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ABSTRACT

During the past decades, the size of 3D seismic data volumes and the number of
seismic attributes have increased to the extent that it is difficult, if not impossible, for
interpreters to examine every seismic line and time slice. Reducing the labor associated
with seismic interpretation while increasing the reliability of the interpreted result has
been an on going challenge that becomes increasingly more difficult with the amount of
data available to interpreters. To address this issue, geoscientists often adopt concepts and
algorithms from fields such as image processing, signal processing, and statistics, with
much of the focus on auto-picking and automatic seismic facies analysis. | focus my
research on adapting and improving machine learning and pattern recognition methods
for automatic seismic facies analysis. Being an emerging and rapid developing topic,
there is an endless list of machine learning and pattern recognition techniques available
to scientific researchers. More often, the obstacle that prevents geoscientists from using
such techniques is the “black box” nature of such techniques. Interpreters may not know
the assumptions and limitations of a given technique, resulting in subsequent choices that
may be suboptimum. In this dissertation, | provide a review of the more commonly used
seismic facies analysis algorithms. My goal is to assist seismic interpreters in choosing
the best method for a specific problem. Moreover, because all these methods are just
generic mathematic tools that solve highly abstract, analytical problems, we have to tailor
them to fit seismic interpretation problems. Self-organizing map (SOM) is a popular
unsupervised learning technique that interpreters use to explore seismic facies using
multiple seismic attributes as input. It projects the high dimensional seismic attribute data
onto a lower dimensional (usually 2D) space in which interpreters are able to identify

clusters of seismic facies. In this dissertation, using SOM as an example, | provide three

Xiv



improvements on the traditional algorithm, in order to present the information residing in
the seismic attributes more adequately, and therefore reducing the uncertainly in the

generated seismic facies map.
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CHAPTER 1

INTRODUCTION!

In the 21% century, pattern recognition has become part of everyday life. Amazon
or Alibaba analyzes the clothes you buy, Google analyzes your driving routine, and your
local grocery store knows the kind of cereal you eat in the morning. Big companies and
big government, attempting to identify patterns in our spending habits and the people with
whom we associate, are analyzing “big data” with “deep learning algorithms™ all the time.

Successful seismic interpreters are experts at pattern recognition, identifying
features such as channels, mass transport complexes, and collapse features where our
engineering colleagues only see wiggles. Our challenge as interpreters is that the data
volumes we need to analyze keep growing in size and dimensionality, while the number
of experienced interpreters has remained relatively constant. One solution to this dilemma
is for these experienced interpreters to teach their skills to the next generation of
geologists and geophysicists, either through traditional education or on-the-job training.
An alternative and complimentary solution is for these experienced interpreters to teach
theirs skills to a machine. Turing (1950), whose scientific contributions and life has
recently been popularized in a movie, asked whether “Machines can think?” Whether
machines will ever be able to think is a question for scientists and philosophers to answer

(e.g. Eagleman, 2012), but machines can be taught to perform repetitive tasks, and even

! This chapter contains contents from a published article - Zhao, T., V. Jayaram, A. Roy, and K. J. Marfurt,
2015, A comparison of classification techniques for seismic facies recognition: Interpretation, 3, SAE29-
SAES8.
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to unravel the relationships that underlay repetitive patterns, in an area called machine
learning.

25 years ago, skilled interpreters delineated seismic facies on a suite of 2D lines
by visually examining seismic waveforms, frequency, amplitude, phase, and geometric
configurations. Facies would then be posted on a map and hand contoured to generate a
seismic facies map. With the introduction of 3D seismic data and volumetric attributes,
such analysis has become both more quantitative and more automated. In this dissertation,
| focus on pattern recognition on large 3D seismic data whereby like patterns in the
seismic response (seismic facies) are assigned similar values. Based on the availability of
training data (ground truth of the pattern to be discovered), we define supervised learning
as situations with training data, and unsupervised learning as situations without. In either
case, the ultimate goal is always discovering the hidden relation. In supervised learning,
we want to build a model to discover the relation between a given input and output data
pair (the aforementioned training data); in unsupervised learning, we want to build a
model to characterize the relation among the input data (no known output data are given
in this case). Seismic interpreters and petrophysicists use similar technology (the simpler
being crossplots) to define specific rock properties, such as brittleness, TOC, or porosity.
Pattern recognition is common to many industries, from using cameras to identify
knotholes in plywood production to tracking cell phone communications to identify
potential narcotics traffickers.

I modify a workflow from the classical Duda et al. (2001) textbook in Figure 1.1
to summarize the process. In this figure, “sensing” consists of seismic, well log,

completion, and production measurements. For interpreters “segmentation” will usually



mean focusing on a given stratigraphic formation or suite of formations. Seismic data lose
both temporal and lateral resolution with depth, such that a given seismic facies changes
its appearance, or is nonstationary, as we go deeper in the section. The number of potential
facies also increases as we analyze larger vertical windows incorporating different
depositional environments, making classification more difficult. For computer assisted
facies classification, “feature extraction” means attributes, be they simple measurements
of amplitude and frequency, geometric attributes that measure reflector configurations,
or more quantitative measurements of lithology, fractures, or geomechanical properties
provided by prestack inversion and azimuthal anisotropy analysis. “Classification”
assigns each voxel to one of a finite number of classes (also called clusters), each of which
represents a seismic facies that may or may not correspond to a geological facies. Finally,
using validation data, the interpreter makes a “decision” that determines whether a given
cluster represents a unique seismic facies, if it should be lumped in other clusters having
a somewhat similar attribute expression, or whether it should be further subdivided,
perhaps through the introduction of additional attributes.

Pattern recognition of seismic features is fundamental to human based
interpretation, where our job may be as “simple” as identifying and picking horizons and
faults, or more advanced such as the delineation of channels, mass transport complexes,
carbonate buildups, or potential gas accumulations. The use of computer-assisted tools
began soon after the development of seismic attributes in the 1970s (Balch, 1971; Taner
et al., 1979), with the work by Sonneland (1983) and Justice et al. (1985) being two of
the first. After decades of development, pattern recognition tools available to seismic

interpreters have grown tremendously, so that it is infeasible for interpreters to try all



available methods before coming to a solution. Therefore, a comprehensive review on the
popular contemporary pattern recognition methods is necessary and beneficial to the
interpretation community. In this dissertation, using the same dataset, | provide in Chapter
2 a comparison of unsupervised and supervised learning techniques that have been
implemented for seismic data, aiming to help interpreters make an educated decision
when selecting a pattern recognition method. I will discuss K-means, self-organizing map
(SOM), and generative topographic mapping (GTM) as candidates for unsupervised
learning, as well as artificial neural network and support vector machine (SVM) as
candidates for supervised learning.

Because all these methods are just generic mathematic tools that solve highly
abstracted, analytical problems, we have to tailor them to fit seismic interpretation
problems. SOM is probably the most commonly used unsupervised learning method in
seismic interpretation that provides good performance with high efficiency. SOM projects
multiattribute data from a high dimensional space (we define the number of dimension
by the number of attributes) to a low dimensional (usual 2D) space, and defines clusters
in the 2D space. In this dissertation, | introduce three improvements over the traditional
SOM so that it handles seismic data more appropriately.

Firstly, traditional SOM only preserves topology during the projection, which
means after projection, it provides the order of similarity among clusters, but loses the
proportion of similarity. In other words, the distance between two clusters in a 2D SOM
space cannot properly represent the distance between two multiattribute data vectors that
belong to those two clusters in the original multiattribute space. Such lack of distance

information may confuse interpreters in that the facies on a SOM facies map may be too



separated or not separated enough. To address this issue, | adopt a distance-preserving
step in SOM, which helps to define facies more appropriately. | demonstrate the value of
such modifications by using an example on mapping a turbidite channel system.
Compared with traditional SOM, | am able to better differentiate specific architectural
elements.

Secondly, traditional SOM defines facies only using input attribute response, and
is spatially/temporally unaware. The pitfall in being spatially and temporally unaware is
the potential of mixing geology across different formations during the SOM process.
Adding information of stratigraphy (sedimentary cycle), which provides temporal (or
spatial, if seismic data are in depth domain) constraint on the vertical axis, may help
define layers that are otherwise not well defined by seismic attributes. In this dissertation,
| adopt the workflow described in Li et al. (2016) to derive a sedimentary cycle model
using a mode decomposition method, and use this model as a constraint on SOM facies
analysis. | test the proposed stratigraphy constrained SOM to a Barnett Shale survey, with
the objective of recovering more subtle lithologic variations than using the unconstrained
SOM.

Thirdly, all such multiattribute SOM analyses and subsequent improvements
share one implicit assumption: input attributes are all independent and have the same
contribution/importance to the SOM facies. Often times, interpreters qualitatively choose
input attributes for multiattribute facies analysis based on their experience, but once an
input attribute group is determined, every attribute is treated equally. Treating all input
attributes equally is the somewhat “normal” practice in pattern recognition; unfortunately,

seismic attributes are not created equally, and the importance of an attribute varies greatly



with exploration perspective. In this dissertation, I introduce a novel attribute selection
approach for unsupervised seismic facies analysis. | assume that candidate attributes are
chosen by an experienced interpreter. Once chosen, rather than assuming the selected
attributes contribute equally to the facies map, | weight them based on their response from
the unsupervised learning algorithm used to generate the facies map. as well as
interpreter’s preference. Applying this strategy to the Barnett Shale, | find that the
weighted attribute selection method better differentiates facies, retaining features seen on
the previously insufficiently weighted attributes.

| structure the dissertation as follows. In Chapter 2, | will provide an in-depth
review and comparison of some of the most popular pattern recognition techniques that
have been applied to seismic data. Then | will introduce the three improvements that |
made on the traditional SOM algorithm to better fit problems in seismic exploration. In
Chapter 3, I will introduce the distance-preserving SOM using a case study on data from
offshore New Zealand. | will then discuss stratigraphy constrained SOM using an
example from the Barnett Shale, United States in Chapter 4. In Chapter 5, | will
demonstrate the previously mentioned attribute selection scheme for SOM, which
incorporates both SOM response and the interpreter’s knowledge. Finally, I sum up the

materials from Chapter 2 to 5 with conclusions in Chapter 6.
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Figure 1.1. Pattern recognition as applied to the interpretation of seismic facies (Modified
from Duda et al., 2000).
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CHAPTER 2
A REVIEW OF PATTERN RECOGNITION TECHNIQUES FOR
SEISMIC FACIES ANALYSIS?
INTRODUCTION

As briefly introduced in Chapter 1, the amount of pattern recognition techniques
that available at interpreters’ disposal is so huge that only the specialized experts are able
to manipulate these techniques on seismic data confidently. Therefore, a comparison of
the popular techniques deems necessary and important for average interpreters to embrace
these powerful tools. In this chapter, | introduce three unsupervised learning techniques
(K-means, SOM, and GTM) and two supervised learning techniques (neural network and
SV M) with their mathematical backgrounds, and apply these techniques to a same seismic
dataset from offshore New Zealand. By directly comparing the results using the same
dataset, | am able to deliver the merits and demerits for each algorithm.

K-means (Forgy, 1965; Jancey, 1966) was one of the earliest clustering algorithms
developed, and was quickly applied by service companies and today is common to almost
all interpretation software packages. K-means is an unsupervised learning algorithm in
that the interpreter provides no prior information other than the selection of attributes and
the number of desired clusters.

Barnes and Laughlin (2002) reviewed several unsupervised learning techniques,
including K-means, fuzzy clustering, and SOM. Their primary finding was that the

clustering algorithm used was less important than the choice of attributes used. Among

2 This study is published as - Zhao, T., V. Jayaram, A. Roy, and K. J. Marfurt, 2015, A comparison of
classification techniques for seismic facies recognition: Interpretation, 3, SAE29-SAE58.

9



the clustering algorithms, they favored SOM since there is topologically ordered mapping
of the clusters with similar clusters lying adjacent to each other on a manifold and in the
associated latent space. In the examples to be discussed, a “manifold” is a deformed 2D
surface that best fits the distribution of N attributes lying in an N-dimensional attribute
space. The clusters are then mapped to a simpler 2D rectangular “latent” (Latin for
“hidden”) space upon which the interpreter can either interactively define clusters or
simply map the projections using a 2D color map. A properly chosen latent space can
help identify data properties that are otherwise difficult to observe in the original input
space. Coleou et al.’s (2003) seismic “waveform classification algorithm is implemented
using SOM, where the “attributes” are seismic amplitudes that lie on a suite of 16
phantom horizon slices. Each (x,y) location in the analysis window provides a 16-
dimensional vector of amplitudes. When plotted one element after the other, the mean of
each cluster in 16-dimensional space looks like a waveform. These waveforms lie along
a 1D deformed string (the manifold) that lies in 16D. This 1D string is then mapped to a
1D line (the latent space) which in turn is mapped against a 1D continuous color bar. The
proximity of like waveforms to each other on the manifold and latent spaces results in
similar seismic facies appearing as similar colors. Coleou et al. (2003) also generalized
their algorithm to attributes other than seismic amplitude, constructing vectors of dip
magnitude, coherence, and reflector parallelism. Strecker and Uden (2002) were perhaps
the first to use 2D manifolds and 2D latent spaces with geophysical data, using
multidimensional attribute volumes to form N-dimensional vectors at each seismic
sample point. Typical attributes included envelope, bandwidth, impedance, AVO slope

and intercept, dip magnitude, and coherence. These attributes were projected onto a 2D
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latent space and their results plotted against a 2D color table. Gao (2007) applied a 1D
SOM to GLCM texture attributes to map seismic facies offshore Angola. Overdefining
the clusters with 256 prototype vectors, he then used 3D visualization and his knowledge
of the depositional environment to map the “natural” clusters. These natural clusters were
then calibrated using well control, giving rise to what is called a posteriori supervision.
Roy et al. (2013) built on these concepts and developed an SOM classification workflow
of multiple seismic attributes computed over a deep-water depositional system. They
calibrated the clusters a posteriori using classical principles of seismic stratigraphy on a
subset of vertical slices through the seismic amplitude. A simple but very important
innovation was to project the clusters onto a 2D nonlinear Sammon space (Sammon,
1969). This projection was then colored using a gradational 2D color-scale like that of
Matos et al. (2009) thus facilitating the interpretation. Roy et al. (2013) introduced a
Euclidean distance measure to correlate predefined unsupervised clusters to average data
vectors about interpreter defined well log facies.

Generative topographic mapping (GTM) is a more recent unsupervised
classification innovation, providing a probabilistic representation of the data-vectors in
the latent space (Bishop et al., 1998). There has been very little work on the application
of GTM technique to seismic data and exploration problems. Wallet et al. (2009) are
probably the first to apply the GTM technique to seismic data, using a suite of phantom
horizon slices through a seismic amplitude volume generating a ‘“waveform
classification”. While generating excellent images, Roy et al. (2013, 2014) found the
introduction of well control to SOM classification to be somewhat limited, and instead

applied generative topographic mapping (GTM) to Mississippian tripolitic chert reservoir
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in the Midcontinent USA and a carbonate wash play in the Sierra Madre Oriental of
Mexico. They found that GTM provided not only the most likely cluster associated with
a given voxel, but also the probability that that voxel belongs each of clusters, providing
a measure of confidence or risk in the prediction.

K-means, SOM, and GTM are all unsupervised learning techniques, where the
clustering is driven only by the choice of input attributes and the number of desired
clusters. If we wish to teach the computer to mimic the facies identification previously
chosen by a skilled interpreter, or link seismic facies to electro-facies interpreted using
wireline logs, we need to introduce “supervision” or external control to the clustering
algorithm. The most popular means of supervised learning classification are based on
artificial neural networks (ANN). Meldahl et al. (1999) used seismic energy and
coherence attributes coupled with interpreter control (picked seed points) to train a neural
network to identify hydrocarbon chimneys. West et al. (2002) used a similar workflow
where the objective was seismic facies analysis of a channel system and the input
attributes were textures. Corradi et al. (2009) used GLCM (gray level co-occurrence
matrix) textures and ANN, with controls based on wells and skilled interpretation of some
key 2D vertical slices to map sand, evaporate, and sealing vs. non-sealing shale facies
offshore west Africa.

Support vector machine (SVM, where the word “machine” is due to Turing’s
(1950) mechanical decryption machine) is a more recent introduction to (e.g. Li and
Castagna, 2004; Kuzma and Rector, 2004, 2005; Zhao et al., 2005; Al-Anazi and Gates,
2010). Originating from maximum margin classifiers, SVMs have gained great popularity

for solving pattern classification and regression problems since the concept of a “soft
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margin” was first introduced by Cortes and Vapnik (1995). SVMs map the N-dimensional
input data into a higher dimensional latent (often called feature) space, where clusters can
be linearly separated by hyperplanes. Detailed description on SVMs can be found in
Cortes and Vapnik (1995), Cristianini and Shawe-Taylor (2000), and Schdkopf and
Smola (2002). Li and Castagna (2004) used SVM to discriminate alternative AVO
responses while Zhao et al. (2014) and Zhang et al. (2015) used a variation of SVM using
mineralogy logs and seismic attributes to predict lithology and brittleness in a shale
resource play.

| begin the remaining of this chapter by providing a summary of the more common
clustering techniques used in seismic facies classification, emphasizing their similarities
and differences. | start from the unsupervised learning K-means algorithm, progress
through projections onto principal component hyperplanes, and end with projections onto
SOM and GTM manifolds, which are topological spaces that resemble Euclidean space
near each point. Next, | provide a summary of supervised learning techniques including
artificial neural networks and support vector machines. Given these definitions, | apply
each of these methods to identify seismic facies in the same data volume acquired in the
Canterbury Basin, New Zealand. | conclude this chapter with a discussion on the
advantages and limitations of each method and areas for future algorithm development
and workflow refinement. At the very end, I also provide an appendix containing some

of the mathematical details to better quantify how each algorithm works.
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REVIEW OF UNSUPERVISED LEARNING TECHNIQUES

Crossplotting

Crossplotting one or more attributes against each other is an interactive and
perhaps the most common clustering technique. In its simplest implementation, one
computes and then displays a 2D histogram of two attributes. In most software packages,
the interpreter then identifies a cluster of interest and draws a polygon around it. While
several software packages allow crossplotting of up to three attributes, crossplotting more
than three attributes quickly becomes intractable. One workflow to address this
visualization limitation is to first project a high number of attributes onto the first two or
three eigenvectors, and then crossplot the principal components. Principal components
will be discussed later in the section on projection methods.
K-means clustering

K-means (MacQueen, 1967) is perhaps the simplest clustering algorithm and is
widely available in commercial interpretation software packages. The method is
summarized in the cartoons shown in Figure 2.1. One drawback of the method is that the
interpreter needs to define how many clusters reside in the data. Once the number of
clusters is defined, the cluster means or centers are defined either on a grid or randomly
to begin the iteration loop. Since attributes have different units of measurement (e.g. Hz
for peak frequency, 1/km for curvature, and mV for RMS amplitude) the distance of each
data point to the current means are computed by scaling the data by the inverse of the
covariance matrix, giving us the “Mahalanobis” distance (see Appendix). Each data point

is then assigned to the cluster to whose mean it is closest. Once assigned, new cluster
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means are computed from the newly assigned data clusters and the process repeated. If
there are Q clusters, the process will converge in about Q iterations.

K-means is fast and easy to implement. Unfortunately, the clustering has no
structure such that there is no relationship between the cluster numbering (and therefore
coloring) and the proximity of one cluster to another. This lack of organization can result
in similar facies appearing in totally different colors, confusing the interpretation. Tuning
the number of clusters to force similar facies into the same cluster is a somewhat tedious
procedure that also decreases the resolution of the facies map.

Projection Techniques

Although not defined this way in the pattern recognition literature, since this is a
review, | will lump the following methods, principal component analysis (PCA), self-
organizing maps, and generative topographic maps together and call them “projection
techniques”. Projection techniques project data residing in a higher dimensional space
(say a 5D space defined by five attributes) onto a lower dimensional space (say a 2D
plane or deformed 2D surface). Once projected, the data can be clustered in that space by
the algorithm (such as SOM) or interactively clustered by the interpreter by drawing
polygons (routine for PCA, and the preferred analysis technique for both SOM and
GTM).

Principal Component Analysis

Principal component analysis is widely used to reduce the redundancy and excess
dimensionality of the input attribute data. Such reduction is based on the assumption that
most of the signals are preserved in the first few principle components (eigenvectors),

while the last principal components contain uncorrelated noise. In this study, | use PCA
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as the first iteration of the SOM and GTM algorithms. Many workers use PCA to reduce
redundant attributes into “meta attributes” to simplify the computation. The first
eigenvector is a vector in N-dimensional attribute space that best represents the attribute
patterns in the data. Cross-correlating (projecting) the N-dimensional data against the first
eigenvector at each voxel gives us the first principal component volume. If we scale the
first eigenvector by the first principal component and subtract it from the original data
vector, we obtain a residual data vector. The second eigenvector is that vector that best
represents the attribute patterns in this residual. Cross-correlating (projecting) the second
eigenvector against either the original data or residual data vector at each voxel gives us
the second principal component volume. This process continues for all N-dimensions
resulting in N eigenvectors and N principal components. In this study, I limit myself to
the first two eigenvectors which thus define the plane that least-squares fits the N-
dimensional attribute data. Figure 2.2c shows a numerical example of the first two
principle components defining a plane in a 3-dimensional data space.
Self-organizing maps

While many workers (e.g. Coleou et al., 2003) describe SOM as a type of neural
network, for the purposes of this review, | prefer to describe SOM as a manifold
projection technique. Kohonen (1982) SOM, originally developed for gene pattern
recognition, is one of the most popular classification techniques, and it has been
implemented in at least four commercial software packages for seismic facies
classification. The major advantage of SOM over K-means is that the clusters residing on

the deformed manifold in N-dimensional data space are directly mapped to a rectilinear
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or otherwise regularly gridded latent space. | provide a brief summary of the mathematical
formulations of the SOM implementation used in this study in the Appendix.

Although SOM is one of the most popular classification technique there are
several limitations to the SOM algorithm. First, the choice of neighborhood function at
each iteration is subjective, with different choices resulting in different solutions. Second,
the absence of a quantitative error measure does not let us know whether the solution has
converged to an acceptable level, thus providing confidence in the resulting analysis.
Third, while we find the most likely cluster for a given data vector, we have no
quantitative measure of confidence in the facies classification, and no indication if the
vector could be nearly as well represented by other facies.

Generative topographic mapping

GTM is a nonlinear dimensionality reduction technique that provides a
probabilistic representation of the data vectors on a lower L-dimensional deformed
manifold that is in turn mapped to an L-dimensional latent space. While SOM seeks the
node or prototype vector that is closest to the randomly chosen vector from the training
or input dataset, in GTM each of the nodes lying on the lower dimensional manifold
provides some mathematical support to the data and is considered to be to some degree
“responsible” for the data vector (Figure 2.3). The level of support or “responsibility” is
modeled with a constrained mixture of Gaussians. The model parameter estimations are
determined by maximum likelihood using the Expectation Maximization (EM) algorithm
(Bishop et al., 1998).

Because GTM theory is deeply rooted in probability, it can also be used in modern

risk analysis. We can extend the GTM application in seismic exploration by projecting
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the mean posterior probabilities of a particular window of multiattribute data (say, about
a producing well) onto the 2D latent space. By project the data vector at any given voxel
onto the latent space, we obtain a probability estimates of whether it falls into the same
category (Roy et al., 2014). We thus have a probabilistic estimate of how similar any data
vector is to attribute behavior (and hence facies) about a producing or non-producing well
of interest.
Other Unsupervised Learning Methods

There are many other unsupervised learning techniques, several of which were
evaluated by Barnes and Laughlin (2002). I do not currently have access to software to
apply independent component analysis and Gaussian mixture models to seismic facies
classification problem, but mention them as possible candidates.
Independent component analysis

Like PCA, independent component analysis (ICA) is a statistical technique used
to project a set of N-dimensional vectors onto a smaller L-dimensional space. Unlike PCA
which is based on Gaussian statistics, whereby the first eigenvector best represents the
variance in the multidimensional data, ICA attempts to project data onto subspaces that
result in non-Gaussian distributions which are then easier to separate and visualize.
Honorio et al. (2014) successfully apply ICA to multiple spectral components to delineate
architectural elements of an offshore Brazil carbonate terrain. Both PCA and ICA are
commonly used to reduce a redundant set of attributes to form a smaller set of

independent meta-attributes (e.g. Gao, 2007).
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Gaussian mixture models

Gaussian mixture model (GMM), are parametric models of probability
distributions which can provide greater flexibility and precision in modeling than
traditional unsupervised clustering algorithms. Lubo et al. (2014) apply this technique to
a suite of well logs acquired over Horseshoe Atoll, west Texas, to generate different
lithologies. These GMM lithologies are then used to calibrate 3D seismic prestack
inversion results to generate a 3D rock property model. At present, | do not know of any
GMM algorithms applied to seismic facies classification using seismic attributes as input
data.

REVIEW OF SUPERVISED LEARNING TECHNIQUES

Avrtificial Neural Networks

Artificial neural networks can be used in both unsupervised and supervised
mulitattribute analysis (van der Baan and Jutten, 2000). The multilayer perceptron (MLP)
and the radial basis function (RBF) are two popular types of neural networks used in
supervised learning. Probabilistic neural network, PNN, which also uses radial basis
functions, forms the basis of additional neural network geophysical applications. In terms
of network architecture, the supervised algorithms are feed-forward networks. In contrast,
the unsupervised SOM algorithm described earlier is a recurrent (or feed-backward)
network. An advantage of feed-forward networks over SOMs is the ability to predict both
continuous values (such as porosity) as well as discrete values (such as facies class
number). Applications of neural networks can be found in seismic inversion (Roth and
Tarantola, 1994), well log prediction from other logs (Huang et al., 1996; Lim, 2005),

waveform recognition (Murat and Rudman, 1992), seismic facies analysis (West et al.,
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2002), and reservoir property prediction using seismic attributes (Yu et al., 2008; Zhao
and Ramachandran, 2013). For the last application listed above, however, due to the
resolution difference between seismic and well logs, structural and lithologic variation of
inter-well points, and the highly nonlinear relation between these two domains, achieving
a convincing prediction result can be challenging. In this case, geostatistical methods such
as Bayesian analysis can be used jointly to provide a probability index, giving interpreters
an estimate of how much confidence they should have in the prediction.

Artificial neural networks are routinely used in the exploration and production
industry. ANN provides a means to correlate well measurements such as gamma ray logs
to seismic attributes (e.g. Verma, 2012) where the underlying relationship is a function
of rock properties, depositional environment, and diagenetic alteration. Although it has
produced reliable classification in many applications during its service, defects such as
converging to local minima and difficult in parameterization are not negligible. In both
industrial and scientific applications, we prefer a constant and robust classifier once the
training vectors and model parameters have been determined. This leads to the more
recent supervised learning technique developed in the late 20" century, the support vector
machines.

Support Vector Machines

The basic idea of SVMs is straightforward. First, we transform the training data
vectors into a still higher dimensional “feature” space using nonlinear mapping. Then we
find a hyperplane in this feature space that separates the data into two classes with an
optimal “margin”. The concept of a margin is defined to be the smallest distance between

the separation hyperplane (commonly called a decision boundary) and the training vectors
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(Bishop, 2006) (Figure 2.4). An optimal margin balances two criteria: maximizing the
margin, thereby giving the classifier the best generalization, and minimizing the number
of misclassified training vectors if the training data are not linearly separable. The margin
can also be described as the distance between the decision boundary and two hyperplanes
defined by the data vectors which have the smallest distance to the decision boundary.
These two hyperplanes are called the “plus-plane” and the “minus-plane”. The vectors
which lie exactly on these two hyperplanes mathematically define or “support” them and
are called support vectors. Tong and Koller (2002) show that the decision boundary is
dependent solely on the support vectors, resulting in the name “support vector machines”.

SVMs can be used in either a supervised or in a semi-supervised learning mode.
In contrast to supervised learning, semi-supervised learning defines a learning process
that utilizes both labeled and unlabeled vectors. When there are a limited number of
interpreter classified data vectors, the classifier may not act well due to insufficient
training. In semi-supervised training, some of the nearby unclassified data vectors are
automatically selected and classified based on a distance measurement during the training
step, as in an unsupervised learning process. These vectors are then used as additional
training vectors (Figure 2.5), resulting in a classifier that will perform better for the
specific problem. The generalization power is sacrificed by using unlabeled data. In this
study | focus on SVM; however, the future of semi-supervised SVM in geophysical
applications is quite promising.
Proximal Support Vector Machines

Proximal support vector machine (PSVM) (Fung and Mangasarian, 2001, 2005)

is a recent variant of SVM, which, instead of looking for a separating plane directly,
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builds two parallel planes that approximate two data classes; the decision-boundary then
falls between these two planes (Figure 2.6). Other researchers have found that PSVM
provides comparable classification correctness to standard SVM but at considerable
computational savings (Fung and Mangasarian, 2001, 2005; Mangasarian and Wild,
2006). In this study, | use PSVM as the implementation of SVM. Details on the PSVM
algorithm are provided in the Appendix.

We may face problems in seismic interpretation that are linearly inseparable in
the original input multidimensional attribute space. In SVM, we map the data vectors into
a higher dimensional space where they become linearly separable (Figure 2.7), where the
increase in dimensionality may result in significantly increased computational cost.
Instead of using an explicit mapping function to map input data into a higher dimensional
space, PSVM achieves the same goal by manipulating a kernel function in the input
attribute space. In this implementation, I use a Gaussian kernel function, but in principal
many other functions can be used (Shawe-Taylor and Cristianini, 2004).

SVM can be used either as a classifier or as a regression operator. Used as a
regression operator, SVM is capable of predicting petrophysical properties such as
porosity (Wong et al., 2005), Vj,, V; and density (Kuzma and Rector, 2004), and
permeability (Al-Anazi and Gates, 2010; Nazari et al., 2011). In all such applications,
SVM shows comparable or superior performance to neural networks with respect to
prediction error and training cost. When used as a classifier, SVM is suitable in predicting
lithofacies (Al-Anazi and Gates, 2010; Torres and Reveron, 2013; Wang et al., 2014;
Zhao et al., 2014) or pseudo rock properties (Zhang et al., 2015), either from well log

data, core data, or seismic attributes.
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GEOLOGIC SETTING

In this study | use the Waka-3D seismic survey acquired over the Canterbury
Basin, offshore New Zealand, generously made public by New Zealand Petroleum and
Minerals. Readers can request this data set through their website for research purposes.
Figure 2.8 shows the location of this survey, where the red rectangle corresponds to time
slices shown in subsequent figures. The study area lies on the transition zone of
continental slope and rise, with abundance of paleocanyons and turbidite deposits of
Cretaceous and Tertiary ages. These sediments are deposited in a single, tectonically
driven transgressive — regressive cycle (Uruski, 2010). Being a very recent and
underexplored prospect, publically available comprehensive studies of the Canterbury
Basin are somewhat limited. The modern seafloor canyons shown in Figure 2.8 are good
analogs of the deeper paleocanyons illuminated by the 3D seismic amplitude and attribute
data.

ATTRIBUTE SELECTION

In their comparison of alternative unsupervised learning techniques, Barnes and
Laughlin (2002) concluded that the appropriate choice of attributes was the most critical
component of computer assisted seismic facies identification. Although interpreters are
skilled at identifying facies, such recognition is often subconscious and hard to define
(see Eagleman’s 2012 discussion on differentiating male from female chicks and
identifying military aircraft from silhouettes). In supervised learning, the software does
some of the work during the training process, though we must always be wary of false
correlations if we provide too many attributes (Kalkomey, 1999). For the prediction of

continuous data such as porosity, Russell (1997) and others suggest that one begin with
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exploratory data analysis, where one simply cross-correlates a candidate attribute with
the desired property at the well. Such cross—correlation does not work well when trying

to identify seismic facies, which are simply “labeled” with an integer number or
alphanumeric name.

Table 2.1 summarizes how interpreters perceive each of the seismic facies of
interest. Once we have enumerated the seismic expression, the quantification using
attribute expression is relatively straightforward. In general, amplitude and frequency
attributes are lithology indicators and may provide direct hydrocarbon detection in

conventional reservoirs, geometric attributes delineate reflector morphology such as dip,

curvature, rotation, and convergence, while statistical and texture attributes provides
information about data distribution that quantifies subtle patterns that are hard to define
(Chopra and Marfurt, 2007). Attributes such as coherence provide images of the edges of
seismic facies rather than a measure of the facies themselves, although slumps often
appear as a suite of closely spaced faults separating rotated fault blocks. Finally, what we
see as interpreters and what our clustering algorithms see can be quite different. While
we may see a slump feature as exhibiting a high number of faults per km, the clustering
algorithms are applied voxel by voxel and see only the local behavior. Extending the
clustering to see such large scale textures requires the development of new texture
attributes.

The number of attributes should be as small as possible to discriminate the facies
of interest, and each attribute should be mathematical independent from the others. While
it may be fairly easy to represent three attributes with a deformed 2D manifold, increasing

the dimensionality results in increased deformation, such that the manifold may fold on
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itself or may not accurately represent the increased data variability. Because the Waka-
3D survey is just recently released to the public, interpreters have tested numerous
attributes that they think may highlight different facies in the turbidite system. Among
these attributes, | find the shape index to be good for visual classification but dominates
the unsupervised classifications with valley and ridge features across the survey. After
such analysis | chose four attributes that are mathematically independent but should be
coupled through the underlying geology: peak spectral frequency, peak spectral
magnitude, GLCM homogeneity, and curvedness, as the input to the classifiers. The peak
spectral frequency and peak spectral magnitude form an attribute pair that crudely
represents the spectral response. Peak frequency of spectrally whitened data is sensitive
to tuning thickness while peak magnitude is a function of both tuning thickness and
impedance contrast. GLCM homogeneity is a texture attribute that has a high value for
adjacent traces with similar (high or low) amplitudes and measures the continuity of a
seismic facies. Curvedness defines the magnitude of reflector structural or stratigraphic
deformation, with dome-, ridge-, saddle-, valley-, and bowl-shaped features exhibiting
high curvedness and planar features exhibiting zero curvedness.

Figure 2.9 shows a time slice at t=1.88 s through the seismic amplitude volume
on which | identify channels (white arrows), high amplitude deposits (yellow arrows),
and slope fans (red arrows). Figure 2.10 shows an equivalent time slice through peak
spectral frequency co-rendered with peak spectral magnitude that emphasizes the relative
thickness and reflectivity of the turbidite system and surrounding slope fan sediments into
which it was incised. The edges of the channels are delineated by Sobel filter similarity.

| show equivalent time slices through (Figure 2.11) GLCM homogeneity, and (Figure
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2.12) co-rendered shape index and curvedness. In Figure 2.13 | show a representative
vertical slice at line AA’ in Figure 2.14 cutting through the channels through (Figure
2.13a) seismic amplitude, (Figure 2.13b) seismic amplitude co-rendered with peak
spectral magnitude/peak spectral frequency, (Figure 2.13c) seismic amplitude co-
rendered with GLCM homogeneity, and (Figure 2.13d) seismic amplitude co-rendered
shape index and curvedness. White arrows indicate incised valleys, yellow arrows high
amplitude deposits, and red arrows a slope fan. We note several of the incised values are
visible at time slice t=1.88 s.

In a conventional interpretation workflow, the geoscientist would examine each
of these attribute images and integrate them within a depositional framework. Such
interpretation takes time and may be impractical for extremely large data volumes. In
contrast, in seismic facies classification the computer either attempts to classify what it
sees as distinct seismic facies (in unsupervised learning) or attempts to emulate the
interpreter’s classification made on a finite number of vertical sections, time, and/or
horizon slices and apply the same classification to the full 3D volume (in supervised
learning). In both cases, the interpreter needs to validate the final classification to
determine if they represent seismic facies of interest. In this example I will use Sobel
filter similarity to separate the facies and then evaluate how they fit within my
understanding of a turbidite system.

APPLICATION

Given these four attributes, we now construct four-dimensional attribute vectors

as input to the previously described classification algorithms. To better illustrate the

performance of each algorithm, | summarize the data size, number of computational

26



processors, and runtime in Table 2.2. All the algorithms are developed by the authors
except ANN, which is implemented using MATLAB® toolbox.

| begin with K-means. As previously discussed, a limitation of K-means is the
lack of any structure to the cluster number selection process. I illustrate this limitation by
computing K-means with 16 (Figure 2.14) and 256 (Figure 2.15) clusters. On Figure 2.14,
we can identify high amplitude overbank deposits (yellow arrows), channels (white
arrows), and slope fan deposits (red arrows). A main limitation of K-means is that there
is no structure linking the clusters, which leads to a somewhat random choice of color
assignment to clusters. This problem becomes more serious when more clusters are
selected: the result with 256 clusters (Figure 2.15) is so chaotic that we can rarely separate
the overbank high amplitude deposits (yellow arrows) and slope fan deposits (red arrows)
that were easily separable in Figure 2.14. For this reason, modern K-means applications
focus on estimating the correct number of clusters in the data.

In contrast to K-means, SOM restricts the cluster centers to lie on a deformed 2D
manifold. While clusters may move closer or further apart, they still form (in this
implementation) a deformed quadrilateral mesh which maps to a rectangular mesh on the
2D latent space. Mapping the latent space to a continuous 1D (Coleou et al., 2003) or 2D
color bar (Strecker and Uden, 2002), reduces the sensitivity to the number of clusters
chosen. | follow Gao (2007) and avoid guessing at the number of clusters necessary to
represent the data by overdefining the number of prototype vectors to be 256 (the limit of
color levels in our commercial display software). These 256 prototype vectors (potential
clusters) reduce to only three or four distinct “natural” clusters through the SOM

neighborhood training criteria. The 2D SOM manifold is initialized using the first two
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principle components, defining a plane through the N-dimensional attribute space (Figure
2.16). The algorithm then deforms the manifold to better fit the data. Overdefining the
number of prototype vectors results in clumping into a smaller number natural clusters.
These clumped prototype vectors project onto adjacent locations in the latent space are
therefore appear as subtle shades of the same color as indicated by the limited palette of
256 colors shown in Figure 2.17. On the classification result shown on Figure 2.17, we
can clearly identify the green colored spill-over deposits (yellow arrows). The difference
between channel fill (white arrows) and slope fans (red arrows) is insignificant. However,
by co-rendering with similarity, the channels are delineated nicely, allowing us to visually
distinguish channel fills and the surrounded slope fans. We can also identify some purple
color clusters (orange arrows) which | interpret to be crevasse splays at this moment.
Next, | apply GTM to the same four attributes. | compute two “orthogonal”
projections of data onto the manifold and thence onto the two dimensions of the latent
space. Rather than define explicit clusters, we project the mean a posteriori probability
distribution onto the 2D latent space and then export the projection onto the two latent
space axes. | crossplot the projections along axes 1 and 2 and map them against a 2D
color bar (Figure 2.18). In this slice, we see channels delineated by purple colors (white
arrows), point bar and crevasse splays in pinkish colors (yellow arrows), and slope fans
in lime green colors (red arrows). We can also identify some thin, braided channels at the
south end of the survey (blue arrow). Similarly to the SOM result, similarity separates the
incised valleys from the slope fans. However, the geological meaning of the orange
colored facies is somehow vague. This is the nature of unsupervised learning techniques

in that the clusters represent topological differences in the input data vectors, which are
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not necessarily the facies differences we wish to delineate. We can ameliorate this
shortcoming by adding a posteriori supervision to the GTM manifold. The simplest way
to add supervision is to compute the average attribute vectors about a given seismic facies
and map it to the GTM crossplot. Then, the interpreter can manually define clusters on
the 2D histogram by constructing one or more polygons (Figure 2.19), where | cluster the
data into four facies: multistoried channels (blue), high-energy point bar and crevasse
splay deposits (yellow), slope fans (green), and “everything else” (red). A more
quantitative methodology is to mathematically project these average clusters onto the
manifold, and then cross multiply the probability distribution of the control vectors
against the probability distribution function of each data vector, thereby forming the
Bhattacharya distance (Roy et al., 2013, 2014). Such measures then provide a probability
ranging between 0 and 100% as to whether the data vector at any seismic sample point is
like the data vectors about well control (Roy et al., 2013, 2014) or like the average data
vector within a facies picked by the interpreter.

The a posteriori supervision added to GTM is the critical prior supervision
necessary for supervised classification such as ANN and SVM. In this study | used the
same four attributes as input for both unsupervised and supervised learning techniques.
The supervision consists of picked seed points for the three main facies previously
delineated using the unsupervised classification results, which are multistoried channel,
point bar and crevasse splay deposits, and slope fans, plus an additional channel flank
facies. The seed points are shown in Figure 2.20. Seed points should be picked with great
caution to correctly represent the corresponding facies, any false picking (a seed point

that does not belong to the intended facies) will greatly compromise the classification
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result. I then compute averages of the four input attributes within a 7 trace X 7 trace X 24
ms window about each seed point to generate a training table which consists of 4-
dimensional input attribute vectors and one dimensional targets (the labeled facies).

For the ANN application, | used the neural networks toolbox in MATLAB®, and
generated a probabilistic neural network (PNN) composed of 20 neurons. Because of the
relatively small size of the training data, the training process only took a second or so;
however, since a PNN may converge to local minima, | am not confident that the first
trained network has the best performance. The workflow is then to rerun the training
process 50 times and choose the network exhibiting the lowest training and cross-
validation errors. Figure 2.21 and 2.22 show the PNN performance during training, while
Figure 2.23 shows the PNN classification result. We notice that all the training, testing,
and cross-validation performance are acceptable, with training and cross-validation
correctness being around 90%, and testing correctness being over 86%. We identify blue
channel stories within the relatively larger scale incised valleys (white arrows), and
yellow point bars and crevasse splays (yellow arrows). However, many of the slope fan
deposits are now classified as channel flanks or multistoried channels (blue arrows),
which need to be further calibrated with well log data. Nevertheless, as a supervised
learning technique, ANN provides classification with explicit geological meaning, which
IS its primary advantage over unsupervised learning techniques.

Finally, | cluster the four-dimensional input data using SVM, using the same
training data (interpreter picks) as for ANN. The workflow is similar to ANN in that | ran
20 passes of training, varying the Gaussian kernel standard deviation, o, and

misclassification tolerance, &, parameters for each pass. These parameter choices are

30



easier than selecting the number of neurons for ANN, since the SVM algorithm solves a
convex optimization problem that converges to a global minima. The training and cross-
validation performance is comparable to ANN, with roughly 92% training correctness
and 85% cross-validation correctness. Figure 2.24 shows the SVM classification result at
time t = 1.88 s. The SVM map follows the same pattern as we have seen on the ANN
map, but is generally cleaner, with some differences in details. Compared to ANN, SVM
successfully mapped more of the slope fans (white arrows), but missed some crevasse
splays that were correctly picked by ANN (yellow arrow). We also see a great amount of
facies variation within the incised valleys, which is reasonable because of the multiple
course changes of a paleochannel during its deposition that results in multiple channel
stories. Finally, we note some red lines following NW-SE direction (red arrows) which
correspond to acquisition footprint.
CONCLUSION AND DISCUSSION

In this study | have compared and contrasted some of the more important
multiattribute facies classification tools, including four unsupervised (PCA, K-means,
SOM, GTM) and two supervised (ANN, SVM) learning techniques. In addition to
highlighting the differences in assumptions and implementation, | have applied each
method to the same Canterbury Basin survey, with the goal of delineating seismic facies
in a turbidite system to demonstrate the effectiveness and weaknesses of each method. K-
means and SOM move the user-defined number of cluster centers towards the input data
vectors. PCA is the simplest manifold method, where the data variability in previous
examples is approximated by a 2D plane defined by the first two eigenvectors. GTM is

more accurately described as a mapping technique, like PCA, where the clusters are
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formed either in the human brain as part of visualization or through crossplotting and the
construction of polygons. SOM and GTM manifolds deform to fit the N-dimensional
data. In SOM, the cluster centers (prototype vectors) move along the manifold towards
the data vectors, forming true clusters. In all four methods, any labeling of a given cluster
to a given facies happens after the process is completed. In contrast, ANN and SVM build
a specific relation between the input data vectors and a subset of user-labeled input
training data vectors thereby explicitly labeling the output clusters to the desired facies.
Supervised learning is constructed from a limited group of training samples (usually at
certain well locations or manually picked seed points) which generally are insufficient to
represent all the lithologic and stratigraphic variations within a relatively large seismic
data volume. A pitfall of supervised learning is that unforeseen clusters will be
misclassified as clusters that have been chosen.

For this reason, unsupervised classification products can be used to construct not
only an initial estimate of the number of classes, but also a validation tool to determine if
separate clusters have been incorrectly lumped together. | advise computing unsupervised
SOM or GTM prior to picking seed points for subsequent supervised learning, to clarify
the topological differences mapped by the choice of attributes. Such mapping will greatly
improve the picking confidence, because the seed points are now confirmed by both
human experience and mathematical statistics.

The choice of the correct suite of attributes is critical. Specifically, images that
are ideal for multiattribute visualization may be suboptimal for clustering. | made several
poor choices in previous iterations of writing this paper. The image of inline (SW-NE)

structural dip illustrates this problem directly. While a skilled interpreter sees a great deal
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of detail in Figure 2.25, there is no clear facies difference between positive and negative
dips, such that this component of vector dip cannot be used to differentiate them. A better
choice would be dip magnitude, except that a long wavelength overprint (such as
descending into the basin) would again bias our clustering in a manner that is unrelated
to facies. Therefore, | tried to use relative changes in dip — curvedness and shape indices
measure lateral changes in dip, and reflector convergence which differentiates conformal
from nonconformal reflectors.

Certain attributes should never be used in clustering. Phase, azimuth, and strike
have circular distributions, where a phase value of -180 indicates the same value as +180.
No trend can be found. While the shape index, s, is not circular, ranging between -1 and
+1, the histogram has a peaks about the ridge (s=+0.5) and about the valley (s=-0.5). |
speculate that shape components may be more amenable to classification. Reflector
convergence follows the same pattern as curvedness. For this reason | only used
curvedness as a representative of these three attributes. The addition of this choice
improved the clustering.

Edge attributes like the Sobel filter similarity and coherence are not useful for the
example show here; instead, | have visually added them as an edge “cluster” and co-
rendered with the images shown in Figure 2.14-2.20, 2.23, and 2.24. In contrast, when
analyzing more chaotic features such as salt domes and karst collapse, coherence is a
good input to clustering algorithms. I do wish to provide an estimate of continuity and
randomness to the clustering. To do so, | follow Corradi et al. (2009) and West et al.

(2002) and use GLCM homogeneity as an input attribute.
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Theoretically, no one technique is superior to all the others in every aspect, and
each technique has its inherent advantages and defects. K-means with a relatively small
numbers of clusters is the easiest algorithm to implement, provides rapid interpretation,
but lacks the relation among clusters. SOM provides a generally more “interpreter
friendly” clustering result with topological connections among clusters, but is
computationally more demanding than K-means. GTM relies on probability theory and
enables the interpreter to add posteriori supervision by manipulating the data’s posterior
probability distribution; however, it is not widely accessible to the exploration
geophysicist community. Rather than displaying the conventional cluster numbers (or
labels), | suggest displaying the cluster coordinates projected onto the 2D SOM and GTM
latent space axes. Doing so not only provides greater flexibility in constructing a 2D color
bar but also provides data that can be further manipulated using 2D crossplot tools.

For the two supervised learning techniques, ANN suffers from the convergence
problem and requires expertise to achieve the optimal performance, while the
computation cost is relatively low. SVM is mathematically more robust and easier to
train, but is more computationally demanding.

Practically, if no software limitations are set, we can make suggestions on how an
interpreter can incorporate these techniques to facilitate seismic facies interpretation at
different exploration and development stages. To identify the main features in a recently
acquired 3D seismic survey on which limited to no traditional structural interpretation is
done, K-means is a good candidate for exploratory classification starting with a small K
(typically K = 4) and gradually increase the number of class. As more data are acquired

(e.g. well log data and production data) and detailed structural interpretation has been
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performed, SOM or GTM focusing in the target formations will provide more refined
classification, which needs to be calibrated with wells. In the development stage when
most of the data have been acquired, with proper training process, ANN and SVM provide
targeted products, characterizing the reservoir by mimicking interpreters’ behavior.
Generally, SVM provides superior classification than ANN but at a considerably higher
computational cost, so choosing between these two requires balancing performance and
runtime cost. As a practical manner, no given interpretation software platform provides
all five of these clustering techniques, such that many of the choices are based on software
availability.

Because | wish this study to serve as an inspiration of interpreters, |1 do want to
reveal one drawback of this work: all the classifications are performed volumetrically but
not along a certain formation. Such classification may be biased by the bonding
formations above and below the target formation (if we do have a target formation),
therefore contaminates the facies map. However, | want to make the point that such
classification can happen at a very early stage of interpretation, when both structural
interpretation and well logs are very limited. And even in such situation, | can still use
classification techniques to generate facies volumes to assist subsequent interpretation.

In the 1970s and 1980s much of geophysical innovation in seismic processing and
interpretation was facilitated by the rapid evolution of computer technology — from
mainframes to minicomputers to workstations to distributed processing. I believe similar
advances in facies analysis will be facilitated by the rapid innovation in “big data”

analysis, driven by needs in marketing and security. While we may not answer Turing’s
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(1950) question “Can machines think?”, we will certainly be able to teach them how to

emulate a skilled human interpreter.

36



CHAPTER 2 TABLES

Appearance to

positive compaction

Facies Attribute Expression
Interpreter
Structurally high Stronger dome or ridge shape structural
components
: Higher GLCM homogeneity; lower GLCM
locally continuous
Levee entropy
Higher amplitude  [Dome or ridge shape component
Possibly thicker  [Lower peak spectral frequency
Shale-filled with  |Stronger bowl or valley shape structural
Channel negative compaction |components; higher peak spectral frequency
thalwegs Sand-filled with  |Stronger dome or ridge shape structural

components; lower peak spectral frequency

Channel flanks

Onlap onto incisement,
canyon edges

Higher reflector convergence magnitude

Gas-charged

High amplitude,

Higher GLCM homogeneity; lower GLCM

sands continuous reflections |entropy; high high peak magnitude
Incised . . Higher reflector convergence magnitude,
. Erosional truncation | ,.
floodplain Higher curvedness
Lower amplitude  |Lower spectral magnitude
Higher frequency  [Higher peak spectral frequency
Floodplain Continuous Higher GLCM homogeneity; lower GLCM
entropy
Lower amplitude structural shape
Near planar events |components; lower reflector convergence
magnitude
Higher reflector convergence magnitude;
Slumps Chaotic reflectivity |higher spectral frequency; lower GLCM

homogeneity; higher GLCM entropy

Table 2.1. Attribute expressions of seismic facies.
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Variable Name Definition
n, N attribute index and number of attributes
J, J voxel (attribute vector) index and number of voxels
k, K manifold index and number of grid points
aj the j" attribute data vector
p matrix of principle components
C attribute covariance matrix
Ih mean of the n'" attribute
Jm, Vm the m" eigenvalue and eigenvector pair
m the k™ grid point lying on the manifold (prototype vector for SOM,
K or Gaussian center for GTM)
Uk the k™" grid point lying on the latent space
" the Mahalanobis distance between the j data vector and the k™
k cluster center or manifold grid point
| Identity matrix of dimension defined in the text

Table 2.3. List of shared mathematical symbols.
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CHAPTER 2 FIGURES
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Figure 2.1. Cartoon illustration of a K-means clustering of 3 clusters. (a) Select 3 random
or equally spaced, but distinct seed points, which serve as the initial estimate of the vector
means of each cluster. Next, compute the Mahalanobis distance between each data vector
and each cluster mean. Then color code or otherwise label each data vector to belong to
the cluster that has the smallest Mahalanobis distance. (b) Recompute the means of each
cluster from the previously defined data vectors. (c) Recalculate the Mahalanobis distance
from each vector to the new cluster means. Assign each vector to the cluster that has the
smallest distance. (d) The process continues until the changes in means converge to their
final locations. If we now add a new (yellow) point, we will use a Bayesian classifier to
determine into which cluster it falls (Figure courtesy of Scott Pickford).
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Figure 2.2. (a) A distribution of data points in 3-dimensional attribute space. The
statistics of this distribution can be defined by the covariance matrix. (b) K-means will
cluster data into a user-defined number of distributions (4 in this example) based on
Mahalanobis distance measure. (c) The plane that best fits these data is defined by the
first two eigenvectors of the covariance matrix. The projection of the 3D data onto this
plane provides the first two principle components of the data as well as the initial model
for both the SOM and GTM algorithms. (d) SOM and GTM deform the initial 2D plane
into a 2D “manifold” that better fits the data. Each point on the deformed 2D manifold is
in turn mapped to a 2D rectangular “latent” space. Clusters are color-coded or
interactively defined on this latent space.
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Figure 2.3. (a) K grid points uk defined on a L-dimensional latent space grid are mapped
to K grid points mg lying on a non-Euclidean manifold in N-dimensional data space. In
this paper, L=2 and will be mapped against a 2-dimensional color bar. The Gaussian
mapping functions are initialized to be equally spaced on the plane defined by the first
two eigenvectors. (b) Schematic showing the training of the latent space grid points to a
data vector g lying near the GTM manifold using an expectation maximization algorithm.
The posterior probability of each data vector is calculated for all Gaussian centroids
points mg and are assigned to the respective latent space grid points uk. Grid points with
high probabilities are displayed as bright colors. All variables are discussed in Appendix.
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Figure 2.4. Cartoon of a linear SVM classifier separating black from white data vectors.
The two dashed lines are the margins defined by support vector data points. The red
decision boundary falls midway between the margins, separating the two clusters. If the
data clusters overlap, no margins can be drawn. In this situation the data vectors will be
mapped to a higher dimensional space where they can be separated.
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Figure 2.5. Cartoon describing semi-supervised learning. Blue squares and red triangles
indicate two different interpreter defined classes. Black dots indicate unclassified points.
In semi-supervised learning, unclassified data vectors 1 and 2 are classified to be class

“A” while data vector 3 is classified to be class “B” during the training process.
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Figure 2.6. (a) Cartoon showing a two-class PSVM in 2D space. Classes “A” and “B”
are approximated by two parallel lines that have been pushed as far apart as possible
forming the cluster “margins”. The red decision-boundary lies midway between the two

margins. Maximizing the margin is equivalent to minimizing (o @ + ¥2)%/2. (b) A two-
class PSVM in 3D space. In this case the decision-boundary and margins are 2D planes.
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Figure 2.7. Cartoon show how one SVM can map two linearly inseparable problem into
a higher dimensional space in which they can be separated. (a) Circular classes “A” and
“B” in a 2D space cannot be separated by a linear decision-boundary (line). (b) Mapping
the same data into a higher 3-dimensional “feature” space using the given projection. This
transformation allows the two classes to be separated by the green plane.
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46° N\ \ =
Figure 2.8. A map showing the location of the 3D seismic survey acquired over the
Canterbury Basin, offshore New Zealand. The black rectangle denotes the limits of the
Waka-3D survey, while the smaller red rectangle denotes the part of the survey shown in
subsequent figures. Colors represent the relative depth of the current seafloor, warm being
shallower and cold being deeper. Current seafloor canyons are delineated in this map,
which are good analogs for the paleocanyons in Cretaceous and Tertiary ages (Modified
from Mitchell and Neil, 2012).
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Figure 2.9. Time slice at t=1.88 s through the seismic amplitude volume. White arrows
indicate potential channel/ canyon features. The yellow arrow indicates a high amplitude
feature. Red arrows indicate relatively low energy, gently dipping area. AA’ denotes a

cross section shown in Figure 2.13.
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Figure 2.10. Time slice at t=1.88 s through peak spectral frequency co-rendered with
peak spectral magnitude that emphasizes the relative thickness and reflectivity of the
turbidite system and surrounding slope fan sediments into which it was incised. The two
attributes are computed using a continuous wavelet transform algorithm. The edges of the

channels are delineated by Sobel filter similarity.
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Figure 2.11. Time slice at t=1.88 s through the GLCM homogeneity attribute co-rendered
with Sobel filter similarity. Bright colors highlights areas with potential fan sand deposits.
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Figure 2.12. Time slice at t=1.88 s through the co-rendered shape index, curvedness, and
Sobel filter similarity. The shape index highlights incisement, channel flanks, and levees
providing an excellent image for interactive interpreter-driven classification. However,
the shape index dominates the unsupervised classifications, highlighting valley and ridge
features and minimizing more planar features of interest in the survey.
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Figure 2.14. Time slice at t=1.88 s through K-means clustering volume with K=16. White
arrows indicate channel-like features. Yellow arrows indicate high amplitude overbank
deposits. Red arrows indicate possible slope fans. The edges of the channels are
delineated by Sobel filter similarity.
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Figure 2.15. Time slice at t=1.88 s through K-means clustering volume with K=256. The
classification result follows the same pattern as K=16 but is more chaotic since the classes
are computed independently and are not constrained to fall on a lower dimensional
manifold. Note the similarity between clusters of high amplitude overbank (yellow
arrows) and slope fan deposits (red arrows) which were separable in Figure 2.14.
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Figure 2.16. Time slice at t=1.88 s of the first two principle components plotted against
a 2D colorbar. These two principal components serve as the initial model for both the
SOM and GTM images that follow. With each iteration, the SOM and GTM manifolds
will deform to better fit the natural clusters in the input data.
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Figure 2.17. Time slice at t=1.88 s through an SOM classification volume using 256
clusters. White arrows indicate channel-like features. Combined with vertical sections
through seismic amplitude, | interpret overbank deposits (yellow arrows), crevasse splays
(orange arrows), and slope fan deposits (red arrows). The data are mapped to a 2D

manifold initialized by first two principle components and are somewhat more organized
than the K-means image shown in the previous figures.
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Figure 2.18. Time slice at t=1.88 s through crossplotting GTM projection 1 and 2 using
a 2D colorbar. White arrows indicate channel-like features, yellow arrows overbank
deposits, and red arrows slope fan deposits. The blue arrow indicates a braided channel
system that can be seen on PCA but cannot be identified from K-means or SOM
classification maps. The color indicates the location of the mean probability of each data

vector mapped into the 2D latent space.

55



GTM latcx t ax

100%
.4 Cluster selectlon 3
“J

.-.»

I

2

GTM latent axis 2
14

e
E-

N
=y

GT’\/I latent ax1s 1 &

Figure 2.19. The same time slice through the GTM projections shown in the previous
image but now displayed as four seismic facies. To do so, | first create two GTM
“components” aligned with the original first two principal components. | then pick four
colored polygons representing four seismic facies on the histogram generated using a
commercial crossplot tool, This histogram is a map of the GTM posterior probability
distribution in the latent space. The yellow polygon represents overbank deposits, the
blue polygon channels /canyons, the green polygon slope fan deposits, and the red

polygon “everything else”.
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Figure 2.20. Time slice at t=1.88 s through co-rendered peak spectral frequency, peak
spectral magnitude, and Sobel filter similarity volumes. Seed points (training data) are
shown with colors for the picked four facies, blue indicating multistoried channels,
yellow point bars and crevasse splays, red channel flanks, and green slope fans. Attribute
vectors at these seed points are used as training data in supervised classification.
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Best Validation Performance is 0.14482 at epoch 42
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---------- Best

Figure 2.21. PNN errors through the training epochs. The neural network reaches its best

performance at epoch 42.

Training Confusion Matrix

Output Class
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Target Class

Test Confusion Matrix

Qutput Class
L
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Validation Confusion Matrix

1 2 3 4
Target Class

All Confusion Matrix

Target Class

Figure 2.22. Confusion tables for the same PNN shown in Figure 2.21. From these tables
I find the training correctness to be 90%, the testing and cross-validation correctness to

be 86% and 91%, warranting a reliable prediction.
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Figure 2.23. Time slice at t=1.88 s through the ANN classification result. White arrows
indicate channels/canyons. Yellow arrows indicate point bars and crevasse splays.
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Figure 2.24. Time slice at t=1.88 s through SVM classification result. White arrows
indicate more correctly classified slope fans. Yellow arrow indicates crevasse splays. Red
arrows show the misclassifications due to possible acquisition footprint.
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Figure 2.25. Time slice at t=1.88 s through inline dip component of reflector dip. Inline
dip magnitude provides a photo-like image of the paleocanyons.
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