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Abstract

The 3–dimensional space which renders a Out(Fn) action is M = ]n(S2 × S1). The

relation between M and Out(Fn) is that the latter is isomorphic to the mapping class

group of M up to rotations about 2-spheres in M .

Associated to M is a rich algebraic structure coming from the essential 2–spheres

that M contains. Inspired by this and combining the work of Whitehead with that of

Laudenbach, Hatcher in the paper [15] defined the notion of normal form with respect

to a fixed sphere system and proved the existence of normal representatives of spheres

in a given isotopy class of spheres in M . This is a local notion of minimal intersection

of a sphere system with respect to a maximal sphere system in M .

In this work, a notion of being normal for tori in ]n(S2 × S1) is defined. This

notion is crucial to determine minimality of intersections between tori and between

spheres and tori. We prove two theorems regarding existence and uniqueness of nor-

mal representatives in a given homotopy class of tori. Then we define criteria for

minimal intersection in a local sense and prove that a normal representative from a

given homotopy class of tori satisfies it.

Just as there is a 1-1 correspondence between the equivalence classes of free split-

tings of the free group and the isotopy classes of embedded essential spheres in M , we

prove that there is a 1-1 correspondence between the equivalence classes of Z– split-

tings of Fn and homotopy classes of embedded essential tori in M . This gives us the

x



opportunity to understand Dehn twist automorphisms of the free group, since they are

defined with respect to Z– splittings. To this end, we define Dehn twist along a torus

in M using the mapping classes of M and describe these twists with respect to their

actions on the universal cover of M .

In addition, we give the motivation behind this work by stating possible applica-

tions and reasons for the importance of studying tori in this manifold.
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Chapter 1

Introduction

1.1 Study on Out(Fn)

The study of the group of outer automorphisms Out(Fn) of the free group Fn on n

letters is closely related to the study of the spaces on which it acts. One such space

is Culler-Vogtmann space, or “Outer Space”. It was first introduced by Culler and

Vogtmann in [8] and it is based on regarding Fn as the fundamental group of a graph.

Another such space is obtained from a 3–manifold, M = ]n(S2 × S1) , the con-

nected sum of n copies of S2 × S1. The fundamental group of M is also Fn and

Out(Fn) acts on the sphere complex, which is a simplicial complex whose simplices

correspond to systems of 2–spheres in M . Hatcher and Vogtmann used the sphere

complex to prove a homological stability property of Aut(Fn) in [16].

Hatcher in the paper [15] defined the notion of normal form for a sphere with

respect to a fixed sphere system and proved the existence of normal representatives

of spheres in a given isotopy class of spheres in M . This leads to arguments about

intersection numbers and minimal intersection conditions of these spheres and a corre-

spondence between the free splittings of the free group Fn and the embedded spheres
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in M , as in [12].

In [12] Gadgil and Pandit stated and proved a geometric and algebraic intersection

number argument for the sphere complex of M , which again provides information

about the nature of the splittings of Fn and hence of the complex of free factors related

to these splittings. A relation between the simplicial automorphism group of the graph

of free splittings of Fn and Out(Fn) given by using sphere complex ofM can be found

in [2].

All this previous work on M suggest that, due to the 3–dimensional topological

nature of this manifold, it is expected that algebraic problems concerning Out(Fn)

could be understood as topological-geometric problems and then could be solved using

3–dimensional topology techniques. The main concern of this work is contributing to

this translation in the following ways.

• We will study embedded essential tori in M . This gives us a geometric interpre-

tation of intersections of certain non-free group splittings and one might hope

that it could be extended to other group splittings. Moreover, following Hatcher,

we will define a notion of a normal form for a torus in M , and prove that such

a representative exists fairly uniquely in a given homotopy class. We then show

that this representative is the geodesic representative analogue of a curve on a

surface, it provides minimal intersection with the spheres in the maximal sphere

system, which is a pants decomposition analogue.

• As a part of our goal of understanding Out(Fn) topologically, we will define

Dehn twists along a torus in M and relate them to Dehn twist automorphisms of

Out(Fn).

• (Conjecture on an analogue of Thurston’s theorem)
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Thurston in [32] says that, in a group generated by two Dehn twists about two

filling curves on a closed surface S with genus g ≥ 2, the groups generated by

twists with powers greater than a finite number N = N(S) is free of rank 2.

Adapting this theorem to Out(Fn) to find rank 2 free groups, Clay and Pettet

in [7] used an algebraic definition of a Dehn twist automorphism relative to a

Z–splitting of the free group and obtained a number N for the minimum power

of twists, yet this number N depended on the choice of the twists.

To find a number N which is independent of the choice of Dehn twists, it is

necessary to leave the 1–dimensional model for Out(Fn) since the dependence

was due to the necessity for picking a basis of Fn in the proof. The conjecture

is that by working on M and looking at Dehn twists along normal tori instead of

Dehn twist automorphisms, similar theorem to Thurston’s might be stated and

in this case a uniform value for N could be achieved.

1.2 The Outline of the Thesis

• We begin in Chapter 2 with the different descriptions of the manifold M =

]n(S2 × S1) and the definition of Out(Fn). We then define the elements of

the mapping class group MCG(M) of M explicitly. This is the first step in

understanding why M is a model for Out(Fn).

• In Chapter 3, we continue translating the algebraic concepts related to the free

group into objects in M on which we can work with 3–dimensional topological

techniques. To this end, we give the correspondences between the splittings of

the free group and homotopy classes of two basic surfaces in M : non-trivial

spheres and non-trivial tori.
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• In Chapter 4, the notion of normal form for a torus in M is defined. Then we

give there theorem which guarantees the existence of a normal representative in

a given homotopy class of tori in M .

• Chapter 5 gives the combinatorial description of a lift of a torus by corresponding

it to a graph called the decorated graph. Such description of the lifts using the

spheres of a given maximal sphere system and the transverse orientation is a

crucial ingredient of the proof of the uniqueness theorem in Chapter 6.

• In Chapter 6 the notion of being unique for normal representatives is given. Then

it is shown that a normal representative uniquely exists in a given homotopy

class of tori. This chapter also contains the corollay of exictence and uniqueness

theorems, which states that a normal representative is the one which intersects

the spheres, in particular the spheres in any given maximal sphere system in M

minimally.

• In Chapter 7, we investigate tori in M which are intersecting each other non-

trivially. We define Dehn twist along a torus in M and describe the effect of

a twist on intersection circles for different types of intersections between tori

in M . We also look at the pictures in the universal cover of M . We focus

on a particular type of intersection, which corresponds to a pair of hyperbolic-

hyperbolic Z– splittings of Fn. Dehn twist along a torus is used to interpret

Dehn twist automorphisms of Fn and hence the groups generated by two such

Dehn twist automorphisms. The conjecture here is that the group generated

by two Dehn twist automorphisms given by a hyperbolic-hyperbolic pair of Z–

splittings of Fn gives a free group, after we apply the twist a uniform number of

times.
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Chapter 2

Out(Fn) and the Mapping Class

Group of M = ]n(S
2 × S1)

Let M be connected sum of n copies of S2 × S1, denoted by ]n(S2 × S1). In this

chapter, we will give different descriptions of M and introduce its mapping class

group MCG(M) and mapping classes. After this, we will give the connection between

MCG(M) and Out(Fn).

2.1 Different Descriptions of M

One way to describe M is to remove the interiors of 2n disjoint 3-balls B+
1 , B

−
1 , . . . ,

B+
n , B

−
n from S3 and identify the resulting 2-sphere boundary components in pairs by

orientation-reversing diffeomorphisms. See Figure 2.1.

One can define M using the definition of connected sum as follows: We remove n

3–ballsB1, B2, . . . , Bn from S3, and one 3-ball from each of n corresponding S2×S1.

Then we attach one S2×S1− int(B) in place of each removed 3–ballB fromM along

the remaining 2–sphere boundaries with an orientation reversing homeomorphism.
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Σ−1

S3

Σ−2 Σ−3

Σ+
1 Σ+

2 Σ+
3

Figure 2.1: A schematic picture of ]3(S2 × S1) with a generating set of F3.

A handlebody is an orientable 3–manifold obtained from the 3–ball D3 by attach-

ing n copies of 1-handles, D2 × [−1, 1]. The gluing homeomorphisms match the 2n

disks D2×{−1,+1} with 2n disjoint 2–disks in ∂D3 = S2 so that the resulting man-

ifold is orientable. We will follow this definition of a handlebody to give another way

of describing M as follows:

We take two genus n handlebodies and glue them by an identity homeomorphism

along their boundary surfaces. For each nontrivial 2–disk D2 on each of the handle-

bodies, we will call each regular neighborhood D2× I of D2 a 1–handle. After gluing

the boundary surfaces, each D2 × {t}, t ∈ I will be glued to an identical copy of

itself, resulting in S2 × I in the glued manifold. Since the disks are nontrivial, S2 is

a nontrivial 2–sphere in the resulting manifold. For each regular neighborhood of a

nontrivial non-separating disk D2×{t} in each handlebody, we obtain a S2×S1 after

gluing copies of D2×{0} and D2×{1}. Hence M is a double handlebody where the

gluing map is the identity homeomorphism.
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2.2 The Free Group and its Group of Automorphisms

Definition 2.1. Let A be a subset of a group F . Then F is a free group with basis

A if the following holds: If φ is any function from the set A into a group G, then

there is a unique extension of φ to a homomorphism φ∗ from F into G. Uniqueness

of the extension is equivalent to requiring that A generate F . The cardinality of this

generating set is the rank of the free group and the elements of the generating set are

sometimes called letters.

Let Fn denote the free group with rank n. Every group G on n generators is a

homomorphic image of Fn and as such the theory of free groups precedes the general

theory of groups with generators and defining relators.

We denote by Aut(Fn) the group of automorphisms of the free group Fn.

Definition 2.2. Let Fn be a free group with basis X = {x1, . . . , xn}. For any xi ∈ X ,

let ni be the automorphism satisfying n(xi) = x−1
i and leaving other elements of X

unchanged. For any xi, xj , i 6= j let nij be the automorphism such that nij(xj) = xixj

and leaving other elements of X unchanged. The automorphisms ni and nij are called

Nielsen automorphisms.

The significance of these automorphisms is the following:

Theorem 2.3 ([21], [5]). The group Aut(Fn) is generated by the set of all Nielsen

automorphisms ni and nij.

Definition 2.4. Let G be a group. For any g ∈ G, we define the inner automorphism

ig of G by ig(x) = gxg−1 for each x ∈ G. The set {ig : g ∈ G} is a subgroup of

Aut(G). It is called subgroup of inner automorphisms of G and denoted by Inn(G).

Clearly Inn(G) is normal subgroup of Aut(G).
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The group Out(G) = Aut(G)/ Inn(G) is called the outer automorphism group of

G.

2.3 The Mapping Class Group of M and Out(Fn)

For the manifoldM = ]n(S2×S1), the Mapping Class Group ofM , denoted MCG(M)

is defined by,

MCG(M) = Homeo+(M)/Homeo0(M)

where Homeo+(M) is the group of orientation preserving self homeomorphisms ofM

and Homeo0(M) is the group of homeomorphism which are homotopic to the identity.

The action of MCG(M) on the fundamental group π1(M) = Fn of M gives a

homomorphism MCG(M) → Out(Fn), sending a mapping class to its induced auto-

morphism on the fundamental group. This is a map which gives a motivating connec-

tion between these two algebraic objects. Via this connection, automorphisms of the

fundamental group can be described geometrically, in other words, in terms of isotopy

classes of self homeomorphisms of the 3-manifold M .

The goal of this section is defining the mapping classes in MCG(M) and the kernel

of the homomorphism MCG(M)→ Out(Fn).

The Mapping Class Group MCG(M) ofM is generated by mapping classes which

are isotopy classes of three main types of self homeomorphisms of M : Rotations

(twists) along 2-spheres, slide homeomorphisms and spin homeomorphisms.

Rotations about 2-spheres:

We take a product neighborhood S2 × I of a non-trivial embedded sphere S2

in M . Using the sphere S = S2 × {0} one can define a homeomorphism as fol-

8



lows: Let τ : I → SO(3,R) be a loop based at the identity rotation which generates

π1(SO(3,R)) ∼= Z2. Define r : M → M by r(x, t) = (τt(x), t) for (x, t) ∈ S2 × I

and r(m) = m for m /∈ S2×I . Since product neighborhoods are unique up to isotopy,

the mapping class of this rotation is well defined. τ has order 2 in π1(SO(3,R)), r2 is

isotopic to the identity.

We have the following Lemma:

Lemma 2.5 ([25]). Let rS be a rotation about the 2–sphere S ⊆ M and let T be an

embedded nontrivial 2–sphere in the interior ofM . Then there is a product of rotations

r about 2–spheres disjoint from T so that 〈rS〉 = 〈r〉 in MCG(M).

Let Σ′ be the result of removing from M interiors of 2n disjoint 3–balls B+
1 , B

−
1

, . . . , B+
n , B

−
n . We will denote the remaining boundary spheres by Σ+

j ,Σ
−
j where j ∈

{1, . . . , n}. Let us also denote by Σj the 2–sphere obtained from gluing Σ+
j and Σ−j .

ThenM can be constructed from Σ′ and n copies of Σj×I by identifying each Σj×{0}

with Σ+
j and each Σj × {1} with Σ−j .

Define R(M) to be the subgroup of MCG(M) generated by rotations about em-

bedded 2–spheres in M .

Lemma 2.6 ([25]). R(M) is generated by rotations about the 2–spheres Σj, j ∈

{1, . . . , n}. It is a normal subgroup of MCG(M) isomorphic to ⊕n(Z/2).

Proof. If g is any homeomorphism of M and r is a rotation about a 2–sphere S, then

grg−1 is a rotation about the 2–sphere g(S). Therefore, R(M) is a normal subgroup

of MCG(M). To prove the first part of the lemma, let us take T equal to the union of

the images of Σj in M . Now, Lemma 2.5 shows that R(M) is generated by rotation

along spheres disjoint from T . Since M − T is the interior of a punctured 3-cell, it

has no non-trivial 2–spheres. Hence, a rotation about any 2–sphere disjoint from T is

9



isotopic to a product of rotations about some subset of the 2–spheres in T . Therefore

the rotations about the 2–spheres in T generate R(M). Since these rotations commute,

and each has order at most 2, we have proved the lemma.

Slide Homeomorphisms: Let M ′
j be the result of replacing Σj × I by the balls B+

j

and B−j for some fixed j. Let γ be an arc properly embedded in M − int(Σj × I), both

of whose endpoints lie in the boundary S of B, where B is one of B+
j or B−j . Choose

an isotopy Jt of M ′
j satisfying:

1. J0 = 1M ′ ,

2. J1 is the identity on B,

3. There is a regular neighborhood of B∪γ such that each Jt is the identity outside

this neighborhood,

4. The isotopy Jt moves B around γ, i.e, if e is the center of B, then the trace Jt(e)

is a loop representing the generator of the fundamental group of the regular

neighborhood of B∪γ (which is a solid torus having infinite cyclic fundamental

group) determined by the orientation of γ.

Define a homeomorphism h of M by taking J1 on M − (Σ× I) and the identity on

Σj × I . We call h a slide homeomorphism which slides Σj × I around γ. Here, recall

thatB is one ofB+
j andB−j for a fixed j while the isotopy fixes the other. If the isotopy

moves B+
j (respectively B−j ) around γ, we say h slides the left end (respectively, the

right end) of the jth handle around γ.

A change of the choice of γ in its homotopy class in π1(M ′
j, B) changes h by an

isotopy and possibly a rotation about S. The possible rotation comes from rotating B

around an axis as it is being moved along the loop. Consequently a choice of homotopy

class of γ determines at most two isotopy classes of slide homeomorphism:
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Lemma 2.7. Isotopy class of a slide homeomorphism depends on the homotopy class

of the sliding loop only.

Proof. Let Imb(B,M ′) be the set of embeddings from B to M ′, where B is as defined

before and M ′ = M ′
j for a fixed j. Since Diff(M ′) → Imb(B,M ′) is a fibration

(a continuous mapping satisfying the homotopy lifting property with respect to any

space), a loop in Imb(B,M ′) can be lifted to loops in Diff(M ′) starting at the identity.

Hence, a slide homeomorphism can be defined using any loop, not just an embedded

one.

Now consider two sliding loops, γ0 and γ1 in Imb(B,M ′). A homotopy between

the loops extends γ0 and γ1 to a 1–parameter family γt of loops in Imb(B,M ′).

Now, we have lifts Γ0 and Γ1 of the first and the last loops to Diff(M ′). Since

Diff(M ′)→ Imb(B,M ′) is a fibration, we can lift γt to a 1–parameter family of loops

Γt agreeing with Γ0 and Γ1 at the endpoints. After removing B and regluing to get M ,

the restriction of Γt(1) gives an isotopy between the two slide homeomorphisms.

Spins:

Using a homeomorphism which interchanges B+
j and B−j , one constructs a home-

omorphism which reverses the direction of an arc in M crossing Σj × I from Σ+
j to

Σ−j . This is called a spin of the jth 1-handle.

The next result is a version of the well-known theorem for a compact orientable 3

manifold:

Proposition 2.8 ([25]). MCG(M) is generated by the isotopy classes of rotations

about the 2–spheres, slide homeomorphisms of the spheres Σjs and spins.

The proof uses a result of M. Scharlemann and can be found in [25]. Next theorem

is the core theorem of this section:
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Theorem 2.9 ([25]). The kernel of the homomorphism MCG(M)→ Out(Fn) is gen-

erated by R(M).

To prove the theorem , we will use three results, the first of which are paraphrased

from [19]:

Theorem 2.10 ([19]). Let f : (M,x0) → (M,x0) be a map inducing the identity

automorphism on π1(M,x0) and having a local degree +1 at x0. Then f is properly

homotopic to a composite of rotations about 2–spheres.

Lemma 2.11 ([20]). Let S be an essential embedded sphere in a 3-manifold M . Let

h : S2 × [0, 1]→M be a map such that

1. h(S2 × {0, 1}) ⊂M − S

2. h | S2 × {0} is an essential immersed image which is not homotopic to S

Then, h | S2 × {0} and h | S2 × {1} are homotopic in M − S.

Lemma 2.12 ([25]). Suppose that T1, T2, . . . , Tn is a collection of pairwise disjoint

pairwise non-isotopic essential embedded 2–spheres inM . Let h be a homeomorphism

of M such that h(Ti) = Ti for 1 ≤ i ≤ m and h(Ti) is homotopic to Ti for m + 1 ≤

i ≤ n. Then h is isotopic preserving T1, . . . , Tm to a homeomorphism h′ such that

h′(Tj) = Tj for 1 ≤ j ≤ n.

Proof. An extension of the Laudenbach Lemma 2.11 to collection of disjoint 2–spheres

shows that h(Tm+1) is isotopic to Tm+1 by a homotopy that avoids ∪mi=1Ti. Since by

[20, Theorem III. 1.3] homotopic 2–spheres are isotopic, h(Tm+1) is isotopic to Tm+1

in the complement of ∪mi=1Ti. Induction completes the proof.

Proof of Theorem 2.9. Let 〈h〉 be an element of the kernel. Changing h by isotopy, we

may assume that h preserves a basepoint of M and induces the identity automorphism
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on the fundamental group of M . Applying Theorem 2.10 and using Proposition 2.6

shows that after composition with a product of rotations about the spheres, we may

assume that h is properly homotopic to the identity automorphism since rotations about

the 2–spheres also induce the identity automorphism on π1(M). It follows that for any

2–sphere S embedded in M , the restriction of h to S is homotopic to the inclusion.

Now we apply Lemma 2.12 to spheres Σ1 × {1/2}, . . . ,Σn × {1/2}. Since h induces

the identity automorphism, it cannot interchange the sides of any of these 2–spheres so

h is isotopic to a map which is identity on Σ′. The rotations about 2–spheres can now

be applied to make the homeomorphism equal to the identity.

In our work, the main inspiration is the homomorphism MCG(M) → Out(Fn).

It is very close to being an isomorphism, as its kernel is a finite elementary abelian

2–group. It is also surjective since the Nielsen automorphisms correspond to slide

homeomorphisms and spins. From Lemma 2.6 and Theorem 2.9 we have the following

exact sequence:

1→ R(M)→ MCG(M)→ Out(Fn)→ 1

This connection with the mapping class group of a 3–manifold enables us to utilize

a considerable body of three-dimensional techniques developed over many decades.

Moreover, this exact sequence gives more opportunity to describe automorphisms ge-

ometrically since the kernel R(M) is finite. This lets us to describe certain auto-

morphisms, called Dehn twist automorphisms, geometrically. This is a significant

difference between 3–dimensional and 2–dimensional settings, and a justification for

working on a 3–manifold since Dehn twist automorphisms do not always correspond

to Dehn twist mapping classes along curves on a surface. This will be investigated in

detail in Chapter 7.
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Chapter 3

The Structure of M = ]n(S
2 × S1) in

Terms of the Splittings of the Free

Group

In this chapter, we will give the correspondence between certain splittings of the free

group and spheres and tori in M , which is the second step towards understanding

Out(Fn) via M .

3.1 Spheres and Tori in M

We will be interested in nontrivial spheres and tori. To be precise on what we mean by

nontrivial, we have the following definition:

Definition 3.1. An essential sphere in M is the one which does not bound a 3–cell in

M .

A 3-manifold is said to be irreducible if all 2–spheres bound 3–balls. Hence, a 3–

manifold is reducible when it contains essential spheres. The fact that M is reducible
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Figure 3.1: A separating (on the left) and a nonseparating (on the right) embedded
torus in M .

can also be seen in Figure 3.2.

We have the following similar definition of nontrivial for a torus in M :

Definition 3.2. We will say that a torus α is essential inM if the image of π1(α) under

the homomorphism induced by the inclusion map ι : α→M is nontrivial in π1(M).

In Figure 3.1 we see two examples of essential embedded tori.

3.1.1 Spheres and Sphere Systems

A sphere system is a collection of isotopy classes of disjoint and essential 2–spheres in

M no two of which are isotopic.

Throughout this work, we will call 3–punctured 3–spheres either 3–punctured

spheres or twice-punctured 3–cells (balls). These are analogous to pairs of pants in

dimension 2.

Recall that a pair of pants is a surface of genus zero with three boundary compo-

nents. A pants decomposition of a surface S is a collection of disjointly embedded
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Figure 3.2: A maximal sphere system and a torus in ]3(S2 × S1).

circles on S which decompose S into pairs of pants. This is also called a maximal

curve system.

Using essential spheres in M , we can define 3–dimensional versions of pair of

pants and of pants decompositions for M as follows:

Definition 3.3. We call a collection Σ of disjointly embedded essential, non-isotopic

2–spheres in M a maximal sphere system if every complementary component of Σ in

M is a 3-punctured 3-sphere.

We see an example of a maximal sphere system in Figure 3.2. In this example

n = 3 and there are 6 essential spheres in the maximal sphere system.

Hatcher in the paper [15] defined the notion of normal form with respect to a fixed

sphere system and proved the existence of normal representatives of spheres in a given

isotopy class of spheres in M . This leads to arguments about intersection numbers

and minimal intersection conditions of these spheres and a correspondence between

the free splittings of the free group Fn and the embedded spheres in M where M =

S2 × S1, as in [12].
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3.1.2 The Sphere Complex Connecting Two Models for Out(Fn)

There is a simplicial complex associated to M called the sphere complex and denoted

by S(M), having isotopy classes of non-trivial 2–spheres in M as vertices and sphere

systems of k + 1 spheres as k-dimensional simplices.

Definition 3.4. The Outer Space consists of the set of equivalence classes of triples

(G; f ; `) where G is a graph, ` is a metric, and f a homotopy equivalence from the

n rose to the graph, and (G; f ; `) ∼ (G0; f0; `0) if there is an isometry ψ : (G; `) →

(G0; `0) so that ψ ◦ f is homotopic to f0.

Outer space is a simplicial complex with some faces missing. The sphere com-

plex has a subspace which is homeomorphic to Outer Space. This is the subspace

which consists of sphere systems with all complementary components simply con-

nected. This is the connection between two models for Out(Fn).

3.2 Spheres and Tori As Splittings of π1(M)

In this section, we will investigate the correspondences between two types of surfaces

in M ; tori and spheres, and we will give their algebraic interpretations with respect to

the fundamental group of M .

3.2.1 G-graphs

In our work, a graph Γ is understood in the sense of Serre [27] : It consists of a set

of vertices, V (Γ), set of edges, E(Γ), a function ι : E(Γ) → V (Γ) which defines

the terminal vertex τ by, τ(e) = ι(e) where e → e under the inversion function

− : E(Γ)→ E(Γ) and e 6= e.
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Now, a G–graph is a graph on which the group G acts (on the left) without inver-

sions (e 6= e). A tree can be described homologically: a graph Γ is a tree exactly when

the following sequence is exact:

0→ C1(Γ)→ C0(Γ)→ Z→ 0

where C0(Γ) is the free abelian group on V (Γ) and C1(Γ) is the free abelian group

generated by E(Γ).

3.2.2 Elementary Group Splittings

Definition 3.5. An amalgamated free product of two groups A and C amalgamated

along a group B is the pushout of A and C when the maps α1 : B →A and α2 : B →C

are group homomorphisms. It is denoted by A ∗B C.

Similarly,

Definition 3.6. An amalgamated free product of A along B (or HNN extension of A

along B) is defined to be the pushout of A where ι1,2 : B →A are both homomor-

phisms. This universal group is denoted by A∗B.

By a Z–splitting of a group G we mean an amalgamated free product or an HNN

extension of the group G so that B is isomorphic to Z.

Definition 3.7. A free splitting of a group G is the amalgamated free product of two

groups A and C amalgamated along the trivial group.

The following theorem gives the structure of subgroups of free products. The sim-

ilar result can be derived for amalgamated free products as well. The proof uses the

theory of covering spaces.
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Theorem 3.8 (Kurosh Subgroup Theorem [26]). If H is a subgroup of G = G1 ∗ G2,

then H is the free product of a free group with subgroups of conjugates of G1 or G2.

3.2.3 Relating Graphs to Groups and to Elementary Splittings

Definition 3.9. A graph of groups consists of an abstract graph Γ ( which will always

assumed to be connected), together with a function G assigning to each vertex v of

Γ a group Gv and to each edge e a group Ge, with Ge = Ge and a homomorphism

fe : Ge → G∂0(e) where ∂0(e) is ι(e) restricted to the initial vertex of e with respect to

the fixed orientation on it.

Similarly, we define a graph X of topological spaces, or of spaces with preferred

basepoint. Given a graph X of spaces, we can define a total space XΓ as the quotient

of
⋃
{Xv : v ∈ V (Γ)} ∪

⋃
{Xe × I : e ∈ E(Γ)} by the identifications,

Xe × I → Xe × I by (x, t) 7→ (x, t− 1)

Xe × {0} → X∂0e by (x, 0) 7→ fe(x)

If X is a graph of (connected) base spaces, then by taking fundamental groups we ob-

tain a graph G of groups with the same underlying abstract graph Γ. The fundamental

group GΓ of the graph G of groups is defined to be the fundametal group of the total

space XΓ.

Observe that in the cases when Γ has only one pair (e, e) of edges we obtain prod-

ucts A ∗B C and A∗B, as follows by van Kampen’s theorem.
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3.2.4 Spheres in M and Free Splittings of π1(M)

The main theorem of this section is the following theorem, which corresponds each

splitting of the fundamental group of a closed 3–manifold N as a free product cor-

responds to a sphere in the manifold. We will apply this theorem in our manifold,

M .

Theorem 3.10 (Kneser’s conjecture on free products [17]). Let N be a compact 3–

manifold such that each component of ∂N (possibly empty) is incompressible in N . If

π1(M) ∼= G1 ∗G2, then N = N1]N2 where π1(Ni) ∼= Gi, i = 1, 2.

Before we give the proof of this theorem, we will need some definitions of concepts

common in 3–dimensional topology and some necessary lemmata for the proof.

Definition 3.11. Let N be a 3-manifold and S a surface which is either properly em-

bedded in N or contained in the boundary ∂N . We say that S is compressible in N if

one of the following conditions is satisfied:

1. S is an inessential 2–sphere in N ,

2. S is a 2–cell which is either subset of the boundary ∂N or S ∪ ∂M contains the

boundary of a 3–cell.

or,

3. There is a 2–cell D ⊂ N with D ∩ S = ∂D with ∂D not contractible in S.

Otherwise, S is said to be incompressible.

We have two well-known results concerning incompressible surfaces in a 3–manifold,

the first one is also known as The Loop Theorem:

Lemma 3.12 ([17]). If S is a 2–sided incompressible surface in a 3–manifold N , then

ker(π1(S)→ π1(M)) = 1.
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Definition 3.13. For a 3–manifold N and a space X we say that two maps f, g :

N → X are C-equivalent if there are maps f = f0, f1, . . . , fn = g such that either fi

homotopic to fi−1 or fi agreeing with fi−1 on the complement of a 3-cell. C-equivalent

maps induce the same homomorphism π1(N) → π1(X) up to choices of base points

and inner automorphisms.

The following Lemma shows a way to find incompressible surfaces in a compact

3–manifold:

Lemma 3.14 ([17]). Suppose N is a compact 3–manifold, X a k-manifold which con-

tains a 2-sided k − 1 submanifold Y with ker(π1(Y ) → π1(X)) = 1 and π2(Y ) =

π2(X − Y ) = 0. If f : N → X is any map, then there is a map g : M → X which

is C-equivalent to f and so that each component of g−1(Y ) is a properly embedded,

2–sided incompressible surface in N .

We continue with the proof of the Theorem 3.10. The proof is based on the topo-

logical proof of Grushko’s theorem, given by Stallings([29]).

Proof of Theorem 3.10. Choose complexesX1 andX2 with π1(Xi) ∼= Gi and π2(Xi) =

0. Join a point of X1 to a point of X2 by a simplex A to form a complex X =

X1 ∪ A ∪ X2. Here, π1(X) ∼= G1 ∗ G2 and π2(Xi) = 0. So we can construct a map

f : N → X such that f∗ : π1(N) → π1(X) is an isomorphism. Choose x0 ∈ A. By

lemma 3.14 we can assume that each component of f−1(x0) is a 2–sided incompress-

ible surface properly embedded in N . Then if F is a component of f−1(x0), by 3.12,

π1(F ) = 1. If some component F is an incompressible 2-cell, then by hypothesis

∂F bounds a 2-cell D in ∂N . Then the 2–sphere F ∪D can be pushed to ∂N where

it gives an incompressible 2–sphere F ′. Since π2(Xi) = 0, f can be modified by a

C-equivalance which replaces F by F ′. Hence, we may assume that all components
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of f−1(x0) are incompressible 2–spheres in interior of N . Now, we have two cases: If

f−1(x0) is connected, we are done. If not, there is a path β : I → N such that β(0)

and β(1) connects two different components of f−1(x0). Now, f ◦β is a loop inX and

since f∗ is surjective, there is a loop γ based at β(1) so that f∗(γ) = [f ◦ β]−1. Then

α = βγ is a path satisfying:

1. α(0) and α(1) are in different components of f−1(x0),

2. [f ◦ α] is trivial in π1(X).

We may assume that α is a simple path which crosses f−1(x0) transversely at each

point of α(intI). We assume also that every path satisfying conditions above is chosen

so that number of components of α−1(f−1(x0)) is minimal.

Now we claim that α(intI) ∪ f−1(x0) = ∅. If not, we can write α = α1α2 · · ·αk

(k ≥ 2) where for each i, αi(intI) ∪ f−1(x0) = ∅ and αi(∂I) ⊂ f−1(x0). Then,

[f ◦ α1][f ◦ α2] · · · [f ◦ αk] is a representation of the identity element as an alternating

product in the free product G1 ∗ G2. This means that [f ◦ αi] = 1 for some i. If

αi(0) and αi(1) are contained in the same component, then we reduce the number of

components of α−1(f−1(x0)). If not, then since above conditions satisfied, minimality

assumption is contradicted. Thus we have, α(intI) ∪ f−1(x0) = ∅.

Let Fj , j = 1, 2 be the component of f−1(x0) containing α(j). Let also C be a

small regular neighborhood of α(I) such that C ∩ Fj = Dj is a spanning 2-cell of C

and C ∩ f−1(x0) = D0 ∪ D1. Let B be the annulus in ∂C bounded by ∂D0 ∪ ∂D1.

Push the interior of B slightly into the interior of C to obtain an annulus B′ which has

the same boundary as B and B ∪B′ is a boundary of a solid torus.

We define a map f1 : N → X as follows: Let f | N and f1 | N coincide on

the complement of the interior of C and let f1(B′) = x0. Since [f ◦ α] = 0, we

can extend f1 across a meridonal 2-cell of the torus. Now, it remains to extend it to
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two remaining two cells. This is possible since π2(X) = 0 and also it is possible

to make this extension so that C ∩ f−1(x0) = B′. So f1 is C-equivalent to f and

f−1
1 (x0) = f−1(x0)− ((D0 ∪D1) ∪B′) has one less component than f−1(x0).

The proof is completed by induction.

All the above classical theorems in 3–manifold topology will be applied to our

manifold, M . We would like to note here that M has no incompressible surfaces but

the 2–sphere.

3.2.5 Tori in M and Z–splittings of π1(M)

In this section, we will relate Z–splittings to tori. The main theorem of this section is

the following:

Theorem 3.15 ([6]). There is a bijection between the set of homotopy classes of essen-

tial embedded tori in M and equivalence classes of Z–splittings of the free group.

Throughout this section, we will drop the rank of the free group.

To prove the theorem 3.15, we will need the connection between free splittings and

the amalgamated free products. This will be established by the following theorems:

Theorem 3.16 ([30]). Let H = A ∗B C where B 6= {1}. Let F be a free group

and let φ : F → H be a surjective homomorphism. Then F has a free factorization

F = F1 ∗ F2 such that one of the following symmetric alternatives holds:

1. φ(F1) ⊂ A and φ(F1) ∩B 6= {1} or

2. φ(F1) ⊂ C and φ(F1) ∩B 6= {1}

A similar theorem holds for HNN extensions:
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Theorem 3.17 ([30]). Let H = A ∗B α, thus H is generated by its subgroup A and

an additional element t, such that B = A ∩ tAt−1, with relations saying that for all

b ∈ B, b = tα(b)t−1. Suppose that B 6= 1. Let F be a free group and let φ : F → H

be a surjective homomorphism. Then F has a free factorization F = F1 ∗F2 such that

one of the following symmetric alternatives holds:

1. F1 ⊂ A and F1 ∩B 6= {1} or

2. F1 ⊂ tAt−1 and F1 ∩B 6= {1}

Definition 3.18. A subgroup S of a free group F is called unsplittable in F if for every

free factorization F = F1 ∗ F2 if S ∪ F1 6= 1 then S ⊂ F1.

Proposition 3.19. Every cyclic subgroup of a free group F is unsplittable in F .

Theorem 3.20 (Shenitzer [28]). Suppose that a free group F is an amalgamated free

product, F = A ∗B C in which the amalgamated subgroup B is cyclic. Then B is a

free factor of A or a free factor of C.

Proof. By theorem 3.16, taking the identity map from F to itself, we know that one of

the two symmetric alternatives is true, let us suppose that F = F1 ∗F2 and F1 ⊂ A and

that F1 ∪B 6= 1. Now we apply the Kurosh Subgroup Theorem to C as a subgroup of

F = F1∗F2; this implies thatC has a free factor of the formC∩F1. SinceB ⊂ C, that

free factor ofC containsB∩F1, which is nontrivial. SinceB is cyclic, it is unsplittable

in C by proposition 3.19 and therefore B ⊂ C ∩ F1 ⊂ C ∩ A. Since C ∩ A = B, the

free factor C ∩ F1 is in fact B.

Theorem 3.21 (Swarup [31]). Suppose that a free group F is an HNN extension F =

A ∗B α in which the amalgamated subgroup B is cyclic. We express A in terms of A

and an extra generator t such thatB = A∩tAt−1. ThenA has a free product structure

A = A1 ∗ A2 in such a way that one of the following symmetric alternatives hold:
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1. B ⊂ A1, and there exists a ∈ A such that t−1Bt = a−1A2a or

2. t−1Bt ⊂ A1 and there exists a ∈ A such that B = a−1A2a

Definition 3.22. Let α be a torus and α̃ the set of lifts of α to the universal cover

M̃ . There is a simplicial tree Tα whose vertices correspond to the complementary

components of M̃ − α̃ and such that two vertices are adjacent if the closures of their

corresponding regions intersect.

Definition 3.23. Two Z–splittings of the free group F are said to be equivalent if

there is a F -equivariant bijection between the Bass-Serre trees corresponding to the

splittings.

By van Kampen’s theorem, any essential embedded torus inM gives rise to a split-

ting of π1(M) over Z. This is as an amalgamated free product if the torus is separating

and as an HNN-extension if the torus is non-separating. Hence, the simplicial tree

given in the definition is the Bass-Serre tree corresponding to the splitting given by the

torus α.

We have the following lemma regarding this simplicial tree, which will be crucial

for our main proof.

Lemma 3.24. Let α and β be two homotopic tori. Then, Tα = Tβ . Hence, homotopic

tori correspond to equivalent splittings.

To prove this lemma, we will work on the ends of M̃ . An end of a topological

space is a point of the so called Freudenthal compactification of the space. Namely,

Definition 3.25. Let X be a topological space. For a compact set K, let C(K) denote

the set of components of complement X −K. For L compact with K ⊂ L, we have

a natural map C(L) → C(K). These compact sets define a directed system under

inclusion. Let the set of ends E(X) be the inverse limit of the sets C(K).
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The space M̃ is non-compact and it has infinitely many ends. We denote the set of

ends of M̃ by E(M̃). It is homeomorphic to a Cantor set, in particular, it is compact.

The set E(Γ) of ends of Γ where Γ is the tree dual to M̃ is identified with the set

E(M̃).

Proof of Lemma 3.23. . The endpoint compactification of M̃ is actually the 3–sphere,

S3, in which the ends form a Cantor set. The action of F on M̃ extends to a highly

non-free action of F on S3.

Assuming that α does not bound a solid torus, each lift L = S1 × R of α defines

a decomposition of the set of ends into two sets X(L) and Y (L) where X(L) ∩ Y (L)

consists of two endpoints, corresponding to the axis of a conjugate of the generator of

the image of π1(M). Let us once and for all work on the complement of the countable

set of these two endpoints which are connected by the axes of lifts and denote by the

partition of the remaining set of ends X(L) and Y (L), given by a lift L. Since the lifts

are disjoint, any two satisfy either X(L1) ⊂ X(L2) or X(L1) ⊂ Y (L2) for two lifts

L1 and L2. Hence, for each lift, we will have a partition corresponding to it.

For each set of partitions we take a vertex and for each collection in a partition such

that whenever X ⊂ Y there is no collection of ends Z such that X ⊂ Z ⊂ Y , we take

another vertex. We then connect the vertices corresponding to partitions to the vertices

corresponding to its sets by edges. Since the partitions of ends do not intersect, we

have a tree.

Now, since for each lift we have a partition of the ends, there is a 1-1 corre-

spondence between the tree given by the partitions and the tree Tα as defined above.

Namely, the “edge-midpoint” vertices of Tα correspond to the elements of this set

of partitions (i. e. the components of α̃). The components of M̃ − α̃, i. e. the other

vertices of the Tα, correspond to the collections of lifts (topologically, the frontier com-
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ponents of these components), having the property that if L1 and L2 are two of them,

then (assuming that we select the notation so that X(L1) ⊂ X(L2)) there is no L3 in

the collection for which X(L1) ⊂ X(L3) ⊂ X(L2) or X(L1) ⊂ Y (L3) ⊂ X(L2).

These latter vertices correspond to the ones given by the collections in a given parti-

tion. Hence making each such collection of partitions a vertex connected by an edge

to each of its elements defines the corresponding simplicial tree Tα.

For a homotopy of embedded tori inM , the initial and final tori determine the same

partition of the ends, and hence the same tree, in both senses. To see this:

Let α be homotopic to β. To show that we get the same partitions of the endpoints

from the lifts of α and from the lifts of β, we need to show that if two endpoints

are separated by a component L of α̃, then they are separated by the corresponding

component L′ of β̃ (i. e. the one that L moves to).

Let p and q be two endpoints separated by L. Fix an arc between them that crosses

L = S1 × R in one point. During the homotopy, that component, although no longer

embedded, moves in M̃ , i.e. it does not touch any endpoint. So assuming that the

homotopy is transverse to the arc, its inverse image in S1 × R × I consists of circles

and arcs properly imbedded in S1 × R × I (note that if the homotopy could cross an

endpoint of the arc, then an arc of the inverse image could fail to be properly imbedded

in S1 × R × I). Since only one endpoint of the inverse image is in the end L, there is

an odd number of endpoints in L′ (i. e. the arc crosses L′ an odd number of times) and

therefore L′ still separates p and q.

Using the theorems giving connections between splittings of free group, we can

now deduce a correspondence between the homotopy classes of essential embedded

tori in M and the equivalence classes of Z–splittings of F . We end this section with
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the proof of the theorem 3.15, giving the proof of this correspondence:

Proof of Theorem 3.15. The first direction is given by Lemma 3.24 and the remarks

given before that. In the other direction, we make use of the theorems 3.20 and 3.21

that relate a splitting of F over the trivial group to a Z–splitting of F and then we

use Kneser’s Conjecture 3.10. We treat the amalgamated product and HNN-extension

cases separately.

Case 1: We first consider the case of an amalgamated free product F = A ∗〈c〉 B. By

Shenitzer’s Theorem 3.20, after possibly interchangingA↔ B, there is a free splitting

F = A ∗ B0 where B = 〈c, B0〉. Let S ⊂ M be an embedded (separating) sphere

representing this splitting. We fix a basepoint ∗ ∈ M and assume it lies on S. As

c ∈ A, there is an embedded loop γ ⊂ M that represents c ∈ F and only intersects

S at ∗. For small ε, boundary of the closed ε–neighborhood of S ∪ γ consists of two

components: an embedded sphere isotopic to S and an embedded essential torus τγ .

It is clear from the construction, that the splitting of F associated to τγ by van

Kampen’s Theorem is the original splitting. However, there are some choices made in

the construction of τγ and it must be shown that different choices result in homotopic

tori. It is clear that changing S or γ by a homotopy results in a change of τγ by a

homotopy.

Now since Shenitzer’s theorem 3.20 gives many possible splittings, we need to

consider two different complementary free factors B0 and B1 of A such that 〈c, B0〉 =

〈c, B1〉 = B and show that the tori obtained after we add the loop to corresponding

spheres are homotopic, even when the spheres themselves are not. For this, let S0 and

S1 be the spheres representing the splittings A ∗B0 and A ∗B1 respectively and τ0 and

τ1 be the tori as constructed above using these spheres. We assume that γ intersects S0

only at the fix basepoint ∗ ∈M .
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We first treat the special case that B1 is obtained from B0 by replacing a generator

b ∈ B0 by bc. Fix a basis for F consisting of a basis for A and a basis for B0 where

b is one of the generators for B0. This corresponds to a sphere system in M which

decomposes as ΣA ∪ ΣB0; the sphere S0 separates the two sets ΣA and ΣB0 . In terms

of these sphere systems, we can describe a homeomorphism that takes S0 to (a sphere

isotopic to) S1.

Denote by Σγ the ordered set of spheres (all in ΣA) pierced by γ starting from the

basepoint. Cut M open along the sphere β corresponding to the generator b and via a

homotopy push the boundary sphere β− filled in with a 3–ball through the spheres in

Σγ in order, dragging S0 along. After removing the 3–ball and regluing β+ and β−,

the image of S0 is S1 and the sphere β now corresponds to bc. By shrinking β− and S0,

we can assume that homotopy is the identity on τ0 and γ. Thus, we have a homeomor-

phism taking S0 to S1, S0∪γ to S1∪γ and is the identity on τ0. As a homeomorphism

takes a regular neighborhood to a regular neighborhood, τ0 is homotopic to τ1.

A similar argument works if we replace b by bc−1.

The general case now follows as we can transform B0 to B1 by a sequence of the

above transformations plus changes of basis that do not affect the associated spheres.

For a proof of this argument we refer to the proof of Theorem 5 in [?].

Finally, we need to consider the possibility that F = A0∗〈c〉∗B0 whereA = 〈A0, c〉

and B = 〈B0, c〉. Let SA and SB be the spheres representing the splittings A ∗B0 and

A0 ∗B respectively and τA and τB be the tori as constructed above using these spheres.

In this case as M − (SA ∪SB) is S1×S2 with two balls removed, it is easy to see that

τA and τB are homotopic. Indeed, model S1×S2 are the region between the spheres of

radius 1 and 2 in R3 after identifying the boundary spheres. Remove a ball of radius 1
4

at each of the points (0, 0, 3/2) and (0, 0,−3/2). Then clearly the torus obtained from

the intersection with the xy–plane is homotopic to both τA and τB.
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Case 2: We now consider the case of an HNN-extension F = A∗〈c〉. By Swarup’s

Theorem 3.21, there is a free factorization A = A0 ∗ 〈t−1ct〉 for some t ∈ F , such

that A0 is a co-rank 1 free factor of F and such that c ∈ A0. Let S ⊂ M be an

embedded (non-separating) sphere representing the trivial splitting F = A0∗{1}. We

fix a basepoint ∗ ∈ M and assume it lies on S. As c ∈ A0, there is an embedded

loop γ ⊂ M that represents c ∈ F and only intersects S at ∗. Further, both ends of

γ are on the same side of S. For small ε, boundary of the closed ε–neighborhood of

S∪γ consists of two components: an embedded sphere isotopic to S and an embedded

essential torus τγ .

As above, it is clear from the construction, that the splitting of F associated to

τγ by van Kampen’s Theorem is the original splitting. Again, we must show that the

choices along the way do not matter.

The idea here is really the same as above, different choices in the free factorization

of A are understandable and can be thought of as applying a sequence of moves that

either do not change the relevant spheres, or else lead to homotopic tori as above.
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Chapter 4

Definition and Existence of Normal

Form for Tori in M = ]n(S
2 × S1)

In this chapter, we will define the notion of a normal form for a torus in M and state

and prove an existence theorem for such a representative in a homotopy class. This

work is included in [13] and most of it is inspired from Hatcher’s work on normal

form for sphere systems in [15].

4.1 Definition of Normal Form for a Torus in M

Given an imbedded torus in M and a maximal sphere system Σ, we can look at the

number of intersections of the torus with the 2–spheres in each P , and define a notion

of minimal intersection. In this work we are particularly interested in the existence of a

torus in a homotopy class which intersects the 2–spheres of a maximal sphere system

Σ minimally. There are certain pieces of a given torus in a P that are particularly

important for minimal intersection. They are:

1. A disk piece, which is essential, in other words not parallel into any of the bound-
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Figure 4.1: Disk, pants and cylinder pieces in M

ary 2–spheres and which has a single circle intersection with a single boundary

sphere.

2. A cylinder piece, which is the topological boundary of a regular neighborhood

of an arc connecting two different boundary 2–spheres.

3. A pants piece, which is the topological boundary of a regular neighborhood of a

letter Y intersecting all three boundary components.

These pieces can be seen in Figure 4.1.

Definition 4.1. Given an embedded torus and a maximal sphere system Σ in M , we

say that the torus is in normal form with respect to Σ if each intersection of the torus

with each complementary 3-punctured 3-sphere is a disk, a cylinder or a pants piece

(Figure 4.1).

4.2 Existence of Normal Form for Tori

We will show with the next theorem that any homotopy class of essential tori has a

normal representative:

Theorem 4.2. Every embedded essential torus in M is homotopic to a normal torus

and the homotopy process does not increase the intersection number with any sphere

of Σ.
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Our existence theorem and its proof is based on work of Hatcher in [15] and the

following theorem:

Theorem 4.3 ([15]). Given a maximal sphere system Σ, Every sphere system S can be

isotoped into normal form with respect to Σ.

Hatcher’s work combines the works of Whitehead and Laudenbach, and the latter

result is a core theorem for understanding spheres in M , hence we will state here:

Theorem 4.4 ([20]). Let S and S ′ be two 2–spheres. Then, under the same conditions,

if S and S ′ are homotopic, then they are isotopic.

For tori, this latter Laudenbach result is not necessarily true and consequently we

restrict ourselves to the homotopy classes instead of isotopy classes. Yet, our proof is

similar to the proof of the first theorem above.

Proof of Theorem 4.2. Let us pick a representative α from a homotopy class of tori.

As the first step, in each P , we regard each piece of the torus as consisting of

sphere pieces inside P and possibly concentric tubes connecting these sphere pieces to

the boundary spheres of P . To do this, we first surger each piece of the torus along the

intersection circles on the boundaries, starting from the innermost one, ending with the

outermost one, resulting in a 2–sphere in P . On these sphere pieces, we reverse this

surgery process by putting tubes between the sphere piece and the boundary spheres,

in exactly the reverse order.

If α is not normal, there will be a piece F that meets a boundary sphere S of a

thrice punctured sphere P in two intersection circles C1 and C2. Choose an arc ρ in F

connecting C1 to C2. Let ρ′ be an arc on S ∈Σ connecting C1 to C2. Reselecting ρ and

F if necessary, we may assume that interior of ρ′ does not meet α.
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Figure 4.2: Realizing the pieces in 3–punctured 3–spheres

Let us call the tube portions of F which meet C1 and C2 T1 and T2, respectively.

Let us assume that C2 was surgered before C1. Now, there is a homotopy of α which

is an isotopy on F and whose effect is to slide the end of T1 attached to the sphere part

of F along ρ to T2 and finally out of P . Any tubes of α inside of T1 are slid along with

it. If there are r such tubes, at a certain point of the homotopy, they create 2r + 1 new

intersection circles with S, 2r from the tubes inside T1 and one from the intersection

circle of the tube T1 itself. (Here, we will redraw the picture in ?? as Figure 4.2).

The intersection of T1 with P is now a cylinder. Since ρ is homotopic to ρ′, this

cylinder along with any tubes inside it are homotopic to an embedded position outside

of P near ρ′. During the homotopy, self intersections of α may occur, but since the

interior of ρ′ does not meet α, the final position of α can be an embedding. This

homotopy eliminates 2r+ 2 circles of intersection, giving a net decrease of 1 from the

original position (Figure 4.2).
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Figure 4.3: The homotopy eliminating intersection circles

A sequence of such homotopies in each P will give the desired homotopy in M .

Since α is essential, its image under a composition of such homotopies will not be

disjoint from Σ hence we will have a normal representative in the same homotopy

class.
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Chapter 5

Combinatorial Description of Lifts of

Tori

In this chapter, we will describe each lift of a torus in M combinatorially in the uni-

versal cover M̃ . For this, we will start with describing M̃ with respect to a maximal

sphere system and model it with a tree, called the dual tree. After this, we will give the

definition of the tree corresponding to a lift, and then “decorate” this tree with labels

coming from the transverse orientation on the spheres in M̃ . A quotient of this latter

tree with labels corresponding to a torus lift is called the decorated graph. Decorated

graph will be crucial in Chapter 6 proving the “uniqueness” of normal representative.

5.1 The Universal Cover

To relate a torus to a tree, we will need to work on the universal cover of M .

A fixed maximal sphere system in M gives a description of the universal cover M̃

of M as follows. Let P be the set of twice punctured 3-balls in M given by a maximal

sphere system Σ and regard M as obtained from copies of P in P by identifying pairs
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Figure 5.1: The universal cover M̃ and the dual tree Γ̃.
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of boundary spheres. Note that a pair might both be contained in a single P , in which

case the image of P in M is a once-punctured S2 × S1. To construct M̃ , begin with a

single copy of P and attach copies of the P in P inductively along boundary spheres,

as determined by unique path lifting. Repeating this process gives a description of M̃

as a treelike union of copies of the P . We remark that M̃ is homeomorphic to the

complement of a Cantor set in S3.

The universal cover M̃ is modeled by a tree Γ̃, called the dual tree, as follows. For

each copy P in P there is a vertex corresponding to the interior of P and a vertex for

each of the three boundary spheres, and there are three edges connecting the interior

vertex to the boundary sphere vertices. Hence there are two types of vertices: the

valence-3 vertices indicating the 3-punctured spheres and valence-2 vertices indicating

boundary spheres. To obtain Γ̃, identify the boundary vertices according to how the

corresponding sphere boundary components of the copies of the P are identified to

form M̃ .

We will call the union of the three edges for a copy of a P a “Y”, since it is

homeomorphic to a letter Y. We also write Σ̃ for the union in M̃ of the inverse images

of the spheres in the fixed sphere system.

Given a lift α̃ of an imbedded torus in normal form, there is a corresponding dual

subgraph of Γ̃ obtained by taking the union of the Y’s for the copies of the P that meet

α̃. We call this graph T (α̃). The inclusion of α̃ into M̃ is modeled by the inclusion

of T (α̃) into Γ̃, which is injective, hence we will have at most one component of α̃ in

each P . Note that

1. An extremal Y of T (α̃), that is, a Y that meets the rest of T (α̃) in a single vertex,

occurs exactly when an intersection of α̃ with a copy of a P is a disk. We will

call such Y’s type-1.
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2. A Y meeting the rest of T (α̃) in exactly two vertices occurs exactly when an

intersection of α̃ with a copy of a P is a cylinder. These Y’s will be called

type-2.

3. A Y meeting the rest of T (α̃) in its three boundary vertices occurs exactly when

an intersection of α̃ with a copy of a P is a pair of pants. These are type-3.

Since α̃ is connected, T (α̃) is also connected and hence is a tree. See Figure 5.1 for a

picture of universal cover and the dual tree.

5.2 The Decorated Graph

To prove the uniqueness theorem in the next chapter, we will provide a combinatorial

description of the lift of a torus in terms of a tree defined in the universal cover of

M . Such a lift equipped with a transverse orientation will be associated to a decorated

graph.

Let α be an embedded essential torus in M . The image of π1(α) under the homo-

morphism induced by the inclusion i : α→M is an infinite cyclic subgroup of π1(M),

defined up to conjugacy. Fixing a specific lift of the inclusion to the universal cover,

with image α̃, determines a specific subgroup in this conjugacy class, and a generator

γ of this subgroup acts as a covering transformation of M̃ that preserves α̃. Note that

γ does not interchange the sides of α̃ since the image of α is two-sided in M . There

is a corresponding action of π1(M) on Γ̃ as simplicial isomorphisms. The generator γ

has an invariant axis which is topologically a line and T (α̃) consists of this axis and

finite trees meeting the axis. The action of γ on T (α̃) takes vertices to vertices and

edges to edges. A fundamental domain for the action of γ on T (α̃) could be described
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Figure 5.2: Labeling of the vertices induced from the labels on the spheres

as an arc on the invariant axis of γ whose endpoints are translates by γ, together with

some finite trees attached to this arc. Translates of these finite trees are all of the finite

trees meeting the invariant axis of γ.

Motivated by Hatcher [15], we will obtain the decorated graph with respect to the

transverse orientation chosen as follows:

We pick a transverse orientation of the lift α̃ and label the sides; one with + and

the other −. This induces a corresponding orientation on α̃/γ. Split M̃/γ along

(α̃/γ)∪(
⋃
S̃i) where S̃i are the spheres corresponding to the γ-orbits of the spheres

in M̃ which are disjoint from α̃. Now, let X̃+ and X̃− be the two components that

contain copies of α̃/γ and define S+=∂X̃+− α̃/γ and S−=∂X̃−− α̃/γ where ∂X̃+ de-

notes the boundary of X̃+, etc. Note that X̃+,X̃− and α̃/γ are compact submanifolds.

See Figure 5.3.

We label the spheres S+ with + and the spheres S− with −. This gives a labeling

of the vertices representing these spheres, which are extremal vertices of T (α̃)/γ. For

a disk piece of α̃/γ, the corresponding two extremal vertices of T (α̃)/γ will have the

opposite signs. There will be no signs on a Y corresponding to a pants piece, since

all spheres are intersected. For a cylinder piece, one of the boundary spheres will not

be intersected hence will be on one side of the torus and will correspond to a labeled

extremal vertex on a type-2 Y. This is illustrated in Figure 5.2.

In particular if we have a torus with one of S+ and S− empty, the corresponding
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α̃/γ

Figure 5.3: A schematic picture of α̃/γ, the submanifolds X̃+, X̃− and spheres Ti ∈
S+ and Uj ∈ S−.

graph will be some union of type-2 Y’s, in other words finitely many extremal edges

attached to the axis of γ with one label on each of them, all labels the same. In this

case, α bounds a solid torus in M , α̃/γ bounds a solid torus X̃+ or X̃− in M̃/γ, and

α̃/γ represents the trivial element in H2(M̃/γ).

The above construction will give the graph T (α̃)/γ in Γ̃/γ a “decoration” of signs

on the ending vertices resulting from the transverse orientation on the torus α̃/γ. We

will call this decorated graph gα since it will be shown that it is uniquely determined

by the normal homotopy class of the normal torus α. See Figure 5.4.
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Figure 5.4: The relation between α̃/γ and gα.
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Chapter 6

Uniqueness of Normal Form for Tori

in M = ]n(S
2 × S1)

In this chapter we will prove that given a homotopy class of tori, a normal representa-

tive exists and it is fairly “unique”. We then prove that a normal representative gives a

notion of local minimal intersection in M . Most of this work was included in [13].

6.1 Uniqueness of Normal Form for Tori

Let Σ be a maximal sphere system and α and α′ be two essential tori in M . The

theorem we would like to prove in this section is the following:

Theorem 6.1. If α and α′ are two homotopic tori in M , both in normal form with

respect to a maximal sphere system Σ, then they are normally homotopic.

The proof of this theorem will be divided into two Lemmata. To begin, we first as-

sume that the images of π1(α) and π1(α′) in π1(M) are conjugate, say to the subgroup

generated by γ.
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Lemma 6.2. Let α and α′ be two homotopic tori, both in normal form with respect

to Σ. Then their transverse orientations may be chosen so that the corresponding

decorated graphs with respect to the axis of γ are equal.

Proof. Let α and α′ be as given. Define, as before, S+=∂X̃+− α̃/γ, S−=∂X̃−− α̃/γ,

and S ′+=∂X̃+ − α̃′/γ, S ′−=∂X̃− − α̃′/γ. We pick transverse orientations on α̃/γ and

α̃′/γ. These transverse orientations determine transverse orientations on S+, S−, S ′+

and S ′− in M̃/γ, and hence + and − labeling of them so that α̃/γ is homologous to

both S+, S−, and α̃′/γ is homologous to both S ′+ and S ′−.

Now, any homotopy from α to α′ lifts to a homotopy from α̃/γ to α̃′/γ. Therefore

we may fix transverse orientations on α and α′ so that α̃/γ and α̃′/γ represent the same

element of H2(M̃/γ;Z). Then, S+, S−, S ′+ and S ′− all represent the same homology

class.

Assume that gα 6= gα′ . Suppose first that T (α̃)/γ 6= T (α̃′)/γ. Then one of them,

say T (α̃)/γ contains an extremal Y, say Y0, not in T (α̃′)/γ.

Consider the valence-2 vertex of Y0 which connects it to the rest of the graph. Let

us call it v. Now, v represents a 2-sphere, which is a component of the boundary of

the 3-punctured sphere P̃ associated to the middle valence-3 vertex of the Y0. This 2-

sphere separates M̃ into two parts. One part contains exactly one of the spheres in S+

and one sphere in S− and the other part contains all of the spheres of S ′+ and S ′− and

all but the one of the spheres of S+ and S−. We will call this latter part M̃0. But then,

S ′+ and S ′− represent zero in H2(M̃/γ, M̃0/γ) and S+ and S− do not. This contradicts

the fact that S+, S−, S ′+ and S ′− represent the same homology class in H2(M̃/γ).

Now we are reduced to the case that α̃/γ and α̃′/γ have the same topological

graphs. We must prove that their orientations may be selected so that the decorations

are equal.
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Suppose first that [α̃/γ] and hence [α̃′/γ] are 0 in H2(M̃/γ). Then each bounds

a compact submanifold of M̃/γ, so the decorations each have either all plus signs or

all minus signs. If they agree, there is nothing to prove. If they are opposite, we may

reverse the orientation on one of them (not changing its homology class, since the class

is 0) to make the signs all agree, and again we are finished. So we may assume that

[α̃/γ] is nonzero in H2(M̃/γ).

We have ∂X̃+ = T1 + · · · + Tm − α̃/γ and ∂X̃− = α̃/γ − U1 − · · · − Un where

Ti∈S+, Uj∈S− and m,n∈Z. Since [α̃/γ] is nonzero, m and n are both at least 1.

We have H2(X̃+, α̃/γ) ∼= Zm−1 = 〈(T1〉⊕ · · ·⊕ 〈Tm〉)/(T1 + · · ·+Tm = 0). This

is a subgroup of H2(M̃/γ − M̃1, α̃/γ), where M̃1 is the component of M̃/γ cut along

α̃/γ that contains X̃−.

In fact, we have

H2(X̃+, α̃/γ) ⊂ H2(M̃/γ − M̃1, α̃/γ) ∼= H2(M̃/γ, M̃1) ,

the latter isomorphism by excision, and under

H2(M̃/γ)→ H2(M̃/γ, M̃1) ,

the homology class [α̃/γ] goes into the subgroup H2(X̃+, α̃/γ) and equals T1 + T2 +

· · ·+ Tm = 0.

Now [α̃′/γ] = [Ti1 + · · · + Tir + Uj1 + · · · + Ujs ] corresponding to the extremal

vertices of the graph that are decorated with plus signs for α̃′/γ. Under

H2(M̃/γ)→ H2(M̃/γ, M̃1) ,

[α̃′/γ] goes to [Ti1 + · · · + Tir ], and must equal 0 since it equals [α̃/γ] in H2(M̃/γ).
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Therefore it contains either all or none of the Ti. That is, in the decoration for the

graph obtained from α̃′/γ, either all the Ti have plus signs or all have minus signs.

Applying the same argument to the minus side (with X̃− in the role of X̃+), we

conclude that for the decoration obtained from α̃′/γ, either all the Ui have plus signs

or all have minus signs. That is, we have

[α̃′/γ] = [εT1 · · ·+ εTm + δU1 + · · ·+ δUn] ,

where ε, δ ∈ {0, 1}.

Suppose that ε = δ = 0 or ε = δ = 1, that is, in the decoration for α̃′/γ all

extremal vertices have either plus signs or minus signs. Then α̃′/γ bounds a compact

submanifold of M̃ , contradicting the fact that [α̃/γ] is nonzero.

If ε = 1 and δ = 0, then the decorations are the same and there is nothing to prove.

In the remaining case, when ε = 0 and δ = 1, we may reverse the orientation on

α̃′/γ to make the decorations equal, and the proof is complete.

Therefore, since the decorations agree also, we have gα = gα′ .

Here we define the notion of being normally homotopic, which is our uniqueness

criterion, as follows:

Definition 6.3. Two tori are said to be normally homotopic if there is a homotopy of

M changing one of the tori to the other one without introducing new intersections on

the sphere crossings, hence through normal, but possibly immersed tori at each level.

Lemma 6.4. For two tori α and α′ normal with respect to Σ, suppose that the corre-

sponding decorated graphs are the same. Then, α and α′ are normally homotopic.

Proof. We will construct a normal homotopy of α̃′/γ in M̃/γ, moving it onto α̃/γ.

This projects to a normal homotopy of α′ onto α in M .
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Figure 6.1: A twist of one of the pieces on a boundary sphere.

Since the decorated graphs are the same, both tori will have the same type of piece

in each P̃ . To describe the normal homotopy, we start at one of the endpoints of the

arc giving the axis of γ.

Let us call the first P on the axis of γ, P1. By normal isotopy, we may move

α̃′/γ∩P1 onto α̃/γ∩P1. On the next P along the axis, say P2, we may move α̃′/γ∩P2

onto α/γ ∩ P̃2 without moving α̃′/γ ∩ (P1 ∩ P2). It may be necessary to move α̃′/γ

on the other components of P2 using a “twist”. Figure 6.1 illustrates such a twist.

We continue along the axis of γ in this way, until we reach Pn that meets P1.

The isotopy moving α̃′/γ ∩ Pn onto α̃/γ ∩ Pn can be accomplished without moving

α̃′/γ ∩ (Pn ∩ P1), since if not, α̃′/γ would be a Klein bottle.

Now, we move to the finite tree branches on the axis of γ and continue moving the

pieces of α̃′/γ in each P corresponding to the Y ’s on branches, one after the other,

fixing the already coinciding intersection circles we start with. Again, we might have

the situation in Figure 6.1, so we might need to twist one intersection circle to make the

pieces coincide. After a sequence of such homotopies we eventually reach an extremal

Y, which must have one disk piece from each torus, one of the pieces with a twist,

perhaps as in Figure 6.2. Now, if we fill in the boundary spheres in this P with 3-cells,

we will obtain a 3-ball, and by an isotopy we will be able to move one disk piece to the

other one without moving boundary. Regarding the 3-cells as points, this determines

an element of the braid group of two points in the 3-ball. This group is of order 2. But
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Figure 6.2: A disk piece and a twisted disk piece.

since the decorations are the same, the braid actually lies in the pure braid group of the

3-ball, which is trivial. So the disk pieces are isotopic relative to the boundary of P .

We observe that at each stage of each of these isotopies, we have a normal torus

because each piece only moves within a single P . As the last step, we take the com-

position of these isotopies and project it into M to see that the two tori are normally

homotopic. Since self intersections are possible, at some levels we might have im-

mersed normal tori during this final homotopy.

Now the proof of the Theorem 6.1 will be clear:

Proof of Theorem 6.1. Let α and α′ be two homotopic normal tori. We start with

Lemma 6.2 to see that two tori have the same decorated graphs and continue with

Lemma 6.4 to conclude that they are normally homotopic.

6.2 The Minimal Intersection

By the intersection number of a torus α we will mean the number i(α,Σ) of compo-

nents of intersection of α with spheres of Σ when the intersection is transversal. From

now we assume that the intersections with spheres of Σ are all transversal. As a result

of the two main theorems in the previous chapters, we obtain the following:
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Corollary 6.5. If a torus α is in normal form with respect to a maximal sphere system

Σ, then the intersection number of α with any S in Σ is minimal among the represen-

tatives of the homotopy class [α] in each P .

Proof. Let i(α, S) denote the number of components of α∩S. Suppose α is normal but

there is a torus α1 which is homotopic to α with i(α1, S) < i(α, S). Then, by Theorem

4.2, α1 is homotopic to a normal torus α2 with i(α2,Σ) ≤ i(α1,Σ). Now, by Theorem

6.1, any two homotopic normal tori are normally homotopic, which implies i(α, S)=

i(α2, S) ≤ i(α1, S)< i(α, S), a contradiction. Therefore i(α, S) was minimal among

the tori in [α].
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Chapter 7

Understanding Dehn Twist

Automorphisms of the Free Group via

Normal Tori in M = ]n(S
2 × S1)

7.1 Intersecting Tori in M

We now consider two intersecting tori in M and from now on always use normal

representatives whenever a maximal sphere system has been chosen. We also require

the essential tori not to bound 3–balls in this chapter. An example of an intersecting

essential pair of tori is illustrated in Figure 7.1.

We know that each homotopy class of tori in M gives an equivalence class of a

Z–splitting of Fn. The dual tree in M̃ corresponding to such a splitting is called Bass-

Serre tree and hence we will have a Bass-Serre tree corresponding to each homotopy

class of tori. Given an essential embedded torus α in M , the image of π1(α) under the

homomorphism induced by the inclusion i : α → M is an infinite cyclic subgroup of

π1(M), defined up to conjugacy. These are Z–subgroups of π1(M). Two Z–splittings
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Figure 7.1: Two thrice-intersecting tori α (in black) and β (in red) in ]3(S2 × S1).
Here β intersects α twice nontrivially and once trivially whereas α intersects β once
nontrivially and twice trivially.
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correspond to two tori and the Z–subgroups of π1(M) corresponding to these tori

act on the Bass Serre trees of each other as elliptic or hyperbolic automorphisms.

This action is by multiplication from the right. Recall also that given two elementary

Z–splittings A1 ∗C B1 (or A1∗C) and A2 ∗C2 B2 (or A2∗C2) where C1 = 〈c1〉 and

C2 = 〈c2〉, the element c2 is said to be elliptic in the Bass-Serre tree of the first splitting

if it is contained in a conjugate of A1 or B1 and called hyperbolic otherwise. These

definitions also match with the way these automorphisms act on Bass-Serre trees:

Definition 7.1. Let A1 ∗αB1 (or A1∗α) and A2 ∗β B2 (or A2∗β) be two Z–splittings of

Fn corresponding to tori α and β. The translation length of α in the Bass-Serre tree

Tβ of the splitting corresponding to β is defined as

min
{
d(α(x), x) : x ∈ Tβ

}
.

We will denote this length by `β(α).

It is clear that `β(α) > 0 when α is hyperbolic in Tβ and zero if it is elliptic.

Depending on the action of the generator of the Z subgroups of π1(M) correspond-

ing to each torus, we have three types of splittings: hyperbolic-hyperbolic, hyperbolic

elliptic and elliptic-elliptic.

Definition 7.2. We will say that an intersection between two tori is trivial in one torus

if it bounds a disk in that torus.

7.2 Understanding Out(Fn) via Intersecting Tori

7.2.1 Dehn Twist on a Surface as a Motivation

The following definitions are explained in detail in [10]
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Figure 7.2: A view of a Dehn twist.

Definition 7.3. Consider the annulus A = S1 × [0, 1]. To orient A we embed it in the

(θ, r). plane via the map (θ, t) 7→ (θ, t + 1), and take the orientation induced by the

standard orientation of the plane Let D : A 7→ A be the twist mapof A given by the

formula D(θ, t) = (θ + 2πt, t).

The map D is an orientation-preserving homeomorphism that fixes ∂A pointwise.

Note that instead of using θ + 2πt we could have used θ − 2πt. Our choice is a left

twist,while the other is a right twist. Figure 7.2 gives a pictorial description of the twist

map D.

Now let S be an arbitrary (oriented) surface and let α be a simple closed curve

in S. Let N be a regular neighborhood of α, and choose an orientation preserving

homeomorphism φ : A 7→ N . We obtain a homeomorphism Dα : S 7→ S, called a

Dehn twist about α, as follows:

Dα(x) =


φ ◦ T ◦ φ−1(x), if x ∈ N

x, if x ∈ S −N.

In other words, the instructions for Dα are: perform the twist map D on the annulus
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α

β
Dα

Dαβ

Figure 7.3: Another view of a Dehn twist.

N , and fix every point outside of N . The Dehn twist Dα depends on the choice of N

and the homeomorphism φ. However, by the uniqueness of regular neighborhoods the

isotopy class ofDα does not depend on either of these choices. What is more, Dα does

not depend on the choice of the simple closed curve α within its isotopy class. Thus,

if α denotes the isotopy class of α, then Dα is well-defined as an element of Mod(S),

called the Dehn twist about α. Check the Figure 7.3 for another view of a Dehn twist.

7.2.2 Dehn Twist Automorphisms of Out(Fn)

Given a Z–splitting of Fn as an amalgamated free product Fn = A∗〈c〉B or as an HNN

extension Fn = A∗〈c〉 of the free group, A Dehn twist automorphism is an element of

Out(Fn) induced by the following automorphisms:

A ∗〈c〉 B : a 7→ a for a ∈ A A∗〈tct−1=c′〉 : a 7→ a for a ∈ A

b 7→ cbc−1 for b ∈ B t 7→ tc

54



7.2.3 Dehn Twist Along a Torus in M

We would like to start by defining what a Dehn twist along a surface in a 3–manifold

is, which is similar to the definition of a rotation along a 2–sphere:

Definition 7.4. Let S be a two sided surface in M , and γ a loop in π0(Homeo(M)).

Then the twist about S is a function D where:

D(z, s) = (γs(z), s),whenever (z, s) ∈ S × I

D(x) = x, otherwise .

Twists about tori in M in the meridinal direction correspond to composition of

rotations along 2–spheres, which are homeomorphisms of M isotopic to the identity.

Twists about tori in the longitude direction on the other hand, correspond to slide

homeomorphisms. We can describe these homeomorphisms using tori as follows: we

split a component of M − α along its sphere boundary and fill inside the sphere with

a 3–cell. Then we slide this new 3-ball along a curve which connects the ball to itself

in the longitude direction. We slide the 3-ball until we make one complete loop and

replace the 3–cell with the component of M − α back.

For our purposes, we will describe the image of homotopy class of a torus β under

a Dehn twist along α denoted by Dα(β), in the universal cover M̃ when two tori are

intersecting. This description will change depending on the type of the intersection.

First we take two normal representatives α and β from α and β, respectively, where

bold letters denote the homotopy classes from now on.

Trivial-nontrivial intersections:For each trivial intersection of β with α in M , the

intersection circle bounds a disk in β. To describe the image of such intersection disk

under a twist about α, we use surgery in M̃ . If this intersection circle is nontrivial in
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Figure 7.4: Dehn twist when one intersection is trivial in one torus (red) and nontrivial
in the other one.

α, we take a lift of the intersection disk in M̃ in a lift α̃ of α, cut it off and glue another

disk to its boundary which follows α̃. An example for a lift of this type of intersection

is the first intersection given in Figure 7.5 where the black torus is a lift of α and the

red one is a lift of β. Images in M̃ after twisting once are given in Figure 7.6.

Trivial-Trivial intersections: For each trivial intersection circle of β which is also

trivial in α, we will follow a similar procedure, given again by a surgery in M̃ . We

first fix lifts α̃ and β̃ of α and β, respectively. A twist about α will lift to a twist

about the chosen lift of α. To follow the image of the lift of intersection disk under

a twist about α̃, we first take an arc in M̃ connecting the lift of the intersection disk

to another representative of itself located in the next fundamental domain of α̃. Then

take two copies of the intersection circle in β̃, cut β̃ along these. We cap off the one

whose image in M bounds a disk in β with another disk, and attach to the second
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Figure 7.5: Lifts of two intersecting tori, shown in two copies of the fundamental
domain of a lift of a black torus in M̃ .

Figure 7.6: Image of the intersections given in Figure 7.5 under the twist about the
black torus once.
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Figure 7.7: A schematic picture of the image of the red torus under a twist of the black
torus in M̃ (the upper tube comes from a different lift if considered in M̃ ).

one an annulus which follows the arc and is glued to the capped off part of the next

representative of the intersection circle. Observe that such annuli might intersect lifts

of some spheres when they are following the arc in fundamental domain of α̃ but since

twist about α has a support in a neighborhood of α only, so has a twist about a lift of

α. Since such annuli occupy only a part of a neighborhood of α̃, they may not cross all

sphere intersections α̃ makes. An example for such a (trivial-trivial) intersection circle

is given in Figure 7.7. Another example of a same type of intersection is represented

by the second intersection given in Figure 7.5. In this latter example, the intersection

circle is trivial in both tori and α̃ is black and β̃ is red. Describing its image in a

fundamental domain under a twist about α̃ once requires the same type of surgery and

this image is given in Figure 7.6 in purple. Sphere intersections were not depicted in

these pictures.

Nontrivial-Nontrivial intersections: These are described the similar way as before,
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Figure 7.8: Two copies of a nontrivial-nontrivial intersection in M̃

Figure 7.9: The image of the intersection in Figure 7.8 after twisting once.
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but to see an example of such intersections, we refer to the Figures 7.8 and 7.9

Lemma 7.5. A slide homeomorphism is a Dehn twist along a torus when the sliding

loop is embedded.

Proof. Let M ′ be the manifold obtained from M after cutting out a sphere and filling

it with a ball, B. As explained before, a slide homeomorphism is an isotopy of M ′

which moves B along a loop connecting B to itself. In B, take a disk D1 with radius

1, which is perpendicular to the sliding loop. ∂D1 sweeps out a torus α, bounding a

solid torus X , during the isotopy. Now, take another disk, D2 of radius 2, containing

D1 as its disk of radius 1. Call the torus swept out by α′ and the solid torus swept out

by X ′. So X is a concentric solid torus to X ′ and the closure of X −X ′ is α× I . The

isotopy of M ′ that moves B rotates all of X around the core circle, so at time 1 we

have identity on X . We can extend the isotopy so that nothing outside X ′ moves. The

homeomorphism we have is one which is identity outside α × I , hence a Dehn twist.

The trace of this Dehn twist is some longitude of the solid torus X .

When we fix coordinates on X as D1 × S1, and make the isotopy of B rotate X

in the S1 factor, then the trace of the Dehn twist is the loop that a point on ∂D1 traces

out. This is the longitude `. But a different choice of coordinates on X will change the

trace to `+ k ·m, where m = ∂D1 is a meridian of X , and k is an integer. This differs

from the original slide by k rotations in ∂B. Since the rotation has order 2, when k

is even we have an isotopic homeomorphism of M , while when k is odd, the result

differs by a rotation in ∂B, so it may or may not be isotopic to the other slide.

Lemma 7.6. Dehn twists about homotopic tori are isotopic.

Proof. This is clear from the Lemma 7.5, since Dehn twist along a torus corresponds

to a slide homeomorphism. When two tori are homotopic, the longitude curves of
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them are homotopic, and by the lemma mentioned, slide homeomorphisms along these

curves, and hence the corresponding Dehn twists are isotopic.

Now, the following lemma is crucial to describe the Dehn twists along a homotopy

class of a torus:

Lemma 7.7 ([6]). Let α and α′ be two homotopic tori. Then we have Dα = Dα′ as the

corresponding Dehn twist automorphisms.

Proof. We need to show that the map Dα does not depend on the choice of the non-

trivial (longitudinal) direction. This is true since any two choices for the non-trivial

direction differ by a Dehn twist in the meridonal direction, which is in the kernel of

the homomorphism MCG(M) → Out(Fn) as remarked before. Hence the induced

element of Out(Fn) is well-defined.

If α and α′ are isotopic, so are Dα and Dα′ . However, homotopic tori are not

necessarily isotopic but this will not be a problem since the homotopy is described

by passing one nested family of tubes through the other (from existence theorem 4.2),

and hence it is supported inside a 3-ball in M . Since the homotopy between two tori

extends to a homotopy equivalence of the 3-ball, the action of Dα and Dα′ on loops in

M is the same and therefore the lemma holds.

7.2.4 Possible Applications

We have the following conjecture:

Theorem 7.8 (Conjecture). Given a pair of hyperbolic-hyperbolic Z–splittings α and

β, and integers k, l ≥ N , where N is a finite integer, the group 〈Dk
α, D

l
β〉 is a free

group of rank 2.
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The existence of free groups gives a dynamical property of the subgroup structure,

in our case, of Out(Fn) the following way: Given a generating set of a finitely gen-

erated group, the growth rate of a group tells us the number of elements that can be

written as a product of a given number of elements from the generating set, and much

about the geometry and dynamics of a group and its elements can be learned from the

growth rate. The exponential growth rate ω(G,S) of such a group G with a generating

set S is given by:

ω(G,S) = lim
n→∞

n
√
|BS(n)|,

where

BS(n) = {g ∈ G : `S(g) ≤ n}.

Here, the length `S(g) is the least integer k so that the g can be expressed as a product

of k elements from S.

If ω(G,S) > 1 then G said to have exponential growth. In particular, in a free

semi group generated by two elements, the number of elements of length n is the same

as the number of ways to form an n-letter word using the generating set. As a result,

any finitely generated group which contains a free semi group on two generators has

exponential growth. It is possible to take the infimum over all generating sets in the

above formula, which is denoted by ω(G). Now, if ω(G) > 1,G is said to have uniform

exponential growth. Finitely generated subgroups of the general linear group have this

property, which in that setting is equivalent to being not virtually nilpotent [9].

It is also known that homotopy classes of homeomorphisms of surfaces (mapping

class groups) and analogous groups of automorphisms of free groups have uniform

exponential growth [1]. In the mapping class group setting, the question of whether

finitely generated subgroups of mapping class groups have uniform exponential growth
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rate was answered positively by Mangahas in [22]. The main theorem of Mangahas in

[22] states that the subgroups which are not abelian have uniform exponential growth

and minimal growth rate is bounded below by a constant depending only on the sur-

face. The Tits Alternative for the mapping class groups proven by Ivanov in [18] com-

bined with the result of Birman, Lubotzky and McCarthy in [4] saying that any solvable

subgroup of mapping class group is virtually abelian gives an idea of where to look for

free groups inside all finitely generated subgroups of mapping class groups. Mangahas

uses the classification of subgroups of mapping class groups due to Ivanov [18] along

with concepts and techniques such as subsurface projection in the curve complex [23],

minimal translation of pseudo Anosovs [24] and results of Fujiwara [11], and Hamidi-

Tehrani [14] (completing her arguments in the details when finding a uniform number

for the exponential growth of free subgroups of rank 2). Unfortunately, some of these

crucial concepts are not fully developed in the Out(Fn) setting, and some others are

far more complicated, so further techniques need to be developed and more cases need

to be investigated.

Since Out(Fn) satisfies the Tits Alternative [3] and virtually nilpotent groups have

polynomial growth, it will be sufficient to look for the free groups of rank 2 in non

virtually abelian subgroups.

Thurston in [32] says that, in a group generated by two Dehn twists about two

filling curves on a closed surface with genus g ≥ 2, the groups generated by twists

with powers greater than a finite number N is free of rank 2 and the elements from

these groups which are not conjugate to powers of Dehn twists themselves are pseudo

Anosov. Adapting this theorem to Out(Fn) to generate fully irreducible elements and

to find rank 2 free groups, Clay and Pettet in [7] used an algebraic definition of a Dehn

twist automorphism relative to a Z–splitting of the free group and obtained a number

N for the minimum power of twists, yet this number N depended on the choice of the
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twists:

Theorem 7.9 (Clay-Pettet [7]). Let D1 and D2 be two Dehn twist automorphisms

corresponding to two hyperbolic-hyperbolic Z–splittings of Fn. Then, there exists

N = N(D1, D2) such that, for k, ` ≥ N , 〈Dk
1 , D

`
2〉 ∼= F2.

To find a number N which is independent of the choice of Dehn twists, it is nec-

essary to leave the 1-dimensional model for Out(Fn) since the dependence in [7] was

due to the necessity for picking a basis of Fn in the proof. To prove the conjec-

ture, we would like to understand the hyperbolic-hyperbolic Z–splittings of Fn as two

hyperbolic-hyperbolic intersecting tori in M and instead of working with Dehn twist

automorphisms, we would like to use the topological Dehn twists along corresponding

tori in M . All these correspondences are up to homotopy classes of tori and equiv-

alences of splittings, and hence we would like to work with a normal representative,

which gives a minimal intersection with the spheres in M . We need to use the normal

representative to bound the intersection number of a twisted torus with the spheres, so

that a classic Ping-Pong argument would yield a free group.
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