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CHAPTER I 

INTRODUCTION 

As scientists continue to explore and discover the interrelation­

ships of ma~-made and natural phenomena, the need for accurate modeling 

procedures and analytical techniques becomes more apparent. Because the 

methods of investigators and the systems which they study are becoming 

increasingly complex, computers are often essential for gaining insight 

into physical processes, for solving complicated problems and for anal­

yzing models. Thus, the effects of computer simulation on model perfor­

mance and on model development are important areas of study. 

One current and continually more important subject of research in 

modeling and analysis is the study of stochastic systems. The modern 

theory of stochastic systems had its beginnings in the method of least 

squares, which was developed for parameter estimation of planetary mo­

tion from measured data. The modeling and analysis of random dynamic 

systems using stochastic techniques is very important in systems engi­

neering as evidenced by the use of Kalman filtering, as well as other 

aspects of stochastic analysis, in such diverse applications as seismic 

data processing, systems identification and aircraft control. Since 

stochastic algorithms generally require great amounts of computation, 

the advent of modern high-speed digital computers, and more recently of 

microprocessors, has made it feasible to apply stochastic analysis and 



synthesis to problems where previously it would have been physically or 

economically impossible. 

For linear stochastic systems the theoretical basis for analysis 

has a fairly firm footing in mathematical rigor and the main problems 

tend to be computational. However, when the system considered is non-

2 

1 inear, deeper problems arise. In fact, what is meant when one writes 

of the solution of a nonlinear stochastic differential equation has not 

been resolved rigorously. Many theories have been advanced for ending 

this dilemma, but interpretation of solutions can almost be described as 

a matter of personal preference rather than one with a complete mathe­

matical justification. 

The efficacy of stochastic concepts in systems engineering is no 

less apparent because of these mathematical controversies, but conse­

quently much care must be used in applying the concepts of stochastic 

analysis to nonlinear systems. A subject of particular concern is the 

generation of solutions of nonlinear stochastic systems by digital simu­

lation. Since an accurate computer model of a physical process reflects 

not only the physics involved, but also the underlying mathematical the­

ory, the computer simulation of nonlinear systems involves discrepancies 

arising from the disunity of the mathematics. A deeper understanding of 

the relationships between the mathematics and the modeling of nonlinear 

random systems is the goal of this research. 

History of the Problem 

The successful analysis of a physical system is dependent on the 

choice of a model which reflects adequately the important physical prop­

erties of the system. Experimental evidence has indicated that 
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differential equations are accurate mathematical idealizations of reality 

and, indeed, Newton's motive for developing the theory of differential 

and integral calculus was as a systematic method for analyzing physical 

problems. Choosing an appropriate model usually requires insight and 

experience, however. Among many other problems, if the model is too 

detailed, a prohibitive amount of computation must be performed, and if 

the mod~l is too general, results may be meaningless for a specific sys­

tem. 

Another major concern 1n model development is to construct a model 

which can be analyzed using proved techniques. If a physical system can 

be modeled with no random elements, then a fairly complete theory exists 

for analysis. However, many problems arise in which the random nature 

of the system must be incorporated into the mathematical model. These 

systems have necessitated the development of a theory of stochastic dif­

ferential equations and, more recently, of a stochastic calculus. 

One of the first considerations of a comprehensive theory of sto­

chastic systems is the choice of a mathematically tractable model for 

noise processes which is also a good approximation to physical reality. 

Many noise processes in nature are approximately Gaussian and approxi­

mately stationary, and they have a power spectrum that is essentially 

flat up to high frequencies. Such processes that decay at high frequen­

cies in a manner that is not known accurately and that has 1 ittle effect 

on system solutions at lower frequencies can be modeled as white noise. 

This noise process, whose mathematical representation has a flat power 

spectrum corresponding to power present at every frequency, is called 

"white" in analogy to white 1 ight, which has energy at every frequency 

of the visual spectrum. White noise has values whlch are independent 
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at any two distinct times and it also has infinite variance. Such a com­

pletely nonphysical process provides a meaningful and tractable idealiza­

tion of physical noise processes and is generally the most useful for 

modeling stochastic systems. 

Wiener (1] [2] [3] developed the first example of a random process, 

the "Brownian-motion'' or "Wiener" process. This stochastic process is 

historically important because it is the first significant introduction 

of Lebesgue's theory into probability theory and practically important 

because it can be interpreted as the integral of white noise. Wiener was 

also interested in the more general problem of analyzing nonlinear equa­

tions with random elements. McKean [4] presents a detailed investigation 

of differential and integral calculus based upon the Wiener process. 

The very important work of Ito [5-11] in the development of a sto­

chastic calculus was motivated primarily by the desire to construct Mar­

kov processes whose transition probabilities satisfy particular Kolmo­

gorov equations and to investigate continuity and other properties of 

sample functions. The Ito stochastic integral is defined only for noise 

processes which are martingales, but it exists under very general restric­

tions on the integrand. Stochastic processes resulting from Ito's inte­

gral are Markov processes and certain properties of the integral are very 

useful for the computation of moments resulting from the stochastic inte­

gration. Ito also showed that his integral is a martingale of Brownian 

motion. The extensive theory of Markov processes and martingales, along 

with the properties mentioned above, explains the popularity of Ito's 

stochastic integral, especially with mathematicians. 

Stratonovich [12] [13] also used stochastic integrals and equations 

as a means of studying diffusive Markov processes. He proposed a method 
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for defining stochastic integrals which was much 1 ike Ito's method, but 

which had a number of computational advantages. The Stratonovich inte­

gral is defined under less general conditions than the Ito integral, but 

the Stratonovich integral obeys the rules of ordinary calculus, such as 

integration by parts, whereas the Ito integral does not. Stratonovich 

integrals are also Markov processes, although the moment properties which 

hold for the Ito integral do not hold for the Stratonovich integral. 

Also, estimation is more complicated using Stratonovich integration. 

The Ito and Stratonovich integrals agree for I inear stochastic dif­

ferential equations. One is faced with the problem of interpretation of 

solutions, however, when nonlinear equations are studied. Both the Ito 

and Stratonovich theories are self-consistent, although in general they 

result in different solutions to the same nonlinear equation. Mortensen 

[14] explored this lto-Stratonovich controversy and concluded that the 

choice between the Ito calculus and the Stratonovich calculus is one of 

personal preference, with mathematicians preferring the Ito theory 

because of its elegance and generality, and engineers preferring Straton­

ovich's theory because of their familiarity with its rules. He believes 

that the safest answer to the stochastic modeling problem is to use a 

Monte Carlo computer simulation, thereby dodging the lto-Stratonovich 

controversy. 

McShane [15-19] made decisive contributions toward unifying the 

theory of a stochastic calculus. He defined a stochastic integral by a 

modification of the procedure which Riemann had used in defining the 

classical integral. The McShane integral exists under conditions which, 

in comparison with the Ito integral, are weaker regarding stochastic 

properties but stronger regarding continuity properties, and the Ito and 
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McShane integrals agree when the hypotheses for the existence of both are 

satisfied. He removed the discrepancies arising from the Ito and Strat­

onovich theories by introducing the 11 doubly stochastic11 integral and pro­

vided a method for estimating the value of a stochastic integral. 

McShane laid the foundation for a unified theory of stochastic integra­

tion which includes both Lipschitzian and Brownian-motion processes. 

Wright [20] considered the digital simulation of stochastic differ­

ential equations. He noted correspondences among the various definitions 

of stochastic integrals and certain well-known numerical integration 

algorithms. He considered a specific nonlinear stochastic differential 

equation, solved it numerically using several different numerical inte­

gration procedures and then investigated the behavior of the solution at 

a particular point. This behavior provided pre] iminary indications that 

the relationships among the various integral definitions and numerical 

integration procedures were as conjectured. 

Many of the concepts and results mentioned above are formulated 

precisely in the following section. After a review of the necessary 

mathematics and a discussion of the general form of the model, various 

definitions of stochastic integrals are given and some theoretical con­

sequences of these definitions are presented. The next section describes 

the general approach to the problem, followed by an outline of the 

remainder of the thesis. 

Mathematical Background 

In order to establish notational conventions and to provide easy 

reference, some well-known concepts will be defined. A real-valued func­

tion x(w), defined on a space .o, is a random variable if there is a 



7 

probability measure P defined on sets of nand if {wjx(w) ~A} is P-mea­

surable for every real number A. The function F(A) = P{wjx(w) < A} is 

the distribution function of x(w) and, if F(A) is absolutely continuous, 

then f(A) = F1 (A) is called the density function of x(w). The probabil-

ity of a set n0 conditioned on a set n1 is P{n 0 jn 1 } = P{wjwsn0,wEn 1}/ 

P{wjwEn 1 }. The distribution of x(w) conditioned on the set n0 is defined 

as F(!cjn 0 ) = P{wjx(w) ~A, wsn 0}/P{wjwsn0 } and the conditional density of 

x(w) is f(!c!n 0 ) = F1 (!cjn 0 ), provided F(Ajn 0 ) is absolutely continuous. 

For simplicity, the dependence of the random variable x on wEn usually 

will not be indicated. Then the expected, or mean, value of x is given 

by E{x} = / 00 Af(A)dA and the variance is Var{x} = E{(x- E{x}) 2 }. The 
-oo 

random variables x and y are said to be independent if P{x < A, y ~ y} = 

P{x 2 A}P{y 2 y}. 

A stochastic process is a family of random variables x(t), t E T; 

the set Twill be assumed to be a time range. A stochastic process is 

called Markov if P{x(t 2) 2 Ajx(t), t ~ t 1} = P{x(t 2) ~ !cjx(t 1)} for t 1 < 

t 2 and a martingale if E{jx(t) j2 } < oo for all t and if t 1 < t 2 < • • • < 

t 1, then E{x(t 1)jx(t 1),x(t 2), ... ,x(t )} = x(t ). Also, if {x} is a n+ n+ n n n 

sequence of random variables, x converges to x in the mean if E{ jx j 2 } 
n n 

This is vJritten l.i.m. x = x. 
n-+oo n 

If lim P{jx - xj ~ s} = 0 for every s > 0, x converges to x in proba-
n-:--oo n n 

bility. The Lp-norm of a function f(t) is defined as jjf(t)jjp = 

(E{jf(t)jP})l/p. 

In modeling physical systems or analyzing equations which arise from 

scientific theory, differential equations of the form 

~ ( t) = i (~, t) 

are often encountered. Here ~(t) is the vector of state derivatives and 
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.f.(~_,t) is a vector of functions which quantitatively explains the evolu-

tion of the system states with time. If the system has random inputs, 

then the state equation has often been written 

~ ( t ) = .u~. t) + il ( t ) ~ ( t) ( 1 • 1 ) 

where .9_(t) is a matrix of functions denoting the sensitivity of the sys-

tern to the random inputs ~(t), usually modeled as white noise. 

The mathematical representation for a physical signal modeled as 

white noise is that of a Gaussian process with a mean of zero and a co-

variance given by the Dirac o-function, i.e., 

E{~(t)} == _Q, ( l. 2) 

where E denotes expectation and Q is a matrix expressing how the campo-

nents of ~(t) are correlated among themselves. Thus the white noise 

process has infinite variance and independent process values at any two 

distinct times [21]. 

In the scalar case of Equation (1. 1) with g(t) 

fronted with the integral 

w ( t) = /t u(s)ds. 
0 

1, one is con-

( 1. 3) 

Because of the pathological nature of white noise, it is difficult to 

interpret Equation (1.3) rigorously. For systems which are linear in 

noise terms, that is, the noise is additive rather than multiplicative, 

this point is avoided by simply assuming the absolute convergence of the 

integral in Equation (1.3) and very useful results obtain, such as covar-

iance analysis [22]. Nonlinear equations require a more critical evalu-

at ion of Equation (1.3), however. One method proposed for dealing with 

this problem is to define w(t) directly. 
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Let w(t) be a Gaussian process with the following properties: 

w(O) = 0, 

E{w(t)} 0, 

E{w(t)w(s)} = q • min(t,s), t, s > 0. 

This process was studied by Wiener and is often called the Wiener process 

or Brownian-motion process. Doob [23] and Parzen [24] proved several 

useful properties of the Wiener process. These include the f~cts that 

the sample functions are almost surely continuous, not differentiable and 

not of bounded variation, the process has independent increments and the 

Levy [25] oscillation property holds, i.e., if {a 

a partition of the interval [a,b] and D = mrx It; - ti-l I' then 

l.i.m. 
li-+0 

n 
"\' (w(t.) - w(t. 1)) 2 
LJ I 1-
i = l 

= q·(b-a). 

In considering the nonlinear analog of Equation (1 .1), the Wiener 

process turns out to be much more amenable to analysis than white noise. 

The non! inear system of equations, written in terms of differentials 

rather than derivatives, is then given by 

dx ( t) = i_ (~, t) + 51.(~, t) dw ( t) ( l. 4) 

To find a solution of Equation (1 .4), it suffices to display a stochastic 

process ~(t) which satisfies 

If ~(t) were of bounded variation, there would be no problem in inter-

preting ~{t) in Equation (1.5). However, the last integral in Equation 
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(1.5) cannot be a Lebesgue-Stieltjes integral since the Wiener process is 

not of bounded variation. We must therefore investigate how the second 

integral is defined for stochastic processes 51..(~,t) and ~(t). 

Stochastic Integral Definitions 

Wiener was the first to define an integral with respect to a stochas-

tic process, but his integral is defined only for nonrandom integrands. 

Ito showed how to extend the integral definition to include random inte-

grands, but the integrator is less general than in the Wiener integral in 

that it must be a martingale. Since the Wiener process is a martingale 

and the function g(x,t) of Equation (1.5) is random, the Ito integral is 

more useful than the Wiener integral. 

Definition 1.1 (Ito Integral): 

Let z(t) be a martingale process and suppose there exists a monotone 

nondecreasing function F such that, if s < t, E{ jz(t) - z(s) 12 } = F(t) -

F(s) with probability 1. Suppose g(x,t) is a measurable function and 

ro ' J, E{ig(x,t)I 2 JdF(t) < oo, If {a== t 0 ,t 1, ... ,tn == b} is a partition of 

[a,b] and !J. =max I ti - ti-ll, then the Ito integral is defined to be 

( I ) Jb g(x,s) dz(s) == 
a 

n-1 
l. i .m. I 

/1.+0 i=l 
g (x ( t. ) , t. ) 

I I 

( 1 • 6) 

where the series converges in the mean to a random variable denoted by 

the integral on the left in Equation (1.6). 

Doob [23] has shown that the hypotheses of the theorem imply that 

g(x,t) and the increments (z(t) - z(s)) are independent. From this 

independence and noting that E{z(t) - z(s)} = 0 for z(t) a martingale, 
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it follows that the expected value of the Ito integral is zero. The inte-

gral is a martingale and the following equality holds: 

These properties explain the usefulness of the Ito integral, especially in 

the study of Markov processes, since moment calculations are simp] ified 

using the above facts. 

When the stochastic process z(t) in Definition 1.1 is the Wiener pro-

cess, then F(t) = t and the integral hypothesis becomesj00

00 E{jg(x,t)j 2 }dt 

< oo with probability l. In computational operations with the Ito inte-

gral, procedures from ordinary calculus can no longer be used. For 

instance, change of variables and differentiation require very different 

trea.tments. In particular, suppose x(t) is an Ito process determined by 

Equation (1.4) and ~(x(t) ,t) is a function of x(t) and t, with second-

order partial derivatives in x(t) and t. Then <I>(x(t),t) is also an Ito 

process and the so-called Ito differential rule states that d<I> = [3<I>/Clt 

. 1 2 2 2 
+ (3.P/3x)f+ 2 q (Cl 'P/Clx )g ]dt + q(8ciJ/8x)g dw. 

Definition 1.2 (Stratonovich Integral): 

Let z(t) 

= a(s,t), lim 
h70 

be a r~arkov process with lim E{(x(t+h) -z(t))/hjz(t) =U 
h-+0 

E{(z(t+h)- z(t)) 2!hjz(t) = U = b(i;,t) and lim E{jz(t+h) 
. h70 

- z(t)j > 6jz(t) = t;} = 0 with a(z,t) and b(z,t) continuous in both argu-

ments and b(z,t) having continuous partial derivative 8b(z,t)/8z. Sup-

pose g(z,t) is continuous in t having continuous partial derivative 

a g ( z ' t ) I a z and loooo E { g ( z ' t ) a ( z ' t ) } d t < 00 and }0000 E { I g ( z , t) 1 2 b ( z ' t ) } d t < 00 • 

Let {a= t ,t 1 , ... ,t = b} be a partition of [a,b) and 6 = maxjt.+ 1-t.j 
0 n • I I 

I 

The Stratonovich integral is defined as 



(S) 
b 

f g(z,t) dz(t) 
a 

= 

12 

1. i .m. 
L'>-+0 

( 1.7) 

Although the Stratonovich integral is only defined for integrands 

which are functions of the integrator process, Stratonovich [12] showed 

how to extend the integral to more general situations by defining a mul-

tidimensional integral. In particular, if dx(t) and dz(t) are related by 

a stochastic differential equation of the form of Equation (1 .4), then 

b 
f g(x(t),t) dz(t) can be defined. If the process z(t) in Definition 1.2 
a 

is a Wiener process, then the function a(z,t) = 0 and b(z,t) = q, where 

q is the variance parameter of the Wiener process. 

When the hypotheses for the existence of both the Ito and Stratonovich 

integrals are satisfied, there is a connection between the two theories 

which was shown by Stratonovich [12] and Wong and Zakai [26]. Their 

results showed that the solution, in terms of the Stratonovich integral, 

of the equation 

dx(t) = f(x,t)dt + g(x,t)dw(t) ( 1 . 8) 

is the same as the Ito solution of the equation 

dx(t) 
1 . 

= f(x,t)dt + g(x,t)dw(t) + -2 g (x,t) ~_g_ (x,t)dt 
oX 

( l. 9) 

where w(t) is the Wiener process. Wong and Zakai proved a further result. 

If x (t) is the solution of the ordinary differential equation obtained 
n 

from Equation (1.8) by replacing w(t) with w (t), where w (t) is a con-n n 

tinuous, piecewise 1 inear approximation to the Wiener process and w (t) 
n 

converges to w(t), then x (t) does not converge to x(t). But x (t) does n n 

converge in the mean to the solution of Equation (1.9). This result 
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holds for the Ito interpretation of the solution x(t). This is essen-

tially the situation which occurs when a physical process is approximated 

with white noise as an input. 

To illustrate the concepts discussed above, we consider two examples. 

Example I : 

Given the nonlinear system of equations 

x 1 ( t) x2 (t)u(t) x 1 (0) 0 

x2 (t) = u ( t) x2 (o) = 0 

where u(t) is white noise input with Var{u(t)} = q • o(t), it is seen that 

x2 (t) = w(t), where w(t) is the Wiener process, and one must evaluate 

= f t w ( s) dw ( s) . 
0 

The Stratonovich solution for x 1 (t) is obtained by treating w(t) as a 

smooth function of time and using the rules of ordinary calculus. Thus, 

To evaluate the integral in the sense of Ito, one must calculate 

= 1 • i . m. 
t.-+0 

n- l 
- 2::-21 (w(t.+l)- w(t.))2 . 

• Q I I 1:::: 

From the Levy oscillation property, it follows that 
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Example 2: 

From the equation 

x ( t) x(t)u(t) x(O) = 

one obtains the stochastic differential equation 

dx(t) x ( t) dw ( t). 

The Stratonovich solution is 

= e 
w( t) 

and, from the results of Wong and Zakai, we conclude that this is the 

same as the Ito solution of 

dx ( t) = 
1 x(t)dw(t) + 2 x(t)dt. 

Using the Ito differential rule with ¢(x(t),t) 

the Ito solution of the original equation is 

w(t) - 2 t 
e 

ln x(t), it is seen that 

McShane integrals are defined in terms of 11 belated 11 partitions. Let 

D denote a set of real numbers with the i nterva 1 [a, b] contained in D. A 

belated partition of the interval [a,b] is a collection of real numbers 

in D for each i and T. < t .. 
I- I 

Definition 1.3 (McShane Integral): 

let D be a set of real numbers and [a,b] a closed interval contained 

in D. Let {t0 ,t 1, ... ,tn; , 1,T2 , ... ,Tn} be a belated partition of D with 

!:!, =max Jt. 1 - t.J. Let z(t) be a stochastic process on [a,b] satisfy-
i I+ I 

ing, for some constant K, 
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jE{z(t)- z(s)jz(T}, T < s < t}j < K(t- s) 

E{jz(t)- z(s)j 2 jz(T), T < s < t} < K(t- s) 

with probabi 1 ity 1. If g(x,t) is a measurable process on D which is L2-

bounded and L2-continuous with probability l, then the McShane integral 

is defined to be 

b 
J g(x,s) dz(s) 
a 

n-1 
lim L g(x(T.) ,T.) (z(t. 1) - z(t.)) 
~-+Q j =Q I I I+ I 

where the convergence is in probability. 

It is seen from the definitions that the integrator process is more 

general for the McShane integral than for the Ito integral; in particular, 

the McShane integrator does not have to be a martingale. The integrand 

for McShane's integral is not as general, however, since it is required 

to be L2-bounded and L2-continuous and the Ito definition only requires 

mean-square integrability. McShane also showed that a solution of Equa-

tion (1.4) arising from his interpretation of the integral is bounded 

and continuous in L2-norm. 

The motivation for McShane's work was provided by the discrepancy 

between solutions of differential equations arising from Lipschitzian 

inputs and the solutions for inputs satisfying the conditions of Defini-

tion 1.3. For Lipschitzian functions, differentials are linearized forms 

of expressions involving increments. Second-order terms must be included 

in the stochastic case and this is essentially the source of the problems 

with stochastic integrals. To handle this problem, McShane defined and 

proved the existence of "doubly" stochastic integrals of the form 

Jg(x,s)dz 1 (s)dz 2 (s) and concluded that the proper stochastic model for 

systems described by equations of the form *(t) = f(x,t) is given by 



16 

Equation (1.9) with dt replaced by (dw) 2. His interpretation then agrees 

with the results of Wong and Zakai and he avoids the lto-Stratonovich 

controversy by prescribing the form of the stochastic model to be used. 

Through the concept of the doubly stochastic integral, McShane has 

unified the theory of ordinary and stochastic integrals in the sense that 

his integral exists and is equal to the ordinary integral when the system 

inputs are well-behaved time functions. As was noted in Example 1, this 

is not true for the Ito integral. When the regions of definition over­

lap, McShane's integral is the same as whichever of Ito's or the ordin­

ary integral exists. Thus the McShane solution of the examples is the 

same as the Ito solution. 

Approach to the Problem 

Several objectives were identified as the purpose of this research 

into the digital simulation of non! inear stochastic systems. These objec­

tives were: (1) to determine computationally how the Euler and second­

order Runge-Kutta methods of numerical integration relate to stochastic 

integrals, (2) to investigate other numerical schemes in I ight of the 

results of the first objective and to show that the discovered relation­

ships are valid, (3) to perform a statistical analysis of the numerical 

results, (4) to identify the basis of the correspondences between sto­

chastic integrals and their digital simulations and (5) to consider 

examples which illustrate these concepts. These objectives are described 

in more detail below. 
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Euler and Runge-Kutta Integration 

The first objective was realized by choosing example problems whose 

solutions could be determined analytically. These examples were then 

solved numerically using the Euler and second-order Runge-Kutta integra­

tion methods. The digital solutions were then compared to the analytical 

solutions and from these results, along with comparisons of the details 

of numerical algorithms with stochastic integral definitions, correspon­

dences were noted for these methods and different stochastic integrals. 

Other Numerical Integration Hethods 

The consequences of using numerical routines which are computation­

ally and conceptually different from the Euler and second-order Runge­

Kutta methods were examined. These included a fourth-order Runge-Kutta 

method and predictor methods. Insights gained from the first objective 

were uti 1 ized here to aid in extending the correspondences. The rela­

tionships between numerical algorithms and the corresponding stochastic 

integrals were formalized in terms of equivalence of moments. 

Statistical Analysis 

A statistical analysis of the numerical results was performed to 

verify their validity. Distributions of sample statistics were used to 

calculate confidence intervals about the true mean and variance of the 

solutions. All mean values were shown to 1 ie within these intervafs, 

while a small percentage of some variance estimates exceeded the bounds. 



18 

Basis for Discovered Correspondences 

The discovery of the basis of the relationships between stochastic 

integral definitions and numerical integration methods was the next objec­

tive. This basis was first studied by identifying integral definitions 

with numerical algorithms which use the same point of functional evalua­

tion of the integrand. The point of evaluation was discovered to be the 

mechanism which establishes the correspondences and it is manifested most 

notably in the correlation coefficient function, which was shown to be 

the unifying concept for the integral-numerical method relationships. 

Examples 

Instances of nonlinear differential equations with multiplicative 

noise arise in applications and some examples were studied to illustrate 

the discovered relationships. These include an optimal nonlinear filter­

ing application, a phase-locked loop example and the estimation of pollu­

tion concentration in the air. 

Outline of Thesis 

The purpose of this research was to gain insight into the effects 

which modeling and simulation have on the solutions of nonlinear stochas­

tic systems. Preliminary information and objectives have been presented 

in this chapter. Chapter I I is concerned with exploring the connections 

between stochastic integrals and numerical integration methods. This 

early investigation involves low-order numerical routines and moment cal­

culations for purposes of comparison. Chapter I I I continues with higher~ 

order methods and their moments, as well as a broader class of algorithms, 
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and considers the accuracy of solutions and the confidence we may place 

in them. The theoretical basis of the correspondences is also addressed 

here. Several applications of nonlinear stochastic systems are presented 

in Chapter IV. These examples help to illustrate the results obtained 

earlier. Conclusions and recommendations for further areas of research 

are discussed in Chapter V. 



CHAPTER I I 

STOCHASTIC INTEGRALS AND NUMERICAL ALGORITHMS 

Since few deterministic differential equations of practical interest 

can be solved analytically, the digital computer has become an invaluable 

tool for obtaining numerical solutions of these equations. Stochastic 

differential equations are no easier, and usually much harder, to solve 

than deterministic equations. The question of immediate concern to one 

interested in the solution of stochastic equations is the computational 

procedure employed in obtaining numerical answers. 

Numerical methods for solving deterministic differential equations 

are historically based on area-finding schemes, but the logic of this 

approach is not apparent for solving stochastic equations. Thus, because 

of the differences in the definitions of stochastic integrals, the appli­

cation of deterministic algorithms to stochastic systems cannot automat­

leal ly be expected to yield consistent results. This chapter presents 

some consequences of using deterministic numerical integration schemes to 

solve stochastic equations and investigates the relationships of these 

results to stochastic integrals. 

Preliminary Considerations 

Studying the stochastic integral definitions in the previous Chapter, 

one notices a rather profound conceptual difference in these definitions 

and in the definition of the Riemann integral. This technical difference 

20 
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arises because of the irregularity of stochastic processes as compared 

with deterministic functions. The point of evaluation of the integrand 

of a Riemann integral, defined as the I imit of Riemann sums, is deter­

mined by the values of the integrand within each subinterval arising 

from a partition. The bounds of the function within each subinterval 

determine the point of functional evaluation. This is not true of sto­

chastic integrals. In this case the evaluation point of the integrand 

within each subinterval is specified by the definition. The fixed point 

of evaluation also differs among the various definitions of stochastic 

integrals. This circumstance gives rise to many interesting features of 

these integrals. 

The necessary properties for the integrand and integrator processes 

vary somewhat in the definitions. Also, the properties which the inte­

grals themselves enjoy are different, in some cases profoundly so. But 

perhaps the most fundamental difference is that the value of the integral 

is affected by the evaluation point. The examples presented earlier show 

this discrepancy. The extremely erratic behavior of the stochastic inte­

grator processes involved, along with the rather surprising fact that 

second-order terms do not vanish in the 1 imit as they do in the determin­

istic case, helps to explain this phenomenon. That second-order terms do 

not necessarily vanish is a consequence of the mean square value of the 

integrator process possibly being on the order of t rather than 6t. 

Because of the discrepancies within the theory of stochastic inte­

grals and the differences between it and the deterministic theory, we are 

thus led to the possibility that numerical solutions of stochastic inte­

grals may not provide consistent results. With the increasing utility 

of digital computers and the greater understanding of stochastic 
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phenomena at all levels, this circumstance, and a deeper understanding of 

its implications, becomes an important topic of study. 

Wright [20] provided some additional evidence that care should be 

taken when solving stochastic equations digitally. His 1 imited experi­

ment involved the behavior of a single point on the trajectory of the 

solution of a nonlinear stochastic differential equation when different 

step sizes were used for the numerical algorithm. One sample trajectory 

was considered and his results indicated that the point of interest 

tended to converge to a specific value, which was computed theoretically, 

as the step size decreased. However, the limiting value was different 

for various numerical integration routines. 

From these pre! iminary indications and from familiarity with the 

integral definitions and some numerical integration schemes, one can then 

make intuitive correspondences among definitions and digital integration 

procedures. The purpose of this chapter is to investigate more thor­

oughly some of these correspondences and to determine whether there is 

justification for the supposed correlation between these widely divergent 

areas. 

Since we are interested in stochastic integrals, we will restrict 

attention to scalar equations of the form of Equation (1.4) with f(x,t) 

= 0, i.e., dx(t) = g(x,t)dw(t) with the stochastic process w(t) a Wiener 

process and g(x,t) a random function. In the deterministic case, we have 

the equation x(t) = gl (x,t) with gl (x,t) no longer random. Solving this 

equation involves computing Jg 1 (x,t)dt and in a similar manner we can 

investigate the results of employing numerical integration procedures in 

the evaluation of the stochastic integral /g(x,t)dw(t) arising from the 

above stochastic differential equation. 
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The possibly anomalous behavior of individual sample functions from 

a stochastic process which is not ergodic must be taken into account 

when simulating a random system. This potential problem may be avoided 

by employing Monte Carlo simulations rather than studying single solution 

trajectories. In this method several sample stochastic integrator pro-

cesses are employed in obtaining an ensemble mean and variance for the 

digitally generated time solution of the stochastic 1ntegral !g(x,t)dw(t). 

The behavior of individual time histories is not important; rather the 

behavior of aggregates of time histories is studied. 

In the following sections the generation of input noise processes 

for use in numerical simulations is discussed and Euler's method of inte­

gration 1s considered with emphasis on its stochastic properties and the 

results of using this method for solving the examples presented in Chap­

ter I. A second-order Runge-Kutta method is then presented, followed by 

determination of the mean and variance of the Ito and Stratonovich inte­

grals and a discussion of conclusions which can be drawn from these 

studies. 

Input Noise Generation 

When using Monte Carlo methods to generate the mean and variance of 

random systems, several samples from the noise input process must be sim­

ulated digitally. Pseudo-random number generators with appropriate sta­

tistics are generally used for the digital generation of these input 

noise samples. The Monte Carlo solution of a stochastic integral like­

wise requires a way of obtaining sample functions of the integrator pro­

cess. 
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We must therefore have a method of generation for the sample func-

tions from a Wiener process. Any such algorithm must, of course, main-

tain the salient properties of the theoretical, continuous Wiener process. 

One procedure employs the concept of integration of white noise, which, 

as mentioned earlier, is a heuristic way of defining the Wiener process. 

This may be accomplished digitally by using a pseudo-random number gener-

ator to obtain a time history of Gaussianly distributed numbers, adding 

these numbers sequentially and scaling by a nonlinear time transformation. 

Specifically, the value of the generated Wiener process at any time 

is given by 

i 
w ( t.) 

I 
= !at L u(t ) 

n=l n 
(2. l) 

where t. denotes the i-th sampling time, dt is the sampling period, which 
I 

remains fixed and u(ti) is the i-th zero-mean, uncorrelated, Gaussianly 

distributed random number with variance q. 

Noting that the samples u(t.) are zero-mean, it is apparent that the 
I 

mean of the samples w(t.) is also zero. Computing the variance yields 
I 

Var{w(t.)} = E{w2 (t.)} 
I I 

i 
= dt L: E{u 2 (t ) } 

n=l n 

i 
= dt 2: q 

n=l 

= qt .. 
I 

(2.2) 

The second step in the above derivation is valid because E{u(t.)u(t.)} 
I J 

0 if i ~ j and the third step holds since the weight of each squared 



random number is q. We also have 

E{w(t. )w(t.)} 
I J 

= 

i j 
dt E { L u(t ) L u(t ) } 

n=l n m=l m 

k 
dt :z= 

n=l 

qt.' 
I 

< j 

qt.' j < 
J 

k = min(i,j) 

It is now an easy calculation to verify that 

E { [ dw ( t. ) ]2} 
I 

= q • dt 

and 
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{2.3) 

(2.4) 

{2. 5) 

if the time intervals do not overlap. The above properties indicate that 

we now have an acceptable method for digitally generating a Wiener process. 

Euler's Method 

The Euler Method of numerical integration approximates the differen-

tial equation with a step function and evaluates the integral of that step 

function; that is, the equation dx(t) = g(x,t)dw(t) is assumed constant 

over each integration step length with the constant value over a step 

length determined by the functional value at the initial point of each 

subinterval. The approximation is given by 

x. + g(x.,t.)(w.+l- w.) 
I I I I I 

{2. 6) 

where x. = x(t.). 
I I 



26 

From Equation (2.6) we can calculate the statistics of the solution 

of a stochastic equation which has been solved by Euler's method. Spe-

c if i ca 1 I y, 

E{xi+l} E{x.} + E{g(x.,t.)}E{w. 1 - w.} 
I I I 1+ I 

E{x.} 
I 

(2.7) 

since g(x. ,t.) is independent of the Wiener process increment and the 
I I 

Wiener process has mean value zero. The independence is explained by 

the fact that 

E{u(t.)u(t.)} = 0, # j . 
I J 

It fo 11 ows that 

E {x.} = 
I 

for every i. 

The mean square 

E{x } 
0 

value is given by 

E{x~} + 2E{x. g(x. ,t.) (w.+l - w.)} 
I I I I I I 

2 2 +E{g (x.,t.)(w. 1 -w.)} 
I I 1+ I 

2 E{x.} 
I 

2 
+ E{g (x. ,t.)}E{(w.+l 

I I I 

2 w.) } 
I 

2 2 
E{x.} + q E{g (x.,t.)}(t.+l - t.) 

I I I I I 

(2.8) 

(2. 9) 

which follows from the independence of the noise increment and the inte-

grand and from the properties of the Wiener process. Recalling the 

identity 

Var{x} 
2 2 E{x } - E {x} (2. 10) 
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we obtain, using Equal lon (2.8), 

Vadxi+l} 
2 

Va r { x. } + q E { g ( x. , t . ) } ( t . + 1 - t. ) · 
I I I I I 

( 2. 11 ) 

Numerically, Equation (2.10) behaves as the integral of E{g2(x. ,t.)}. 
I I 

The Euler numeric.!] integration of Examples 1 and 2 of Chapter I 

was performed using a I ixed integration step size of approximately 0.002 

seconds and 100 sample trajectories of solutions were ensemble-averaged 

to estimate the mean e111d variance. The initial condition x(O) and the 

variance parameter q ol' the Wiener process were chosen to be unity in 

both examples. Equation (2.8) indicates that the mean value of the 

solutions in both case$ is also unity. For the equation dx = wdw, Equa-

2 tion (2.11) implies th,)t the variance behaves as the integral of E{w.}, 
I 

that is, as the integ1·,1l of t.. For dx = xd1'\l, the variance is given by 
I 

2 
the integral of E{x.}. Figure 1 presents the simulation results for 

I 

dx = wdw and Figure 2 shows the corresponding results for the equation 

dx = xdw. 

Runge-Kutta Integration 

Runge-Kutta integr.:ltion methods are somewhat more sophisticated 

than Euler's method in that they use more than a simple slope for their 

calculations. They ar0 often used to generate preliminary values for 

other types of algori thrns which are not self-starting. Rather than 

using the first point in each subinterval of interest as the point of 

evaluation, as in the Euler method, Runge-Kutta meth6ds use points 

within a subinterval to generate the solution at the end of the inter-

val. A typical Runge-~utta method of order two is 

x.1+l = x,, + 2
1 [g(x.,t.) + g(x. +dx,t.)] (w.+ 1 - w.) 

I I I I I I I 
(2. 12) 
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From Equation (2. 12) we can determine the statistics of a solution 

generated by the Runge-Kutta method. The expected value is 

E{xi+l} 
l 

E{x.} + -2 E{ [g(x. ,t.) + g(x. + dx,t.)] 
I I I I I 

l E { x. } + -2 E { g (x 1• + dx, t. ) ( w. 1 - w. ) } 
I I 1+ I 

(2.13) 

From the differentiability of g(x,t), assumed in Definition l .2, we have 

ag (x. 't.) g (x. + dx' t.) - g (x. , t. ) 
I I I I I I = 

ax dx 

and consequently 

g(x. + dx,t )(w. 1 - w.) 
I i 1+ I 

= 

Clg(x.,t.) 
I I 

= ax g(x. ,t.) (w.+l 
I I I · 

+g(x.,t.)(w.+ 1 -w.) 
I I I I 

Thus 

= 
l E{x.} + -2 q E{g(x. ,t.) 

I I I 

ag{x.,t.) 
I I 

Clx 

(2.14) 

2 w.) 
I 

(2.15) 

(2. 16) 

since x. is independent of (w. 1 - w.), and this is the numerical equiv-
1 1+ I 

alent of Yzq times the integral of E{g(x.,t.) [ag(x.,t.)/ax]}. 
I I I I 

To find the variance, we first calculate from Equations (2.13) and 

(2. 1 5) 
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2 
E {xi+l} = 

2 . 3g(x.,t.) 2 
E {x.} + E{x.}E{g(x.,t.) ~ 1 (w. 1 - w.}} 

I I I I X 1+ I 

1 2 + -4 E { g (x. , t.) 
I I 

Clg (x. , t.) 
I I 

ax 

(2.17) 

To find the mean square value of xi+l, we make use of Equations (2. 12) 

and (2. 15) to obtain 

2 
xi+l = 

= 

[xi 
1 

ag(x. ,t.) 
I I 

(wi+l + 2 g (x. , t.) -
I I 3x 

+ g{x.,t.)(w.+l - wi )]2 
I I I 

2 1 2 [ ag (xi 't i ) J 2 
(wi+l x. + 4 g (x. , t. ) a 

I I I X 

2 2 
+g (x.,t.)(w.+l- w.) 

I I I I 

ag(x.,t.) 
+ x. g(x. ,t.) 

I I I 

I I 

dX 

+ 2x. g ( x. , t. ) ( w. + 1 - w. ) 
I I I I I 

2 + g (x. , t.) 
I I 

Clg (x. , t.) 
I I 

ax 

W.) 2 
I 

- w.) 
I 

from which it follows that 

2 
E{xi+l} 

2 
+ q E{g (x.,t.)}(t.+l- t.) 

I I I I 

3g (x. 't.) 2 
+ E{x. g(x.,t.) ~x 1 (w. 1 -w.)} 

I I I 1+ I 

4 

(2. 18) 

(2.19) 
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Equations (2. 17) and (2. 19) then combine to provide the variance of xi+l 

as 

Var{xi+l} = 
2 Var{x.} + q E{g (x.,t.)}(t. 1 I I I 1+ 

1 + -4 Var{g(x. ,t.) 
I I 

8g (x. 't.) 
I I 

dX 

t.) 
I 

(2.20) 

Comparison of Equations (2.6) and (2.20) shows that the variance of the 

Runge-Kutta method is the same as the variance of the Euler method 

except for an additional term. 

The second-order Runge-Kutta numerical integration of the example 

problems, employing Equation (2. 12), was performed using a step size of 

approximately 0.002 seconds and again 100 sample trajectories of solu-

tions were ensemble-averaged to estimate the mean and variance. The 

initial condition x(O) and the variance parameter q were again chosen 

to be unity in both examples. Figure 3 presents the simulation results 

for the equation dx = wdw and Figure 4 shows the corresponding results 

for dx = xdw. The Runge-Kutta integration produces a time-varying mean 

value in both examples, as well as a time-varying variance. 

The statistics of these two example problems exhibit very different 

behavior when obtained through the Runge-Kutta method rather than through 

Euler•s method. Solving deterministic equations with these methods cer-

tainly does not produce these discrepancies in solution form, although 

some difference is observed because of the approximation error inherent 

in a particular method. One of the most obvious differences in the 

Euler method and the Runge-Kutta method is that the point of functional 

evaluation in the algorithm is not the same. This is also the case for 
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the Ito and Stratonovich definition of the stochastic integral. Further, 

the evaluation point of the Euler method is the same as that for the Ito 

integral and the same holds for the Runge-Kutta method and the Stratono-

vich integral. In order to investigate the effects of these corres-

pondences on the numerical solutions of stochastic equations, we next 

determine the moments of the Ito and Stratonovich integrals and consider 

the example problems presented earlier. 

Mean and Variance of the Ito Integral 

Calculating the mean and variance of a stochastic process arising 

from an Ito integral may be accomplished by using properties resulting 

from the Ito definition of a stochastic integral (see Doob [23]). These 

properties are the following: 

E{l ft g{s) dw(s)} 
a 

0 (2.21) 

(2.22) 

where the 11 111 indicates the integral is to be interpreted in the sense 

of I to. 

Given the stochastic differential equation 

dx(t) g(x,t) dw(t), 

we have the equivalent integral equation 

x(t) = x(a) + I ft g(x,t) dw(t). 
a 

From Equations (2.21) and (2.24) the mean value of x(t) is 

(2.23) 

(2.24) 
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E{x(t)} = E{x{a)}. (2.25) 

The variance of x(t) may be computed by noting that the initial condition 

x(a) is independent of I ft g(x,t) dw(t) and by using Equations (2.21) 
a 

and (2.22) and the identity Equation (2. 10). Thus 

= 

and the variance is then 

Var{x(t)} = 

f t g ( x, t) dw ( t) } 
a 

+ E { [ I f t g ( x , t ) dw ( t ) ] 2 } 
a 

Var{x(a)} + q ft E{g 2 (x,t)}dt. 
a 

(2.26) 

(2.27) 

The mean value of Euler's method, given by Equation (2.8), is the 

same as the mean value of the Ito integral in Equation (2.25). Simi-

larly, Equations (2.11) and (2.27) indicate that the variances agree 

also. We thus conclude that numerical integration by Euler's method 

corresponds to the Ito integration of stochastic differential equations 

in the sense that the first two moments coincide. We now consider the 

Ito solutions of the examples and compare with the numerical results 

presented earlier. 

Example 1: 

Given the equation dx(t) = w(t) dw(t) with initial condition x(O) 

= l, the mean value is easily seen to be 

E{x(t)} {2.28) 

and the variance, since the initial condition is given, is computed as 

fo 11 ows: 
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Var{x(t)} ft 2 q E{w (T)}dT 
0 

= q / qT dT 
0 

1 2 2 
(2.29) = -q t • 2 

1 2 
With q = 1~ Var{x(t)} =It . Figure 5 shows the simulation results for 

Euler's method as obtained earlier, along with the theoretical results 

from the Ito integral indicated with dashed lines. 

Example 2: 

Given the equation dx(t) = x(t) dw(t) with x(O) =I, the mean value 

is 

E{x(t)} (2.30) 

and the variance is given by 

which imp I i es 

= 

and it is easily seen that the variance is an exponential function, 

that is, 

Var{x(t)} = 
qt 

e - 1. (2.31) 

With q = 1, Var{x(t)} = et- 1. Figure 6 presents the simulation 

results for this example, again with the theoretical results indicated 

by dashed 1 ines. 
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Mean and Variance of the Stratonovich Integral 

Stratonovich [12] introduced the stochastic integral bearing his 

name and proved the fundamental equality 

S f t g ( w ( t) , t) dw ( t) 
a 

== f t g ( w ( t) , t) dw ( t) 
a 

40 

1 1 t 3g(w(t) ,t) 
+ 2 q a 3w dt · (2.32) 

He then showed how to extend this theory for the case in which g(·,t) is 

not necessarily a function of the integrator process. In this case, the 

relationship between the Stratonovich and Ito integrals is given by 

S f t g (x ( t) , t) dw ( t) 
a 

== ft g(x(t),t) dw(t) 
a 

+ _!_q ft g(x(t),t) Clg(x(t),t) dt. 
2 a 3x 

(2. 33) 

Exploiting this relationship between the Stratonovich and Ito integrals 

allows the computation of the mean resulting from the differential equa-

tion (2.23) when the equation is solved in the Stratonovich sense. Thus 

E{x(t)} == E{x(a)} + E{S ft g(x(t),t) dw(t)} 
a 

E{x(a)} + _!_ q E{ / g(x(t),t) Clg(x(t),t) dt}. 
2 a 3x 

(2.34) 

In a similar manner, the variance of the Stratonovich solution may be 

found. 

E{[x(a) + S ft g(x(t),t) dw(t)] 2} 
a 
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2 t 
= E{x (a)}+ 2 E{x(a)[l J g(x(t),t) dw ( t) 

a 

1 Jt g(x(t) ,t) Clg(x(t) ,t) 
dt]} +-q 

dX 2 a 

+ E{ [I Jt g(x(t),t) dw(t) 
a 

1 Jt g(x(t),t) Clg(x(t) ,t) 
dt] 2 } (2.35) +-q 

dX 2 a 

After subtracting the square of the mean and performing some algebraic 

manipulation, we obtain 

Var{x ( t)} 2 2 t 2 
E{x (a)}- E {x(a)} + q J E{g (x(t),t)}dt 

a 

+ .!_ q2[E{ [Jt g(x(t) t) ag(x(t) ,t) dt]2} 
4 a ' Clx 

- E2{Jt g(x(t) ,t) Clg(x(t) ,t) dt}] 
a ax 

+ q E{l Jt g(x(t),t) dw(t) Jt g(x(t),t) 
a a 

Clg(x(t),t) 
dt}. 

dX 

The last term vanishes, however, since the integrals are independent. 

We now have the result 

Var{x(t)} Var{x(a)}+q / E{g 2 (x(t),t)}dt 
a 

+ ~ q2 VarUat g(x(t) ,t) Clg(x~~) ,t) dt}. (2.36) 

By comparing the mean and variance of the Ito solution with these 

same statistics of the Stratonovich solution, it is seen that the Stra-

tonovich results are the same as the Ito results except for the addi-

tiona] term involving g(x(t) ,t) (Clg(x(t) ,t/Clx). In 1 ight of Equation 
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(2.33), this is not unexpected. It should be noted that the variance of 

the Stratonovich solution coincides with the Ito variance if g(x(t) ,t) • 

{3g(x(t),t)/3x) is not a random function. 

The mean value of the Runge-Kutta method, given by Equation (2. 16), 

is now seen to be the numerical equivalent of the mean value of the 

Stratonovich integral, given by Equation (2.34). Comparison of Equa-

tions (2.20) and (2.36) indicates that the variances of the Runge-Kutta 

method and the Stratonovich integral also coincide. We thus conclude 

that numerical integration by this Runge-Kutta method corresponds to 

Stratonovich integration of stochastic differential equations in the 

sense that the first two moments are identical. We now consider the 

Stratonovich solutions of the examples and compare these with the 

results from the Runge-Kutta integration method. 

Example 1: 

To determine the mean, in the Stratonovich sense, of the equation 

dx(t) = w(t) dw(t) with initial condition x(O) = 1, we first calculate 

3g(t)/aw = 1. Then the expected value of Equation (2.32) yields 

E{x(t)} 
l 

+ 2 qt. (2. 37) 

To determine the variance, first note that ag(t)/aw is not a random 

function. Then an analysis of Equation (2.32), performed in the same 

way as was done for Equation (2.33), shows that the Stratonovich vari-

ance is the same as the Ito variance. Thus 

Var{x(t)} 
l 2 2 
2 q t . (2.38) 

With q 1, again Var{x(t)} 
2 

2 t. Figure 7 provides the simulation 
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results for the Runge-Kutta method as obtained earlier, along with these 

theoretical results indicated by the dashed 1 ines. 

Example 2: 

For the equation dx(t) = x(t) dw(t) with x(O) = 1, we calculate 

that 3g(x(t),t)/3x = 1 and thus obtain from Equation (2.34) 

E{x(t)} 1 Jt E{x (T) }dT = +- q 
2 0 

from which it fo 11 ows that 

E{x(t)} = e !.2qt 

~t With q = 1, the mean value becomes e 

(2. 39) 

To determine the variance of x(t), recall from Chapter I that x(t) 

ew(t) when integrating dx(t) = x(t) dw(t) in the Stratonovich sense. 

Equation (2.39) shows that 

k:qt e2 

and an easy calculation shows that, in general, 

Then the variance is given by 

Var{x(t)} 

= 
2qt qt 

e - e 

and, when q 1, we have 

Var{x(t)} 2t t = e - e . 

(2.40) 

(2.41) 

(2.42) 

Figure 8 shows the simulation results for this example with the calcu-

lated mean and variance indicated by the dashed 1 ines. 
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Summary 

This chapter dealt with employing Euler and Runge-Kutta methods of 

numerical integration for solving stochastic differential equations. 

First and second moments of these results were calculated and Monte 

Carlo simulations of two examples were performed. The similarity of 

the Euler method and the Ito stochastic integral were noted and, upon 

determination of the moments of the Ito integral, the numerical equiva­

lence of these two concepts was shown. Analogous results were given 

for the equivalence of a second-order Runge-Kutta method and the Stra­

tonovich stochastic integral. Theoretical moments were then compared 

to the moments obtained from the numerical simulation. 

The results of this chapter indicate the importance which the point 

of functional evaluation of the integrand plays in the theory and prac­

tical implementation of stochastic integration. These conculsions lead 

naturally to consideration of the relationships among stochastic inte­

grals and other, more sophisticated, conceptually different numerical 

integration schemes. The next chapter discusses these ideas and their 

consequences and also addresses the question of accuracy of numerical 

routines. 



CHAPTER I I I 

ERROR BOUNDS AND SYSTEM CORRELATION 

There are many different types of numerical integration routines 

which have been developed for solving systems of differential equations. 

When applied to deterministic systems these methods produce consistent 

results, but, as was shown in Chapter I I, this consistency does not 

carry over to the stochastic case. This chapter begins with a look at 

broad classes of numerical algorithms and how these correspond to sto­

chastic integration. 

The question of accuracy is always important in the numerical 

solution of equations. The algorithm itself gives rise to errors and 

another cause of uncertainty in the analysis of stochastic systems is 

the use of ensemble statistics. These sources of errors and their con­

sequences in terms of rel lability of solutions 1s also discussed in 

this chapter. 

Theoretical differences in stochastic integrals manifest themselves 

as profound discrepancies in the actual solution process. This anoma­

lous behavior in the theory, which is also apparent in digitally gener­

ated solutions of these integrals, raises the question of what mechanism 

is responsible for the differences. It is shown that the correlation is 

the key to the relationships discovered earlier. The final subject of 

this chapter is thus a discussion of the correlation coefficient 
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function as the unifying concept in the study of stochastic integration 

and digital simulations. 

Numerical Integration Methods 

Numerical integration methods have been developed in many different 

contexts and with many different purposes in mind. However, convergence 

properties, error characteristics and computation requirements are the 

most important considerations in their use. Complexity also varies 

greatly among the various methods with the accuracy of computed solu­

tions tending to be greater with the increased complexity, as would be 

expected. The methods can be broadly classified as being single-step 

or multi-step, with single-step methods generally involving more compu­

tation and multi-step methods requiring more storage space. 

Single-step methods do not require any functional evaluations 

before the current interval of interest. For this reason, these methods 

are often used to provide starting values for multi-step formulas. 

Several computations of the derivative within each interval may be 

required and, consequently, these methods can be quite time-consuming. 

Error calculations are somewhat difficult, although the accuracy of 

solutions is good. Incorporating a variable step size into these algo-

rithms is also comparatively easy. Runge-Kutta formulas are the most 

widely used of the single-step methods. 

Multi-step methods require a past history of derivative values for 

their use. This implies that storage capacity be slightly greater than 

for single-step methods. Changing the step size is complicated and 

these methods must be primed with values from a single-step method. 

However, error calculations are not difficult and computation time is 
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reduced since several derivative calculations are not necessary for each 

computed solution value. Predictor methods are typical of multi-step 

integration formulas. 

In considering the use of numerical integration routines to solve 

stochastic differential equations, another classification method sug-

gests itself. This is based on the point of functional evaluation of 

the numerical algorithm. Suppose the current interval is [t.,t. 1]. 
I 1+ 

Then the point of functional evaluation may 1 ie before the current 

interval, say t. 1 , or within the current interval, say t. 1 • 
1- I +;2 

In this 

classification scheme, the evaluation point t. may belong to either 
I 

class of evaluation points. The point t. 1 obviously must be included I+ 

within the current interval. 

The results of the previous chapter indicate some possible conse-

quences of this grouping of numerical methods. Recall that the Ito 

stochastic integral definition requires that t. be the point of func-
1 

tional evaluation. Euler's numerical integration method also uses t. 
I 

as the point of evaluation for its computations. The moments of Euler's 

method, which are presented in Chapter I I, show that this Ito-Euler 

correspondence based on the point of functional evaluation is a valid 

classification scheme and the numerical results presented in Figures 5 

and 6 bear out this correspondence also. 

The second-order Runge-Kutta method discussed earlier requires 

evaluations at t. and t. 1, that is, within the current interval. The 
I 1+ 

Stratonovich definition of the stochastic integral also specifies an 

evaluation point within the current interval. Moments of the second-

order Runge-Kutta method, calculated in Chapter I I, substantiate the 

correspondence of the Stratonovich integral with numerical routines 
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which require functional evaluations within the current interval. The 

numerical results in Figures 7 and 8 corroborate this relationship. 

Fourth-order Runge-Kutta methods are more accurate and more widely 

used than second-order methods. However, they still require evaluations 

within the current interval and thus will be grouped with the Stratono-

vich integral. In general, single-step integration formulas introduce 

correlation between the integrand and the noise process by calculating 

successive integrand values from earlier ones within the same interval. 

The Stratonovich integral also introduces correlation between the inte-

grand and the noise process and this correlation is the basis of the 

relationship between the Stratonovich integral and single-step numerical 

formulas. The next section extends this Runge-Kutta-Stratonovich rela-

tionship to the important class of fourth-order Runge-Kutta methods. 

Further Runge-Kutta Results 

Consider the fourth-order Runge-Kutta method given by 

= 

(3. 1) 

where 

= 

= x. + g(x. 2)(w. 1- w.). 
I I 1+ I 

Three expressions for the derivative of g(x) may be written to aid in 



the calculation of moments of Equation (3. 1): 

g(x. 
I 

g(x. 
I 

= 

1 + 2 dx) 

1 - dx 
2 

- g (x.) 
I 

dx = g (x.) (w. 1 - w.) 
I 1+ I 

- g (x.) 
I 
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(3. 2a) 

1 dx 1 = g(x. + -2 dx) (w. 1 - w.) (3.2b) 
I 1+ I 

ag3 = g(xi + dx2) - g(xi) 

ax dx2 

(3.2c) 

Substituting Equation (3.2) into Equation (3. 1) yields 

(3. 3) 
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and upon rewriting, we obtain 

= 
1 Clg 1 

x. + g(x.)(w. 1 - w.) +-6 [g(x.1 ) 
I I 1+ I dX 

(3. 4) 

and consequently 

E{xi+1} 

(3. 5) 

since all functions g(·) are functions of x. and hence independent of 
I 

the noise process. Noting the regularity conditions on g(x) and 

Clg(x)/Clx which are required in the Stratonovich definition, we can 

see that the equations in Equations (3.2) are different approximations 

of the same quantity for small step sizes. We then calculate the mean 

value associated with the fourth-order Runge-Kutta method as 

E{xi+l} (3. 6) 

and the mean value equivalence is established upon comparison with 

Equation (2.34). 

To determine the variance of the fourth-order Runge-Kutta method, 

we f i r s t l e t g . . 
IJ 

g(x .. ) , j = l, 2, 3, and g. = g(x.) and calculate 
I J I I 
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From Equations (3.2), we see that 

I agl 
9i I = 2 9; - dw + g. 

ax I 
(3.8a) 

I 3g2 
9i2 2 9 i I 

-dw + g. 
ax I 

(3.8b) 

gi3 = 
ag3 

gi2 3;- dw + g .. 
I 

(3. 8c) 

Substituting Equations (3.8) into Equation (3.7) and taking the expected 

value gives 

2 
E{xi+l} = 

39 1 392 39 1 392 +2g.g.l--+2g.g --
1 1 ax ax 1 i 2 ax ax 

(3. 9) 

Again noting that the Equations (3.2) are approximations of the same 

value, we obtain 

2 
E{xi+l} 

2 ag 1 2 2 2 
E { x. } + E { x. 9 . - dw } + E { g . dw } 

I I I ax I 

2 
l 2 Clgl 4 

+4E{gi a;-dw}. (3.10) 
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Subtracting the square of Equation (3.5) from Equation (3. 10) shows that 

the variance of the fourth-order Runge-Kutta method is given by 

Vadxi+l} 
2 2 1 39 1 2 

Var{xi} + E{gi dw} + 4 Var{gi ~ dw }. 

(3. 11) 

These results are the same as the second order Runge-Kutta results, 

Equations (2. 16) and (2.20), and extend the Runge-Kutta-Stratonovich 

correspondence to the fourth-order case. 

The fourth-order Runge-Kutta numerical integration of the example 

problems, using Equation (3. 1), was performed using a step size of 

approximately 0.002 seconds and an ensemble of 100 sample trajectories. 

The initial value x(O) and the variance parameter q were chosen to be 

unity. Figure 9 presents the simulation results for the equation dx 

wdw, with the solutions from the Stratonovich integral indicated by 

dashed 1 ines. Figure 10 shows the corresponding results for the equa-

tion dx = xdw. Once again, these numerical results behave as expected 

for the Runge-Kutta-Stratonovich relationship. 

Predictor Methods 

Predictor methods are another type of numerical integration algo-

ri thm. A k-th order predictor estimates the value of x. 1 from the i+ 

previous values xi, xi-!' ... , xi-k+l. Predictor methods are thus 

multi-step and require starting values. These methods do not introduce 

correlation between the integrand and the noise process because differ-

ent noise increments are used for each calculated value of x .. Func-
1 

tiona] evaluations prior to the current interval are required for these 
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methods. This fact suggests the correspondence of predictor methods 

with the McShane definition of the stochastic integral. 

The rationale behind the development of the McShane integral was 

the construction of a theory of stochastic systems which would also 

provide results consistent with deterministic systems. This objective 

was achieved without introducing profound differences in the existing 

stochastic theories. Consequently, solutions of McShane integrals 

arising from practical applications agree with results obtained from 

Ito's theory. More precisely, if the integrator process is a martin-

gale and the integrand is bounded and continuous in the L2-sense, then 

the Ito and McShane integrals agree. The Wiener process is a martin-
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gale and the class of L2-bounded and L2-continuous functions is general 

enough to include systems of practical interest. Thus, the McShane and 

Ito theoretical solutions for those systems agree. More generally, the 

McShane integral agrees with the Ito integral when the hypotheses for 

the existence of both are satisfied and it agrees with the Riemann inte-

g ra l in the case of Lipschitz ian inputs. These facts lead to the con-

elusion that the predictor methods should correspond to the Ito 

stochastic integral. 

The Adams-Bashforth second-order predictor method is given by the 

formula 

(3. 12) 

The mean value of xi+l from Equation (3.12) is given by 

l --2 E{g(x. 1)(w. 1 - w.)} 
1- 1+ I 



= E{x.} 
I 

and the mean value equivalence with the Ito integral holds. 

To analyze the variance of x. 1, we first calculate 
I+ 

and then obtain 

2 
E{x. 1} 

I+ 

1 2 2 + -4 [3g(x.) - g(x. 1)] (w.+ 1 - w.) 
I 1- I I 

= 
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(3. 13) 

(3. 14) 

(3. 15) 

and, from the independence of the noise increment and the other expres-

slbns in the second term on the right in Equation (3. 15), we find 

Not .i ng that 

we find that 

2 
E{xi+1} 

ag (x.) 
I 

ax 

= 

= 

2 1 2 E{x.} + -4 q E{[3g{x.) -g(x. 1)] }dt. 
I I 1-

(3.16) 

g (x. ) - g (x. 1 ) I I-

X. - X. 1 1 1-

(3. 17) 

2 
[3g(x.)- g(x. 1)J 

1 1-
= 

Clg(x.) 
I 

[3 ax 
2 

(x. - x. 1) + 2g (x. 1)] 
1 1- 1-

Clg(x.) 2 2 
= 9 ( d I ) (x • - X • 1 ) 

X I 1-

Clg (x. ) 
I 

Clx 
(x. - x. 1) 

1 1-

(3.18) 



Equation (3.16) then becomes 

2 
E{xi+l} 

59 

d9 (x.) 
- I 

dX 

2 + q E{g (xi_ 1)}dt. (3.19) 

It is easy to see that the second and third terms on the right vanish 

since they are of order higher than one in dt. We thus have the result 

that 

Var{xi+l} (3. 20) 

which is of the same form as Equation (2.27), the variance of the Ito 

integral. 

The numerical solution of Example 1 using the second-order Adams 

predictor method was obtained with a fixed integration step size of 

approximately 0.002 seconds and 100 sample trajectories were ensemble-

averaged to provide an estimate of the mean and variance. The initial 

condition was again chosen to be unity, as was q. Figure 11 presents 

these results, with the mean and variance of the Ito solution indicated 

by the dashed 1 ines. Figure 12 presents the correspondinq results for 

Example 2, which was simulated as described above. These figures show 

good agreement for the Ito integral and the second-order Adams predic-

tor method. 

The fourth-order Adams-Bashforth predictor method, given by 

= 
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is easily seen to have the mean value 

E{xi+l} E{x.}, 
I 

------
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(3.21) 

(3. 22) 

since the noise increment is independent of the expression in parentheses 

in Equation (3.2f). 

To determine the variance of this fourth~order predictor, we define 

two expressions similar to Equation (3. 17). Namely, 

Clgl g (x.) - 9 (xi - 1 ) I 

ax x. - X. ] 
I I-

(3.23a) 

(lg2 g(xi-2) - g (x. 3) 
1-

= 3x xi -2 - xi-3 
(3.23b) 

Now 

1 - 9g(x. 3)](w.+l- w.) + ---2 [55g(x.1)- 59g(x.1 _ 1) 
1- I I ( 24) 

and taking the expected value gives 

2 
E{xi+l} = E{/} + _q_2-E{[55g(x.) - 59g(x.1 _ 1) + 37g(x.1_ 2 ) 

I (24) I 

2 
- 9g(x. 3)] }(t.+l - t.). 

. 1- I l 
(3.24) 

But, by using Equation (3.23), we can see that 

= 
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= (55) 2 2 39 1 2 2 2 
g (x. 1 )(~-) (w.- w. 1) + l6g (x. 1) 

I- oX I I- I-

(3.25) 

On calculating the expected value of the above expression, one can see 

that the terms involving noise increments lead, after substitution into 

Equation (3.24), to terms of higher order in dt and consequently they 

become negligible for small step sizes. As in the definition of the 

McShane integral, we consider a belated partition, in which T. = t. 1. 
I I-

Then the remaining terms in Equation (3.25), those containing functions 

of the form g2 (·), are approximately the same as the term (24) 2g2 (xi_ 1) 

and the variance of the fourth-order Adams-Bashforth method is given by 
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Var{xi+l} = 2 Var{x.}+q E{g (x. 1)}(t. 1 - t.) 
I 1- 1+ I 

(3.26) 

which again is of the same form as the variance of the Ito integral. 

The numerical solution of Example 1 using the fourth-order Adams-

Bashforth predictor method was obtained employing a step size of 0.002 

seconds and again 100 sample trajectories were ensemble-averaged. The 

initial condition x(O) was unity and q = l also. Figure 13 presents 

these results with the mean and variance of the Ito solution given by 

the dashed lines. Figure 14 gives the corresponding results for 

Example 2, whJch was simulated as described above. These figures show 

good agreement between the Ito integral and the fourth-order Adams-Bash-

forth method. 

We now see that the connection between numerical integration methods 

and stochastic integrals lies in the fact that the point of functional 

evaluation determines whether or not the integrand is uncorrelated with 

the noise. Consequently, the point ti in the interval [ti, ti+l] is 

considered to be outside the interval, since no correlation results from 

this as an evaluation point. Single-step formulas, which evaluate the 

integrand within the current interval and thereby introduce correlation, 

correspond to the Stratonovich stochastic integral. Multi-step formu-

las, which require functional evaluations before the current interval, 

allow the integrand to remain uncorrelated with the noise input and 

thus correspond to the Ito stochastic integral. 

These ideas are discussed again in later parts of this chapter. 

The next section is concerned with the statistical analysis of errors 

resulting from the simulation of the examples. 
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Statistical Errors 

The purpose of using a Monte Carlo simulation to analyze a system 

is to average out the effects of the noise input on the output charac-

teristics. Little, if any, meaningful information may be gained from 

considering a single solution trajectory, unless it is known that the 

resulting stochastic process is ergodic, which is usually not the case. 

The use of aggregates of sample solutions necessitates a statistical 

study of the results, however, since these results arise from a finite 

number of samples. We need to find the reliability with which these 

ensemble-averaged statistics reflect the true behavior of the system. 

For this reason, we want to place confidence intervals around the theo-

retical solutions. This will enable us to make probability statements 

concerning the reliability of the ensemble-averaged solutions. 

Consider first the mean value of the ensemble of solution trajec-

tories. Let x .. denote the computed value of x(t.) in the j-th sample 
I J I 

and let x. denote the average of these values, that is, 
I 

X. = 
I 

N 

t:""J L X ••• 
r • l I J J= 

(3.27) 

The values x. are the ensemble mean values plotted in the figures pre-
1 

sented earlier. Bendat and Piersol [27] show that the distribution of 

the sample mean x., under mild conditions, approaches a normal distri-
1 

bution regardless of how the original variable x. is distributed. We 
- I 

may then calculate confidence levels from the following: 

Pr[ (tJ -
X. 

I 

0 z x. a 
I ) < X. 

I 
< (tJ + x. 

I 

0 z x. a 
__ I-)] = 1 - 2a, 

(3. 28) 
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where llx. is the known mean of the random variable xi' a is the known 
1 xi 

standard deviation of the random variable x. and z is the lOOa percent-
1 a 

age point of the normal distribution, that is, Pr(z ) = 1 - a. For this 
a 

case of a normally distributed random variable, z = 1 gives the la band 
a 

about the true mean 11 • We now have 
X. 

I 

(J 
x. 

(J 
x. 

Pr[ (Jl -x. 
I 

< x. 
I 

< ( ]J + 
X. 

I ) ] 0.6826 (3.29) 
I I /Tf 

and conclude that approximately 68 percent of sample means x. wil 1 fall 
I 

within the calculated interval. Alternatively, we may conclude that for 

the case in which a time history of sample means is studied, no more 

than 32 percent of the samples should 1 ie outside of the interval. Sim-

ilar statements may be made concerning the cases z = 2 and z = 3 to 
a a 

determine 2a and 3a bands about the true mean. 

To illustrate, consider the results of the Euler numerical inte-

gration of the equation dx 

lated in Chapter I for the 

which it follows that (J 
x. 

I 

becomes, with z = 2, 
CJ. 

Pr[0.8586 < x. 
I 

= wdw at the point t. = 1 second. 
I 

As calcu-

Ito integral, ]J = 1 and x. 
I 

= 0.707. Also, N = 100. 

< 1.1414] 

a2 = ~t .I = ~' x. from 
I 

Equation (3.28) 

Similar confidence intervals about the true mean may be computed for 

each point t. E (0,1] for the example problems. 
I 

The unbiased estimator for the sample variance of a point x. was 
I 

computed as 

s~ 
I 

(x .. - x.) 2 . 
I J I 

(3.30) 



This estimate of the variance is not normally distributed, as was the 

mean value estimator, but rather chi-square distributed with N- 1 

degrees of freedom. It can be shown [27] that the sampling distribu-

tion of the sample variance is given by 

2 
s. = 

I 

2 
where XN-l is chi-square distributed. We can make the statement that 

[ 
x2 

N-1;1-a 

Pr N- l 

2 
0 

X. 
I 

< 
2 

s. 
I 

x2 
N-1 ;a 

= 1 - 2a. < 
N - l 

69 

(3. 31) 

2 where X is the lOOa percentage point for the chi-square distribution n;a 

with n degrees of freedom, that is, Pr(x 2 ) = 1 n;a - a. Confidence 

intervals, corresponding to a bounds in the case of a normal distribu-

tion, may be computed from a table of percentage points for the chi-

square distribution. 

Again using the Euler integration results for dx = wdw as an 

illustration, we calculate the 95 percent confidence interval about the 

2 
variance. We find that a= 0.025 and x99 ; 0 . 025 = 128.43 and 

x2 - 73 35 Since N- l = 99 and i (1) = l/2, Equation (3.31) 99;0.975- • • X. 

becomes 

Pr[0.3705 < 
2 

s. < 0.6486] 
I 

I 

0.95. 

Figures 15 through 24 show the 99 percent confidence intervals for 

each numerical integration method for both example problems. The theo-

retical and ensemble-averaged solutions are indicated as before with 

the error bands given by the dashed and dotted 1 ines. All mean values 
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lie within the calculated confidence intervals while some portions of 

trajectories for the variances lie outside the bounds. That small seg-

ments of the variance trajectories extend beyond the confidence 1 imits 

is explained by the f2ct that these calculated intervals do not contain 

information on uncertainty arising from numerical algorithm errors such 

as truncation and roundoff. Consideration of these errors would provide 

somewhat wider intervals at the same confidence level. 

Having attained these results on the relationships between digital 

simulation and stochastic integral definitions, the remainder of the 

Chapter discusses the unifying idea in this area, the concept of corre-

Jation. 

System Correlation 

As indicated earlier, the unifying concept in the simulation of 

nonlinear stochastic systems is the correlation between the noise input 

and the system dynamics. No correlation is present in the Ito integral, 

but the Stratonovich definition introduces correlation by evaluating 

the integrand at the midpoint of each interval of the partition. Digi-

tally, correlation is introduced by repeated use of each noise increment 

in the evaluation of the integrand. 

The amount of correlation between the integrand and the noise 

increment is represented by the correlation coefficient function, given 

by 

p ( t) = 
E{gdw} - E{g}E{dw} 

og odw 
(3.32) 

Since the mean increment of the Wiener process is zero, the correlation 

coefficient function becomes 
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p ( t) = 
E{gdw} 
a ad 

(3.33) 
g w 

That the correlation is a consistent measure of system characteris-

tics, which carries over from theory to digital simulation, may be shown 

as follows. First, Ito requires the noise increment and the integrand 

be uncorrelated, so p(t) = 0. For Euler's method, we have 

p ( t.) 
I 

= 

= 0 (3.34) 

It follows similarly that the second- and fourth-order Adams-Bashforth 

predictors also have correlation coefficient functions identically zero. 

Correlation in the Stratonovich integral may be found by utilizing 

the relationship in Equation (2.33). In differential equation form, 

Equation (2.33) states that the Stratonovich solution of the equation 

dx(t) g ( x, t) dw ( t) 

is the same as the I to solution of 

dx(t) g (x, t) dw ( t) 1 
g (x, t) ~ (x, t) dt. - +- q 

2 ax 

We note that 

E{gdw} 1 
E{g ~~ }dt (3.35) = -q 

2 

in terms of the Stratonovich definition. We then determine the Strat-

onovich correlation coefficient function to be 

p ( t) = 
i q E{g ~} dt 

a ad g w 
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1 E { g ~~ } 
= 2 y'qdt --0-­

g 
(3.36) 

since odw = /qdt. 

For the second-order Runge-Kutta method, the correlation between 

the integrand and the noise increment is found by first calculating 

1 E{-2 (g(x.) + g(x. + dx))(w. 1 - w.)} 
I I 1+ I 

1 
-2 E{g (x.+ dx) (w. 1 - w.)} 

I 1+ I 

(3.37) 

as in Equations (2.15) and (2. 16). The correlation coefficient function 

is thus 

p ( t.) 
I 

= 
0 0 

g. dw. 
I I 

1 r-;- E{g(x 1) ~~ (x 1 )} 

= 2 vq dt ----0----

g i 

(3.38) 

which is the same as Equation (3.36). The correlation of the fourth-

o~der Runge-Kutta method is determined in a similar manner and has the 

same value as Equation (3.38). 

These results illustrate the critical importance of the evaluation 

point of the integrand in the theory and simulation of stochastic dif-

ferential equations. The location of this evaluation point in each 

Interval of the partition is the determining factor in the value of the 

integral and its effect is manifested through the concept of the corre-

lation coefficient function. This effect is seen In the theory of 



stochastic integration as wel 1 as in the digital simulation of stochas-

tic systems and can be seen to be the unifying principle between these 

areas and also the basis for the Ito-Euler-predictor relationship and 

the Stratonovich-Runge-Kutta relationship. 

Since 0 ~ jp(t) I~ 1, the Ito theory has the least correlation 

possible in stochastic integration. The questions then arise of what 

is the maximum correlation possible between the integrand and noise and 

of what role the Stratonovich theory plays in this correlation analysis. 

A question related to this last idea is what effect the point of evalua-

tion within the interval has on the correlation in the Stratonovich 

integral. It is notable that when the midpoint is used, as in the 

Stratonovich definition of the integral, the coefficient in the corre-

lation function is one-half. 

In general, 

= 

and then 

g(axi + bxi+l) - g(xi) 

ax. + bx. 1 - x. 
I 1+ I 

= 

(3.39) 

(3. 40) 

where 0 <a< 1 and 0 < b < 1 and a+ b = 1. Multiplying both sides of 

Equation (3.lfO) by the noise increment and calculating the correlation 

function gives 

p ( t) 

. Clg 
E{g(x.)-;;- (x')} 

b ICidt I oX 

og 
(3.41) 

The case b = o corresponds to the Ito integral and the Euler and 



predictor methods of numer i ca I i nteg ration as can be seen because 

p(t); 0 and the integrand is evaluated only at x(t.). The Stratono-
1 
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vich theory and Runge-Kutta integration methods result when a = b = l/2. 

With the evaluation point constrained to be within the interval, the 

maximum correlation wi 11 occur when b = 1. Indeed, this instance pro-

vides the maximum correlation even if points after the current interval 

are used as evaluation points. 

To see this, consider using values n steps beyond the current 

interval as evaluation points. Then 

~(xi) ax 
g(ax. + bx.+ ) - g(x.) 

I I n I 

ax. + bx.+ - x. 
x. < x 1 < ax. + bx. 

I I 1+n 
I I n I 

(3. 42) 

and 

g(ax. + bx. ) = b ~g (x 1 ) (x.+ - x.) - g(x.). 
I 1+n oX I n I I 

Since g(x.) is uncorrelated with noise increments beginning at t., the 
I I 

first term on the right is the quantity of interest. If we consider 

that the noise increment is w. 1 - w., we obtain 1+ I 

g(ax. + bx.+ ) (w.+l - w.) 
I I n I I 

+ (w.+ 1 - w.+ 2) + ... + (w. 1 - w.)] 
I n- I n- I+ I 

(3.43) 

It then follows that 
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p ( t) 
E{g(x.) ~g (x')} 

= b /qdT I X 
0 

(3. 44) 
g 

since all noise increments are uncorrelated except the last in the 

brackets in Equation (3.43). 

Alternatively, we could consider that the multiplicative noise 

increment is wi+n - wi instead of wi+l - w .• 
I 

Then we would obtain 

= b g(x.) ~gx (x')(w. - w.) 2 
I o 1+n I 

(3.45) 

and 

E{g(ax. + bx.+ )(w.+ - w.)} = bqE{g(x.) ~g (x')}n dt. 
I I n I n I I oX 

Also 

= 

= In q dt 

and we obtain 

p ( t) b /n q dt 
E{g(x.) ~g (x')} 

. I oX 

0 g 

(3. 46) 

This method introduces more correlation by a factor of lrl. However, 

this technique essentially utilizes a step size of ndt rather than dt 

and hence c~nnot be compared with the results in Equations (3.36) or 

(3. 44) . 

We see then that the system correlation is a consistent and mean-

ingful way of comparing and contrasting stochastic integrals and 
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numerical integration methods. The general form of the correlation 

function, given by Equation (3.41), may be used for these purposes. The 

Ito-Euler-predictor grouping provides the 1 imiting case of no correla-

tion between integrand and noise. The Stratonovich-Runge-Kutta associ-

ation is an intermediate case corresponding to evaluation of the 

integrand at the midpoint of each interval. The maximum correlation 

between integrand and noise occurs if the integrand is evaluated at 

x(t. 1), which value is not known exactly when using a digital algor­
a+ 

ithm. The point of functional evaluation within each interval there-

fore determines the numerical value of the correlation function, 

although the general form is specified. 

Summary 

The results in Chapter I I were extended in this chapter to other 

numerical integration methods. Moments of a fourth-order Runge-Kutta 

method were determined to extend the Stratonovich-Runge-Kutta relation-

ship to this important type of integration algorithm. Predictor methods 

were shown to correspond to the Ito integral in the practical case of 

bounded and continuous integrands. 

Confidence intervals were calculated about the ensemble-averaged 

mean and variance for the example problems and each type of numerical 

algorithm. The mean values were completely within the calculated 

intervals with the variance trajectories outside the intervals a small 

portion of the time. It was shown that the unifying concept in the 

relationship between integration methods and stochastic integrals is 

the correlation between the integrand and noise. The general form of 
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this correlation was found and it was shown that the Ito and Stratono­

vich integrals correspond to specific cases of the correlation function. 



CHAPTER IV 

EXAMPLES 

There are many examples of nonlinear stochastic systems in man-made 

processes and in nature. Estimation and control of systems are broad 

areas of interest which sometimes necessitate the use of non! inear sto­

chastic differential equations. The structure of the optimal filter for 

obtaining state estimates provides one important example. Problems in 

communication theory involving phase-locked loops provide a wide range 

of applications for the concepts discussed earlier. This area is par­

ticularly interesting because of the multitude of uses of phase-locked 

loops. Estimating the concentration of pollutants in the air is another 

problem which involves nonlinear stochastic theory. 

Many of the nonlinear stochastic problems have been studied primar­

ily through linear approximations or through neglecting the multiplica­

tive noise terms and its consequences. Some examples are considered in 

this chapter which illustrate the effects of digital simulation on these 

systems. 

Optimal Non! inear Filtering 

A broad area of general interest in the field of stochastic systems 

is filtering theory. The form of the optimal fi Iter in the case of 1 in­

ear stochastic systems with white Gaussian noise inputs is widely known, 

but in the nonlinear case, no such generally applicable optimal results 

88 
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have been found. Estimation of the state of a physical system, based 

on data corrupted by noise, is easily accomplished if the probability 

distribution of the system state, conditioned on the measurement data, 

is known for all times. The problem thus becomes that of describing 

the time history of this distribution and the specification of the 

structure of the filter whose output is this distribution when the 

input is the given input measurement function. 

Stochastic differential equations have been used in the analysis 

of this optimal nonlinear filtering problem. The study of the evolu-

tion of the probability distribution of the system state by means of 

~tochastic differential equations was initiated by Stratonovich [13], 

who also studied the implications for stochastic control problems [28]. 

In these equations the observed noisy input time function is the fore-

ing term. The result of these studies has been the specification of 

the probability distribution in terms of a nonlinear stochastic differ-

ential equation. 

Consider the observation process defined by 

dy(t) = .!:__ d t + i- dw ( t) 
82 f.! 

( 4. 1) 

where a and S are constants. The optimal estimate for the posterior 

probability distribution of the observed process was derived by \.Jonham 

[29] and is given by the stochastic equation 

dx(t) = - s2 x(t) (1 - x2 (t))dt - a(l - x2 (t))dt 

+ S(l - x2 (t))dw (4.2) 

Equation (4.2) defines the structure of an ideal filter which gen-

erates the optimal estimate of the posterior distribution from the 



90 

observed input function. The form of the optimal filter is given in 

Figure 25. 

!!:_ dt + -1- dw 
2 2 

B B .... _y \ X ( t) 
r 

-\.. ../ H(s) 

J'" ) 

F 1 (x) 
Function .L_ 

Generator 

F2 (x) 
Function j 

Generator 

Figure 25. Optimal Nonlinear Filter 

The output of the function generators is 

F 2 (x) 

and the transfer function H(s) = 1/s. 

The simulation of this example was performed with initial condi-

tion x(O) = 0.0. The integration step size was chosen to be approxi-

mately 0.002 seconds and 100 sample runs were ensemble-averaged to 

provide the results. The parameters a and B were given the same value, 

a= B = -2.0 and the variance parameter was chosen to be unity. Fig-

ures 26, 27 and 28 give the simulation results for the Euler, AB2 and 

RK4 numerical integration methods, respectively. 
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The mean and variance estimates of the Euler and AB2 methods are 

nearly identical, as expected. The mean value generated by the RK4 

method is different, however. There is about a 30% difference in the 

mean value after one second. The variance estimates for all the methods 

appear to achieve a steady-state value of approximately one-fourth. The 

Euler and AB2 methods overshoot this value somewhat and damp out rather 

slowly, while the RK4 method achieves the value quickly and then 

exhibits small random perturbations. 

Confidence intervals at a significance level of 95 percent are 

shown for the simulation results. As is the case for all examples in 

this chapter, the theoretical mean and variance are not known, and the 

confidence intervals are calculated around the ensemble-averaged solu-

tions. From approximately t = 0.4 second tot 1 second, the mean 

generated by the Runge-Kutta method 1 ies outside the confidence interval 

for the Euler and AB2 methods and the Euler and AB2 mean values 1 ie out­

side the Runge-Kutta confidence interval for the same time period. For 

times near one second, the confidence intervals do not overlap. These 

results show that the generated mean values are in fact different time 

functions and not merely different approximations to the same one. The 

variance estimates and associated confidence intervals exhibit the same 

type behavior, although not to the same extent. About 40 percent to 

50 percent of the variance trajectories 1 ies outside the confidence 

intervals associated with the different type of numerical method. 

Hence, in evaluating the performance of the filter, the effect of 

the numerical integration algorithm must be accounted for. The results, 

and conclusions, of an analysis of the filter dynamics would seem to be 

somewhat arbitrary, to the extent that they ignore this algorithm depen­

dence. 
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Phase-Locked Loops 

The phase-lock principle is a very powerful and general tool in 

the analysis and design of systems in which one of the requirements is 

the acquisition and tracking of an input signal. The basic configura-

tion of a phase-locked loop (PLL) is shown in Figure 29. The input 

signal to be tracked contains background noise, and nonl inearities in 

the input as well as the voltage-controlled oscillator (VCO) indicate 

the need of nonlinear stochastic analysis in the study of these systems. 

The acquisition signal aids in driving the VCO to obtain a lock on the 

input signal. 

Input 
Signal 

Reference 
Signal 

Loop 
Filter 

vco 

Figure 29. Phase-Locked Loop 

Acquisition 
Signal 

Phase-locked loop concepts were first studied about 50 years ago 

by de Bellescize [30], who was interested primarily in the subject of 

synchronous reception of radio signals. Practical limitations of the 

time, however, prevented the perfect synchronization 0f the carrier 

frequency and the oscillator frequency in the receiver and PLLs were 
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not developed until later. Subsequently it has been discovered that 

the general closed-loop configuration of the PLL can be applied to a 

very general class of not only communication and control systems, but 

also to certain natural systems. 

There are many practical utilizations of the basic PLL configura-

tion in Figure 29. Applications to communications include the demodu-

lation of analog or digital systems [31] [32], reference extraction for 

1 inear demodulation and amplitude detection [33], carrier tracking [34] 

and as a synchronizer for various systems [35] [36]. Other app 1 i ca-

tions include frequency synthesis, multiplication and division, electric 

power generation and the study of circadian rhythms by physiologists and 

biophysicists. These last are concerned with the electrical rhythms of 

the brain as wel 1 as the synchronous activity of the heart. 

Consider the problem arising in communication theory of the demod-

ulation of an angle-modulated signal. Figure 30 depicts a demodulation 

system for this type of application. The output of the linear filter 

is given by 

X ( t) = /2 It cos(w T + x(<)) u(T) f(t- <) dT. (4.3) 
-co 

If the angle-tracking linear filter is given by K/s, then Figure 30 

represents a second-order phase-locked loop. Let the input u(t) be the 

angle-modulated signal 

u(t) = If sin(w T + m(t)) 

where m(t) is zero-mean Gaussian white noise. The resulting filter 

output is then given by the integral equation 

x(t) = 2K ft sin (wT+ m(T)) cos(wT+ x(T)) dT. (4.5) 
-co 
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The equivalent stochastic differential equation may be written in the 

form 

dx(t) = 2K sin(w t + m(t)) cos(w t + x(t)) dt (4.6) 

in which the noise term enters multiplicatively and nonlinearly through 

the sine function. 

u(t) ' Linear \. , 
Filter , X ( t) 

d 
vco .., Cit / 

t + x(t)) ' ... 
li cos (w 

Figure 30. Demodulator for Angle-Modulated Signal 

The output x(t) of the PLL is the estimate of the input angle modu-

lation, in this case white Gaussian noise. The simulation was performed 

with parameters K = l/2, w = 50, and x(O) = l/4 and the variance of the 

noise input equal to unity. The output for the RK4 simulation is given 

in Figure 31. The Euler and AB2 methods gave nearly identical results. 

Several interesting observations can be made from the results of 

this simulation. The mean value tracks the input angle modulation from 

the initial error to the mean of zero, as expected. However, the vari-

ance estimate remains vanishingly small and, perhaps the most surprising 

occurrence, the numerical algorithm used had no effect on the outcome of 
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the simulation. These unexpected results have a common origin. In the 

digital simulation, the white noise input is modeled using a random 

number generator and these numbers are used directly in the calculation 

of the sine function. From the series expansion of the sine and cosine, 

it is easily seen that Equation (4.6) results in terms containing 

un(t.)dt, where n is a positive integer and u(t.) is a digitally gener-
' I 

ated random number. The statistics of such products are not the same 

as those required for the simulation of a Wiener process, as discussed 

in Chapter I I. Without the correlation properties and time-dependent 

behavior associated with this process, the simulation results will not 

exhibit the range of behavior expected. 

This example once again calls attention to the proper use of ran-

dom numbers in a digital simulation. The technique in Chapter I I is 

effective in instances when the Wiener process enters explicitly. It 

is not known at present how to best model the process when it is an 

implicit function of the integrand. 

Concentration of Air Pollution 

Air pollution has become a fact of life in certain industrialized 

areas throughout the world. The monitoring of pollution levels i~ an 

attempt to maintain them at a safe maximum has thus become more impor-

tant and many mathematical models have been developed for the study of 

the diffusion of pollutants in the atmosphere. One class of models 

which has been widely used is the steady-state Gaussian plume model 

based on the diffusion equation. These models have inherent accuracy 

limits, however, as pointed out by Desalu, Gould and Schweppe [38], who 

developed a stochastic model for air pollution. 
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Their model involves partial differential equations which, when 

discretized, assume the form of nonlinear differential equations with 

multiplicative noise inputs. This advection-diffusion model accounts 

for the continuous fluctuation in meteorological conditions and incom-

plete knowledge of the true system model. 

For practical implementation, the advection-diffusion equation is 

discretized into grid cells with the output of the model being the 

average pollution concentration within each cell. The equation can 

then be written as 

A dx(t) (2 - A + B)x(t)dt + C dt + D Q dt 

+ E x(t)dw(t) + F q dt 

where A, D, E, Fare constants, B is a constant related to the gradi-

ents of wind velocity and pollution concentration, C is the pollution 

concentration outside the grid ~ell, Q and q are the deterministic and 

stochastic components of the pollution source and u(t) is Gaussianly 

distributed white noise. The multiplicative noise term Ex(t)u(t) 

introduces the· need for nonlinear stochastic analysis. 

Let A= 2 and B = 1 and assume that the stochastic component of 

the pollution source is zero, i.e., q = 0. Assume that the initial 

pollution concentration outside the grid ce11 is 4 gm/m3 and that the 

deterministic component of the pollution source is 0.02 gm/hr with 

D = 1. With the initial pollution concentration within the grid cell 

taken to be zero, we simulate the equation 

dx(t) = 
1 2 x(t)dt + x(t)dw(t) + 2.01dt. 

Figures 32, 33 and 34 give the results of this simulation. 
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The mean and variance of the Euler and AB2 methods are virtually 

identical, with the mean pollution concentration after one second 

approximately 2.5 gm/m3. The results of the RK4 simulation are rather 

different, with a mean concentration of 3.5 gm/m3. The variance from 

the RK4 method is about twice as large as for the Euler and AB2 methods. 

Once again we see the influence that digital simulations can have on 

the analysis of system behavior. 

Summary 

Conclusions and insights gained from digital simulations of dynamic 

systems are invaluable to system designers and policy makers. However, 

care must be taken in interpreting results from simulations, especially 

in. systems including multiplicative noise components. Errors arising 

because of truncation, roundoff, statistical anomalies and inaccuracies 

in the system model must be considered and, as illustrated in this chap­

ter, possible influences of the particular numerical algorithm must also 

be noted. The numerical method can have novel effects on system outputs 

which could result in faulty conclusions for a system in which the non-

1 inear noise input is important. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The mechanisms governing the relationships among theoretical stochas­

tic integration results and numerical integration methods have been eluci­

dated and illustrated in this thesis. The major contributions are the 

establishment of the moment equivalence of broad classes of numerical 

algorithms with various interpretations of stochastic integrals and the 

discovery of the unifying concept in these relationships, the correlation 

coefficient function. 

Familiarity with various definitions of stochastic integrals and with 

numerical integration methods, as well as some early simulation work on 

systems corrupted by multiplicative noise, indicated that digital solu­

tions of these systems varied with the numerical algorithm used. After 

developing an acceptable method for generating samples from a Wiener 

process, the mean and variance of the Euler and second-order Runge-Kutta 

methods were found. From comparison with the moments of the Ito and 

Stratonovich stochastic integrals, it was shown that the Euler method 

gives rise to the Ito solution and that the Runge-Kutta method produces 

the Stratonovich solution. Actual simulations of example problems showed 

good agreement with these results. 

These results were then extended to the important case of the fourth­

order Runge-Kutta method, in which it was shown that the Stratonovich-

10~ 
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Runge-Kutta relationship stilI held. The class of predictor integration 

methods were then discussed, and it was shown that the second-order and 

fourth-order Adams-Bashforth predictors correspond to the Ito stochastic 

integral. Digital simulations of examples were performed for these 

methods also and again showed a good agreement with the above results. 

Quantification of the agreement between simulated solutions and theoret­

ical solutions was obtained by the derivation of confidence intervals 

about the exact solutions. All mean value estimates were within the 

calculated confidence 1 imits, while a small percentage of some variance 

estimates lay outside these limits. 

The study of the aforementioned relationships and their implications 

led to the realization that the point of functional evaluation of the 

stochastic integrand within each subinterval of a partition plays a 

determining role in the solution process. It was shown that this effect 

is evident in the correlation introduced between the integrand the the 

noise input. The correlation coefficient function was shown to provide 

a generalized method for analyzing the connections between stochastic 

integrals and numerical methods, with the particular functional evalua-

tion point determining the amount of correlation. It was also demon-

strated that the correlation function of the Stratonovich integral 

provides the general form of the correlation with the particular value 

determined by the evaluation point, which effect is manifested in the 

coefficient to the correlation function. The Ito and Stratonovich corre­

lation functions were shown to be special cases of this generalized 

correlation coefficient function. 

Several examples involving multiplicative noise have been discussed 

in light of the results obtained here. Some of the effects of digital 
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simulation on these systems have been illustrated. Many ideas for further 

research have occurred thoughout this work and some of them are mentioned 

in the next section. 

Recommendations for Further Research 

Within the context of this thesis, there have arisen many possibil­

ities for additional work which would be of interest to those involved in 

simulation research, as well as the broad area of nonlinear stochastic 

systems. An analysis of errors arising from truncation and roundoff in 

numerical algorithms would be of benefit. Classical error analysis is 

not appropriate since total derivatives are utilized, while differentials 

must be employed in the nonlinear stochastic case. 

The development of numerical integration algorithms designed specif­

ically for stochastic differential equations is another area of possible 

research. Some work has been done for Ito stochastic differential equa­

tions and Euler and Runge-Kutta numerical methods, considering mean-square 

convergence of solutions and convergence of distributions. Predictor 

methods could be profitably studied and also the implications for solving 

a stochastic equation interpreted in the sense of Stratonovich. The con­

vergence of solutions in the sense of absolute error could also be 

addressed. 

The discretization step is a critical factor in the stabi 1 ity and 

convergence of numerical integration methods to correct solutions. The 

step size enters into stochastic algorithms not only as in the determin­

istic case, but also through the variance of the noise input. An analyt~ 

ical study of the effect of the integration step size on the stability 

characteristics and convergence properties of numerical algorithms would 
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aid in the development of stochastic numerical integration algorithms. 

Limited work by the author has indicated that the mean value is especially 

sensitive to changes in the integration step size. 

It is well known that the number of sample runs in a Monte Carlo 

simulation plays a crucial role in the accuracy of the results. This 

effect is seen in the calculation of error bands for ensemble-averaged 

statistics. Variance estimates are much more sensitive to the number of 

runs than the mean value estimates, which effect can be seen from the 

form of the confidence intervals for these estimates. An investigation 

of the quantitative effects of the number of sample runs on solution 

accuracy would aid in determining computational requirements for partic­

ular applications. 
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