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GLOSSARY OF TERMS

The definitions of a selected list of technical terms are included in this glossary to

clarify their intended meaning and usage.

Homogeneous system

Intermediate parts

SCV

WIP

Basestock level

A system which has the same basestock level and the
same processing time distribution at all the stages.

Parts that are stored in the stores on the output side of the
stages ahead of demand. These are parts which have
been processed at one or more stages. These are different
from purchased parts that are directly used in
intermediate processing steps in some manufacturing
systems. '

The squared coefficient of variation which is defined as
the ratio of the variance of a random variable to the
square of its mean. o

Expanded as work-in-process, WIP is defined as the
orders with or without parts that await to be processed at
the input side of a stage.

This policy parameter determines the maximum planned
inventory of an item at a stage.

xii



" CHAPTER 1
INTRODUCTION

Manufacturing systems have existed for a long time. A pragmatic purpose of a
manufacturing system is to meet customef demand for khigh quality and reliable products at
minimum cost. Production of goods involves interaction among several components, both
external (e.g. suppliers) and internal (e.g. machinés and material handleré) to the
manufacturing system which have to work with each other to achieve this common goal.
Competitiveness in the global market is forcing manufacﬁn‘ing organizations to be very
flexible with respect to demand and product mix changes to just stay in .business. Insucha
dynamic environment, modeling of the underlying production systems becomes critical for

their effective design and control.

- During the lifetime of any manufacturing system, the firm responsible for it goes
through many phases of decision making, from an analysis of initial feasibility through
detailed design of the facility; installation and startup; and final obsolescence of the facility
(Suri, 1988). Many decisions have to be made on a routine basis in any manufacturing
facility such as those related to cépacity, amount of tooling and fixtures, and amount and
iocation of storage spaces. Performance evaluation techniques help the decision-maker in
making these key decisions during the design phase as well as the operational phase of these

- systems (Viswanadham and Narahari, 1992). Also, these techniques provide an insight into



the behavior of the manufacturing system and help us gain a better understanding of the

dynamics of the system.

In this research, we consider discrete part manufacturing systems; items are
produced as discrete units in these systems. Such systems are commonly found in

mechanical, electrical, and electronics industries.

1.1 PERFORMANCE EVALUATION OF MANUFACTURING SYSTEMS

Performance evaluation involves the development and solution of models for
determining the values of the performance measures that can be expected from a given set
of decisions (Suri et al., 1993). During the last several years, many researchers have
contributed towards the understanding of complexities present in manufacturing systems
through the use of a variety of modeling tools such as simulation, Markov chains, Petri nets,
and queueing. To a great extent, the previous efforts focused on a limited set of issues
within a single model. To support decision making in today’s dynamic environment, a
larger set of issues needs to be included within a single model so that the impact of their
interactions on the total system performance can be evaluated. Hence, performance
evaluation of manufacturing systems continues to remain a challenging and active research

arca.

There are several schemes for classifying performance evaluation models. A
commonly used scheme in the context of discrete part manufacturing systems is to classify
them as simulation and analytical models. Simulation models represent the events that

occur as a system evolves by a sequence of steps in a computer program. The probabilistic



nature of the events is modeled by sampling from distributions representing the timing and
pattern of occurrence of such events. Analytical models describe the system using
mathematical or symbolic relationships (Buzacott and Shanthikumar, 1993). These
analytical models are also called aggregate dynamical models (Suri et al., 1993) since they

capture the stochastic nature of the systems in an aggregate manner.

Analytical models are increasingly being used in industry for rapid decision makingv
purposes (Segal and Whitt, 1989; Suri and de Treville, 1993). Their main advantages
compared to simulation are modeling ease and speed. However, many assumptions are
required to obtain tractable analytiéal modefs. Hénce,. these models are appropriate for
rapid and rough cut analysis (Kamath, 1994). 'Many publications have appeared that
suggest ways of exploiting the complementary nature of the analytical and‘ simulation
approaches. The basic idea is to combine the speed of analytical models with the detailed
modeling capability of simulation. For example, analytical models can be used to quickly .
eliminate a large number of design alternatives to provide a handful of potential ones which
can then be investigated in detail by simulation (Suri and Diehl, 1987;_ Suri and de Treville,

1991).

The develépment of analytical models for manufacturing began in the late fifties
with the seminal works éf Jéckson (1957) for job shops and Koenigsberg (1959) for cyclic
systems. These papers were followed by numerous research publications that expanded this
area. A comprehensive review of the develépments in the aﬂalytical modeling area is
contained in Suri and de Treville (1993). Recently, several textbooks have been published

that focus on manufacturing systems modeling and analytical modeling in particular (Askin



and Standridge, 1993; Buzacott and Shanthikumar, 1993; Gershwin, 1994; Viswanadham

and Narahari, 1992),

1.2 MOTIVATION BEHIND THIS RESEARCH

The application of Queﬁeing theory in industry is not as widespread as it should be
because many of the early models contained assumptions which were viewed as too
restrictive by many industries. Research in the last decade has Been largely devoted to
obtaining approximate solutions to more exact models, and as a result, there has been a
resurgence of research in queueing applications in manufacturing systems. Also, quéueing
models seem to be gaining a wider acceptzince in industry mainly due to the accessibility to
such models via software packages like MPX (Suri et al., 1‘995). Typically, in a queueing
network model, customers/pérts visit several nodes/workstations before they depart the
system. These networks model manufacturing systéms where parts are hade-to-order, and
an order typically visits various nodes/workstations as required by the sequence of
operations for that order. These types of models are well suited for dealing with capacity
and congestion issues. However, in many manufacturing systems, shorf—term capacity
issues are often tackled by holding an inventory of finished goods and intermediate parts at
the output side of workstations to counter the demand. Queueing models do not consider
such planned inventories and usually assume an‘unlimited supply of raw materials and zero

intermediate parts.

Inventory theory has been studied since 1913 with the development of the famous
EOQ model by F.W. Harris. Ever since, a vast array of models has been developed that

include many possible complexities and less restrictive assumptions compared to the earlier



models; numerous books have been published on this subject. Essentially, the main
objectives of these models have been to determine optimal ordering quantities as well as
holding inventories. Traditionally, inventory models have ignored capacity and congestion

issues, i.e., these models assume that the production system has infinite capacity.

Recently, Lee and Zipkin (1992), Zipkin (1995a, 1995b) and Buzacott and
Shanthikumar (1993) have fieveloped models that include congestion and capacity issues as
well as planned inventories of both intermediate parts and finished goods. These models
are suitable for' make-to-stock systems which are qﬁite prevalent in many discrete part
manufacturing industries. Several unanswered questions remain with respect to the

modeling of make-to-stock systems which makes it an active research area.

The aforementioned models of production-inventory systems fit into the broader
framework of supply chain models. A supply chain is a network of facilities that performs
the functions of procuremenf of material, fransfoi’r‘n'aﬁon of rﬁaterial to’ intermediate and
finished products, and distribution of finished products to customers (Lee and Billington,
1993). There have been many significant developments in the supply chain management
area, and they have contributed to the success of many ﬁompanies (Lee and Billington,
1995). However, many of the 'supply' chain models that have been developed do not include
the congestion effects due to limited capacity. In fact, Lee and Billiﬁgton (1993) mention
this as a potential research issue that requires immediate attention. Models that can
simultaneously handle queueing and inventory issues would be extremely useful in

designing and managing a supply chain.



1.3 THE PROBLEM STATEMENT

It is evident that the analysis of production-inventory systems is very crucial to the
success of several manufacturing systems. Its importance to supply chain has been clearly
shown in the earlier séction.‘ Though there is abundanf literature on production-inventory
systems, the existing modéls ‘do not adequately address the issues of inventory and
capacity/congestion within a single modeling framework. Tﬁis res”(ee_'lrch has addressed these
issues within a single framework along with some reliability issues. The problem statement
can be described as “developing analytical models for production-inventory systems that

simultaneously address inventory, congestion/capacity and reliability issues.”

1.4 THE PROPOSED RESEARCH AREA

The main focus of this research is the study of production systems with planned
inventories. The approach developed builds on the baiametric de(;omposition approach that
has proven to be quite successful in dealing with queueing models of manufacturing
systems. This approach is described in detail in Chapter II. Lee and Zipkin (1992) in their
study of the tandem queues with planned inventories, used an approaéh developed by
Svoronos and Zipkih (1991) for the analysis Qf multi-echelon inventory systems. The
multi-echelon models impose many restrictions on Lee and Zipkin’s overall approach and
so far, they have examined only a resj:l'icted class of systems. Our abproach seems to be
more robust and the systems of Lee and Zipkin (1992) become a subset of the wider range

of systems that can be modeled by our approach.

The set of performance measures which we calculate is similar to that used by Lee

and Zipkin (1992), Zipkin (1995b) and Buzacott and Shanthikumar (1993). These measures



include the expected number of backorders at each stage, the expected inventory level at

each stage and the expected intermediate inventory in the systerh.

1.5 OVERVIEW OF THE DISSERTATION

The remainder of this dissertation is presented in sfx chapters. Chapter 2 reviews
the various researqh efforts that focus on the use of queueing models in modeling
production/inventory systems.  This chapter also summarizes some key research
contributions related to the parametric decomposition approach, which is used in the
analysis of queueing network models. This chapter also .includes a brief introduction to the
area of performability analysis, a c_ombined analysis of pérformance and reliability and
some relevant literature }on the use of this approach in manUfaCtt‘ning systems. Research
goals, research objectives and the research plan are outlined iin Chapter 3 along with the
scope and limitations of this study. Chapter 4 presents the proposed decomposition
approach in detail for a tandem conﬁguraﬁon which forms the basis for the analysis of more
complex systems. This procedure is then extended to include géneral arrivals and general
service times which is outlined in Chapter 5. Chapter 6 takes the framework developed in
the previous chapter and applies it to model systems that ‘include other manufacturirig
féatures, vsu<‘:h as multiple servers, batch service, multiple part types, énd failures of
machines. Detailed numericyal investigations are also pfesehted in this chapter. Chapter 7
discusses the method for‘ analyzing feed-forward systémS‘ and tandem systems with
feedback. Chapter 8, the concluding chapter, summarizes the main research contributions

along with some directions for future research.



CHAPTER I1
LITERATURE REVIEW

2.1 CHAPTER OVERVIEW

In this chapter, we present a révi'e’w of the literature on the analysis of production-
inventory systems and the approximation methods available for analyzing queueing
networks. The contributions that served as the foundation for the current research are those
by Lee and Zipkin (1992), Buzacott and Shanthil;umar (1993) and Whitt (1983). Section
2.2 briefly discusses the use of queueing models in‘ analyzing production-invéntory systems.
The next section details the methodology of Lee and Zipkin (1992) used in the evaluation of
tandem make-to-stock systems with Poisson arrivals and expohential processing times.
Section 2.4 discusses the various single-stage production-inventory systems éoalyzed by
Buzacott and Shanthikumar (1993). It is then followed by a review of the parametric
decomposition approach for analyzing ciueueing networks (Whitt, 1983). The concluding

section discusses the concept of performability and some relevant literature in that area.

2.2 QUEUEING MODELS IN PRODUCTION-INVENTORY SYSTEMS

Queueing models are well suited for studying make-to-order systems. In queueing
networks, orders/customers visit nodes/workstations before they depart the system. In these
type of networks, the congestion measures model the waiting before service/processing at a

node/workstation. . Modeling the availability of raw materials and intermediate parts



required for processing is not an issue, because the models assume an unlimited supply of
raw materials and no intermediate parts. On the other hand, inventory models do not

usually model the effects of congestion and assume capacity to be unlimited.

The recognition that productidn—inventory systems can be modeled as queueing
systems is attributed to Morse (1958). He treated the production system as equivalent to an
infinite number of parallel servers. He used an M/G/ec model if backorders were permitted.
With lost sales he used an M/G/Z/Z model, where Z is the maximum stock at the store.
Sherbrooke (1968) used a similar approach called the METRIC approach in which the.
production-inventory system is ﬁodeled as an M/D/oo’ system, and exact expressions for
backorders and inventory distributions are obtained. Queueing results have also been used
in production-distribution systems and multi-echelon inveﬁtory systems (Federgruen, 1993;
Muckstadt and Roundy, 1993). Zipkin (1984) used‘ a combination of standard inventory
models and queueing sub-models to determine the batch sizes and safety stocks in a multi-
item batch production system. Despite the enormous literature on production-inventory
systems (Altiok 1989; Altiok and Ranjan, 1995; Altiok and Shjue, 1994; Gavish and
Graves, 1980; Goyal and Gunasekaran 1990), queueing models have seldom been used for
performance evaluation that focuses on modeling congestion due to limited capacity in such

systems (Buzacott and Shanthikumar, 1993).

So far, the major contributions to the performance evaluation of production-
inventory systems using queueing theory are due to Zipkin, Buzacott, and Shanthikumar.
Lee and Zipkin (1992) used queueing results to develop an approximation for the

performance evaluation of a tandem line with planned inventories, exponential processing



times, and Poisson demand. Zipkin (1995b) extended th.is work to tandem queues with
feedback and planned inventories. Zheng and Zipkin (1990) and Zipkin (1995a) developed
a queueing model to analyze the value of centralized inventory information. Buzacott and
Shanthikumar (1993) present several exact and approximate modéls for a variety of single-
stage, make-to-stock systerﬁs. The next few‘ sections summarize these contributions in
some detail, because of their importance to the research carried out in this dissertation

effort.

2.3 LEE AND ZIPKIN’S MODEL FOR TANDEM QUEUES WITH PLANNED
INVENTORIES

The focus of Lee and Zipkin (1992) was on taridem make-tq-stock systems. Arriving
customers demand a final product, and the demand is satisfied from the finished goods
inventory, if available. Lee and Zipkin (1992) focused on the» special case where the
customer demand process is Poisson; the replénishment policy is one-for-one; and the
processing times are mutually independent and exponentially distributed with the same
distribution» at each stage. They assumed that the system is controlled by a stationary
demand-pull or basestock policy. A policy of this kind is specified by the non-negative,
integer parameters S;, j =1‘, 2, , J. The quantity S; is called the basestock level for stage j,
and it determines the maximum planned inventory at the output side of stage j. S; denotes
the maximum finished goods inventory. Each stage can be thought of as operating its own
local production-inventory control system; a customer demand is viewed as occurring at
stage J, and a demand at each stage immediately triggers a demand at its predecessor; thus,

each customer demand creates a demand at every stage. Stage J (the last stage) fills the
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customer demand if there is a finished unit available; otherwise the demand is backordered.
The same process occurs at each stage; if stock is available, the demand is filled, else a

backorder is logged.

The customer demand, if fulfilled, triggers an immediate order to replenish the
inventory. This order then looks for a part ‘in the previous stage’s output and if available,
goes and waits for processing. If ‘a part vis not available, the order waits for a part to arrive -
from the previous stage. The queue at the processing stage is assumed to be infinite. Units
after completing processing move to the output buffer or to the subsequent queue in
response to the démands at the present stage. If there arev‘outstanding backorders at a stage
when it completes processing of a unit, that unit is immediately released to fulfill one of the
backorders. In effect, each stage j in the tandem line first works down its backorder log and

then works to fill its output buffer to the basestock level S;.

If all S;’s are zero, the system operates just like an ordinary make-to-order tandem
line. This special case can be solved exactly using Jackson’s (1957) product-form result.
Hybrids of make-to-stock and make-to-order systems, where customer specific features are
added to units at some intermediate stages, can be represented by constraining certain of the
S;’s to be zero. Tfaditionél models of multi-echelon' systems do not éxplicitly consider
limited production capacities and congestion. The properties of Jackson (1 957) network are
violated whenever ariy of the S;, j < J are greater than zero, and it becomes difficult to obtain
an exact solution. Lee and Zipkin (1992) cép‘mre ‘the congestion measures from the
queﬁeing model and then use an approximation scheme developed by Svoronos and Zipkin

(1991).
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2.3.1 The Approximation of Svoronos and Zipkin

The approximation used by Lee and Zipkin employs one of the multi-echelon
models developed by Svoronos and Zipkin (1991). It is thus important to understand the

technique of Svoronos and Zipkin for modeling a multi-echelon inventory system.

1
[=—0O= :

Figure 2. 1: A Multi-Echelon Inventory System

A multi-echelon inventory syStem consists of several facilities or locations whose
supply-demand relationships form a hierarchy. There is a single location at the highest level
of the hierarchy, called the central depot, whose orders go to an outside store. The lowest
level Qf the hierarchy are the leaves of the tree, where exogenous demands occur. Figure
2.1 illustrates a multi-echelon system. Stage 1 supplies stage 2 and stage 3. Stage 2 in turn
supplies stages 4 and 5. The demands océur at the stages 3, 4, and 5. Demands consume
products at the leaves, and in turn the leaf stages place a demand at the predecessor stages
which wiﬂ fulfill this demand if they have inventoryv. A predecessor stage in turn will
trigger a demand to its predecessbr stage and this process continues till the central depot.
The central depot in turn orders from the outside source and it is assumed that the outside
source has ample stock. The time to fulfill an order without any delay to its successor is

called the transit time. These transit times can be production times or just transportation
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times. Svoronos and Zipkin (1991) extend their approach of a single location model to
multi-echelon systems. The following procedure is used to analyze the single location

model.

Let / denote the inventory at the Stage; B - the number of backorders; X - the number
of outstanding orders which is the sum of the replenishment orders and backorders at the

stage; and S the basestock level at the stage.
K=S-1+B ' (2.1)

Let T denote the transit time at the stage; D represent the delay which is the time it
takes to obtain an order from the outside source (or predecessor stage in multi-level
systems); and L denote the total lead time at the stage. Let F7p, VF p and F; denote the
distributions of the transit time, the delay and the lead time, respectively. Let the demand at
this single stage location be a Poisson process with rate 4. A one-for-one replénishment
policy with a basestock level S, is assumed; i.e., every order consumed generates a demand

for replenishment.

The steady state behavior is characterized by the densities of 7, B and K. The other
performance measure of interest is the time delay for a backorder. Some of the key results

from the Svoronos and Zipkin (1991) paper are presented next.

The variable K has the same distribution as the lead-time demand, the number of
demands in a random time with distribution F; 7. The variable B has the same distribution as

~ the customer-delay-demand, the distribution denoted by Fj,.

This single location procedure is applied recursively, starting at the root stage (the

highest echelon) and working down, to analyze the entire system. At the root stage L =T
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~and thus Fy is known. At any other stage j € Successor (k) F =F, *FT]_ where *

denotes convolution. For example, in Figure 2.1, the distribution of K at stage 2 is

F, =F, *F,. Ifall the transit times follow phase-type distribution and the demand is

Poisson, the lead-time distribution which is‘-a convolution of two phase-type distributions is
also a phase-type distribution.
2.3.2 Application of Svoronos and Zipkin’s method in the analysis of tandem queues

with planned inventories.

The tandem system is a special case of the multi-echelon system. Stage j is first

. ~2) where z1s

treated as an M/M/] queue in isolation. The average sojourn time is %
' J

the processing rate at stage j and A is the demand rate. After determining the average
sojourn times at each of the stages individually, the approach of Svoronos and Zipkin
(1991) is applied to obtain the distribution of backorders and inventories at each stage. As
the sojourn times are exponentially distﬁbuted they become the transit times in the multi-
echelon inventory model. Lee and Zipkin (1995) used a similar idea for the analysis of
sequential refinement systems. Zipkin (1995b) extended this procedure to model tandem
queues with feedback. Each production stage occasionally produces a defective unit, which

must then repeat processing, return to an earlier stage, or be discarded.

24 SINGLE-STAGE MAKE-TO-STOCK SYSTEMS

Buzacott and Shanthikumar (1993) have developed a class of models to capture the
various aspects of a single-stage make-to-stock system. There are several aspects that need

careful consideration in a make-to-stock system. They can be broadly classified as those
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pertaining to customer demand and those to the manufacturing process. Some of the critical

aspects as perceived by Buzacott and Shanthikumar (1993) are presented below.

Production Variety: When several different products are made using common
facilities, it is important to determine the interrelationships between the demand and
manufacture of the products. In other words, it is necessary to know whether different
products shpuld be produce'ci simultaneously or one at a time, and whether they will be

demanded together or independently.

Pattern of Demand: Two aspects of demand pattern that are significant are the
arrival of customers and the demand for items by a customer. The authors restrict the
analysis to stationary demand patterns. But, customers may require just one item or the

number of items demanded may be a random variable.

Manufacturing Cébabilitv: All manufacturing proéésses are to some ’extent
unreliable or uncertain. Examples of unreliability include failure of machines; tool
breakage and operator absenteeism. Also included in these systems are the quality
aspects of the products. Buzacott and Shanthikumar developed models to include these

features.

Buzacott and Shanthikumar restricted their analysis to single-stage systems, and
therefore assumed ample supply of raw materials, parts, and tools. They developed the
concept of produétioh authorizatioﬁ cards. The authors assumed that when each item is
produced by the manufacturing facility, a tag is associated with the item and thus for every
item in the output store there is a tag. When a unit of a certain product is given to a

customer, the tag is removed, and this then becomes the production authorization or PA
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card for that product. The PA card generation mechanisms together with maximum
inventory level of finished goods result in a wide variety of models. The following
discussion gives the procedure for a single machine with unit demand and backlogging and

results are presented for the “M/M/1” model.

Single machine with unit demand and backlogging: It is assumed that there is only

one machine to process the items and that customer demands that are not satisfied
immediately are backlogged. It is also assumed that there are S tags available in the system.
Suppose the output store is initially full at timé zero and an unlimited amount of raw
materials is available. Let I be the ﬁnishé’d goods inventory, B(t) be the number of
customers backlogged, and C(t) the nufnber of PA cards available at fhe machine, all at time

t. Let N(t) be the number of jobs in the system. We have

1(t) = Min{0,S -~ N(t)} | 2.2)
B(t) = Min{0, N(t) - S} - 2.3)
and C(t) = Min{N(), S} 2.4)

- The above notations are similar to those used by Lee and Zipkin (1992) which were

describéd in Section 2.3. It can be easily shown that
B(t)+C(t) = N(t) 2.5)

Therefore; the study of the process N(?) is sufficient and the information about the
process I(t), B(t) and C(t) can be derived from N(?). As an example of this analogy, the

results for the M/M/1 model are given below.
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Results for an M/M/1 model: The production system is modeled as an M/M/1 queue
where the customer arrival process is Poisson with rate A and the processing times are

exponentially distributed with mean 1/u Using the steady-state result,

P{N=n}=(1-p)" ,n=0, 1, ..., for p<' 1 we get from equations 2.2 to 2.5

] ‘ l_pS-H’n : O
P{B=n}= (2.6)
I-p)p"*n=12,..
Sn=0 .

pU=m=1""" @7

|-p)p*n=12,..8

Also,

pS+1 P .

E[B]= 5 E[l]= S—E(l—ps) (2.8)

Also, the steady-state probability that a customer 1is backlogged
is P{a customer is backlogged} =P{I =0} = p°. This is a consequence of the PASTA
property (Poisson Arrivals See Time Averages (Wolff, 1982)).

Buzacott and Shanthikumar (1993) also presented approximate results for a

generaliied versibn (“GI/G/ 1) of the above system. Some of the other models that have

been presented by Buzacott and Shanthikumar (1993) are given below.

Single machine with unit demand and lost sales: The various cases discussed are the

M/M/1/Z, M/G/1/Z, and GI/G/1/Z models.

Single machine with interruptible demand: In this case, the arrival generation

process is switched off and no more arrivals can be generated as long as the output store is -
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empty. The authors developed GI/M/1/Z and GI/G/1/Z stopped arrival models to analyze

these types of systems.

Single or multiple machines with bulk demand: The above ideas were extended to a
general single-stage manufacturing system where each customer requires more than one

part. The authors presented an approximation for the GI*/G/c model of the above system.

Produce-to-stock with yield losses: Two scenarios have _been studied in this type of

system: (i) defects are detected at the manufacturing facility and the items are reprocessed

until they are defect free; and (ii) defects are detected at delivery and the item is discarded.

Some of these models have been used in modeling Kanban and MRP type systems

(Buzacott 1989; Buzacott and Shanthikumar, 1992).

2.5 PARAMETRIC DECOMPOSITION APPROACH FOR ANALYZING
QUEUEING NETWORKS

This section presents a brief description of the parametric decomposition approach

that forms the basis for the analysis approach developed in this dissertation.

In the mid eighties, a fundamental shift occurred when many researchers working in
the queﬁeihg area started to focus more on the application side than on the exécthcss of the
solution methodology. Whitt (1983) described the change from a modeling viewpoint by
stating “a natural alternative to an exact analysis bf an apprdximate model is an approximate
analysis of a more exact rhodel.” A comprehensive me_thddology for analyzing open
queueing network models that explicitly considers the variability of both the arrival and
service processes emerged. Seminal work in this area is credited to Kuehn (1979) aﬁd

Whitt (1983). Whitt (1983) may be viewed as the main archival reference for details of
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what is now known as the parametric decomposition (PD) approach. Several features in
addition to general arrival and service times have been modeled and the PD approach has
been the basis for modeling these features. In the 1983 paper, Whitt presented the details of
the PD approach in the context of a software peckage called the queueing network analyzer
(QNA). The following description of the PD approach for an open single-class network

with single-server FCFS nodes is adapted from Kamath (1994).

In an open queueing network, customers enter the network from the outside, receive
service at one or more nodes and eventually leave the network. For node i in the network,

the following variability parameters are used. -

cy:;:  inter-arrival time SCV of external arrivals to node i;

service time SCV at node 7
inter-arrival SCV of total arrivals at node 7; and

inter-departure time SCV at node i.

The squared coefficient of variation (SCV) of a random variable (rv) is defined as

the variance of the rv divided by the square of its mean.

The PD approach involves two main steps. The first step is the analysis of the
interaction between nodes to ai)proximately determine the mean and thé SCV of the inter-
arrival time at.each nede. The next step computes the performance measures based on
GI/G/m approximations that are based on the first two moments of the inter-arrival and

service times.
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Computing parameters of arrival processes at the nodes: A single node is related to

other nodes in the network model by its input and output processes. The internal flow
parameters (rates and variability parameters of arrival processes) approximately capture the
interdependence among the nodes. First, the mean total arrival/departure rate of customers
at node i is obtained via the traffic rate equétidns representing the conservation of flow. If

utilization p, > 1, then the i" node is unstable and the procedure stops. The calculations

involving the arrival rates and utilization are exact. Approximations are used while setting

up of the traffic variability equations which yield the variability parameters for the internal

2

flows, c;. The equations are linear, and are obtained by combining renewal

approximations for the basic network opérations, namely, merging of flow, splitting of flow
and flow through a ‘n:ode. The details of thése approximatioﬁs can be found in Bifran and
Dasu (1992), Tirupati (1992) and Whitt (1983). In summary, this step involves the solution
of two sets of linear equations - the traffic rate equations yield the total arrival rate‘at each

node and the traffic variability equations yield the SCV of inter-arrival times at each node.

Calculation of node performance measures: This procedure involves approximations
developed in ﬂle queueing literature for GI/G/1 or GI/G/m queues (Kraemer vand
Langenbach—Belz, 1976; Shanthikumar and Buzacott, 1980; Whitt 1993). The queues at the
node§ are treated as being stochastically independent and the expected waiting time at each
queue is computed using approximate formulae that are based on the first two moments of
the inter-arrival and sérvice times. Using Little’s law (L'ittlev 1v961) other measures such as

the mean queue length at the nodes can be obtained.
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The PD approdch is closely followed in the development of our proposed approach

~for analyzing production-inventory systems. The details of our approach are presented in
the subsequent chapters. As mentioned earlier, this research also addresses the modeling of
reliability issues in production-inventory systems. In this regafd, we end this chapter with a
brief review of performability analysis which combines reliability modeling and system

performance evaluation.

2.6 PERFORMABILITY ANALYSIS

Traditionally, equipment avaiiabivlity issues have been handled by reliability theory.
Performance models sometimes incorporate the delays due to minor machine disruptions
into the service time and obtain approximate Values for performance measures. A
combined study of performance and reliébility called performability modeling is applicable
to the study of “fault-tolerant™ systems. Structural changes could be because of a variety of
reasons. Examples are machines becoming inactive because of failures, change in
suppliers, and chanées in labor force. The overall system is still functional though these
system éhanges affect the performance of the system and the system can be called tolerant

to such system changes.

The following definitions were adapted from Viswanadham and Narahari (1992). A
fault tolerant system is one that Has an inherent capability to adapt automatically, in a well-
defined manner, to failures of its components, so as to maintain continuously a specified
level of performance. Given a fault-tolerant system, a structure state of the system is a
vector whose components describe the condition of individual subsystems as influenced by

reconfigurations.
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Let Z(u) be a structure state of a fault tolerant system at #>(0. Then the family of
random variables {Z(u) : u > 0} is called the structure state process (SSP) of the system.
Given a structure state 7, its associated reward f; is a random variable that describes the

performance of the system in that structure state.

Given (i) a system with structure state process {Z(u) : u>0} having state space S={0,
1, 2, ..., m} and (ii)) rewards fy f1, /2, ..., fm in the individual structure states, the
performability Y,(s) over an observation péridd [0, 7] and with initial structure state as s € S

is a random variable given by
Y=Y fiti @9
i=0

where 7 is the total time [0, 7] that the SSP stays in state i. In a performability
context, three measures are often computed: performability distribution,  steady-state

performability, and interval performability.

The performability distribution is the cumulative distribution of performability Yi(s),
i.e. P{Yys) < x} for x ¢ R. The limit as t—oo, if it exists, is called the steady-state

performability; and the expected value E[Y,(s)] is called the intefvdl performability.

Performability analysis has been studied in the context of fault tolerant systems suéh
as computer processors. M_gyer (1980) coined the word “Performability” to signify the
combined study of performance and reliability issues under the same framework. Recently,
performability analysis has been used in the study of automated manufacturing systems

(AMSs). Viswanadham et al. (1991) were one of the early researchers who applied this
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framework in manufacturing systems. Viswanadham et al. (1995) applied this framework
in the study of AMS with multiple part types. Ram and Viswandham (1995) obtained the

performability measures of an AMS with a centralized material handling system.

Solution prccedures for finding the performability distribution for any system do not
have a generalized procedure. It is quite possible that an SSP for a given system is unique,
and hence requires a new solution procedure to determine the performability measures. for
that system. The published applicaﬁons of pefformability in manufacturing systems have
typicaliy used existing solution procedures available for known SSPs in the literature.
Viswanadham et al. (1991)_use the procedure by Dontiello and Iyer (1987) for finding the
performability measures of a flexible manufacturivng cell with multiple machines and a
centralized material handler. Pattipati .(1993) used th.evtechniques of stochastic differential
equations to obtain the performability density and distribution for a non-homogeneous
Markov process. Iyer et al. (1986) presented a computational method for determining
moments of performability for repairable systems. Smith et al. (1988) developed‘ an
algorithm for the numerical evaluation of performability distributions in repairable systems.
Finding solution techniques for the various types of the Markov and semi-Markov reWard

models is in itself a vast and active research area.

An example illustrating the application of this technique to manufacturing systems
is now described. Consider a manufacturing system with two types of machines. One of
the machines is an automatic machine and‘ the other is a semi-automatic type. Orders are
usually processed on the automatic machine. The automatic machine processes orders at

twice the rate as the semi-automatic machine but is prone to failures. When the automatic
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machine is down for repairs, the semi-automatic machine is used to process the orders. The
breakdowns are not very frequent and the repair process takes a sufficiently long time. In
other words, it is reasonable to assume that processing on the semi-automatic machine
reaches steady state before the repair is completed. Alsé, .processing of orders on the
automatic machine reaches steady-state between breakdowns. Thus the SSP for this system
can be described to exist in two states, eaqh state indicating the speéiﬁc machine in use. Let
the production rate be the performance measure of interest. A performability analysis

would help answer the following types of questions.
What is the probability of producing 8,000 parts in a 3-month period?
How long is it going to take to deliver 5,000 parts with a probability of 0.90?

As described in the beginning of the section, the performability concept is
applicable to production-inventory systems as well. This concludes the review of the
relevant literature. The next chapter presents the research objectives of this dissertation

effort.
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CHAPTER III

RESEARCH OBJECTIVES

3.1 STATEMENT OF RESEARCH
Research Goal

The overall goal of this research was to develop analytical models for the
performance analysis of productibn-inventory systemsi that can simultaneously address -

inventory, capacity/congestion and reliability issues.

The objectives that are described in the following section méstly address the
development of analyticél models for production-inventory sysferris. The dissertation
discusses the development of these models in detail and examines the accuracy of the
models by comparing analytical results with simulation estimates for several example
systems. The next few chapters documeﬁt the developvm}ent‘ of the analytical models and
algorithms. They also include a summary of the numerical investigations conducted to test

the accuracy of the analytical models. -

Most of the objectives focus on the tandem or flow line configuration which is a
~ very common configuration in many manufacturing systems. Also, it is typical for any new
research in analytical modeling of manufacturing systems to start with the tandem

configuration, and later extend the models to other configurations.
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3.2 RESEARCH OBJECTIVES

Obijectives pertaining to the tandem configuration.

In Objectives 1 through 6, the model development focuses on variations of the
tandem configuration of make-to-stock systems. Collectively the objectives address the
development of models that can handle several complexities of production-inventory

systems.

OBJECTIVE 1: The objective was to develop an analytical solution methodology
based on a new decomposition approach for tandem make-to-stock systems with single,
reliable servérs at each stage; to conduct exténsive nﬁmerical investigations to test the
accuracy of the analytical solutions; and to develop a general analysis framework for make-

to-stock systems.

A wide variety of systems were tested by changing the pérameters of the .tandem
configurations. Tandem configurations consisting of three and ten single-server stages with
general demand arrivals and general processing times, comprising of both homogeneous
(same service distribution and basestock level at all stages) as well as nbn-hornogeneous
(different service time distributions and ’bésestock levels) stages were -evaluated. In
‘addition, tandem systems that represented a mix of make-to-stock aﬁd make-to-order

systems were also evaluated.

OBJECTIVE 2: The objective was to extend the basic framework developed as part

of Objective 1 to model additional manufacturing features within the individual stages in
the tandem configuration. Each sub-objective below addresses a specific manufacturing

feature.
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Sub-objective 2.1: The objective was to extend the analysis framework to model
paralle] machines at a stage. The approach involved the use of the approximation

developed by Whitt (1993) for GI/G/m queues.

Sub-objective 2.2: The objective was to extend the basic decomposition approach to
address the batching feature within the domain of tandem make-to-stock systems. In some
manufacturing systems, orders are not released until batches of them have accumulated. It

is common to wait for orders to be batched when long setup times are needed.

Sub-obiecﬁve 2.3: The objective was td relax the assumption of unlimited supply of
raw materials. In the tandem line cOnﬁgﬁrations despribed in the previous vobj ectives, it was
assumed that raw materials were alWays availab'le.} .This ass‘umptivo'n was relaxed in this
objective by incorporating the feature of limited raw materials inventory within the system.
The supplier is an intggral part of a supply chain system, and these models could be very

useful in analyzing a supply chain network.

Sub-objective 2.4: The objective was to model multiple-part types which are another

essential feature of many manufacfun'ng systems. In systems that produced different part
types it was assumed that each part type had its own inventory of finished goods as well as
intermediate semi-finished ‘parts. The basic aggregation approach used in the queueing
network analyzer (Whitt, 1983) ‘was used 1n coinbinatic;n with the deéomposition

framework to analyze these systems.

Sub-objective 2.5: The objective was to extend the analysis framework to

incorporate service disruptions within the performance model. Broadly speaking, two

classes of failures were modeled. One class includes disruptions that are quite frequent and
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do not take a long time to fix. These are usually operation dependent. Examples are
machine stoppages due to tool breakage or part jams. These disruptions do not cause any
structural changes in the system. These disruptions can be incorporated within the

performance models by modifying service times to include the effect of such disruptions.

The other typel”of failure is the one that occurs infrequently such as the major
breakdown of a critical piece of equiprﬁent. Also, the repair in such instances might take
several days or even weeks. In the event of this type of breakdown, an alternative rﬁachine
may be used so that the production system is not shut down. This causes structural changes
and the performance of the system is affected. The performability framework is well suited

to analyze such situations.

Obiectives pertaining to non-tandem configurations.

OBJECTIVE 3: The objective was to develop models for tree-structured or feed-

forward production-inventory networks.. This configuration resembles the multi-echelon

inventory system studied by Svoronos and Zipkin (1991).

OBJECTIVE 4: The objective was to develop models to address systems with
feedback. Production-inventory systems can have parts fed back due to a part failing
inspection and requiring rework; a few example systems were evaluated and results are

presented in Chapter 7.

3.3 RESEARCH SCOPE AND LIMITATIONS

The models developed in this research are suitable for discrete part manufacturing

systems. However, the scope of the research will be limited by the following assumptions.
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The queues at the individual machines are always assumed to be infinite. Thus blocking

1ssues are not addressed in this research.

The models developed do not consider the simultaneous possession of multiple
resources. An example is the requirement of a machine, a tool and an operator before

processing can begin.
Supply of intermediate (purchased) parts are not considered in this research.

Assembly operatioris and material handling issues are outside the scope of this research.
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CHAPTER 1V

MODELING TANDEM MAKE-TO-STOCK SYSTEMS: POISSON ARRIVALS
AND EXPONENTIAL PROCESSING TIMES

4.1 INTRODUCTION

We begin the development of our approach by startihg “with the simplest
configuration, a tandem make-to-stock sysfem with Poisson arrivals and exponential
processing times. . Lee and Zipkin (1992) ahaiyzed these types of systems, and their
procedure was discussed in Chapter 2. A new decomposition approach is developed in this
chapter, which forms the .basis for a performance analysis framework. Early versions of this
chapter were the subjeét of two cénference preseﬁtations (Sivaramakrishnan and Kamath,
1996 and 1997). One of | these was based on a refereed proceedings paper
(Sivaramakrishnan and Kamath, 1997). Extensions to include additional manufacturing

features and other system configurations are presented in subsequent chapters.

The remaiﬁder of this chapter is organized as follows. The next section describes
the tandem system, its dynarﬁics and the assumptiQns'made.‘ The mathematical procedurev is
described in an algorithmic form in Section 4.3, and the numerical inyestigation is reported
in Section 4.4. The last section briefly rﬁentions the éxtension of the procedure for general

arrivals and general service times, and sets the stage for Chapter 5.
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4.2 SYSTEM DESCRIPTION

External Demand

r % 2 »..»A—» M——A

WIP queue — \ Part Flow A Output store
O M achine ==  Order Flow

Figure 4.1: An M-Stage Tandem Make-to-Stock Producti(m System

Cansider the M-stage tandem make-to-stock system shown in Figure 4.1.
Processing begins at stage 1 and proceeds sequentially to stage M. It is assumed that at each
stage there is a single server, 'repre"senting a machine. ' Also, it ié assumed that setup times
are included in the processing times. The system is controlled by a stationary demand-pull
or basestock policy. This policy is represented by the non-negative integers S, i = 1, 2, ...,
M. The quantity S; is called the basestock level at stage i, and it determines the maximum
plannéd inventory of the outpﬁt at stage i. The demand arrival process is Poisson and the
processing times at each stage are exponentially diétl'ibuted. Custofner demand occurs at
stage M and it is for one unit at a time. If finished goods are available then the demand is
fulfilled immediately. An order for an item isvt’riggered‘ to feplerﬁéh the finished goods
inventory. This policy is termed as orne-for-one replenishment. If ﬁni‘she‘:d goods are not

available, the demand is backordered. The inventory is replenished until the basestock level

Sy is reached. The order to replenish the finished goods stock looks into the output store of
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stage M-1. If parts are available at this store, the order picks up a part and proceeds for
processing at stage M If parts are unavailable, a backorder is logged at stage M-1.
Likewise, each earlier stage fills its demand by releasing a unit to the next stage, if stock is
available, and otherwise it logs a backorder. At stage 1, orders go .immediately into the
queue for processing, i.e., it is assumed thaf raw materials are always available. The queues
where parts wait to be processed have unlimited capacities. Also, if there are outstanding
backorders at a stage, the units that complete processing at this stage are released
immediately to fulfill the backorders. A h}>/brid‘ system consisting of make-to-stock stages
and make-to-order stages can be modeled by conStraining some of the bésestock levels to be

ZLro.

4.3 THE DECOMPOSITION APPROACH

In this section, a new decorhposition procedure is developed and, all the required
formulas for the analysis are presented. The following observation can be made about the
system. It can be seen that if all the S;s are zero, the system becomes the classic tandem
queue system, and the exact solution can be obtained using Jacksvon’s‘ (1957) results. This
observation is not valid even if one of the S;s is .greater than zero except in the case when all
Sis, i # M are zero and Sy, is non-zero. Exact analysis of such systems becomes difficult in

other cases.

The solution process begins with stage 1, which is an M/M/1 make-to-stock system
because of our assumption that raw materials are always available. Using the formulas

contained in Buzacott and Shanthikumar (1993) for a single stage make-to-stock system, all
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the steady state measures can be obtained for this stage as shown later in this section. There

is no approximation needed for stage 1.

| At stage 2, an order could be delayed because of the unavailability of parts in the
output store of stage 1. In»fact, this phenomenon is seen in all the remaining stages of the
system. A modified single-stage system vﬁth a delay node (see Figure 4.2) is developed to
handle this situation. In the system shown in Figure 4.2, an order goes to the delay node
with a fixed probability p, before joining the processing queue. Using a procedure similar
to that used by Buzacott and ShanthikUmar.(1993) for an M/M/1 make-to-stock system, the
steady-state measures are derived for this system; This delay model is then used for the last
M-1 stages of the M-stage make-to-stock system. The delay node essentially captures the
upstream delay experienced by an order when it does not ﬁnd a part in the output store of

the previous stage. The analysis of the delay model is described in the next section.
4.3.1 A Single-Stage Model with a Delay Node

Consider the make-to-stock system shown in Figure 4.2. The demand for finished
goods is Poisson with a rate A. A one-for-one replenishment policy is followed; that is,
every demand fulfilled from the output store triggers an order to replenish the finished
goods inventory. The level of stock is a knan quaﬁtity S. ‘If there are no parts in stock, -
demand ‘is backordered. With a fixed probability b, the orders for replenishment may be
delayed by a random time with a mean z; befo‘re joining the processing queue. - The
processing times are exponentially distributed with a rate of & The following notation is

used.
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I is the inventory level in the output store; B is the number of backorders in the
system; and N is the number of orders (in delay + processing) in the system. The delay node
could be viewed as an infinite server node with 14 as the average service time. The average

number of busy servers gives the ‘ave’rage, number at the delay node, which is

p; = (A.p).7,. The utilization at the processing node is given by p = ; :

> D:D» Q——LI—-» Demand

1-p Processing l:l_ Output
4©4p - node L store
‘ Orders. , o ‘

Delay node
Figure 4. 2: A Singlé-Stage Make-to-Stock System with a Delay Node

Using standard product-form queuéin‘g network theory (Buzacott and Shanthikumar,

1993), we can find the steady state probability that there are n orders in the system.

P[N=n]= Z P[i orders at the processing nodé]. P[n-i orders at the delay node]
i=0 '

n e (p, )
=Y -pp AP @1
i=0 (n-i)!
_ spp
=e?.(1- < n=0,12,..
( p)g Y

Using the above eXpresSion and a procedure similar to that used by Buzacott and
Shanthikumar (1993) for a single-stage make-to-stock system, we have for inventory level,

L

P[I=k]=P[N=S-kk=12,,8

=P[N>S8}k=0 *2)

Hence,
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Sk _S—k-i _i

— — 5= P4 _ pd P b= v
PlI=kl=e" (- p) > ST _i)!,k 1,2,--,8 (4.3)
P[I =0]= iP[N = k] | (4.4)

The average inventory in stock is simply
S
E[I1=> k.P[I = k] 4.5)
k=1 _

The steady-state probability that a demand will not find a part in the output store is

S
given by the steady-state probability that the output store is empty, which is 1— Z Pl =k].

k=1
This is a consequence of the PASTA (Poisson Arﬁvals See Time Averages) property
(Wolff, 1982). The expected number of backorders in the system is given by the following
relationship.
E[B]l= E[N]+E[I]-S 4.6)
4.3.2 Analysis of the M-Stage Line
Beginning at stage 2, each of the remaining M-1 stages is modeled as a single-stage
make-to-stock system with a delay node. In other words, fnhe M-stage tandem make-tb—stock
system is decomposed into one single-stage system plus M-1 single-stage systems each with
a delay node (see Figure 4.3). The delay node at ea'chﬁ of the stagés captures the upstream
delay which occurs when an ordef waits for a part from the previous stage. This procedure
is done sequentially beginning at stage 1. At each stage other than the first stage, we need
to know the probability that an order proceeds to the delay node, that is, it is backordered.

This probability is same as the probability that an order will not find a part in the output
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store of stage i-1. Also, the average number at the delay node is the average number of
backorders at stage i-1. Using these observations, we present the procedure in a step-wise

manner with the required mathematical expressions.

Y
V +@—»A | +

Figure 4. 3: Decomposition of an M-Stage Make-to-Stock System into M Single-
Stage Make-to-Stock Systems

The parameters of the model are:

M = number of stages;

A = the demand rate;

i =the s‘ervice rate at stage i,i=1,2,..., M, and
S; = the basestock level at stage i, i =1, 2, ..., M.

The performance measures used in evaluating the system are as follows.
Di = A/ g4 is the utilization at stage i;
E[B;] =the average number of backorders at stage i;

E[lj] =the average inventory in the output store at stage i,
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E[Ni] = the average number at stage i (including the one in processing); and

pi = the probability that there is no part in the output store of stage i when a

request by an order from the stage i+1 ismade, i=1,2, ..., M-1.
Stage 1:

The expected‘ number in system and the expected number of backorders in this stage

is given by, -

A

E[N,]=7"~ o @.7)
—A
S1+1
E[B,]= pl_ (4.8)
. . 1 .
= ‘S1
Also, p, = p™*.

The above measures are obtained from the analysis of an M/M/1 make-to-stock

system (Buzacott and Shanthikumar, 1993).

Stage i (i > 1): The average number at node i is the sum of the orders waiting for
parts from the previous stage and the orders with parts waiting to complete processing

(including the one in process). Henée,

E[Nx] = E[Bi—l]+

- (4.9)

For simplicity, we do not add more subscripts to A4, 73 and py.

The arrival rate to the delay node is given by 4, = 4. p,._i .

37



Using Little’s (1961) result, the average time a part spends at the delay

E[B,,]

node; 7, = )
d

Now, p, =4,7,. Note that p,is sirhply the average number of backorders at stage

i-1. Using a single-stage model with delay node, the stéady state probability that there are k

parts in the output store is given by,

S—k _S;—k-j
_ - Pa j :
Pl =kl=em(-p) S 2 p k=125 4.10)
RS k= :

The expected inventory at stage i is
S, .
E[I1=Y kPl =k]. (4.11)
n=1

Using (4.9) and (4.11), the expected backorders at stagé i is given by,
E[B]= E[N,]+ E[1]-5, (4.12)
The probability that a demand from stage i+1 will not find a part in the output store
of stage i is

Si . ' ' ’
p, =1-> P[I, =n] (4.13)

n=1

Beginning at Stage 2, this prOcedure is répeated sequentially till the last stage.

4.4 NUMERICAL RESULTS

In this section we present results obtained using our decomposition method for some

example systems analyzed by Lee and Zipkin (1992). As mentioned earlier, Lee and Zipkin
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(1992) was one of the first published journal article that examined tandem make-to-stock
systems. Lee and Zipkin (1992) set A =1 for all the Systems they analyzed. They analyzed a
variety of two-stage and three-stage systems. Our results match exactly with results

obtained by Lee and Zipkin’s method for all the two-stage systems examined by them.

In the three-stage systems, Lee and Zipkin (1992) (L&Z) restrict their attention to
systems where the service rates are eq}ual_ at all the stages. They examined systems with g =
1.25, 1.5, and 2. Also, they used two values fdr S; and S5, viz., 3 and 7, and obtained
simulation estimates for all possible combinations. In total, they obtained estimates for 12
different cases. In all the cases, S; was set fo zero. Table 4.1 presents the average
backorders at stage .3 and Table 4.2 presents the averagé intermediate inventory which is the
sum of inventory at the output stores of stages 1 and 2 and Work-in—process in Stages 2 and
3. The parts waiting in queue and in process at Stage 1 are considered to be new material

and hence, not included in the average intermediate inventory calculation.

Table 4. 1: Estimates of E[B3] (3-Stage System)

1 Si S, | Simulation | L&Z method Our % difference | % difference
L&Z Method (L&Z) (Ours)
1.25 3 3 7.284 7.726 7.385 6.06 1.38
1.25 3 7 5.523 5.870 5.400 6.28 -2.22
1.25 7 3 6.463 6.735 6.525 4.22 0.95
1.25 7 7 5.046 5.261 5.035 427 -0.22
1.50 3 3 2.690 2.944 2.802 9.45 4.16
1.50 3 7 2.162 2.233 2.161 3.26 -0.04
1501 7 3 2.537 2.662 2.633 493 3.78
150 7 7 2.110 2.140 2.128 1.40 0.85
2.00 3 3 1.120 1.164 1.142 3.94 1.96
200 3 7 1.001 -~ 1.012 .1.009 1.08 0.80
2.00 7 3 1.089 1.127 1.126 3.49 3.40
200 7 7 1.014 1.008 1.008 0.62 0.62
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Table 4. 2: Average Intermediate Inventory (3-Stage System)

n Sq S; | Simulation | L&Z method Our % %
L&Z Method difference | difference
(L&Z) (Ours)
1251 3 3 9.288 9726 9.385 4.72 1.04
125 3 7 11.517 11.870 11.400 3.07 -1.01
1251 7 3 12.461 12.735 12.525 2.20 0.51 -
125 7 7 15.060 15.261 15.035 1.33 -0.17
150 3 3 6.722 6.944 6.799 3.30 1.14
150 3 7 10.151 10.233 10.158 0.81 0.06
1.50 | 7 3 10.550 10.662 10.631 1.06 0.76
150 7 7 14.101 14.140 14.125 0.28 0.17
200 3 3 6.722 6.142 6.164 1.96 0.68
200 3 7 10.004 10.009 - 10.012 0.80 0.08
2001 7 3 10.092 10.550 10.127 3.40 0.35
2001 7 7 14.006 14.101 14.008 =~ 0.62 0.02

The results are not exact since the aﬁalytical method assumes that the arrival
distribution at each stage is Poisson. The arrival of demand at an output store is Poisson,
but the arrival of orders into the processing queue at a node (except- node 1) is not a Poisson
process. This is because of the delay experienced by some of the orders before they proceed
to the processing queue. The delay nodes appfoximately capture the inter-dependence

between the stages.

The results indicate that our method performs better than Lee and Zipkin’s
approximation in all the cases for the two performance measures examined. In all the cases
examined, the relative percentage difference was less than 5% and it is also recognized that

the model by Lee and Zipkin (1992) performed reasonabfy well in all the cases examined.

4.5 SUMMARY

In this chapter, a new decomposition framework for the analysis of tandem make-to-

stock systems with Poisson arrivals and exponential processing times was developed. As
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shown in the subsequent chapters, this framework was also used for the analysis of more
complex configurations. In the next chapter, we describe how we can handle geﬁeral
demand processes and general processing time distributions within the decomposition
framework. Conceptually, the approximation approach remains the same. We use two-
moment approximations that require only the mean and squared coefficient of variation of
the inter-arrival and service time distributions (Whitt, 1983; 'Segal and Whitt, 1989) in place
of the exponential queueing models. The anaiysis procédure for the M-stage line proceeds
in a manner similar to that described in Section 4.2. Further details are contained in the
next chapter. Following the next chapter, extensions to include multiple servers, multiple

part types, batch service and breakdowns of machines are presented.
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CHAPTER V

MODELING TANDEM MAKE-TO-STOCK SYSTEMS: GENERAL ARRIVALS
AND GENERAL PROCESSING TIMES

5.1 OVERVIEW

The models discussed in the previous chapter assumed that the demand arrived
according to Poissbn process and that the processing times were exponential distributed. In
this chapter, these assumptions are relaxed, and methods are developed to analyze tandem
. systems with a general démand arrival proceSs and general processing times. Conceptually,
the decomposition approach femajns the same. The queueing analysis is now based on two-
moment approximations that requir¢ only the me‘é.n and squared coefficient of variation
(SCV) of the inter-arrival and service time distributions (Whitt, 1983; Segal and Whitt,

1989).

The first stage now becomes a GI/G/1 make-to-stock system, and the steady-state
formulas given by Buzacott and Shanthikumar (1993) are used. For a single-stage system
with a delay node, we first solve for the steady-staté pfobability of number in system using
the parametric decomposition nie_thod outliﬁed in Wﬁitt (1983). The arrival proceés to a
processing stage is now the result of the merging of two amval streams - parts arriving from
the previous stage to fulfill backorders at the current stage and orders that find parts (at the
output store of the previous stage) and proceed immediately to thé processing queue. The ‘

departure process leaving a stage is split into two streams - one that proceeds to the next
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stage to satisfy backorders and another that goes to the output store to satisfy replenishment
orders. The next few sections contain the details of the approximation scheme. This is

followed by a presentation of extensive numerical results for several example systems.

5.2 MODEL DESCRIPTION

External Demand
2
2 2 : A>Co
g ’¢s, S ERE 5, Smi Ty, c’ Sm
: SM
T{B{Mk’ et
: 1 ) ! A M
————————— l |_i-_—_—_‘___'_l——f$®®<__! e e e o o o o e o o e
WIP queue —— -Part v}:low A Output store

O Machine = = =P Order Flow

Figure 5. 1: A General Tandem Make-to-Stock System

Consider the M-stage tandem make-to-stock system shown in Figure 5.1. This
system is similar to that described in Section 4.2. The major differences are thaf the
demand process is a rehewal process, and the processing tirhes at each stage are generally
distributed. As before the replen‘ishrrientv policy ‘is oné-fOr-dﬁe, ‘with- the qﬁantity Si

representing the basestock level at stage iLi=1,2,..., M

5.3 GENERALIZATION OF THE APPROXIMATION SCHEME

Conceptually, the approximation scheme is similar to that developed for the

exponential case. Hence, we focus only on the generalization aspects here. Stage 1 is now
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a GI/G/1 make-to-stock system. Using the approximations contained in Buzacott and
Shanthikumar (1993), all of the steady state measures can be obtained for stage 1 as shown

in Section 5.3.3.

At stage 2, an order may be delayed before proceeding to get processed because of
the unavailability of parts in the output store of stage 1, Wﬁich is seen in all the remaining
stages of the system. Again, we use a modified single-stage system with a delay node (see‘
Figure 5.2) to handle this situation. The delay node (an infinite server system) essentially
captures the upstream delay when a order does notvﬁnd a part in the output store of the

previous stage. The analysis of the delay model is described next.

5.3.1 A General Single—Stage Model with a Délay Node

AP > - Demand
: Processing node ) L_l Ack,

1p 7,C -—
Orders store, S

Delay node 7y
Figure 5. 2: A General Single-Stage Make-to-Stock System with a Delay Node

Consider the make-to-stock system shown in Figure 5.2. The demand for finished
goods is a renewal process with a rate A, and the squared coefficient of variation (SCV) of
inter-arrival times, ¢2,. We have a stock of finished goods in the output store, which has a

capacity of S units. A one-for-one replenishment policy is followed. If there are no parts in
stock, demand is backordered. With a probability p, the orders for replenishment may be

delayed by a random time with a mean 14 before getting processed. The processing times
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follow a general distribution with a mean of 7and SCV, ¢?. The following notation is

used.

1 = the inventory level in the output store;

B = the number of backorders in the system;

N = the number of orders (in vdelay + processing) in the system;
Ny = the number of orders at the delay node; and

N, = the number of orders at the processing n0d¢.

We model the delay node by an infinite server system. Now, the average number at
the delay node is given by the average number of busy servers, which is

p; = A.p-7, (FE[Ng4]). We approximate the distribution of the number in process at the

e (p, )k

The
k!

delay node using the M/G/eo formula which is given by P[N, =k]=
utilization at the processing node is given by p, =A.T.

We then find the approximate steady state probability that there are n orders in the
system, by assuming that the delay and processing nodes behave like independent, isolated

nodes as in the product-foi'm case (Whitt, 1983).

P[N=n]§ZP[Np = jl.P[N, =n-j] (5.1)

e (p)" | % -1 €7 (pd)n_j
l-p)——+) p(1-0)o/" ——— n=12,...
= d n! JZ:I: d (n-j (5.2)

e”.(1-p,) n=20

P[N =n]
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E[N,]1-p,

where o =
E[N,]

E[N;] denotes the expected number at the processing node which is calculated using
the GI/G/1 formulas from Whitt (1983) as shown below. We first use the Kraemer and
Langenbach-Belz (1976) approximation to calculate the expected waiting time in queue at

the processing node

e {452(5%)

where g = g(p,, cl,ch) is defined as

ex'—za—p,,)(l—cj)z P
@) ) °

-(1-p,)c: —1)) ,
X c

(c; +4c;) ’

2

g(p,s ¢; €)= (5.4)
exp(

>1

where ¢’ is the SCV of the inter-arrival times at the processing node.

We know all the parameters except c¢.. A procedure to directly calculate ¢’ is
presented in the next sect'ionf. When the delay model is used repeatedly in the sequential

solution algorithm, we have enough information to calculate ¢>. Hence, we will proceed

here by assuming that ¢ f is available. Using Little’s law, the expected number at processing

node is given by,

E[N,1=A.EW,]+p, (5.5)
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The steady-state probability that there are k parts in the output store is given by

P[N =S —k] for 0 <k <S. Hence,

—k Skj

o - k=12,..5-1
pr=n=1 ¢ Sty ZIS k-t 179 (5.6)

e (1-p,) : k=S

The average inventory in stock is simply
s N -
E[I]=) nP[I =] | | (5.7)
k=1 v '

The average number in the system, E[N] = E[Ng4] + E[N,].

The expected number of ‘backorders in the system is given by the following

relationship (Lee and Zipkin, 1992).
E[B] = E[N]+ E[I] -S ‘ ‘ (5.8)

The steady-state probability, p, that a demand will not find a part in the output store

is approximated by the Steady-state piobability that the output store is empty, which is
s \
1-> Pl =k]. (5.9)
k=l v v :

5.3.2 Determining the SCV of the Combmed Arrival Process at the Processing Node

In order to determme the SCV of the arrival process at the processing node, we shift
our focus to examine the splitting of the departure process and merging process of arrival
processes between any two successive stages in the multi-stage, make-to-stock system.

Figure 5.3 shows these processes between Astages jand i+1.
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Figure 5. 3: Splitting and Merging Processes between Stages

At stage i, the departure process splits into two, namely, the process which satisfies
the backorders at stage i+1 and the process which satisfies the replenishment orders at the
| output store of stage i. Focusing on the arri_ilal process at stage i+1, it is the merging of the
two processes namely, those” orders which.ﬁnd paﬁs at the output store of stage i and
directly pfoceed to stage i+, and those which are backofdered indicated by the parts which
proceed directly from the stage i to stage i+/. The arrival rates at bbth the nodes are the
same as the exterﬁal arrival rate because the external arrival process is the only process that
triggers orders and we have assumed a one-for-one replenishment policy. We use the
following procedure to determine the SCV of the arrival process at each stage. It should
also be noted that all the performance measures pertaining to sté.ge i are known at this

juncture.

Let ¢ be the SCV of the inter-arrival distribution at stage i, ¢ the SCV of the
service times at stage i, and cZOM the SCV of the interval times of the external arrivals that

go directly into stage i+/. p; is the steady-state probability that a demand from stage i+1

will be backordered at stage i.

Using the splitting approximation from Whitt (1983), we have
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¢k, 2(1-p)ek+p, | (5.9)
The departure SCV at node i is given by (Whitt, 1983)
e =pll+(-p7)c | | (5.10)
Again, using the splittiﬁg approximation from Whitt (1983), SCV of the process that
“goes into stage i+1 is givén by
chy =pich +1-p, . | | (5.11)

where the p; is the probability that the completed part satisfies a backorder. This is

also the probability that an arrival was backordered at the output store of stage i.
Using the method of superposition from Whitt (1983), the SCV of the arrival
process at stage i+1 is

2 o

Cajrl = picjil + (1 - pi)'ciom (5'12)

The SCV thus determined is used as the SCV of the arrival process at the processing

node in the delay model described in the previous section.

5.3.3 Analysis of the General M-Stage Tandem Line

As in Section 4.3.2, we decompose the M-stage tandem make-to-stock system into
one single-stage system plus M-1 single-stage systems each with a delay node (see Figure

5.4).
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Figure 5. 4: Decomposition of an M-Stage Make-to-Stock System into M Single
’ Make-to-Stock Systems

We now present the analysis algorithm for the general case.

The parameters of the model are: ,

M = number»of stages;

A =the demandai’rival rate;

T = the mean processing time at stage z,

¢’,  =the SCV of the inter-arrival time of the demand process;
cl = the SCV of the processing time at stage 7; and

S = the basestock ievel at stage i.

Some intermediate quantities are as follows.
Yo = A1 is the utilization at stage 7; and

Di = the probability that there is no part in the output store of stage i

when a request is made by an order from the stage i+1;

The node measures used in evaluating the system performance are as follows.
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E[Bi] =the average number of backorders at stage i;

E[l;] =the average inventory in the output store at stage' i;and

E[Nj] =the average number at stage i (including the one in processing).
In the above quantities, i = 1, 2, s M
Stage 1: |

The expected number of orders and the expected number of backorders in this stage

are given by,

E[N(]-p
E[N|]

; : P1C'1S1
E[N,]=A.E[W, ]+ p;; E[B/]=

B (1—0'1),; where o, =

(5.13)

E[Wq] is the expected waiting time in queue at stage 1 and is calculated using the
GI/G/1 approximation given in Section 5.3.1. The expression for E[B;] is obtained from
the analysis of a GI/G/1 make-to-stock system contained in Buzacott and Shanthikumar

(1993).

The probability that a demand from stage 2 will not find a part in the output store of
stage 1 is approximated by the steady state probability that the output store of stage 1 is

empty. That is |
p=1->PlL =k | ‘ (5.14)

Stagei (i>1):

The SCV of the arrival process ¢’ is calculated using the procedure given in

Section 5.3.2. The average number at node i is the sum of the orders waiting for parts from
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the previous stage, stage i-1, and the orders with parts waiting to complete processing

(including the one in process). Hence,

E[N;]=E[B; ]+ A.E[W; ]+ p; (5.15)

For simplicity, we do not add more subscri'pts to A4, 7g and pg. The arrival rate to

the delay node is given by
Ag =Diy-A | N . (5.16)
The average time a part spends at the delay node is

BB

rg=— (5.17)
d

Now, p; =447, Note that p, is simply the average number of backorders at stage

i-1. Using the single-stage model with delay node, the steady state probability that there are

k parts in the output store is given by,

S, ~k-j

S~k 5,k .
e Ll __(q-py+ e L p(1-0)0/" k=128 -1
Pl =k]= (S, -k = (S, —k- )
e .(1-p) k=38,
(5.18)
The expected inventory at stage iis
S, ' v
E[I]=) k.Pl, =k] , (5.19)
k=1 ) .
The expected backorders at stage i is given by,

E[B;]=E[N;]+E[I;]-S; : (5.20)
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Again, the probability that a demand from stage i+1 will not find a part in the output

store of stage i is approximated by
S;
p=1-) Pl = k] (5.21)
k=1 : _

Beginning at Stage 2, this procedure is repeated sequentially till the last stage.

5.4 NUMERICAL RESULTS

In this section, an investigation of the accuracy of the approximétion is presented, by
comparing its predictions to estimates from computer simulation experiments. First, we
examine a variety of homogeneous three-stage systems wherein the parameters at each stage
are the same. In other words, the utilization or mean service time, the basestock level and
the SCV of service time distribution are the same across all the stages in a particular
configuration.

5.4.1 Homogeneous Systems

We set A =1 for all the systems. Three different values of the p, viz., 0.6, 0.7 and
0.8, are used in combination with three different basestock levels, S= 3, 6 and 9. The inter-
arrival and service time distribution SCVs used are 0.25, 1, and 2.25; these correspond to
the Erlang, exponential and hyper-exponential distributipns, respectively. The performance
measures of interest are ‘the avefage backorders at. the lasf stage, E[B3], the average

inventory level at the last stage, E[/3], and the average intermédiat'eb inventory,

) v
(Z E[I,]+ E[N,,,]), where E[N}] is the expected number in the processing node at stage i.

i=1]
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Simulation estimates were obtained using a program developed in SLAM II
(Pritsker, 1995). The method of replication deletion was used to obtain statistically accurate
simulation estimates. Appropriate values for warm-up, run length and the number of |
replications were determined for the system with the highest variability and were used
across all the configurations. The warm-up analysis was performed using Welch’s (1983)
procedure. A warm?up period of 5,000 time units, a run length of 50,000 time units after
warm-up and 10 replications were used’f(‘)r a single configuration. Additional details about
the warm-up and run length determination are presented in Appendix Al. We present the

results for the various configurations tested using tables and graphs.

Tables 5.1 through 5.9 show the estimates of E[B;3], E[/;3] and averége intermediate
inventory for various combinations of vinter-arrival time and proceséing time distributions.
Figures 5.5 through 5.11 graphically show the comparison between the analytical and
simulation estimates for some of the configurations. Table 5.10 presents results for a ten-
stage system. The results indicate that the performance of the analytical models in case of
ten stage systems is similar to that of the three stage systems. In general, the difference in
the estimates of average number of backorders at the last stage is wider in configurations
when hypef—exponential» distribution waS chosen for either the arrival or the service process.

A measure that is often used to evaluate the accuracy of the analytical model is the

Analytical Result - Simulation Estimate

; — — *100
Simulation Estimate

Relative percent difference (RPD) =

The RPD for the average intermediate inventory measure is within the acceptable
range (< 15%) in most cases. Overall, the approximation performs reasonably well (RPD <

12%) in most cases, and performs very well (RPD < 8%) in cases in which the squared

54



coefficients of variation of both the inter-arrival and service times are less than or equal to

one. Appendix A2 presents a variation of the approximation approach that produces better

results for the high SCV (hyper-exponential) cases.

Table 5. 1: Erlang Inter-Arrival Times and Erlang Processing Times

p Basestock|Average Backorders at| Average Inventory at |Average Intermediate
Level Stage 3 Stage 3 Inventory

Simulation | Analytical | Simulation | Analytical | Simulation |Analytical

0.60 3 0.003 0.007 2.257 2.242 6.003 6.029
0.60 6 0.000 0.000 5.259 5.263 11.999 12.000
0.60 9 0.000 0.000 | - 8.258 8.264 17.999 18.000
0.70 3 0.020 0.067 2.004 1.887 6.011 6.184
0.70 6 0.000 0.001 4.995 5.001 11.980 12.003
0.70 9 0.000 0.000 7.997 8.004 | 18.001 18.000
0.80 3 0.153 - 0.592 1.580 1.164 6.103 6.964
0.80 6 0.009 0.017 4.517 - 4.486 12.021 12.068
0.80 9 0.001 0.001 7.530 7.533 17.987 18.005

Table 5. 2: Erlang Inter-Arrival Times and Exponential Processing Times

p Basestock | Average Backorders at | Average Inventory at| Average Intermediate
Level Stage 3 - Stage 3 Inventory

Simulation |Analytical| Simulation | Analytical| Simulation |Analytical

0.60 3 0.108 0.172 1.960 1.829 6.097 6.283
0.60 6 0.006 0.008 4965 | 4.929 12.000 12.018
0.60 9 0.000 0.001 7.971 7.939 17.995 18.001
0.70 3 0.521 0.746 1.449 1.180 6.505 6.968
0.70 6 0.048 0.068 4.433 4.330 12.075 12.140
0.70 9 0.006 0.010. | - 7.145 7.390 17.993 18.022
0.80 3 2.433 3.149 0.736 0.340 8.116 _ 9.153
0.80 6 0.484 0.642 | 3.357 2.980 12.521 13.006
0.80 9 0.128 0.146 6.336 | 6.196 18.197 18.295
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Table 5. 3: Erlang Inter-Arrival Times and Hyper-Exponential Processing Times

p Basestock | Average Backorders at | Average Inventory at | Average Intermediate
Level Stage 3 Stage 3 Inventory
Simulation |Analytical{ Simulation |Analytical] Simulation |Analytical
0.60 3 0.840 0.831 1.456 1.257 6.846 6.956
0.60. 6 0.135 0.130 4413 4.316 12.176 12.196
0.60 9 0.024 0.016 7.445 7.366 18.010 18.044 |
0.70 3 3.066 2.800 0.795 0.469 8.690 8.716
0.70 6 0.771 0.678 3.353 3.166 12.859 12.898
0.70 9 0.006 0.202 7.445 6.281 17.994 18.307
0.80 3 9.387 9.751 0.256 0.020 13.552 14.078
0.80 6 4.496 3.798 1.722 1.137 16.134 16.009
0.80 9 1.896 1.556 4,297 3.909 19.945 19.994 |
Table 5. 4: Poisson Arrivals and Erlang Processing Times
p Basestock |Average Backorders at] Average Inventory at | Average Intermediate
Level Stage 3 Stage 3 Inventory
Simulation |Analytical| Simulation |Analytical| Simulation |Analytical
0.60 3 0.135 - 0.153 1.938 1.843 6.036 6.147
0.60 6 0.012 0.015 4.854 1 4.838 12.005 12.015
0.60 9 0.001 0.002 7.830 7.838 17.999 18.002
0.70 3 0.416 0.466 1.572 1.329 6.136 6.416
0.70 6 0.048 0.079 4.433 4.280 12.047 12.078
0.70 9 0.012 0.016 7.299 7.279 18.005 18.016
0.80 3 1.480 1.515 1.057 0.586 6.589. 7.130
0.80 6 0.410 0.429 3.507 3.229 12.069 12.401
0.80 9 0.128 0.143 6.298 6.203 18.032 18.410
Table 5. 5: Poisson Arrivals and Exponential Processing Times
p Basestock | Average Backorders at | Average Inventory at Average Intermediate |
Level Stage 3 Stage 3 Inventory ‘
’ Simulation |Analytical| - Simulation |Analytical| Simulation [Analytical|
0.60 3 0.518 0.424 1.656 1.521 6.370 6.402 |
0.60 6 0.084 0.047 4.514 4.500 12.066 12.073 |
0.60 9 0.015 0.015 7.513 7.500 18.008 18.015 |
0.70 3 1.580 1.293 1.143 0.833 7.133 7.126
0.70 6 0.573 0.313 - 3.611 3.671 12.342 12.309
0.70 9 0.114 0.098 6.685 6.667 18.098 18.098
0.80 3 5.049 4.524 0.581 0.139 9.408 - 9.385
0.80 6 1.816 1.474 2.616 2.111 13.233 13.363
0.80 9 0.786 0.626 5.222 5.012 18.643 18.614
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Table 5. 6: Poisson Arrivals and Hyper-Exponential Processing Times

p Basestock | Average Backorders |Average Inventory at] Average Intermediate
Level at Stage 3 Stage 3 Inventory

Simulation |Analytical| Simulation|Analytical| Simulation | Analytical
0.60 3 1.673 1.142 1.260 1.039 7.368 7.041
0.60 6 0.426 0.297 3.965 3.939 12.392 12.295
0.60 9 0.126 | 0.097 6.940 6.937 18.138 18.097
0.70 3 4.696 3.542 0.703 0.301 9.637 8.887
0.70 6 1.767 1.108 | 2.855 2.681 | 13.466 13.072
0.70 9 0.705 0.463 5.689 5.646 18.629 18.463
0.80 3 12.708 | 11.608 0.260 0.006 15.502 14.602
0.80 6 6.933 5.061 1.438 0.703 | 17.570 |. 16.359
0.80 9 4.062 2.424 3.423 3.096 21.600 20.328

Table 5. 7: Hyper-Exponential Inter-Arrival Times and Erlang Processing Times

p Basestock| Average Backorders |Average Inventory at} Average Intermediate
Level at Stage 3 , Stage 3 inventory

Simulation | Analytical|Simulation]Analytical) Simulation| Analytical
0.60 3 0.744 0.334 1.638 1.590 6.151 6.180
0.60 6 0.205 0.080 | 4.243 | 4475 12.016 12.041
0.60 9 0.067 0.020 7.120 7.445 | 17.998 18.010
0.70 3 1.695 0.860 1.252 0.962 6.425 6.379
0.70 6 0.641 0.309 3.544 3.672 12.045 12.118
0.70 9 0.269 | 0.123 6.277 6.556 18.028 18.048
0.80 3 4.144 2.579 0.817 0.220 7.210 6.856
0.80 6 2.055 1.060 2.639 2.342 12.359 12.215
0.80 9 1.147 0.629 4.907 | 4.987 18.099 18.139

Table 5. 8: Hyper-Exponential Inter-Arrival Times and Exponehtial Processing

Times
p Basestock |Average Backorders| Average Inventory at |[Average Intermediate
Level at Stage 3 Stage 3 Inventory
Simulation|Analytical| Simulation|Analytical |Simulation|Analytical
0.60 3 ~1.507 0.682 1.395 1.272 6.805 6.460
0.60 6 0477 0.203 3.935 4126 12.212 12.127
0.60 9 0.162 0.069 6.798 7.076 18.024 18.042
0.70 3 3.584 1.930 .0.940 0.530{ 8.003 7.201
0.70 6 1.451 0.677 3.096 3.098] 12.740 12.379
0.70 9 0.653 0.321 5.726 5.950 18.230 18.171
0.80 3 8.618 6.559 0.507 0.032 10.941] = 9.731
0.80 6 4.907 2.431 1.974 1.347 14.560 13.288
0.80 9 2.854 1.367 4.070 3.931 19.359 18.640
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Table S. 9: Hyper-Exponential Inter-Arrival Times and Hyper-Exponential
Processing Times

p Basestock | Average Backorders | Average Inventory at| Average Intermediate
Level } at Stage 3 Stage 3 Inventory

Simulation| Analytical | Simulation| Analytical | Simulation| Analytical
0.60 3 3.171 | 1.505 1.095 0.826 8.171 7.142
0.60 6 1.176 0.509 3.463 3.592 12.848 12.380
0.60 9 0.473 0.219 6.277 | 6.523 18.311 18.159
0.70 3 7.224 4.598 | 0.638 0.157 10.828 9.187
0.70 6 3.818 1.625 2.406 2.186 14.647 13.195
0.70 -9 1.925 0.842 4.787 5.001 19.293 18.586
0.80 3 16.972 | 14.196 0.265 0.001 17.386 15.353
0.80 6 10.817 6.944 1.265 0.312 19.486 16.789
0.80 9 6.682 3.569 2.983 2.222 22.703 20.506

Erlang Inter-Arrival Times and Exponential Processing
Times

' +Analytica!
—%— Simulation

Average Backorders at Stage 3

0 1 2 3 4
Basestock Level

Figure 5. 5: E[B;] for Erlang Inter-Arrival Times and Exponential Processing Times
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Erlang Inter-Arrival Times, Hyper-Exponential Processing
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Figure 5. 6: E[B;] for Erlang Inter-Arrival times and Hyper-Exponential ProceSsing
Times
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Figure 5. 7: E[B3] for Poisson Arrivals and Erlang Processing Times
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Poisson Arrivals and Hyper-Exponential Processing Times
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Figure 5. 8: E[B;] for Poisson Arrivals and Hyper-Exponential Processing Times
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Figure 5. 9: E[B;] for Hyper-Exponential Inter-Arrival Times and Erlang
Processing Times
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Hyper-Exponential Inter-Arrival Times and Exponential
Processing Times
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Figure S. 10: E[B3] for Hy'per-Expone’ntial Inter-Arrival Times and Exponential
‘Processing Times
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Figure 5. 11: E[B;] for Hyper-Exponential Inter-Arrival Times and Hyper-
Exponential Processing Times
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Table 5. 10: Results for Ten-Stage Systems

5.4.2 Non-Homogeneous Systems

Average Backorders| Average Inventory at
_ at Stage 10 Stage 10
Inter- | Service [Utilization | Basestock |Simulation|Analytical|Simulation| Analytical
Arrival Time Level
Time SCV| SCV

2.25 0.25 0.7 -3 1.814 0.807 1.225 1.047
2.25 0.25 0.7 6 0.642 0.310 3.543 3.675
2.25 . 1.00 0.7 3 6.215 1.844 0.729 ~0.541
2.25 1.00 0.7 6 1.597 0.676 3.040 3.116
2.25 1.00 0.8 3 5.097 1.814 0.748 0.451
2.25 1.00 0.8 6 2.258 1.075 2.583 2.412
2.25 1.00 0.8 3 0.166 1.043 1.566 0.773
0.25 1.00 0.8 3 7.792 10.265 0.509 0.001
0.25 2.25 0.8 3 40.502 | 43.024 0.001 0.000
1.00 0.25 0.8 3 1.659 1.444 1.025 0.585
1.00 1.00 0.8 3 13.026 | 11.634 0.241 0.000

We examined six different configurations of non-homogeneous tandem systems. A

particular combination of basestock level and SCV of processing time was used at each of

the stages. The combinations were chosen such that the level of inventory was consistent

with variability in the service process.

That is, a node with higher (lower) SCV was

provided with a larger (smaller) output store. The system tested was a three-stage system

similar to the homogeneous systems presented in the earlier section. The arrival rate A is set

to unity so that desired utilizations of 0.70 and 0.80 are obtained by just modifying the mean

processing times. The various configurations of service distribution SCV and basestock

levels used at each stage are provided in Table 5.11. Three different inter-arrival time

distributions namely Erlang, exponential and hyper-exponential were tested for each of the

six configurations.
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Table 5. 11: Configui*ation’s for the Non-Homogeneous Cases

Stage 1 Stage 2 Stage 3
Configuration | Service |Basestock| Service |Basestock| Service | Basestock
distribution| level ‘|distribution] level |distribution level
SCvV SCvV SCvV
1 0.25 3 1.00 6 2.25 9
2 0.25 3 2.25 9 1.00 6
3 1.00 6 0.25 3 2.25 9
4 1.00 6 2.25 9 0.25 3
5 2.25 9 0.25 3 1.00 6
6 2.25 9 1.00 6 0.25 3

Tables 5.12 through 5.14 present both simulation estimates and the analytical results

for the various combinations of arrival distributions and utilizations. The results again

indicate that the analytical model performs ‘quite well (RPD < 11%) in most cases.

Table 5. 12: Non-Homogeneous Systems: Erlang Inter-Arrival Times

Average Backorders{Average Inventory at Average
at Stage 3 Stage 3 Intermediate
Inventory
Configuration p Simulation |Analytical| Simulation|Analytical|Simulation| Analytical

1 - 0.70 0.164 | 0.185 | 6.534 6.419 10.623 | 10.770
2 0.70 0.099 0.081 4.342 4191 | 12.754 | 12.893
3 0.70 0.189 0.198 6.537 6.404 10.106 | 10.196
4 0.70 0.143 0.070 1.917 | 1.798 14.658 | 14.674
5 0.70 0.081 0.090 4.385 4.257 11.201 11.210
6 0.70 0.082 0.053 1.947 1.899 13.597 | 13.540
1 0.80 0.954 1.222 5.016 4.583 12.483 | 13.176
2 0.80 1.055 0.843 | 3.096 2.511 14,503 | 14.868
3 0.80 0.965 1.294 5.045 4.611 11.362 | 12.027
4 0.80 1.224 0.921 1.297 | 0.770 15.311 15.496
5 0.80 0976 | 0.846 3.088 2.732 11.269 | 11.461
6 0.80 1.148 0.738 1.310 0.960 13.164 | 13.125
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Table 5. 13: Non-Homogeneous Systems: Poisson Arrivals

Average Backorders |Average Inventory at Average
at Stage 3 Stage 3 Intermediate
Inventory
Configuration p Simulation} Analytical |Simulation{Analytical{Simulation{Analytical

1 0.70 0.473 0.443 5.930 5.777 10.818 | 10.945
2 0.70 0.534 | 0.334 3.689 3.554 13.182 | 13.059
3 0.70 0.501 0446 | 5.821 5.685 10.364 | 10.428
4 0.70 | 0.713 0.489 1.482 1.324 14.879 | 14.832
5 0.70 0.497 - 0.322 3.677 3.542 11.476 | 11.426
6 0.70 0.653 0.450 1.500 1.400 13.770 | 13.696
1 0.80 2.099 2.005 4.167 3.752 13.114 | 13.454
2 0.80 2687 | 1.740 .2.434 1.799 15.458 | 15.141
3 0.80 2376 | 1.894 3.985 3.630 12.335 | 12.265
4 0.80 3205 | 2.243 0.900 1.072 16.343 | 15.845
5 0.80 2.587 1.431 2.372 1.801 12.277 | 11.629
6 0.80 3.197 1.937 0.890 | 0.487 14.130 | 13.450

Table 5. 14: Non-Homogeneous Systems: Hyper-Exponential Inter-Arrival Times

Average Backorders |Average Inventory at Average
at Stage 3 Stage 3 Intermediate
Inventory
Configuration p Simulation |Analytical|Simulation|{Analytical Simulation|AnaIyticaI
1 0.70 1.502 0.764 5.004 5.216 11.417 | 11.029
2 0.70 1.714 0.733 3.033 3.050 | 13.637 | 13.163
3. 0.70 1.456 0.674 4.950 5.023 10.844 | 10.452
4 0.70 2.284 1.090 1.092 1.000 | 15.423 | 14.890
5 0.70 1.844 0.589 2.923 2.883 | 12.154 | 11.451
6 0.70 2.140 1.002 1.208 1.029 14.307 | 13.718
1 0.80 4.755 2.735 3.348 | 2.969 14.306 | 13.262
2 0.80 5.819 2.840 1.828 1.234 16.881 15.102
3 0.80 5.441 2.517 3.076 2.546 13.875 | 12.175
4 0.80 6.756 3.850 0.695 0.181 | 17.736 | 15.873
5 0.80 5674 | 2521 1.811 | 0.864 13.608 | 11.815
6 0.80 . 6.510 3.493 0.689 0.179 15.556 | 13.472
5.5 SUMMARY

This chapter extended the decomposition procedure used for the analysis of tandem
make-to-stock systems with Poisson arrivals and exponential processing times to general

arrivals and general processing times. The wide variety of example systems investigated
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show that the approximation works quite well in many situations. In the following chapter,
it is shown that the same framework can be applied when additional manufacturing features
are included as part of the system which alter the dynamics of system flow, with the focus

still on tandem make-to-stock systems.
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CHAPTER VI

MODELING TANDEM MAKE-TO-STOCK SYSTEMS: ADDITIONAL
MANUFACTURING FEATURES

6.1 CHAPTER OVERVIEW

The previous chapter focused on genefalizing the decomposition approach from a
distributional perspective. This chaﬁter focuses on extending the g@neralized model to
include common mamifacturing feétures su;:h as batchihg of orders, Iﬁultiple‘servers at a
stage, limited supply of raw materials and service interruptions. F irst, the general procedure
is outlined, and, then each subsequent section explains the modeling of a particular féature
and how it can be included within the generalized procedure. In other words, a framework
is established based on the approximatioﬁ procedure developed in Chapters 4 and 5, and it
is shown that this framework is versatile in that it can be applied to model many common

manufacturing situations and features.

6.2 THE GEN ERALIZED PROCEDURE

The system under consideration is a tandem make-to-stock system where at each
stage there is a stock of products at the output side. These products are subsequently used
to make the product at the next stage unless it is the final stage where the product is the
finished product, which is used to satisfy the external demandb. The system is controlled by

a basestock policy that is specified by the basestock level at each stage, which is the
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maximum planned inventory at the output side. The assumptions made for the system
described in Chapter 5 hold true for all the systems described in this chapter as well.
Demand occurs at the last stage and triggers the demand for the rest of the stages as
described earlier. Demand inter-arrival times and processing times are stochastic, and are

characterized by the first two moments, the mean and the squared coefficient of variation.

The solution procedure begins at Stage 1. For all systems except when there is a.
need to model the sﬁpply of raw materials‘,- we solve for the approximate distribution of
number of orders at this stage. The approximate distribution of inventory as well as the
approximate distribution of backorders is then obtained from the distribution of number of
orders. The procedure to deterrnin¢ fhe distribution of the hﬁmber of orders varies
depending on fché manufacturihg featuré being modeled. The procedures for the different
features are described in the following sections. First, the expected inventory level, the
expected number of backorders and the probability t.ha‘t’an order will not find a part at Stage
1 are obtained. From the second stage onwards, the delay model is used for the analysis.
The procedure used to calculate the required performance measures at each stage is similar
to the>ana1ysis of the delay model described in earlier chapters. The method used for
determining the distribution of Qrdérs in the processing node changes with the
manufacturing feature being modeled. The prdcedure to determine the arrival rate and
squared coefficient of variation of the inter-arrival times to the processing node is also
modified depending on the speciﬁc;‘manufacturing featuré Being modeled. In short, as a
new manufacturing feature is included, the procedure to determine the distribution of
number in system for that specified type of queué is substituted in the general procedure and

the analysis is then carried out.
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6.3 MULTIPLE SERVERS AT A STAGE

Multiple machines/servers at a stage is a feature common in many production
systems. The analysis of a tandem make-to-stock system with multiple-server stages
follows the general procedure described in Section 6.2. In this section, the focus is on a
procedure to find the distribution of number in system in a mult_iple-server queue. We use

the procedure contained in Whitt’s (1993) article on GI/G/m queues.

The following input parameters are requi;ed for the analysis of a GI/G/m queue.
A clo- réte and SCV of the inter-arrival ﬁme distribution;

- mean and SCV of processing time distribution; and

m - number of servers at the node.

An appreximation developed by Whitt (1993) for the probability mass function P(N

= n) where N is the number in system is given below:

(P@=n-m) n>m+l

P(N =n) =3 p(n) 6.1)
<ng
Vrig=0 0snsm
_ : : ~ . . qn) .
where Q is the  queue length random variable, p(n) —.Zm— with
| o)
Jj=0

g(j)=¢% ‘e _%!. That is, p(n) is a truncated Poisson distribution with intensity c. The

intensity «is found out by matching the exact value of the expected number of busy servers:

Expected number of busy servers = mp = Zn.P(N = n) +mP(Q > 0) (6.2)

n=0
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leading to the formula
> np(n) = mip~ P(Q > 0)] | 63)
n=0

The parameter o is found out using the computational procedure developed by

- Jagerman (1984). The probability mass function P(Q = n) is obtained by
P(QO=n)=PQ>0).PC=n : (6.4)

where C is the conditional queue length given that the queue is not empty. The

procedure described in Whitt (1993) was uséd to determine P(C = n) and P(Q > 0).

The SCV of the departure process from a multiple server node is obtained using the

standard approximation from QNA (Whitt, 1983).

2 =1+(1-p)E-D+E=(2-1) 6.5)
m I

T

In sﬁmmary, the overall procedure begins with the calculation of P(Q>0) and P(C =
n). It is then followed by the calculation of p(n), g(n) and « using the procedures described
in Whitt (1993). Then, the equation (6.1) is used to find P(N = n). Using P(N = n), the
distribution of inventory level and the nmnber of backorders is thained for a single-stage
make-to-stock system with multiple.servers. P(N =n)is also useci for determining the
distribution of number in system in the delay mbdel, which is then used in calculation of
expeéted inventory level é.nd expécted number of backorders. This procedure is now used
in conjunction with the general procedure outlined in Section 6.2 for the analysis of a

tandem make-to-stock system with multiple servers at a stage.
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6.3.1 Numerical Results

Thirty-six different configurations of tandem make-to-stock systems with multiple
server stages were tested. Thrée inter-arrival distributions in combination with three
service distributions, two 1evels of utilization, and two basestock levels were used to obtain
the thirty-six different configurations. The mean demand arrival rate was set to one so that
the mean service times could be manipulated to obtain the desired utilization. The SCV of
the inter-arrival and service distributions used were 0.25 (Erlang with four stages), 1
(exponential), and 2.25 (hyper-exponential disuibution), and the two utilizations used were
0.70 and 0.80. The number of servers at each stage was set to 3. The intermediate
inventory measure includes everything except the orders in queue and being processed at
the first stage and the finished goods. The results afe presented in Tables 6.1 through 6.3.

As before, RPD is used to evaluate the accuracy of the analytical model.

Analytical Result - Simulation Estimate

Relative percent differencé (RPD) = _ *100

Simulation Estimate

In terms of estimating the average intermediate inventory, the model performed
extremely well (less than 5% RPD) in 18 cases examined, very well (5% to 10% RPD) in 7
cases, and reasonably well (10% to 15% RPD) in 6 cases. In 35 of the 36 different
conﬁgﬁrations examined, fhe RPD for average intermediate inventory was less than 20%.
In terms of number of backorders and ihventory level, the RPD measure is sometimes
inappropriate as the values involved are e‘xtre’mely small (Whitt, 1983). In case of systems
where there is reasonably large backérder or inventory level, the model estimates the
average values quite accurately. Overall, the model tends to capture the behavior of the

system as a function of the arrival and service parameters and the basestock levels.
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Table 6. 1: Multiple-Server System with Erlang Inter-Arrival Times

System Parameters Average Backorders | Average Inventory at Average
at Stage 3 Stage 3 Intermediate
Inventory
C? p |Basestock|Simulation|Analytical |Simulation|Analytical |Simulation|Analytical
Level
0.25 (0.70 3 0.316 | 1.276 0.775 0.687 6.259 7.271
0.25 {0.70 6 0.003 '0.346 3.720 3.610 11.994 | 12.418
0.25 10.80 3 1.153 3.103 0.382 0.303 6.863 8.853
025 |0.80 6 0.043 0.869 3.108 | 2.816 12.031 | 13.106
1.00 }0.70 3 1.341 | 2143 | 0.584 0.506 7.118 7.964
1.00 (0.70 6 0.122 0.821 | - 3.356 3.232 12.127 | 12.699
1.00 {0.80 3 4.314 5.628 0.206 0.104 9.287 10.713
1.00 {0.80 6 0.897 1.820 2.256 1.969 | 12.879 | 14.039
225 1070 3 3.578 | 3.765 0.422 0.255 8.878 9.189
225 |0.70 6 0.917 1219 | 2.718 2.573 12.918 | 13.398
225 10.80 3 10.124 | 10.407 0.119 { 0.011 13.831 | 14.066
225 10.80 6 4770 4.641 1.346 | 0.883 16.080 | 16.429
Table 6. 2: Multiple-Server System with Poisson Arrivals
System Parameters Average Average Inventory Average
Backorders at at Stage 3 Intermediate
Stage 3 : Inventory
C2 p |Basestock|Simulation| Analytical |[Simulation| Analytical |Simulation|Analytical
§ | Level
025 |0.70 3 1.255 1.919 0.718 '0.502 6.703 7.579
025 |[0.70 6 0.158 0.605 3.278 3.173 12.042 | 12.593
0.25 1{0.80 3 3.184 4.443 0.374 | 0.134 7.753 9.264
025 |0.80 6 0.742 1.519 2415 | 2.085 12.280 | 13.389
1.00 }0.70 3 2.674 2.900 | 0.563 0.333 7.841 8.319
1.00 | 0.70 6 0.640 0.948 2.897 2.787 12460 | 12.913
1.00 |0.80] 3 7.099 7.222 0.232 0.037 10.826 | 11.196
1.00 | 0.80 6 2.646 2.840 1.808 1.373 13.899 | 14.478
225 [0.70 3 5.234 4.452 0.430 0.169 9.901 9.451
225 (070 6 1.844 1.629 | 2.418 2.264 13.524 | 13.534
225 10.80 3 13.128 11.944 0.145 | 0.004 15.449 | 14.524
225 10.80 6 6.945 5.734 1.208 0.579 17.296 | 16.740
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Table 6. 3: Multiple-Server System with Hyper-Exponential Inter-Arrival Times

System Parameters Average Backorders | Average Inventory at |Average Intermediate
' at Stage 3 Stage 3 Inventory
C? p |Basestock|Simulation|Analytical { Simulation |Analytical| Simulation | Analytical
’ Level | :
0.25 (0.70 3 2.956 2.781 .0.707 0.306 7.261 7.880
0.25 |0.70 6 1.012 1.180 2.771 2.650 12.190 12.935
0.25 |0.80 3 6.472 | 6.430 -0.390 0.035 8.771 9.682
0.25 |0.80 6 2.888 2.968 1.760 - | 1.036 12.672 14.218
1.00 |0.70 3 4.867 3.869 0.556 0.186 8.897 8.651
1.00 |0.70 6 1.929 1.600 2473 2.251 13.060 13.317
1.00 |0.80 3 10.580 [ 9.468 | 0.257 0.008 12.211 11.767
1.00 |0.80 6 5.833 4.789 1.474 0.599 15.137 15.497
225 ]0.70 3 7.654 5.587 0.441 0.083 11.073 9.819
225 |0.70 6 3631 | 2503 | 2.130 1.641 14.501 14.178
225 10.80 3 17.713 | 14.488 0.173 0.001 18.040 15.223
225 |080| 6 10.504 8.740 | 1.038 0.138° | 19.720 | 18.377
6.4 BATCH SERVICE

In many manufacturing systems, workstations process parts in batches to reduce the

effect of set-up times and to make efficient use of resources such as tools and operators. In

this section, we show that this manufacturing feature can be modeled within the

decomposition framework. The system under consideration here is limited to the tandem

make-to-stock systems even though the procedure can be applied to other systems, such as

feed-forward networks. The assumptions that are specific to batch service systems are

summarized next.

The incoming orders are for single parts both at the final stage as well as at the

intermediate stages. The orders at an intermediate 'stage' consume individual parts from the

previous stage, and then proceed to be batched before being processed at that stage. The

parts after being processed as a batch are immediately split into individual parts before

proceeding to the output store of the stage.
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The procedure begins at Stage 1 where the arrival rate and SCV of the inter-arrival
distributioﬁ are known. The processing time distribution for a batch is also known. The
distribution of the number in system at Stage 1 is computed from which the distribution of
backorders and inventory levels are calculated. It is reminded that the stage processes
orders in batches. The procedure to find the distribution of the number in system in a batch
node is presented in the next sub-section. The departure rate from this stage is the same as
the external arrival rate and the SCV of the intér-departure time distribution is computed
from the service and arrival parameters vusing the procedure in Whitt (1983). Also, the
probability that an order is backordered is calculated. Beginning at Stage 2 till the last stage
and proceeding sequentially, the delay model is repeatedly used to obtéin the distribution of
backorders and that of the inventory level. Thé distﬁbtition of the number in system at the
processing node in the delay model is now the distribution of the number in system in a
batch processing node.

6.4.1 The Distribution of fhe Number in System in a Batch Processing Node

This section describes the approximate procedure to determine the distribution of
the number in system in a single stage batch processing make-to-stock system. This
procedure is an extension of the procedure to estimate the mean number of jobs in ordinary
batch service queues described by Bitran and Tirupati [1989]. The méthod first explains the
derivation of the expression for mean number of jobs which is then followed by the

expression for the distribution of the number in the system.

The single-server make-to-stock system with batch processing is shown in Figure
6.1. Station 0 is a fictitious station that can be interpreted as a staging area for forming

batches. Demand arriving to the system is satisfied from the output store if parts are
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available else it is backordered. The basestock policy identiﬁed by the basestock level S is
one for one and thus, each demand arrival triggers an order to replenish the consumed part.
The orders pick up raw parts which are assumed to be always available. The orders then
proceed té Station 0 where they wait until é»batch,of size r is formed. Accumulation of r

orders signifies the completion of a batch which is transferred immediately to the queue at

Station 1.
5 . External
i » C.o ‘ l Demand
r’or 2
A,Cho

Station 1

Figure 6. 1: A Single-Server Batch Processing Make-to-Stock System

The following notation is used in the estimation the mean number of orders:

A - demand arrival rate;

¢},  -SCV of the inter-arrival time distribution;

T - mean processing time;

¢! -SCV of the processing time distribution;

N - number of orders in the system at any time;

No - number of ofders at Station 0 (batching station) at any time; and
N - number of batches at Station 1 at any time.
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We assume that the external arrival process is a renewal process. This implies that
the arrivals at Station 0 follow a renewal process which yields the following results. E/Ny/,
the mean number of orders or parts at Station 0 is (r-1)/2 (Bitfan and Tirupati, 1988). The

arrival rate to Station 1 is given by A/ and the SCV of inter-arrival times at Station 1 is

equal to ¢, /r (Bitran and Tirupati, 1988).

Station 1 is now modeled as an ordinary GI/G/1 queue where each customer
represents a batch of r orders. Using the approximation given in Chapter 5, E/N;/, the

mean number of batches in Station 1, is determined.

‘Now, E[N], which is the average number of orders in the system is given by E/N] =

E[Ny] + E[N;].r. The utilization of Station 1, p, is equal to (A7). T
Define o= (E[N] - p)/E[N]

The approximate probability distribution of N is given by (Buzacott and

Shanthikumar, 1993),

1-p, n=0

P(N=n)= { (6.6)

p(l-c)c™ ,n=1,2,...

From P(N = n), the distribution of backorders and inventory can be easily derived as

shown in Chapter 5.

The departure process from the batch node needs to be computed so that the arrival
process to the next stage can be obtained. At Station 1, we know the first two moments of
the inter-arrival and service times. = Using the procedure described by Whitt (1983), the

parameters of the departure process are computed. The mean rate of the departure process
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is same as the arrival process and thus after the splitting of batches, the mean departure rate

of orders remains as A. Denote the SCV of the departure process before splitting by .
The departure process after the splitting into individual parts is simply ¢; = ¢}, .7 (Whitt,
1983). Using c2, the effective inter-arrival time SCV at the next stage is computed using

the procedure described in Chapter 5.

We now kﬁow all of the required procedures to determine the distribution of the
number in system and hence, the distribution of the inventory level and the number of
backorders in a batch processing make'-to-stock‘ system. This procedure is used within the
framework established in Section 6.2 to complete the.arllalysis of a .tan‘dem make-to-stock
system with batch processing at the individual‘ stvages..

6.4.2 Numerical Results

The parameters of the six configurations used to test the batch service case are
presented in Table 6.4. The simulation estimates were obtained by averaging estimates
from ten replications. Each replication had a run-length of 50,000 time units in addition to
5,000 time units of warm-up. Three different inter-arrival time distributions were used in
combination with the six configurations giving a total of 18 differen‘; test cases. The three
inter-arrival distributions used were Erlang with SCV = 0.25, expoﬁential, and hyper-
exponential with SCV =2.25. The batch size was set at 5 at all the stages and across all the
configurations. The analyticél and simulation results for the 18 test cases are presented in

Tables 6.5 through 6.7.

The results indicate that the approximation performs very well (less than 10% RPD)

for 12 of the 18 cases examined in terms of expected number of backorders. In terms of
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average intermediate inventory, the model performs extremely well (less than 5% RPD) in
13 of the 18 cases examined; In terms of average inventory at stage 3, the percentage
difference is not a good measure since the numbers are relatively small in value. Overall,
the approximation for the tandem make-to-stock system with batch processing performs

accurately.

Table 6. 4: Configurations for Testing the Batch Processing Extension

Stage1 | Stage1 | Stage2 | Stage2 | Stage3 | Stage 3
Configuration]| Service |Basestock| Service |Basestock| Service |Basestock
Distribution| Level [Distribution| Level |Distribution| Level
SCV SCV Scv
1 0.25 9 1.00 12 2.25 15
2 0.25 9 2.25 15 1.00 12
3 1.00 12 0.25 9 2.25 15
4 1.00 12 2.25 15 0.25 9
5 2.25 15 0.25 9 1.00 12
6 2.25 15 1.00 12 - 0.25 9

Batch Size = 5 at all the stages

Table 6. S: Batch Processing System with Erlang Inter-Arrival Times

Average Backorders| Average Inventory at Average
at Stage 3 Stage 3 Intermediate
Inventory
Configuration |Simulation{Analytical] Simulation [ Analytical | Simulation| Analytical |

1 18.327 | 20.682 2.438 1.922 38.486 | 47.306
2 21.670 [ 22.108 1.274 0.071 47.343 | 50.583
-3 19.788 | 19.345 1.952 2.262 35.235 | 39.804
4 23.716 | 23.311 0.526 0.001 44.368 | 46.031
5 25.782 | 20.148 0.821 0.066 34.758 | 32.847
6 26.339 | 23.909 0.406 34869 | 36.673

0.001
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Table 6. 6: Batch Processing System with Poisson Arrivals

Average Backorders| Average Inventory at Average
at Stage 3 Stage 3 Intermediate
Inventory
Configuration|Simulation|Analytical| Simulation | Analytical | Simulation | Analytical
1 21.690 | 22.205 | - 2.185 1.522 43.039 | 47.842
2 25.081 | 24.113 1.220 | 0.038 48.582 | 51.234
3 22,635 | 20.793 1.785 1.701 36.180. | 40.308
4 26.500 | 25.603 0.527 0.001 45.755 | 46.819
5 28.340 | 22.420 | 0.793 0.024 | 34.478 | 33.630
6 28.181 | 26.392 0.439 0.000 36.852 | 37.626

Table 6. 7: Batch Processing System with Hyper-Exponential Inter-Arrival Times

Average Backorders |Average Inventory at|Average Intermediate
at Stage 3 Stage3 Inventory
Configuration | Simulation | Analytical [Simulation| Analytical| Simulation | Analytical
1 25.961 24.628 | 2.013 0.977 46.764 | 48.440
2 30.446 | 27.265 1.128 0.013 52.045 | 52.041
3 28.038 | 23.305 1.624 0.936 39.603 | 41.166
4 32.088 | 29.300 0524 | 0.000 | 48.425 | 48.096
5 33.773 | 26.031 0.811 0.004 37.556 | 34.826
6 32.836 | 30.177 0.467 0.000 | 38.043 | 38.976

6.5 MAKE-TO-STOCK SYSTEMS WITH A LIMITED SUPPLY OF RAW
MATERIALS

In all the systems considered thus far, it was assumed that raw materials were
always available at Stage 1. In this section, this assumption is relaxed and a limited supply
of raw materials is modeled at the input side of Stage 1. The orders that arrive at Stage 1
now pick up raw materials from a raw material store with a limited capacity. We assume
that the one-for-one replenishment policy is also followed for the raw materials. The
replenishment time is random with a mean of y. Also, lét So represent the maximum
amount of raw material stock. The rest of the dynamics is similar to the tandem make-to-

stock systemé described in Chapters 4 and 5.
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The analysis of the system follows the procedure described in Chapter 5 except for
the analysis pertaining to Stage 1. Stage 1 is now modeled using the delay model. The
supply process is modeled by an infinite server (delay) node, and using M/G/ec formulas,
the expected number of backorders, thé exp_ected inventory level and the probability of an

order being backordered are determined.

We require the expected number of backorders at the raw material store in the
analysis of Stage 1. The probability p of an order not finding raw materials is assumed to be
the steady-state probability of the raw material store being empty. This is equivalent to

having Sy or more busy servers in the M/G/oo system. Hence, we have

-4y

Z Gy ) ad 6.7)
The expected raw material inventory level is given by
B[l = Z(S s 63)
The expected number of backorders is given by

E[Bo] = (AY + E[Io] -So N C)

The expected number of backorders thus calculated becomes the average number
(p2) in the delay node of the delay model described in Chapters 4 and 5. Using the
procedure developed for the delay model, performanée measurés for‘ Stage 1 are computed.
Beginning at Stage 2, the generalized approximation procedure is now used for the analysis

of the entire system.
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6.5.1 Numerical Results

We use homogeneous configurations to test the approximations for systems wi_th
limited raw materials supply. The lead time at the supplier is random with a mean of 3 time -
units. The demand arrival process is Poisson with a mean of one. Three different service
processes were used in coﬁbination with two levels of raw material basestock levels and
three different basestock levels for intermediate and finished parts, resulting in a total of
eighteen different combinations. -COmpariéons of the analytical results with simulation

estimates are presented in Table 6.8.

Table 6. 8: Results for Make-to-Stock Systems with a Limited Supply of Raw

Materials
Basestock | Average Backorder|Average Inventory at} Average Intermediate
Level . atStage3 . | Stage 3 Inventory

csz So S;  [Simulation|Analytical} Simulation|Analytical{ Simulation | Analytical
0.25 1 1 5707 | 5573 0.075 0.001 3.881 3.722
0.25 1 3 1.804 1.602 0.954 0.445 5.071 5.308
0.25 1 6 0.428 0.434 | 3.448 3.190 | 10.127 10.394
0.25 3 1 4.301 4.483 0.086 0.005 3.981 4.006
0.25 3 3 1.472 1.527 1.050 0.553 6.201 6.502
0.25 3 6 0.396 0.431 3.492 3.218 11.702 11.740
1 1 1 10.990 | 11.077 0.017 | 0.000 7.973 8.027

1 1 3 6.021 5.586 0.458 0.061 8.532 8.475.

1 1 6 2.154 1.574 2.470 1.950 11.695 | 11.574
1 3 1 9.295 9.779 0.034 0.000 7.817 8.107
1 3 3 5.080 4.800 0.562 0.112 9.067 9.016

1 -3 6 1.990 1.499 2.539 2.069 13.002 12.758
2.25 1 1 19.663 | 19.785 0.007 | 0.000 14.767 14.735
2.25 1 3 14.109 | 13.571 0.185 0.001 14.894 14.520
2.25 1 6 7.854 5.771 1.335 0.507 16.435 15.214
225 3 1 18.063 | 18.254 0.013 0.000 14.649 14.582
2.25 3 3 13.097 | 12180 | 0.245 | 0.004 15.218 14.504
2.25 3 6 7.076 5250 | 1.420 0.644 17.127 15.934

The results indicate the model accurately estimates the average intermediate
inventory in every case tested. The RPD was less than 10% in all the cases. In terms of

expected backorders, the model performs very well (less than 10% RPD) in 13 of the 18
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cases examined. Overall, the analytical model compares Very well with simulation thus
showing that the framework can be easily extended for modeling make-to-stock systems

with a limited supply of raw materials.

6.6 MULTIPLE-CLASS MAKE-TO-STOCK SYSTEMS

In this section, analytical models for make-to-stock systems with multiple classes of

customers are developed. The systém under consideration has K classes of customers with
Ar and cgk being the parameters of the class £ demand arrival process, k=1, 2, ..., K. The

focus is again limited to tandem systems even though the procedure can be easily extended
to other production networks such as feed-forward networks. At each stage in the system,

the service time distribution is unique to each class and is described by the mean processing

2

time, 7 and SCV, Coys

forclassk, k=1,2,...,K,and stagej, j=1,2, ..., M.

The M-stage tandem system is similar to the system described in Chapter 4. The
basestock policy is specific to a particular class and is represented by a non-negative integer,
Six where, j=1,2, ..., M, and k=1, 2, ... K. Additionally, it is assumed that S;; = Sj; = ...
= Six. That is, the basestock level is the same for all the classes at a stage. Demand for a
particular class & is satisfied at:stage M from the available stéck. If there is no stock of class
k type units at the last stage, the demand is backordered. Production at a stage continues
until the inventory levels of Sy for all classes & is re;iched. The orders for a class j at stage
M looks into the stage M-I store for class j parts. If parts are available, the order picks the
part and joins the queué at stage M for ’processing. Otherwise, the request for part is

backordered, and the order waits for an order in that class to finish processing at stage M-1.
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At stage 1, orders immediately join the queue as it is assumed that raw materials that are

required for each class are always available.

The approach used in QNA (Whitt, 1983) to handle multiple customer classes is
modified for use in a make-to-stock system. The analysis of the system begins by
aggregating the arrival distributions, processing distributions and basestock levels into an
equivalent single class system. The procedure described in Chapter 5 is then used to
analyze this aggregated single class systerh. After the analysis, a disaggregation procedure
is used to compute the detailed performance measures. Oniy the aggregation and
disaggregation procedures are described here.

The Aggregation Procedure
The basic aggregation procedure is a modification of thé procedure originally

developed by Whitt (1983) for ordinary queueing networks. The following notation is used:

ks Co rate and SCV of the inter-arrival distribution for class &;

Tiks c;.k' mean and SCV of the processing time distribution for class £ at stage

i

.S}kb  basestock level for classvk at stage j;

A, ¢t rate and SCV of the aggregated arrival distribution;

7, c; ineari and SCV of the aggregated processing time distribution at
stage j;

S; aggregated basestock level at stage j; |
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B average number of backorders for class £ at stage J;

Ni average number of orders for class £ at stage k;
B; aggregated average number of backorders at stage &; and
N; aggregated average number of orders at stage k.

In the above quantities, k=1,2, ..., Kandj=1,2, ..., M.

The aggregated arrival rate and SCV are given by

K j )
A=Y Aoand ¢} =*—n (6.10)
k=1 )

7, =+ s (e + ) =5 (6.11)

: K
The aggregated basestock level at each stage is given by S, = ZS & - This
k=1

completes the aggregation procedure.
The Disaggregation procedure

The performance measures obtained using the approximation procedure in Chapter
5 are for an aggregated single class model. The performance measures of interest are the
expected number of backorders and the expected inventory levels at each stage. These

measures are obtained as follows:
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Let E/B;] and E[N;] be the average number of backorders and the average number
of orders at stage j, respectively. These are obtained from the aggregated single class

model. The class specific measures are

X

2

k=1

ELB, 1= EIB,]~2%—; and E[N, 1= (ED¥,1+ ,).4 +E[B, ] (6.12)

E[I;]= S, + ELB; ]~ E[N,] (6.13)
where E/W,] is the average time in queue at stage j.

This completes the disaggregation procedure.

In summary, the analysis of a multiple-part type make-to-stock system begins with
the aggregation procedure. It is then followed by the analysis of the aggregated single class
system using the procedure described in Chapter 5. -The final step is the disaggregation

procedure which gives the required class-specific performance measures.

6.6.1 Numerical Results

Three-stage systems with two part types were used to test the approximations
developed. The arrival rates of the two part types were chosen to be 1.036 for part type 1
and 0.964 for part type 2 so that the average of the arrival rates was equal to one. The
processing time distribution for a part type was chosen to be the same at all the stages in the
system. The basestock levels were also chosen to be the same for each part type across all
the stages. The basestock level was chos¢n to be 3 at all the stages across all part types.
The mean processing times for each part type at each stage were chosen to be 0.77 for part

type 1 and 0.83 for part type 2 so that the aggregated mean processing times gave the
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desired utilization of 0.80 at all the stages. In total, ten different configurations were tested
and the results comparing the expected number of backorders and the average inventory

level of each part type obtained using the simulation and analytical models are presented in

Table 6.9 and 6.10.

The results from the analytical models are comparable to the simulation models.
The avérage inventory levels were accurately determined by the analytical model in 5 of the
10 cases examined. These results indicate the approximation scheme is a good rough-cut

tool for the evaluation of multiple-part type make-to-stock systems.

Table 6. 9: Results for Multiple-Class Make-to-Stock Systems

Inter-Arrival Time | Processing Time | Average Backorders at | Average Inventory at

scv sSCV . Stage 3 - Part Type 1 | Stage 3 - Part Type 1

ng ng ‘cfn cfn Simulation | Analytical | Simulation | Analytical
0.25° 0.25 0.25 0.25 0.002 0.007 2.367 2.400
0.25 0.25 0.25 1 0.165 0.098 1.975 2127
0.25 0.25 1 0.25 0.029 0.063 | 2171 2.184
0.25 0.25 1 1 - 0.368 0.258 1.661 2.002
0.25 1 0.2 0.25 0.029 0.094 2.171 2:135
0.25 1 1 1 0.368 0.471 1.661 | 1.973
1 1 0.25 0.25 0.079 - - 0.172 2.130 2.060
1 1 0.25 1 0.489 0.375 1.682 | 1.990
1 1 1 0.25 0.172 0.317 1.864 | 1.982
1 1 1 1 0.740 - 0.591 1.535 1.975

Table 6. 10: Results for Multiple-Class Make-to-Stock Systems (Continued)

Inter-Arrival Time | Processing Time | Average Backorders at | Average Inventory at

SCV SCV Stage 3 - Part Type 2 | Stage 3 - Part Type 2

Cgl ng cfil 052’_2 -| Simulation .| Analytical |Simulation| Analytical
0.25 0.25 025 | 0.25 - 0.020 0.010 2.080 2.100
0.25 0.25 0.25 1 0.544 - 0.147 1.572 1.690
0.25 0.25 1 0.25 0.337 0.094 1.718 1.776
0.25 0.25 1 1 1.561 0.387 1.185 1.502
0.25 1 0.25 0.25 0.337 0.141 1.718 1.703
0.25 1 1 1 1.561 0.706 1.185 1.459
1 1 0.25 0.25 0.108 0.258 1.863 1.591
1 1 0.25 1 1.002 0.562 1.267 1.485
1 1 1 0.25 0.628 0.512 1.412 ~1.500
1 1 1 1 1.932 0.887 1.094 1.485
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6.7 MODELING SERVICE INTERRUPTIONS

In Chapter 3, it was mentioned that failures can be classified into two types.
Failures that last for a short time such as service interruptions can be modeled within the
performance model. Failures that last for a long time such as major equipment failures are
better handled using techniques such as perfoi’mability analysis. Service interruptions can
be further classified into interruptions caused by machine and by parts. Examples of
machine interruptions include planned maintenance and minor faults. Part interruptions
include those due to jamming of parts and tdol breakage. Each type of interruption is
modeled differently as shown below. It is common practice to model service interruptions
by approximately capturing their effect on system performance through the modification of
service times. We describe these modifications using the notation of Segal and Whitt

(1989) and Suri et al. (1993).

Machine specific ihterruptions: The availability of a machine is modeled by an

alternating renewal process; that is, there is a succession of intervals Uj;, D;, Uz, Da,...
during which the machine is alternating up (available for service) and down (unavailable for
service). It is assumed that these up and down times are mutually independent, for all
machines as well as ‘within each sequence. for each ‘machine.‘ The down times are
characterized by their mean and squared coefficient of Variatioh band the up times are

characterized by their mean.

This model is analyzed approximately as if the down times are triggered by
processing times. As mentioned earlier we modify the processing times using the procedure

suggested by Segal and Whitt (1989). Each product causes a down time with probability p,
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and so has a expanded processing time equal to the original processing time plus an
independent down time, and has an ordinary processing time with pfobability (1-p). The
modified model is now a standard GI/G/1 queue and can be handled using the two-moment
approximations. The down time probability p is first chosen in order to produce the proper
traffic intensity, and subsequently to capture the principal effect of the increased variability
a revised processing time variability parameter is calculated. The ‘adjusted processing time
variability parameter also affects the ‘apprbximation for the departure process, and thus, the

other stages in the network. The modified processing time distribution parameters
7and z are given by

T=7+pd (6.14)

and 7 (c2+1)=(c2 + )% + p[c2d® +2dr +d] (6.15)

where d is the mean and ¢ is the SCV of the down time. The down time
probability is chosen so that the new traffic intensity is appropriately related to the original
traffic intensity by the relationship p = p+% 4+ ,Where u is mean up time. That is, the

proportion of time that the machine is busy now includes the proportion of time that the
machine is down. Now we have, 7 = % . Using (6.14) and (6.15), ¢’ is obtained. 7 and

¢ replace the original processing time distribution parameters for each of the stages and the

analysis procedure described in earlier chapters is carried out.

Part specific interruptions: In situations where interruptions are due to parts, it is

assumed that during the service of each part, there is a fixed probability p that a part might

87



cause a random delay d. The distribution of delay is specified by the mean, d and SCV, ¢ .

Then, equaﬁons (6.14) and (6.15) are used to modify the processing time parameters.

6.7.1 Numerical Results

As discussed earlier, service interruptions can be classified into two. types:
interruptions that are caused by the machine and those that are caused by the products.

Results are presented for both cases.

Tandem Systems with Machine-Related Interruptions: Six configurations of a three-
stage homogeneous system were tested. The demand arrival rate was set to one in all
examples. Two different intér-am'vél time distributions, namely, Erlang distribution with 4
stages and the exponential distribution, alohg with three different basestock levels, S=1,3
and 6, were used to give a total of six combinations. The proéessing time parameters
remained the same in all the configurations but were different across the stages. The
processing time parameters including the mean up-time and déwntime distribution are
presented in Table 6.11. The processing time parameters are chosen so that the effective

utilization is the same (= 0.70) for all the stages.

Table 6. 11: Machine Parameters for Systems with Machine-Related Interruptions

Stage 1 - Stage 2 Stage 3
.| Processing{ Mean =0.65 Mean =0.60 .| Mean=0.55
time SCV =0.25 SCv=0.25 SCVv=0.25
distribution ' : '
Up time | Uniform(90, 100) | Uniform(85, 95) | Uniform(80,90)
distribution
Down time ] Uniform( 1, 9) | Uniform(5, 15) |Uniform(10, 20)
distribution
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The results presented in Table 6.12 indicate that the analytical approximation did
not perform as well as it did for other features. In terms of average intermediate inventory,
the RPD was larger than 10% in the all the cases examined. A detailed investigation of the
intermediate calculations in the simulation and analytical models indicated that the SCV of
the modified service times were not captured accurately by the analytical model. This in
turn affected the accuracy of the departure process SCV and hencé, the arrival process SCV
to every stage. Extensive numerical testing is needed before any modification to the
approximation can be made. Such an investigation was beyond the scope of this effort

because of time and resource constraints.

Table 6. 12: Results for Systems with Machine-Related Intérruptions

System Parameters| Average Backorders at | Average Inventory at |Average Intermediate
Stage 3 Stage 3 Inventory
2, cfj S | Simulation | Analytical | Simulation | Analytical | Simulation | Analytical
025] 025 | 1 4.838 7.877 0.146 0.014 6.551 9.404
025} 025 | 3 2.745 4.371 1.267 0.591 9.385 11.320
025] 025 | 6 1.360 2.197 3.563 2.704 | 14.703 16.033
1 0.25 1 5.822 8.904 0141 0.006 6.960 9.704
1 025 | 3 3.503 5.121 1.089 0.403 9.656 11.525
1 025 | 6 1.767 2.806 3.305 2.345 14.741 16.267

Tandem systems with part-related interruptions: Numerical results for these systems
are presented in Table 6. 14. F dr the sake of brevity,. the demand arrival rate was again set
to one in all the cases. bThe desired utilization was obtained by modifying the service times.
The service distribution was deterministic and the delay distribution was exponential at all
the stages. The probability of a part being delayed was set at 0.1 which is the same at all the
stages. Three inter-arrival distributions in combination with three basestock levels gave a

total of nine combinations. The other machine parameters are given in Table 6.13.
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Table 6. 13: Machine Parameters for Systems with Part-Related Interruptions

Stage 1 Stage 2 Stage 3
Processing|Mean = 0.75 [Mean = 0.70{ Mean = 0.65
time SCv=025| SCv=0 SCV=0
Distribution
Probability 0.1 0.1 0.1
of delay
Downtime | Exponential | Exponential| Exponential
Distribution| Mean = 0.05 [Mean = 0.10{  Mean = 0.15

The results in Table 6.14 indicate that the analytical results are very close to the

simulation results when the basestock level is low (S = 1) and high (S = 6). Even in the

case when basestock level is 3, the analytical model captures the system behavior when the

inter-arrival process is changed. Based on the limited number of cases examined, it appears |

that the analytical model captures the part-related ihterruptions better than the machine-

related interruptions.

Table 6. 14: Results for Systems with Part-Related Interruptions

System Mean Backorders at Average Inventory at | Average Intermediate
Parameters Stage 3 Stage 3 “Inventory
e Basestock| Simulation|{ Analytical Simulation |Analytical| Simulation | Analytical
Level
0.25 1 4.164 3.969 0.070 0.806 4.225 4.108
0.25 3 1.403 0.994 1.027 1.450 6.726 7.212
0.25 6 0.284 0.142 3.644 3.978 12.117 12.964
1.00 1 6.495 6.462 0.076 0.951 4.225. 4.108
1.00 3 3.289 4474 0.792 . 2.115 6.726 7.212
1.00 6 1.287 1.485 2.894 3.400 12.117 12.964
2.25 1 10.178 6.854 . 0.085 0.001 7.350 5.682
2.25 3 6.903 3.156 0635 | 0.229 11.110 7.755
2.25 6 3.639 1.605 2.303 2.143 14.693 13.291
6.9 CHAPTER SUMMARY

The decomposition framework developed in Chapters 4 and 5 was used to model

the tandem system with other manufacturing features such as multiple servers, batch
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processing, systems with a limited supply of raw materials, multiple part type systems, and
service interruptions. The numerical results indicate that further investigation is required
for features like service interruptions caused by machine to develop better approximations.
In modeling the other manufacturing features, the analytical approach was quite accurate in

many of the cases investigated.

In the next chapter, we demonstrate how the decomposition framework can be easily

extended to handle non-tandem conﬁguratioris.
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CHAPTER VII

MODELING FEED-FORWARD SYSTEMS AND TANDEM SYSTEMS WITH
FEEDBACK

7.1 CHAPTER OVERVIEW

In this chapter, we extend the decomposition approach to two important network
configurations. One is the feed-forward‘nétwork which is the subject of Section 7.2, and

other is a tandem system with feedback which is modeled in Section 7.3.

7.2 FEED-FORWARD SYSTEMS

In this section, a class of systems called .feed-forward systems or sequential
refinement systems is discussed. 1t is shown that the decomposition framework used in the

analysis of the tandem systems can be applied to these types of systems as well.

A system of this type operates much like a specially structured network of queues.
Planned inventories occur at the output of each stage which serve as an input to one or more
stages. Thése inputs are transformed into oﬁtput parts Which in turn serve as input to one or
more stages in front; An 'exampie of .this systém is “shown in Figure 7.1. The input-output
relationship among the stages forms a hierarchy :or a tree. There is a root stage which
processes raw parts and the output parts from this stage serve as input to all the other stages
in the hierarchy. Each part produced .at a stage may be used as input to produce any of

several others, but every stage has a unique predecessor. These systems are also called
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refinement systems because items become gradually more specialized as they progfess
through processing stages. The terminal stages of the network meet the external demand
and each stage joined with its predecessor, the predecessor’s predecessor, etc., ;:onstitutes a
path which producés a unique item. The operations are ‘sequential which eliminates any

part feedback.

: ‘ External
_,@ﬁDemand

_________________ 4
, ‘ External

i Demand
=\

______________ ' L Part Flow
External
Demand ~=--—-= Order Flow

Figure 7. 1: A Feed-Forward Make-to-Stock System

Customer demands occur at the end stages. These exogenbus demands in turn
generate implicit demands Back along the path of the predecessor items. Given these
demands, each item’s inventory is controlled by a local policy, speciﬁed by the basestock
level. As mentioned in fhe description of the tandem system, this policy parameter

determines the maximum planned inventory of the item.

The focus of our analysis is on systems where the arrivals follow a renewal process
and processing times are general, both characterized by the first two moments of their-

distributions. It is also assumed that there is a single server processing parts at every stage
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in the system. Lee and Zipkin (1995) studied the special case of Poisson arrivals and
exponential processing times.
7.2.1 Overview of the Decomposition Approach

The system consists of M stages v_viih sfage 1 being the root node. The analysis
procedure begins by the computation of the demand arrival rate and SCV of the inter-arrival
distribution at each stage. Let O = {M-k, M-k+1, ..., M}, k> 1, be the set of stages which
meet exogenous demand. Let I = {1, 2, ..., k-1} be the set of stages whose output parts
serve as input to other stages. Exogenous demands trigger the intrinsic demand at the stages
in setI. The demand at a stage in set I is the sﬁpefposition of the demand processes at each
of its successor stages. The demand arrival rate to a stage in set I is the sum of the arrival
rates at each of its suécessor stages. The demand inter-arrival SCV for a stage in set I is the
weighted sum of inter-arrival SCVs of the successor Stages. The details of the calculation
are presented later in this chapter, Once demand arrival parameters ‘have been computed,
the analysis procedure is similar to the approximation procedure for a tandem system. The
entire system is decomposed into one single-stage make-to-stock system (corresponding to
the root node) and M-1 single-stage make-to-stock systems each with a delay node. The
procedure differs in the calculation of the average number at the delay node which in turn is
used in the computation of the probability distribution of the number in system in the delay
model. Also, the procedure to calculate the inter-arrival time SCV to the processing node in
the delay model is differént from fhe procedure used for tandem. systems as any of the
node’s predecessor could be a predecessor for many other nodes. The detailed analysis of a

single-stage system with a delay node is not discussed here and the reader is referred to
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Chapter 5. The procedure to determine the SCV of the arrival process to the processing
node in the delay model is discussed in next sub-section.
7.2.2 Calculation of Demand Arrival Rates and SCVs of Demand Inter-Arrival

Times

We use the following notation

M = the total number of stages;
0 = the set of stages that meet external demand;
F(i)  =the set of stages which are the Successors of stage i;
g(i) = the predecessor stage for i;
Aok = éxogenous demand arrival rate to stage &, k € O;
cs, = the SCV of the exogenous demand inter-arrival time distribution at stage |
k, ke O
A = demand arrival rate at stage i;
cf =the SCV of the demand intef—arrival time distribution at stage i;
cl = the SCV of the inter-arrival time distribution at processing queue of stage
I
T = mean pro‘cessing time at stage i, and
cl = SCV of processing timé distribution at stage i.
i=1,2,...M

For every node £ in set O,
_ L2 2
Kk = K()k, Cp = Co -

For every node k in set I,
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Cos- Ay

M= DAl = — (7.1)
je;k)J ! jeFZUc) Zﬂj »
JeF (k)

This concludes the procedure for determining the demand arrival rate and SCV of
demand inter-arrival distribution at a stage.
7.2.3 Determining SCV of the Inter-Arrivai Process to Any Stage

The focus is now on the input side of a stage where a poftion of the demand arrival
process that finds a part immediately merges with a portion of the departure process from
the predecessor stage. Recall that an'M-stage systém is decomposed info one single stage
make-to-stock system (corresponding to. the roof node or stage 1) and M-1 single-stage
make-to-stock systems each with a ‘delay: hode. ‘The delay node essentially captures the
delay due to unavailability of parts at the output stores of the upstream stages. In order to
analyze the single-stage system with a delay node, _the SCV of the arrival process to the
processing node has to be computed. The arrival fate is the same as the demand arrival rate
to the node as every demand is satisfied. As demand arrives, some of the Qrders wait due to
unavailability of parts at the predecessor stage. This affects the variability in the arrival
process and, the splitting, merging and departure process approximations used by Whitt
(1983) are empioyedto aeteﬁnine t‘heb effective SCV of the arrivél brocess to the processing

node. The analysis is similar to that described in Section 5.3.2 for a tandem system.

In order to determine the SCV of the arrival process at a processing node, we shift
our focus to examine the departure and splitting processes at stage i and merging process at
one of its successor stages. Figure 7.2 shows these three processes between stage i and one

of its successors, say stage j. At stage i, the departure process splits into two, namely, the
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process that satisfies the backorders at all of its successor stages and the process that
satisfies the replenishment orders at the output store. In other words, a portion of the orders
that finish processing at stage i, satisfy the backorders at stage £ for all £, £ € F(i) and the
rest of the orders proceed to the output store. Thus the portion of departure process at stage
i that goes to satisfy backorders is further split into n processes, where 7 is the total number

of successor stages of stage i.

]
cy
cd, : cdl7 ’
cdll

Backorders+ o
Replenlshment
4----- --------- lllllllllll.l l-lll ESESNEEEREEBENES

(@

Arrival from the (2

/. 2 ’
predecessor stage Cy .
- = ‘ B ———— —

: Split ¢
* demand
arrival process

7

(b)

Figure 7. 2: (a) Splitting at a Predecessor Stége; (b) Merging at a Successor Stage

Looking at the arrival process at stage j which is one of the successors of stage i, it is
the merging of the two processes, namely, those orders which obtain parts at the output
store and proceed directiy into processing and those which are backordered indicated by
those orders which proceed from the predecessor stage i. We use the following procedure

to determine the SCV of the arrival pfocess at each stage. It should be noted that all of the
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information pertaining to stage i are known at this juncture including the arrival process to

stage i.
The departure SCV at node 7 is given by
cizples+A-phcs, - | (7.2)
where p; is the utilization of stage i.

Using the splitting approximation from Whitt (1983), SCV of the departure prdcess

that goes to the successor stages is given by
2. 2 .
Caiy = Pi€a T+ 1-p, ‘ (7.3)

~ where pi is the probability of a demand being backordered which was approximated

by the probability that there is no inventory at the output store of stage i.

Dij» the proportion of the departure process that goes directly to successor j is given

by
4 (7.4)

P = . .

i Zlk

keF (i)
The SCV of the arrival process from stage i to successor stage j is given by

2 . 2 | '

Co = PyCa, 1= Dy : (7.5)

Again, using the splitting approximation from Whitt (1983), we have for the split

demand process

cgj = (1-p,.).cj. +p,. (7.6)
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Using the method of superposition from Whitt (1983), the SCV of the arrival

process at stage j is
. =picy +(1—-p)cs;. (1.7)

The SCV thus determined is used as the SCV of the arrival process at the processing
node in the analysis of a single-stage make-to-stoek system with a delay node.
7.2.4 Analysis of Feed-Forward Make-to-Stock Systems

The solution procedure begins at the root node where it is assumed that raw
materials are always available. It then proceeds with the anelysis of successor nodes of the
root node. It is then continued with each of the successor’s successor nodes and so en until
all the stages are completed. The performance measures at the root node are computed
using the results from Buzacott and Shanthikumar (1993) for a single-stage make-to-stock
system. Beginning at stage 2, each of the remaining M-1 stages is modeled as a single-stage
make-to-stock system with a delay nede. At each stage other than the first stage, we need to
know the probability that an order proceeds to the delay node to compute the inter-arrival
SCV to the processing node. This probability is approximated by the probability that an
order will not find a part in the oﬁtput store of the predecessor stage. Also, the average
number at the delay node is a portien of the average of the nurnber of backorders at the
predecessor stage. At any stage backorders are created by any or all of the successor stages.
‘Thus, the proportion of backorders eorreSponding to a successor stage is equal to the ratio of
demand arrival rate from that node to the sum of the demand arrival rates from all of the
successor stages. Once, the average number at the delay node is obtained, all the

performance measures for that node can be computed using the delay model.
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The complete procedure is presented in an algorithmic form. In the following, i =1,

2, .., M.

Stage 1 (Root Node):

The expected number in system and the expected number of backorders in this stage

are given by,

Aoy where o, _ENIZa
o ' E[N]

E[N,]=A.E[W, 1+ p,; E[B,] =

= oo (7.8)

E[W,:] is the expected waiting time in queue at stage 1 and is calculated using the
GU/G/1 approximation presented in Chapter 5. The expression for E[B1] is obtained from
the analysis of a GI/G/1 make-to-stock system contained in Buzacott and Shanthikumar

(1993).

Also, we approximate the probability that a demand from a successor stage will not

find a part in the output store using

pEp.o . (7.9)

Stage i (i € F(1))

The SCV of the arrival process cZ is calculated using the procedure given in

Section 7.2.3. The average number at stage i is the sum of the orders corresponding to stage
i waiting for parts from the predecessor stage g(i), and the orders with parts waiting to

complete processing (including the one in process). Note the g(i) = 1, initially.

Hence,
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A,
E[N,]1= E[B,, ]l <— S +AEW, 1+ p,. (7.10)

keF (i)

Let p, be the average number at the delay node. p, is given by

1 |
E[B,,]. Zti : (7.11)

" keF(i)

Note that. p,is simply the portion of the average number of backorders that

correspdnds to orders from stage i.. Using the s1ngle stage model with delay node, the

steady state probability that there are n parts in the output store is given by,

§;—n—j

§'. f ‘
' - - Pa -1
e -p)+ e ———p (1-0).0/" n=1,2,..
o, ==l Gt Z S -n-?
e .(I1-p) | ) n=S,
(7.12)
and the expected inventory at stage 7 is simply
s,
E[l;]1=> . n.P[I;, =n]. (7.13)
n=1
The expected backorders at stage i is given by,
E[B;1=E[N.]+E[L;]1-5S, (7.14)

The probability that a demand. from any of the successor stages will not find a part
in the output store of stage i is approximated by the steady state probability that the output
store of stage i is empty. That is,

S;

p,=1-> Pl =n]. (7.15)

n=1

101



After the procedure is completed for all the successor stages of the root‘stage 1, then
the above procedure is continued with the successor stages of each of successor stages of
stage 1 and so on.

7.2.5 Numerical Results _ |

A three-stage system with stage 1 being the root stage, stage 2 and stage 3 being the
terminal stages, satisfying external demaﬁd, was used as the test system. The parameters for
the various configurations are given in Table 7.1. The external méan demand arrival rate
was set to one as“in the previous cases. Two demand inter-arrival distributions were used,
namely, Erlang and exponential. Table‘\s 7.2 émd 7.3- compare the average number of
backordérs (stages 2 and 3), the average inventory leVel (stages 2 and 3), and the average
intermediate inventory ’for‘the simulation and analytical models. The results ‘indicate that

the approximation is reasonably accurate in all the configurations tested.

Table 7. 1: Feed-Forward Network Configurations

Stage 1 Stage 1 | Stage2 | Stage2 | Stage 3 Stage 3
Configuration| Service |Basestock| Service |Basestock| Service | Basestock
Distribution| Level |Distribution| Level |Distribution| Level
SCV SCV SCV
1 0.25 3 1.00 6 2.25 9
2 0.25 3 2.25 9 1.00 6
3 - 1.00 6 0.25 3 2.25 9
4 1.00 6 2.25 9 0.25 3
5 2.25 9 0.25 3 1.00 6
6 2.25 9 1.00 6 0.25 3
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Table 7. 2: Feed-Forward Systems: Exponential Inter-Arrival Times at Stage 2 and
Exponential Inter-Arrival Times at Stage 3

Average Backorders | Average Backorders
at Stage 3 at Stage 2
Configuration|Simulation| Analytical | Simulation | Analytical
1 1.739 1.789 1.187 1.156
2 1.202 1.245 1.854 1.755
3 1.928 1.776 1.349 1.258
4 1.308 1.291 1.951 1.794
5 1.586 1.269 1.840 1.456
6 1.773 1.419 1.676 1.322
Average Inventory at | Average Inventory at|Average Intermediate
- Stage 3 Stage 2 Inventory
Configuration| Simulation | Analytical | Simulation | Analytical|Simulation| Analytical
1 4.461 4.280 2.836 2.697 10.843 11.168
2 2.871 2.658 4.458. 4.296 10.949 11.246
3 4.338 4.278 1.061 0.934 11.802 | 11.822
4 1.075 0.928 4340 | 4.270 11.873 11.887
5 2.662 2.470 1.000 | 0.786 11.766 11.469
6 0.983 0.791 2.617 2.450 11.809 11.500

Table 7. 3: Feed-forward Systems: Erlang Inter-Arrival Times at Stage 2 and
Exponential Inter-Arrival Times at Stage 3

Average Backorders | Average Backorders
at Stage 3 at Stage 2
Configuration]|Simulation |Analytical [Simulation |Analytical
1 0.900 1.106 1.037 1.101
2 0.337 0.549 1.891 1.705
3 0.779 1.063 1.190 1.161
4 0.298 0.383 1.681 1.738
5 0.622 | 0.569 1.543 1.332
6 0.707 0.504 1.378 1.245
Average Inventory at JAverage Inventory at|Average Intermediate
Stage 3 Stage 2 Inventory
Configuration| Simulation | Analytical {Simulation|Analytical| Simulation| Analytical
1 - 5.013 4819 3.000 2.861 0.747 10.364
2 3.464 3.214 4.505 4.465 10.060 | 10.412
3 5.111 4.812 1.110 1.035 10.389 | 11.013
4 - 1.429 1.282 4.580 1.413 10.649 | 11.063
5 3.161 2.973 1.041 0.880 10.671 10.685
6 1.292 1.081 2760 | 2592 10.726 | 10.713
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7.3 TANDEM SYSTEMS WITH FEEDBACK

In all of the systems studied so far in this dissertation, order-processing flow was
restricted to be in one direction. Also, the parts after completing processing were always
assumed to be of perfect quality. In ‘this section, a class. of systems is considered where
some limited feedback is allowed that could be used to model the possibility of pfoducing
imperfect quality pafts; The details of the feedback process are explained in the next

“section. Zipkin (1995b) studied a special case of these systems where the demand arrival
process is Poisson and the processing times are exponential
7.3.1 System Description

Demand fo finished goods arrive as a renewal proceés to stage M, characterized by
its mean and SCV, ahd is always for a single part. Eéch stage has an inventory of procéssed
parts at‘the output side which in tumn is used to make parts at the next stage. The dynamics
of the system is similar to the tandem make-to-stock system described in Chapters 4 and 5.
However, the processing at each stage can produce defective parts. If a defective part is‘
produced, it is discarded and an order is sent to the preceding stage to obtain another
finished part from the preceding stage to compensate for the discarded part. It is assumed
that feedback is allowed only to the immediate predecessor stage. ~The following

parameters are defined for the model. In t_he following,j=1,2, ..., M.

A = External demand arrival rate;
c¢c =SCV of the demand inter-arrival distribution;
5 = mean processing time at stage j;

Cy = SCV of the processing time distribution at stage j,; and
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ry = the probability that a unit at stage j passes to the next stage.

The key observation in this system is that at each stage, if a defective part is
produced, the part is scrapped and additional demand is generated since the request for
replenishment/backorder is not satisfied yet. The same part/citstomer is not re-circulated.
(1- rj) indicates the portion of parts that are scrapped, and the orders are then routed back to
its predecessor stage to obtain fresh parts. | The demand arrival to any node i is a
superposition of external demand and internallyv geﬁerated demand resulting from feedback.
Since our decomposition approach proceeds sequentially from stage 1, we will not be able
to compute the variability parameters of the combined demand arrival process, because we
do yet have information about the SCV of the internal defnand process generated by the
downstream stages. . To approximately handle this vsituatvio-n, two apprpaches were

developed.

Method 1: We first computed the total demand rate at each stage and then assumed
that the SCV of the combined demand arrival process was the same as that of the external
demand arrival process. Then, the sequential decompositioh approach was used to analyze

the system.

Method 2: First, method 1 was executed to solve the complete system. This gave us
vﬂues (although incorrect) for the SCVs of the departuré process from all the stages. We
used these to update the SCVs of the combined demand arrival process at each stage. At
the completion of processing at a stage, the deparfure process first splits into two. One part
that corresponds to good parts proceeds to satisfy demand. The other that corresponds to

discarded parts now becomes the internal demand that is fed back to the previous stage. We
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now solve the tandem line with the updated demand arrival process parameters. This gives
a new set of departure process SCVs and the above procedure is repeated until there is no
appreciable change in the SCV values.

7.3.2 Computation of Total Demand Arrival Rates

Let A; denote the total demand rate at stage i. It is given by

J |
p S — (7.16)

Frg-Fapogseest;

Now using this total demand arrival rate, the approximation method for tandem

make-to-stock systems is used to calculate the system performance measures.

7.3.3 Numerical Results

Three-stage systems were used for testing the approximation. Let R denote the
feedback probability vector where r; is the probability that a pdn at stage i proceeds to the
next stage. Two different R vectors were used in combinatioh with parameters from the
non-homogeneous systems used earlier (see Table 5.10). A total of 12 different

configurations were tested. The arrival process is Poisson with a rate of one.

The two different R vectors were

1 1

R, =08 [;and R, =|1
0.9 0.9

The results obtained using the approxirhation described in Method 1 is presented in
Tables 7.4 and 7.5. The tables show that the results from the analytical model are very close
to the simulation models for most of the configurations tested. Ten out of the twelve cases

examined had less than 12% RPD for average intermediate inventory.
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Table 7. 4: Tandem Make-to-Stock Systems with Feedback: Feedback Vector is R;

Average Backorders | Average Inventory at |Average Intermediate
at Stage 3 Stage 3 Inventory
Configuration | Simulation | Analytical |Simulation| Analytical | Simulation | Analytical |
1 1.173 0.846 5.050 4.446 10.146 10.517
2 2.268 0.926 2.928 1.595 13.384 13.793
3 1.450 0.462 4.612 4.160 9.291 9.145
4 3.596 2.315 1.093 0.210 14.794 14.947
5 2.897 0.882 2.284 1.374 10.778 9.650
6 3.849 2.057 .| 1.036 0.248 | 13.060 11.951

Table 7. 5: Tandem Make-to-Stock Systems with Feedback: Feedback Vector is R;

| Average Backorders | Average Inventory at | Average Intermediate
at Stage 3 Stage 3 Inventory
| Configuration | Simulation Analytical | Simulation | Analytical | Simulation | Analytical
1 0.273 0.269 6.339 6.239 10.354 10.530.
2 0.304 0.202 3.996 3.928 12.737 12.774
3 0.267 0.273 5.727 6.156 11.428 10.117
4 0.531 0.320 1.619 1.550 14.843 14.769
5 0.304 0.200 3.953 3.898 13.916 11.469
6 0.483 0.302 1.638 1.602 9.896 13.867

To see if the iterative me‘;hod, Method 2, improved the accuracy, analysis was
performed using the R, vector for all the six configurations. The sequential procedure was
rerun ten times. After each execution, the arrival process to stage 3 was modified by the
superposition of the split departure process from stage 3 and the external arrival process.
Since, theré was no feedbackto‘ stages 2 and 1; the modified inter;arl'ival SCV calculated

for stage 3 was also used for stages 2 and 1. The results are presented in Table 7.6.

‘The results indicate that there was a very marginal improvement in the average
inventory at stage 3 and the average intermediate inventory in some cases. The average
number of backorders did not show any improvement. A more extensive numerical study is

needed before any further conclusions can be drawn.
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Table 7. 6: Results using the Approximation in Method 2

Average Backorders | Average Inventory at | Average Intermediate
at Stage 3 Stage 3 Inventory

Configuration | Simulation| Analytical | Simulation| Analytical | Simulation | Analytical

0.273 0.257 6.339 6.269 10.354 10.488
0.304 0.195 | 3.996 3.943 12.737 12.753
0.267 0260 | 5&.727 6.200 11.428 10.060
- 0.531 0.308 1.619 1.560 14.843 14.748
0.304 | 0.186 3.953 3.941 13.916 11.412
0.483 0.279 1.638 1.623 9.896 13.822

OO hWN -

7.4 CHAPTER SUMMARY

In this chapter, we showed that the debomppsition framewqu that was applied to
tandem conﬁgmations in earlier chapters can be extended to certain non-tandem
configurations. The two cénﬁgurations modeled, _fee(i-forward networks and tandem lines
with feed-back are two of the mosvt commonly found configurations in the real world

systems. The analytical results were reasonably accurate in many of the cases examined.

The next and final chapter summarizes the contributions of this dissertation and

identifies directions for future work.
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CHAPTER VIII
SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

First, we summarize the research carried out in this dissertation effort. This is
followed by a summary of the research contributions that were made to the performance
analysis body of knowledge. We conclude this chapter by identifying some directions for

future research.

8.1 RESEARCH SUMMARY

The main research goal of this dissertation was to develop analytical ‘models for
production-inventory systems where queueing, inventory and reliability issues can be
simultaneously addressed. In Chapter 4, a sequential decomposition approach for analyzing
tandem make-to-stoqk production systems with Poisson arrivals and exponential ‘processing
times was developed where the queueing and inventory issues were addressed. within the
same framework. The numerical results indicated that the analytical approximation
performed very accurately, and better than published méthods. The approach was
generalized to address general arrfval processes and general service time distributibns in
Chapter 5. Several éonﬁgurations were tested -and resullts indicated that the approximation
method performed extremely well in most cases. Chapter 6 extended the decomposition
approach to model additional manufacturing features such as multiple servers, batch

processing of parts, limited supply of raw materials, multiple part type systems, and systems
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with service interruptions. This led to a framework being established wherein the
decomposition procedﬁre was used to model these additional manufacturing features. The
results showed that approximation performed well in mény of the configurations tested.
This demonstrated that the framework wasyversatile in handling additional manufacturing
features including some reliability and quality characteristics. In Chapter 7, the same
framework was then generalized to model feed-forward.type networks and tandem make-to-
stock systems with limited feedback. Some additional contributions are presented in the
appendices. Efforts to develop improved approximations for the basic tandem system are
summarized in Appendix A.2. Appendix A.4 explores the applicability of performability
analysis to production-inventory systems.‘ It also explores an alterﬁative approach that uses
a stochastic Petri net model that includes performance and reliability issues within a single

unified model.

8.2 RESEARCH CONTRIBUTIONS

The primary contribution of this research was the development of an analytical
modeling framework that can simultaneously address inventory and capacity/congestion
issues in a wide variety of production-inventory systems. With regard to modeling of
reliability issues, it was shown that the framework could handle issues such as service

interruptions and product quality.
The various contributions are summarized below.

* The modeling power of the parametric decomposition approach based on the

two-moment queueing framework was extended by including inventory issues.
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A general performance analysis framework was established based on the newly
developed sequential decomposition procedure for analyzing tandem make-to-
stock systems. The framework was used to model several manufacturing
features like multiple servers, batch processing, limited éupply of raw materials

and multiple-part types.

By modeling feed-forward networks and some limited types of feedback, it was
shown that the approach developed has the potential to handle general system

configurations.

The applicability of the performability analysis framework in production-

inventory systems was shown.

The models developed could be the foundatioh for developing more

comprehensive performance analysis models of supply chain networks.

By building on existing analytical models and methods, this research has shown that
a more unified and comprehensive analytical approach can be developed for the

performance analysis of manufacturing systems.

8.3 FUTURE DIRECTIONS

It is always true that a solution to a research problem leads to many other interesting
problems which remain to be solved. This dissertation is no exception, and some of key

future directions are pointed out.

An assumption in all of the systems examined was that every demand that arrived

was satisfied. Systems with limited backorders or no backorders resemble Kanban systems
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where the number of Kanban cards limits the number of orders in the system. Extension of

the decomposition framework in modeling Kanban systems could be explored.

Another assumption was the one-for-one replenishment inventory policy that was
used at all of the stages. Modeling of other inventory policies could be a subject of future

research.

Example sysfems where many of the manufacturing features are simultaneously

present could be investigated to test the robustness of the decomposition approach.

While modeling service interruptions, the models did not yield accurate results in
comparison with the simulation results. Further investigation is required to develop better

approximations for this feature.

Feed-back mechanism was modeled only in the context of tandem systems.
Modeling feedback in other configurations would be the next step in extending the

framework to a general network configuration.
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APPENDIX A1l

DETERMINATION OF WARM-UP PERIOD AND RUN LENGTH FOR THE
SIMULATION EXPERIMENTS

A1.1 INTRODUCTION

In this dissertation, the accuracy of the analytical results was determined by
comparison with simulation estimates. The performance measures obtained from analytical
models represent steady-state values of system behavior. Thus, the simulation estimates
obtained must represent steady¥state performzince measures. While performing the stéady-

.state simulation experiments, a warm-up period has to be determined to remove any
initialization bias, and sufficient run length should be provided so that infrequent events

occur a reasonable number of times.

In this study, a wide variety of systems were tested with simulation estimates. It
would have been extremely time consuming to determine a warm-up period and run length
for each and every system configuration. On the other hand, it is necessary to determine a
proper warm-up period and run length to obtain statisticauy accurate simulation estimates.
The factors that affect warm-up period and run length are the stochastic parameters that
describe the system such as the proceésiﬁg time and demand .inter-arrival time parameters.
In general, the higher the variability in the stochastic components, the longer it would take
for the system to reach steady state and longer would be the run length to get good

estimates. A similar statement can be made with respect to the utilization level. Thus, the
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system with the highest utilization and the highest variance in the stochastic components

was chosen to determine warm-up and run-length for all the simulation experiments.

A three stage tandem system was chosen. Demand inter-arrival time and. the
processing times at each stage followed a hyper-exponential distribution (SCV =2.25). The
mean of the inter-arrival time was one and the mean processing times was 0.80, thus a
utilization of 0.80 was obtained at each stage. :The base stbck level at each stage was set at

zero. Each simulation run was terminated after 16,1000 time units.

A1.3 WARM-UP PERIOD AND RUN LENGTH DETERMINATION

The general technique developed by Welch (1983) was used to determine the warm-

up period for the system described above. The procedure is described briefly, next.

n replications of the simulation (» = 20 for this system) are made, each of length m
(m > 14,000). Let Y; repfesent the time in system for the i” observation from the ;*

replication, (i=1,2,..m)and (=1, 2, ..., n).

n

Y -
Let Y= zlfor i=1,2,..,m The averaged process Y, Y, .... has means
o h

J
E(Y,)=E(Y)) and variances Var(Y,) = Var(Y;)/n. Thus, the averaged process has the same
transient mean curve as the original process, but its plot has only (1/n)" of the variance.

To smooth out the high frequency oscillations in )_’1 , ‘)72, ..., the moving average

Y,(w), where w is the window and is a positive integer is calculated as follows:
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w

ZL ifi=w+l,...,m—-w
2w+l
F(w) = -

i1
—ifi=12,.,w
s—en 2i—1

Thus, if 7 is not too close to the beginning of the replications, then Y,(w) is just the
simple average of 2w + I observations of the averaged process centered at observation i. It

is called a moving average since i moves through time.
Y,(w)is plotted for i = 1, 2, ..., m-w and the value of i beyond which ¥ (w), Y,(w),
... appears to converge is identified and becomes the warm-up period.

The above procedure was applied to the system described in Section A.1.1. The
values of » and m were based on the recommendations of Law and Kelton (1991). n was

chosen to be 20 and m was set at 16,000 parts. The plot of ¥,(w) is shown in Figures A.1.1

through A.1.4. The measure plotted is the average time in system.
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Figure Al. 4: The plot of Y, (w) (Conﬁnued)
From Figures A.1.1 through A.1.4, the measure seems to stabilize after processing
of about 2,000 products with the moving average of time in system Vafying between 23 time
units and 25 time units. After the completion of 12,000 products, the variation in the

moving average reduces and stabilizes at about 24 time units. Three different warm-up
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periods of 5,000, 10,000 and 15,000 with run lengths after warm-up of 50,000, 100,000 and
150,000 time units were tested to determine a suitable combination of warm-up period and

run length.

Another decision that was required in combination with warm-up period and run
length was the random humber seeds that should bbe chosen such that the sampled data from
random number genérators are independent of each other as wéll.as between runs. In
SLAM 11, 10 different random number streams ére’ available. Any simulation program
coded in SLAM Il is limited to combinations of these 10 streams. Also, the user can choose
the starting unnormalized random nﬁmber seed for any of the 10 random number streams,
and if the seeds are not specified, the SLAM II processor uses default values. Several
combinations of user specified ‘or- default seeds together with single or multiple random
number streams were used to decide on the warm-up period and run length for the

experiments.

Table Al. 1: Mean and 95% confidence interval for a 3-Stage System with Hyper-
Exponential Inter-Arrival and Service Distributions; p= 0.80

SEEDS STREAMS USED WARM-UP = WARM-UP = WARM-UP =
SET BY 5,000 10,000 15,000
ONE (Run length after
SLAM warm-up 50,000) . 24.88 +0.805 24.77 £ 0.924 23.94 + 0.548
ONE (Run length after
SLAM warm-up 100,000) 24.85 £ 0.356 24.44 £ 0.582 25.12 £ 0.709
ONE (Run length after
SLAM warm-up 150,000) 24.75+0.312 24.75 +0.391 24.80 + 0.380
ONE (Run length after
USER warm-up 50,000) ‘ 25.00 £ 0.824 24.96 = 0.822 25.09 + 0.944
ONE (Run length after
- USER warm-up 100,000) 25.05+0.431 24.99 + 0.504 25.04 £0.552
SEVEN (Run length after
USER warm-up 50,000) 24.10 = 0.559 2419+ 0.616 2432 +0.728
SEVEN (Run length after
SLAM warm-up 50,000) 25.04+0.717 24.84 £ 0.661 2438 +0.632
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Each experiment was replicated ten times and the mean time in system for a
customer along with the 95% confidence interval was computed. Table Al‘.l gives the
various combinations along with the interval estimates. The average time in system for the
various combinations varies from 23.94 té 25.12. The configuration with a warm-up of
5,000, with a single seed setiby SLAM and a run-length of 50,000 after warm-up was
selected for the all the simulation experiments, as it was not significantly different from the
other configurations. The number of replications was set at 10, which were large enough to

get a half-width which was less than 5% of the mean value.
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APPENDIX A2
IMPROVING THE ACCURACY OF THE DECOMPOSITION APPROACH

The extensive numerical investigation carried out in Chapter 5, indicated that there
1s a need to imbrove the accuracy of the approximation for sonlle‘ of the cases. In this
appendix, we describe all the attempts that were made to improve the accuracy of the
approximation procedure. We approached this problem by examiﬁing the key assumptions

made in our approximation scheme.

A2.1 IMPROVING THE DELAY MODEL

A single-stage make-to-stock with a delay which is called the delay Iﬁodel is a key building
block in our approach.. The delay node is modeled using the M/G/oo queue in our approach.
When the external demand arrival process is not Poisson, we still use an M/G/c0 model
instead of a GI/G/w deel as exact expressions are not available for the latter case. Hence,
~ as a first step, we investigate if an approximate solution to the GI/G/eo system produced
better overall results than the exact splution Qf the MG/OO (approximate) model. Whitt
(1993, 94) suggested the use of a normal approximation tdv thain the probability of the
number of busy servers in GI/G/o system. We examined the accuracy of this

~ approximation with simulation results and also compared it with the results from the M/G/o0

model.
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Table A2.1 shows the comparison of the probability distribution of number in
system in a GI/G/e0 queue with hyper-exponential inter-arrival time and Erlang processing
times using simulation, normal approximation and the M/G/c approximation. The normal
approximation seems to approximate the distribution bette; than the M/G/e0 approximation.
The next step was to implement this approximation in various make-to-stock systems, and
compare the results with both simulation and the original approximation. However, within
the larger scope of the approximation for the analysis of the make-to-stock system, the
Gl/G/o approximation did not significantly improve‘the overall results. Hence, it was

decided that the M/G/eo approximation would be used for the delay model in all cases.

Table A2. 1: Probability Distribution of the Number in System in a GI/G/c Queue
with Hyper-Exponential Inter-Arrival Times and Erlang Service Times

Mean Number in System =4.0

Number in System Simulation Normal ‘ M/G/xo
a Approximation Approximation
0 0.069 ’ 0.1075 0.0183
1 0121 00520 0.0733
2 0.149 0.0803 0.1465
3 0.151 0.1095 0.1954
4 0.138 0.1319 0.1954
S 0.114 - 0.1410 0.1563
6 0.089 0.1319 0.1042
7 0.063 ’ 0.1095 0.0595
8 0.043 0.0803 ~0.0298
9 _0.028 __ 0.0520 0.0132
10 - 0.017 0.0298 0.0053
11 0.009 0.0150 0.0019
12 0.005 0.0067 0.0006
13 v 0.003 0.0026 0.0002
14 _~0.001 ___0.0010 0.0000
15 0.001 0.0003 0.0000

A2.2 A MODIFIED DECOMPOSITION APPROACH

The next attempt to improve the approximation explored an alternative way of

determining the distribution of the number of backorders. The basic idea was to substitute
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the single-stage delay network with an equivalent GI/G/1 make-to-stock system. The
expected number of backorders obtained from this equivalent GI/G/1 system was used as an
estimate of the expected number of backorders in the single-stage delay model. The

detailed procedure is described next for a tandem system with single-server stages.

Stage 1 is a GI/G/1 make-to-stock system because of our assumption that raw
materials are always available. Using the approximations contained in Buzacott and
Shanthikumar (1993) for a GI/G/1 make-to-stock system, all of the steady state measures

can be obtained for stage 1 as shown later in this section.

At stage 2, the total number of orders is the sum of orders that are waiting for parts
from the previous stage (stage 1) and orders with pai‘ts thét are waiting or being processed at
the this stage. In other words, the total number at any stage is the sum of backorders at the
previous stage and orders that are waiting or being processed. In the original approximation
presented in Chapters 4 and 5, we modeled this stage using a single-stage delay model. In
this new method, we replace the delay model with an equivalent GI/G/1 make-to-stock
system. The expected number in this equivalent system is the same as the expected number
at stage 2. Using Buzacott and Shanthikumar’s (1993) approximation for a GI/G/1 make-
to-stock system, the expected number of backorders are calculated. The rest of the
performance measures are eaéily obtained using standard relationships. This procedure is
repeated for all the M-1 stages. The procedure described in Chapter 5, Section 5.3.2 is used
to compute the rate and SCV of arrivals to the processing stage. The complete procedure is

presented next in an algorithm form. The notation defined in Chapter 5 is followed.
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Stage 1:

The expected number in system and the expected number of backorders in this stage

are given by,

,010'18I E[N,]-p,

E[N,1= 1. E(W, 1+ p;; B[R] = ([ gy whete 0 == =

(A2.1)

E[W,,] is the expected waiting time in queue at stage 1 and it is calculated using

Kraemer and Langenbach-Belz (1976) approximation, which is given by

2
al»

where g=g(p,, ¢, c) is defined as

fex' “2l-p)i-e)) L
o U sp (e +cy ) o
g(py, ch» €)= 1 2 (A2.3)
exp(— (1= p Xk - 1)) ) |

L b

(cay +4c5) “

>1

C

al

0= <, » - (A24)

The expression for E[B,] is obtained from the analysis of a GI/G/1 make-to-stock

system contained in Buzacott and Shanthikumar (1993).

S
por E[N,]-p
h = A2.5
- where o, E[N.] | ( )

1

E[B,]=

E[I;] is obtained using the relationship E[[;] = E[B1]+S-E[N;]

128



Stagei(i>1):

The SCV of the arrival process c’ is calculated using the procedure given in

Section 5.3.2. The average number at node i is the sum of the orders waiting for parts from
the previous stage, stage i-1, and the orders with parts waiting to complete processing

(including the one in process).

Hence, E[N,]= E[B.]+A.EW,]+p, (A2.6)

IS

E[N;] is now viewed as the expected number in system in a GI/G/1 make-to-stock

system representing stage / and the backorders at stage i-1.

The expected number of backorders at this stage is given by,

o E[N,1-p o
L% yhere o, =M ' (A2.7)

ELB/] 1- o, E[N,]

14

The expected inventory at the output store is simply
E[L] =E[Bi] + S - E[Ni]. (A2.8)

The probability of an order at a stage not finding a part at its predecessor’s stage
output store is obtained from the inventory distribution in a GI/G/1 make-to-stoék system
(Buzacott and Shanthikumar, ‘1993). Beginning at stage 2, this procedure is repeated

sequentially till the last stage.
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A2.3 NUMERICAL RESULTS

The modified procedure was tested for many cases where the original approximation
did not yield accurate results. Figures A2.1 through A2.7 compare the expected number of
backorders calculated by the modified procedure and simulation estimates. Homogeneous

systems were used to test the modified approximation.

It can be seen that the modified method performs better when both the arrival and
service variability are high. Recall that our original approximation did not perform very
well for these cases. The new method complements the original approximation in that it

can be used when both the service and arrival processes have high variability.

Erlang Inter-Arrival Times and Exponential Processing
Times
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Figure A2. 1: E[B;] for Erlang Inter-Arrival Times and Exponential Processing
Times

130



Erlang Inter-Arrival Times and Hyper-Exponential
Processing Times
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Figure A2. 2: E[B;] for Erlang Inter-Arrival Times and Hyper-Exponential
Processing Times
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Figure A2. 3: E[B;] for Poisson Arrivals and Erlang Processing times
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Figure A2. 4: E[B3] for Poisson Arrivals and Hyper-Exponential Procéssihg Times
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Figure A2. 5: E[Bs] for Hyper-Exponential Inter-Arrival Times and Erlang
Processing Times
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Processing Times

Hyper-Exponential Inter-Arrival Times and Hyper-
Exponential Processing Times

18.000

16.000 -+

14.000

12.000 —8&— Analytical
10.000 —X¥— Simulation

8.000
6.000 |
4000 |-
2.000

0.000 L
0 1 2 3 4 5
Basestock Level

Average Backorders at Stage 3

Figure A2. 7: E[B;] for Hyper-Exponential Inter-Arrival Times and Hyper-
Exponential Processing Times

133



APPENDIX A3
DESCRIPTION OF A SAMPLE SIMULATION MODEL

In this dissertation, simulation estimates were used to test the accuracy of the
analytical approximations developed. In Appendix Al, the metliod used for determining
warm-up period and run length was described. In this section, we present the logic behind
one of the simulation models used. The description presented here is for a three-stage
make-to-stock system with single-seryer stages. This basic model served as the starting

point for the other simulation models as in the case of the analytical model.

A3.1 THE SIMULATION LOGIC

T'he flow chart of the events is presented in Section A3.3. A total of six global
variables were used, two for each stage, corresponding to the inventory and backorder levels
at a stage. The XX() variables in SLAM II were used for this purpose. The program model
begins with the generation of demand for finished products.‘ XX(2) represents the current
inventory level at‘stage 3. When XX(2) is positive, it implies that there is inventory, and
thus the inventory is reduced by one and an order is triggered to replenish this satisfied
demand. If XX(2) is zero, then it implies that there is no inventory.aiid thus the demand is
backordered. The variable XX(1) which represents the backorders at stage 3 is now
increased by one. Any demand irrespective of whether it was satisfied immediately or not

triggers an order to be processed at stage 3. The order thus generated looks into the output
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store of stage 2. If parts are available at the output store which is verified by XX(4) being
greater than zero, the inventory at stage 2 is reduced by one and the order proceeds to join
the queue for processing at stage 3. If parts are not available at stage 2, the variable XX(3)
which represents the backorder level at stage 2 is increased by one. As in the case of stage
3, every demand at stage 2 fﬁggers an order for processing. This order now follows a
process-similar to thait in case of stage 3. The inventory level is reduced at stage 1 (XX(6))
or the backorders are increased (XX(5)) at sfage 1 as the result of this process. The orders at

stage 1 directly enter processing as it is assumed that raw materials are always available.

The SIMULATE and MONTR stateménts in SLAM II are used to initiate a run and -

clear statistics, respectively. The listing of the program is provided next.

A3.2 PROGRAM LISTING

GEN, SHANKAR, THESIS, 3/24/19%7,1,N,N,Y/Y,N,Y/1,132;
LIMITS,3,2,500;
INTLC, XX (1)=0,XX(3)=0,XX(5)=0,XX(6)=3,XX(4)=3,XX(2)=3;

TIMST, XX (1),BO AT N3;
TIMST,XX (3),BO AT N2;
TIMST,XX (5),BO AT N1;
TIMST, XX (2),INVEN AT N3;
TIMST, XX (4),INVEN AT N2;
TIMST, XX (6),INVEN AT N1;
NETWORK;
CREATE, ERLNG(0.25,4,1),1,1;
ACTIVITY; '

COL1 COLCT,BET,TOTAL ORDERS;
ACTIVITY, ,XX(2).GT.0;
ACTIVITY, XX (2) .EQ.0,ASG2;

COL2 COLCT,BET,NUM FULFILLED;
ACTIVITY;

ASGl ASSIGN, XX (2)=XX(2)-1;
ACTIVITY;

GON1  GOON, 1;

ACTIVITY, XX (4).GT.O0;
ACTIVITY, ,XX(4).EQ.0,ABO2;
WST2 ASSIGN,XX(4)=XX(4)-1;

ACTIVITY;
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ACTIVITY,,,GON2;

NOD3 COLCT,BET,ARR AT 3;
QUEUE(1),,,;
ACTIVITY(1),EXPON(0.8,1);

COL3 COLCT,INT(1),TIME BET ORDERS,,1;
ACTIVITY,,XX (1) .GT.O0;
ACTIVITY,,XX (1) .EQ.0,STO1;

ASG5 ASSIGN,XX(1)=XX(1)-1;
ACTIVITY; '
TERMINATE;

STO1 ASSIGN,XX(2)=XX(2)+1;
ACTIVITY;

TERMINATE;

GON2 GOON, 1;
ACTIVITY,,XX(6).GT.0;
ACTIVITY,,XX(6) .EQ.0,ABO3;

WST3 ASSIGN,XX(6)=XX(6)-1;
ACTIVITY;

ACTIVITY,,,NOD1;

NOD2 COLCT,BET,ARR AT 2;
QUEUE(2),,,; :
ACTIVITY (1) ,EXPON(0.8,1),;
GOON, 1; ﬂ
ACTIVITY,,XX(3).GT.0;
ACTIVITY,,XX(3).EQ.0,ST02;
ASSIGN, XX (3)=XX(3)-1;
ACTIVITY,,,NOD3;

STO2 ASSIGN,XX(4)=XX(4)+1;
ACTIVITY;

TERMINATE;
NOD1 COLCT,BET,ARR AT 1;
© QUEUE(3),,,;
ACTIVITY(l),EXPON(0.8,1);
GOON, 1;
ACTIVITY,,XX(5).GT.0;
ACTIVITY,,XX(5).EQ.0,STO3;

RBO1 ASSIGN,XX(5)=XX(5)-1;
ACTIVITY,,,NOD2;

STO3 ASSIGN,XX(6)=XX(6)+1;
ACTIVITY; ’
TERMINATE;

ABO3 ASSIGN,XX(5)=XX(5)+1,1;
ACTIVITY,,,NOD1;

ABO2 ASSIGN,XX (3)=XX(3)+1;

¢ ACTIVITY,,,GON2;

ASG2 ASSIGN,XX(1)=XX(1)+1,1;
ACTIVITY,,,GON1;

END;

INITIALIZE,,55000,Y;

MONTR, CLEAR, 5000;

- SIMULATE;

MONTR, CLEAR, 5000;

SIMULATE; :

MONTR, CLEAR, 5000;
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SIMULATE;

MONTR, CLEAR, 5000;
SIMULATE;

MONTR, CLEAR, 5000;
SIMULATE;

MONTR, CLEAR, 5000;
SIMULATE;

MONTR, CLEAR, 5000;
SIMULATE;

MONTR, CLEAR, 5000;
SIMULATE;

MONTR, CLEAR, 5000;
SIMULATE;

MONTR, CLEAR, 5000;
SIMULATE;

FIN;
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A3.3 FLOWCHART FOR THE SIMULATION MODEL
C Begin )

Initialize Inventory
and Backorder
Parameters

l

Create Demand using
the desired inter-
arrival distribution

Is Inventory at —
Stage 3 >.0? Increase Backorders

at Stage 3 by one

i Yes

Reduce Inventory at Output
store of Stage 3 by one

v

Initiate order to replenish
inventory or satisfy «
backorder

Is Inventory at

Stage 2 > 07 Increase Backorders

at Stage 2 by one

¢
» @
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Reduce inventory at Stage
2 by one ' >

v

Prbcessing at
Stage 3

Are there any No Increase Inventory
" backorders at — P levelat Stage 3 by
Stage 3? one.

Satisfy backordered demand

and reduce backorders at
Stage 3 by one ,( End )

Initiate order at
Stage 2
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at Stage 1 >
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backorders at
Stage 1 by one
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APPENDIX A4
PERFORMABILITY ANALYSIS OF MAKE-TO-STOCK SYSTEMS

Performability analysis, a combined analysis of system reliability and system
performance was described in Chapter 2. The purpose of this appendix is to show that such
analysis can also be performed in the context of make-to-stock systems. We present two
methods of performability Ianalysis‘, one is a téchnique where the structure state process was
used in conjunction with the perfonnance model to derive the performability measures.
This method is described in Section A4.1. The otﬁer technique inifolves the solution of a
combined model using stochastic Petri net theory. This type of analysis is discussed in

Section A4.2.

A4.1 PERFORMABILITY ANALYSIS USING THE STRUCTURE STATE
PROCESS

Consider the feed-forward network shown in Figure A4.1. The dynamics of the
performance model is similar to such systems discussed in Chapter 7. At each stage, the
machine is prone to failures. When any of the machines at stage 2 through stage 5 fails, the
system continues to work and produce parts. If the procéssor at stage 1 fails, the system
shuts down. It is assumed that a machine :once failed is nét rebaired within the observation

period.
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The performance model wherein we obtain meésilres like the expected number of
backorders, the expected inventory level and the proportion of demand that is -'met
immediately are obtained using the approximation developed in the earlier chapters. The
reliability model is described by the structure state process having the state space {0, 1, 2, 3,

4} where the interpretation of the states is as follows:
0 : stage 1 machine failed or all other machines failed

i: stage 1 machine operating. and exactly i machines at stage 2 through stage 5 are

operating. i=1, 2, 3, 4.

B gy B SWA

Figure A4. 1: A Feed-Forward Make-to-Stock System

Let the time to failure of the machine at stage 1 and the time to failure of the other
machines be exponentially distributed ‘with rates @, and ¢, respectively. Also, let the

failures be independent of one another.

The structure state process (SSP) for this system is shown in F igure A4.2, which is
the same as the one considered by Donateillo and Iyer (1987). Hence, their approach could
be used to find the performability distribution for the feed-forward system. Next, we

present an outline of the overall approach.
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Figure A4. 2: Structure State Process for the Feed-Forward Make-to-Stock System

The make-to-stock system in consideration is failure prone. Let the observation
period be [0, 7]. Let the rv B represent the backorder level (whiéh is the sum of all
backorders at each operating end node) and I the inventéry level of ﬁﬁished goods. Let O
be the proportion of demand that is met immediately using the finished goods inventory. O
is also known as the fill rate in the literature. Let x lb)e’the des‘iredl fill rate level and pbea
specified probability. The questions of interest that can be answered using performability

analysis are as follows.

For a given x and p, what would be a desired basestock level in order that P(O > x) >

Suppose that we can add a few more nodes to meet external demand, how many

nodes need to be employed for a given S, x ahd p such that P(O > x) > p is satisfied?
What are the values of E[B] and E[I]?

The above questions can be answered by computing over [0, t] the backorder-
related, inventory-related, and fill-rate related performability distributions. As explained in

Chapter 2, the performability rv is
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Yy(m) = i £z, (Ad.1)

where 7,1s the total time {0, t] the structure state process (SSP) stays in state i and
f1s the reward associated with state 7. The individual rewards, in our case fill-rate, average

backorder level, or average inventory level are computed using the performance model.
The sequential decomposition procedure can be used to find the measures for every

structure state i. To find the distribution of Y(m), we have to perform a transient analysis

of the SSP.

Starting from state m, the evolution of the SSP during [0, t] can fall into three

different categories.

e The SSP stays in state m throughout the interval, without making a transition to

any other state.

e The SSP transits to state 0 directly from state m sometime during the interval

and will therefore stay in state 0 for the rest of the interval.

e The SSP transits to state m-1 at some instant during the observation period. Its
evolution during the rest of the interval will follow the same pattern as the

original process, except that the initial state will be m-1.

This evolution of the SSP forms the basis for a recursive formulation over [0, t]. Let I

denote an indicator function such that
I(C)=1if Cistrue

I(C)=0if Cis false
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Let p; (i=0, 1, ..., m); j <i) denote the probability of a single-step transition for

state i to state /. Note that, fork=1,2, ..., m,

(94
Pio=—""—"7" (A4.2)
a,+ka -
ke (A4.3)
Prir = a,+ka '

Fork=0,1,..,mlet ¢, =a, + ka. Since the failure distributions are assumed to
exponential, the sojourn time in any state k > 1 is exponentially distributed with rate c.
Therefore, ¢~ gives the probability that the SSP stays in the initial state m throughout the

interval [0, t]. To obtain the probability P{ K(m) < y} where y > 0, the three observations

presented earlier are used to obtain

P{Y(m)<y}=1(ft<y)e™

+ ]cme'c”xpmol([fmx +fo(t—x)] <y)dx (Ad.4)

t

+ [e0e™ P P{Y,_ (m=1) <y = fx )

0

The above equation gives a recursive formulation for computing the distribution of
perfofmability. Donatiello and Iyer (1987) present an efficient computational procedure to
compute the pérformability distribution. - The approach described above is what is available
in the literature thus far in applying performability analysi-s to production systems. As long
as the structure state proceés of the production or production-inventory system has a known
solution- approach and the performance analysis models are available, we can carryout the

performability analysis in a straightforward manner. A new SSP would require the
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development of a solution approach for its transient analysis, which by itself is a

challenging computational task.

The next section describes an alternative approach which was suggested by Prof. Y.

Narahari. This approach involves the solution of a stochastic Petri net model.

A4.2 PERFORMABILITY ANALYSIS USING STOCHASTIC PETRI NETS

External
Demand, A

y

Figure A4. 3: A Single-Stage Make-to-Stock System with Multiple Servers

In this section, we use a single model to carryout the performability analysis. The
system considered is a sinéle'—stage make-to-stock system with multiple servers as shown in
Figure A4.3. N servers are operational at time t = 0. Demand is met from the output store.
A one-for-one replenishment policy‘ is assumed to be in practiée at the output store. The

part/order flow dynamics is similar to the systems described in earlier chapters.
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The machines are prone to failures. When any one of the machines fails, the system
continues to operate but at a slower rate since there is one less server available. It is

assumed, that once a machine goes down, it is not repaired within the observation period.

Let the time to failure of each machine be exponentially distributed with rate ¢, and
let the failures be independent of one another. Let the observation period be [0, 7], and B
the backorder level and I the inventory level random variables. Examples of questions that

can be answered using performability analysis are
e What are the values of E[B] and E[I]?
e What is average number of available machines?

We model this system using stochastic Petri nets. Petri nets, or place-transition nets,
are classical models of concurrency, non-determinism, and control flow, first proposed in
1962 by Carl Adam Petri. They are bipartite graphs and provide an elegant and
mathematically rigorous modeling framework for discrete event dynamical systems. The
reader is referred to the book by Viswanadham and Narahari (1992) for an overview of Petri
nets. A stochastic Petri net (SPN) is essentially a high-level model that generates a
stochastic process. SPN-based performance evaluation basically consists Qf modeling the
giveﬁ system by an SPN, and automaticaliy generating the étochastic process that governs

the system behavior.

The Petri net model for the above system is shown in Figure A4.4.
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"1 Exponential transition

Immediate transition

Figure A4. 4: Stochastic Petri Net Model of a Single-Stage Make-'to-Stock System

with Multiple Servers

The description of the placeand transitions are given below:

Places:

P
P,:
Ps: |
Py
Ps:
Pg:

P7I

Machine available for processing parts;
Parts waiting fo; machine; |

Machine processing a part;

Finished parts available to meet demand:
External demand waiting for finished pafts;
Generate external demand;

Failed machines;
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Ps: Available machines; and

Py: Failed machines waiting for completion of part.
Immediate (not timed) Transitions:

T: Machine begins processing a part;

Ts: External demand is satisfied; and

Té: Machine fails after processing a part.
Exponential Transitions:

Ta: Processing of parts; the rate is dependent on number of tokens in P,

rate =M (P3);
T4: Demand arrival into the system, rate = A; and
Ts: Failing of machines, rate = M (Ps) .

A software tool called SPNP (Ciardo et al., 1989) was used to solve the above
model. SPNP is one of the widely used Petri net tools developed by researchers at Duke
University. Numerical results for some example cases are presented in Table A4.1. Arrival
rate was 0.5, mean processing time for a part was 3.2 time units, and the mean time to

failure was 240 time units. The observation period was set at 480 time units.

If it was a desired to have an average number of backorders of less than 15 units
with the availability of at least 1 machine, a solution would be to have 9 parallel servers and

a basestock level of 3 at the output store.
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Table A4. 1: Performability Measures for a Single-Stage Make-to-Stock System with

Multiple Servers

s N Average | Average | Average

Backorders | Inventory | Number of

Available

. Machines
3 3 - 26.840 0.050 0.411
12 3 25.812 0.536 0.411
3 6 20.558 0206 | 0.819
12 6 18.413 2.020 | 0819
3 9 14.777 0.404 1.220
12 9 11.873 3.694 1.220

N = number of machines; S = basestock level

A4.3 SUMMARY

In this appendix, we have shown how the technique of performability analysis can
be useful in the analysivs of the make-to-stock systems. This area of research is still a
challenging one, because there is no general framework that can be used for any structure
state process. Nevertheless, the technique is very useful in the design and analysis of not
only make-to-stock systems but of systems which are fault-tolerant in general. The
stochastic Petri net approach could be a viable alternative if the state spacé of the stochastic

process generated is not very large.
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