
CONCURRENCY CONTROL IN MULTIDATABASES

By

KALPANA HALLEGERE CHIKKANNA

Bachelor of engineering

in Computer Science and Engineering

Mysore University, Mandya

Karnataka, India

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfilment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1994

OKLAHOMA STATE UNIVERSITY

CONCURRENCY CONTROL IN MULTIDATABASES

Thesis Approved:

1-li;;=L..t Th:!:-s Adviser

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my main

adviser, Dr. Huizhu Lu for her supervision, constructive

guidance, inspiration, and friendship. My sincere

appreciation extends to my other committee members Dr. K.M.

George, and Dr. Mitch Neilsen, whose guidance, assistance,

suggestions, and encouragement are invaluable.

I would like to give my special appreciation to my

parents for their strong mental support, and encouragement at

times of difficulty.

Finally, I would like to thank the staff members in the

University Computer Center for helping me throughout my

study.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

Multidatabase Architecture
Scope.
Objective.

II. LITERATURE SURVEY

Page

· . . 1

. .. 1
. 6
. 7

. . 8

Definitions of major terminologies . .. 8
Past work. 10

III. ALGORITHMS FOR CC IN MULTIDATABASE .27

Method .. 27
Assumptions made 27
MDBS model with integrated scheduler28
Requirements29
Characteristics of the proposed method. . .. 29
CC schemes used by the proposed method. . .. 31

Timestamp Ordering Rule (TO Rule) 31
Thomas's Write Rule (TWR) 31
Pure Integrated Scheduler .. . 32

Outline of transaction processing 32
Pseudocode for the GTM ••. 34
Pseudocode for the LTM38
Algorithm for integrated scheduler 40
Pseudocode for transaction processing in LDBMS .. 48

IV. PROOF OF CORRECTNESS ..

v. SUMMARY AND FUTURE WORK.

· . . 53

. .58

A List of major approaches to CC in MDBS 58
Summary. 59
Future work. 60

BIBLIOGRAPHY...

iv

· . . 61

LIST OF TABLES

Table Page

1. A list of major approaches to CC in MDBS ..•••......•• 58

v

LIST OF FIGURES

Figure Page

1. Types of heterogeneities 2

2. The overall architecture of an MDBS 3

3. MDBS model with integrated scheduler 28

vi

CHAPTER I

INTRODUCTION

Multidatabase Architecture

A MULTIDATABASE (MDBS) is a system which provides

uniform, integrated interface for retrieving data from

preexisting, heterogeneous, distributed databases without

violating their local autonomy. It allows users to manipulate

data contained in various databases without modifying current

database application and without migrating data to a new

database. A database is considered to be distributed if it

provides access to data located at multiple (local) sites in

a network. It is considered to be heterogeneous if the local

nodes are based on different technologies. The types of

heterogeneities in the database systems can be classified

according to the differences in DBMSs or differences in

semantics of data (Figure 1) [SL90].

A general model of transaction processing in MOBSs shown in

Figure 2 [Kim93] is characterized by the following features.

1. Interactions with a global or local database is conducted

by user programs called transactions.

2. There are two types of transactions, global and local.

3. Global transactions are controlled by MOBS.

4. Local transactions are performed outside MOBS's control.

1

5. The MDBMS is built on top of Local Database Systems

(LDBSs) to appear as an application of LDBSs. It consists of

Multidatabase Kernel (MDBK) and Local Transaction Managers

(LTMs) for each participant site.

Database Systems

Differences in DB~

- Data models

(s truetures , cons traints , query 1anguages)

- System level support

(concurrency control, commit, recoveries)

Semantic heterogeneities

Operating System

- File systems

- Naming, file types., operations

_ Transaction support

- Interprocess communication

Hardware/System

- Instruction set
- Data formats and representation
- Configuration

c
o
M
M
U
N
I
C
A
T
I
o
N

Figure 1. TYPes Of Heterogeneities [SL90J

6. The Global Data Manager (GDM) of MDBK is used to determine

the location or locations of the data referenced by global

transactions. It manages the multidatabase schema which is

2

Global Transactions

MOBMS

MOBI<

GDM

"
GTM

Global ~
SuhtraIlsaction./

¥ ~,

Global
Suhtransaction

LTMl LTM2 LTMn

Loca.l Local Local
Transa.ction Transaction Transaction

" + ~, + ~, +
Local Local Local
Database Databa.se Database
System

. Syst.emSystem

"Local
Database

"Local
Database

"Local
Database

Figure 2. The Overall Architecture Of an MOBS [:Kim93]

integrated from each local database schema, and decomposes

global transactions into global subtransactions to distribute

to appropriate LDBS for execution. All operations of a

subtransaction access data managed by one LDBSi i.e., MDBK

3

does not directly manage any data other than the

multidatabase schema.

7. Functions of GTM is two-fold: Concurrency control (or

scheduling) to guarantee serialized execution of transactions

by controlling the execution of subtransactions, commitment

and recovery to achieve atomicity and durability of global

transactions in the presence of failures. It allocates one

Local Transaction Manager (LTM) for each of the sites

referenced by the global transaction.

8. The LTM is the remote component of the MDBMS which runs

directly on top of each LDBS. It receives operations of

subtransactions from the GTM, submits them to the LDBMS, and

sends the results to the GTM. Once an LTM is allocated, it is

not deallocated until the transaction commits or aborts. An

LTM has several responsibilities' with respect to the

execution of a global subtransaction.

· Initialize the execution of a global subtransaction at a

local site.

· Translate the global operations into the language of the

local DBMS for execution.

· Manage data transfer between the local DBMS and the GTM.

· Interface local DBMS commit and abort processing with MDBS

commit and abort processing.

9. Local DBMSs are not aware of each other, and if a local

transaction is submitted to a local DBMS then no other local

site is aware of that transaction. Local DBMSs behave as if

4

does not directly manage any data other than the

multidatabase schema.

7. Functions of G~ is two-fold: Concurrency control (or

scheduling) to guarantee serialized execution of transactions

by controlling the execution of subtransactions, commitment

and recovery to achieve atomicity and durability of global

transactions in the presence of failures. It allocates one

Local Transaction Manager (L~) for each of the sites

referenced by the global transaction.

8. The LTM is the remote component of the MDBMS which runs

directly on top of each LDBS. It receives operations of

subtransactions from the GTM, submits them to the LDBMS, and

sends the results to the GTM. Once an LTM is allocated, it is

not deallocated until the transaction commits or aborts. An

LTM has several responsibilities'with respect to the

execution of a global subtransaction.

· Initialize the execution of a global subtransaction at a

local site.

· Translate the global operations into the language of the

local DBMS for execution.

· Manage data transfer between the local DBMS and the GTM.

· Interface local DBMS commit and abort processing with MDBS

commit and abort processing.

9. Local DBMSs are not aware of each other, and if a local

transaction is submitted to a local DBMS then no other local

site is aware of that transaction. Local DBMSs behave as if

4

MDBS does not exist according to the concept of local

autonomy.

10. In order to ensure the correct behavior of the system,

the MDBS must be able to synchronize the execution of global

transactions with local ones. This is generally not possible

to achieve if arbitrary local transactions can be submitted

at local sites, since a local transaction may change a value

of replicated data item. To guard against such behavior the

MDBS must provide a concurrency control scheme and formulate

restrictions on the type of local transactions that can be

tolerated by the MDBS concurrency control scheme.

11. When a global transaction completes execution, the GTM

instructs the LTMs allocated to the transaction, to commit

the updates to the local databases. The MDBS uses a two-phase

commit protocol in communication with the LTMs to commit the

results of a global transaction. The MDBS does not require

any specific commit protocol to be supported by the local

DBMSs and assumes that any local DBMS is capable of properly

committing the results of local transactions. If a global

transaction is to be aborted, GTM instructs the LTMs to

rollback the updates to the local databases.

Following are the criteria followed by the MDBS model for

concurrency control.

1. The MDBS concurrency control mechanism guarantees a

serializable global transaction execution.

5

2. The Local Concurrency Control (LeC) mechanism(s)

guarantees a serializable local transaction execution.

3. No modifications are allowed to a local DBMS's software in

order to deal with a MDBS.

4. No direct communications exist between local DBMSs.

Scope

Information is a key source in the daily operations of

business, government, and academic organizations. Today,

organizational information is frequently represented in

computer databases. Due to the growing number of

sophisticated users and organizations, the sharing of

information resources increases. However, a multitude of

systems usually means multiple access methods and user

paradigms. Multidatabase systems g1ve users a common

interface to multiple databases, while minimizing the impact

on existing operations. To improve the response of such

system by allowing considerably large number of users access

the databases concurrently without affecting the autonomy of

component DBMSs is an important area of current research, as

evidenced by the number of projects in both academia and

industry. The trade press has also documented the need for

user friendly global information sharing. The next level of

computerization will be a distributed global systems that can

share information from all participating sites. MDBSs are a

key component of this advancing technology.

6

Objective

The objective of this thesis is to propose a method for

concurrency control in MDBSs to retain the autonomy of

component DBMSs, and serializability with an improved degree

of concurrency.

This thesis has been organized as follows. Definitions

of major terminologies used in the literature and literature

survey are presented in Chapter II. Algorithms for

concurrency control at various levels in the MDBS are

presented in Chapter III. Later, in Chapter IV proof for the

correctness of proposed method for concurrency control is

presented. Finally, we present the conclusion in Chapter v.

7

CHAPTER II

LITERATURE SURVEY

Definitions Of major terminologies

Transaction: User program which allows interaction with the

database [Ber87].

Scheduler: Program or a collection of programs that controls

the concurrent execution of transactions [Ber87].

Transaction Manager (TM): Responsible for the interaction

between the user and the transaction. It receives database

and transaction operations issued by transactions and

forwards them to the scheduler [Ber87].

Data Manager (DM): Responsible for the execution of various

transaction operations to be serializable and recoverable

[Ber87] .

Serial execution: For every pair of transactions, all of the

operations of one transaction execute before any of the

operations of the other [Ber87].

Conflicting operations: Two operations are said to be

conflicting if they both operate on the same data item and at

least one of them is a write. Two operations might conflict

each other directly or by another operation executed in

between, indirectly [Ber87].

8

Serializability: An execution is serializable if it produces

the same output and has the same effect on the database as

some serial execution of the same transactions [Ber87].

Atomicity: Either all operations of the transaction are

properly reflected or none are [SKS91].

Isolation: Each transaction assumes that it is executed alone

in the system and the local DBMS guarantees that intermediate

transaction results are hidden from other concurrently

executed transactions [SKS91].

Consistency: Execution of transaction in isolation preserves

the consistency of the database [SKS91].

Durability: The values changed by the transaction must

persist after the transaction successfully completes [SKS91].

Execution Order: The order that each operation is executed

[LE90] .

Serialization order: Partial order of all operations in the

execution [LE90].

Lock point: Time at which the transaction aquires locks for

all data it needs [LE90].

Serialization point: A distinguished action that determines

the execution order of the transaction in the schedule

[LE90] .

Prepared State: State of a transaction in which the

subtransaction finishes all of its read and computation

operations and has all of its updates stored in a stable

storage (such transaction is ready to commit or abort

according to a global decision) [LE90].

9

Past Work

Concurrency control in heterogeneous database systems

has been studied in the context of an organization in which

different departments are controlled by different DBMSs.

Concurrency control requirements in such DBMSs is different

from those in conventional homogeneous (distributed) database

systems. Because, in the former case component DBMSs involved

might be using different concurrency control techniques and

they are often autonomous. This autonomy of component DBMSs

is the key factor to be retained in maintaining global

serializability which is the correctness criterion adopted in

concurrency control techniques ..

The possibility of having heterogeneous database system

was thought of in mid 1980's and various problems involved

are addressed in later years. Data accessibility is important

for the successful operation of any corporation.

Historically, however it has been difficult for individuals

to locate & access data within different departments of their

own organization. In many cases, data within different

departments of their own organization is controlled by

different DBMSs. Some DBMSs are better suited for scientific

and engineering applications. Also, some DBMSs are used

simply because of personal preference. Therefore, accessing

data from different sources within a corporation usually

represents a difficult and specialized task. For these

10

reasons, research in the field to develop efficient method to

access existing heterogeneous databases, integrating

heterogeneous databases [Stan87], concurrency control in

distributed databases [Moon87] increased.

MULTIDATABASE (MDBS) is one of those systems which

provide a uniform, integrated interface for retrieving data

from preexisting, heterogeneous, distributed databases. This

allows the user to access data in multiple databases quickly

and easily. A MDBS is a distributed system that acts as a

front end to multiple, local DBMSs. The global system

provides full database functionality and interacts with local

DBMSs at their external user interface. The local DBMSs are

autonomous (site autonomy). Each site independently

determines what information it will share with the global

system, what global requests it will service, when it will

join MDBS and when it will stop participating in it. This

places a large burden on global DBAs. Because of independence

and the possibly large number of participating sites, global

requirements and desirable global optimization are likely to

conflict with local ones. The traditional concept of a

transaction as short lived and atomic is unsuited to the MDBS

environment. Because of local autonomy, global control does

not include control of the actual data items. This is the

factor which generates problems in concurrency control. MDBS

transactions are relatively long-lived and often non-atomic.

11

When a DBMS involves DBSs which are heterogeneous,

transaction processing among component DBSs takes vital

importance. To ensure consistency each transaction must

effectively run in isolation. This isolation can be achieved

by some means of concurrency control.

Serializability is the most widely used correctness

criterion in concurrency control. Autonomy has considerable

effects on global serializability. Concurrency control

schedules data access of concurrency control to be

serializable. However, this requires the knowledge of all

currently active transactions and the ability to control

access to data items which is not normally possible with

standard DBMSs. Moreover different local concurrency control

schemes are adopted by different DBMSs. The global system has

enough information to provide concurrency control for global

transactions, but it does not have information about local

transactions. Therefore, it can not provide total

concurrency. Various types of autonomy affected by global

transactions executed at local nodes are

• Design autonomy, refers to the ability of a component

DBMS to choose its own design criteria (main cause for

heterogeneity) .

• Communication autonomy, refers to the ability of a

component DBMS to decide whether to communicate with other

component DBMSs.

• Execution autonomy, refers to the ability of a

component DBMS to execute local operations without

12

interference from external operations ,and decide the order

in which to execute external operations .

• Association autonomy, refers to the ability of a

component DBMS to decide whether and how much to share its

functionality and resources with others.

Therefore, MDBS must provide correctness at global

level. For such approaches, the expectation is that the

applications that use an MDBS environment will provide

sufficient information to accurately specify the restrictions

that need to be placed on the global transactions so that

they can safely interact with concurrent autonomous local

executions.

The MDBS approach [LMR90] assumes that the user needs to

access multiple databases without the benefit of a global

schema. An autonomous database should have data definition

autonomy, including name independence, data duplication

autonomy, data restructuring autonomy at the logical and

physical level, and value type autonomy. This leads to a

situation wherein, data in different databases may be

redundant, and there might be discrepancies such as names,

data structures and value types. Due to the heterogeneity

involved, transaction processing among component database

systems takes a vital importance~ Desired autonomy and

consistency are to be maintained when component DBMSs are

forced to share a global database schema. This can be

achieved by some means of concurrency control.

13

Problems of heterogeneous database integration, the

principal user requirements together with implementation

requirements were identified. A general model of MDBS based

on a relational model was introduced [Stan87]. Effects of

restarting the transactions on Concurrency Control (CC) after

they are aborted due to invalid subtransactions were

identified [Moon87]. The concept of serializability as the

correctness criterion for CC was introduced [Wolf87]. The

behavior and performance of two different CC algorithms Two­

Phase Locking (2PL) and Commit Timed Version (CTV) were

analyzed. 2PL is a pessimistic approach whereas CTV is an

optimistic approach [NHE86]. Feasibility of HDDBMSs was

analyzed by comparing its features with other Distributed

Databases (DDBs) and a typical architecture for HDDBMS was

suggested [Oxb87].

The proliferation of different DBMSs and advances in

computer networking and communication led to increasing

HDDBMS scenarios. The possibility of providing integrated

access to the users in heterogeneous, distributed environment

was addressed and a model THE HD-DBMS was proposed. The major

approaches to data sharing and accessing from the primitive

commercial file and database load/unload, PC download to

common interfaces on top of existing DBMS were cited

[Card87] .

To maintain serializability, an order is imposed on the

execution of transactions. The complexity of strict

serializability was revisited [Ket87]. Mermaid, a front end

14

to distributed, heterogeneous databases was introduced. This

provides an integrated access to systems which differ in

technologies such as operating systems, networks etc. This

model was found to be less powerful in finding the source(s)

of errors and suggesting potential cures [Temp87].

The Amoco Distributed Database System (ADDS) is an MDBS

model. The CC requirements for the model were discussed and

several solutions were proposed [Thom87]. The algorithm

proposed was found to reduce concurrency in multiple

transaction execution. Several CC mechanisms proposed in next

few years were based on roll back and blocking operations.

The performance of these two operations of the concurrency

control mechanisms was analyzed and found that neither of

them is consistently better for all workloads, rather they

are workload sensitive [Kum87]. The feasibility of HDDBMSs

and the concepts of serializability and local autonomy are

discussed in the context of CC and the extent of strictness

for both concepts was suggested [ELHMRS87].

Research was conducted on the concept of locking to

introduce an improved method for CC and 2PL was found to be

the suitable locking technique for HDDBMSs [CM87]. Special

type of scheduler called cautious scheduler, which never

resorts to rollbacks for the purpose of CC was investigated.

This is based on the assumption that transactions predeclare

their read and write sets on their arrival [IKK88].

Algorithms for reducing rollbacks, tolerating higher degree

of conflict among transaction and allowing more concurrency

15

at the update phase are presented [BKh87]. These algorithms

were found to be unsuitable for MDBS environment since

rollback is not completely prevented and due to the

requirement of the pre declaration of read and write sets by

transactions.

A formal model of data update in MDBS environment was

developed and a theory of concurrency control in such

environment was presented [BS88a]. The author formulated a

correctness condition for CC mechanism and proposed a

protocol that allows concurrent execution of a set of global

transactions in presence of local ones. This protocol ensures

the consistency of MDBS and deadlock freedom and was proved

to be correct. But this does not exploit maximum concurrency

in MDBS environment.

The notion of heterogeneous databases has been

characterized as the inevitable consequence of replacing the

traditional data processing practice with modern database

management. The current problems and future issues connected

with the great proliferation and overwhelming use of HDBSs

and their DBMSs were articulated. A taxonomy of DBMS

solutions to the problems and issues of heterogeneous

databases was presented and future research work needed was

discussed based on the taxonomy [HK89].

Local autonomy of component database systems in HDDBMSs

has considerable effect on the Global Concurrency Control. In

order to provide a correct environment for global updates, in

concurrent execution of global transactions, Global

16

Concurrency Controller (GCC) must be provided. Several CC

protocols have been proposed [AGMS87] [SuS?] [BS88b] [EH88]

[PuSS]. None of these protocols estimated the depth of the

difficulty of problems. The difficulties in maintaining

serializability of global executions within the HDDBMS which

were found to be resulting from the differences between the

serialization orders and execution orders and autonomies of

local databases were considered. The difficulties in

designing Gec algorithms and the unsuitability of

serializability as the correctness criterion for Gee were

discussed. Also it was concluded that it is impossible to

design a good GCC algorithm which has a high degree of

concurrency and does not violate local autonomy, as long as

serializability is used as correctness criterion [DEL089].

The Gce algorithm used in superdatabases [Pu8S] was

found to be good for the hierarchical composition of HDDBSs

and also it provides high degree of concurrency. But the

autonomity of component DBMSs is not ensured. Distributed

cycle detection algorithm proposed [SuB?] provides high

degree of concurrency for global transactions. But it

violates local autonomy and execution autonomy.

A method for integrated CC and recovery, applicable to

heterogeneous multidatabase systems was proposed. A prototype

system called HERMES which is a MDBS to run global

transactions distributed over SYBASE and INGRES was proposed.

They assume that each LDBS adopts strict 2PL and The

responsibility for two-phase local commitment and recovery of

17

the prepared site at participants is taken over by an entity

called 2PC agent. A 2PC agent maintains a log in a separate

stable storage to monitor the status of subtransactions and

simulate 2PC in presence of LDBS failures. Main importance of

this method is in preserving global serializability in

presence of certain class of participant-related failures

[WV90l.

Hierarchical CC has been proposed as one possible

approach for MDBSs. A new GCC algorithm based on this

approach was presented. Global serializability is used as

correctness criterion for Gee. However, to apply this

approach some restrictions have to be imposed on the Lce

algorithms. In a hierarchical CC approach, LCCs control the

execution of local transactions and global subtransactions to

retain the serializability of local histories, while Gce

controls the execution of the global subtransactions to

maintain the compatibility of the subtransaction

serialization orders. Based on this property, the

hierarchical CC approach was formalized and its correctness

was proved [LE90l. However it was identified that the

hierarchical approach is not suitable for all MDBS

environments due to the restrictions imposed on LCCs. MDBSs

are also given the name interoperable database systems.

Interoperability of MDBSs was discussed to explain the need

for a centralized control of DBMS in heterogeneous

environment [LMR90l. To overcome the difficulties caused by

18

the differences due to the heterogeneity of component DBMSs,

a centralized control of DBMS was managed giving applications

the illusion of being the sole user of the data while

providing overall consistency, privacy and efficiency. Later

arose the need for shared access of data across these

multiple, autonomous databases. This needed an extension in

the techniques for CC to retain local autonomy of component

DBMSs when multiple transactions need to update same data in

the global schema representing all database systems.

Several HDDBMS models were introduced to provide an

effective means of sharing data in an organization with

diverse data systems. DATAPLEX is one of those HDDBMSs

developed by General Motors Research Laboratories. 2PL is

adopted as an approach to CC in this model. Subsequent

versions of this model were expected to provide the

capabilities of distributed update, multiple copy

synchronization etc. which are not available in the current

version [Chung90].

A method for reliable transaction management in MDBSs

was suggested and a scheduler algorithm which assures the

global database consistency was proposed. The scheduler uses

2PL method for CC. The scheduler has got no control over

local locks. However, keeps track of global transaction's

requests for local locks through the use of global lock

mechanism. Each global data item has a global lock associated

with it. This method has been proved to be correct in

maintaining consistency and local autonomy at the cost

19

of degree of concurrency [BST90].

A simulated 2PC and recovery algorithm based on MDB­

serializability as the correctness criterion was proposed

[Ba90]. In this method, the MDBK maintains a global log which

consists of GT termination log, GT active log, GST completion

log, Intermediate GST result log, and GST ready to commit

log. A STUB (which corresponds to a server) does not maintain

any log. It is assumed that an LDBS produces serializable and

strict histories. Since there is no log associated with STUB,

a STUB does not have any knowledge of subtransactions when

its underlying LOBS fails. It must connect to the MDBK to

receive operations of the subtransactions to be resubmitted.

If the MDBK has failed at this point, the LOBS must wait

until the MDBK recovers even though there may be no

subtransactions that must be resubmitted.

HYDRO is another model of HPDBMS proposed [PRR91]. This

adopted serializability as the correctness criterion for ce.

It was shown that global serializability and atomic commit

can be attained in a HDOBMS in which full local autonomy is

provided to the local DBMSs. This has been modeled for a

network environment. A local HYORO server for each autonomous

LDBS was introduced to support 2PC. Local transactions are

routed to a HYDRO server rather than submitted to an LOBS

directly. In general, however it is very difficult to

accomplish this because the server must provide the same LDBS

interface to all existing applications. They achieve atomic

commitment by simulating 2PC. A HYDRO server must keep the

20

before values of each update operations of a global

subtransaction in a log, which may not be easily attainable

when the operations are expressed in SQL.

Since preserving local autonomy is a crucial factor in

MOBSs, possibilities of violations of various types of

autonomies are discussed in developing a failure-resilient

transaction management system in MOBSs [SKS91] .It is however,

not possible to guarantee serializability in a MOBS using

conventional approach. Several seemingly different solutions

have been proposed using nested transactions paradigm. A

simple model which is used to develop a number of new MOBS

schedules using existing theories and concepts has been

proposed [Deac91].

Heterogeneous databases and serializable schedules are

contradictory in practice. Mechanisms that guarantee fully

serializable schedules impose strong constraints and they are

an overkill. Much simpler and unrestricted mechanisms can

provide the correctness that is needed [GM91].

Interdatabase dependencies in MOBS environment play an

important role in updating interdependent data. A new

correctness criterion, quasi-serializability for maintaining

transaction consistency in MOBSs was introduced [DEK91l. But

it was identified that not all aspects of transaction

consistency are ensured by this approach.

cc requirements in advanced database applications are

different from those in conventional database applications.

They need non-serializable support among the group of users

21

whose transactions are long lived and integrate CC. This led

to the relaxation of serializability [BKa91]. This increased

the efficiency of 2PL which is identified as the suitable cc

technique for HDDBMSs.

The notion of serializability has been traditionally

accepted as the correctness criterion in database systems.

However, in HDDBMS environment ensuring serializability is a

difficult task due to the desire· of preserving the local

autonomy of the participating local DBSs. A new correctness

criterion, two-level serializability (2LSR) introduced was

found to ensure serializability, but degree of concurrency is

reduced due to excessive constraints on concurrent execution

[MRBKS91] .

Although many researchers in distributed database area

perceive that the only practical way to construct a

distributed database system from already existing

heterogeneous database system is to integrate them by

guaranteeing local site autonomy, an efficient update

synchronization scheme has not been developed so far. A new

concurrency control scheme that guarantees both

serializability of concurrent execution and site autonomy for

HDDBMSs has been proposed [KM91]. The proposed CC scheme was

found to reduce the level of concurrency.

The problems in Multidatabase recovery were addressed.

To assure that multidatabase recovery preserves the

consistency of a multidatabase system, a multidatabase

recoverability requirement was introduced. i.e., only if each

22

LDBS produces strict and serializable history and the MDBK

can have an exclusive access to the LDBS after restart, but

before it becomes available for local users. Also, a recovery

mechanism that takes advantage of the local recovery in

participating database systems by minimizing the replication

of recovery tasks was described [Geo91].

In an MDBS environment, the traditional transaction

model has been found to be too restrictive. An extended

transaction model, in which some of the requirements of

transactions, such as isolation, atomicity etc. are relaxed

was proposed. To provide access to multiple heterogeneous

hardware or software systems, distributed operations language

(DOL) was used. This approach is based on providing common

communication and data exchange protocol and uses local

access manager to protect the autonomy of member software

systems [ARNS91]. Rigorous transaction management schemes are

introduced to achieve global serializability in MDBSs. These

schemes seem to preserve local autonomy and assure global

serializability, but the degree of concurrency is low, since

no two global transactions can be executed in the same two

LDBSs concurrently [Briet91].

As a number of diverse, heterogeneous types of DBMSs are

employed within single organization, the need to integrate

those systems is stringent to have an efficient and

transparent access to remote sites. The integrated access

control placed at the global data manager level in each site

is used as security enforcement in an HDDBMS [KM92].

23

An approach to schema integration in a HDDBMS design was

described in context of a prototype MOAS which acts as a

front-end to multiple local DBMSs which continue to perform

all local data management and processing [DP92].

Algorithms for scheduling of distributed transactions in

a heterogeneous multidatabase were presented. The algorithms

of prepare certification and commit certification protect

against serialization errors called global view distortion

and local view distortion. The main advantage of this method

as compared to other known solutions is that it is totally

decentralized [VW92].

The problems in ensuring atomicity of global

transactions in multidatabase environment were addressed. It

was shown that the atomicity requirement of global

transactions and the autonomy constraints on the design of

the MOBS software are mutually conflicting goals. A global

commit protocol that ensures atomicity without violating

autonomy of the local DBMSs was developed. The protocol needs

restrictions to be placed on the data items accessed by

global transactions, the execution of global transactions and

the requirements of local schedulers such that local

schedules are serializable in the MOBS view if the global

commit protocol is used to ensure atomicity of global

transactions [MRBKS92b].

Ticket based transaction management in Multidatabases

was introduced. Several different methods based on this

approach were proposed. In Optimistic Ticket Method (OTM) ,

24

direct conflicts between multidatabase transactions are

created at each LDBS to determine the relative serialization

order of their subtransactions. Conservative Ticket Method

(CTM) does not require global serialization testing and

eliminates global restarts due to failed validation. This

might allow a higher throughput than OTM. Implicit Ticket

Method (ITM) works only if the participating LDBSs disallow

schedules in which transaction execution and serialization

orders are not analogous. ITM can process any number of

transactions concurrently, even if they have conflicting and

concurrent subtransactions at multiple sites [GRS92].

A fully decentralized global concurrency control method

in which the concurrency control decision for controlling

global transactions can be made at each site, based on the

information that is locally available. This method uses a top

down approach to enforce the same serialization order at all

sites a global transaction is executed. This method uses

forced local conflicts to prevent unacceptable local

schedules while assuming deadlock free execution [BRG92].

An extension of traditional 2PL protocol for ce, a

deadlock detection technique based on the use of potential­

wait-for graph to detect deadlock among multidatabase

transactions, and a commitment protocol called a resubmit log

method for recovery from multidatabase transaction failures

and system failures were presented. Also, it was proved that

all these methods can be implemented without requiring any

changes to existing database systems [Kim93].

25

A framework for constructing analytical performance

models of concurrent B-tree algorithms. The models can

predict the response time and maximum throughput. Variety of

locking algorithms including naive lock-coupling, optimistic

descent, 2PL, and link-type (Lehman-Yao) algorithms are

analyzed. The analyses are validated by simulations of the

algorithms on actual B-trees, as well as by simulations done

by other researchers. Link-type algorithm was found to be the

best algorithm for B-tree concurrency control, allowing

levels of concurrency that are significantly higher than is

possible with the other algorithms. Such high levels of

concurrency are allowed because the only modified nodes that

are actually W-locked (write-lock) are the one that are

modified and because the locks are held for as short time as

possible. Also, recovery algorithms for a concurrent B-tree

used in a database are proposed. Naive recovery algorithm

holds locks on all nodes that are modified until the

transaction that issued the operation either commits or

aborts. The leaf-only recovery algorithm holds locks on the

leaf nodes and releases locks on the upper level nodes. The

analysis shows that leaf-only recovery algorithm is

significantly better than naive recovery algorithm. The

suitability of B-tree algorithms for MDBS environment is not

yet discussed [JS93].

26

CHAPTER III

ALGORITHMS FOR CC IN MOBS

Method

An additional level is introduced on the top of each

local DBMS in the basic MOBS model (Figure 2) so that all

transactions (local and global) are scheduled at this level.

The scheduling algorithm used at'this level is based on a

pure integrated scheduler which is a combination of Thomas's

Write Rule (TWR) and Timestamp ordering (TO). Timestamps

obtained by transactions reflect their serialization orders.

Figure 3. shows the MOBS model with an additional level

(Integrated Scheduler) .

Assumptions Made

1. No data in any LDB is replicated in any other LDB.

2. Single subtransaction per global transaction on an LOBS.

3. A transaction enters its Prepared State when it completes

the execution of its database operations and leaves this

state when it is committed or aborted.

4. Since total autonomy means lack of cooperation and

communication and hence total isolation, some less extreme

notions of LDBSs autonomy are proposed in the literature.

27

\.

:t-IlBK

Global
Subtrans a.ction

V
LTMl

Global Transactions

"
GDM

LTM2

Global
Subtransaction

LTMn

Local Local Loca.l
Transaction Transaction Transaction

I

~, ,~ ,~ ~, ,r +
Integrated Integrated Int.egrated
Scheduler Scheduler Scheduler

,r ,r ,~

Local Local Local
Database Database Database
System System. System

~~ "
~,

Local Local Local

Da.tabase Databa.se Databa.se

Figure 3. MDBS model with Integrated Scheduler

28

Requirements

Following are the requirements to be satisfied by the

proposed algorithm.

1. Autonomy of LDBSs

Implementation of an MDBS must not require any changes to

existing database, applications, and LDBS itself.

2. ACID property

The traditional properties of transactions, namely,

atomicity, consistency, isolation and durability must be

preserved.

3. Deadlock

The algorithm should be free from deadlock.

4. Serializability

The algorithm should produce serializable schedules.

Characteristics of the proposed method for CC in MDBS

1. By scheduling the global transactions such that their

execution order and the serialization order at each site are

identical, global serializability is assured.

{Serialization order and Execution order of two global

transactions executing at the same site might differ due to

29

an indirect serialization order introduced between the global

transactions by the local transactions at that site [Ber87].}

Global Concurrency Controller (GCC) can maintain a certain

serialization order by controlling the execution order of

global operations. Local Concurrency Controllers (Lees) in

each LDBMS maintain local serializability at the site, thus

guaranteeing identical serialization and execution orders.

2. By scheduling the operations belonging to local and global

transactions at the integrated level, unnecessary delay in

scheduling the transactions and unnecessary abortions of

transactions due to improper scheduling of local and global

transactions which results in nonserializable execution of

transactions are eliminated. Operations are either

immediately scheduled or rejected, thus improving the degree

of concurrency. The Number of aborted transactions is reduced

due to the scheduling mechanism used at the integrated level.

The operation is rejected only if it is a write (read) and

some other read (write) operation with greater timestamp has

already been scheduled.

3. Local autonomy of individual DBMSs is assured since the

addition of a integrated scheduler will not affect the

structure of existing DBMSs.

30

CC schemes used by the proposed method

Timestamp Ordering Rule (TO rule) [Ber87]

A TO scheduler orders conflicting operations according

to their timestamps. i.e., if Pi[X] and qj[X] are two

conflicting operations on data item X, belonging to

transactions Ti and Tj, then the DM processes Pi[X] before

qj[X] if and only if timestamp (Ti) < timestamp(Tj). If Pi[X]

arrives too late, it is rejected and Ti is aborted. When Ti

is resubmitted, it must be assigned a large timestamp, large

enough so that its operations are less likely to be rejected

during its second execution.

Thomas's Write Rule (TWR) [Ber87]

It is basically a Write-Write (WW) synchronizer. It

never rejects or delays any operations. When it receives a

write that has arrived too late insofar as the TO rule is

concerned, it simply ignores the write, but reports its

successful completion to the transaction manager. The

assumption made when this method is introduced is that,

processing a sequence of writes in timestamp order produces

the same result as processing the single write with maximum

timestamp, thus late operations can be ignored.

31

Pure Integrated Scheduler [Ber87]

A pure integrated scheduler is a combination of

timestamp Ordering (TO) for Read-Write (RW) synchronization

and Thomas's Write Rule (TWR) for Write-Write (WW)

synchronization. The main importance of this scheduler is

that, it avoids unnecessary rejection of writes. If Ti and Tj

are two transactions with confli~ting operations ri[x] and

Wj[X] or wi[X] and rj[X] or wi[X] and Wj[X] and ts{Ti) and

tS(Tj) are the timestamps assigned to transactions Ti and Tj

respectively, the scheduling is performed as follows.

1. It schedules ri[X] provided that for all Wj[X] that have

already scheduled, the condition tS(Ti»ts{Tj) is true.

Otherwise, it rejects ri[X].

2. It rejects wi[X] if it has already scheduled some rj[X]

with ts(Tj»ts(Ti). Otherwise, if it has scheduled some Wj[X]

with ts(Tj»tS(Ti), it ignores wi[X] (according to TWR).

Otherwise, it processes wi[X] normally.

Outline of transaction processing

1. The GTM decomposes every global transaction submitted into

as many global subtransactions as the number of sites in

which the transaction has to be executed, each of which

accesses only one LDB. The GTM maintains a global log to

record information about global transactions. The global log

is used in case of failure.

32

2. The Gee determines an order among the global transactions

so that their serialization orders are compatible in all

local sites they are executed, and allocates LTM to each

subtransaction in that order.

3. The LTM converts the global read/writes to the language

understandable by the local DBMS at that site and forwards

them to the integrated scheduler. Also, the LTM keeps a log

to record information about each subtransaction submitted,

along with the result of subtransaction execution which is

passed on to the GTM once the transaction in globally

committed after failure.

4. The integrated scheduler assigns unique timestamps to the

transactions submitted, schedules the transaction operations

based on the timestamp ordering, and forwards them to local

DBMS for processing.

5. The Lee at each local DBMS ensures local serializability.

6. A local transaction is allowed to commit in the normal'

fashion once its last operation is executed and, its effects

are made permanent.

7. A global subtransaction executed at the local site is

allowed to enter prepared-to-commit state after receiving

READY instruction from the GTM which acts as the coordinator

and remains in this state till the coordinator issues COMMIT

or ABORT instruction for global commit or abort.

Communication between the coordinator and local sites is

accomplished through the LTMs.

33

8. If an LDBS stops functioning, then all uncommitted

transactions at that site are aborted, MDBK is notified of

the site failure and the LDBS is restarted by getting a list

of global transactions whose subtransactions have entered

prepared-to-commit state, and not yet committed. All the

transactions in the list are committed and effects are made

permanent.

9. If the MDBK stops functioning all uncommitted global

transactions are marked as 'aborted', and 'ABORT' message is

sent to all servers allocated to global transactions to

cancel the effects of transaction execution in the LDBS.

Pseudocode for the GTM

do forever

begin

On receiving a global transaction do

begin

Assign a timestamp;

Decompose into subtransactions;

Allocate one LTM for each subtransaction if

available

else Add to the queue of subtransactions waiting

for LTM;

Record information about each subtransaction in the

log;

end

34

On receiving a message from one or more LTM(s) allocated

to a transaction do

begin

If message = 'SERIALIZED' then {Subtransaction

execution completed.}

begin

Check if the relative serialization order is

the same in all participating sites;

If yes, then

begin

Send 'READY' message to all LTMs

allocated to the transaction;

Record the message in the log;

Go to WAIT;

end

else

begin

Send 'ABORT' message to all LTMs

allocated to the transaction;

Record the message in the log;

Go to WAIT;

end

end

IF message = 'YES' from all LTMs allocated to the

transaction then {Transaction committed in all

participating sites within the time out period.}

35

begin

Send 'COMMIT' message to all LTMs allocated to

the transaction;

Go to WAIT;

end

else

If message='NO' from at least one LTM allocated to

the global transaction then {Transaction not yet

committed in at least one participating site within

a specified time period.}

begin

Send 'ABORT' message to all LTMs allocated to

the transaction;

Record the message in the log;

Go to WAIT;

end

If message = 'REJECT' then

begin

Send 'ABORT' message to all LTMs allocated to

the transaction;

Record the message in the log;

Go to WAIT;

end

WAIT: Wait for the message from LTMs

If message='COMMITTED' from all LTMs then

36

begin

Make the effects of transaction execution

permanent in the global database;

Record the message in the log;

Deallocate all LTMs allocated to the

transaction;

Allocate LTMs to the subtransactions waiting

on LTM;

end

If message = 'ABORTED'· from at least one LTM then

begin

Deallocate all LTMs allocated to the

transaction;

Add the transaction to the restart queue;

Allocate LTMs to the subtransactions waiting

on LTM;

Record information about new subtransactions

in the log;

end

If message = 'SITE FAILURE' from LDBS(s) then

begin

For all global transactions

Mark the subtransactions which have not voted

'YES' or 'NO' as aborted in the log;

Receive a list of transactions from the log

maintained by the LTMs;

37

Mark the transactions as 'committed' or

'aborted' in the log;

Build a new list of transactions to be

resubmitted;

Send the new list to the servers allocated;

end

If the MDBK stops functioning then

begin

For each global transaction Gi which did not

terminate

Mark the transaction as aborted in the log;

Send 'ABORT' message to all LTMs allocated;

end

end (do)

end (do forever}

Pseudocode for the LTM

do forever

begin

On receiving a subtransaction do

begin

Decompose the subtransaction into atomic operations

in the language understandable by the LDBMSsj

Enqueue the atomic operations to the queue of

operations to be scheduled at the integrated level;

end

38

On receiving a message from the LDBMSs or the integrated

scheduler or the GTM do

begin

If message = ('READY' or 'COMMIT' or 'ABORT') from

the GTM then

begin

Record the message in the log;

Forward the message to the LDBMS;

end

If message = ('SERIALIZED' or 'YES' or 'NO' or

'ABORTED' or 'REJECT') from the LDBMS or integrated

scheduler then

begin

Record the message in the log;

Forward the message to the GTM;

end

else

begin

If message = 'COMMITTED' then

begin

Record message and the result of

execution in the log;

Forward the message and result of

transaction execution to the GTM;

end

end

else

39

begin

If message = 'COMPLETE' from the integrated

scheduler then

begin

Mark the operation of corresponding

subtransaction as completed;

end

end

end (do)

end (do forever)

Algorithm for Integrated Scheduler

Data Structures used by the integrated scheduler

ARR_QUEUE[]: Queue of operations submitted to the integrated

level by the LTM. Each element in the queue is a structure of

two components TRANS_ID and OPe

TSARRAY[]: Array of timestamps assigned to various

transactions whose index is TRANS_ID.

UN_SCHED_QUEUE[]: Queue of operations belonging to various

transactions to be scheduled to execute at that site. Each

element in this queue is a structure of three components,

TRANS_ID, OP, and TS.

40

SCHED_QUEUE[]: Queue of operations belonging to various

transactions that are scheduled on the order of their

timestamps. Each element in this queue is a structure of

three components, TRANS_ID , OP, and TS.

OPER: Temporary structure variable with the same structure as

the elements of SCHED_QUEUE[].

REAR: Index to SCHED_QUEUE[], points to the rear end of the

queue.

MAX_SCHED_WR[X]: Maximum of all timestamps of the

transactions that are scheduled so far to write data item x.

MAX_SCHED_RD[X]: Maximum of all timestamps of the

transactions that are scheduled so far to read data item x.

RW_STATUS: Flag used for synchronization between two

synchronizer.

Procedure IntegratedSchedule(ARR_QUEUE[])

{The procedure IntegratedSchedule assigns a unique timestamp

to each of the transactions in the ARR_QUEUE[] when it

receives transaction's 'BEGIN' operation and schedules the

transaction operations such that their timestamp ordering

reflects their serialization order.}

41

Input Set of operations belonging to local transaction and

global subtransactions to be executed at that site.

Output Integrated schedule containing interleaved operations

belonging to local transaction and global subtransactions.

step 0

{Initialize data structures.}

I <- 0; J <- 0; MAX_SCHED_RD[X] <- 0; MAX_SCHED_WR[X] <­

0; SCHED_QUEUE <-0; UN_SCHED_QUEUE <-0; TSARRAY[] <- 0;

REAR <- 0;

step 1

{Dequeue transaction operations, assign timestamp, and

enqueue them for scheduling.}

while notempty(ARR_QUEUE[])

begin

If OP(ARR_QUEUE[J]} = 'BEGIN' then

TSARRAY(TRANS_ID(ARR_QUEUE[J])) <- timestamp;

OP{OPER) <- OP(ARR_QUEUE[J];

TRANS ID(OPER} <- TRANS_ID(ARR_QUEUE[J]);

TS(OPER) <- TSARRAY[TRANS_ID(ARR_QUEUE[J]];

UN_SCHED_QUEUE[I] <- OPER;

I <- 1+1;

J <- J+l;

end (while)

42

step 2

{Take a transaction operation from the head of the

queue, read the timestamp, and schedule accordingly.}

I <- 0;

while notempty(UN_SCHED_QUEUE[])

begin

OPER <- UN_SCHED_QUEUE{I];

If OP(OPER) = 'WR[X]' then

begin

WW_SYNCHRONIZER(OPER) ;

end

else

begin

If OP(OPER) = 'RD[X]' then

begin

RW_SYNCHRONIZER(OPER);

end

else

begin

If (OP(OPER) = 'BEGIN'} OR (OP(OPER) =

'END') OR (OP(OPER) = 'COMMIT') OR

(OP(OPER) = 'ABORT'} then

begin

SCHEDULE (OPER) ;

end

end

43

end

I <- 1+1;

end (while)

Procedure WW_SYNCHRON1ZER(OPER) [Ber87]

{call Read_Write synchronizer to decide whether the operation

has to be rejected, ignored or scheduled to maintain

consistency.}

RW_STATUS <- RW_SYNCHRONIZER(OPER)

If not(RW_STATUS} then

begin

REJECT (OPER) i

end

else

begin

If (TS(OPER) < MAX_SCHED_WR[X]) then

begin

IGNORE (OPER) ;

end

else

begin

SCHEDULE (OPER) ;

end

end

44

Procedure RW_SYNCHRONIZER{OPER) [Ber87]

{If the timestamp of the write operation to be scheduled is

greater than the maximum of all timestamps of operations

scheduled so far to read data item X, then set RW_STATUS to

TRUE, otherwise set to FALSE.}

If (OP(OPER) = 'WR[X] ') then

begin

If TS(OPER) > MAX_SCHED_RD[X] then

begin

RW_STATUS <- TRUE;

end

else

begin

RW_STATUS <- FALSE;

end

RETURN(RW_STATUS);

end

else

begin

{The read operation is scheduled if its timestamp

is greater than the maximum of all time stamps of

transactions scheduled so far to write data item X,

otherwise it is rejected.}

If TS(OPER) > MAX_SCHED_WR[X] then

begin

SCHEDULE(OPER);

4S

end

else

begin

REJECT (OPER) ;

end

end

PROCEDURE SCHEDULE (OPER)

{The procedure SCHEDULE (OPER) schedules the database and

transaction operation and enqueues to SCHED_QUEUE[].}

IF OP(OPER) -- 'RD[X] I then

begin

MAX_SCHED_RD[X] <- TS{OPER);

end

else

begin

IF OP(OPER} -- 'WR[X] I then

begin

MAX_SCHED_WR[X] <- TS(OPER);

end

end

SCHED_QUEUE[REAR] <- OPER;

REAR <- REAR + 1;

46

PROCEDURE REJECT(OPER)

{The procedure REJECT (OPER) is called when an operation

arrives late. This procedure cancels the effects of the

transaction execution and places the transaction on the

restart queue for re submission.}

IF the operation belongs to local transaction the

begin

Send 'REJECT' message to the LDBMS to cancel the

effects of the operations belonging to that

transaction;

Mark the transaction TRANS_ID(OPER) as aborted;

end

else

begin

Send 'REJECT' message to the LTM allocated to

TRANS_ID{OPER) and to the LDBMS at the site;

end

PROCEDURE IGNORE (OPER)

{The procedure IGNORE (OPER) is called when an operation is

arrived late and it is a WRITE. This procedure notifies the

completion of the operation to the concerned transaction

manager without actually performing the operation.}

IF the operation belongs to a local transaction then

begin

47

Notify the LDBMS about the completion of operation

without actually forwarding it to the data manager;

end

else

begin

Send 'COMPLETE' message to the LTM;

{Notify the LTM allocated to that transaction about

the completion of late operation.}

end

Pseudocode for transaction processing in LDBMS

do forever

begin

On receiving an integrated schedule from the integrated

scheduler do

begin

pick the operation at the head of the queue

containing operations scheduled for processing;

Check if there is a conflicting operation that has

already been dispatched for processing and not yet

completed;

If yes, wait for the acknowledgment from the DM for

the completion of conflicting operation;

Dispatch the operation to the DM for processing;

end

48

On processing the last operation of a transaction do

begin

If the operation belongs to a local transaction

then

begin

Make the effects of transaction execution

permanent in the local database;

Commit the transaction and report the

transaction manager at the site about the

completion of transaction;

end

else

begin

Allow the transaction to enter the 'prepared­

to-commit' statej

Send 'SERIALIZED' message to the GTM through

LTMj

Go to WAIT;

end

end

On receiving a message from the LTM or the integrated

scheduler do

begin

If message = 'REJECT' then

begin

If operation rejected belongs to local

transaction then

49

begin

Cancel the effects of transaction

execution;

Add the transaction to the restart queue

at the site;

end

else

begin

Cancel the effects of subtransaction

execution;

Mark the transaction as aborted;

end

end

If message = 'READY' then

begin

Check if the subtransaction has entered the

'prepared-to-cornmit' state;

If yes, then

begin

Send 'YES' message to the LTM;

Go to WAIT;

end

else

begin

Send 'NO' message to the LTMj

Go to WAIT;

so

end

end

WAIT: Wait for the message from the GTM;

If message = 'COMMIT' then

begin

Make the effects of transaction execution

permanent in the local database;

Forward the results of transaction execution

and the message 'COMMITTED' to the LTM;

end

If message = 'ABORT' then

begin

Cancel the effects of subtransaction execution

in the local database;

Send 'ABORTED' message to the LTM;

end

end (do)

If LDBS fails then

begin

Abort the uncommitted local transactions and

subtransactions;

Notify MDBK of the failure;

Send a list of transactions which have voted 'YES'

and not yet committed to the MDBK;

Get a list of transactions to be resubmitted from

the MDBK;

Commit the transactions in the list received;

51

Send 'COMMITTED' message to the GTM along with the

result of execution;

end

end (do forever)

52

CHAPTER IV

PROOF OF CORRECTNESS

Under the assumption that the LCCs ensure local

serializability at the site, it can be shown that the

proposed algorithm for integrated scheduler ensures

serializability, local autonomy, and provide improved degree

of concurrency. Correctness of the proposed algorithm is

discussed in the following section.

Definition 1 A history H is serializable if and only if the

serialization graph SG(H) of the committed projection of any

prefix of H is acyclic.

Theorem 1 The algorithm enforces serializability.

Proof Let 9i and gj be the subtransactions of global

transactions Gi and Gj respectively and L be the local

transaction at site Dk. Suppose that all three transactions

conflict. Since every transaction is assigned a timestamp at

the integrated level, the following timestamp orders are

possible:

ts(9i) < ts(gj) < ts(L)

ts(gj) < ts(9i) < ts(L)

ts(9i) < ts(L) < ts(gj)

ts(L) < ts(9i) < ts(gj)

S3

ts(L) < ts(gj) < ts{gi)

ts(gj) < ts{L) < ts(9i)

However, all the above timestamp orderings might produce

serializable schedules, provided none of the operations

belonging to a transaction arrives later than its assigned

timestamp, in which case it is rejected. That is, the

transaction will not be in the committed projection of

history H.

To show now that gi is serialized before gj and so on

depending on the timestamp ordering, it is sufficient to

point out that the time stamp assigned to a transaction gi

first and then to gj create a direct conflict 9i -> gj

between 9i and gj. This direct conflict forces 9i and gj to

be serialized according to the order in which timestamps are

assigned to them. Since the operations belonging to local and

global transactions are treated in the same way in

scheduling, i.e., scheduled according to their assigned

timestamps, no indirect orders introduced between global

transactions due to local transactions. Since timestamps

assigned to transactions are unique, there can not be

conflicts of the type 9i -> gj and gj -> 9i which might

create a cycle in the committed projection of the history

produced by the scheduler· Since the serialization graph does

not contain a cycle, the history representing the schedule is

serializable. Hence the possibility of the execution becoming

non-serializable is eliminated. .

54

To maintain global consistency, the algorithm ensures

that each global transaction will have some relative

serialization order in their corresponding LDBSs. Since the

relative serialization order of the subtransactions at each

LDBS is reflected in the value of the time stamps, the

algorithm allows the subtransactions of each global

transaction to proceed but commit only if their relative

serialization orders are compatible in all participating

sites.

Definition 2 Autonomy of LDBSs is maintained if the

implementation of an MDBS does not require any changes to

existing database schema, database applications, and the

database itself.

Theorem 2 The algorithm preserves autonomy of component

LDBss.

Proof The LDBSs are not required to inform the Gee about the

local transactions executed at the local sites. MOBSs

transactions are scheduled by getting information about which

sites contain the data items to be accessed by the global

transactions, and unaware of the· local transactions.

• No modification in the existing LDBMS is demanded by MOBS

transactions.

• The MOBS does not require any specific commit protocol to

be supported LDBMSs and assumes that any local DBMS is

capable of properly committing the results of local

55

transactions. If a global transaction is to be aborted, GTM

instructs the LTM to rollback the updates to the local

database using global 2PC protocol.

Definition 3 An algorithm is said to be deadlock free if

there is no cycle contained in the serialization graph of the

committed projection of any history produced by the

algorithm.

Theorem 3 The algorithm is deadlock free.

Proof From theorem{l), there can not be conflicts of the

type 9i -> gj and gj -> 9i because of timestamp ordering.

Therefore, there can not be a situation in which one

transaction is blocking other transactions from accessing a

data item while requesting to access some other data item

which might lead to deadlock. Hence the proof.

Degree of concurrency is improved by the proposed method due

to the following reasons:

· Transactions submitted to the integrated scheduler are

either immediately scheduled or rejected.

· More than one MDBS transaction is allowed to execute at a

site concurrently.

· Number of aborting transactions is reduced by scheduling

local and global transactions at the integrated level by

using pure integrated scheduler, which avoids the possibility

of indirect orders between global transactions.

S6

In order to ensure the atomicity and durability

properties of transactions, recoyery mechanisms are used in

the MDBS environment. 2PC protocol is used for global

commitment of global transactions. Before entering the

prepared to commit state, global subtransactions are made to

store the effects of execution in a non-volatile storage

called write-ahead log [Kim93]. The log is used to make the

updates permanent in LDBSs, after the local site is recovered

from failure.

57

CHAPTER V

SUMMARY AND FUTURE WORK

A List of major approaches to CC in MDBS

Algorithm Global Execution Local Degree Of
Correctness Autonomy Concurrency

1. Altruistic Not
locking guaranteed Preserved Low
alg.

2 . GCC protocol
based on site Guaranteed Preserved Low
graphs

3 . optimistic Not
alg. guaranteed Preserved Low

4. Hierarchical
alg. Guaranteed Preserved Low

5 . GCC alg. Not
used in Super Guaranteed preserved High
databases

6 . Quasi- Guaranteed Preserved Low
Serializability

7 . Distributed Guaranteed Not
cycle detection preserved High
alg.

a. Ticket based Not

approach Guaranteed Preserved Analyzed

9 . Proposed Guaranteed Preserved High

method

S8

S~a~

Multidatabases are one of the very active database

research areas. The 1990 National Science Foundation (USA)

workshop on future directions in DBMS research named the area

of MOBS as one of the two most important research areas for

the 90's. The problem of managing heterogeneous, distributed

databases is becoming an increasingly difficult problem due

to an ever increasing number of different DBMSs utilized in

many corporations. Many retrieve-only MOBSs have been

developed that attempt to provide a tool for managing

heterogeneous distributed data sources.

Maintaining database consistency is of critical

importance for user acceptance of a MDBS. Therefore it is

imperative to develop methods that do not require major

modifications to existing DBMS software, but are able to

support users data in a consistent and reliable manner.

A multidatabase concurrency control algorithm, based on

"Integrated Scheduler" concurrency control mechanism is

proposed as a solution for the problem of indirect orders

between global transactions due to local transaction, still

preserving local autonomy and ensuring global

serializability.

The proposed method maintains global database

consistency in presence of global and local transactions. The

degree of concurrency is improved since more than one

multidatabase transaction is allowed to execute concurrently

59

in an LDBS. It ensures serializability by maintaining

analogous serialization and execution orders of transactions

and by maintaining relative serialization orders of global

transactions at all sites they execute. Also, local autonomy

is retained since MDBS transactions do not demand for the

modification in LDBMS structure or software.

Future Work

Global transaction recovery is one of the requirements

that has to be satisfied by any CC protocol in MDBS

environment. This problem has to be given vital importance

since the recovery actions of the local DBMSs are outside the

control of rnultidatabase system. Further investigation is

needed in this area.

The suitability of concurrent B-tree algorithms for

concurrency control and recovery in MDBS environment should

be discussed to increase the degree of concurrency further.

Most research to date has focused on how to run

transactions in a heterogeneous environment, but we also need

to evaluate the cost of transaction processing. For instance,

how much more expensive will it be to run transactions when

each site runs a different concurrency control protocol.

60

BIBLIOGRAPHY

[AGMS87] R. Alonso, H. Garcia-Molina, and K. Salem:

"Concurrency control and recovery for global procedures in

federated database systems," A quarterly bulletin of the

computer society of IEEE technical committee on data

engineering, September 1987, PP.5-11.

[ARNS91l M. Ansari, M. Rusinkiewiez, L. Ness, A. Sheth:

"Executing multidatabase transactions," Proceedings of the

twenty-fifth Hawaii International conference on system

Sciences, IEEE Computer Society Press 1991, Vol 2., PP.335-

46.

[Ba90l K. Barker: "Transaction management in Multidatabase

systems," Ph.D. dissertation technical report, TR 90-23,

Department of computing science, University of Alberta,

Alberta, CA 1990.

~i[BKa91l N. S. Barghouti and G.E.,Kaiser: "Concurrency control

in advanced database applications," ACM Computing Surveys,

Vol. 23, No.3, September 1991, PP.269-317.

[BKh87] M.A. Bassiouni, U. Khamare: "Algorithms for reducing

rollbacks in concurrency control by certification,"

BIT (Denmark) , Vol. 27, No.4, 1987, PP.442-57.

[BRG92] R. Batra, M. Rusinkiewicz, and D. Georgakopololls: "A

decentralized deadlock-free concurrency control method for

61

MOBS transactions," Proceedings of the 12th International

Conference On Distributed Computing Systems, June 1992.

J [Ber87] Bernstein, Philip A.: "CQncurrency Control and

recovery in database systems," Addison-Wesley Pub, 1987.

[BGRS91] Y. Brietbart, D. Georgakopoulos, M. Rusinkiewicz, A.

Siberschatz: "On Rigorous Transaction Scheduling," IEEE

transactions on software engineering, Vol. 17, No.9,

September 1991, PP.954-60.

[BS88a] Y. Brietbart, and A. Silberschatz: ~Multidatabase

update issues", Proceedings of ACM SIGMOD International

Conference on management of data, Vol, 17, No.3, September

1988, PP.135-42.

[BS88b] Y. Brietbart and A. Silberschatz: "Multidatabase

systems with a decentralized concurrency control scheme,"

IEEE Distributed Proc. Technical Committee Newsletter, 1988,

Vol. 10, No.2, PP.35-41.

[BST90] Y. Brietbart, A. Silberschatz, G.R. Thompson:

~Reliable transaction management in a multidatabase system,"

Proceedings of ACM SIGMOD International conference on

management of data, 1990, PP.215-224.

[CardS7] A.F. Cardenas: "Heterogeneous distributed database

management: The HD-DBMS,n Proceedings of the IEEE, Vol. 75,

No.5, May 1987, PP.588-99.

[Chung90] C.W. Chung: ~DATAPLEX, an access to HDDBS,n

Communications of the ACM, Jan 1990, Vol. 33, No.1, PP.70-

80.

62

[eMS?] A. Croker, J. Manage: "Improvements in database

concurrency control in locking," Information Systems, Vol. 4
1

No.2, Fall 1987, PP.74-92.

[Deac91] A. Deacon: "Concurrency control mechanisms for

multidatabase systems," Proceedings of the sixth southern

African Co~uter symposium, July 1991, PP. 118-34.

[DP92] B.e Desai, R. Pollock: "On schema integration in a

HDDBMS," Information and Software Technology, Vol. 34, Jan

1992, PP.28-42.

[DEK91] W. DU, A.K. Elmagarmid, W. Kim: "Maintaining

transaction consistency in mutidatabases using quasi­

serializable execution," Proceedings of the seventh

international conference on data engineering, 1991, PP.360-7.

[DEL089] W. Du, A.K. Elmagarmid, Y. Leu, S.D. Ostermann:

"Effects of local autonomy on global concurrency control in

HDDBSs," Proceedings of the Second International Conference

on data and knowledge systems for manufacturing and

engineering(IEEE), October 1989, PP.113-20.

[EHa8] A. Elmagarmid and A. Helal: "Supporting updates in

heterogeneous database systems," IEEE Proceedings of the

fourth international Conference on data engineering.,

February 1988/ PP.564-569.

[ELHMRS87] A. Elmagarmid, W. Litwin, S. Heiler, R. McCord, M.

Rusinkiewicz, A.P. Sheth: "When will we have true

heterogeneous databases," Proceedings of 1987 Fall Joint

Conference PP.746-53.

63

[GM91] H. Garcia-Molina: "Global consistency constraints

considered harmful for heterogeneous database systems,· First

International workshop on interoperability of multidatabases,

IEEE Comput. Soc. Press 1991, PP. 248-50.

[Geo90] D. Georgakopoulos: "Transaction management in

multidatabase systems," Ph.D Thesis, University of Houston,

Department of computer science, 1990.

[Geo91] D. Georgakopoulos: "Multidatabase recoverability and

recovery," Proceedings of the first international workshop on

interoperability in multidatabase systems, 1991.

[GR89] D. Georgakopoulos, M. Rusinkiewicz: "Transaction

management in multidatabase systems," Technical report UH-CS-

89-20, Department of computer science, University of Houston,

September 1989.

[GRS92] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth:

"Using ticket-based methods to enforce the serializability of

MOBS transactions," IEEE Transactions On Data And Knowledge
~

Engineering, February 1992.

[HK89] D.K. Hsiau, M.N. Kamel: "Heterogeneous databases,"

IEEE transactions on knowledge data engineering, Vol. 1, No.

I, March 1989, PP.45-62.

[IKK88] T. Ibaraki, T. Kameda, N. Katoh: "Cautious

transaction schedulers for database concurrency control,"

IEEE transactions on software engineering, Vol. 14, No.7,

July 1988, PP.997-1009.

64

[JS93] T. Johnson, D. Shasha: ~The performance of current B­

Tree algorithms," ACM Transactions On Database Systems, Vol.

18, No.1, March 1993.

[KM92] S. Kang, S.C. Moon: "An integrated access control in

HDDBSs," Eighteenth EUROMICRO Symposium on microprocessing

and microprogramming, September 1992, Vol. 35, No. 1-5, PP.

429-36.

[Ket87] U. Ketter: "The complexity of strict serializability

revisited," Information Process Letter(Netherlands), Vol. 25,

No.6, July 1987, PP.407-11.

[Kim93] P.C.Kim: "Concurrency control and recovery in

multidatabase systems," Technical report, Korea Advanced

Institute Of Science and Technology, Department of computer

science, S.Korea, April 1993.

[KM91] Y. S. Kim, s.c. Moon: "Update synchronization pursuing

site autonomy in HDDBS," Seventeenth EUROMICRO Symposium on

microprocessing and microprogramming, September 1991, Vol.

34, No. 1-5, PP.41-44.

[Kum87] V. Kumar: "An analysis of the roll-back and blocking

operations of three concurrency control mechanisms," AFIPS

Confernece proceedings, Vol 56, June 1987, PP.485-97.

[LE90l Y. Leu and A.K. Elmagarmid: "A hierarchical approach
'----------_.--
to concurrency control in Multidatabases, " IEEE transactions

on database systems, 1990, PP.20?-10.

[LMR90] W. Litwin, L. Mark, N. Roussopoulos:

"Interoperability of multiple autonomous databases," ACM

6S

transactions on computing surveys, Vol. 22, No.3, September

1990, PP.267-293.

[MRBKS92a] S. Mehrotra, R. Rastogi, Y. Breitbart, H.F. Korth,
...--....-,,--,,.,~.,. ' ~

A. Silberschatz: "The concurrency control problem in

multidatabases, characteristics and solutions,R Proceedings

of ACM SIGMOD international conference on management of

data, 1992, PP.288-97.

[MRBKS92b] S. Mehrotra, R. Rastogi, Y. Breitbart, H.F. Korth,

A. Silberschatz: "Ensuring transaction atomicity in

multidatabase systems," Technical report, Department of

computer science, University of Texas at Austin, 1992.

[MRKS91] S. Mehrotra, R. Rastogi, H.F. Korth, A.

Silberschatz: "Non- Serializable executions in heterogeneous

distributed database systems," Proceedings of the first

International Conference on parallel and distributed

information systems, IEEE Computer Society Press 1991,

PP.245-52.

[Moon8?] s.c. Moon: "Performance of 2PL schemes in DDBSs,"

Software and Hardware applications of microcomputers,

Proceedings of the ISMM Internat~onal symposium, Fort

Collins, CO, USA, Februa~ 1987, pp.B4-7.

[NHE86] M.H. Nagi, A.A. Helal, A.K. Elmagarmid: "Optimistic
...-,...._-_._----..--.--.

Vs Pessimistic Concurrency Control Algorithm,n Proceedings of

international conference on parallel processing, St. Charles,

IL, USA, August 1986, PP.131-B.

66

[Oxb87] E.A. Oxborrow: "Distributing a database across a

network of different database systems,· IEE colloquium on

distributed database system, Apr 1987, PP.5/2-5/7.

[PPR91] w. Perrizo, J. Rajkumar, P. Ram: "HYDRO,

Heterogeneous Distributed Database Systems,N Proceedings of

ACM SIGMOD International Conference on management of data,

1991, PP.32-39.

[PuBB] C. Pu: "Superdatabases for composition of

heterogeneous databases," IEEE Proceedings of the fourth

international Conference on data engineering, 1988, PP.548­

555.

[SKS91] N. Soparkar, H.F. Korth, A. Silberschatz: "Failure

resilient transaction management in rnultidatabases," IEEE

Computer, December 1991, PP.28-36.

[SL90] A. Sheth and J. Larsen: "Federated database systems

for managing heterogeneous, and ~utonomous databases, " ACM

Computing Surveys, Vol. 22, No.3, September 1990, PP.183-

230.

[Stan87] W. Staniszkiz: "Integrating Heterogeneous Database,"

State of the art report, 1987, pp.229-47.

[SuB7] K. Sugihara: "Concurrency control on distributed cycle

detection," Proceedings of the IEEE international Conference

on data engineering, 1987, PP.267-274.

[Temp87] M. Templeton: "MERMAID - A front end to distributed

heterogeneous databases," Proceedings of the IEEE, Vol. 75,

No.5, May 1987, PP.695-707.

67

[Thom8?] G.R. Thompson: "Concurrency Control in Multibases,·

Thesis, OSU, Department of computer science, 1987.

[VW92] J. Veijalainen and A. Wolski: "Prepare and Commit

certification for decentralized transaction management in

rigorous heterogeneous multidatabases," Proceedings Of the

International Conference on Data Engineering, February 1992,

PP.470-479.

[Wolf87] o. Wolfson: "Concurrent Execution Of Transaction,·

Information Process Letter(Netherlands), Vol. 24, No.2,

January 1987, PP.87-93.

[WV90] A. Wolski and J. Veijalainen: "2PC agent method,"

Proceedings of PARBASE-90 conference, Februa~ 1990, PP.321-

30.

68

VITA

KALPANA HALLEGERE CHIKKANNA

Candidate for the Degree of

Master Of Science

Thesis: CONCURRENCY CONTROL IN MULTIDATABASES

Major Field: Computer Science

Biographical:

Personal Data: Born in Karnataka State, India, On May
20, 1967, the daughter of Chikkanna Hallegere and
Lalitha.

Education: Graduated from Vijaya High School, Karnataka
State, India in May 1982 and received a Pre­
University degree in Science and Mathematics from
Government College, Karnataka State, India in June
1984; received a Bachelor of Engineering degree in
Computer Science and Engineering from Mysore
University in December 1988. Completed the
requirement for the Master of Science degree with a
major in Computer Science at Oklahoma State
University in May 1994.

Experience: Teaching assistant, Department of Computer
Science, A.I.T., Mysore University, India, December
1988 to January 1990; Teaching assistant, Department
of Computer Science, J.C.I.T, Bangalore University,
India, February 1990 to July 1991; Teaching
assistant, Department of Computer Science, P.E.S.C.E,
Mysore University, India, August 1991 to December
1991; Programmer, Oklahoma Department of
Environmental Quality, Summer 1993; Technician,
University Computer Center, Oklahoma State
University, March 1992 to Present.

Professional Memberships: Member of Indian Society of
Technical Education.

	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	006.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	022.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif
	055.tif
	056.tif
	057.tif
	058.tif
	059.tif
	060.tif
	061.tif
	062.tif
	063.tif
	064.tif
	065.tif
	066.tif
	067.tif
	068.tif
	069.tif
	070.tif
	071.tif
	072.tif
	073.tif
	074.tif
	075.tif
	076.tif

