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Partial Differential Equations in Data Analysis

Yilin Jiang

Abstract

In this thesis, we introduce new interpolation methods for two dimensional data via
constructing harmonic functions passing through the given data. Two ways to construct
the harmonic function are introduced: (1) constructing the harmonic function via the
heat equation, and (2) constructing the harmonic function via the boundary element
method

v



1 Introduction
Weather forecasting is not an easy job, and sometimes its accuracy can be affected by

many factors. In middle of 2014, with the sharp fall of oil prices, the Russian rouble had
declined drastically. However, at beginning of 2015, China’s National Weather Center said
in its own microblog that China’s weather forecasts have become less accurate due to the
Russian financial crisis [6]. Because of the funding cut, Russian’s weather center reduced its
upper air data collecting through radiosonde observations from twice a day to once a day.
Because of geographical reason, accurate upper air weather data from Russia are crucial to
China’s weather forecast especially for predicting cold air from Siberia. Missing data (or in
this case, simply less data) problems are not rare in real life data analysis. Interpolation
methods are some of the most useful tools to deal with such a problem.The main idea of
interpolation methods is to find an approximating function that passes through all the given
data points.

Definition 1.1. A function P : Rn −→ R satisfying

P (xi) = yi i = 1, 2, 3, ..., n, (1)

is called an interpolating function passing through distinct (x1, y1), (x2, y2), ..., (xn, yn), where
x1, x2, ...xn ∈ R2, y1, y2, ...yn ∈ R. (x1, y1), (x2, y2), ..., (xn, yn) are called interpolating nodes.

Using interpolation methods, one can fill in missing data on a given interval by calculating
the values of the interpolating function. Hence, a more accurate weather forecast can be
expected. Another scenario is that there are many tough places to forecast weather around
the world. One may build a personal weather station at home easily, but building weather
station in some places is a time and money consuming task. The first weather station on
Mountain Everest was not built untill 2004, 50 years after the first climbers stood at the top
of the mountain, in 1953. [2]. In these cases, data are only given on the boundary, and the
interpolation methods are needed to estimate the data inside the given area.

Before some well known interpolation methods like Lagrange method and Newton’s
method were invented during the Age of Scientific Revolution, many interpolation meth-
ods were used in ancient China. Second order interpolation was pioneered by the Chinese
early astronomer Liu Zhuo who used this technique to calculate the relative distance between
the sun and the moon [9]. However, the mathematician, astronomer, and monk Yixing cre-
ated a better interpolation method based on Liu Zhuo’s method, called Da Yan Calendar,
using unequal interval second order interpolation [5]. In fact, many mathematicians tried to
find a reasonable way to find an approximation function interpolating the given randomly
distributed data on a two dimensional plane. Subdividing the domain into small regions
like triangles or rectangles and connecting the given data points is a common interpolation
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method [1] [7] [8]. In [7], Maude introduced a way that divided the domain into several
regions formed by intersections of circles. In [8], however, the author revealed that Maude’s
result will be awkward when some special number of data points are given. In [13], Shep-
ard came up with an algorithm called the Inverse Distance Weight interpolation. In his
algorithm, the interpolation function had the form f(x) = Σn

i=1wi(x)fi, where wi(x) is the
weight coefficient which depends on the reciprocal of distance between interpolate point x
and all other n known points xi. A group of scientists studied Shepard’s method and im-
proved the interpolation function through modifying the weight function wi. However, in
[4], Franke pointed out that Shepard’s method is very dependent on weight function. Franke
then listed several unacceptable weight functions and time consuming functions. Both the
subdividing method and the Inverse Distance Weight method require much work to be done
before interpolating. Our method focus on providing another way to interpolate the given
data points.

2 Interpolation
There are many ways to find P . Common interpolation methods include Lagrange In-

terpolation, Newton Interpolation, Hermite Interpolation, Linear Interpolation, and Cubic
Spline Interpolation. Five interpolation methods are shown in Figure 1, where they are all
used to find the approximation function of f(x) = 1

x2+1
, x ∈ [−5, 5]. Notice that the node

points in Figure 1 are equidistant nodes.

2.1 One Dimensional Interpolation

1. Polynomial Interpolation
In 1885, a very famous theorem proved by Karl Weierstrass indicated the use of poly-
nomial to approximate a continuous function:

Theorem 2.1. (Weierstrass Approximation Theorem)
Suppose f is a continuous real-valued function on [a, b]. For any given ε > 0, there
exists a polynomial P on [a, b] such that |f(x)− P (x)| < ε for all x ∈ [a, b].

In words, any continuous function on an interval can be uniformly approximated by
the polynomial to any degree of accuracy.
If P (x) satisfies (1) and is a polynomial degree less than n, i.e.

Pn(x) = a0 + a1x+ a2x
2 + ...+ anx

n,
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where ai ∈ R, then P (x) is the interpolating polynomial, the corresponding method is
called the polynomial interpolation. The following theorem shows that such a polyno-
mial exists and it is unique.

Theorem 2.2. (Main Theorem of Polynomial Interpolation)
Let (x1, y1), (x2, y2), ..., (xn, yn) be n points in the plane with distinct xi. There exists
one and only one polynomial P (x) of degree less than or equal to n − 1 satisfying
P (xi) = yi for i = 1, ..., n.

Because of its special properties, like smoothness, polynomials are often used in
interpolation. The Lagrange interpolating polynomial, which has the form

P (x) =
n∑
k=1

(∏
j 6=k

x− xj
xk − xj

)
yk, (2)

is one of the representations of the interpolating polynomial. However, (2) must com-
puted repeatedly each time when adding node points. An alternative way, which has
less computational cost, is called Newton interpolation. The Newton interpolating
polynomial has the following form:

P (x) =y1 + f [x1, x2](x− x1) + f [x1, x2, x3](x− x1)(x− x2)

+ ...+ f [x1, x2, ..., xn](x− x1)(x− x2)(x− x3)...(x− xn − 1).

where f [xi, xj] =
yi−yj
xi−xj , and f [x1, x2, ..., xk] = f [x1,x2,...,xk−1]−f [x2,x3,...,xk]

x1−xk
. Both Lagrange

interpolation and Newton interpolation require the polynomial to interpolate the given
data points, i.e. P (xi) = yi. Notice that given the same data points (xi, yi) for
i = 1, 2, ...n, the polynomials derived from Interpolation methods like Newton and
Lagrange are the same. Hermite Interpolation requires the polynomial to satisfy the
interpolation conditions on derivatives, i.e. to find the polynomial that satisfies

P (xi) = yi, P ′(xi) = y′i, for i = 1, 2, ..., n

where y′i are the derivatives of original functions at the node point (xi, yi).

2. Piecewise Interpolation
Five interpolation results are shown in figure 1. Notice that the original function
f(x) = 1

x2+1
is shown in black, and the Lagrange interpolating polynomial is shown in

red. Figure 1 shows that a high order interpolating polynomial may have unstable result
at the edge of an interval. Piecewise Interpolation is often used to avoid increasing the
degree of polynomial when adding more node points.
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Nearest Neighbour Interpolation is the simplest interpolation method in one dimen-
sion. The result of this interpolation is a piecewise constant function constructed by
selecting the value of nearest given data point and ignoring the neighbour points in
each interval. In figure 1, the result of nearest neighbour interpolation for approximat-
ing f(x) = 1

x2+1
, x ∈ [−5, 5] are shown in pink. Compared to the original function,

this method does not guarantee good accuracy, but it is a fast interpolation method on
two dimensional problems. Another simple piecewise interpolation is based on Linear
Interpolation. Suppose we have two node points, (x1, y1), (x2, y2). Then the linear
interpolating function is of the form

P (x) = y1 + (y2 − y1)
x− x1

x2 − x1

at the point (x, y).

In Piecewise Linear Interpolation, one finds a piecewise function P (x) satisfying:

(a) P (x) ∈ C[a, b];

(b) P (xi) = yi(i = 1, 2, ..., n);

(c) P (x) is a linear function in each subinterval [xi, xi + 1].

The result of Piecewise Linear Interpolation is shown in the figure 1. Apparently,
it is not the most accurate method especially when the number of node points is
not large enough. Piecewise Cubic Hermite interpolation is shown in the figure 1 in
blue. The main idea of this method, based on Hermite interpolation, is to construct
a continuously differentiable piecewise polynomial P (x). Although Piecewise Linear
Interpolation and Piecewise Hermite Interpolation can avoid the problem of oscillation,
the functions constructed by using these two methods usually are not smooth curves.
The curve constructed by Cubic Spline Interpolation is connected by piecewise cubic
curves which are twice continuously differentiable at the connection points.
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Figure 1: Four One Dimension Interpolation Methods

2.2 Multivariate Interpolation

If the interpolated function has more than one variable, Multivariate Interpolation such
as, Nearest Neighbour Interpolation, Bilinear Interpolation, and Bicubic Interpolation are
usually used to approximate it. In Figure 2, these three interpolation results for given data
sets are drawn on a uniform two dimensional grid. The interpolated function is f(x, y) =
sin y cosx. As mentioned before, Nearest Neighbour Interpolation is a fast interpolation
method that can be used in any dimension. Shown in Figure 2, the interpolation function
is also an piecewise constant function. Bilinear Interpolation is the extension of Linear
Interpolation in two dimensions. The main process of Bilinear Interpolation is to do the
interpolation first in the x -direction(or y -direction) and then find the estimation by doing
interpolating in the y -direction(or x -direction). Bicubic Interpolation can construct a
smooth interpolation curve, see also in figure 2.

Previous interpolation methods are commonly used in different areas, however, these
methods ignored the physical meaning of the given data sets. Also, in real life problems,
like rainfall or temperature estimation, the data sets are usually not distributed well. In this
paper, we want to use harmonic function to interpolate the given data points. We discussed
two situations: first, the data points are given on the boundary of the domain; second, we
only know data at several points inside the domain.
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Figure 2: Three Two Dimension Interpolation Methods

3 Properties of Harmonic Function
In the previous section, we introduced several common interpolation methods. As we

mentioned before, some interpolation methods have not considered the physical meaning of
given data or its distribution. Here, we want to use harmonic functions, one of the most
beautiful type of functions to interpolate the given data points. First, let’s define what har-
monic function is.

Definition 3.1. A harmonic function is a twice continuously differentiable function u : Ω→
R that satisfies Laplace’s equation where Ω is the domain in Rn. That is

∆u = 0 (3)

In other words, a harmonic function is a solution of Laplace equation. Some properties
of harmonic function will be introduced in the following. It is these properties which make it
possible to be considered as one kind of interpolation function. In this paper, we fix Ω ⊂ R2

be a bounded smooth domain (open, connected set). Recall
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Theorem 3.1. (Divergence Theorem) Let Ω ⊂ R2, and F ∈ C1(Ω), then we have:ˆ
Ω

∇ · F dx =

ˆ
∂Ω

F · n dS

where n is the unit outward normal.

From the above theorem, one can easily derive the following

Theorem 3.2. (Green’s First Identity) Let Ω ⊂ R2 and u ∈ C2(Ω), and let v ∈ C1(Ω).
Then we have ˆ

Ω

∇v · ∇u dx+

ˆ
Ω

v∆u dx =

ˆ
∂Ω

v
∂u

∂n
dS. (4)

Proof. From the equality,
∇v · ∇u+ v∆u = ∇ · (v∇u),

and Theorem 3.1,we haveˆ
Ω

∇v · ∇u dx+

ˆ
Ω

v∆u dx =

ˆ
Ω

∇ · (v∇u)dx =

ˆ
∂Ω

(v∇u) · n dS =

ˆ
∂Ω

v
∂u

∂n
dS.

By symmetry, (4) can be rewritten as the following:ˆ
Ω

∇v · ∇u dx+

ˆ
Ω

u∆v dx =

ˆ
∂Ω

u
∂v

∂n
dS. (5)

Let g be a function defined on ∂Ω. Define

A = {w ∈ C2(Ω) |w ≡ g on ∂Ω}

Definition 3.2. For w ∈ A, define the energy functional of w to be

I[w] =
1

2

ˆ
Ω

|∇w|2. (6)

Theorem 3.3. (Dirichlet’s Principle)
For u ∈ A, we have

u is a harmonic function if and only if I[u] = min
w∈A

I[w].
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Proof. We first prove necessity. For fixed v ∈ C∞c (Ω), we can define φ(t) = I[u + tv], note
that u+ tv ∈ A because v has compact support. Note that

f(t) =
1

2

ˆ
Ω

|∇(u+ tv)|2 dx

=
1

2

ˆ
Ω

|∇u+ t∇v|2 dx

=
1

2

ˆ
Ω

[ |∇u|2 + 2t∇u∇v + t2 |∇v|2] dx

= I[u] + t

ˆ
Ω

∇u∇v + t2 I[v].

Based on our assumption, f(u) is minimal at t = 0. Hence, consider its derivative with
respect to t

0 =
d

dt
f(t)|t=0 =

ˆ
Ω

∇u∇v dx

=

ˆ
∂Ω

v
∂u

∂n
dS −

ˆ
Ω

v∆u dx.

Since v has compact support, therefore v = 0 on ∂Ω, and it follows that
ˆ

Ω

v∆u dx = 0 ∀v ∈ C2
c (Ω).

Here we claim that ∆u = 0. Suppose ∆u(x) 6= 0 for some x ∈ Ω, we may assume
∆u(x) > 0, also notice that ∆u is continuous at x, therefore, there exists B(x, r) ⊂ Ω
such that u(y) > 0, for all y ∈ B(x, r). We can also pick v ∈ C2

c (B(x, r)) such that
v(y) > 0 for y ∈ B(x, r). Then, we have:

ˆ
Ω

v∆u dx =

ˆ
B(x,r)

v∆u dx > 0.

Contradiction.
To prove the other direction, let w ∈ A, and we need to show that I[u] ≤ I[w].

Let v = w − u, then we have:
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I[w] = I[v + u] =

ˆ
Ω

|∇(v + u)|2

=

ˆ
Ω

(∇v +∇u) · (∇v +∇u)

=

ˆ
Ω

|∇v|2 +

ˆ
Ω

|∇u|2 + 2

ˆ
Ω

(∇v · ∇u)

= I[v] + I[u] +

ˆ
Ω

∇(w − u) · ∇u

= I[v] + I[u] +

ˆ
Ω

(w − u) ·∆u−
ˆ
∂Ω

(w − u)
∂u

∂n
dS

= I[v] + I[u] ≥ I[u].

The Dirichlet Principle states that if u is a harmonic function that satisfies (3), then
it minimizes the energy. To find the approximation function for the given data or image,
we usually want to find the minimizer or at least the local minimizer of some functional.
By the Dirichlet Principle, the harmonic function is the minimizer of the gradient u in L2

norm. Before using harmonic functions to interpolate the given Dirichlet boundary data, one
question is why only one solution exists. The uniqueness can be explained by the Maximum
Principle. I will prove it by using the following lemma called the Mean Value Property.

Lemma 1. (Mean Value Property) Suppose u is a harmonic function, and u ∈ C2(Ω). For
x ∈ Ω and any open ball B(x, r) ⊂ Ω, we have

u(x) =

 
B(x,r)

u dy =
1

|B(x, r)|

ˆ
B(x,r)

u dy

=

 
∂B(x,r)

u dy =
1

|∂B(x, r)|

ˆ
∂B(x,r)

u dy.

Theorem 3.4. (Maximum Principle)
If u is a harmonic function in Ω, and u ∈ C2(Ω) ∪ C(∂Ω), then

1. we have
max

Ω
u = max

∂Ω
u.
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2. If there exist x0 ∈ Ω such that u(x0) = max
∂Ω

u, and Ω is connected, then u ≡ u(x0) in
Ω.

Suppose we have two harmonic functions u1, u2, and u1, u2 ∈ C2(Ω) ∪ C(∂Ω). Suppose
both of them satisfy the given boundary data. Consider the function u1−u2, it has to be zero
on the boundary Ω. By the first part of the Maximal Principal, we know that u1 − u2 ≤ 0
on Ω ∂Ω. Now we switch order, and consider function u2 − u1. Apply Maximum Principal
again we get u2 − u1 ≤ 0. Hence, we know that u1 = u2 on Ω.

Theorem 3.5. (Green’s Second Identity) Suppose u, v ∈ C2(Ω) ∪ C1(Ω). Then,
ˆ

Ω

u∆v − v∆u dx =

ˆ
∂Ω

u
∂v

∂n
− v ∂u

∂n
dS.

Here, ∂/∂n means the directional derivative with respect to the unit outer normal.

Proof. In view of Green’s First Identity, we have
ˆ

Ω

∇u∇v dx+

ˆ
Ω

u∆v dx =

ˆ
∂Ω

u
∂v

∂n
dS

and ˆ
Ω

∇v∇u dx+

ˆ
Ω

v∆u dx =

ˆ
∂Ω

v
∂u

∂n
dS.

The result follows from subtracting these two equations.

In the reminder of this thesis, we focus our attention on n = 2.

Definition 3.3. Define

Φ(x) = − 1

2π
log |x|

for x ∈ R2\{0}. The function Φ is called the fundamental solution of Laplace equation
(in dimension 2). We also define Φx(y) = Φ(x− y).

It is easy to see that ∆yΦx(y) = 0 for y 6= x . Now we can state our main theorem.

Theorem 3.6. Let u ∈ C2(Ω) ∪ C1(Ω) be harmonic.

1. For x ∈ Ω, we have

u(x) =

ˆ
∂Ω

Φ(y − x)
∂u

∂n
(y)− u(y)

∂Φ

∂n
(y − x) dS(y)
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2. Suppose ∂Ω is smooth. For x ∈ ∂Ω, we have

1

2
u(x) =

ˆ
∂Ω

Φ(y − x)
∂u

∂n
(y)− u(y)

∂Φ

∂n
(y − x) dS(y);

Proof. Suppose x ∈ Ω. Since Ω is open, we can find ε > 0 such that B2ε(x) ⊂ Ω. Let
Ωε = Ω\Bε(x) Now we apply Green’s Second Identity to obtain

0 =

ˆ
∂Ωε

u(y)
∂Φ

∂n
(y − x)− Φ(y − x)

∂u

∂n
(y) dS(y).

Because ∂Ωε = ∂Ω ∪ ∂Bε(x), we have
ˆ
∂Bε(x)

u(y)
∂Φ

∂n
(y − x)−Φ(y − x)

∂u

∂n
(y) dS(y) =

ˆ
∂Ω

Φ(y − x)
∂u

∂n
(y)− u(y)

∂Φ

∂n
(y − x) dS(y).

Our aim is to show that the left-hand-side will converge to u(x) as ε → 0. From the Mean
Value Property, we obtain

ˆ
∂Bε(x)

u(y)
∂Φ

∂n
(y − x) dS(y) =

ˆ
∂Bε(x)

u(y)
1

2πε
dS(y) = u(x).

Remember that the harmonic function is smooth and that B2ε(x) is compact. For each
y ∈ Bε(x) we have ∣∣∣∣∂u∂n(y)

∣∣∣∣ ≤ |∇u(y)| ≤M,

where M is the maximum value of |∇u| on B2ε(x). Hence, we get∣∣∣∣ˆ
∂Bε(x)

Φ(y − x)
∂u

∂n
(y) dS(y)

∣∣∣∣ ≤ ˆ
∂Bε(x)

∣∣∣∣Φ(y − x)
∂u

∂n
(y)

∣∣∣∣ dS(y)

≤M

ˆ
∂Bε(x)

|Φ(y − x)|dS(y)

= M · log ε

2π
· 2πε = M(ε log ε).

Because M is a uniform bound for all ε′ ≤ ε and because ε log ε → 0 as ε → 0, this
integral approaches 0 as ε→ 0. Hence, the first part of the theorem follows.
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Now suppose ∂Ω is smooth and let x ∈ ∂Ω. Pick ε > 0 such that B2ε(x) ∩ Ω ⊂ Ω. By
similar argument, we derive
ˆ
∂Bε(x)

u(y)
∂Φ

∂n
(y − x)− Φ(y − x)

∂u

∂n
(y) dS(y) =

ˆ
Γε

Φ(y − x)
∂u

∂n
(y)− u(y)

∂Φ

∂n
(y − x) dS(y),

where Γε = ∂Ωε\Bε(x). Since ∂Ω is smooth, the limit of left-hand-side as ε→ 0 will be

lim
ε→0

ˆ π

0

[
u(ε, θ)

∂Φ

∂n
(ε)− Φ(ε)

∂u

∂n
(ε, θ)

]
ε dθ.

Let’s estimate this integral. The first part is
ˆ π

0

u(ε, θ)
∂Φ

∂n
(ε)ε dθ =

ˆ π

0

u(ε, θ)
1

2πε
ε dθ =

1

2π

ˆ π

0

u(ε, θ)dθ → 1

2π
πu(x)

as ε→ 0. Using a similar trick to find a uniform bound M , the second part is∣∣∣∣ˆ π

0

Φ(ε)
∂u

∂n
(ε, θ)ε dθ

∣∣∣∣ ≤M · log ε

2π
· πε =

M

2
ε log ε→ 0

as ε→ 0. Because Γε → ∂Ω as ε→ 0, we conclude that

1

2
u(x) =

ˆ
∂Ω

Φ(y − x)
∂u

∂n
(y)− u(y)

∂Φ

∂n
(y − x) dS(y);

the second part of the theorem follows.

4 Method and Numerical Experiment
Our main goal is to find the solution of the following problem:

u(xi) = vi, ∆u = 0, (7)

where vi ∈ R are given function values of an unknown smooth harmonic function which
has fixed boundary or interior values at given data points xi ∈ R2. Two different situations
are considered here: given interpolating nodes are on the boundary, and when the given
interpolating nodes are distributed on the whole domain.
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4.1 Data are given on Boundary

4.1.1 Method

Now from both the Dirichlet Principle and Maximum Principle, we consider finding the
unique interpolating harmonic function on the given boundary. However, it is not easy to
find the harmonic function. Let’s consider the following equation system:

∂u
∂t

= ∆u for (x, y, t) ∈ Ω× (0,∞),
u(x, y, 0) = F (x, y) for (x, y) ∈ Ω
u(x, y, t) = f(x, y) for (x, y, t) ∈ ∂Ω× [0,∞)

(8)

Hence, instead of finding the harmonic function directly, we use the heat equation to find
it. Why this is correct? For a function of two variable and the time variable t, like the heat
equation in (8), we have the following:

lim
t→∞

u(x, y, t) = v(x, y).

Hence v(x, y) satisfies:

{
∆v(x, y) = 0 for (x, y) ∈ Ω
v(x, y) = f(x, y) for (x, y) ∈ ∂Ω.

To find the approximation by heat equation, a known method called finite differences,
which replaces each derivative by a difference quotient, will be used in the experiment.To
find the function satisfying (8) on Ω, we do the following steps:

• Draw a grid on Ω and choose mesh size ∆x,∆y,∆t for x, y, t.

• Approximate the value of u(i∆x, j∆y, n∆t) for x = i∆x, y = j∆y, t = n∆t by a
number uni,j indexed by integers i, j, n:

uni,j = u(i∆x, j∆y, n∆t)

Therefore we can immediately have the following approximations:

∂u

∂t
∼
un+1
i,j − uni,j

∆t

∂2u

∂x2
∼
uni+1,j − 2uni,j + uni−1,j

(∆x)2

∂2u

∂y2
∼
uni,j+1 − 2uni,j + uni,j−1

(∆y)2
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• One can quickly rewrite ∂u
∂t

= ∆u, by using finite differences:

un+1
i,j − uni,j

∆t
=
uni+1,j − 2uni,j + uni−1,j

(∆x)2
+
uni,j+1 − 2uni,j + uni,j−1

(∆y)2
(9)

Drawing a (N + 1)× (N + 1) grid on Ω, and choose the same mesh size for both x and
y, that is ∆x = ∆y, (9) can be simplified to

un+1
i,j =

∆t

(∆x)2
(uni+1,j + uni−1,j − 4uni,j + uni,j+1 + uni,j−1) + uni,j, (10)

• u0
i,j is given by the second equation in (8). Using (10) gives us u1

i,j, then (10) gives u2
i,j

and so on.
Finally, (8) can be rewritten numerically as the following:

un+1
i,j = ∆t

(∆x)2
(uni+1,j + uni−1,j − 4uni,j + uni,j+1 + uni,j−1) + uni,j

u0
i,j = Fi,j for i, j = 0, 1, 2, ...N
uni,j = fi,j for i, j = 0, N,

(11)

4.1.2 Numerical Experiment

In all numerical simulations, we take as the domain Ω is the square with boundary
values given. That is, Ω is set as [−0.5, 0.5] × [−0.5, 0.5] and mesh points are placed on
(N + 1) × (N + 1) gridding points on it. As described in equation (11), u0

i,j is given on
the whole domain, and the boundary value is fixed. In the following tables, variable k is
the number of iterations, ∆x is the mesh size of chosen domain, ∆t

(∆x)2
is the step size of

each iteration. In all numerical simulation, step size is 0.25. The errors shown are the
investigation of accuracy compared to the original harmonic function on Ω.

(1) v(x, y) = x2 − y2 + xy

Table 1: Experiment Report for Function (1)
k deltx Max Mean Var

2500 0.025 3.594× 10−15 1.383× 10−15 1.162× 10−30

5000 0.025 4.718× 10−16 1.629× 10−16 1.718× 10−32

2500 0.0125 4.583× 10−5 1.812× 10−5 1.846× 10−10

5000 0.0125 2.000× 10−8 7.906× 10−9 3.510× 10−17
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Table 2: Experiment Report for Function (2)
k deltx Max Mean Var

5000 0.025 3.594× 10−5 1.160× 10−5 1.170× 10−10

10000 0.025 2.785× 10−5 1.153× 10−5 1.163× 10−10

5000 0.0125 0.072 0.0068 2.580× 10−5

10000 0.0125 3.587× 10−4 1.463× 10−4 1.191× 10−8

(2) v(x, y) = x+1
(x+1)2+(y+1)2
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(3) v(x, y) = log(
√

(x+ 1)2 + (y − 1)2)

Table 3: Experiment Report for Function (3)
k deltx Max Mean Var

5000 0.025 1.454× 10−5 5.425× 10−6 1.813× 10−11

10000 0.025 1.461× 10−5 5.467× 10−6 1.836× 10−11

5000 0.0125 0.0119 0.0047 1.234× 10−5

10000 0.0125 2.481× 10−4 9.780× 10−5 5.396× 10−9
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(4) v(x, y) = ex(x cos y − y sin y)

Table 4: Experiment Report for Function (4)
k deltx Max Mean Var

2000 0.025 3.342× 10−5 1.466× 10−5 1.031× 10−10

5000 0.025 3.156× 10−5 1.390× 10−5 9.203× 10−11

2000 0.0125 0.0085 0.0033 6.134× 10−6

5000 0.0125 4.682× 10−5 1.303× 10−5 1.837× 10−10
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4.2 Scattered Data are given on whole domain

4.2.1 Method

Sometimes, data are not only given on boundaries, but can be given on the whole domain,
and not distributed well. Here we use the Boundary Element Method to find the Harmonic
function. The theorem (3) proved in the previous section tells us a harmonic function
u ∈ C2(Ω) ∪ C1(Ω) can be described by the boundary integral equation:

α(x)u(x) =

ˆ
Φx
∂u

∂n
− u∂Φx

∂n
dS, (12)

where α(x) = 1 for x ∈ Ω and α(x) = 1
2
for x ∈ ∂Ω.

Now let’s replace ∂Ω by some straight line segments Γ1,Γ2, ...Γn. Also, let y1, y2, ...yn ∈ R2

be the middle points of Γ1,Γ2, ...Γn. Therefore the approximation of (12) is:

α(x)u(x) =

ˆ
Φx
∂u

∂n
− u∂Φx

∂n
dS

≈
ˆ

Γ1∪Γ2,...∪Γn

Φx
∂u

∂n
− u∂Φx

∂n
dS

=
n∑
j=1

ˆ
Γj

Φx
∂u

∂n
−

n∑
j=1

ˆ
Γj

u
∂Φx

∂n
(13)

20



If we use the value of u(yi) to represent the value of u on each Γi, then (13) can be
approximated as:

n∑
j=1

∂u(yj)

∂n

ˆ
Γj

ΦxidS −
n∑
j=1

u(yj)

ˆ
Γj

∂Φx

∂n

Hence if we know the value of u(yj) and value of ∂u(yj)

∂n
for i = 1, 2, ...n then for each

x ∈ Ω the value of u(x) can be approximated.
Now for given data x1, x2, ...xn ∈ R2, and v1, v2, ...vn ∈ R, to find u ∈ C2(R2) such that

∆u = 0, u(xi) = vi for all i, we do the following:

• Enclose x1, x2, ...xn by a rectangle Ω.

• Discretize ∂Ω into straight line segments Γ1,Γ2, ...Γn and define yj be the midpoints of
Γj.

• For each xi ∈ R we consider:

vi =
n∑
j=1

∂u

∂n
(yj)

ˆ
Γj

ΦxidS −
n∑
j=1

u(yj)

ˆ
Γj

∂Φxi

∂n
dS,

and

1

2
u(yi) =

n∑
j=1

∂u

∂n
(yj)

ˆ
Γj

ΦxidS −
n∑
j=1

u(yj)

ˆ
Γj

∂Φxi

∂n
dS,

In terms of matrix multiplication we have:

(´
Γj

ΦxidS
)

∂u
∂n

(y1)
...

∂u
∂n

(yn)

− (´Γj

∂Φxi
∂n

dS
)u(y1)

...
u(yn)

 =

v(1)
...

v(n)

 (14)

and,

(´
Γj

ΦyidS
)

∂u
∂n

(y1)
...

∂u
∂n

(yn)

− (´Γj

∂Φyi
∂n

dS + 1
2
δi,j
)u(y1)

...
u(yn)

 = 0, (15)
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where
δi,j =

{
1 if i = j
0 if i 6= j

.

Let’s combine (14) and (15), that is

( ´
Γj

ΦxidS −
´

Γj

∂Φxi
∂n

dS´
Γj

ΦyidS −
´

Γj

∂Φyi
∂n

dS − 1
2
δi,j

)


∂u
∂n

(y1)
...

∂u
∂n

(yn)
u(y1)
...

u(yn)


=



v1
...
vn
0
...
0


(16)

As long as u(y1), ...u(yn) and ∂u
∂n

(y1), ∂u
∂n

(y2), ...∂u
∂n

(yn) are known, for each xi ∈ R, u(xi)
can be computed by

αxiu(xi) =
( ´

Γj
ΦxidS −

´
Γj

∂Φxi
∂n

dS
)( ∂u

∂n
(y1)

u(yn)

)
(17)

• If the solution of (17) is not unique, more constraints are needed here. Remember we
proved that lowest energy is attained if it is a harmonic function. Let’s say I(u) is
energy of the steady field. Hence consider

I(u) =

ˆ
R

|∇u|2 =

ˆ
∂R

u
∂u

∂n
dS,

also,
ˆ
∂R

∂u

∂n
= 0.

Discretizing these two equations, we get

I(u) =
n∑
j=1

u(yj)
∂u

∂n
(yj)l(Γj)

and,

n∑
j=1

∂u

∂n
(yj)l(Γj) = 0
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where l(Γi) is the length of the i-th segment. Hence, we try to solve

min{
n∑
j=1

u(yj)
∂u

∂n
(yj)l(Γj)}

with, 

( ´
Γj

ΦxidS −
´

Γj

∂Φxi
∂n

dS´
Γj

ΦyidS −
´

Γj

∂Φyi
∂n

dS

)


∂u
∂n

(y1)
...

∂u
∂n

(y1)
u(y1)
...

u(yn)


=



v1
...
vn
0
...
0


n∑
j=1

∂u
∂n

(yj)l(Γj) = 0.

(18)

Notice that for (18), we do not solve for the exact solution, but a solution such that∣∣∣∣∣∣∣
( ´

Γj
ΦxdS −

´
Γj

∂Φx
∂n
dS

)( ∂u
∂n

(y1)
u(y1)

)
−

 v1
...
vn


∣∣∣∣∣∣∣ < ε (19)

for chosen ε.

4.2.2 Numerical Experiment

In this part we give the data sets from different harmonic functions and use our method
to find the accuracy of proposed scheme. For each simulation, data set (x1, v1), ...(xn, vn) is
given on the N × N grid on [−0.5, 0.5] × [−0.5, 0.5]. We enclose all the given data points
in a bigger rectangular Ω. Then the interpolating result will be compared with the original
values of the harmonic function on a 100 × 100 grid on Ω. The following are the result of
the investigation of accuracy compared to the original harmonic function v on Ω.

(1) v(x, y) = x2 − y2 + xy
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Table 5: Experiment Report for Function (1)
N 4 8 16 32

Max of Error 4.328× 10−2 3.337× 10−2 1.195× 10−2 6.891× 10−3

Min of Error 5.126× 10−7 6.251× 10−10 1.055× 10−12 5.557× 10−14

Mean of Error 4.514× 10−3 1.062× 10−3 1.110× 10−4 2.568× 10−5

Variance of Error 3.803× 10−5 8.667× 10−6 4.561× 10−7 7.194× 10−8
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(2) v(x, y) = x+1
(x+1)2+(y+1)2

Table 6: Experiment Report for Function (2)
N 4 8 16 32

Max of Error 3.294× 10−2 3.453× 10−2 1.224× 10−2 7.619× 10−3

Min of Error 2.491× 10−7 1.852× 10−10 6.239× 10−16 8.882× 10−16

Mean of Error 2.574× 10−3 6.453× 10−4 3.918× 10−5 9.288× 10−6

Variance of Error 1.851× 10−5 5.781× 10−6 1.280× 10−8 2.010× 10−8

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Contour Plot for N = 4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Error for N = 4

0.005

0.010

0.015

0.020

0.025

0.030

0.4
0.2

0.0
0.2

0.4 0.4
0.2

0.0
0.2

0.4

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Interpolation Result for N = 4

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Contour Plot for N = 8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Error for N = 8

0.005

0.010

0.015

0.020

0.025

0.030

0.4
0.2

0.0
0.2

0.4 0.4
0.2

0.0
0.2

0.4

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Interpolation Result for N = 8

25



0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Contour Plot for N = 16

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Error for N = 16

0.002

0.004

0.006

0.008

0.010

0.012

0.4
0.2

0.0
0.2

0.4 0.4
0.2

0.0
0.2

0.4

0.3
0.4
0.5
0.6
0.7
0.8
0.9

Interpolation Result for N = 16

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Contour Plot for N = 32

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Error for N = 32

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.4
0.2

0.0
0.2

0.4 0.4
0.2

0.0
0.2

0.4

0.3
0.4
0.5
0.6
0.7
0.8
0.9

Interpolation Result for N = 32

(3) v(x, y) = ln[(x− 1)2 + (y − 1)2]

Table 7: Experiment Report for Function (3)
N 4 8 16 32

Max of Error 9.915× 10−2 3.406× 10−2 9.309× 10−3 1.1219× 10−2

Min of Error 8.743× 10−7 1.004× 10−11 2.487× 10−14 5.863× 10−13

Mean of Error 7.969× 10−3 5.699× 10−4 4.437× 10−5 2.553× 10−5

Variance of Error 1.568× 10−4 4.134× 10−6 1.423× 10−7 1.1216× 10−7
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(4) v(x, y) = ex(x cos y − y sin y)

Table 8: Experiment Report for Function (4)
N 4 8 16 32

Max of Error 2.031× 10−2 7.366× 10−2 2.140× 10−2 1.1219× 10−2

Min of Error 6.135× 10−8 3.293× 10−9 1.727× 10−12 5.863× 10−13

Mean of Error 1.577× 10−3 1.849× 10−3 1.111× 10−4 2.442× 10−5

Variance of Error 5.436× 10−6 4.014× 10−5 7.792× 10−7 1.216× 10−7
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5 Conclusion
This paper focuses on the interpolation method for given data points on R2. We state

that traditional interpolation methods usually do not consider the physical meaning of the
interpolating function. Also consider real life problems like weather forecasting, in which
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data may not be distributed well, we found that using harmonic function as an interpolating
function is a reasonable strategy. Two different interpolation methods are discussed here.
The first method deals with the situation where data are given on the boundary. It uses
the heat equation to approach the steady state on the domain. The experimental result
indicated that after enough iterations, the error between the approximated result and the
original function could be relatively small. In this method, data are given on the boundary.
The second method is a convolution based method, called the boundary element method.
In this situation, data are give on the whole domain but not distributed well. The second
experiment shows that the approximated data points fit the original harmonic function well
even when fewer data points are given. Some traditional interpolation methods in one and
two dimensions are summarized in the previous section. There are two main reasons why we
consider harmonic function as interpolation functions:

1. Some interpolation methods do not consider the physical meaning of data points.

2. Some interpolation methods cannot be used for scattered data points or data points
given only on the boundary.

Hence, a smooth function, harmonic function defined on a open connected domain Ω are
considered here. Some properties of the harmonic function are introduced in the third section.
Theorem 3.2 can be showed easily based on Divergence Theorem. Then, using Theorem
3.2, we proved an important property of harmonic functions. Theorem 3.3 states that the
harmonic function on a bounded open connected domain is the minimizer of the Dirichlet
functional. The uniqueness theorem can be proved directly by using Theorem 3.4. These
properties are the motivations and reasons for using harmonic function to interpolate the
given data. To use the boundary element method, we introduced the fundamental solution of
Laplace equation and Theorem 3.6. Theorem 3.6 tells us as that long as u ∈ C2(Ω)∪C1(Ω),
then the values of u inside the domain on the boundary of domain can be given by a line
integral on the boundary related to its fundamental solution. Two numerical methods are
introduced step by step in the fourth section. Experiments are done by Matlab and Python.
Both numerical experiment try to investigate the accuracy between the approximated values
and the values generated by original harmonic functions. The results demonstrated in the
fourth section reveal that both methods works if only boundary data or scatted data are
given.

In the future, more work will be done on the application of harmonic function interpola-
tion. There are some different types of interpolation used in different subjects. For example,
the method could be used in weather forecasting. In recent years, more interdisciplinary
methods have been applied to the study of interpolation methods. In [15], a neural network
methods such as ANN(artificial neural network) was used in interpolation models to predict
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rainfall. In our future work, one of the topics should be how to create the interpolation
model combining our method with different statistical techniques in different areas.
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