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Chapter 1 

Introduction and Thesis organization 

1.0 Thesis Introduction 

Computer applications continue to require higher and higher processing speed. 

This has led researchers and designers to corne up with new ideas to enhance the speed of 

the processors. A common approach is to exploit mstruction Level Parallelism inherent in 

the codes. mstruction level parallelism can be defined as the potential overlap of the 

instructions, so that they can be executed in parallel. Identifying instruction level 

parallelism contributes to increasing the number of execution units in the processor that 

operate concurrently to enhance the performance of the processor. Multi-linear 

processors have more than one execution or functional unit to evaluate parallel 

instructions. Two common RiSe (Reduced instruction set computer)-type multi-linear 

processor alternatives are the Super-scalar architecture and Very Large Instruction Word 

(VLIW) architecture. The difference between these two architectures stems from the way 

they utilize instruction level parallelism. VLIW processors require static scheduling of 

parallel instructions that can be fetched as one instruction word. Alternatively, super

scalar processors do dynamic scheduling of instruction as they are fetched from a linear 

instruction sequence. Static scheduling of the instructions is done at compile time. On the 

other hand, dynamic scheduling is done at run time when a partiCUlar sequence of 

instructions is being executed.. The compiler plays a critical roll in optimizing the 
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perfonnance of a multi-linear processor since the cOInpiler has to identify instructions 

that could be evaluated in parallel. 

A typical multi-linear processor fetches and decodes several instructions at a time. 

To ensure a steady stream of instructions, control instructions are predicted at fetch time. 

Decoded instructions are evaluated for data dependencies, dynamically scheduled and 

issued to the execution units for evaluation. Each execution unit can have a different 

latency causing the instructions to finish execution out of prograITI order. Latency can be 

defmed as the number of clock cycles between issuing an instruction to a particular 

pipeline and completion of execution of that instruction. At the end of execution, the 

results are reordered to update the machine state in program order. 

Since on an average there is a branch or a jump instruction every five instructions 

[ll, accurate branch prediction plays a critical roll in improving the efficiency of the 

processor, since the control flow of the program after a branch instruction is predicted, 

the instruction fetched after a predicted branch is referred to as a speculated instntction 

unti I the branch is evaluated in the pipeline. These instructions should not be allowed to 

alter the machine state until the branch conditions are evaluated. Hence for this 

intermediate period, results produced by the speculated instruction must be stored in 

registers other than the architectural registers to avoid alteration of the machine state. 

Once the branch is evaluated and the branch action matches the predicted action i.e. taken 

or not taken, these results should be allowed to write into the architectural registers to 

alter the machine state in accordance with the program. It is seen from the above 
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discussion that for a speculated instruction, two 32-bit data transfers are required to 

complete it. This is highly inefficient and takes up a lot of silicon area. 

The study undertaken in this thesis tries to tackle this inefficiency by having extra 

register locations other than the architectural registers called pseudo-registers, and a 

pointer scheme is followed to reference both architectural and pseudo registers. This 

scheme renames each logical destination register of an incoming instruction, to a pseudo 

register referenced by pointers called pseudo-pointers. Two separate lists of these 

pointers are maintained, one for all types of instructions and the other for only un

speculated instructions. When a branch instruction preceding the speculated instruction is 

evaluated and it is established that the prediction was correct, the machine state is altered 

by updating the pointer lists instead of moving the data. As the pointes are only 6-bits, the 

inefficiency is considerably reduced. 

This processor scheme is implemented using the Verilog hardware description 

language (HDL). The following study provides architectural details of each component 

used in the processor, stressing issues involved in the implementation and methods used 

to overcome these issues. This study also discusses verification methodology, 

documenting steps involved in compiling a 'c' program and loading it onto the simulated 

instructions cache and data cache for simulation. Finally, simulation results are presented 

for a sample 'c' program verifying the design. 
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1.1 Background Study 

1.1.0 Preliminary Studies 

Two important implementation alternatives for multi-linear processors are the 

VLIW approach and the Superscalar approach. A discussion on the perfonnance 

comparison of both approaches is presented at length in [9]. It is shown in the paper that 

both the approaches have comparable perfonnance for selected benchmarks. It is further 

shown that a relatively small instruction window is required for a superscalar processor 

as compared to a VLIW processor to exploit the same amount of parallelism. The overall 

micro-architecture of a superscalar processor is well elaborated in [10]. This paper 

discusses the concept of instruction level parallelism. It also discusses the technique 

involved in the implementation of the basic phases of a superscalar processor including 

instruction fetch and conditional branch processing, identifying data dependencies, 

issuing instructions for execution, memory interaction and committing the processor state 

in the correct order. A prototype implementation of a superscalar processor with a fetch 

size of two following the million instmctions per second (MIPS) instruction set is 

presented in [11]. This paper brings out different design issues involved in a superscalar 

processor including a detailed study of the data-path, multi-ported register file, data and 

control hazards. These papers give an overall understanding of the micro-architecture and 

the issues involved in the design of a superscalar architecture without going into details. 
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1.1.1 Understanding branches & branch prediction alternatives 

An efficient branch prediction mechanism is gaining more and more importance 

because processors are getting wider and wider and the funchona units are getting deeper 

and deeper [2]. Reference [2] talks about different types of branches and their behavior 

patterns, which is important to understand. According to [2], branches can be conditional 

or unconditional. Conditional branches are further divided into immediate branch, 

indirect branch and return [2]. The branch target address is encoded in the instruction for 

an immediate branch, whereas indirect branch reads the branch target. address from a 

register and return gets its target address from the stack memory. It further points out that 

for the SPECint95 benchmark, 72% of branches are conditional, 17% are unconditional, 

10% are return and 1% are indirect. Reference [2] further shows the distribution of 

execution frequencies of static conditional branches. On an average 53% of all the 

branches were executed 99 times or fewer and 11 % of all the branches were executed 

10,000 times or more. It also points out that 53% of the branches that were executed 99 

times or fewer make up 0.2% of the branches in the dynamic instruction stream while 

11 % of the branches that were executed 10,000 times or more make up 87% of the 

branches in the dynamic instruction stream. This proves that 10% of the code is 

responsible for 90% of the execution [2]. This proves that a good branch prediction 

scheme is an imperative for a highly efficient processor. Different schemes employed for 

predicting branches are as follows: 

1. Two-bit branch predictor [7]. 

2. GAg branch predictor [1]. 

3. gshare branch predictor [l ]. 
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4. LGshare branch predictor [1]. 

5. Block-level prediction scheme [8] [3]. 

6. Hybrid prediction scheme. 

The two-bit branch predictor is the most simple prediction scheme. This scheme 

employs a two-bit saturating counter for each predicted branch and the most significant 

bit is the prediction of branches. The counter is updated at the time of commit. If the 

prediction was correct, the counter is incremented or else decremented. This prediction 

scheme is capable of ignoring a single divergent branch. 

The GAg, gshare and LGshare branch predictor is a two-Ievd adaptive branch 

prediction scheme [2]. GAg branch prediction maintains two levels of branch history. 

The first level is maintained in a buffer called the global history register (GHR) which 

stores the history of all most recently executed branches. The second level of history, 

called the pattern history, stores the information about the most likely branch outcome if 

a particular pattern matches :Un the GHR. Gshare branch prediction indexes the pattern 

history by doing a logical XOR of the global history and branch address. This scheme is 

more accurate than the GA share scheme as the branch. interference is reduced due to the 

XORed branch address [1]. The LGshare scheme instead of using a global history of the 

branches uses the hybrid history by concatenating global history to the local history of a 

particular branch. This local history is stored in the branch target buffer. This hybrid 

history is XORed with the branch address to index the pattern history table. For a wider 

superscalar processor with an instruction block size of eight or more, the probability of 
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having more than one branch in the fetch group is high [8]. Hence multiple branch 

prediction is required to ensure a continuous flow of instructions. Instead of predicting 

individual instructions the block prediction scheme predicts the outcome of the entire 

block. In this scheme two pattern tables are maintained, the first is the block history table 

(BHT) which stores the outcome of the recently executed branches and is indexed using 

the block address. The second level is the pattern history which consists of counters for 

each possible target of the block and is incremented and decremented depending on the 

prediction. Reference [3] claims 15% increase in the fetch size for an 8-wide superscalar 

processor and improvement of25% for a 12-wide superscalar processor. 

According to [5], a higher hardware budget for the branch history tables tends to 

yield a more accurate branch predictor. Recent studies have shown that feature size 

reduction and a shorter clock cycle will lead to multi-cycle accesses to large on-chip 

structures. Hence, the access delay of large branch history tables will reduce the 

instruction per cycle (IPC) count. For a gshare prediction scheme with a pattern history 

size of 2 KB implemented for a clock rate of 2 GHz, memory accesses time is doubled 

causing the IPC to drop by 40% [5]. A Hybrid prediction scheme is proposed by [5] to 

counter this effect. A Hybrid predictor is similar to the two-level adaptive predictor but 

has smaller branch history tables. 

The implementation in this thesis uses the most simple prediction scheme of two

bit prediction. This scheme was preferred over others because it is less complex than the 

two-level prediction scheme. The block prediction scheme and hybrid prediction scheme 
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was not considered as the fetch size of the processor implemented is four; hence the 

probability ofhaving more that one branch in a fetch group is small. 

1.1.2 Brancb target buffer indexing 

To avoid a pipeline stall the branch prediction mechanism has to predict the 

branch target address no later than the first pipeline stage, since the branch address is not 

known prior to instruction decode. Hence some indirect technique is required to index the 

branch target buffer. Reference [13] highlights this problem and identifies the scheme 

used in the Intel Pentium processor for a fetch size of two. The Intel Pentium processor 

indexes the branch target buffer with the address of the instruction in the first decode 

stage. If there is a hit in the branch target buffer, the branch instruction is predicted. 

without incurring any penalties. Hence, in this case a branch instruction is identi.fied by 

the address of the instruction fetched one cycle before the branch instruction. This paper 

argues that the fetch width of a future generation superscalar processor will be much 

greater that two. To identify a branch instruction, instruction in the decode stage (whose 

address is used to index the branch prediction information) should always be the same. 

This is difficult to achieve for a larger fetch size. Reference [13] proposes two indexing 

schemes for indexing branch target buffers: 

1. Basic block based indexing 

2. Fetch address based indexing. 

According to this paper~ the time at which a branch instruction is predicted 

depends on which address is used to identify it. In order to predict a branch sufficiently 

early a branch instruction should be identified by the address of an instruction that 
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dominates the branch [13]. The dominant instruction is the one that is executed prior to a 

branch whenever the branch is executed_ The basic block indexing scheme identifies the 

branch with the basic block address, whereas the fetch address based scheme identiftes 

the branch with the instruction cache line address. There may be more than one branch 

instruction in a cache line. In this case, to avoid all the branch instructions in the same 

cache line mapping to the same branch target buffer entry, all the other branches are 

identified by their corresponding basic block starting address. These schemes assume 

delayed branches are not used. 

The branch target buffer indexing scheme used in our processor is similar to the 

basic block indexing scheme. The branch target buffer in our cases fetches four 

consecutive locations starting from the basic block address. If there is a hit, branch target 

address corresponding to the first hit is used. 

1.1.3 Register file issues 

Superscalar processors exploit instruction level parallelism by dynamically 

scheduling instructions for out-of-order execution. These processors evaluate a large 

window of in flight instructions to find multiple ready and independent instructions for 

parallel execution every clock cycle. Supporting a larger instruction window requires 

larger components within the processor like the register file, reorder buffer etc. Typically, 

a register file of a superscalar processor is required to be multi-ported to handle more 

than one instruction every cycle. These large multi-ported register files can potentially 
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compromise dock cycle time. Reference [12] identifies these problems and proposes two 

schemes to handle them. 

The first scheme handles the problem of increased register file size by a two

level register file, where the number of registers in the critical data path is reduced. The 

other scheme handles the multi-porting problems by using a minimally port~d banked 

register file. 

The two-level register file uses an allocation policy that leaves values that have 

potential readers in the level one register file and transfer other values to the level two 

register file. A special hardware component, nanled Usage table [12], keeps track of the 

potential readers of each register in the level one register file. Usage table [12] consists of 

a counter, called Pending Consumers [2], which is incremented during renanle if all 

instruction sources that particular register value. The same instruction decrements the 

counter when it is dispatched. If a counter for a particular register reads zero, it is copied 

to the level two register file. Information of this transfer is rllaintained in a buffer called 

the Copy List [2] to restore the machine state after misprediction. 

Even though the port requirement on a register file for a processor of fetch size of 

eight is at least 24 ports, the average port requirement is fewer for several reasons: 

1.	 Many operands are read from the forwarding network and not from the 

register file. 

2.	 Many instructions have single register operands. 
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3. Many instructions are not register write instructions. 

An IPC degradation of 2% was observed if the ports on the register file above 

were restricted to four read and four write ports [12]. This three fold reduction in the 

ports complicates the issue logic and the restricted write bandwidth must be handled with 

an added complexity in the commit logic. Hence, [12] suggests a minimally-ported 

banked register file. The register file bank with a single read port incurs an IPC 

degradation of 1% because of read conflicts [12]. If the write ports are also restricted to 

one per bank, IPC degradation increases to 5% [12]. 

The register file designed for our processor is designed based on s pointer scheme, 

where pointers to the data are transferred from the reorder buffer to the commit pointer 

buffer which keeps data at one location during commit. 

Background studies put forward in the above discussion helped us make design 

decisions for a lot of components of the processor design under test. 

1.2 Thesis Organization 

This documentation is divided into eight chapters. Chapter 2 talks about the 

overall design of the processor, identifying different components used to realize the 

design. Chapter 3 talks about the design of the branch prediction mechanism. Chapter 4 

describes the design of the MIPS I Instruction set architecture decoder and priorotizer 

logic for renamjng. Chapter 5 presents the design of the register file explaining the 
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concept of pseudo-registers. Chapter 6 identifies the data inconsistency problem and 

presents a solution employed in this design. Chapter 7 presents design verification 

methodology and simulation results. Chapter 8 concludes the discussion by proposing 

future work beyond this study. 
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Chapter 2 

Architectural Overview 

2.0 Introduction 

The design under verification here is a four-instruction speculative super-scalar 

processor, which can fetch four instructions from a liner instruction sequence every clock 

cycle and dynamically schedule them. Speculative prediction of the outcome ofbranch or 

jump instruction is done to reduce control stalls in the processor. This chapter talks about 

the overall design of the processor, how different components interact with each other, 

overall data flow and different pipeline stages of the processor. 

2.1 Overall design & dataflow 

2.1.0 Architectural Features 

The processor design is based on the MIPS Instruction Set Architecture; this 

instruction set architecture is one of the industry standard architectures. The MIPS 

instruction set comes in four different versions MIPS I, II, ill & IV. This processor is an 

implementation of the MIPS I Instruction Set Architecture. Basic instruction types in the 

MIPS I instruction set are: 

1.	 Arithmetic & logic instructions for basic arithmetic operation such as addition, 

subtraction and logical operations like AND, OR etc., 
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2.� Branch & Jump instructions, they can be conditional or unconditional. These 

instructions decide the control flow ofthe program. 

3.� Multiply & Divide instructions are special instruction for multiplication and 

division operations, as these instructions take longer than the other instructions 

they are grouped into one type. 

4. Load� & Store instructions, these instructions perform data transfers. from and to 

the data memory. 

5.� Floating-point instructions, these instructions operate on floating-point numbers. 

6. Co-Processor 0 Instruction,� co-processor is the control functional unit described 

by the MIPS Instruction Set. The co-processor 0 handles interrupt's, configuration 

options and controls on-chip functions like the cache and timer. A set of 

instructions described in the MIPS instruction set interacts with the co-processor 

o. 

7.� BREAK and SYSCALL instructions fall In a special category called 

miscellaneous instructions. 

The SOE-MIPS compi er is used to generate memory dumps of the 'C' programs. 

This compiler does not handle interrupts on its own; hence interrupt handling capabi ities 

are not build in this processor design. As the processor does not handle interrupts the co

processor 0 is designed as a static element that always has logical '0' at the output. It is 

further assumed that the compiler does not produce floating-point instructions. This 

assumption is true as a flag in the compiler make file restricts the compiler from 

generating these instructions. Hence, the processor does not need capability to execute 
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floating-point instructions. As the main focus of the study is on the processor architecture 

and not on the design of the peripherals it is also assumed that the instruction and data 

cache is infinite. 

There are six functional units in the processor to execute up to six instructions in 

parallel. They are: 

1. Two Arithmetic Logic Units (ALU). 

2. One Branch and Jump Unit (BJU). 

3. One Multiply and Divide Unit (MDU). 

4. One Load and Store Unit (LSD). 

5. Co-processor 0 (CPO). 

The probability of two out of four instructions in a block to be aritlunetic is high 

as the number of arithmetic instructions is neaTly twice that of any other types. Hence 

having two arithmetic logic units will reduce a lot of structural stalls. 

The processor is docked at 10 nsec. and is divided into seven pipeline stages 

which are. 

1. Instruction Fetch. 

2. Instruction Decode/Issue. 

3. Instruction Dispatch. 

4. Instruction Execution. 

5. Instruction Write Back. 

6. Instruction Commit t 
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7. Instruction Commit n. 

Each pipeline stage is oHhe duration of one dock cycle. The diagram on the next 

page shows the different pipeline stages divided by pipeline registers. The first pipeline 

register is the program counter. Each component in the processor is divided in time to 

show how it inte-racts with other components in each pipeline stage. 

This processor has 32 architectural registers, as described in the MISP I 

instruction set. In addition to these architectural registers, there are 32 extra registers 

caned pseudo-registers. These registers store data temporarily before the machine state is 

changed. These 64 registers are implemented asa single regi.ster file called the Value 

Buffer. Results of the instmction executions are written back on two 32-bit buses called 

Common Data Bus I and Common Data Bus n respectively. In addition an independent 

write back bus is provided on the branch and jump functional unit to write the branch 

target address after evaluating a particular branch instruction. 

The next half of the chapter talks about design issues involved in the super-scalar 

architecture and explains how these issues are handled with different components in the 

processor. The design details of each of these components will be discussed at length in 

the next few chapters. 
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2.1.1 Handling Branch and Jump Instructions 

Control flow of the instructions in the processor is decided by the number of 

branch and jump instructions. On an average there is a branch or jump instruction every 

five instructions [1]. Whenever a branch or a jump instruction is encOlmtered, the next 

instruction block to be fetched is not known until this instruction finishes execution; 

hence the processor has to stall. Stalling the processor every time a branch .or jump 

instruction is encountered is highly inefficient. This inefficiency is much higher for a 

super-scalar processor. A Super-scalar processor looses many more potential instructions 

that could have been fetched during the stall time, than a linear processor, since the 

super-sc'alar processor fetches more than one instruction in at clock cycle as cOTI'lpared to 

the linear processor that fetches one instruction every clock cycle. 

Speculative prediction of the branch and jump instruction is done to avoid stalling 

every time these instructions are encountered in this processor design. Prediction of the 

outcome of these instructions is based on the outcomes of their earlier runs. These earlier 

outcomes are stored as a two-bit saturating counter in a special cache called the Branch 

Prediction Buffer (BPB) and the corresponding branch target address is stored in another 

special cache called the Branch Target Buffer (BTB). Whenever a branch OT a jump is 

encountered again the most significant bit of the counter predicts from where the next 

instruction block is fetched. If the most significant bit of the counter is set we say the 

branch is predicted taken and the next instruction block is fetched from the corresponding 

branch target address. If the most significant bit is reset, "the branch is said to be predicted 

not taken. In this case the next instruction block is fetched from the next logical program 
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address. If a particular branch or jump instruction is encountered for the first time, it is 

always predicted not taken since, this new branch has never been executed. 

The above branch prediction mechanism is capable of predicting one branch or 

jump instruction per clock cycle. Hence only the first encountered branch or jump 

instruction is predicted and all instructions after the delay slot of the first branch or jump 

instruction are cancelled. 

2.1.2 Handling Speculated Data 

The results produced by MIPS I instructions are 32-bit data. For a speculated 

instruction this data has to be stored in a temporary location until the time the branch 

instruction is executed in the pipeline. If the predicted outcome matches the outcome of 

the branch instruction after execution, these data should be allowed to be written into the 

architectural registers and change the machine state. Hence to complete a speculated 

instruction, two 32-bit data transfers are needed. This is inefficient, this inefficiency 

further increases because of the fact that the processor fetches four-instructi.on per clock 

cycle and statistically there is one branch or jump every five instruction [I], causing a 

large number of speculated instructions at any given time to be waiting to be completed 

in the processor. 

The processor design under verification minimizes this inefficiency by using a 

pseudo-pointer scheme. This scheme renames logical destinations of incoming 

instructions by assigning pointer to the pseudo-register location and maintaining two lists 
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of these renamed pointers or pseudo-pointers. One list has the pseudo-pointers of all the 

uncompleted or speculated instructions and is called the Issue Pointer Buffer. The other 

has the pseudo-pointers of all the completed and un-speculated instructions and is caned! 

the Commit Pointer Buffer. These lists translate a logical source or destination of an 

incoming instruction to their pseudo-register locations. The results produced by the 

instructions after execution is written into the pseudo-register at which the pseudo-pointer 

points. The 32-bit data remains in the same location. Only the pseudo-pointers are copied 

form one list to the other when an instruction completes execution. The pseudo-pointers 

are 6-bits requiring a 6-bit data transfer as compared to a 32-bit data transfer earlier. 

Whenever a mispredicted branch is identified, the list having pseudo-pointers of the 

completed instruction is copied to the list having pseudo-pointers of the uncompleted 

instruction. This is done to bring the machine state back to where it was before the 

mispredicted branch or jump instruction. 

This process of assigning pseudo-pointers to the incoming instructions and 

transferring pseudo-pointers instead of the data itselfis more efficient. 

2.1.3 Handling out of order execution 

As each functional unit has different latencies, even though the instructions are 

fetched in order, they don't complete in order. To force the instruction to complete and 

change the machine state in order, a special first-in-first-out (FIFO) wrap-around queue is 

used, called the Reorder Buffer. The Reorder Buffer' maintains the ordering of the 

instructions and makes sure instructions complete or and committed in order. 
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When instructions are issued in the pipeline, they reserve a slot in the Reorder 

Buffer. The slots in the reorder buffer are reserved in program order and each instruction 

is tagged with a reorder buffer slot number. NOP's in the instruction stream do not fmd a 

spot in the reorder buffer. Every cycle the reorder bUffer tries to commit as much as four 

instructions if they have completed execution. 

Committing and issuing of the slots are achieved by two pointers, called the 

Commit-Pointer and the Issue-Pointer. The issue-pointer points to the locations from 

where the reorder buffer slots have to be issued, and the commit-pointer points at the 

location of the Last committed instruction. 

Mispredicted branches are detected at the top of the reorder buffer queue or when 

the commit-pointer points to the branch instructions. When a misprediction is detected, 

the processor restores itself by canceling all the instructions after the mispredicted 

branch. A new instruction block is then fetched from the correct target address. 

Detection of misprediction is delayed till that particular branch or jump 

instruction reaches the top of the reorder buffer queue even thought the branch conditions 

are evaluated in the instruction execution stage of the pipeline. Hence even though the 

misprediction could have been detected at the end of instruction execution pipeline stage, 

it is delayed until the branch or jump instruction reaches the top of the reorder buffer 

queue. The time between the evaluation of the branch condition and detection of 

misprediction can be several clock cycles as there might be some instructions before the 
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branch or jump instruction in the reorder buffer that are yet to be committed. This is 

inefficient, because knowingly wrong instructions are fetched from the time the branch 

condition was evaluated until misprediction is detected if the branch or jump instruction 

has mispredicted. This is done to keep the architecture simple. 

2.1.4 Handling dynamic scheduling of instructions 

An instruction should not be allowed to execute unless both the source operands 

are ready. This is called a Read after Write (RAW) hazard. This hazard is due to inherent 

dependencies in the instruction codes, and is more prominent in the super-scalar 

architecture, since more then one instruction is fetched in a clock cycle and there is a 

greater possibility of fetching instructions with dependencies in the same instruction 

block. This problem is avoided by dynamically scheduling the instruction at run time. 

addiu $a,,~~$a3, $vO;� 

liu $tO, $a2, $v 1;� 

Figure 2.2: Sample code.� 

It can be seen fonn the source code above that the first instruction has a 

destination register of '$a2' and the second instruction has the same register as one of its 

source operands. Unless the first instruction finishes execution, second instruction should 

not execute to avoid erroneous execution, since the data of '$a2' would not have been 

updated by the first instruction. 
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The Reservation Station is a small buffer before the execution pipeline that holds 

the instruction until both the source op.erands are ready. Each functional unit has its own 

reservation station. For this design the size of the reservation station is kept as four; hence 

it can hold fOUT instructions simultaneously. The reservation station is capable of issuing 

out of order instructions into the execution pipeline the both the source operands are 

ready and there is no structural hazard. For an instruction waiting for SOUf'ce opet~ds. the 

reservation station snoop's the common data-buses every clock cycle, and if the data is 

availahle, the instruction is issued for execution in the next clock-cycle. 

2.1.5 Handling Multiply aDd Divide Instruction 

Results produced by the multiply or divide instructions are 64-bit. These results 

are not directly written into the architectural registers. Instead they are written into a 

small buffer called the Hi-Lo Buffer as defined by the MIPS instruction set. The Hi-Lo 

buffers are written during the last stage of the instruction execution. There are special 

instructions to copy these data to the architectural registers from the Hi-Lo Buffer. 

2.1,.6 Handling Memory Stores 

Memories are traditionally slower then the processor, hence whenever a load or a 

store instmction completes the processor has to wait until the data memory is accessed. 

This causes stalls in the processor. These stalls are avoided in this design by using a 

special purpose buffer called the Store Buffer. The Store Buffer is wri'tten instead of the 

memory once the store instruction completes, and the store buffer interacts with the 

memory without holding up the processor. 
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The Store Buffer writes into the memory whenever the memory data bus is 

available and there are no pending loads from the memory. Load instructions are given 

preference over the store instruction, as loads from the memory hold up the execution of 

further instructions in the processor if there is data dependency causing the processor to 

stall. The Load instruction first scans the store buffer before it looks for the data in the 

memory, as the latest copy of the data might be in the store buffer. This ensures the latest 

copy of the data is always picked by the load instruction. 

2.1.7 Handling Data Consistency 

Inherent data dependencies III the execution codes may lead to some 

inconsistencies In handling the data in the case of this processor as each incoming 

instruction's logical destination registers is renamed to a new pseudo-register. There can 

be a situation when two or more instructions fetched in the same instruction block have 

identical logical destination registers. This causes aliasing of that logical destination 

register, as more than one pseudo-pointer points to it. This might cause errors when an 

incoming instruction refers to the same register for data by reading its p'seudo-pointer 

from the issue pointer buffer. 

This inconsistency is removed by doing destination overwrite while updating the 

issue pointer buffer. The pseudo-pointer of the latest instruction overwrites the pseudo

pointer picked for the other instructions that have the same logical destination in an 

instruction block. Destination overwrite removes the ambiguity for the subsequent 

incoming instmctions while accessing the pseudo-pointers for data. 
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Data inconsistency may also occur when logical source registers of an incoming 

instruction are the same as the logical destination register of another instruction in the 

same instruction block. This inconsistency occurs because the issue pointer buffer is read 

before it is written for a particular instruction block. The issue pointer buffer is not 

updated with the latest pseudo-pointer picked for the logical destinations when it reads 

the pseudo-pointer from logical source registers. Incorrect pseudo-pointers are read 

causing an erroneous operation. This can be avoided by overwriting the logical sources 

with the newly picked pseudo-pointers before reading the data. 

The special hardware components discussed above have distributed timing over 

the seven pipeline stages. These pipeline stages will be discussed in the next part of the 

chapter. 

2.2 Pipeline Stages 

2.2.0 Introduction 

Pipelining is done for maXImum utilization of the processor hardware 

components. If the processor is un-pipelined, processor hardware such as the Instruction 

Decoder is used once during an instruction lifetime. Instruction lifetime is the latency of 

the processor, which is typically more then one cycle. Hence the hardware is idle for the 

majority of the time, which is inefficient. To reduce this inefficiency, the instruction 

lifetime is divided into independent stages. This is called pipelining and each stage is 

called a pipeline stage. Since the pipeline stages are independent of each other, each 
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hardware component can be used in every stage for different instructions. This makes the 

utilization of the hardware components much more efficient. Pipelining enables the 

processor to process more than one independent instruction every clock cycle, and the 

exact number of independent instructions executing simultaneously at a given time 

depends on the number of pipeline stages. 

This design under verification has seven pipeline stages as named earlier. This 

section talks about each pipeline stage's function in execution of the instruction. 

2.2.1 Instruction Fetch Stage 

Instruction fetch is the ftrst stage in the lifetime of an instruction in the processor. 

This stage fetches instructions [rom the instruction cache. As the processor fetches four 

instructions in a clock cycle, instructions are fetched from four consecutive locations 

starting from the program counter. 

The branch prediction mechanism works in this pipeline stage since it is necessary 

to detennine the next program counter, where the next block will be fetched for the next 

clock cycle. The current program counter is used to index the branch target buffer (BTB) 

and the branch prediction buffer (BPB). If there is a hit in the branch prediction buffer 

and the branch target buffer, and the prediction is taken, then the next program. counter is 

the branch target address obtained from the branch target buffer. On the other hand if the 

prediction is not taken, the next program counter is the address of the fifth instruction 

from the program counter. When a branch is encountered for the first time, it is always 
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predicted to be not taken since no data is available on this branch in the branch target 

buffer or the branch prediction buffer. 

2.2.2 Instruction DecodelIssue Stage 

The instruction block that is fetched is passed to this stage for decoding. Decoding 

is done in the first half of this stage. The decoder decodes the opcodes for each 

instruction, the source and destination register address, and it also produces a group of 

control signals that aid in the proper execution of the instruction. These control signals 

identify the function unit the instruction is intended for. It also distinguishes between the 

immediate mode instruction, having immediate data as one of the operands to the register 

mode instruction. It also points out if there are any NOP's present in the instruction 

block, and a few others that will be discussed in later chapters in detail. 

Each instruction needs two-source operands for execution and one destination 

register to write the results after execution. The destinations are to be renamed to the 

Pseudo-register locations. This is done by looking at the allocate bits of each location of 

the register file and finding four location which are not allocated, i.e. empty. This is 

achieved using a special component called the Prioritizer. If the prioritizer faHs to find 

four empty locations it issues a structural stall until four empty locations are found. The 

worst-case delay of the prioritizer is less the 10 nsec. which is one clock period and is one 

pipeline stage delay. 
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The source operands obtained from the decoder are decoded again to find the 

pseudo-pointer for these registers from the issue pointer buffer in the second half of this 

stage as shown in the Figure 2.1. 

If the instruction block has more the one branch or jump instruction, the 

instructions after the delay slot of the first branch or jump instruction are cancelled and 

re-fetched in the next clock. 

2.2.3 Instruction Dispatch 

Instruction dispatch is the third state of the pipeline. In this stage the pseudo

pointers picked up by the prioritizer in the instruction decode state is written in the issue 

pointer buffer after destination ovelWrite, if required, and the valid bits for corresponding 

locations are reset marking them invalid. The source pseudo-pointers picked in the last 

stage passes through source ovelWrite logic before they are used to decode the value 

buffer locations in the first half of this stage, and the value buffer is read in the second 

halfof this stage if the valid bits for these particular locations are set. If the valid bit for a 

particular location is not set, the corresponding operand is marked invalid, and the 

instruction waits in the reservation station for the value in that particular location to be 

ready. These values are read directly from the common data-bus once they are written 

back. 

Reorder buffer locations are allocated for all the new incoming instructions in 

program order. This is done to prevent out of order committing of the instruction at the 
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end of the pipeline. Each instruction is tagged with their reorder buffer location address 

to facilitate prioritizing the instruction in the reservation station for execution. If the 

reorder buffer is full, there is a structural stall until the time the locations are available. 

Each instruction with the source operands and the reorder buffer location address 

is written into their corresponding reservation station identified by the functional unit 

codes produced by the instruction decode. If the reorder buffer is full, there is a dispatch 

stall until the locations are available in the reservation station. There are also structural 

stalls if there are more instructions of a particular type than the number of functional 

units for executing that type of instruction. In this case, the instructions that were 

successfully dispatched into the reservation station are marked, and the un-dispatched 

instructions are dispatched again until they are written into the reservation station. 

2.2.4 Instruction Execution 

The instruction stays in the reservation station until both the source operands are 

ready. For reading the source operands that were marked invalid, the reservation station 

snoop's the common data bus every clock cycle. When the data for that particular source 

register is on the common data bus, it is written in the reservation station, and the location 

is marked as valid and ready for execution. 

The instructions that are marked ready for execution are issued to the functional 

unit for execution. There are five functional units. There are two ALU's, one MDU, one 

BJU and one LSU. 
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Each ALU, CPO and BJU is a single stage unit and takes one clock cycle to finish 

execution, while the MDU takes four clock cycles to execute and the LSU takes two 

clock cycles to execute. 

The renamed destination Pseudo-pointers are decoded in this stage to update the 

data in the value buffer; this is called pre-decoding. As the value buffer is updated in the 

first half of the next clock cycle, there is no time to decode the destination Pseudo

pointers in the same half cycle when the value buffer is updated. 

2.2.5 Instruction Write Back 

As the name suggests, the results of an instruction execution is written back in 

this stage. There are a total of two data buses caHed the common data-buses. A write back 

controller assigns the data buses to different functional units depending on the 

availability. If the data bus is not available, there is a structural stall that stalls that 

particular functional unit. 

The reservation station is updated if any instruction is waiting for these results. 

The value buffer is written in the first half of the clock cycle with the pre-decoded 

address lines, and corresponding valid bits are set indicating the data has been written 

back for future instructions. The Branch and Jump functional unit has a separate bus to 

write the result of the execution in the reorder buffer, which is written in the second half 

of this stage. The branch targets are writ1en into the branch target buffer only if the 
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branch or jump has mispredicted and the branch instruction is picked for committing by 

the reorder buffer, the branch prediction buffer is updated every time the branch is 

completed and is picked for committing by the reorder buffer. 

2.2.6 Instruction Commit I 

This stage decides whether an instruction will be allowed to change the machine 

state or commit. The reorder buffer is capable of committing up to four instructions in a 

clock cycle depending on the status of the instructions. The reorder buffer reads four 

consecutive instructions starting from the commit-pointer and checks the valid bits for 

each instruction's destination, to distinguish between complete and incomplete 

instructions. It selects instruction until the first incomplete instruction to be committed. 

When a branch instruction is encountered and is mispredicted, the reorder buffer 

writes the correct prediction and the corresponding branch target address in the branch 

prediction buffer and the branch target buffer respectively. It issues a restore signal to 

indicate the misprediction and flushes all the instructions after the mispredicted branch 

from the reorder buffer. At the restore signal, the processor restores the machine state to 

the state it was before the mispredicted branch was fetched by copying all the commit 

pointer buffer to the issue pointer buffer, flushing all the reservation stations, 

asynchronously resetting all the pipeline registers to nu hfy all the instruction in the 

processor pipeline, and setting the program counter to the correct branch target address. If 

the encountered branch is predicted correctly, the prediction in the branch prediction 

buffer is updated. 
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2.2.7 Instruction Commit II 

The instmction selected in the last stage for committing, are committed in this 

stage by writing the destination pseudo-pointer into the commit pointer buffer. The 

commit pointer buffer is read in the first hal f of this stage to read the old pseudo-pointers, 

to allow the de-allocation of these old pseudo-pointers which can be over written in the 

next half cycle. The commit bits for the corresponding destination pseudo-pointers read 

from the reorder buffer is set, indicating the particular instruction is no longer speculated 

and has altered the machine state. 

This chapter talked about the overall architecture of the processor outlimng the 

different issues involved in this design. It discussed at length the di.fferent pipeline stages 

in the processor and how each hardware component interacts in these stages. The next 

few chapters will focus on different hardware components overviewed in this chapter and 

explain in detail the design issues of each hardware component. 
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Chapter 3 

Design of Branch Prediction Mechanism 

3.0 Introduction 

Good branch prediction is imperative for good performance of a processor~ this is 

more critical for a super-scalar processor. Since an instruction block is more than one 

instruction wide in a super-scalar processor, the penalty for misprediction is much higher, 

as was explained in Chapter 2. This processor implements a two-bit saturating counter for 

each branch that is predicted. The most significant bit of the counter is the prediction for 

that branch, a logical' l' represents a taken branch and a logical '0' represents a not taken 

branch. 

I" ---TAKEN '" 
NOT TAKEN 

TAKEN_ - 
-

TAKEN 

Figure 3.1: States in a two-bit prediction scherne. 
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Two bits are used. to encode four states as shown in the diagram. Two-bit 

prediction is better then a one-bit prediction scheme because a branch that strongly favors 

taken or not taken, as many branches do, will be mispredicted less frequently. 

This processor implements two special cache's to implement this scheme called 

the Branch Target Buffer and the Branch Prediction Buffer. The correct target address of 

a branch is stored in the branch target buffer, and the corresponding predictions are stored 

in the branch prediction buffer. These buffers are updated when branch misprediction is 

detected in the reorder buffer. 

Branch and Jump instructions are treated the same way and the target addresses of 

both types or instructions are stored in the same branch target buffer,; there is no separate 

jump target buffer in this design. The scheme predicts one branch in a clock cycle. If 

there is more then one branch or jump instnlctions in an instruction block, the 

instructions after the delay slot of the first taken. branch or jump instruction are cancelled. 

The following chapler talks about the design of these buffers, talking in detail 

about the architecture of each of these buffers. 

3.1 Branch Target Buffer 

The branch prediction mechanism works in the fetch stage of the pipeline. As the 

instructions are not yet decoded, branch or jump instructions cannot be identified in the 

fetch group. Since the branch or jump instruction's address is not known to index the 

branch target buffer. It is indexed using the lower sixteen bits of the current program 
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counter to fetch data from four consecutive locations in the branch target buffer. As four 

locations are read simultaneously, the branch target buffer bas to be implemented as a 

four-port memory architecture, which is expensive. Hence, the branch target buffer is 

implemented as a four-memory bank structure. Each memory back has one read-write 

port, and all memolY banks can be accessed simultaneously independent of each other. 

The last four bits of the memory address, the program counter in this case~ identify the 

memory bank, and depending on the number of locations in the branch target buffer, the 

memory address is divided into index and tag fields as shown below. 

12-x x • o4 2 .. ~_2_.... 

TAG INDEX I~~K IO~~~T!
'--- -----L ---'-__ 

Figure 3.2: Memory Address Division to access Branch Target Buffer. 

Each location of the branch target buffer memory bank consists of a lag, a branch 

target address and a valid bit. Valid bits identify the valid locations in the branch target 

buffer, and tags are used to detennine hits in the branch target buffer. As four consecutive 

locations are read and their tags compared with the, program counter, there is a 

possibility ofa hit on more then one memory bank simultaneously. In this case the branch 

target address from the nearest bank to the program counter is read out and the others are 

ignored. 

Since only a taken branch or jump instruction is written into the branch target 

buffer, it is not updated every time the branch is detected in the reorder buffer. Hence 

separate read and write ports were not necessary. When a taken branch is detected in the 

reorder buffer the target address corresponding to that instmction is written into the 
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branch target buffer with the address of the branch or jump instruction. A structural stall 

is issued causing the instruction fetch to stan for that cycle. The architecture is as shown 

in the diagram beIow. 

BRANCH TARGET BUFFER 
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Figure 3.3 Branch target buffer architecture 

The branch target buffer hit is the logical OR of hits detected for all the memory 

banks. The hits from the individual memory bank and corresponding target addresses are 

prioritized using the prioritizer logic to give the branch target address corresponding to 

the nearest memory bank to the program counter as the output. Whenever a mispredicted 

taken branch is detected in the reorder buffer, a write signal is set and the multiplexer, as 

shown in the diagram above, selects the branch or jump instruction address to index the 

branch target buffer. The tag and the correct branch target address are written and the 

valid bit set in the memory bank indicated by the two least significan.t bits of the 
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instruction word address. Since the exact instruction address of the branch and jump 

instructions is known at the time of writing the branch target address, only one of the four 

select signals Coming out of the decoder is active, at that time. 

3.2 Branch Prediction Buffer 

The branch prediction buffer is a small special purpose cache that holds the 

prediction for every corresponding branch in the branch target buffer. The branch 

prediction buffer is also implemented as a four memory-bank structure since four 

consecutive locations corresponding to the branch target buffer have to be read 

simultaneously in the instruction fetch stage. Initially every branch is predicted not taken, 

as the branch has never executed there is no data available for that particular branch. The 

branch prediction buffer is updated every time a branch is encountered in the reorder 

buffer irrespective of its outcome. Hence if there is only one read-write port, there will be 

a structural stall every time a branch is encountered in the reorder buffer, which is 

inefficient. To avoid stalling every time a branch is encountered in the reorder buffer, the 

branch prediction buffer is provided with two separate ports, one for reading and the 

other for writing. The only time a structural stall can occur is when the branch prediction 

buffer reads and writes the same location in the same memory-bank simultaneously. The 

architecture of the branch prediction buffer is as shown in the Figure 3.4. The address 

decoding for tags, bank number and the index is the same as the branch target buffer 

discussed above. 

37� 



BRANCH PREDICnON6UFFER 

~. Data.X « TaQ)i « Da13. X • Tag t 4 Data.. x~~ 

r-· r-:-- .. c-:- ..• ~ 

; 

~ 

~ 

-,':.-:; _.~- '-"-' 
I I 

Cormel Predlello >-- I 1 
,..-----I 

D I I 1
.,•.. _. I _. I 1 

'-"'-.'1-··_· D 
E I I 1 E 

PC C 1 I I 1 C Brcmch I ump _ .0 I - .. _.. .......I .. _ _..1-·1-··_· _. .- 0�•
D I I I I 1 D Addre s 
E ,I I 1 E 
R -~ .. _. '-"1-·1-··_· ._.- -1·_ .. _·_· ..- .-l.. _ .. - ..1 1 R 

I I 1 I 1 
1 1 I 1 

I 1 II I 1 
1

T 
1-: II II I I BPB Wrtte 

ResetT II I I I 
1 () L -Q L'Y --y 

+ t tgr • 
PRJORITIZERI I 

BPB HIT SPECULATED PREDICnON 

Figure 3.4: Branch prediction buffer architecture 

It can be seen from the diagram that there are two separate decoders for the 

branch prediction buffer, one decodes the program counter for reading from the buffer 

and the other decodes the branch or jump instruction address to write the updated 

prediction or the correct prediction into the buffer. Each location of the branch prediction 

buffer consists of a tag, two-bit predictor and a valid bit. Valid bit indicates the validity of 

the data in that location and is set every time a correct prediction is written. The tags are 

used to generate the hit signal from the branch prediction buffer by comparing the tags 

with a part of the program counter. Whenever a branch is detected in the reorder buffer a 

'BPB Write' signal is set enabling the decoder and writing into the branch prediction 

buffer. Since the exact branch or jump instruction address is known at the time of writing 

the correct prediction, the decoder has only one location in the branch prediction buffer to 
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decode, unlike the decoder used for reading. Since the branch or jump instructions cannot 

be identified in the instruction fetch stage, four consecutive locations are to be fetched 

starting from the program counter. A logical OR of the hits from each of the four 

memory- banks give the branch prediction buffer hit signal. As more than, one location is 

read every time from the branch prediction buffer, there can be simultaneous hits on 

different memory-banks. The hit on a memory-bank nearest to the program counter is 

selected, and the prediction corresponding to that hit is read out as the speculative 

prediction of the branch prediction buffer using a prioritizing mechanism as shown in the 

diagram above, ignoring others. 

The branch target buffer and tbe branch prediction buffer were not implemented 

at the gate-level, but were implemented behaviorally. We tried keeping them both 

realistic enough so that they can be implemented at the gate-level if considered necessary. 

The size of both the buffers is kept as a design variable to study the impact of the 

different sizes on the overall performance of the processor. The branch target buffer and 

the branch prediction buffer work in parallel with the instruction cache. Instruction cache 

is assumed to be infinite in size and cache misses are not simulated in the design. This 

mechanism predicts only the first branch in the instruction block and ignores other 

branches, if any, in the instruction block. 
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Chapter 4 

Instruction Set Architecture Decoder & Prioritizer 

4.0 Introduction 

The design under consideration is based on the Million Instruction Per Second 

(MIPS) instruction set architecture. The MIPS instruction set has four different version 

namely MIPS I, MIPS II, MIPS III & MIPS N. This processor understands and executes 

the MIPS I instruction set. The decoder is the second stage in the lifetime of the 

instruction in the processor after the instruction fetch. Instruction decode is done in the 

first half of the instruction decodelissue pipeline stage. MIPS I instructions are divided 

into seven functional groups as follows: 

1. Load and Store instructions. 

2. Arithmetic and Logic instruction. 

3. Multiply and divide instructions 

4. Branch and jump instruction 

5. Co processor a instruction. 

6. Miscellaneous instructions. 

7. Floating-point instructions. 

The MIPS I instruction set implements delayed loading, the architecture does not 

allow a particular register 'Rs' to be used as a source register for an instruction following 
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the load instruction, if this particular register was destination of the load instruction. The 

instruction following a load instruction is called the load delay slot instruction, since the 

loaded data can only be used after the load delay slot. 

Multiply and divide instructions produce a 64-bit result. These results are written 

into a Hi-Lo buffer, as defined by the instruction set architecture. Branch and jump 

instructions are architecturally implemented with a delay slot. Hence, the instruction 

following the branch or jump instruction has to be executed before the branch or jump 

instruction takes any action. 

A MIPS I instruction is a single 32-bit aligned word. Fonnats of the different 

types of instructions are as follows. 

In an I-Type (immediate type) instruction, one of the source operands in this type 

of instruction is immediate data; the fonnat is as shown. 

,=...31"'--- 2=6 25 21 20 1615 0 

IL---RT-L--I_O_FFSET_IIL.-__O_PC_O_D_E__I RS 

Figure 4.1 : I-Type instruction fonnat. 

In a J-Type (jump type) instruction, this instruction provides a 26-bit instruction 

index for calculating the jump target address. The fonnat.is as shown. 
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1 --,°1opc~I_2_5 IN_S_T_RU_C_T_IO_N_IN_D_E_X 

Figure 4.2: J-Type instruction format. 

In an R-Type (register type) instruction, this instruction provides both the source 

operands (RS & RT) and destination (RD) as registers. The Shift amount (SA) is also 

provided for some specific instruction such as SLL etc. 

31 26 25 2120 1615 1110 65 0 

~DE RS [ RT RD SA FUNCTION 

I I I II 
Figure 4.3: R-Type instruction format. 

There are 12 load and store instructions, 24 arithrn.etic and logic instructions, 8 

Multiply and divide instructions, 12 branch and jump instructions, 3 co processor 

instructions and 2 miscellaneous instructions in the MIPS I instruction set. Floating-point 

instructions are not implemented in the processor design. 

The destination registers of each instruction fetched in an instruction block every 

clock cycle have to be renamed to assign them a new pseudo-register location. This is 

achieved using a special hardware component called the prioritizer. 

This chapter talks about the design of the instruction set decoder and explains the 

different control signals generated to properly execute every instruction. The chapter also 

discusses the design of the prioritizer. 
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4.1 Instruction set architecture decoder design� 

The decoder operates in the first half of the instruction decode/issue stage of the 

processor pipeline. The decoder generates a set of control signals that facilitate 

instruction execution in the processor. Different control signals for the decoder are as 

shown in the block diagram below. The inputs to the decoder are the instructions fetched 

in the last stage from the instruction cache in the fonnat described above. Reset and 

restore signals are also input to the decoder to reset all the outputs of the decoder 

whenever either of these signals is set 

11 [44:0J 

12 [44:0J 

13 [44:0] 

11 _in [31:0] 14 (44:0] 

Inst 10 [3:0J 

12_ln [31 :0] No inst [5:0] 

INSTRUCTION DECODER 
Immediate (7 :0] 

13_in [31 :OJ Shift 10 [3:0 

Branch (3:0J 

14 in (31:01 Jump [3:0) 

Nop_1D [~O 

Instr index [1 

J oUal [3:0 

Reset Reslore 

Figure 4.4: Instruction Set Architecture Decoder.� 

The output format for the instruction II, 12, 13 and 14 is as shown below� 

o 

IMMEDIATE DATAOPCODE 

Figure 4.5: Decoder output format for instructions. 
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The 'fu code' or functional unit codes identity the functional unit for which each 

instruction is intended. Functional unit codes are different three bit binary numbers 

assigned to each functional unit. They are as shown in the table below 

Functional Units Codes 

Null operation (NOP) 000� 

Co-processor 0 001� 

Multiply & Divide Unit 010� 

Arithmetic & Logic Unit 011� 

Branch & Jump Unit 100� 

Load & Store Unit 101� 

Table 4.1: Functional Umt Codes for the Processor 

Opeodes are the primary six-bit operation codes that are understood by the 

functional units for executing the instructions. RD defines the five-bit destination register 

specifier where the instruction has to write after completion, and RS & RT defines the 

two five-bit source register specifies for a particular instruction. For instructions that 

perfonn shift operations such as SLL etc., the shift amount has to be provided along with 

other infonnation. This infonnation of the shift amount is conveyed using the SA fields 

of the instruction coming out of the decoder. For the I-Type instructions one of the source 

operands is the immediate data that is supplied as part of the instruction. The lower 

sixteen bits of the decoder's output provides the immediate data if any. 
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There is a possibility that one or more instruction in the fetched block is a null 

operation (NOP). Hence, a four-bit control signal named 'jnst_ill' gives the position of 

instruction by setting the bit corresponding to the instruction in the instruction block and 

resetting all other bits. The prioritizer that finds the pseudo-registers for the incoming 

instruction block uses this signal. 

Identifying the number of instructions in a particular instruction block, given by a 

six-bit control signal named 'no_instr', is required by the reorder buffer to assign a 

reorder buffer slot for each of these instructions. This is done to prevent out of order 

update of the machine state. 

For identifying the immediate type instructions in the instruction block, an eight

bit signal named 'immediate' is provided. There are two source operands in each 

instruction and there are four instructions in an instruction block. Hence, the immediate 

data can be for any of the eight source operands. Two bits, one for each operand is 

assigned to each instruction in the instruction block. Whichever operand has immediate 

data that particular bit is reset and others are set. 

Shift instructions need the shift amount as one of the operands. To identify these 

instructions a four-bit control signal called the 'shift_ID' is used. The bit corresponding 

to the shift instruction is set and the others are reset. 
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Branch and jump instructions are identified using two separate two-bit signals 

called 'branch' and 'jump'. The hit corresponding to the branch or jump instructions are 

set and the others are reset. 

J-Type instructions are identified by a four-bit control signal called 'j_or~al' and 

the corresponding instruction index is given on a I04-hit bus called 'iost_index'. 

Decoding instructions correctly and identifying each instruction uniquely is a 

critical step in the correct operation of an instruction. The control signals described in this 

section help the processor uniquely identify each instruction and execute them in 

accordance with the rules set by the MIPS instruction set architecture. 

4.2 Prioritizer d,esign 

To avoid an out of order update of the machine state, the speculated instructions 

should not be aUowed to change the machine state. Hence the logical destination of each 

instruction fetched in a cycle has to be renamed to a pseudo-register. Prioritizer logic is 

used to achieve this. This logic looks at the allocate bits of each location of the register 

file and picks out four locations which have not yet been renamed. If the prioritizer is 

unable to find four new locations, a structural stall is issued, and the processor staBs until 

four new locations are found. The overall circuit of the prioritizer is as shown in Figure 

4.6. 
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Logic ENCODER 

~ 
New Destination Pointer IVFirst Zero 

ENCODERLogic 

Updated Altocate Bils
~ 

Figure 4.6: Prioritizer. 

As can be seen from the diagram the allocate bits are scanned to find the first 11011

allocated location. That location is encoded using a 64 to 6 bit encoder to give the first 

new pseudo-pointer location. The first zero logic fmds the first non-allocated slot in the 

allocate bits and sets the corresponding bit and resets all other bits. The output of the first 

zero logic is ORed with the allocate bits and fed to another first Zero logic, and the 

process repeats until the four new pseudo-registers are found. The prioritizer also 
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provides the updated allocate bits after the new destinations are found. The first ze·ro 

logic is as shown below. 
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Figure 4.7: First zero logic 

Each output bit of the first zero logic is the logical AND of all the aUocate bits 

less than the output bit. This is repeated for all the 64-bits. The output bit corresponding 

to the first non-allocated location indicated by a logical '0', is set and all the others are 

reset. As the bit number of the output increases, the input to that particular AND ga.te 

increases e.g. for the fifth bit in the output a five input AND gate is required. As the gates 

with the larger fan-in are slower, AND gates greater than four inputs are implemented as 

a tree of small AND gates. This reduces the worst-case delay. The worst-case delay of the 

prioritizer is less than 10 nsec. making it feasible for this processor with a clock rate of 10 

nsee. 
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The Prioritizer is an essential part in the intended architecture, as the pseudo

register architecture cannot be realized without renaming the incoming instructions 

logical destinations. This design is not extendable as the prioritizer is essentially a 

sequential circuit and the number of stages in the module increases with the increase in 

the number of new pseudo-pointers required. As the number of stages is increased, the 

worst-case delay of' the circuit also increases making it incompatible with other design 

with fetch blocks greater than four instructions. The fIrst zero logic slows down as the 

empty locations are near to the end of the register fIle. In this design the worst-case delay 

is less than the clock period making it feasible. 

This chapter outlined the basic instruction types in the MIPS I instruction set, and 

it also pointed out different control signals generated by the instruction set architecture 

decoder and outlines their use in the correct execution of the instructions. The mechanism 

of renaming logical destinations of new instructions was discussed in detail, and the 

limitations on the prioritizer were pointed out. These limitations make this kind of design 

inextensible for a design with larger instruction block size. 
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Chapter 5 

Register file design 

5.0 Introduction 

Speculative prediction of branch or jump instructions in a super-scalar processor 

helps in optimum utilization of hardware and making the processor more efficient, since 

the processor need not wait for the evaluation of the branch or jump condition before 

fetching a new instruction block. In the normal processor operation there can be, at any 

given time, both speculated and un-speculated instructions executing simultaneously. 

Unless these branch or jump instructions complete execution, the speculated instructions 

should not be allowed to alter the machine state. To avoid this, results generated by 

speculated instmctions are stored temporarily in registers other then the architectural 

registers until the branch or jump condition is evaluated. Hence, to complete a speculated 

instruction, two 32-bit data transfers are required. This is inefficient, as these data 

transfers require 32-bit data buses. For a super-scalar processor this inefficiency is more 

prominent as the processor requires multiple 32-bit buses to avoid structural stalls caused 

by more than one instruction completing simultaneously. The proposed scheme in this 

study reduces this inefficiency by having additional data storage locations other than the 

architectural registers called pseudo-registers, and maintaining two translations tables of 

pointers called the Issue Pointer Buffer and the Commit Pointer BUffer that translate a 

logical register number to the pseudo-register number. Logical destination of each 
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incoming instruction is renamed to a pseudo-register. This list of pseudo-pointers is 

maintained in the Issue Pointer Buffer. When an instruction finishes execution, the results 

are written in the pseudo-register and the instruction is completed or committed by 

copying the pseudo-register pointer to the Commit Pointer Buffer. Whenever a 

misprediction is detected, the Commit pointer buffer overwrites the Issue pointer buffer 

bringing the processor state back to where it was before the branch was predicted as 

shown in the block diagram. 

!� Four New Destination 

6� Value Buffer V.B A.'B C.Bt=1 .- ~-	 ~ ~ ...-r Issue Pointer ~ f-t 
~	 ~ -�-� ~ ~ Buffer r-v� ~ ,..f.t32� ______1_0 f-t 0 c-

o , ----- ,
~ .- 0 

0 · ReadS or write 4� - ·· ·• 
l · :At a time 1� ··

·
·
,

, 

T.
· , - 0 ··· ·,,•·· •, 64Restor.. Logic� G · 

1
. I� 

; 

32 
C� 

......... Fi 
0
0� 
0 
0 

Commit Pointer� 
Buffer�l� I

32� I- ~ ~~~~~~ 
L-.J� '---- 11 t------------------1 f I" L 

+++ -. -.� ft t l----------t� ...~•� PnorltlZmg 
Reading 8 or writing encoderRead or write up to 4 at a time 

2 at a time 

V.B: Valid Bit A.B: Allocate Bit C,IB: Commit Bit 

Figure 5.1: Block Diagram of the Register-file. 

There are 32 architectural registers or logical registers as defined by the MIPS I 

instruction set, and there are an additional 32 pseudo-registers. These two sets of 

registers are implemented as one register file called the Value Buffer. Each value bUffer 
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location is associated with three status bits to identify the locations that has been renamed 

or allocated to the incoming destination register. They also identify which of the data is 

committed and which of the location has correct data or valid data. As there are a total of 

64 locations in the value buffer, the pseudo-register pointers are 6-hit. Hence, to commit 

a speculated instruction, a 6-bit data transfer is required as compared to 32-bits in the 

earlier case, which is more efficient. 

This chapter discusses the timing and implementation of the two pointer 

translation buffers and the value buffer, outlining different design criterions. 

5.1 Issue pointer buffer/Commit pointer buffer design 

The Issue pointer buffer and the Commit pointer buffer are implemented as a 

single memory unit having two storage locations at every address as shown in Figure 5.2. 

Since each instruction block has four instructions and each instmction requires two 

source operands, a total of eight renamed pseudo-pointers have to be read from the issue 

pointer buffer concurrently every clock cycle; hence, eight read ports are required on the 

issue pointer buffer. Moreover, four new pseudo-pointers corresponding to the logical 

destinations of the four new instructions are to be written into the issue pointer every 

clock cycle. This requires four write ports on the issue pointer buffer. Since the reading 

from and writing into the issue pointer buffer are done at different times, we require a 

total ofeight ports, out ofwhich four are read-write as shown in Figare 5.2. 
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Since the processor tries to commit up to four instructions every clock cycle, the 

commit pointer buffer requires four write ports. The locations that are being committed 

are read in the first half cycle for de-committing; hence, fOUf read ports are also required 

on the commit JDointer buffer. As the reading and writing of the commit pointer buffer is 

done in two different half cycles, a total of four read-write ports are sufficient as shown 

below. 
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Figure 5.2: Issue Pointer Buffer/Commit Pointer Buffer Implementation. 

Figure 5.2 describes the implementation of one memory cell of the issue 

pointer/commit pointer buffer. The number of columns and rows in these buffers depends 

53� 



on the width of the pseudo-pointers and logical registers respectively. The MIPS 

instruction set describes the width of the logical registers as 5-bits, and since there are 64 

registers in the processor, the width of the pseudo-pointers are 6-bits. Hence, the number 

ofrows in these buffers are 32 (25
) and each row is 6-bits wide as described in Figure 5.1. 

The control signals to the transmission gates are not shown in the figure. These signals 

are generated using a set of decoders that decode the 5-bit logical register number to a 32

bit control signal. The first row of the issue pointer buffer and the commit pointer buffer 

is hard wired to logic zero. This is done in accordance to the MIPS instruction set 

architecture which describes the register '$zero' which always returns logic zero. Two 

avoid any errors in reading the pseudo-pointers from the logical source registers for the 

first few initial instructions in the program, all the locations in the issue pointer buffer are 

forced to logic zero when there is a system reset. 

The timing on the output buses of the Issue Pointer Buffer/Commit Pointer Buffer 

is as shown in Figure 5.3. The issue pointer buffer reads source pseudo-pointers first, 

before the new destination pseudo-pointers are written. Since the instruction set 

architecture decoder wo:rks in the first half of the instruction decodelissue pipeline stage, 

the issue pointer buffer is read in the second half of this stage. New destination pointers 

are written in the first half of the next stage as shown in the timing diagram. This 

processor tries to commit up to four instructions every clock cycle. The destination 

pseudo-pointers of the committing instructions overwrite locations in the commit pointer 

buffer selected by the logical destination register number. The overvvritten locations have 

to be de-committed. Hence, the commit pointer buffer is read in the first half of the 
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instruction commit n stage and the committed pointers are written in the second half of 

this stage as show in the timing diagram below. 
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Figure 5.3: Issue Pointer Buffer/Commit Pointer Buffer Timing 
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5.2 Value Buffer Design 

The source pseudo-pointer read from the issue pointer buffer is decoded to read 

the 32-bit data from the value buffer. The value bUffer is a single register file that has 

both the architectural registers and the additional pseudo-registers. Implementations of 

the value buffer can be understood from the following figure, which shows the 

implementation of a single memory cell of the value buffer. There are a total of 64 

locations in the value buffer, each 32-bit wide. The first location always returns logic 

zero representing register '$zero' of the MIPS instruction set architecture. 

32 32 32 32 32 32 

AOala 

Figure 504: Value Buffer Implementation 

6-bit pseudo-pointers for each of the sources for the four instructions are decoded 

in the first half of the instruction dispatch pipeline stage, and the value bUffer is read in 
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the second half of this stage along with the corresponding valid bit as shown. At the end 

of the instruction execution stage, the results are written into the value buffer, the results 

are written in the first half of the instrUction write-back stage as the destination pseudo

pointers are pre-decoded in the last stage of execution. There are a total of two write back 

buses called the common data bus I and common data bus II respectively. The common 

data buses are prioritized using a write-back controller to allow only two concurrent 

write-backs. 

For immediate mode instructions, one of the sources is the immediate data that 

has to over-ride the data read from the value buffer. Thee first level multiplexers are used 

for the same. The control signals for these multiplexers are generated by instruction set 

decoders. As the immediate data supplied in the instruction is 16-bits it is padded with 

leading logic zeros to make it 32-bits and a I-bit logic one is attached to it, indicating the 

data is valid. The second level of multiplexing is used for two specia~ instructions J and 

JAL. These instructions supply the instruction index which is 26-bits. This instruction 

index is padded with leading zeros as above and a valid bit is also attached. The contro1 

signals for these second level multiplexers are generated by the instruction set 

architecture decoder. 

The timing on the data buses of the value buffer can be seen from the timing 

diagram shown in Figure 5.5. Whenever an instruction completes execution, the 

destination pseudo-pointers are pre-decoded as shown in the timing diagram as the ·write 
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select signal'. The value buffer is read in the second half as the decoder works in the first 

half as shown. 

10 nsec. 
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I ~I .-------'1 ~l 
I 

S:~---+---~~'-t-i __~ i ;p0(--+-i-
Write 
Select 

Signals -+-----/ 

;~::, ~f------T---------'f------i----+------...;!_nf-I----, 
AOata J.----
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Figure 5.5: Value Buffer timing 

Design of the register fiJe that includes the Issue pointer/Columit Pointer buffer 

and the Value Buffer was discussed in this chapter. The timing on each of the modules 

was explained. As the issue pointer is read before it is written, destination and source 

overwrites are required in some cases. These issues will be dealt at length in the next 

chapter. The next chapter win also talk about the implementation of the execution uni ts. 
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Chapter 6� 

Maintaining Data Consistency & Instruction Execution 

6.0 Introduction 

The issue pointer buffer is read before it is written for the same instruction block. 

This may cause inconsistent reading of the source pseudo-pointer if the logical source 

register of an instruction is the same as the logical destination register of another 

instruction in the same instruction fetch block. The new destination pseudo-pointers 

picked for these instructions are not written into the issue pointer buffer at the time the 

source pseudo-pointers are read. This inconsistency can cause incorrect data to be fetched 

from the value buffer causing an erroneous operation. This inconsistency is avoided in 

this processor by overwriting the sources having the same logical register nwnber as the 

destination of another instruction by the new destination pseudo-pointer picked by the 

prioritizer. This kind of overwrite is also required for the new destination pseudo

pointers picked by the prioritizer before they are written in the issue pointer buffer if the 

logical destination of two or more new instructions are the same. This is done to have the 

latest pseudo-pointer for the logical destination in the issue pointer buffer. 

Instructions sitting in the reservation station are issued to the functional unit for 

execution when both the source operands are valid and there are no structural stalls. As 

the basic focus of this processor was to verify the concept of pseudo-registers, these 
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execution units are implemented behaviorally instead of a detailed implelnentation at the 

gate level. 

This chapter talks about the implementation of the destination and source 

overwrite logic. It also talks about two of the five functional units in the processor 

namely the branch and jump unit and arithmetic and logic unit. 

6.1 Source Overwrite Logic 

Ins!. Decode lnst. 

I No. INSTRUCTIONS 
Clock ~ n + 1 n + 1n 11 

ori $kO, $vO, Ox~b8 Inst.Decoder ~ , 
' -.... Prioritizer XInst~_~IOCk t Ins1. ~Ioc~ X 

and $a2" $tO, $kO 

l,p.DecOder~" " ',,
addiu $gp, $a2,-2594 Write ReadJ Write Read. .... ... .... . 

ABUS---0--8 
addi $t~,$a2,Ox043 

BBUS~ 

Figure 6.1: Sample Source code and Issue Pointer Buffer timing. 

The data inconsistency problem can be understood from the diagram above. As 

can be seen for the sample code, there are data dependencies between instructions I & 2 

and between instructions 2 & 3 indicated by the dotted lines. The accompanying timing 

diagram shows the timing of the prioritizer, the issue pointer buffer bus, the instruction 

decoder and the issue pointer buffer decoder in the instruction decode/issue stage and 
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instruction dispatch stage indicated by clock cycles <n' and 'n + l' respectively. It can be 

seen that the new destination pseudo-pointers picked by the priOritizer for the instructions 

decoded in the nth clock cycle are written into the issue pointer bUffer in the (0 + 1) clock 

cycle, and the source pseudo-pointer for these instructions are read in the nth clock cycle. 

Hence, the issue pointer buffer is read before it is updated causing the inconsistency. This 

inconsistency is avoided by overwriting the source pseudo-pointers of the instructions 

having the same logical register number as the logical destination registers of another 

instruction. The source pseudo-pointers are overwritten with the new destination pseudo

pointer picked for the other instruction before reading the value buffer. 

Source overwrite logic is implemented as a group of comparators and 

multiplexers that compare each logical source register number of each instruction to the 

logical destination number of all the other instructions. If the comparison identifies that 

they are equal the new destination pseudo-pointer for that particular logical destination 

overwlites the source pseudo-pointer as shown in the figure in the next page. RS, RT 

represents logical source registers and RD represents the logical destination register 

number. The new destination pseudo-pointers picked by the prioritizer are represented by 

'New Dest.'. Sources read from the issue pointer buffers are indicated by RS_ IPB and 

RT_IPB. Overwritten sources are represented by OWRS and oWRT. 
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Figure 6.2: Source overwrite logic Implementation. 

Source overwrite logic makes sure that the latest pointers are always assigned to 

the source registers of the instructions, removing the inconsistency arising from the data 

dependency. 
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6.2 Destination Overwrite Logic 

Another kind of data inconsistency may arise from the situation shown in Figure 

6.3 below. This inconsistency arises when, in the same instruction block, there is more 

than one instruction having the same logical destination registers, as shown. 

Ins!. Decode Inst. 

I N;o. INSTRUCTIIONS 
Clock ~ n + 1n n n + 1 

1 ori $kO, $vO, OxlbB Inst.Decoder ~ 
I 

T Prioritizer XInst~_~lock ~ Inst. ~lOck X 
2 and $kO, $ to, $a2 

I.p.DecOder~ 
addiu $gp, $a2, -25943 Write ReadJ Write Read 

0( .... II( • III ~ 

ABUS---0--&
4 addi $tl, $a2. Ox043 

BBUS~ 

Figure 6.3: Sample Source code and Issue Pointer Buffer timing. 

It can be seen from the code segment above instruction 1 and 2 have the same 

logical destination. As the prioritizer picks different destination pseudo-pointers for each 

instruction in an instruction block, there are two different pseudo-pointers for the same 

logical register number, '$kO' in this case. This causes ambiguity for the instructions 

fetched in the future referring to '$kO', as there are more than one pseudo-pointers 

assigned to it. The correct pseudo-pointer for the register '$kO' should be the pointer 

picked for instruction 2 or the instruction lower in the block. 
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This ambiguity is removed in this design by doing a destination overwrite before 

the new destination pseudo-pointer picked by the prioritizer is written in the issue pointer 

buffer. The overwrite logic identifies the instructions having the same logical destination 

and overwriting it with the appropriate new destination pseudo-pointer as shown in the 

circuit diagram below. 

Des!. I Des!. Il Dest. III Des!. IV 

OW Des!. I 

OW Des!. II 

OW Desl.lIl 

OW Des!. IV 

Figure 6.4: Destination overwrite logic Implementation. 

As seen from the diagram, the destination overwrite logic compares and identifies 

the instruction with same logical destination register, and over writes it with the new 

pseudo-pointer of the instruction lower in the instruction block. Hence the logical 

destination register of instruction 1 is compared with all the other three instructions, and 

the logical destination register of instruction 2 is compared with instruction 3 & 4, and so 
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on for instructions 3 & 4. In the Figure, 'New Dest' represents new destination pseudo

pointers picked by the prioritizer, 'Dest' represent the logical destination registers and 

'OW Desf represents the overwritten destination pseudo-pointers. 

The destination overwrite logic work before the new destination pseudo-pointers 

are written into the issue pointer buffers thereby maintaining an updated list of pseudo

pointers in the issue pointer buffer and removing ambiguity for forthcoming instructions. 

6.3 Instruction Execution 

Decoded and renamed instructions are executed in this pipeline stage. There are 

six functional units in this processor for executing different kinds of instructions. As the 

compiler used in the verification of the design is incapable of handling interrupts and 

exceptions, the Coprocessor 0 functional unit is implemented as static logic always 

returning zeros. Each functional unit except the Coprocessor 0 is accompanied with a 

reservations station to dynamically schedule the instruction. The block diagram of the 

functional units are shown in Figure 6.5, Coprocessor 0 is not shown in the diagram. The 

Load Store Unit and the Multiply Unit consist of two and three pipeline stages 

respectively, as shown in the diagram. There are a total of two arithmetic logic units in 

the processor since there are more arithmetic and logic instructions as compared to any 

other types of instructions. The Branch and Jump unit has to write the correct branch 

target address into the reorder buffer. Hence, apart for the two common data buses, there 

is an additional bus to do the same called the branch target bus in the block diagram. The 
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branch target bus is a dedicated bus from the Branch and Jump unit to the reorder buffer. 

Functional units in this design are implemented at a behavior level since the focus of this 

study is studying the efficiency ofthe pseudo-register scheme. 

INSTRUCTION BLOCK 

--=:! l::--
DISPATCH I 

.. .. 
RESERVATION RESERVATION RESERVATION RESERVATION RESERVATION 

STATION STATION STATION STATION STATION 

+ .. + 
ALUI ALU II BJU LSU MDU 

1 I 
r-

I " I• ..
I I I 

l I I I 

WRITE BACK 
BRANCH 
TARGET 

COBI, ,COB II ,r BUS 

Figure 6.5: Functional units block diagram.. 

The block diagram of the arithmetic and logic uni.t is shown in Figure 6.6. It can 

be seen that the output of the arithmetic and logic unit called the 'aluJesult' is I09-bits. 

Encoding of these results is depicted in Figure 6.7. This result is written on the common 

data buses in the write back stage. 
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Dest [5:0] 

ARITHMETIC 
ec [5:0]Ex LOGIC UNIT 

t[108:0Jalu resul 
Reo [5:0] 

WB Bit 

Figure 6.6: Block diagram of Arithmetic and logic unit. 

108 103102 3938 76 1 0 

I REO I WB Des' I WB DATA I DEST I ~~
 

Figure 6.7: ALU result encoding 

As seen from Figure 6.7, the first 6-bits of the encoded results represent the 

reorder buffer location address where the result has to be written to achieve in-order 

completion. The next 64-bits represent the pre-d.ecoded value buffer location where the 

results are written after the instruction commits. The data produced by the executions of 

the instruction is i.n the next 32-bits containing the aritrunetic and logic unit results. The 

destination pseudo-pointer and a control bit for assigning the common data buses are in 

the lower 7-bits of the result. 

Branch and jump unit's block diagram is shown in Figure 6.8. Since the branch 

and jump unit writes the correct branch target address into the reorder buffer, there i.s an 

additional dedicated bus to achieve the same. Hence the output of the branch and jump 

unit is 'wsb'. This is the pre-decoded address of the reorder buffer where the correct 
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branch target address is written. The 'brbus' output is the dedicated bus to write the same, 

'bjuJesult' ouptu is used to write the result to the common data buses for the link type 

branch and jump instructions. The encoding of the 'brbus' is shown in Figure 6.9. The 

branch and jump unit result encoding is similar to the arithmetic and logic unit's result 

encoding. 

oPI [31:0] 

OP II [31 :0] 

wsb[63:0 
Dest [5:0] 

opcode[5:0] 

Reo [5:0] 

brbus[70: OJ
WB_Bit 

BRANCH &JUMP� 
UNIT�PC_in [31:0] 

offset[15:0] 

ds instr 
bju resul t[108:0] 

bj[3:0] 

prediction[2:0] 

Figure 6.8: Block diagram of Branch and jump unit 

70 6968 6665 6160 55 54 53 3433 2 o 

CORRECT LOGICAL OS BJ MIS 1CODE DEST BTA
PRED OEST INSTR ADDRESS PREO 

Figure 6.9: Branch bus encoding 
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The fields of the branch bus can be described as follows: 

1.� CORRECT PRED: This describes the correct branch action i.e. taken or not taken 

after the branch has finished execution. 

2.� CODE: Code identifies the link type branch or jump instruction. This code is used 

in the commit stage to commit the instruction. 

3.� LOGICAL DEST: If the instruction is a link type instruction, these 5-bits contain 

the logicalbnk address for that instruction, which is R31 as described in the MIPS 

1 instruction set. 

4.� DEST: This is the pseudo-pointer picked by the prioritizer for the above logical 

link address. 

5.� DS INSTR: This field identifies a branch or jump instruction having a delay slot. 

If the branch instruction has a delay slot, the program counter is not changed 

unless the delay slot instruction is executed and committed. 

6.� BJ ADDRESS: These are the lower twenty bits of the branch or jump address. 

The branch target buffer and the branch prediction buffer are written after 

decoding the lower bits ofthe branch or jump instruction address. 

7.� BTA: This is branch target address computed by the branch and jump functional 

unit. 

8.� MIS-PRED: This field identifies if a particular branch or jump instruction IS 

mispredicted or not. When a misprediction is encountered at the top of the reorder 

buffer queue, system restore is initiated. 

9.� Last bit is the static bit tied to logic' I' representing the validity of the location 

written into. 
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This chapter described some typical data inconsistencies that accompany this type 

of processor design and also explained how these data inconsistencies are avoided using 

destination and source overwrite logic. The chapter also gave an Over view of the design 

of two functional units namely the arithmetic and logic units and the branch and jump 

units. The following chapter will discuss the verification methodology and will discuss 

results obtained from the simulation. 
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Chapter 7 

Design Verification Methodology & Simulation 

7.0 Introduction 

The processor design discussed thus far is implemented using Verilog as the 

hardware description language (HDL). A modular approach was followed to increase the 

ease of programming and to make the code easier to understand. Modules except 

functional units and Fetch were done at logic gate-level using the Cadence™ ambit 

synthesis tool. The design under consideration was tested using the Verilog simulator 

with instruction and data memory maps of sample 'c' programs having known results. 

These sample programs were compiled using the SDE-Gcc C compiler since the 

operating system was not simulated on the processor. The SDE-Gcc C complier is a part 

of the SDE-MIPS, a cross-development toolkit for MIPS CPU's maintained by 

Algorithmics, which IS freely redistributed. Sample 'c' programs instead of standard 

testbenches such as the SPEC 95, 99 or 2000 were used for testing due the incapability of 

this version of the SDE-Gcc C compiler in handling interrupts and exceptions. Doing 

objectdump of the compiler output generated the instruction and data memory map of the 

sample programs. Since Verilog HDL is capable of reading tab delimited binary files 

only, a translation program was utilized to translate hexadecimal outputs to binary 

outputs, which could be understood by Verilog HDL. The instruction and data cache was 

programmed as a Verilog array that could hold consecutive data and was assumed of 
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infinite size eliminating cache misses. Finally the intended output was compared with the 

output generated after the program ran on the processor, validating correct operation. 

The testing methodology employed to verify this design is discussed in detail in 

this chapter. This includes a detailed discussion of the memory model used in the 

processor and finally the simulation results are presented verifYing the processor design. 

7.1 Memory Model 

Data and instructions cache in this processor are simulated using Verilog HDL 

arrays. A pair of arrays represents memory in which one if the arrays contain memory 

addresses and the other contains the corresponding data as shown in the Figure below. 

Both the arrays are in one is to one correspondence. The memory mode assumes infinite 

memory size for both the data and instruction cache. 

ARRAY A ARRAY B 

Addr[O] Data[O) 

Addrf1] Data[1] 

Addrf2), 
I 

I 
I 

I, Data[2] 
I, 

I r I I 
I I I I 
I I I I 
I 
I 

I 
I ,I I 

I 
I I I I 
t I I f 

Addrfmemsize-1] Data[memsize-1] 

Figure 7.1 : Address-Data memory array pair 
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7.2 Design Verification Methodology 

START� 

CREATING THE� 
MAKEFI LE FOR THE� 

PROGRAM TO BE RUN� 

GENERATING MEMORY� 
DUMPS FROM THE� 

COMPILED FILE� 

HEXADECIMAL MEMORY.� 
DUMPS TO BfNARY� 

DATA FILE� 

READING THE BINARY 
DATA INTO THE 

RUNNING THEVERfLOG ARRAY 
COMPILED PROGRAM� 

TO GENERATE� 
INTENDED RESULT� 

RUNNING VERILOG� 
SIMULATION TO� 

GENERATE RESULTS� 

CORRECTING ERRORS 
NOUSING SIMULATION� 

RESULTS� 

Figure 7.2: Flowchart of design verification methodology 

As described above the sample 'C' programs used to test the design were 

compiled using the SDE-Gcc C Compiler tuned for the MISP I Instruction set. Before 

compiling a program, a Makefile for the program has to be written that describes 
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parameters for the compiler to follow like the optimization level and the type of 

instructions to be included. An example Makefile is shown below. 

PROG =progl� 

OBJS = progJ.o� 

CFLAGS = -03� 

FLOAT = no� 

include ../make. mk� 

The first line of the Makefile, 'PROG = progl', declares the name of the 'c' 

program to be compiled. The second line, 'OBJS = progl.o', lists the names the object 

files that make up the program. Third line, 'CFLAGS = -03', declares optimization 

options for the compiler. Different optimization options for SDE-Gcc C compiler are as 

foHows: 

1.� 0, - 01: This is the lowest level of optimization. A program should be compiled 

with this level of optimization at least unless debugging the code. 

2.� - 02: This is the most efficient level of optimization offered by the compiler. 

3.� - 03: This level optimizes loops by unrolling them. Loop unrolling can cause the 

code size to increase which may slow the program down. 

4.� - 04: This is the highest level of optimization possible. This level is seldom used 

as it blows up the code size significantly. 

74� 

/� 



The forth hne 'FLOAT = no' of the Makefile above identifies whe·ther to include 

floating point instruction or not To include the floating-point instruction in the compilers 

output, this line is modified as 'FLOAT = yes'. The last line of the Makefile is used to 

include the infonnation regarding the header libraries. 

Once the Makefile is written, the program can be compiled, using the command 

·sde-make SBD=GSIMJB' to generate a ram-file. This file contains the entire compiled 

program. As the processor under test is compatible with the MIPS I instruction set, the 

compiler output is restricted to MIPS I instruction set using the command 

'"SBD=GSIMIB'. Using the following commands at the command line, 'objdump -D 

<ram-.file name>' and 'objdump -S <ram-.file name>', can generate instruction dump, 

and data dump respectively. The instruction dump is in a standard format called the 

Executable and Linkable (ELF) format. Details about the format can be found in the ELF 

documentation [17). 

The Verilog HDL can populate the arrays used as the melTIory model only with 

binary data read from a file. Hence, the instruction and data dumps are parsed to generate 

a tab delimited binary equivalent file for each. The parser takes these dump files as input, 

and generates two binary data files, one having the memory address and the other having 

the corresponding data, in accordance with the memory model discussed above. 

Once the binary data files are generated, the processor design is ready to be 

Simulated. A Verilog simulation is run on the processor and the results are compared with 
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the intended result of the program, verifYing correct operation. Veriiog simulations can 

be run at two levels of abstraction, at. the behavioral level and thee structural level. 

Structural simulations were run to remove timing violations in the design. As Behavioral 

simulation is more efficient in simulation time, results are generated using behavioral 

simulation. 

7.3 Simulation 

To verify the processor design, a sample 'C' program to calculate the factorial of 

an integer was run following the methodology discusses above. The main program calls a 

subroutine called 'calculate' to calculate the factorial of an integer. The returned value is 

stored as an array element. Optimization level '-03' was used to take advantage of loop 

unrolling. Compiler output was used to generate instruction and data memory dumps for 

the program as explained in the section above. These dumps were loaded in the processor 

instruction and data caches for execution. The stack part of the data memory before and 

after the program execution is shown below. 

Addr :801fffbc Data: 00000000000000000000000000000000� 
Addr :801fffcO Data: 00000000000000000000000000000100� 
Addr :80lfffc4 Data: 00000000000000000000000000000000� 
Addr :80lfffc8 Data: 10000000000000000000010000010000� 
Addr :801fffcc Data: 00000000000000000000000000000000� 

Figure 7.3: Stack Memory dump before simulation� 

Addr :80 lfffbc Data: 00000000000000000000000000000000 
Addr :80 I fffcO Data: 00000000000000000000000000000100 
Addr :801fffc4 Data: 00000000000000000000000000011000 
Addr :801 fffc8 Data: 10000000000000000000010000010000 
Addr :80lfffcc Data: 00000000000000000000000000000000 

Figure 7.4: Stack Memory dump after simulation 
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The program was executed to calculate factorial of 4, which was loaded in the 

stack memory initially as shown in Figure 7.3. The result was loaded in the consecutive 

location in the stack after calculation as shown in the Figure 7.4. 

7.4 Results 

Processor performance was evaluated by measuring the following parameters: 

1.� Instructions per cycle (lPC). 

2.� Misprediction Rate. 

3.� Dispatch Stalls. 

4.� Percentage utilization of Branch prediction buffer. 

5.� Percentage utilization ofBranch target buffer.� 

These performance parameters are discussed in detail, in this section.� 

7.4.0 Instruction per cycle (lpe) 

Instruction per cycle (!PC) is the measure of the number of instructions processed 

on an average for execution every cycle. This can be calculated as follows: 

Lno of instruction comitted/clock cycle
fPC = =-------------� (7.1)

Total number of clock cycle 

IPe is highly program dependent. For a linear pipeline, it is ideally one, but 

because of data dependencies it is usually much less. In a multi-linear pipeline, apart 

from the inherent data dependencies, IPe also depends on the cOITlpiJer's capability to 

find four independent instructions that could be executed in parallel. As this processor 
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fetches instructions speculatively, fetched instructions are not necessarily correct 

instructions. Hence the data is collected at the output of the reorder buffer. 

7.4.1 Misprediction Rate 

Misprediction rate is a measure of the efficiency of the prediction mechanism. 

This can be calculated as follows: 

Number of branches mispredicted 
Misprediction Rate = ----~-----"------- (7.2)

Total number of branches 

In this processor branch or jump instruction misprediction is detected at the top of 

the reorder buffer queue. System restore is initiated when a mispredicted branch is 

detected. Hence, calculating the number of restores is same as the number of 

mispredicted branches. 

7.4.2 Dispatch Stalls 

Dispatch stalls are the pipeline stalls when the processor is incapable of 

dispatching instructions because of structural hazards. Dispatch stalls in this design are 

higher as the new instruction block is not fetched until all the instructions in the previous 

block are dispatched. 

7.4.3 Percentage utilization ofBPB and BTB. 

This is the measure of the number of locations utilized in the branch prediction 

buffer and branch target buffer at the end of program execution. This is calculated as 

follows: 
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'I' . ..f'BPS Brr'S Number of valid locations in BPB. or BTB%o utz lzatwn' 0) or.J., =-----''---------------- (7.3)
Total number of locations in BPB or BTB 

Only taken branch or jump instruction's taIget addresses are written into the 

branch target buffer, whereas the branch prediction buffer is updated for every branch 

whether taken or not taken. Hence, the percentage utilization of the branch prediction 

buffer is higher than the branch target buffer. 

The following table summarizes the data collected for the simulation run describe 

above, 

Total number of clock cycles 98 

Instruction Per Cycle (IPC) 0.418 

Misprediction Rate 41.6 % 

Dispatch Stan cycles 33 

Percentage utilization of Branch Prediction Buffer 14.06 % 

Percentage utilization of Branch Target Buffer 7.81 % 

Table 7.1: SImulatiOn Results 

Dispatch logic stalls the pipeline until all the instructions fetched in a particular 

instruction block are dispatched causing more stalls as indicated by the results. This 

causes the IPC to be reduced as, for the stalled cycle, no new instruction block is fetched. 

IPc of the processor can be increased and dispatch stalls can be reduced by having more 

efficient dispatch logic. It might pick instructions incrementally as individual instIUctions 

are dispatched instead of waiting for all the instruction in a particular instruction block to 
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be dispatched before fetching the new instruction block. Secondly, optimal utilization of 

instruction level parallelism is imperative for a good IPC. Hence, an efficient compiler 

can significantly improve IPC. The SDE-Gcc C compiler used here causes a reduction in 

IPC as it is not tuned for a multi-liner processor. Hence }PC could be increased by 

employing a compiler specifically for multi-linear processors. Since the compiler is 

incapable of handling interrupts and exceptions, standard testbenches are not used for 

testing the design. Moreover the sample 'c' program used for testing is kept small to 

reduce the simulation time. This causes the misprediction rate to be high because the 

prediction mechanism is still in its initial phase indicated by the percent utilization of 

branch target buffer and branch prediction buffer. Hence a high percentage of branch and 

jump instruction are encountered for the frrst time causing higher misprediction. Better 

utilization of the Branch target buffer and the Branch prediction buffer can be achieved 

by running larger programs. This will also cause the misprediction rate to reduce as more 

and more data about different branches is stored in the branch target buffer and branch 

prediction buffer. 

This chapter discussed in detail the methodology employed for verifying the 

design and also discussed performance measuring parameters. It also discLlssed results 

obtained by simulating a sample 'c' program stating the cause of inefficiency reflected in 

the data and methods to reduce them. 
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Chapter 8 

Conclusion & Future Work 

8.0 Conclusion 

The processor architecture presented in this study was aimed at an 

implementation of pseudo-registers for efficiently handling speculated instructions 

assuming an infinite instruction and data cache. The machine state should not be altered 

unless the outcome of the branch instruction preceding the speculated instructions is 

known. To avoid changing the machine state, a pointer based pseudo-register scheme was 

employed. Each incoming instruction with a destination was assigned a pseudo-register 

identified by a pseudo-pointer. These pseudo-pointers were maintained in a translation 

buffer called the issue pointer buffer. instead of moving the data from a pseudo-register 

to an architectural register, the corresponding pseudo-pointer was written into another 

translation buffer called the commit pointer buffer, whenever an instruction commits. 

This requires a 6-bit data transfer as compared to a 32-bit data transfer making the design 

more efficient. There are a total of 64 registers in the implementation of which 32 are 

architectural registers and the rest are pseudo-registers. As each incoming instruction is 

renamed to a pseudo-register, data consistency is maintained by doing a destination and 

source overwrite whenever necessary. 
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A two-bit saturating counter is used for predicting incoming branch or jump 

instructions. This mechanism is capable of predicting one branch every cycle. Hence, if 

there is more than one branch or jump instruction in a fetch group, instructions after the 

delay slot instruction of the first branch are re-fetched in the next cycle. There are a total 

of six functional units for parallel execution. Coprocessor 0 is implemented as a static 

element always returning zeros. Each functional unit except Coprocessor 0 is 

accompanied by a reservation station for dynamic scheduling of instruchons at run time. 

Hence, instructions can be issued for execution out of program order. 

Up to four instructions are dispatched every clock cycle to the reservation station. 

A new fetch group is dispatched only if all the instructions in the previous fetch group are 

dispatched successfully. Completed instructions are written back using two write back 

buses called the common data bus I & II respectively. All instructions are restored to 

program order in the reorder buffer before altering the machine state. The reorder buffer 

is a first in first out queue that strictly maintains the program order. Correct branch target 

addresses are also written into the reorder buffer along with the misprediction bit, as the 

branch misprediction is detected at the top of the reorder buffer queue. When a 

misprediction is detected, a system restore is initiated to bring the processor state back to 

where it was before the mispredicted branch. This includes flushing the reorder buffer, 

reservation stations and copying all the commit pointer buffer entries to the issue pointer 

buffer. 
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This study also discussed a design verification methodology. The above 

implementation was tested with a sample 'c' program whose final output was known. 

This 'C' program was compiled using the SDE-Gcc C compiler, which is freely 

redistributed by Algorithmics. The intended output was compared with the output 

generated by the processor, verifying the design. Data was collected for calculating the 

instructions per cycle (IPC), misprediction rate, percentage utilization of" branch 

prediction buffer and branch target buffer and dispatch stans. 

8.1 Future Work 

Future work for this design may be considered as a realistic implementation of the 

instruction and data cache, so that the effect of cache miss could be simulated. To reduce 

the dispatch stalls, the dispatch logic could be improved by not waiting until aU the 

instructions from a particular block are dispatched before fetching the next block. Instead 

a incremental fetch should be done as each instruction from a particular fetch block is 

dispatched. This design is hard to extend for a larger fetch size, since the branch 

prediction mechanism is capable of predicting one branch or jump instruction every clock 

cycle. Studies have indicated that there is at lest one branch or jump instruction every five 

instructions [1]. Hence, there is a high probability of having more than one branch or 

jump instruction in a larger fetch group. This requires a prediction mechanism which is 

capable of predicting more than one branch per clock cycle to maintain a high IPc. 
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The system restore following a mispredicted branch or jump instruction is delayed 

until it is identified at the top of the reorder buffer queue. There is a finite delay between 

the time when these instructions finish execution and the system is restored. Hence, 

instructions are fetched from a wrong program path until the misprediction is identified at 

the top of the reorder buffer queue, which is inefficient. Tills inefficiency can be removed 

by doing an early recovery. In this case correct branch target addresses are written into 

the program counter as soon as it is calculated and misprediction is detected. Hence, early 

recovery can be done at the end ofthe execution stage of the pipeline. 

The compiler used for verifying the design is incapable of handling interrupts and 

exceptions. Hence, real benchmarks can't be run on this processor. To test the design 

with these benchmarks, a better compiler capable of handling interrupts and exception 

could be used. And, finally mechanism for reducing the simulation time has to be 

detennined so that more though testing could be done on this implementation for its 

verification. 
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