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CHAPTER I 

INTRODUCTION 

Several methods are available for the study of the energy band 

structure of diamond-type crystals. Virtually all methods employ cer-

tain approximations to reduce the number and type of terms involved in 

the crystal potential. A common approximation is often used, the 

single-particl~ approximation, in which it is assumed that each particle 

-+ 
experiences some sort of average field, V(r), produced by all the other 

particles in the crystal. The equation to be solved is the Schroedinger 

equation, H$n = En$n' where $ is the wavefunction, E is the energy, and 

H is the Hamiltonian, which takes the form 

H (1) 

the units used being Hartree atomic units (Appendix A). A further ap-

proximation is often used, the Born-Oppenheimer approximation, in which 

it is assumed that the nuclei are fixed at the lattice points of the 

crystal, which considerably reduces the magnitude of the problem. A 

direct result of the fixed lattice of atoms and the corresponding trans-· 

lational symmetry is the Bloch condition. If$('t) is the wave function, 

then 

-+ -+ 
$ (r + R) 

-+ -+ -+ 
exp (ik ·R) $ (:t') (2) 

1 
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where R is a lattice vector of the Bravais lattice and k is a wave vec-

tor associated with the wave function. 

Within these approximations, there has been considerable interest 

in attempting to describe the valence bands of diamond in terms of 

bonding molecular orbitals (1) (2) (3) (4). A successful description 

of crystalline properties in terms of molecular orbitals would demon-

strate the compatibility of these two apparently different pictures, al-

though this compatibility is often dismissed as unrealistic (5) . The 

bond energy between two carbon atoms in a diamond crystal should not be 

expected to differ greatly from the high bond energy between carbon 

atoms in molecules (6). The extremely large bulk modulus of the diamond 

crystal indicates that the electronic bonds are not easily deformed, and 

retain their molecular character even within the crystal. Such a molec-

ular description of crystals, where valid, provides a natural method for 

dealing with a large variety of crystal defects. A systematic, abinitio 

treatment of the valence bands of diamond using bonding molecular orbi-

tals in a manner permitting direct comparison to more conventional 

methods is highly desirable. 

One choice for the method to be used, the method of orthogonalized 

plane waves (OPW) , has been used successfully in band str·ucture calcula-

tions (7) (8). In this method, the basis set consists of plane waves 

constructed to approximate the nearly free outer electrons. The plane 

waves are made orthogonal to the atomic-like core states. This method 

puts no severe restrictions on the nature of the potential, works well 

for materials with well-defined core states, and the basis set portrays 

the delocalized nature of the electrons. The method of OPW is relative-

+ 
ly fast for high symmetry points of the wave vector, k, but has very 
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slow plane wave convergence for points of low symmetry. The secular 

equation is usually quite large, especially in crystals like diamond 

with so much structure to analyze in terms of plane waves. 

Another method, the method of augmented plane waves (APW), has 

also been used successfully to treat the diamond lattice (9) • This 

method uses as its basis functions ato~ic-like orbitals within spheres 

centered about each atomic site, and plane waves in the regions between 

spheres. As in OPW, this basis set portrays the delocalized nature of 

the electrons. The method of APW is quite accurate for points of high 

symmetry, and there is no limitation on the number of core states. How-

ever, t~e muffin-tin potential, in which the potential has an atomic-

like character within the spheres and a constant value in the intersti-

tial regions, is virtually the only choice for the crystal potential in 

this method. For crystals like diamond with highly non-spherical atomic 

environments, a muffin-tin potential is unrealistic. 

The method of tight-binding, or linear combination of atomic orbi-

tals (LCAO) , has enjoyed wide success in a large variety of problems 

(10) (11) (12) (13) (14). This method works well for molecules, and so 

should work even better for infinite crystals where boundary problems 

are no drawback. The effect of delocalized electrons is produced by the 

overlap between atomic orbitals. In the method of ·LCAO, Bloch sums are 

constructed to be of the form 

-+ -+ 
b(k,r) 

-+ -+ -+ -+ 
· ~ exp ( ik · R) cp ( r - R) 

where the cp are atomic-like wave functions and the R are synimetry 
\) 

translations of the lattice. That these Bloch sums satisfy the Bloch 

(3) 
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condition of Equation (2) is easily demonstrated. The method of LCAO 

is conceptually satisfying in that the basis set reflects the physical 

nature of the crystal. The secular equations are smaller than OPW even 

at low symmetry points. Using a muffin-tin potential, LCAO is just as 

accurate as APW, yet is not as restricted in the choice of potential 

(12). Furthermore, LCAO does not need to rely on artificially construct­

ed plane waves in the interstitial regions. The only major drawback to 

LCAO has been the necessity of evaluating many multi-center integrals, 

and this complication has been removed by recent numerical techniques 

(10) (11). 

To use either OPW or APW to examine the bonding orbital descrip­

tion would require projection techniques to project out the functions 

which would describe the molecular orbitals. Since LCAO is a very suc­

cessful model and since it is easily adapted to molecular orbital basis 

functions, the method of LCAO has been used to examine the valence bands 

of diamond in terms of bonding molecular orbitals. 



CHAPTER II 

DIAMOND LATTICE 

The atoms in a pure diamond crystal are located at the lattice 

pciints of two interpenetrating face-centered cubic (fee) Bravais 

lattices. The axes of these lattices, referred to as sublattice ohe 

and sublattice two, are parallel, and sublattice two is displaced from 

sublattice one by a distance of one fourth the cube diagonal along the 

body diagonal. Let a0 be the lattice constant for diamond. The basis 

vectors for the fee lattice can then be written as 

-+ a (1,1,0)/2 a 
1 0 

-+ 

a2 :::: a0 (1,0,1)/2 (4) 

-+ 
a0 (o,l,l)/2 a3 . 

Now let the origin of the coordinate system be chosen midway between 

-+ -+ 
two neighboring carbon atoms in opposite sublattices. Vectors t 1 and t 2 

are defined such that 

t 
1 

-+ 
- t 2 = - a (1,1,1)/8 . 

0 . 
(5) 

Then the position of any carbon atom can be described by a vector 

-+ 
v = (v1 , v2 , v 3) which determines the lattice point, and by an index i 

which determines the sublattice. That is, there is a carbon atom at all 

positions 

5 
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+ + 
R + t. 

+ + 
~ + t. ( 6) 

v J.. v J.. 

where i = 1,2 and v., j = 1,2,3, take on all integer values for an in­
J 

finite crystal. The cubic cell of the fee lattice is not a primitive 

. unit cell; that is, the cubic cell contains more than one lattice point. 

The primitive unit cell for the fee lattice may take on many forms, but 

the cell which best displays the symmetry of the lattice points is the 

Wigner-Seitz cell. The boundaries of the Wigner-Seitz unit cell are 

+ 
the planes which bisect perpendicularly the lattice vectors Rv· The 

volume centered on a lattice point and enclosed by these planes is a 

dodecahedron, and is the Wigner-Seitz unit cell for the fee lattice. 

There are two carbon atoms per primitive unit cell, the volume of which 

3 
is Q = a0 /4. 

It will be useful at this time to define the reciprocal lattice for 

diamond. The reciprocal lattice basis vectors are defined as 

21T (+a + ) 2 x a3 
= 

+ + 2TI(a x a ) 
+ 3 l (7) b2 = + + + 

a1 • (a2 x a 3) 

+ + 21T (a x a 2) 
+ l 
b3 = + + + a · (a x a ) 

1 2 3 

+ 
and using the explicit form for ai for the fee lattice given in Equation 

(4) , 
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-+ 
b 1 2TI(l,l,-l)/a0 

= 2TI(l,-l,l)/a0 (8) 

-+ 
b 3 2TI(-l,l,l)/a0 . 

These are simply the basis vectors for a body-centered cubic (bee) 

-+ -+ 
Bravais lattice. Note that a.·b. = 2Tio ..• 

1 J 1, J 
-+ 

analogous to the vector R in direct space: 
\) 

-+ 
A vector K is defined 

µ 

where theµ., j = 1,2,3, take on all integer values. The set of all 
J 

-+ 

(9) 

points Kµ constitutes the reciprocal lattice. A translation of the re-

-+ 
ciprocal lattice by K µ leaves the reciprocal lattice invariant.· Note 

-+ -+ 
also that exp (iKµ • R) = 1 for all values of µ,v. 

The first Brillouin zone for the diamond crystal is defined as the 

. Wigner-Seitz primitive unit cell for the bee reciprocal lattice. This 

3 
unit cell is a truncated octahedron with volume (2TI) /~. There are N 

+ 
discrete values of the wave vector k within the Brillouin zone, where N 

is the number of unit cells in the crystal. As the size of the diamond 

+ 
crystal approaches an infinite crystal, k becomes continuous rather than 

discrete. 



CHAPTER III 

CRYSTAL POTENTIAL 

In choosing a specific form for the crystal potential, the first 

consideration is that it have the periodicity of the Bravais lattice: 

+ + -+ 
V(r + R) V(r) (10) 

Any function with the periodicity of the crystal can be expressed as a 

Fourier series, and since the origin has been chosen such that inver-

sion symmetry exists, the Fourier expansion can be written 

or inversely, 

-+ 
V(K ) 

µ 

+ + + + 
V(r) = I: V(K )cos(K ·r) 

µ µ µ 

-1 + -+ + + 
= (NQ) JNQ V(r)cos(Kµ·r)dr 

(11) 

(12) 

Now we express the crystal potential as a superposition of func-

+ tions V (r) centered about the positions of the carbon nuclei: 
at 

+ 
V (r) 

+ + + 
[ I: V (r - R - t.) 
v i at v 1 

Equations 12 and 13 can be combined to give 

V(K ) 
µ 

8 

(13) 

(14) 
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+ 
In considering a form for the function Vat(r), the motivation is to ap-

proximate the crystal potential by a sum of free-atom potentials. This 

model is called the overlapping atomic potential (OAP) model, and uses 

the Slater approximation for exchange on each atomic charge separately 

(15) (16) • We write 

where 

+ 
V (r) 
at 

coul(+) 
vat r =_~+~TI f~ p(r')r' 2dr' + 47T !; p(r')r'dr' 

exc(+) 
vat r 3 [3p(r)/TI]l/3 • 

2 

(15) 

(16) 

The absolute value free-atom electronic charge density p(r) is obtained 

from the Hartree-Fock self-consistent field (SCF) solutions for the 

ground state of carbon, (ls) 2 (2s) 2 (2p) 2 , from Jucys (17), using the re~ 

lationship 

47TO (r) 

Now the Fourier coefficients can be written as 

where 

+ 
V(K ) 

µ 

-87T + + -1 00 = ~- cos(K ·t ) {Z - K J0 Q(r)sin(K r)dr 
nK2 µ 1 µ µ 

µ 

(1 7) 

(18) 



Q(r) 

D(r) 

4up (r) 

3r [ 3p(r)/7r]l/3 
2 

10 

and where Q and E are approximated by a non-linear least-squares curve 

fit of exponential-type terms, and the integrals in Equation 18 are 

evaluated as in Woodruff (16) . The choice of the ground state of car-

2 2 2 2 3 
ban, (ls) (2s) (2p) , rather than the valence state, (ls) (2s) (2p) , 

was made to facilitate comparison with the results of earlier papers, 

as was the choice of a 0 = 6.728 (8) (12). 



CHAPTER IV 

LINEAR COMBINATION OF ATOMIC ORBITALS 

As the name implies, the Bloch sums of Equation 3 used in the LCAO 

method are constructed from atomic wave functions. The specific choice 

for the wave functions is the Hartree-Fock SCF atomic wave functions ob-

5 
tained by fitting the tabulated functions of Jucys (18) for the S state 

2 3 
of the (ls) (2s) (2p) configuration. The results, from Chaney, Lin, and 

Lafon (12) ai-e 

+ 
cp 1s(r) = 1.79382 exp(-8.33500r) + 6.00411 exp(-5.28343r) 

+ 
<l>2s (r) 1.71115 exp(-5.11268r) - l.28779r exp(-l.70623r) (19). 

+ 
cj> 2 (r) = x{l.69606 exp(-2.64212r) + 0.840266 exp(-l.28884r)}. 

PX 

and similarly for cj> 2 (t) and cj> 2 (1). The five Bloch sums correspond-
. Py pz 

ing to a= ls, 2s, 2p, 2p, and 2p are constructed for each sublattice 
x y . z 

(i = 1,2): 

i++ 
b (k,r) 

(l 
= N-~ E exp(ik·R ) <I> (t - R 

v v (l v 
+ 

- t.) 
1 

Now a trial wave function is chosen of the form 

++ 
tjJ (k,r) 

n 
+ i++ 

= E E en . (k) b. (k,r) 
a i a,1 a 

11 

(20) 

(21) 
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This w will satisfy the Bloch condition since the {bi} do. We form 
n a 

the function 

-+ 
w{cn ck)} 

*-+-+ -+-+-+ 
J w (k,r) Hw (k,r) dr 

n n 
(22) 

-+ 
and demand that the {Cn(k)} be chosen variationally such that 

-+ -+ 
a W{Cn(k)} = 0 for all a,i (23) 

n -+ a c . (k) 
a,1 +n c 

The secular equation which must be solved is 

-+ 
[H(k) - E (k)S(k)] Cn(k) = 0 , 

n 
(24) 

where the first term in Equation 24 is a square matrix (10 x 10) and the 

second term is the vector of variational coefficients. Equation 24gives 

rise to the 10 x 10 secular equation 

I -+ -+ -+ 
H(k) - En(k)S(k) I 0 ( 25) 

where 

I' I-+ i*-+-+ i' -+-+ -+ 
Ha'~ (k) J b (k,r) H b I (k,r) dr 
a, i a a 

(26) 

1 •I-+ ·* i' -+-+ -+ Sa,~ (k) l. -+ -+ 
= J ba (k,r) ba, (k,r) dr 

a' l. 

and where the one-electron Hamiltonian is of the form given in Equation 

2. The secular equation has been solved, with the resultant band struc-
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ture shown in Figure 1. Note that the effect of the choice of the trial 

wave function in Equation 21 essentially forces the electrons within 

this model to participate only in atomic-type orbitals. 
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CHAPTER V 

LINEAR COMBINATION OF BONDING ORBITALS 

As an alternative to the LCAO method, construct linear combinations 

of molecular orbitals (LCMO) which convey the character of the strong 

bonding between nearest neighbors in the diamond lattice. First we con-

struct the hybridized orbitals 

-+ l 
[Y<j>2s(;) 

-+ -+ -+ 
nlll (r) + <P2p (r) + <P2 (r) + <P2 (r)] 2 Py Pz x 

-+ l -+ -+ -+ -+ 
n1II(r) 2 [Y<P2s(r) + <P2p (r) <P2p (r) <P2p (r) J 

x y z 
( 27) 

-+ l [Y<P (±') (l) (1) (t) J n- -(r) <P2p + <P <P 2p 111 2 2s 2p 
x y z 

-+ l 
[ycp2s 

-+ -+ -+ 
+<P2 (;)] n-- (r) 2 

(r) - <P2p (r) <P2p (r) 
111 x y Pz 

for each atom in the first sublattice, and 

-+ -+ 
n---(r) nlll (-r) 111 

-+ -+ n- (r) n --(-r) 
111 111 

(28) 

-+ -+ 
nlil (r) n11I(-r) 

-+ -+ 
nlli (r) n-- (-r) 

111 

15 
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for each atom in the second sublattice. The hybridization constant, Y, 

is included to examine the effect of altering the strong overlap pro-

ducing the bonding charge in the tetrahedral directions. 

Bloch sums can then be constructed using these hybridized orbitals. 

The Bloch sums so created are defined by 

+ -+ -+ -!.:! -+ -+ 
[cpls 

-+ -+ t) (i: -+ - t )] b;(k,r) N l: exp (ik· R ) (r - R ± cpls - R 
\) \) \) 1 \) 2 

+ -+ -+ -!.:! -+ -+ r -+ -+ -+ -+ -+ - t )] bi(k,r) N 2:: exp (ik · R) Lnu1 Cr - R - tl) ± s n---(r - R 
\) \) 1 lll \) 2 

+ -+ -+ -~ -+ -+ 
[n --(-; -

-+ -+ -+ -+ -+ 
b; (k, r) N l: exp (ik· R ) R - t ) ± s2nlll (r - RV - t2) J ( 29) 

\) \) lll \) 1 

+ -+ -+ -!.:! -+ -+ -+ -+ -+ -+ -+ -+ 
b;(k,r) N l: exp (ik· R ) [n- -(r - R - t ) ± s3nlll (r - R - t )] 

\) \) lll \) 1 \) 2 

b± (lt, f) -~ l: exp(ik·R ) [n-- c± - R: - t) ± -+ - R: - t )] N s n -(r 
4 \) \) lll \) 1 4 lll \) 2 

where 

and where 

-+ 

Rl (O,O,O) 

-+ 

R2 (O,l,l)a0 /2 ( 30) 

-+ 
R3 (l,O,l)a0 /2 

-+ 
R4 (l,l,O)a0 /2 . 

The b± are the core states and must be included for the core orthogonal-
0 

ization required by this variational approach. + The b . , i = 1 , 2, 3, 4, are 
1. 
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the bonding combinations of the hybridized valence orbitals, while the 

-b. are the antibonding combinations. The E. must be included as aphase 
i i 

factor since the atomic site iri the second sublattice in Equation 29 is 

usually not in the same unit cell as the atomic site in the first sub-

lattice. 

The set of Bloch sums in Equation 29 span the same space identical-

ly as the Bloch sums of Equation 20; the energy eigenvalues are the same 

regardless of the basis set used in the secular equation. The eigen-

functions are also the same (or span the same subspace in the case of 
+ 
n 

degenerate eigenvalues) although the coefficients C differ according to 

the different basis set. The new trial wave function is 

ijJ ot,t) 
n 

n ~ + + + 
L: L: C (k) b-:- (k,r) 
j ± j,± , J 

(31) 

and the new 10 x 10 secular equation differs only in the basis set used. 

For the reasons just stated, there is no need to actually solve this 

secular equation. 

The problem of interest here, of course, is the effect on the band 

structure of including only Bloch sums of bonding combinations, plus the 

Bloch sums of core states for core orthogonalization. This set of Bloch 

sums will span only a subspace of the space spanned by all combinations 

of Bloch sums given in Equation 29. This reduced number of Bloch sums, 

and the trial wavefunction formed from this subset, effectively restricts 

the valence electrons to participation only in bonding molecular orbi-

tals. Naturally, a 40% reduction ~n the size of the basis set yields 

less information about the band structure. The size of the secular equa-

tion for this linear combination of bonding orbitals (LCBO) for diamond 



18 

reduces from 10 x 10 complex to 6 x 6 complex, the solution of which in-

valves a complex matrix formulation (Appendix B) . The energy eigen-

values obtained in the solution to this secular equation give an upper 

bound (due to the variational method used) to the energies, within the 

formalism of the model under discussion. There is no guarantee that the 

upper bounds obtained are upper bounds to the valence band energies. 

The irreducible representations of the group of the wave vector, using 

the notation of Bouckaert, Smoluchowski, and Wigner (19), are given in 

Table I for some high symmetry points and lines in the Brillouin zone 

(20). Using this table and the transformation properties of the basis 

set, some predictions can be made concerning the energy levels at these 

symmetry points and lines. Look for example at.the energies at the X 

point. If the bonding combinations included no x4 symmetry, no informa­

tion would be obtained about the energy level at x4 in LCBO. Similarly, 

if the bonding combinations included x3 symmetry, the energy levels ob­

tained by LCBO would be an upper bound to the energy level at x3 in the 

conduction band. The energy level at x1 in the valence band will almost 

certainly rise from the LCAO approach to the LCBO approach, since mixing 

between valence and conduction bands is possible. It is therefore pos-

sible to obtain poor results at the X point. In fact, this is not the 

case. The results of the solution of the 6 x 6 secular equation are 

shown in Figure 2 for Y 1. The effect of Y on the energy levels of 

high symmetry points in the Brillouin zone is shown in Table II, along 

with the results for the 10 x 10 LCAO secular equation for comparison. 

The amount by which the various points and lines are raised by omission 

of the antibonding combinations is an 'indication of the degree of break-

down of the molecular description. Notice that the level of the X point . 4 
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Figure 2. Valence Band of Diamond Obtained From a Linear Com­
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TABLE II 

TABULAR COMPARISON OF LCAO AND LCBO CALCULATIONS OF THE VALENCE BAND 
OF DIAMOND FOR SEVERAL CHOICES OF THE HYBRIDIZATION 

PARAMETER (ENERGIES IN a.u.) 

LCAO LCBO LCBO LCBO 
y= 1 y = .995 y = .90 

-1. 2434 -1. 2434 -1. 2434 -1. 2434 

r25• -0.5028 -0.5028 -0.5028 -0.5028 

xl -0.9379 -0.9315 -0.9313 -0.9284 

x4 -0.7073 -0.7073 -0.7073 -0.7073 

L2' -1.0516 -1.0452 -1.0451 -1. 0423 

Ll -0.9273 -0.9251 -0.9251 -0.9240 

L4 -0.5980 -0.5980 -0.5980 -0.5980 
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is unchanged, implying that the antibonding combinations, which were 

omitted, did not include X symmetry. Although the X point did raise 
4 l 

somewhat, the difference is quite small. The bonding molecular orbital 

description is obviously quite good in the case of diamond. 

Notice that the hybridization parameter of l gives equal or lower 

values for the energies than the other choices of Y. Since for a par-

ticular model, the variational method yields an upper bound for the 

energy, the lower energies corresponding to Y = l imply more accurate 

energies. This corresponds to sp 3 hybridization. 

Note also that the variation between LCAO and LCBO valence band 

structure is very small, and in some instances there is no discrepancy 

at all. Very little information about the valence band of diamond is 

omitted by neglecting antibonding combinations. 



CHAPTER VI 

CONCLUSION 

The excellent agreement between LCAO and LCBO for the valence band 

of diamond is compelling evidence for the bonding molecular orbital 

description in this model. It is apparent that for diamond, with a very 

open structure due to strong tetrahedral bonding, the valence electrons 

indeed occupy primarily hybridized molecular bondong orbitals in a pure 

crystal. Moreover, within this model, the optimum bonding orbitals are 

constructed from sp3 hybridized orbitals. This concept provides a 

straight-forward mechanism for treating a wide variety of problems where 

the molecular bonds maintain their identity to a great extent in the 

crystal structure. It is evident that poor ~esults for this molecular 

orbital picture in the past were caused, not by a breakdown in the physi­

cal concept, but by poor mathematical approximations. 
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Unit of length 

Unit of charge 

Unit of mass 

Unit of angular 

Unit of energy 

APPENDIX A 

HARTREE ATOMIC UNITS 

momentum 

The Bohr radius for a fixed 
nucleus H-atom 

The charge on an electron 

The mass of an electron 

h/(2TI) 

Twice the ionization energy for 
a fixed nucleus H-atom (21) 
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APPENDIX B 

TREATMENT OF COMPLEX MATRICES 

One result of this research has been the development of methods to 

handle certain computations of complex matrices, specifically a method 

to find the inverse of a complex matrix, and a method to determine the 

eigenvalues and eigenvectors of a complex Hermitian matrix. '!'he approach 

used is to analyze these matrices in terms of real matrices rather than 

develop new programs to handle complex matrices. These methods use a 

real matrix with four times the storage requirements of the original 

complex matrix, but have the advantage that they may be used easily on 

a computer with no complex number facilities. 

We write the n x n complex Hermitian matrix, C, as a sum of two 

n x n real matrices, one containing the real part of C and the other 

containing the imaginary part of C: 

c R + iI . 

Now we form a real matrix, 2n x 2n, of the form 

x (~) 

(1) 

(2) 

The eigenvalues and eigenvectors of C, as well as the inverse of C, may 

be computed by performing analogous manipulations of the real matrix X. 

Note that if C is Hermitian, that is, if C+ = C, then from Equation 1, 
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which implies that · 

. T 
iI R + iI 

R 

-I 

Equation 4 indicates that X is a symmetric matrix. 

The inverse of C is written as 

-1 c R' + iI' 

Combining Equations 1 and 5: 

which means that 

-1 
c c (R' + iI') (R + iI) 

(R'R - I'I) + i(R'I + I'R) 

R'R - I'I 1 

R'I + I'R 0 
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(3) 

(4) 

(5) 

(6) 

(7) 

where l is the identity matrix and O is the null matrix. Now we form 

the matrix Y: 

y (R_'~) 
~ 

and form the produce YX, using Equations 2 and 8. 

~'R 

\I 'R + R 'I 

I'I -R'I - I'R) 
-I'I + R'R 

(8) 

(9) 
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and using Equation 7, the product YX can be written 

YX 1 (10) 

The matrix Y is the inverse of X; since X has one and only one inverse, 

-1 y = x Therefore, to find the inverse of C: 

- The real matrix X is formed according to Equation 2. 

- The inverse of Xis determined, call it Y. 

The matrices R' and I' are determined from Y using Equation 8. 

-1 
- The matrix C is formed using Equation 5. 

To determine the eigenvalues and eigenvectors of C, the following 

eigenvalue equation must be solved: 

-+ 

-+ c u 
n 

A li (11) 
n n 

where un and An are the associated eigenfunctions and eigenvectors. The 

related secular equation which must be solved is 

le - ul 0 

-+ 
First decompose u into its real and imaginary parts, 

n 

-+ +R . -+I 
U = U + 1U 

n n n 

and substituting Equation 1 into Equation 11, 

c li 
n 

-+R +I) . ( +I +R (Ru - run + 1 Run + Iun) n 
-+ 

AU n 
A-+R +I 

u + iAun n 

(12) 

(13) 

(14) 



30 

That is, 

+R +I 1.\iR Ru Iu = 
n n n 

(15) 

+I +R +I 
Ru + Iu AU 

n n n 

Equation 15 can be written in matrix notation as 

(16) 

This corresponds to a secular equation of the form 

Ix - nj 0 (17) 

Therefore, to find the eigenvalues and associated eigenfunctions of C: 

- The real matrix X is formed as in Equation 2. 

- The eigenvalues and associated eigenfunctions of X are determined, 

using the secular Equation 17. Note that the eigenvalues of X 

must be doubly degenerate with respect to the eigenvalues of C, 

since C is of order n while X is of order 2n. Because C is 

Hermitian, its eigenvalues are real .• 

- The eigenvectors of C are formed using Equations 13 and 16. 
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