.4579e-06 
1.0171e-06 
1.5793e-07 
6.7300e-07 
2.1579e-08 
4.9093e-08 

215-21 
214+212+210-27+24-23-20 

210-25+20 

-213+211-29-27-25-23-21 
-210+26+24+20 
212-29+27+25+23 
210-27-25-21 

-210-28-25-23-21 
-210+28+23 
211-29-24+21 
29+27+22 
-210+25+22 
-29-24+21 
29+27-24 

29-27+25-22-20 
-29+27+22+20 

-28-26+24-22+20 
28-25-23-20 
28-25-23 
-27+24-20 
-27-24-20 
26-24+21 
27-25-23 
-24-21-20 

-26+24-24+20 
22-20 

25-23+21 
22-20 
-23-21 
-20 
23-21 
22 
21 
0 

215 
214+212+210-27+23+21 

210-25 
-213+211-29-27-25-23-21 

-210+26+24+21 
212-29+27+25+23 
210-27-25-21 

-210-28-25-23-21 
-210+28+23 
211-29-24+21 
29+27+23-21 
-210+25+22 
-29-24+21 
29+27-24 

29-27+25-22-20 
-29+27+22+20 
-28-26+24-21 
28-25-23 
28-25-23 
-27+25 
-27-25 
26-24+22 

27-25-20+21 
-24-21 

-26+24-22 
21 

25-23+21 
21 

-24+22 
-22 
22 
21 
0 
0 
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Figure 2-5 The FIR filter Frequency Responses 
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From Table 2-3 and Figure 2-5, it is clear that the proposed variable precision 

method produces the same performance as Nielsen’s method, while the variable 

precision method requires fewer adders.  For a multiplierless filter implementation, the 

number of the adders required is one of the important factors to measure the complexity 

of the digital filter [10][15]. Compared with Nielsen’s example presented here, the area 

required by the variable precision method is reduced by 12.269% over the Nielsen’s 

method in terms of the number of adders required, respectively.  

 

2.5 Improvement on CSD Application 

For more efficient hardware usage, a general method for performing multiplication 

by a constant value is by using a sequence of shifts and adds. To this end, the canonical 

signed digit (CSD) representation can be used to reduce the number of nonzero digits, 

where a coefficient is represented with a summation and subtraction of power of terms. 

Applying this approach to FIR filters, it is possible to greatly reduce the number of 

additions needed, and thus reduce the area consumption [3][8][11]. Since CSD format 

often requires fewer nonzero bits, CSD representation has the advantage of decreasing 

the number of additions/subtractions needed.  

 

2.5.1 CSD Representation 

The definition of the CSD form [46] is given by: 

0
2 ,

N
r

r
r

x a −

=

= ∑                         (2.18) 
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where { 1, 0, 1}ra ∈ − +  and no two consecutive digits are nonzero, i.e. 

1 0, 0r ra a r N+⋅ = ≤ ≤ . 

Because no 2 consecutive digits in a CSD number are nonzero, CSD numbers contain the 

minimum possible number of nonzero bits, which is about / 3N  on average as opposed 

to / 2N  in the usual 2’s complement numbers. This reduced number of nonzero bits is 

the reason that CSD is widely applied in digital filter implementation [47].  If each 

coefficient of equation (1.1) is expressed in CSD format as , 1 , 2 ,1 ,0...k k M k M k kh h h h h− −= , then 

the filter equation becomes 

1 1

,
0 0

( ) ( ) ( )
N M

k i
k i

y n h x n k M i
− −

= =

= − >> −∑ ∑ ,       (2.19) 

where, ( ) ( )x n k M i− >> − denotes shifting the input item to the right for ( )M i−  bits.  

To show how the filter may be implemented using a CSD constant multiplier, for a 

choice of filter coefficients as an example 0 10.10001001, 0.01000101h h= = , then the 

filter can be implemented as  

      
0 1( ) ( ) ( 1)

( ) 1 ( ) 5 ( ) 8
( 1) 2 ( 1) 6 ( 1) 8

y n x n h x n h
x n x n x n
x n x n x n

= + −
= >> + >> − >>
− − >> + − >> − − >>

, 

which requires 5 additions.  

The conventional filter can be expressed as 0 10.10000111, 1.11000011h h= = , and 

the filter is implemented in the way  

0 1( ) ( ) ( 1)
( ) 1 ( ) 6 ( ) 7 ( ) 8
( 1) 1 ( 1) 2 ( 1) 7 ( 1) 8

y n x n h x n h
x n x n x n x n
x n x n x n x n

= + −
= >> + >> + >> + >>
+ − >> + − >> + − >> + − >>

. 
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Compared with conventional implementation, which requires 7 additions, the 

operations are reduced by 28.57%. 

2.5.2 Distribution of CSD Quantization 

However, the quantization error for the fixed number filter is larger than that of the 

2’complement number since the set of numbers represented by a CSD code with a fixed 

number of nonzero digits is very non-uniformly distributed [8]. This non-uniform 

distribution is shown as Figure 2-6 for the case of a 6 digits CSD code as well as a 7 

digits CSD code. Both of the cases have no more 2 nonzero digits, that is their fixed 

number of quantization bits is 2 nonzero bits. 
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Figure 2-6 Distributon of CSD Coefficient Set for 6 Digits Code as well as 7 Digits 
Code with 2 Nonzero Bits 
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2.5.3 Sensitivity Method on CSD Improvement 

Samueli [8] proposed a method that adds one additional nonzero digit to the CSD 

representation to the impulse response coefficients whose magnitudes exceed 0.5. This 

design is based on the observation that when rounding a set of filter coefficients to the 

nearest CSD code, the magnitude of the worst quantization error always occurs for the 

larger valued coefficients. However, this method does not consider the sensitivity of the 

coefficient with respect to the frequency response. In some cases, although the magnitude 

of some coefficient exceeds 0.5, the coefficient has little effect on the filter performance. 

Therefore, the method of adding an additional nonzero bit to the coefficient cannot 

provide better filter performance in these instances.  

In other words, simply adding an additional nonzero bit to the coefficients whose 

magnitude exceeds 0.5 is not the best way to reduce the filter quantization error. From 

our experiments, we have seen that the magnitude of the worse–case quantization error 

usually occurs for the most sensitive coefficient in the CSD code. Hence, we propose a 

strategy to reduce the quantization error without increasing the complexity as follows:  

One additional nonzero bit in the CSD representation is allocated to the most 

sensitive coefficient until the specification is met. The method to calculate the coefficient 

sensitivity is the same as we proposed in this chapter in equation (2.1).  

Example 2.3: Design an FIR filter with normalized passband and stopband edge 

frequencies of 0.15* sf  and 0.25* sf , respectively. The desired filter passband and 

stopband ripples are 0.005 ( 46 )p s dBδ δ= = − . 
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Initially, we quantized the coefficients to the set of numbers with wordlength 12 bits. 

Next, we apply the proposed algorithm to generate the optimized CSD coefficients shown 

in Table 2-4. Samueli’s CSD coefficients are also shown in Table 2-4 for comparison. 

The normalized frequency responses of the quantized coefiicients are illustrated in Figure 

2-7. A total of 44 adders are needed to realize the proposed CSD digit filter, which is the 

same as Samueli’s method. However, the stopband attenuation of the proposed filter is 

47dB, which is better than the requirement. For comparison, the stopband attenuation of 

Samueli’s is 43.8dB, which is 2.2dB less than required. Therefore, with the same area 

requirement, the performance of the filter implemented is improved using our proposed 

method.  
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Figure 2-7 Frequency Response of CSD Coefficients FIR Filters 
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Table 2-4 Comparision of quantized CSD Coefficients 
Coefficients Samueli’s CSD  

   (before normalized) 
Improved variable       

CSD 
h(0) , h(24) 2-8 2-9 
h(1) , h(23) 2-7+2-8 2-8+2-10 
h(2) , h(22) -2-8 -2-10 
h(3) , h(21) -2-5 -2-6+2-8 
h(4) , h(20) -2-5+2-8 -2-7-2-9 
h(5) , h(19) 2-5+2-7 2-6 
h(6) , h(18) 2-4+2-6 2-5 
h(7) , h(17) -2-8 -2-9 
h(8) , h(16) -2-3-2-5 -2-4 
h(9) , h(15) -2-3-2-7 -2-4+2-7 
h(10) , h(14) 2-2-2-5 2-3-2-5 
h(11) , h(13) 2-1+2-2-2-5 2-2+2-4-2-6 
h(12) 20-2-5-2-7 20-2-2+2-4-2-6 
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2.6 Concluding Remarks 

An algorithm is presented for selecting variable precision coefficients for FIR filters 

that produces a reduced space implementation with no degradation in frequency response. 

The method in this chapter is based on the fact that the frequency response of a filter has 

different sensitivities to different coefficients. The novelty of the algorithm is that it is 

able to reduce the number of bits required by using the variable precision of the quantized 

coefficients to meet the specification with low space. The examples in this chapter show 

that using variable precision to exploit redundancy across the coefficients results in 

significant reductions in complexity and area over the uniform wordlength method and 

over other known variable precision methods. The use of variable precision coefficients 

has opened an exciting implementation possibility that allows solutions to trade-off 

between performance and area just as wordlength reduction, which can result in great 

reduction in the number of additions and storage blocks in the chip area. The proposed 

method is highly appropriate for the design of multiplierless filters and VLSI or FPGA 

implementations. 
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Chapter 3  Scaling Algorithm for Pre-quantization 
 
 
 
Scaling is the process of adjusting the real filter coefficients in order to constrain the 

coefficient values to an appropriate range more suitable for finite precision arithmetic.  

As addressed in [1][8][20][28], the resulting implemented filter has significantly better 

frequency shaping characteristics if the filter coefficients are scaled before the 

quantization process is performed. This improved and enhanced performance is attributed 

to the multiplication of an appropriate scale factor (SF), which can optimize the 

coefficient values and minimize the error noise. 

  

3.1 Effect of Scaling Filter Coefficients 

The incorporation of a scale factor has a significant affect on the coefficient 

optimization process when the coefficients are represented by CSD code. Scaling the 

filter coefficients prior to rounding them can always reduce the quantization error 

significantly and improve the frequency response. The benefit of scaling is shown in the 

following example. 

Example 3.1: Given an ideal filter with coefficients [0.26, 0.131,0.087, 0.011], 

consider a uniform wordlength of 7 bits, in which 1 bit is for the integer part and 6 bits 

represents the fractional part. If the coefficients are quantized directly, the quantized filer 

coefficients are [0.25, 0.125, 0.0781, 0].  The worst case of difference between the 

quantized and unquantized coefficients is less than 1/ 64 . The quantization error is [0.01, 

0.006,0.0089, 0.011]. 
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If a scaling factor SF=1.923 (i.e. 0.5/0.26), which makes the absolute value of the 

largest coeffcient to be 0.5, is applied prior to quantization, then the scaled filter 

coefficients are modified as to be [0.5, 0.2519,0.1673,0.0212], which can be quantized in 

the same wordlength (7 bits) digits by [0.5,0.25, 0.1563,0.0156]. In this case, the 

difference between the quantized and unquantized coefficients is also less than 1/ 64 . 

However, the quantization error is reduced to  

1 [0, 0.0019, 0.0110, 0.0056]=[0, 0.0010, 0.0057, 0.0029]
SF

 

Therefore, the scaling operation minimizes the quantization error and improves the 

performance of the fixed-point filter.  

 

3.2 An Improved Scaling Algorithm 

Our proposed method for selecting the scale factor is to account for the correlation 

between the coefficient quantization error and the frequency response errors. We want to 

select the scale factor so that it has the shortest length (or less nonzero bits) and results in 

the minimum value of output quantization error. We constrain the scale factor so that 

after scaling, the magnitude of the largest coefficient is between 0.5 and 1. Our proposed 

iterative procedure to choose the preferred SF is as follows: 

Step 1. The real filter is initially normalized so that the magnitude of the largest 

coefficient is equal to 1, and the initial scaled factor is chosen as,  

( ){ }
1

max ideal filter coefficients
SF

abs
=  
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Step 2. For the scaled filter, choose a maximum wordlength ( _ maxW ) of the 

coefficients such that the peak ripple of the fixed-point filter is strictly less than the ripple 

of the filter specification. 

Step 3. Set the appropriate wordlength of each coefficient using the following 

procedure (where K is the order of the filter) 

        For tap = 0 to K { 

         For 1w = to _ max  W { 

            Quantize the coefficient to w bits; 

                If the quantization error ( _ max 1) 2  W− +< then 

                              Set the coefficient wordlength to w and break; 

          } 

        } 

Step 4. After all of the coefficients are quantized, a re-scaled factor (RSF) is used to 

properly re-modify the magnitude of the resulting fixed filter coefficients. The value of 

the RSF  is determined as follows: 

( ){ }max ideal filter coefficientsabs
RSF

SF
=  

Step 5. Estimate the output error of the filter.  

Step 6. Change the SF with the step size of 2 k− , where k is an arbitrarily chosen 

integer, and repeat steps 2-6. Choose the appropriate SF such that the output error of the 

filter is minimum. 

The flow chart of the above scaling procedure is shown as Figure 3-1. 
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Figure 3-1 Scaling procedure 



 38

3.3 Numerical Example 

To show the effect of the proposed scaling algorithm, we consider example 2.1, that 

is, the filter with coefficients  

( ) [-0.0023 0 0.0054 0 - 0.0159 0 0.0385 0 - 0.0893 
0 0.3124 0.5000 0.3124 0 - 0.0893 0 0.0385 0 - 0.0159 0 0.0054 0 -0.0023]

h n =
 

The frequency response of ideal filter and the un-scaled quantized filter are shown in 

Figure 3-2.  Employing the technique presented in this chapter, the filter is quantized 

with scaled variable precision coefficients. The scaling factor, SF, is determined by 

(SF)=1/ max( ( )) =2abs h . The scaled coefficients are * 2hs SF h h= = , and the 

maximum wordlength, MW, is 10 bits. The resulting filter and its variable precision 

coefficients are shown in Table 3-1. To recover the actual desired filter, the quantized 

FIR filter can be multiplied by a rescaling factor, 0.5RSF = . Then, the FIR filter will be 

implemented * / 2h hs RSF hs= = . 

The improvement in this case shows not only that the quantization error of the 

scaled filter is reduced to some extent by the scaling process, but also that the 

wordlength of the coefficients can be reduced. Consequently, the scaling method used to 

preprocess the designed filter will reduce the space required and decrease the 

quantization error as well.         
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Figure 3-2 The Performance of Scaled Filter as well as that of the Unscaled Filters 
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Table 3-1 The Resulting Scaled Filter and its Coefficients 

Index of taps Ideal 
coefficients 

Quantized 
coefficients scaled by 2 

Wordlengt
h (bits) 

h0 -0.0023 -0.00390625 10 
h1 0 0 0 
h2 0.0054 0.01171875 10 
h3 0 0 0 
h4 -0.0159 -0.03125 7 
h5 0 0 0 
h6 0.0385 0.078125 8 
h7 0 0 0 
h8 -0.0893 -0.1796875 9 
h9 0 0 0 

 h10 0.3124 0.625 5 
 h11 0.500 1.0 2 
 h12 0.3124 0.625 5 
 h13 0 0 0 
 h14 -0.0893 -0.1796875 9 
 h15 0 0 0 
 h16 0.0385 0.078125 8 
 h17 0 0 0 
 h18 -0.0159 -0.03125 7 
 h19 0 0 0 
 h20 0.0054 0.01171875 10 
 h21 0 0 0 
 h22 -0.0023 -0.00390625 10 
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Chapter 4   Improved Prefilter-Equalizer Filter  

 
 
 
The factors that impact the performance in terms of the amount of hardware circuitry 

and resources required are the number of adders and multipliers, which is highly related 

to the order of the filer. The required order for linear phase finite impulse response (FIR) 

filters can be estimated by equation (1.2). From the equation, we see that the order of the 

FIR filter is inversely proportional to the width of the transition band and highly related 

to the filter ripple. This indicates that a filter with sharp transition band and huge 

attenuation requires much more complexity in implementation. In the past few years, 

several alternative FIR filter designs have been proposed to improve the performance of 

the filter and reduce the number of arithmetic operations. One attractive way to reduce 

the hardware cost is to reduce the order of the FIR filter by using a relatively simple 

structure [29][30] based on a prefilter. In this chapter, an improved efficient 

multiplierless structure of FIR filter synthesis is proposed based on the prefilter-equalizer 

structure, which allows arbitrary bandwidth and great area reduction.  

Section 4.1 introduces the prefilter equalizer structure used for space efficient FIR 

design based on RRS prefilter. The effect of the coefficient quantization on filter 

frequency response is discussed in Section 4.2. Compared with the conventional 

structure, the superior performance inreducing area consumption is also demonstrated in 

this section. Section 4.3 explores a new prefilter structure to make it possible to extend 

the simple prefilter to wideband FIR filter design. Concluding remarks are also offered in 

Section 4.4. 
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4.1 The Prefilter Equalizer Structure 

The scheme of a prefilter-equalizer was explored in [29]. Unlike the direct structure, 

the realization is a cascade connection of a prefilter with reasonable frequency response 

and a relative simple structure, and the equalizer has of reduced order to achieve the low 

cost implementation. The technique can be outlined as follows: Given a set of 

specifications of the frequency response in terms of cutoff frequencies and attenuation 

tolerances, the transfer function ( )H z  is obtained as a cascade of two transfer functions 

1( )H z  and 2 ( )H z . The function 1( )H z , called the prefilter, is extremely simple to 

implement, requiring very few additions and multiplications. This prefilter, 1( )H z , 

provides reasonable stopband attenuation but has a poor pass-band response.  The filter 

2 ( )H z , called the equalizer, compensates for this problem, leading to an overall filter 

( )H z  that meets all the specifications. The order of 2 ( )H z is much lower than that of a 

filter designed directly from the initial specification. This resulting order reduction is 

partially obtained from the prefilter because 1( )H z  has already contributed some 

attenuation in the stopband. Therefore, the overall implementation is simpler than that of 

a direct conventional approach. 

A very simple and effective prefilter is the recursive running sum (RRS) filter [29], 

which requires only two adders and no multipliers at all, regardless of the filter length.  



 43

( 1)LD− −

1D−

Y

X

 

Figure 4-1 Implementation of RRS Structure 

 
The implementation of RRS is shown in Figure. 4-1. The frequency response of an 

RRS filer is given by 

( 1) / 2sin( / 2)( )
sin( / 2)

jw j LLH e e ωω
ω

− −= ,      (4.1) 

where L  is the length of the filter. Substituting jz e ω= , the equivalent transfer function 

can be written as:  

1 ( 1)

1

( ) 1 ...
1
1

L

L

H z z z
z
z

− − −

−

−

= + + +

−
=

−
      (4.2) 

Thus, we see that the RRS is just an FIR digital filter with unity coefficients. 

However, it yields a relatively simple lowpass response and relieves some of the burden 

from the equalizer, especially from making a sharp transition and by reducing the 

attenuation required in the stopband. Thereby, it will minimize the order of equalizer.  

In order to demonstrate the advantage of such structure implementation, a specific 

simulation is provided here.  
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Example 4.1: Consider an FIR filter design with the following filter requirement: the 

edge of the passband and the stopband are at 0.042π and 0.14π , and the ripple of the 

passband and the stopband are 0.2dB and 35dB , respectively.  

Figure 4-2(a) shows the magnitude response of the prefilter and equalizer. From the 

figure, we can easily notice that not only a wider transition band is allowed for the 

equalizer, but also the stopband attenuation requirements on the equalizer are relaxed. As 

a result, Figure 4-2(b) provides the performance of the prefilter and equalizer cascade as 

well as the comparison to a conventional filter designed to meet the same specification. 

The filter performance of the cascade structrue is improved significantly. A summary of 

the hardware requirements for the prefilter and equalizer structure filter and the 

conventional filter is given in Table 4-1. The required order of the conventional filter is 

35, much longer than that of the equalizer, 23. In this case, it is assumed that both the 

conventional filter and the equalizer are implemented using a standard linear phase FIR 

filter. The prefilter equalizer FIR filter uses 5.7 percent more delay but 40 percent fewer 

adders and 50 percent fewer multipliers than the conventional filter. The prefilter and 

equalizer structure filter design has significant saving of the hardware.  

  

Table 4-1 The Summary of the Hardware Requirement for Different Structure Filters 
 Prefilter Equalizer Total of Cascade Conventional filter 

Delays 14 23 37 35 
Adders 2 23 25 35 

Multipliers 0 12 12 18 
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(a) The individual magnitude responses of the prefilter and equalizer  
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(b) The result of cascading the prefilter and equalizer, as well as the result of direct 

conventional filter design 

Figure 4-2 RRS prefilter based FIR filter  
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4.2    Quantization Error of the Prefilter-Equalizer Structure 

The realization of the digital FIR filter involves the quantization of signals and the 

coefficients. Thus, the coefficient quantization error incurred in the prefilter-equalizer 

cascade is considered here.  

Let ( )h n  and ( )h n%  denote the infinite precision and finite precision coefficients, 

respectively. Then, the quantization error ( )e n  is given by:  

( ) ( ) ( )e n h n h n= − % .         (4.3) 

( )jE e ω  represents the frequency responses of the sequences defined above and is given 

as:  

( ) ( ) ( )j j jE e H e H eω ω ω= − % .        (4.4) 

Assuming that the ( )e n are uncorrelated, then ( )jE e ω should be an approximately noise-

like spectrum.  

For a prefilter equalizer cascade filter, ( )jP e ω  and ( )jQ e ω  denote the frequency 

responses of the real coefficients of the prefilter and the equalizer; the cascade filter is 

denoted as:  

( ) ( ) ( )j j jH e P e Q eω ω ω=        (4.5) 

The frequency response corresponding to the quantized coefficients are denoted by 

ˆ ( )jH e ω , ( )jP e ω% and ( )jQ e ω% , respectively. The quantization error for the equalizer is 

defined as ( )j
qE e ω . Therefore, we have  

ˆ ( ) ( ) ( )j j j
qQ e Q e E eω ω ω= + .        (4.6) 
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Assume that we choose the prefilter so that its performance is immune to coefficient 

quantization. For example, using the RRS structure prefilter, we have ˆ( ) ( )j jP e P eω ω= . 

After the coefficients are quantized, the transfer function of the prefilter and equalizer 

cascade filter can be expressed as: 

( ) ( ) ( )
( )( ( ) ( ))

( ) ( ) ( )

j j j

j j j
q

j j j
q

H e P e Q e
P e Q e E e

H e P e E e

ω ω ω

ω ω ω

ω ω ω

=

= +

= +

%% %

       (4.7) 

From equation (4.7), we see that the prefilter attenuates the quantization error of the 

equalizer in the stopband. Based on this observation, we conclude that the prefilter 

equalizer at the stopband should be less sensitive to the quantization of the filter 

coefficients. Figure 4-3 shows the block diagrams representing the above relationship for 

the conventional filter and the prefilter equalizer cascade filter.  

 

( )jH e ω%
( )jH e ω

( )jE e ω

( )jH e ω

( )jP e ω ( )j
qE e ω

( )jH e ω%

(a)

(b)

 

Figure 4-3 (a) Equivalent for Conventional Filter [41] (b) Equivalent for Prefilter 
Equalizer Structure 
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Figure 4-4 The Effect of the Coefficient Quantization on the Filter Magnitude 

Frequency Responses of:  (a) Conventional Filter  (b) Prefilter Equalizer Cascade  

(c) Quantization Noise for Both the Conventional Filter and the Prefilter Equalizer 

Cascade Filter. 
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Figure 4-4 (a)-(c), which are generated by using the case of example 4.1, show the 

effect of the coefficient quantization on the filter magnitude frequency responses of the 

conventional filter and the prefilter equalizer cascade filter. In this figure, the prefilter 

equalizer cascade filter exhibits superior performance over the conventional filter, and the 

sensitivity of the frequency response of the prefilter equalizer to the coefficients is 

reduced. This attribute allows the coefficients to be quantized to fewer bits without 

introducing more degradation as shown in Figure 4-4 (b). Thus, the complexity of the 

filter can be reduced.  

4.3 Optimization of Prefilter Structure 

From equation (4.1) or (4.2), we know that the only factor that must be well designed 

for the RRS prefilter is the length of the filter, L. However, according to equation (4.1), to 

increase the sharpness of the frequency response on the transition from the passband to 

the stop-band, the first null of the response of the prefilter should be placed at a point that 

is slightly above the stopband frequency, sω . This implies that the length of the prefilter, 

L , should be chosen to meet the criterion:   

2 / sL π ω< ,              (4.8) 

For a fixed stopband frequency, sω , the restraint of equation (4.8) prevents the RRS 

prefilter from obtaining sufficient attenuation because a larger L  is needed for large 

attenuation. Especially when the desired filter is wide-band, it is impossible to acquire an 

ideal prefilter that provides sufficient sharpness of transition and large attenuation at the 

same time. In other words, there exists a limitation to the RRS prefilter structure to be 

used for wide-band filter design. Therefore, the RRS structure is a very elegant prefilter 
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that can be used to cope with a narrow band filter. However, for an arbitrary bandwidth 

filter, this method cannot be used in a straightforward manner. Thus, other kinds of 

prefilters will be investigated in the next section to meet the arbitrary bandwidth 

requirement. 

4.3.1 Principle of Finding an Optimal Prefilter 

 For practical purposes, the design of the equalizer is less important, while the design 

of prefilter is very important. We know that the equalizer can be designed by 

appropriately modifying the existing algorithm to compensate for the prefilter 

performance with lower order compared to conventional methods. There are some 

principles for designing the prefilter. One of the principles is that the prefilter should be 

optimal in the sense that the stopband offers the largest attenuation for a given 

specification. The second principle is that the implementation of the prefilter should be 

extremely simple so that we can view the implementation as combinations of powers of 

two. Thus, the complexity of the implementation should be as low as possible, and the 

performance of the prefilter should be immune to coefficient quantization. Third, it is 

essential to find such an optimal prefilter so that we can extend the application of the 

prefilter equalizer cascade structure to the design of wide-band filters.  

4.3.2 Prefilter Based on Chebyshev Function   

For the sake of the area-efficient implementation, the desired filter is expected to 

offer quite nice results in saving the number of arithmetic operations. Here, a Chebyshev 

function is applied to generate an optimal prefilter. One of the considerations in choosing 

a Chebyshev function as the efficient prefilter is that the implementation of a Chebyshev 
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polynomial involves only the coefficients that are extremely simple combinations of 

powers of two. It can be implemented by shifting and adding operations where no 

multiplier is required.  

The first kinds of Chebyshev polynomials of order 0n ≥ , is defined as [41]: 

1

1

cos( cos ) 1
( )

cosh( cosh ) 1n

n x x
T x

n x x

−

−

⎧ ≤⎪= ⎨ >⎪⎩
      (4.9)                      

Simplifying the manipulation of equation (4.9), and introducing cos( )x θ=  1x <  

and cosh( ) 1x xϕ= > , we have 

cos( ) 1
( )

cosh( ) 1n

n x
T x

n x
θ

ϕ
⎧ ≤

= ⎨ >⎩
           (4.10) 

Then, we can easily obtain an alternative to the Chebyshev polynomial ( )nT x  of order n  

with 0 ( ) 1T x = , 0 ( )T x x=  and  

1 1( ) 2 ( ) ( )n n nT x xT x T x+ −= − .     (4.11) 

The above equation is often used to denote the Chebyshev polynomial, rather than using 

the explicit formula (4.9). Since the coefficients of the polynomial can be expressed by 

the combination with fewer terms of powers of two. For example, the 5th order 

Chebyshev polynomial can be expressed as: 

2 0 4 2 3 4 5
5( ) (2 2 ) (2 2 ) 2T x x x x= + − + +    (4.12) 

Hence, the corresponding implementation of such a coefficient function involves only 

shifts and adders, which turns out to be extremely simple. The implementation is shown 

in Figure 4-5. 
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Figure 4-5 Implementation of Chebyshev Polynomial ( )nT x  

 
The second most important factor for using the Chebyshev function is that such a 

function can offer large attenuation, which is helpful to simplify the model filter design 

by relieving the equalizer from increasing attenuation in the stopband.  

One of the filters constructed using the Dolph Chebyshev function [41], which can 

be designed with any specified relative sidelobe level while simultaneously adjusting its 

passband width by choosing the parameter appropriately. The Dolph Chebyshev function 

is defined in the frequency domain as [30]: 

0

0

( cos( / 2))( )
( )

N

N

T xh
T x

ωω = ,                (4.13) 

where 0 1x > , and sω  is the cutoff frequency of the lowpass filter ( )h ω  and satisfies the 

condition 0 cos( / 2) 1sx ω = .  

 We applied equation (4.13) to form our proposed Chebyshev prefilter of thN  order 

and cutoff frequency sω :  

, ( ) ( ) / ( ),
sN N N sP T x T xω ω =      (4.14) 

where   

        cos( / 2) / cos( / 2)sx ω ω=      (4.15) 

                 1/ cos( / 2)s sx ω= .                 (4.16) 
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Figure 4-6 Magnitude Response of Proposed Prefilter with the Order of 5 

 

Figure 4-6 shows the magnitude response of the prefilter 5, / 2 ( )P π ω  of the 5th order 

and / 2π  cutoff frequency. It is clear that a Chebyshev prefilter provides a relatively 

larger attenuation and wider bandwidth, which is suitable to extend the prefilter equalizer 

cascade structure to arbitrary bandwidth filter design.  

From equation (4.14), it can be noted that the minimum stopband attenuation is given 

by 

10min( ) 20log ( ( ))s N sT xδ = ,                (4.17) 

 
which is related to the order of N and the cutoff frequency of sω . For a given N, the 

attenuation increases as sω  increases, and for a given sω , the attenuation increases as N 

increases. However, increasing N implies that the complexity of the prefilter will be 

increased, hence a better way to design the prefilter is to increase the attenuation while 

keeping the order N as low as possible. Consider a given filter specification, the choice of 
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sω should be as close as possible to the given stopband, so that the prefilter could 

generate a narrow transition band filter. Another consideration of choice sω  is its 

influence on the implementation of ( )NT x . As the variable of the Chebyshev polynomal 

described in equation (4.11), it appears N times in the multiplier coefficient. To make the 

prefilter as simple as possible, sω should be chosen in a way such that sx is a power of 2, 

or a combination of few sums of power of two. On the other hand, as discussed 

previously, the narrower sω  is, the less the obtainable attenuation from the prefilter.  That 

means, for a narrow band filter, a large N is required, which is unanticipated. Thus there 

exists a trade-off between N and sω . To avoid a large N and deal with the trade-off, an 

interpolated FIR filter design method [37] can be applied. This will be addressed later. In 

order to show the applicability of the Chebyshev polynomial to the prefilter design, an 

example of a lowpass FIR filter will be studied as follows. 

Example 4.2: Design a lowpass filter with specifications given as the passband edge 

pTω is at 0.125π , the stopband edge sTω  at 0.195π , maximum passband ripple is 

0.2dB, and the minimum stopband attenuation 35 dB. The frequency response of the 

proposed cascade filters with prefilter based on Chebyshev polynomial and the equalizer 

is shown in Figure 4-7 (a). The prefilter is a Chebyshev polynomial of order 12. Also the 

order of the equalizer filter is reduced to 37, and 19 multipliers are required. The 

resulting magnitude frequency response of the proposed filter and that of the 

conventional filter as well as that of the RRS based filter are shown as Figure 4-7 (b). In 

the same case, the conventional filter requires an order of 45 and 23 multipliers are 

needed.  
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(a)The proposed prefilter and its equalizer 
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(b) The real proposed cascade filter as well as real conventional filtter and the RRS 

based filter  
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(c) The resulting conventional filter and the quantized filter with 8 bits 
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(d) The resulting proposed filter and the quantized filter with 8 bits 
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(e) The magnitude and phase responses of the proposed filter with the edge of passband 

at 0.125π  

 

Figure 4-7 Improved FIR Filter Design with Chebyshev Polynomial Prefilter 
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The performance of the proposed filter is greatly improved compared to the RRS 

based filter, which has an equalizer of order 47, which is much larger than that of the 

proposed method.  Figure 4-7 (c) and (d) show the effect of the coefficient quantization, 

on the frequency responses. It is noticeable that the Chebyshev polynomial based filter is 

much less sensitive to coefficient quantization than the conventional design if the same 

wordlength of 8 bits is taken. Therefore, when the filters are implemented, the proposed 

filter can save much more space due to the short wordlength being used.   

Example 4.3: Consider a lowpass filter specification with passband edge pTω  at 

0.43π , stopband edge sTω  at 0.5π , maximum passband ripple of0.2 dB, and a 

minimum stopband attenuation of 35 dB.  

The frequency response of a conventionally designed filter (using remez in Matlab) 

is shown as Figure 4-8(a), which leads to a filter of order 45 with 23 multipliers required. 

A prefilter equalizer cascade based on a Chebyshev polynomial is shown in  Figure 

4-8(b). The prefilter is a Chebyshev polynomial of order 5. Also the order of the 

equalizer filter is reduced to 33, and 17 multipliers are required. Figure 4-8 (a) and (b) 

also show the effect of the coefficient quantization. It is noticeable that the Chebyshev 

polynomial based filter is much less sensitive to coefficient quantization than the 

conventional design if the same wordlength of 6 bits is taken. Figure 4-8(c) shows the 

result of the conventional filter with coefficients being quantized to 9 bits. The 

performance is almost the same as the proposed filter with 6 bits. It indicates that lower 

precision is needed by the proposed filter design to meet the same filter specifications.  

Though the proposed filter based on the Chebyshev function is relatively space 

efficient, Figure 4-8(d) shows there is still some distortion in the performance in terms of 
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frequency response. What is the reason for this degradation? From Figure 4-8(e), it is not 

difficult for us to see that the prefilter does provide a large attenuation but the transition 

band of the prefilter is relatively wide, which causes a decrease in the performance in the 

passband. The equalizer compensates for some of the distortion. However, the order of 

the equalizer should be as small as possible to obtain a space efficient filter design. 

Therefore, this distortion cannot be completely compensated while keeping area 

requirements low. In response to this situation, a halfband filter that is used as the 

prefilter will be described in the next section.  
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(f) The magnitude and phase responses of the proposed filter with passband edge at 
0.43π  

 

Figure 4-8 Filter Response with Stopband Edge at 0.5π by Using Proposed 
Chebyshev Polynomial Prefilter  



 64

4.3.3 Halfband Prefilter 

It is known that a half-band filter is relatively simple to implement because half of its 

coefficients are identically zero. By nature, such a filter is computationally more efficient 

than other filters of the same order [48][49]. In addition, when a half-band filter is 

designed with a cutoff frequency near / 2π , it has a sharp transition band, which is an 

attractive feature in a design of an appropriate prefilter. 

A typical half-band filter is an Lth band filter with 2L = , its transfer function is 

given by 

1 2
1( ) ( )H z a z E z−= + ,      (4.18) 

where 2
1( )E z  is the other polyphase component of ( )H z .  

As a result, the input samples appear at the output without any distortion for values 

of n, whereas the in-between samples are determined by interpolation, i.e. 

[2 ] [ ]y n x nα= ,      (4.19) 

 If we assume that 1/ 2α = , then the half band filter satisfies the following 

condition: 

1 0,
(2 ) 2

0 0,

n
h n

n

⎧ =⎪= ⎨
⎪ ≠⎩

.                 (4.20) 

Equation (4.20) indicates that about 50% of the coefficients of h(n) are zeros. This 

reduces the number of multiplications required in the filter implementation, which makes 

the filter computationally quite attractive.  

Additionally, if take 1/ 2α =  we have 

( ) ( ) 1H z H z+ − = ,      (4.21) 
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 If ( )H z  has real coefficients, then ( )( ) ( )j jH e H eω π ω−− = , which leads to the 

following equation:  

( )( ) ( ) 1j jH e H eω π ω−+ = .     (4.22) 

The above equation exhibits symmetry with respect to the frequency / 2π , and the band 

edges are symmetric with respect to / 2π , i.e. p sω ω π+ = . This attractive property 

provides us a design with sharp transition band filter near / 2π . 

By combining this idea with our proposed variable precision method, a half-band 

filter further reduces the space required for implementation. Since the coefficients of the 

half-band filter can be reduced to a few powers of two combinations, the half-band filter 

can thus be implemented efficiently with only a few adders and shifts. 

Example 4.4: Consider a lowpass filter with the same specifications as the 

Chebyshev method: the pass-band edge located is at 0.43π  and the stop-band edge 

located at 0.5π . The maximum pass-band ripple is 0.2pDB db=  while the allowable 

stop-band ripple is set as 35sDB db= − . 

For this wideband filter design, the required order to meet the specifications by using 

the conventional direct (Parks-McClellan) method is 45. However, the total order of the 

filter designed using our proposed filter based on half-band prefilter is 42, which includes 

the order of the prefilter, 19, and the order of the equalizer, 23. The details of the filter 

design implementation are shown in Table 4-2.  

In this design, each coefficient can also be quantized into the CSD representation 

with one or two nonzero digits. Therefore, the required hardware can be reduced furthur.  
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Table 4-2 Complexity Comparisons  

 Delays Adds Multipliers 
Parks-McClellan 45 45 23 

Chebyshev-based prefilter 33 36 17 
Halfband-based prefilter 42 31 17 

 

The frequency responses of the filter produced by the cascade filter based on a halfband 

prefilter, as well as the frequency response of the filter with conventional direct 

equiripple (Parks-McClellan) design are shown in Figure 4-9. From Figure 4-9 (a), we 

can see that the halfband prefilter provides a nice frequency response with a sharper 

transition band compared to the Chebyshev prefilter design, as shown in Figure 4-8(e). 

This quality relieves the burden on the equalizer design. Hence, the required order of the 

equalizer is 23, much lower than that of the Chebyshev method, which is 33. The 

performance of the resulting filter is improved as shown in Figure 4-9 (b). The effect of 

the coefficients quantization is illustrated inFigure 4-9 (c) and (d). This design also 

maintains the advantage of low sensitivity, which makes it possible to create a low 

sensitivity structure with a reduced number of taps. Also, it reduces the wordlength 

requirement of the coefficients, so that the specification is satisfied while simultaneously 

reducing the resulting hardware area required by the implementation. 
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 (b) Frequency Response of the Cascade Filter Based on Halfband Prefilter as well as 

that of the Conventional Filter 
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 (e) The magnitude and phase responses of  the halfband based filter with passband at 
0.43π  

 

Figure 4-9 Filter Design Based on Halfband Prefilter as well as the Conventional 

Filter 
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4.4 Concluding Remarks 

For the sake of space efficiency, the prefilter and equalizer cascade structure filter is 

introduced in this chapter. Our interest focuses on such a structure in which the prefilters  

provide a sharp transition-band and increase the stopband attenuation. Both of these 

efforts relieve the design burden on the equalizer, and hence lead to a good design with 

low coefficient sensitivity and small order, while the filter specification is still satisfied. 

For a narrow band filter design, an RRS prefilter presents superior performance in terms 

of the hardware implementation. In order to further extend the application to an arbitrary 

wide band filter, two other kinds of prefilter, specifically the Chebyshev polynomial 

prefilter and halfband prefilter, are investigated. The attractive feature of the Chebyshev 

polynomial prefilter is that it can supply great attenuation with very small order.   

However, for a single Chebyshev prefilter, if great attenuation is required, the transition 

band is wide, and some perturbation exists in the passband. Therefore, to some extent, the 

distortion of the performance of the designed filter is not easy to compensate. To solve 

the weakness and get a relatively sharp transition band prefilter, a halfband prefilter is 

developed. The examples given in this chapter have demonstrated the effectiveness of our 

design methods and improve the performance of a desired filter step by step. Moreover, 

each coefficient can also be quantized using reduced wordlength, or the CSD 

representation with only one or two nonzero digits can be used, since the low coefficient 

sensitivity is obtainable. In this way, we can greatly reduce the resulting hardware.  
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Chapter 5   Improved Masking Filter Development 
 
 
 In Chapter 4, we have described several different methods to develop an efficient 

cascade structure for simplifying hardware implementation. These methods to some 

extent improved the prefilter and could extend the applications of the prefilter equalizer 

structure to wider bandwidth filter design. Another motivation of our design is to get a 

high-performance effect such as combining a narrow transition band with a very large 

stop-band attenuation. In practice, if the transition band of the filter is sharp and the 

attenuation is large, the order of the filter usually is very high. Such a filter with high 

order is usually difficult to implement with a limited number of arithmetic operations. 

The purpose of this chapter is to develop techniques suitable for designing these kinds of 

filters by improving the developed prefilter and equalizer to reduce the overall 

complexity calculations as much as possible. 

In this chapter, our proposed structure is combined with the interpolated FIR filter 

(IFIR) [37] method and the frequency masking filter technique [38]. How to improve the 

filter performance by using the interpolated FIR filter is introduced in Section 5.1. In 

Section 5.2, the masking filter is integrated into the FIR filter design, which can provide a 

sharp transition band and lead to a superior realization compared to the proposed filter 

described in Chapter 4. Section 5.3 describes the details of the systematic procedure, and 

examples are presented to demonstrate the effectiveness of our design. Concluding 

remarks are also contained in Section 5.4.  
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5.1 Improved Prefilter Using Interpolated FIR filter Method 

 
To obtain a narrow transition band filter and simplify the filter structure, an 

interpolated FIR filter can be used [50]. We will take advantage of the characteristic of 

the IFIR filter in our proposed prefilter design to enhance the filter performance. The 

basic idea of an IFIR prefilter is to implement the improved prefilter as a cascade of two 

FIR sections, where one section generates the sparse set of impulse response values with 

every Mth sample being nonzero, while the other section, the interpolator, performs the 

interpolation. The interpolator is often implemented with only a few simple arithmetic 

operations.  

 

5.1.1 IFIR Filter Structure 

Let us consider a filter ( )H z  with impulse response ( )h n . This is a model filter that 

determines the frequency behavior of the final interpolated FIR filter. If M-1 zero valued 

samples are inserted between the samples of ( )h n , a new sequence, ( )Mh n , can be 

obtained as  

( / ) , 0, 1, 2,...
( )

0M

h n M n iM i
h n

otherwise
= = ± ±⎧

= ⎨
⎩

     (5.1) 

The corresponding transfer function is defined as ( )MH z . Then, the interpolated FIR 

(IFIR) filter transfer function can be expressed as follows:  

( ) ( ) ( )M
MH z H z F z= ,       (5.2) 
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where, ( )MH z  is the final interpolated FIR filter, ( )MH z  is derived by replacing each 

delay element of the model filter, ( )H z , with M delay elements, and ( )F z  is an 

interpolator. 

The IFIR filter is shown as Figure 5-1(a) and the frequency magnitude of the IFIR is 

shown in Figure 5-1(b). It is noted that the passband and stopband characteristics of the 

IFIR filter are the same as those in the model filter, but the passband and stopband width 

are only 1/ M times those of the model filter.  This means that the effect of the 

interpolation is to shrink the passband and transition bands without any significant 

increase in the number of the arithmetic operations. In addition, according to the 

estimation of the filter complexity in equation (1.2), the IFIR filter requires 

approximately only about 1/ M times the number of arithmetic operations to meet the 

same specification of an equivalent conventional filter design since the transition band of 

the model filter is M times that of the conventional filter.   

( )MH z ( )F z
In Out

 

(a) 

π

π

π

( )jH e ω

( )jMH e ω

( )j
MH e ω

( )jF e ω

ω

ω

ω
 

 (b) 

Figure 5-1 Interpolated FIR filter with 2M =  
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5.1.2 Proposed IFIR Filter Structure 

The difference between our design method and the general IFIR technique lies in that 

both the model filter ( )H z  and the interpolator filter ( )F z  are restricted to be identical 

filters except for the periodicity by using the folding technique [1]. Thus it is possible to 

map all the sub-filters used in the structure to a single hardware unit, which results in an 

efficient hardware design with fewer number of adders at the cost of more delays. In 

order to improve the area efficiency, a simple filter with low order and wide transition 

band can be chosen as the model filter. Several subfilters with different periodicities from 

the model filter can be cascaded together to remove the undesired band edges and make 

the transition band of the desired filter sharp to meet the design requirements. 

Our other interest is to design wide passband FIR filters. In this section, the 

complementary filter, / 2( ) ( )N
cH z Z H z−= −  [41], is used to synthesize a wide-band low-

pass/high-pass by subtracting the output of the narrow-band filter from the delayed 

version of the input. The proposed filter structure is given as shown in Figure 5-2. Here, 

N is the order of the model filter. Mi is the factor of the up-sample rate of the model filter.  

 

5.1.3 Design Based on Proposed IFIR Approach 

Assume the model filter, ( )H z , is lowpass filter. Then, ( )cH z , the complementary 

filter of the model filter is a highpass filter.  The filters ( )MH z  and ( )M
cH z  are derived 

by replacing each delay element of the model filters, ( )H z  and ( )cH z , respectively, 

with M delay elements. When the interpolator shown in Figure 5-1(a) is restricted to 
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n

i
i

N M

Z =

− ∑
 

Figure 5-2 Illustration of the Proposed IFIR Filters (a) Proposed Narrow-band IFIR 

Filter (b) Proposed Wide-band IFIR Filter 

 
 

be identical to the same model filter except for the periodicity, then the different filters 

are obtained as follows. A lowpass narrow band filter can be created by  

,
1

( ) ( )
M

n
NB LP

n

H z H z
=

= ∏ .                   (5.3) 

A highpass narrow band filter can be created by  

1 2

, ( ) ( ) * ( )
M M

n m
NB HP c

n even m odd
H z H z H z

= =

= ∏ ∏ .             (5.4) 

The wide band filter is obtained by taking the complement of a narrow band filter. Then, 

we have a lowpass wide band filter, formed by  

1 2

2 1

( ) / 2

, ,( ) ( )

M M

n m

N n m

WB LP NB HPH z z H z= =

− +∑ ∑
= − .       (5.5) 

A highpass wide band filter is formed by  

1

( ) / 2

, ,( ) ( )

M

n

N n

WB HP NB LPH z z H z=

− ∑
= − .        (5.6) 
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For the FIR filter design, we assume that the frequency response is normalized to π , 

and the lowpass model filter with passband edge at mod,cω  and the stopband edge at 

mod,sω .  Then, the complementary model filter will be a highpass filter with passband 

edge at mod,sω  and the stopband edge at mod,cω . From equations (5.3-5.6) one can derive 

the relationship of the edges of the desired filters and that of the model filters.  

For a lowpass narrow band filter, we find 

, , , mod,

, , , mod,

/
/

desired NB LP c c

desired NB LP s s

M
M

ω ω
ω ω

=⎧
⎨ =⎩

,        (5.7) 

For a highpass narrow band filter, we have 

, , mod, 1 mod, 2

, , mod, 1 mod, 2

max{ / , ( ) / }
max{ / , ( ) / }

desired NB HP c c s

desired NB HP s s c

M M
M M

ω π ω π π ω
ω π ω π π ω

= − − −⎧
⎨ = − − −⎩

,     (5.8) 

A wide band filter can be obtained from a narrow band filter created first, for a 

lowpass wide band filter we have 

, , , , , ,

, , , , , ,

desired WB LP c desired NB HP s

desired WB LP s desired NB HP c

ω ω
ω ω

=⎧
⎨ =⎩

,        (5.9) 

A highpass wide band filter can be given by 

, , , , , ,

, , , , , ,

desired WB HP c desired NB LP s

desired WB HP s desired NB LP c

ω ω
ω ω

=⎧
⎨ =⎩

,     (5.10) 

 

5.1.4 Example Designs 

In this section, we compare the filters obtained by our proposed design approach 

with the conventional method.  
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Example 5.1: Let us consider a wide band lowpass filter design with the 

specifications as follows: the passband edge of the wide band filter is at 0.68π , the 

stopband edge of the filter is at 0.80π , and the ripple of the passband and the stopband of 

the desired filter are 0.02 and 0.015, respectively.  

The conventional implementation of this filter by using the Parks-McClellan FIR 

filter design requires a filter order of 30, corresponding to 15 multipliers, 30 adders and 

30 delay operations. For comparison, when the proposed IFIR filter described as equation 

(5.5) is used, the implemented structure is shown in Figure 5-3, where 1M  is selected as 

2, and 2M  is equal to 1. The model filter is designed to the same specification as the 

designed filter and the required order is 14. Thus, for the proposed IFIR filter 

implementation, only 7 multipliers, 16 adders and 28 delay operations are needed. Both 

the magnitude frequency response of the proposed IFIR prefilter and that of the 

conventional filter are shown in Figure 5-4. For this example, we can see that the 

performance of the proposed prefilter has met the overall requirements alone, therefore it 

is not necessary to cascade an additional equalizer. Occasionally, this happy situation can 

help us to save even more area. Finally, we can implement the desired filter by reducing 

the area about 40%. 

x(n)

y(n)
/2NZ−

2( )H Z( )H Z

3* /2NZ−
 

Figure 5-3 Structure of the proposed filter 
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 (c) The magnitude and phase responses on the proposed filter passband with edge at 
0.68π  

 

Figure 5-4 The Frequency Response of the Proposed Wide-band Prefilter as well as 

the Conventional Filter 
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Example 5.2: In this example, a narrow-band lowpass filter is designed to satisfy the 

following specifications: the passband edge of the filter is at 0.2π , the stopband edge of 

the filter is at 0.3π , the maximum deviation of the passband is 0.2dB and the minimum 

stopband attenuation is 40dB.  

The conventional implementation of such filter requires a filter order of 41, 

corresponding to 21 multipliers, 41 adders and 41 delay operations. If the proposed IFIR 

approach is used and 2M =  as shown in equation (5.3), the order of the prefilter is 

expected to be 20. The frequency response of the prefilter is shown in Figure 5-5. The 

corresponding deviation in the passband of the prefilter is greater than that of the filter 

specification (0.2dB), which can be seen in Figure 5-5 (b). Therefore, an equalizer of 

order 7 is employed to compensate the deviation. After cascading the prefilter and the 

equalizer, the proposed filter performance (as shown in Figure 5-6) is improved, and the 

total filter order to meet the given filter specification is 27.  Only 14 multipliers, 27 

adders and 47 delay operations are needed. In contrast to the conventional design method, 

this design achieves about 34% savings in terms of the number of operations.  

For these examples, we are able to design arbitrary bandwidth FIR filters with 

significant hardware savings by using our proposed IFIR approach. However, this 

approach is more suitable for very narrow/wide band filter design. To generalize this 

method to a wider range of applications, next we will develop a more efficient structure 

by using the masking technique.  
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(a) The Magnitude Frequency Response of the Narrow-band Filter 
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Figure 5-5 The Frequency Response of the Proposed Narrow-band Prefilter as well 

as the Conventional Filter 
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 (c) The magnitude and phase responses on passband of the proposed filter with the edge 

0.2π  
 

Figure 5-6 The Frequency Response of the Proposed Prefilter and Equalizer 

Cascaded Filter as well as the Conventional Filter 
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5.2 Improved Prefilter with Masking Method 

An alternative method to reduce the arithmetic complexity is to use frequency-

response masking [38]. Our purpose here is to explore the practicality of the wideband 

prefilter created by using the frequency-response masking method. We can construct an 

arbitrary wideband filter with a model filter, its complementary filter and two masking 

filters. The structure of such a prefilter is shown in Figure 5-7, whose transfer function is 

given by: 

( ) ( ) ( ) ( ) ( )M M
c cP z H z F z H z F z= + ,      (5.11) 

where ( )F z  and ( )cF z  are the masking filters and ( )MH z  is obtained from the model 

filter ( )H z  by replacing 1z−  with Mz− . ( )M
cH z  denotes the complementary filter of the 

filter ( )MH z  and  is given by: 

/ 2( ) ( )M MN M
cH z z H z−= − ,       (5.12) 

Then, we have the desired filter implementation as shown in Figure 5-8.   

x ( n )

y ( n )
/ 2MNZ −

( )F Z( )MH Z

( )F Zc

 

Figure 5-7 Masking Prefilter Structure 
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Figure 5-8 The thM  Interpolated Filter and Its Complementary Filter 

 
 

5.2.1 Frequency Response of Masking Filter Approach 

The benefit of P( z )  as given by equation (5.11) lies in the fact that the pair of 

complementary filters ( )MH z and ( )M
cH z  are acquired from the model pair of 

complementary filters ( )H z  and ( )cH z  by replacing 1z−  with Mz−  as shown in Figure 

5-9 (a)-(c).  As we described previously, the above substitutions make ( )MH z  and 

( )M
cH z  periodic with a periodicity of 2 / Mπ  without increasing the number of 

multipliers, resulting in FIR filters with a sparse impulse response with only every Mth 

impulse value being nonzero. The most important benefit of this approach is focused on 

the fact that ( )MH z and ( )M
cH z  provide several transition bands of width 1 / M times 

the transition bandwidth of the original filters ( )H z  and ( )cH z . By using the masking 

filter approach, one of these sharper transition bands can be used as the transition band of  
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Figure 5-9 The Magnitude Response of the Frequency Response Masking Technique 

 

the overall filter as shown in Figure 5-9 (d). Since the order of a linear phase FIR filter is 

inversely proportional to the transition bandwidth in equation (1.2), we can generate an  

FIR filter that saves many more multipliers when compared to the conventional FIR filter 

with the same transition bandwidth.  

Due to the periodic responses of ( )MH z and ( )M
cH z , they cannot be used alone. To 

generate the desired filer response, the masking filters ( )F z  and ( )cF z  must be 

combined together. There are two cases to be considered as shown in Figure 5-9 (b) and 

(c). The band edges of the desired filter are determined by either of the cases as shown in 
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Figure 5-9 (d). Hence, through the proper selection of the number of the duplication 

band, i.e. the index k or n in the Figure 5-9 (d), we an generate our desired arbitrary 

bandwidth filters. 

 

5.2.2 Proposed Filter Implementation  

In general, the masking filters ( )F z  and ( )cF z  are designed in such a manner that 

in the passband these filters approximate unity and the edges approximate the passband 

of the selected periods of the model filters ( )MH z and ( )M
cH z . Consequently the 

overall passband approximates the specification as desired. In the stopband, the masking 

filters are designed to attenuate the unwanted passband and transition bands.  

For the masking filter design, our main interest concentrates on those cases in which 

the magnitude response of the masking filter, ( )F z , should provide a narrow transition 

band and great attenuation of the unwanted replicas of the desired passband. From Figure 

5-9(b), it is noted that the transition bandwidths of the masking filters are governed by the 

bandwidth and the transition bandwidth of the interpolated model filter. When the desired 

transition band is very narrow, the interpolator factor M is required to be large. In this 

case, the transition band for the two masking filters is also obliged to be very sharp, 

leading to a high order for the masking filters. To overcome this complication, the IFIR 

filter introduced in the previous section is considered as the masking filter, which allows 

us to design a single low order filter instead of a large order filter and offers large 

attenuation as well. In addition, it is allowable that the magnitude of ( )F z  has a slight 

ripple in the passband, since the equalizer can compensate for some of this deviation. 
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Therefore, to some extent, a little ripple can be ignored during the design of the model 

filter and the masking filter design. This advantage makes the design of the proposed 

prefilter much easier.  

 

5.3 Systematic Design Procedure 

As discussed previously, the masking filter will provide a large attenuation, and the 

equalizer will help to correct the passband ripple. Here, we will describe how to obtain a 

specified narrow transition band filter by properly determining the parameters as 

described above with low complexity. The design procedure outlined here is for a 

lowpass filter.  

 

5.3.1 Selection of the Model Filter  
 

Assume a desired narrow transition band filter has the passband edge at ,d cω  and the 

stopband edge at ,d sω . To choose the model filter, we must determine the factor M of the 

interpolated filter ( )MH z , the index number of the passbands k or n as depicted as shown 

in Figure 5-9(d), and the passband and stopband edge frequencies, cω and sω . For a given 

M, there are two possible cases. The band edges of the model filter can be determined by 

either of the following: 

Case 1 (as shown in Figure 5-9 (b)): If the passband width of ( )F z is wider than that 

of ( )cF z , the transition band of the desired filter is given as: 



 89

2 2c sk k
M M

π ω π ωω+ +
≤ ≤ ,      (5.13) 

which indicates that ,
2

d c
k
M

π ω< , where, the integer k  refers to the thk duplicated period 

of ( )MH z , so    

, / 2d ck Mω π= ⎢ ⎥⎣ ⎦ .        (5.14) 

In other words, we can select the passband edge and stopband edge of the model filter 

( )H z  as follows:  

,

,

2
2

c d c

s d s

M k
M k

ω ω π
ω ω π

= −

= −
.         (5.15) 

 Case 2 (shown as Figure 5-9 (c)): If the passband width of ( )cF z  is wider than that 

of ( )F z , the desired filter transition band is governed by:  

2 2s cn n
M M

π ω π ωω− −
≤ ≤ ;      (5.16) 

which indicates that ,
2

d s
n
M

π ω> , where, the integer n  means the thn  duplicated period of 

( )MH z , and  

, / 2d sn Mω π= ⎡ ⎤⎢ ⎥ .       (5.17) 

That is, the passband edge and the stopband edge of the model filter ( )H z  can be set as 

the following frequency:  

 ,

,

2
2

c d s

s d c

n M
n M

ω π ω
ω π ω

= −

= −
.            (5.18) 
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In fact, the solution of these parameters is not unique. In general, M is not given. We can 

select a proper value of M within the constraint by: 

     , ,int{ /( )}d s d cM π ω ω≤ − ,      (5.19) 

where 

( ) ( ), ,/s c d s d cM ω ω ω ω≥ − − .       (5.20) 

In short, the selection of the parameters must obey the overall criterion that minimizes the 

number of the operations for the whole realization. 

 

5.3.2 Masking Filter Design 

Case 1: As shown in  

Figure 5-9 (b), set the passband edge of the masking filter, ,m cω  at the desired 

passband edges, ,d cω . The stopband edge of the masking filter, ,m sω , can be set at 

,
2( 1) s

m s
k

M
π ωω + −

= ,        (5.21) 

and the passband edge of the complementary masking filter, ,c cω ,  should be chosen at  

,
2 c

c c
k

M
π ωω −

= ,      (5.22) 

while the stopband edge of the complementary masking filter, ,c sω ,  is set at  

,
2 s

c s
k

M
π ωω +

= .      (5.23) 

Case 2: As shown in Figure 5-9 (c), set the passband edge of the complementary 

masking filter, ,c cω  at the desired passband edges, ,d cω . The stopband edge of the 

complementary masking filter, ,c sω , is set at 
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,
2 c

c s
n

M
π ωω +

= ,         (5.24) 

and the passband edge of the masking filter, ,m cω , should be chosen at  

,
(2 1) s

m c
n

M
π ωω − +

= ,      (5.25) 

while the stopband edge of the complementary masking filter, ,m sω , is set at  

,
2 c

m s
n

M
π ωω −

= .      (5.26) 

The order of the corresponding masking frequency filter N  is determined so that it meets 

the attenuation specification.  

For narrowband masking filter design, the proposed structure is acceptable, but a 

little modification is desirable. Many methods, such as an RRS structure, can be used to 

produce an efficient prefilter. For generality, we apply the single model IFIR filter 

introduced in the last section to create the masking filter. By cascading the several 

instances of the same model filter, but with different interpolated factors described in 

equation (5.3), the undesired band edges can be removed. Thus a narrow transition band 

and large attenuation for the masking filter can be generated.  

According to the above analysis, a modified prefilter-equalizer structure is provided 

to synthesize an area-efficient filter with arbitrary bandwidth. The design procedure is 

summarized as follows: 

Step 1: Determine the factor of the interpolated filter, M , by equation (5.19-5.20) 

such that the interpolated filter ( )MH z  and ( )M
cH z can be generated. Then select the 

correct thk  or thn passband based on equations (5.14 or 5.17) to make sure that the 

designed filter meets the required specifications.  
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Step 2: Design a model lowpass FIR filter, ( )H z , in a simple form with a low order 

and a wide transition band. The band edges can be chosen by equation (5.15) and (5.18).  

Step 3: Design the masking filters, ( )F z  and ( )cF z , from the recommended IFIR 

filters to meet the requirements as shown in equations (5.21) to (5.26).  

Step 4: Configure the desired prefilter in the structure of Figure 5-7. 

Step 5: Obtain the equalizer by using the modified Parks-McClellan method and 

determine the variable precision coefficients by our proposed algorithm in chapter 2.  

 

5.3.3 Design of Examples 

Example 5.3: In this example, we will illustrate the efficiency of the filter obtained 

by applying the proposed method compared to those acquired using the other methods. 

Consider the same specifications of a linear phase FIR lowpass filter as shown in [51]: 

passband edge: 0.2pTω π= , stopband edge: 0.205sTω π=  

passband ripple: 0.1p dBδ = , stopband ripple: 40s dBδ = − . 

For the conventional direct FIR filter design, the minimum order to meet the given 

specifications is 761, and requires 761 adders and 381 multipliers.  

For the introduced method of Rong Huan [51], the overall number of multipliers is 

minimized when the filter is designed with interpolator factor 21L =  in case 1. The best 

solution is obtained by the model filter band edges set at 0.4pTω π=  and 0.442sTω π=  

with 129 multipliers and 254 adders.  

For the proposed approach, the overall number of multipliers is minimized to be 100 

and the number of adders is 198 as follows: 
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Step 1: According to equations (5.19) and (5.20), we choose M to be less than 20 and 

if M is about 10, we should get a good solution. In this example, 12M =  is taken and 

case 1 is adopted, which leads to 1K =  by equation (5.14).  

Step 2: The band of edges of the model filter can be designed by equation (5.15), 

0.4cTω π=  and 0.46sTω π= . To meet the specification, the order of the model filter is 

chosen to be 76.  

Step 3: From equation (5.21)-(5.23), the band edges of the masking filters ( )F z  and 

( )cF z  are obtained as shown in Table 5.1.  Their orders are designed as 63 and 57, 

respectively.  

At this point, the overall prefilter is designed. Figure 5-10 (a) is the magnitude 

frequency response of the prefilter with the ripple details in the passband shown as Figure 

5.10 (b). We observe that the ripple of such a prefilter is beyond the specified filter 

requirements. In order to compensate for the distortion, an equalizer of order 3 is 

cascaded. Thus the sum of the proposed filter lengths is 199. Figure 5.11 presents the 

overall filter designed by the proposed approach, as well as the filter obtained by the 

conventional method.  

If all filter coefficients are quantized to 10 bits, the proposed filter has slight 

deformation shown in Figure 5.12 (a), which can be modified by increasing the filter 

length to 209. For further area reduction, the coefficients of the proposed filter can be 

quantized with just a few CSD digits using our proposed algorithm due to its low 
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Table 5-1 Description of the proposed filter 
Parameters Passband edge Stopband edge Filter length 

     ( 12M = ) 
( )H z  0.4π  0.46π  76 
( )F z  0.198π  0.285π  57 

( )cF z  0.133π  0.205π  63 

 

sensitivity characteristics. However, if the conventional method is used and the 

coefficients are quantized to 10 bits, the distortion is considerable, as shown in Figure 

5.12 (b).  In order to satisfy the given specifications, the order of the conventional method 

must be increased to at least 856 with 12bits/coefficient or the wordlength of the 

coefficients must be increased to 14bits/coefficient with an order of 761.   
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(a) The Magnitude Frequency Response of Prefilter as well as Equalizer 
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(b) The Detailed Respond of the Passband of the Prefilter 

Figure 5-10 The Result of Prefilter with Bandwidth 0.2pω π=  
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 (c) The magnitude and phase responses of on passband of the proposed filter  

 
Figure 5-11 The Result of Proposed Filter with Bandwidth 0.2pω π= , as well as the 

Filter from the Conventional Design 
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(a) The Proposed Result 
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(b) The Conventional Result 

Figure 5-12 The Comparison of the Quantized Result (10Bits/Coefficient) 
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Example 5.4: In order to demonstrate the efficiency of the arbitrary bandwidth filter 

design, consider a desired wide bandwidth FIR lowpass filter with the following 

specifications: pass-band edge at 0.6π , stop-band edge at 0.605π , and the ripples at the 

passband and stopband are 0.1 dB  and 40 dB−  respectively.  

In this case, the required order to meet the specification using the conventional direct 

method is 761. If we use our proposed method, we can achieve a low complexity filter 

with a total order of 178. According to equations (5.19) and (5.20), we choose M to be 

about 10 and less than 20. In this example, 11M =  is taken and case 1 is adopted, leading 

to 3K =  by equation (5.14).  

The band of edges of the model filter can be designed by equation (5.15), 

0.6cTω π=  and 0.655sTω π= . To meet the attenuation requirement, the order of the 

model filter is chosen to be 72.  

The edges of the masking filters ( )F z  and ( )cF z  are obtained from equation (5.21)-

(5.23), and their order are chosen as to be 63 and 43, respectively. The band edges of the 

filters are given in the Table 5.3.  

Figure 5-13(a) presents the magnitude frequency response of the overall prefilter and 

the ripple in detail is shown in Figure 5.13(b). It is noted that the ripple of such a prefilter 

 

Table 5-2 Description of the proposed wideband filter with 0.6cTω π=  

Parameters Passband edge Stopband edge Filter length 
( 12M = ) 

( )H z  0.6π  0.655π  72 
( )F z  0.595π  0.672π  63 

( )cF z  0.49π  0.605π  43 
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is beyond the specified filter requirement. In order to compensate for the distortion, an 

equalizer with an order of 7 is cascaded. Figure 5.14 shows the overall filter designed by 

the proposed approach, as well as the filter obtained by the conventional method.  

If all filter coefficients are quantized to 10 bits, the proposed filter has a slight 

deformation shown as Figure 5.15 (a), while still satisfying the specifications. Thus the 

filter can be quantized to 10bits/coefficient.  However, if the conventional method is used 

and the coefficients are quantized to 10 bits, the distortion is considerable, as shown in 

Figure 5.15 (b).  In order to satisfy the given specification, the order has to be enlarged to 

858, or the wordlength of the coefficients must be increased to 14bits/coefficient.   
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(a) The Magnitude Frequency Response of Prefilter as well as Equalizer 
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(b) The Details of the Passband of the Prefilter 

Figure 5-13 The Result of Prefilter with Bandwidth 0.6pω π=  
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(a) The Magnitude Frequency Response 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 
-0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

proposed 

conventional

 

(b) The Details of the Passband  

 

 

 

 



 103

 
 
 
 
 
 
 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-50 

-40 

-30 

-20 

-10 

0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-600 

-400 

-200 

0 

200 

 

(c) The magnitude and phase responses on the passband of the proposed filter  
 

Figure 5-14 The Result of Proposed Filter with Bandwidth 0.6pTω π= , as well as 
the Filter from the Conventional Design 
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(b) The Conventional Result 

Figure 5-15 The Comparison of the Quantized Filter (10Bits/Coefficient) with 
Bandwidth 0.6pTω π=  
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5.4 Concluding Remarks 

In this chapter, a proposed prefilter structure is used to improve the desired filter 

performance and reduce the complexity required in implementing an FIR digital filter, 

which combines the proper interpolator and the masking technique.  The attractiveness of 

the proposed structure lies in that our improved two-level design allows an arbitrary 

width filter to be realized in a simple way. Our proposed method can be summarized in 

two steps. The first step is targeted at improving the prefilters based on the frequency 

masking technique and aims to provide a sharp transition-band as well as increasing the 

stopband attenuation. The second step is targeted at compensating the ripple in the 

passband and reducing the complexity of equalizers required. When this method is 

combined with our proposed variable precision algorithm, we can produce a filter with a 

few bits per coefficient. The resulting filter is shown to be more efficient. A systematic 

design procedure for the efficient cascading FIR filters is given, leading to a good design 

with low coefficient sensitivity and low order, while still satisfying the specifications. 

This allows the area of the resulting hardware to be reduced.  
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Chapter 6 Conclusions and Future Work 
 

Conclusions 

In this dissertation, we have conducted a systematic research on the design and 

implementation of high performance, area efficient FIR filters. In order to reduce the 

number of arithmetic operations, we study the possibilities from two aspects: developing 

algorithm approach and improving filter structure to reduce the hardware complexity.  

We developed a variable precision algorithm for FIR filters, which is founded on our 

sensitivity analysis. The algorithm is proposed to reduce the wordlength of the 

coefficients and/or the number of nonzero bits of the coefficients by eliminating bits that 

are not necessary. The sensitivity analysis is used to predict the variable precision of the 

quantized coefficients to meet the filter specifications without any degradation of the 

filter performance. Furthermore, the proposed algorithm is used with CSD representation 

to reallocate different nonzero digits. In order to increase the proposed algorithm 

efficiency, a scaling algorithm and CSD number representation are incorporated. The 

examples presented in this dissertation show that using variable precision coefficients 

results in significant reduction in filter complexity compared with the uniform 

wordlength method. From the viewpoint of implementation, the use of variable precision 

coefficients can reduce the number of operations and storage blocks in the chip area, 

which is highly applicable to the design of multiplierless filters in VLSI implementations. 

One of the most important parts of our design is to synthesize an arbitrary bandwidth 

FIR filter with the prefilter and the equalizer cascade structure. The proposed prefilter is 
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designed to provide large stopband attenuation and wide band response with relatively 

low complexity. Since the prefilter achieves most of the requirements, the equalizer can 

be realized in much lower order. For a narrow filter design, an RRS prefilter presents 

superior performance in terms of the hardware implementation. In order to further extend 

the application to arbitrary wide band filters, two other kinds of prefilters, specifically the 

Chebyshev polynomial prefilter and halfband prefilter, are investigated. The Chebyshev 

polynomial prefilter can offer large attenuation with very low order. However, for a 

single Chebyshev prefilter, the transition band may be too wide and some perturbation of 

the passband will occur if great attenuation is required. Under such situations, the 

distortion of the filter performance will be difficult to completely remove. To overcome 

the weakness, we develop a halfband prefilter. Moreover, the coefficient sensitivity of 

such a structure is studied, and the numerical instances also show that low coefficient 

sensitivity is obtainable in this structure. Each coefficient can be quantized with reduced 

wordlength, or the CSD representation can be implemented using only one or two 

nonzero digits. Thus, the resulting hardware area can be greatly reduced. The design 

examples provided in this dissertation demonstrate the effectiveness of our design 

methods.  

In order to improve the desired filter performance and reduce the complexity, we 

also have combined the proper interpolator and the masking technique and applied them 

to our proposed structure. The proposed filter based on the frequency masking technique 

is targeted at improving the prefilters, which provides a sharp transition band and the 

large stopband attenuation and allows any arbitrary bandwidth filter to be realized in a 

simple way. When the proposed structure is combined with our proposed variable 
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precision algorithm, the complexity of the equalizers is reduced. A systematic design 

procedure for the efficient cascading FIR filters is presented, which leads to a good 

design with low coefficient sensitivity and small order while still satisfying the 

specification. Thus the resulted hardware area is reduced.  

 
 

Future Work 

We have identified several areas for future work. We want to explore the possibility 

of using an IIR structure to implement the FIR filter. The idea is to design a low order IIR 

filter using filter approximation techniques that can ensure the resulting low order IIR 

filter reflects the features of the FIR filter and satisfies the original design specifications. 

In general, the IIR filter is constructed by employing the iterative arithmetic structure and 

the order of the filter is relatively low. Hopefully, the computational complexity of the 

resulting FIR filter will be low compared with that of the existing FIR direct methods. 

For arbitrary bandwidth filters, more studies should be conducted in the future for 

more efficient methods. For example, tunable FIR filters can be designed with the same 

hardware requirements as that of their prototypes. Thus, if a narrow prototype filter is 

implemented with a savings in area hardware, arbitrary bandwidth filters can be realized 

in the same reduced area by using the tunable filter.     

Additionally, we want to develop more computationally efficient layout methods. 

The area costs for high performance digital filters depend not only on analyzing an 

elegant algorithm and optimizing its various parameters, but also considering details 

related to transistors and wires. In an ideal state, we suppose that a delay operation costs 

little area in the hardware. However, in VLSI technology, signal propagation delays over 
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long wires usually occupy significant space, which force the designer to alter the way in 

which an area efficient arithmetic circuit can be desgined. Our future work could consider 

both the logic gate level and the layout level. 

We would like to realize our FIR filter designs in various devices currently available. 

Commercially, we would analyze the effect of the different proposed methods in terms of 

the consumed area for different devices. Determining the relationship of the design 

methods and the various device types in terms of area cost would be highly desirable.  

Many digital signal processing applications are arithmetic intensive and cost 

sensitive, thus requiring innovative solutions for cost effective implementation. 
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