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CHAPTER I 

INTRODUCTION 

Cross protection, the activity of a virus in a plant 

preventing the expression of a subsequent challenge virus 

(Dodds, 1982), was first described in the late 1920s 

(Wingard, 1928; McKinney, 1929)~ Since then, studies on 

cross protection have focused on the mechanisms involved in 

this phenomenon and on its practical application for disease 

control. 

The mechanism of cross protection is not fully 

understood, but it has been a subject of much research, 

speculation and review ·(Hamilton, 1980; Fulton, 1982; 

Zaitlin and Hull, 1987; Sherwood, l987a; Urban et al., 

1989). Many theories exist to explain cross protection, but 

experiments to test some.of them are not yet possible. 

According to Fulton (1982), part of the difficulty in 

attempting to explain cross protection may be in looking for 

a single explanation for what may be a complex of reactions. 

The use of cross protection for biological control of 

plant virus diseases was suggested over 50 years ago 

(Salaman, 1937; Johnson, 1937), but diseases caused by 

citrus tristeza virus and papaya ringspot virus appear to be 

the only extant examples in which cross protection is used 



commercially for control (MUller and Costa, 1977; Salibe, 

1987; Yeh et al., 1988). Cross protection was also widely 

applied previously for control of tomato mosaic, caused by 

tobacco mosaic virus {TMV) {Rast, 1975; Fletcher and Rowe, 

1975). Today growers rely primarily on resistant varieties 

to control the disease (Fulton, 1986). Anxiety about 
' > 

2 

potential problems could explain the scarcity of examples of 

cross protection being used for biological control of 

diseases in the field (Urban et al., 1989). These include 

the protection being overcome by a severe isolate, the 

possibility of. spreading. the mild protecting virus to other 

hosts in which its effects might be severe, the possible 

synergistic reaction of the protecting virus with an 

unrelated virus and the change of the mild protecting strain 

to a more severe form. 

Further research on cross protection is necessary to 

better understand the mechanism~ involved in this 

phenomenon, and to ·more effectively use it to control virus 

diseases. The main purpose of this study was to investigate 

cross protection between two serologically related strains 

of TMV~ The first goal was.to study the susceptibility of 

protoplasts from dark and light green areas from Nicotiana 

sylvestris Spegaz & Comes infecte~ with the common strain of 

TMV {TMV-C) to superinfection with the same strain and with 

a necrotic lesion causing strain. The necrotic lesion 

causing strain (designated TMV-P) was used earlier in cross 

protection experiments (Sherwood and Fulton, 1982). The 
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second objective was to study the susceptibility of dark and 

light green areas of H· tabacum L. cvs. Samsun and Xanthi, 

infected with TMV-C, to superinfection with TMV-P. The 

susceptibility of dark and light green areas produced by 

TMV-P on both cultivar~ was, also tested using TMV-C as a 

challenger. Also, studies.were D\ade t'o determine if sap 

from H· sylvestris systemically infected with TMV-C 

contained an "antiviral fac.tor" responsible for the . ' 

resistance'of dark green areas to viral infection. 



CHAPTER II 

LITERATURE REVIEW 

Historical background of cross protection 

The term cross protection, apparently introduced into 

the literature by Price (1940), has been widely used to 

describe the protection between related strains of the same 

virus. In addition to cross protection, this phenomenon has 

also been called cross immunization, mutual antagonism, 

acquired immunity, and preimmunization. 

Cross protection was first reported by Wingard (1928). 

He observed that recovered1 leaves of tobacco (Nicotiana 

tabacum L.) systemically infected with tobacco ringspot 

virus (TobRSV) were "immune" from further symptom 

development when reinoculated with the same virus. 

McKinney (1929) noted that tobacco infected with a 

strain of tobacco mosaic virus (TMV) causing a light green 

mosaic did not develop additional symptoms when inoculated 

with a strain of TMV causing a yellow mosaic. Thung (1931) 

observed that when tobacco plants infected with a strain of 

TMV causing a white mosaic were inoculated with the common 

type strain, they did not develop symptoms of the common 

1Recovered leaves are defined as leaves that contain 
virus, but do not exhibit symptoms. 



type. However, plants infected by the common type strain 

and challenged with the white type strain produced a mosaic 

suggestive of infection by both strains. 

5 

Salaman (1933) found that a mild strain of potato virus 

X (PVX) protected tobacco or Datura stramonium L. against 

infection by a severe strain. He also showed that the 

protection was specific. No protection was observed when 

PVX infected plants were challenged with potato virus Y 

(PVY) or TMV. Salaman (1937) later observed the same 

phenomenon between a mild strain and a severe strain of PVY. 

Price (1932) showed that the new growth of tobacco 

systemically infected with TobRSV had mild or no symptoms 

and contained less virus than the previously inoculated 

leaves. Yet, the new leaves were protected from reinfection 

by most, but not all, strains of TobRSV (Price 1936a; 

1936b). 

Working with TMV and Nicotiana sylvestris Spegaz & 

Comes, Kunkel (1934) found that some strains of the virus 

caused mosaic symptoms,,while others caused distinct 

localized necrotic lesions. Kunkel also found that leaves 

heavily inoculated with a strain causing mosaic became 

immune to infection with a local lesion strain, but were not 

protected against cucumber mosaic virus (CMV) or TobRSV. 

Attenuated strains of TMV also offered protection against 

the common or aucuba strains. 

Costa and Carvalho (1961), in Brazil, reported that 

tobacco infected with a super-mild strain of tobacco streak 



virus (TSV) did not become infected when reinoculated with 

severe strains of TSV and had a similar growth to those of 

healthy plants. 

Theories on the mechanism of cross protection 

6 

Numerous theories have been proposed to explain the 

phenomenon of cross protection (Fulton, 1982; and Sherwood, 

1987a). Urban et al. (1989) summarized four theories that 

have been suggested to explain cross protection: 1) 

utilization and depletion of host metabolites or structures; 

2) specific sequestering of the nucleic acid of the 

challenge virus; 3) involvement of coat protein in 

inhibition of the infection of the challenge virus and 4) 

prevention of systemic spread of the challenge virus. They 

also pointed out that a single mechanism or any combination 

of each of them may contribute to the events leading to 

cross protection. 

The utilization of a host metabolite or structure was 

suggested by Ross (1974). He pointed out that the initial 

virus would utilize the, available ribosomes by a rapid 

increase in mRNA. More ribosomes than normal would bind to 

viral RNA and become unavailable'for the introduced 

challenge nucleic acid, which would become susceptible to 

degradation before ~t could be expre~sed. According to 

Fulton (1982), it is difficult to accommodate the 

demonstrable evidence of specificity of cross protection by 



7 

this theory, sincE~ it could apply equally well to related or 

unrelated viruses. Another possible host constituent with a 

role in cross protection could be a protein that is required 

as part of the RNA-dependent RNA polymerase of an RNA virus 

(Ponz and Bruening, 1986). Depletion of this component by 

the first virus could prevent the challenge virus from 

replicating. 

The specific s~queste~ing of ·nucleic acid as a 

mechanism of cross protection was suggested by Palukaitis 

and Zaitlin (1984). They proposed that for positive-sense 

(+) RNA viruses, superinfection by the challenge strain 

would be reduced or prevented ~y the inhibition of synthesis 

of its (+) RNA. This could occur when nascent (-) RNA of 

the challenge strain became hybridized to the excess (+) RNA 

of the protecting strain. Huss et al. (1989) suggested that 

this model would explain their results on cross protection 

between arabis mosaic virus (ArMV) and grapevine fan leaf 

virus (GFLV) in Chenopodium guinea Willd. ArMV and GFLV are 

members of the same sub-group of the nepoviruses, which are 

serologically unrelated, but have nucleotide sequences in 

common. If a mechanism is to account for the cross 

protection that occurs between strains of viroids as well as 

between strains of viruses it will most likely involve the 

regulation of replication of nucleic acid. This mechanism, 

however, would not,be applied to explain cross protection 

between viruses with somewhat unrelated sequences such as 

sunn-hemp mosaic and tobacco mosaic viruses (Zinnen and 



Fulton, 1986; Gibbs, 1986). 

The involvement of the viral coat protein in cross 

protection in nontransgenic plants as. well as in protecti.on 

in transgenic plants has been supported by several 

experim~nts. De Zoeten and Fulton (1975) proposed a model 

to expiain·cross protection in which the viral RNA of the 

8 

challenge strain would be encapsidated by the coat protein 

of the virus already present in the cell. The result of 

this encapsidation'is that the challenger RNA is effectively 
' " I I < 

prevented from replicating. Zaitlin (1976) tested their 

hypothesis us~ng a coat protein mutant of TMV (PMl), which 

produces insoluble coat protein .that does not encapsidate 

TMV RNA. When plants inoculated with the mutant were 

challenge inoculated with TMV (Ul), a smaller amount of the 

U1 strain was recovered than in controls, indicating that 

protection was achieved. The results also suggested that 

encapsidation of the cha'llenge RNA was not involved in 

protection in this sy~tem. 

Horikoshi et al. (1987) suggested that the regulation 

of replication by the coat protein may be the basis of cross 

protection. This suggestion is based on experimental 

evidence that the coat protein of brome mosaic virus, in 

vitro, blocked the binding site of the replicase thereby 

interfering with RNA synthesis. 

Sherwood and Fulton (1982) demonstrated that the 

specific basis of cross protection with TMV in H· sylvestris 

is the inability of the challenge virus to uncoat when 
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inoculated onto plants systemically infected with the 

protecting strain. Plants of H· sylvestris infected with 

the common strain of TMV develop a mosaic of dark and light 

green areas (Fulton 1951) . When a mosaic leaf is inoculated 

with strains of TMV that produce necrotic local lesions, the 

lesions are restricted to the dark green areas of the mosaic 

(Fulton, 1951; Sherwood and Fulton, 1982). However, when 

the challenge inoculation is made with RNA of the 

necrotizing strains of TMV, necrotic lesions are produced in 

both dark and light green areas. This suggests that the 

necrotic lesion producing strains are unable to uncoat in 

the light green areas where the concentration of TMV is 

greatest. De Zoeten and Gaard (1984) reported that 2 to 7.5 

times more TMV antigen was detectable in cell walls of light 

green areas than in those of dark green areas. 

Dodds et al. (1985) found similar results in tomato 

with two strains of CMV. As with TMV in N- sylvestris, a 

breakdown of cross protection occurred when the tomato 

leaves infected with the mild strain (S) were challenged 

with viral RNA but not with the intact virion of the severe 

strain (P). However, the breakdown in cross protection, as 

measured by the presence of dsRNA or intact virion of the 

challenge strain, was only observed in the challenge 

inoculated leaves and not in the upper leaves. 

Work with coat protein-free mutants of TMV has created 

certain controversy about the involvement of coat protein in 

cross protection. Sherwood (1987b) inoculated leaves of 
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H· sylvestris with the DT-1G coat protein-free mutant of TMV 

(Sarkar and Smitamana, 1981) or with the common strain of 

TMV (TMV-C). The leaves were then challenge inoculated with 

turnip mosaic virus (TuMV) to test non-specific protection, 

or with a necrotic lesion causing strain of TMV (TMV-N). 

The leaves inoculated with the coat protein-free strain had 

equal susceptibility to TuMV and TMV-N. When TMV-C was used 

as protectant, infection was less with TMV-N than with TuMV. 

Gerber and Sarkar (1989), found that H· tabacum cv. 

Samsun inoculated with the coat protein-free mutant of TMV 

(DT-1G) showed ~p to 90% pr,otection against the U1 strain of 

the same virus. They concluded that the presence of TMV 

coat protein was not essential for cross protection. Urban 

et al. (1989) suggested that these conflicting reports 

support the idea·that the mechanism of cross protection may 

be distinct in different hosts. 

cross protection studies with sunn-hemp mosaic virus 

(SHMV) and TMV indicated that coat protein may be a factor 

in cross protection in some situations, but other factors 

may also be involved (Zinnen and Fulton, 1986). Cowpeas 

systemically infe.cted with SHMV were completely protected 

against superinfection by either virion or RNA of a ,necrotic 

local lesion causing strain of SHMV, which had been produced 

by nitrous acid treatment. However, when cowpeas infected 

with SHMV were challenge inoculated with TMV-c RNA 

encapsidated in SHMV coat protein, or TMV-C intact virion, 

the plants challenged with the RNA encapsidated in SHMV coat 



protein showed 5-27 time less infection than the TMV RNA 

encapsidated in TMV coat protein. 

11 

The involvement of coat protein in cross protection has 

also received support from experiments with transgenic 

plants. Powell Abel et al. (1986) demonstrated that 

transgenic tobacco plants that expressed the TMV coat 

protein gene delayed the development of systemic symptoms, 

when inoculated with TMV, as compared to non-transgenic 

plants. Loesch-Fries et al. (1987) reported similar results 

from studies of transgenic tobacco that expressed coat 

protein gene of alfalfa mosaic virus (AlMV). Plants that 

expressed the highest concentration of coat protein 

developed fewer primary infections following inoculation 

with AlMV and developed systemic infection slower than did 

plants that did not express coat protein. In both examples, 

transgenic plants were resistant to infection by virions but 

susceptible to infection by RNA. The resistance of 

transgenic plants that express the virus coat protein gene 

has also been shown in a number of other plant:virus 

combinations (Tumer et al., 1987; van Dun et al., 1987; 

Cuozzo et al., 1988; Hemenway et al., 1988; Lawson et al., 

1989) 

Prevention of systemic spread of the challenge strain 

as a mechanism of cross protection is supported by the work 

of Dodds (1982) and Dodds et al. (1985). They tested cross 

protection between two strains of CMV (S and P) in tomato 

and showed that the challenge strain was able to increase in 



the inoculated leaves but did not move systemically. 

However, when the protecting strain was not systemically 

well established, an increase in the challenge strain also 

occurred in the upper leaves. 

12 

Urban et al. (1988) also demonstrated prevention of 

systemic spread of the challenge strain in tests of cross 

protection between two serologically distinct strains of TMV 

in Arabidopsis thaliana (L.) Heynh. They showed that the 

challenge strain multiplied in the inoculated leaves to 

concentrations detectable by ELISA, but it did not move 

systemically in the plant. They also suggested that the 

impairment of systemic spread of the challenge strain could 

be related to the interaction of the 30 kDa movement protein 

with a host component. 

Blum et al. (1989) suggested a virus-induced, host 

specific inhibitor of viral transport. They hypothesized 

that the challenge virus cannot synthesize its movement 

protein because the protecting strain induces the host to 

synthesize an inhibitor of 30 kDa synthesis. They further 

suggested that if the challenge virus cannot use the 

movement system of the protecting strain or the protein has 

already dissipated, the challenge virus will be unable to 

spread. Additional support for the interaction of the 

30 kDa protein with host protein comes from Moser et al. 

(1988). In H· tabacum cv. Samsun NN infected with TMV, the 

amount of movement protein in cell wall fractions decreased 

when necrosis became visible and the production of coat 
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protein ceased. 

Cross protection and virus disease control 

Although Salaman (1937) and Johnson (1937) suggested 

the use of cross protection for disease control over 50 

years ago, there are few examples of the use of this 

technique for control of plant virus diseases. Research has 

focused on the mechanism of cross protection rather than its 

application to control virus diseases. 

Cacao swollen shoot in Africa (Posnette and Todd, 1955) 

and passion fruit woodiness in Queensland, Australia 

(Simmonds, 1959) were the first virus diseases in which 

plants protected with mild strains showed good development 

and reduction of yield loss under field conditions. 

Programs for the control of these diseases by cross 

protection have not continued, and the diseases are still 

economically important. 

Grant and Costa (1951) demonstrated the use of cross 

protection to control citrus tristeza virus (CTV) in Brazil. 

In 1961, Muller and Costa (1977) initiated a research 

program to utilize cross protection to control CTV in Sao 

Paulo State. After many years of field trials, they 

isolated 70 mild isolates of CTV from vigorous trees in 

severely infected groves. Of 70 mild isolates, 45 were 

field tested (Costa and Muller, 1980). Of these, 3 were 

satisfactory for orange, 2 for Galego lime, and 1 for Ruby 
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Red grapefruit. There was also a varied relationship 

between isolate severity and host. Isolates that were mild 

in Pera sweet orange or grapefruit tended to be rather 

severe in Galego lime (Costa and Muller, 1980). In Florida, 

Cohen and Burnett (1961) also reported the CTV isolates from 

many declining sweet orange trees on sour orange rootstock 

induced less severe'reaction'in Key lime than did isolates 
' ' 

from symptomless trees. Thus, ·isolates of CTV selected on 

the basis of mildness of symptoms in one citrus species were 

not necessarily mild in all" citrus speci,es. 

The work in Brazil was significant because it 

demonstrated that naturally occurring isolates of CTV varied 

in their protecting capacity as well as in the symptoms 

caused. Protected citrus clones have satisfactorily been 

used in Brazil, Australia, India, Israel, Japan, South 

Africa and the USA (Hamilton, 1985). By 1987, a total of 50 

million Pera sweet orange trees protected with mild isolates 

of CTV had been planted, in Brazil (Salibe, 1987). 

cross protection was.also widely applied for control of 

tomato mosaic (Rast, 1975; Fletcher and Rowe, 1975; 

Broadbent, 1976; Channen et al., 1978). However, 

difficulties have developed in controlling tomato mosaic 

using cross protection. Mild st.rains generally protected 

less effectively at 25-30 C than at lower temperatures. The 

mild strain MII-16, produced by nitrous acid mutation of 

strain 1 (Rast, 1972), does not protect tomatoes against all 

other strains of the virus. In some areas where the MII-16 



strain has been used, there has been an increase in the 

prevalence of strain 1. Presently, growers rely primarily 

on resistant varieties to control the disease (Fulton, 

1986) . 
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The use of cross protection to control papaya ringspot 

virus (PRV) was discussed by Costa et al. (1978), and has 

been investigated in Taiwan (Lin, 1980), Brazil (Rezende et 

al., 1981; Rezende,1985), and Hawaii (Yeh and Gonsalves, 

1984; Yeh et al., 1988). A mild strain of PRV, produced by 

nitrous acid treatment, was used in field experiments in 

Taiwan. Papaya plants protected by the mild strain had 82% 

greater fruit yield than unprotected trees, resulting in a 

111% increase in grower income. Protection was effective 

when protected plants were planted in solid blocks, and 

disease pressure within the test orchard was minimized by 

roguing severely infected plants once every 10 days up to 

flowering. However, protection waned under high disease 

pressure by other strains from areas near the protected 

trees. Due to the success of these experiments, more than 

one million papaya seedlings inoculated with the mild strain 

of PRV were planted in the field in 1986 (Yeh et al., 1988). 

In Brazil, in spite of very satisfactory results of 

protection in greenhouse and field experiments, protected 

papaya plants in the field showed mild symptoms for only 6-8 

months. Afterwards the symptoms increased in severity. 

Symptom intensification occurred in a synchronized manner in 

all plants. The change of symptoms was not considered a 



breakdown of protection, but rather a change in the mild 

strains selected from the field due to mutation and 

selective competition (Rezende and Costa, 1987). The 

success of cross protection as a method of controlling 

papaya ringspot in Brazil depends upon finding more stable 

mild strains. 
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Although cross protection has been commercially applied 

to control only two diseases, it may be an effective option 

for control of many other diseases. Cross protection has 

been proposed for control of cauliflower mosaic virus in 

Brussels sprouts (Tomlinson and Shepherd, 1978), CMV in 

tomato (Dodds, 1982; Yoshida et al., 1985) and pepper (Tien 

and Chiang, 1983), TMV in sweet pepper (Goto et al., 1984), 

PVY in tobacco (Latorre and Flores, 1985), tomato aspermy 

virus in tomato (Kuti and Moline, 1986), and GFLV in 

grapevines (Huss et al., 1989). Fulton (1986) also 

suggested that avocado sun blotch, concave gum and psoriasis 

of citrus, and some stone and pome fruit virus diseases may 

be effectively controlled by cross protection. Urban et al. 

(1989) suggested that greater attention to the practical 

application of cross protection could result in control of 

more virus diseases. However, the decision to use this 

method to control virus diseases must be well thought out 

and precautions should be taken to prevent additional 

problems (Fulton, 1986). 
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ABSTRACT 

A "dark green agent" has been suspected to be 

responsible for the low virus·content and resistance to 

virus infection of dark,green areas of the mosaic in tobacco 

mosaic (TMV) infected Nicotiana spp. Concentrated extracts 

from infected and healthy H· sylvestris caused inhibition of 

the infectivity of a TMV strain that produces necrotic 

localized lesions in H· sylvestris. The inhibitory effect 

of the substance present in healthy and 'TMV infected tissues 

was almost completely eliminated when the extract was 
•, 

diluted. Similar inhibition occurred when a concentrated 

extract of heal thy H. taba,cum cv. Xa.nthi -nc was used. 

Attempts to demonstrate the presence of an antiviral factor 

in tissues of H· sylvestris infected with the common strain 
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of TMV wer? not successful. 

Nicotiana sylvestris Spegaz & Comes infected with the 

common strain of tobacco mosaic virus (TMV-C) shows a mosaic 

pattern of distinct dark green areas ,surrounded by light 

green areas. The dark green areas contain much less virus 

than the light green areas (Fulton, 1951; Sherwood, 1981). 

Dark green ·areas have also been shown to be cytologically 

normal and to maintain. normal cytological connections with 

light green areas (Atkinson and Matthews, 1970). Virus-free 

plants have been regenerated from cells excised from dark 

green areas demonstrating that virus~free cells may exist in 

these areas (Murakishi and Carlson, 1976). However, what is 

responsible for.the resistance of dark green areas to viral 

infection andfor replication as compared to neighboring 

light green areas is not knoWn. 

The existence of a dif,fusible "dark green agent" has 

been postulated as responsible for the reduced virus 

concentration of dark green tissues (Atkinson and Matthews, 

1970; Murakishi and Carlson, 1976; Carlson and Murakishi, 

1978). Sherwood (1981) tried to demonstrate the presence of 

a water soluble agent inhibiting viral multiplication in 

dark green tissue of H· sylvestris, but did not obtain 

conclusive results. Gera and Loebenstein (1988) found a 

substance inhibiting virus replication, which they called 

IGI, associated with the resistance of dark green areas 

developed in H· tabacum L. cv. Xanthi-ne infected with 
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cucumber mosaic virus (CMV) strain Price No. 6. The IGI was 

isolated from protoplasts obtained from dark green areas 

tissue and directly from green islands in leaf tissue. 

The occurrence of antiviral compounds induced in plants 

as a result of systemic virus infection has been reported by 

many {Sela and Applebaum, 1962; Sel~ et al., 1964; Chadha 

and MacNeill, 1969; Antignus et al., 1971; Miczynski and 

MacNeill, '1976). Such compounds have been described mainly 

as factors causing inhibition of virus infectivity. 

However, in a few instances they have been indicated to be 

inhibitors of virus multiplication {Sela et al., 1965; 

Chadha and MacNeill, 1969). 

The purpose of this study was to determine if the 

resistance of dark green areas of TMV-C infected H. 

sylvestris could be associated with the presence of an 

"antiviral factor". 

MATERIALS AND METHODS 

Virus strains and test-plants. Two strains of TMV, 

TMV-C which produces a systemic mosaic in H· sylvestris, and 

a petunia strain {TMV-P) which induces the hypersensitive 

reaction characterized by localized necrotic lesions in H· 

sylvestris, were used in this study. TMV-C was maintained 

in H· sylvestris, while TMV-P was propagated in .H. tabacum 

L. cv. Samsun. Purification of the viruses was accomplished 

as described by Sherwood {1981). Test plants were grown in 

commercial soil mix in 10 em plastic pots. They were 

watered once or twice daily and fertilized weekly with a 
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solution of commercial fertilizer (15-30-15). 

Test for an "antiviral factor". The presence of an 

antiviral factor in N. sylvestris infected with TMV-C was 

assayed according to a procedure described by Chadha and 

MacNeill (1969). Plants of H· sylvestris were mechanically 

inoculated with a purified preparation of TMV-C (1 mgjml) at 

the three leaf stage. Inoculated plants and healthy plants 

of the same age were kept in the greenhouse for 6-8 more wk. 

Fifteen grams of leaves from mosaic and healthy plants were 

harvested and frozen at -20 c overnight. Frozen tissues 

(1 gjml) were ground in porcelain mortars in 0.2 M phosphate 

buffer, pH 6.8. The extracted juices were passed through 

cheesecloth and then clarified by centrifugation at 12,000 

rpm for 20 min at 4 c in a Beckman rotor No. JA-17. 

Supernatants were then treated with four changes of equal 

volumes of hydrated calcium phosphate (HCP) prepared 

according to Fulton {1959). The extracts were then 

centrifuged for 20 min as before. Fifteen ml of phosphate 

buffer was similarly treated with HCP as a control. An 

aliquot of all three solutions was taken after each 

treatment with HCP and inoculated onto H· tabacum cv 

Xanthi-ne to test for any possible infectivity still present 

in the saps. The solutions obtained after the fourth 

treatment with HCP (approximately 250 ml each) were flash 

evaporated at 40 C in an Evapotec Rotary Evaporator (Buchi/ 

Brinkmann Instruments, NY), to a volume equals to 2 ml per 

15 g of tissue.c The control buffer was similarly treated. 
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Purified TMV-P was then added to a final concentration of 

o.os mgjml of flash evaporated solution. The antiviral 

activity was assessed by inoculating half-leaves of H. 

sylvestris following a completely randomized design. A 

cotton swab was used to apply the inoculum and then 

inoculated plants were covered with a wet paper towel for 

12-18 hr. Plants were kept in a greenhouse and localized 

necrotic lesions produced by TMV-P were counted 5-7 days 

after inoculation. Data were statistically analyzed and the 

means were separated by the Student-Newman-Keuls test (Steel 

and Torrie, 1981). 

Test for an inhibitor of virus infectivity. studies 

were carried out to assay for an inhibitor of virus 

infectivity in concentrated extracts from healthy H. 

sylvestris and H· tabacum cv. Xanthi-ne. Twelve grams of 

leaves from each species were frozen at -20 C overnight. 

The tissues were then ground in a mortar with 3 ml of 0.1 M 

phosphate buffer, pH 6.8. The sap was passed through 

cheesecloth and then centrifuged at 12,000 rpm for 20 min at 

4 c in a Beckman rotor No. JA-17 to remove plant material. 

The supernatant was saved and portions were diluted to 2:1 

and 1:1 in the same phosphate buffer. Purified TMV-P was 

added to each dilution to a final concentration of 0.02 

mgjml. Phosphate buffer containing the same amount of TMV-P 

was used as control. The presence of an inhibitor of virus 

infectivity was tested using the same experimental design 

for testing an antiviral factor. Counts of localized 



lesions were statistically analyzed as described. 

RESULTS AND DISCUSSION 

Infectious TMV-C was removed from infected tissues of 

N· sylvestris by four treatments with HCP. This was 

confirmed by the absence of local lesions produced by 

extracts inoculated onto N· tabacum cv. Xanthi-ne. HCP 

binds to plant proteins of high molecular weight and to 

virus particles,. 

22 

The production of an antiviral factor in different 

species of plants as a result of infection by TMV or potato 

virus Y has been reported by Sela and Applebaum (1962) and 

Chadha and MacNeill (1969) .. In the present study, three 

independent experiments were carried out to test for the 

presence of an antiviral factor in extracts from mosaic 

tissue of N· sylvestris. Extracts from TMV-C infected 

tissues and from healthy tissues of N· sylvestris caused a 

similar reduction in the average number of necrotic local 

lesions produced by TMV.-P inoculated to N· sylvestris 

(Table 1). The reduction of infectivity of TMV-P caused by 

extract from healthy tissues indicates the presence of an 

inhibitor of virus infection in N· sylvestris. 

Extracts from many healthy plants are known to contain 

substances which inhibit infection by viruses. For example, 

Phytolacca decandra L. (Allard, 1918) and Spinacia oleracea 

L. (Grant, 1934) contain substances which, when extracted 

and mixed with virus inoculum, inhibit infection of such 

plants as tobacco and N· glutinosa L. These inhibitors, 
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however, are frequeptly effective only when the virus is 

being inoculated to other species (Matthews, 1981). This 

was not the case for the inhibitor present in extracts from 

healthy N. sylvestris, since it inhibited infection of the 

same species of plant. Also, this inhibitor was only 

detected in a highly concentrated extract from that species 

{Table 2). As dilution of the extract increased to 2:1 or 

1:1, the inhibitory effect of the crude sap was almost 

completely eliminated. The same inhibitory activity was 

found in a concentrated extract from healthy H. tabacum cv. 

Xanthi-ne {Table 2). 

Antignus et al. (1971) pointed out that a major problem 

in assaying crude antiviral factor preparations for 

antiviral activity is the presence of inhibitory substances 

other than the antiviral factor present in the plant 

extract. They also showed that dilution, precipitation with 

95% ethanol or ammonium sulfate, or filtration through a 

membrane were effective in removing inhibitors from TMV 

infected H· glutinosa and concentrating the antiviral 

factor. Dilution of the extracts after flash evaporation 

did not eliminate the effect of the natural inhibitor 

present in H. sylvestris, which could be masking the 

activity of an antiviral factor {Table 3). The dilution of 

the extracts eliminated the effect of the inhibitor as well 

as the activity of any possible antiviral factor that could 

have been left over in the extracts from infected tissues. 

These experiments were not continued due to the lack of 



evidence for the occurrence of an antiviral factor in tl· 

sylvestris infected with TMV-C. 
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TABLE 1. Inhibition of the infectivity of a necrotic lesion 
producing strain of tobacco mosaic virus (TMV-P) on 
Nicotiana sylvestris by extracts from leaves of healthy H· 
sylvestris and leaves of H· sylvestris infected with the 
common strain of TMV (TMV-C). 

Treatment 

Control (buffer) 

Healthy leaf extract 

Infected leaf extract 

Lesions per 
half-leaf&·b 

154.5 a 

69.6 b 

55.4 b 

Relative 
infectivity 

% 
100.0 

45.0 

35.8 
a Average of 54 half-leaves from 3 independent experiments. 

b Means followed by the same letter ~re not significantly 
different (Student-Newman-Keuls test, P=O•Ol). 
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TABLE 2. Reduction of the infectivity of'a necrotic lesion 
causing strain of tobacco mosaic virus (TMV-P) on Nicotiana 
sylvestris by highly concentrated extracts from healthy 
leaves of H. sylvestris and H. tabacum cv. Xanthi-ne. 

Treatment 

Control (buffer) 

Dilution 1:1 (v:v) 
(extract:buffer) 

Dilution 2:1 (v:v) 
(extract:buffer) 

Dilution 4:1 (w:v) 
(tissue:buffer) · 

Extract from 
H· sylvestris 

Extract from 
H· tabacum cv. 
Xanthi-ne 

. Lesions/ Relative Lesions/ Relative 
half-leaf~ infec- half-leafc infec-

tivity % tivity % 

261.3 a 100.0 221.9 a 100.0 

228.6 a 87.4 187.5 a 84.5 

166.5 ab 63 .. 7 175.8 a 79.2 

114 .1 . b 43.6 40.3 b 18.1 

a Average of 24 half-leaves of H. sylvestris from 3 
experiments . · 

b Means followed by the same letter are pot significantly 
different (Student-Newman-Keuls test, P=0.01). 

c Average of 18 half-leaves'of H. sylvestris from 2 
experiments. 
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TABLE 3. Reduction of the infectivity of a necrotic lesion 
causing strain of tobacco mosaic virus (TMV-P) on Nicotiana 
sylvestris by highly concentrated extracts from healthy 
leaves of H· sylvestris and leaves of H. sylvestris infected 
with the common strain of TMV (TMV-C). 

Treatment Local lesions/half-leaf~ 
Undilutedc 1:2 1:4 

dilution dilution 
Control (buffer) 163.6 a 184.8 a 238.0 a 

Healthy leaf extract 47.8 b 82.8 a 137.1 a 

Infected leaf extract 38.5 · b 116.8 a 166.0 a 
• Average of 6 hal.f-leaves H~ sylvestris from one 

experiment. 

1:8 
dilution 

183.8 a 

151.1 a 

130.0 a 

b Means followed by the same letter within a column are not 
significantly different (Student-Newman-Keuls test, 
P=O. 01). -

c Extracts obtained after flash evaporation. 
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ABSTRACT 

Dark and light green areas of whole leaves of H· 

sylvestris systemically infected with the common strain of 

tobacco mosaic virus (TMV-C) are susceptible and resistant, 

respectively, to superinfection by a necrotizing strain 

TMV-P. Protoplasts from dark and light green areas were 

receptive to the attachment and/or uptake of the 32P labeled 

TMV-P. Protoplasts from dark and light green areas were 

also superinfected with virions or RNA from TMV-P as 

determined by ELISA and an infectivity test. Lower yield of 

TMV-P was estimated in superinfected protoplasts from light 

green areas as compared to that in superinfected protoplasts 

from dark green areas after incubation for 72 hr. 

Protoplasts from dark green areas could not be superinfected 
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with the same mosaic causing strain (TMV-C). The breakdown 

in protection in experiments with isolated protoplasts from 

light green areas may be a result of the uneven distribution 

of TMV-C in the leaves. 

Strains of TMV have been used for many years to study 

cross protection in Nicotiana sylvestris Spegaz & Comes 

(Kunkel, 1934; Fulton, 1951; Sherwood and Fulton, 1982; 

Sherwood, 1987b; Rezende and Sherwood, 1990). Plants 

inoculated with the type or common strain of tobacco mosaic 

virus (TMV-C) develop a mosaic symptom characterized by dark 

green areas surrounded by a light green background. Other 

strains of TMV can be characterized by development of 

necrotic lesions on the inoculated leaves. 

Fulton (1951) found that H· sylvestris systemically 

infected with strains of TMV causing mosaic were 

superinfected in the dark green areas, but not in the light 

green areas, by necrotizing strains of TMV. He also found 

that the inoculation of mosaic leaves with the strain of TMV 

that caused mosaic did not increase resistance of dark green 

areas to superinfection by necrotic type strains. From this 

he concluded that there were no virus free cells in the 

mosaic leaves and that superinfection occurred in cells 

already containing a mosaic type strain. The possible 

occurrence of virus-free cells in a mosaic leaf was 

demonstrated by Murakishi and Carlson (1976) by regeneration 

of virus-free plants from leaf pieces excised from dark 
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green areas of H· tabacum L. cv. White Burley infected with 

the Vulgare strain of TMV. Sherwood and Fulton (1982) 

showed that both dark and light green areas of mosaic leaves 

of N. sylvestris were susceptible to superinfection with the 

RNA from necrotizing strains of TMV. They concluded that 

protection in light green areas of H· syivestris with mosaic 

could result from the prevention of uncoating of the 

challenge st~ains. This conclusion is based on the 

assumption that when the challeng~ strain is inoculated as 

virions it may enter cells of light green areas of the 

mosaic leaf but is unable to initiate the replicative cycle. 

Rezende and Sherwood (1990) found that dark green areas 

of H· tabacum cvs. Samsun and Xanthi infected with 

TMV-C were more susceptible than light green areas to 

superinfection with a serologically related strain of TMV 

(TMV-P). Plants were similarly susceptible when TMV-P was 

the protecting strain and TMV-C was used as the challenge. 

Once the challenge strain replicated in the inoculated areas 

there was no prevention of systemic movement. These events 

led to a breakdown in protection. This indicates that 

protection in this system is related to an early event in 

the infection process rather than to prevention of systemic 

movement of the challenge strain. 

Plant protoplasts have bee~ used in the study of 

mechanisms of plant virus infection and replication, and 

protection between viruses. Although criticisms of the use 

of protoplasts have been raised (Coutts, 1980), classical 
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cross protection can be observed using protoplasts (Otsuki 

and Takebe, 1976; Barker and Harrison, 1978). Protoplasts 

from transgenic plants expressing the TMV coat protein gene 

have also been used to study the mechanisms of coat protein 

mediated protection (Register and Beachy, 1988). 

Although cells from light and dark green areas of N· 

sylvestris systemically infected with TMV have been 

cultured, protoplasts from these areas have not been used to 

study the events of cross protection. In this study we 

investigated the uptake and superinfection of TMV-P in 

protoplasts from dark and light green areas from N· 

sylvestris infected with TMV-C. Also, studies were also 

done to test the susceptibility of protoplasts from dark 

green areas to superinfection with the same mosaic causing 

strain. 

MATERIALS AND METHODS 

Virus strains and purifications. The common strain of 

TMV (TMV-C) which produces systemic mosaic in N· sylvestris, 

and a strain originally isolated from petunia (TMV-P) which 

causes necrotic lesions in N. sylvestris were used in this 

study (Sherwood and Fulton, 1982). TMV-C was purified from 

N· sylvestris and TMV-P was purified from N· tabacum cv. 

Samsun by differential centrifugation as previously 

described (Sherwood, 1981). Viral nucleic acid (RNA) from 

both strains was isolated by phenol extraction using the 

method of Ralph and Berquist (1967). RNA was stored frozen 

at -70 C in 1% KH2P04 • 
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Plants and growing conditions. Seeds of H· sylvestris 

were sown in a commercial soil mix in 10 em plastic pots. 

After 2-3 wk plants were individually transplanted to the 

same size pots containing the same commercial soil mix. 

Plants were grown ~n the greenhouse at 25-28 c, watered once 

or twice daily, and fertilized weekly with a commercial 

fertilizer (15-30-15) dissolved in water. Insects were 

controlled with Pydrin as needed. 

Labeling of virions with 32P. Seeds of tomato 

(Lycopersicum esculentum Mill. cv. Rutgers) were germinated 

on moist filter paper in a 10 em Petri dish. Germinated 

seeds were transferred to pots of vermiculite that had 

previously been steamed for 20 min. Pots were placed in a 

growth chamber (Percival) at 25 C in continuous light at 

approximately 6000 lux. Seedlings were watered once every 

day with Hoagland's miner~! salt solution (Hoagland, 1920) 

deficient in phosphorous. TWo seedlings with fully expanded 

opposite leaves were'mechanically inoculated with purified 

TMV-C or TMV-P diluted to 0.2 mgfml in 0.01M phosphate 

buffer, pH 7.0. Developing true leaves were removed four to 

five days after inoculation. The petiole end of the leaves 

was immediately immersed in 250 ~1 of an aqueous solution 

containing 5 mci of 32P as orthophosphate, HCl free and 

carrier free (Amersham, PBS.13A) in a plastic tube. 

Distilled water was added to the tube after leaves had taken 

up the phosphorous solution. Leaves were incubated for 

72 hr in the same growth chamber as above. The leaves were 
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then harvested and the virus was purified. Radioactivity of 

purified virus was measured in a Quick-count Bioscan (QC 

2000). For TMV-C it was 3,077 cpmf~g of virus, while for 

TMV-P it was 27,181 cpmf~g of virus. 

Production of cross absorbed IqG. Antisera against 

TMV-C and TMV-P were produced by injecting rabbits 

intramuscularly twice weekly for 5 wk with 1 mg of purified 

virus with Freund's complete adjuvant. The IgG was isolated 

from antisera that had microprecipitin titer of 1024. 

Antiserum against TMV-C was cross absorbed with an equal 

volume of crude sap containing TMV-P diluted 1:10 in 

phosphate buffered saline {PBS). Antiserum against TMV-P 

was similarly cross absorbed with TMV-C. Cross absorbed 

antisera were individually precipitated with an equal volume 

of saturated ammonium sulfate, pH 7.2. The IgG fraction of 

each antiserum was then purified by ion-exchange 

chromatography using a DEAE-Trisacryl-M column washed with 

35 mM NaCL, 25 mM Trisma-Base, pH 8.8. IgG was stored 

frozen at -20 c. Anti-TMV-C IgG and anti-TMV-P IgG were 

also conjugated to alkaline phosphatase (Sigma Type VII, 

P-5521) using glutaraldehyde (Clark and Adams, 1977). 

Conjugated IgG was stored at 4 C. 

Preparation of protoplasts. Fully expanded leaves from 

7-8 week-old healthy and TMV-C infected.H. sylvestris were 

used for isolation of mesophyll protoplasts. Dark and light 

green areas from mosaic leaves were separated with a razor 

blade. Leaves were surface sterilized by immersing them 
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successively in 70% ethanol for 2 min, then 2 min in 10% 

sodium hypochlorite (Clorox). They were then rinsed with 3 

changes of sterile distilled water. Subsequent steps were 

conducted in a laminar flow hood. The lower epidermis of 

the leaves was gently scraped with a wire brush. Scraped 

leaves were placed in Petri dishes with 25 ml of 13% 

mannitol for about 30 min. The mannitol solution was then 

replaced by 25 ml of 13% mannitol containing 1% cellulase 

(Calbiochem, 219466), 0.25% macerozyme (Calbiochem, 441201), 

and 0.25% bovine serum albumin (Sigma, A-4503), pH 5.8. 

Leaves were incubated overnight at room temperature in the , 

dark. suspensions of protoplasts were filtered through a 

nylon filter (70 ~ mesh) to remove large debris. Filtrates 

were transferred to 50 ml screw-cap centrifuge tubes and 

protoplasts were sedimented at 500 rpm, .for 4 min in a 

benchtop IEC HN-S centrifuge (Damon). The supernatant was 

discarded and protoplasts were resuspended in 4 ml of 13% 

mannitol. Protoplast suspensions were transferred to 

13 X 100 mm sterile glass tubes. The suspensions were 

underlaid with 2 ml of 24.3% sucrose solution and then 

centrifuged for 10 min at 500 rpm. Protoplasts collected at 

the interface were transferred to beakers containing 5 ml of 

13% mannitol solution. Protoplasts from healthy tissue, 

dark green and light green area tissues were adjusted to a 

concentration of 3 x 105 protoplastsfml. Viability of 

protoplasts was tested by staining with 1% Evans blue 

prepared in 13% mannitol. Only suspensions containing at 



least 85% viable protoplasts after isolation were used in 

further experiments. 
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Inoculation of protoplasts. Inoculation was done with 

slight modification of the procedure of Loesch-Fries and 

Hall (1980). Pellets of 3 X lOs protoplasts from healthy 

tissues (control), dark green and light green area tissues 

were resuspended in 25 ~1 of 13% mannitol containing 5 ~g of 

virions (TMV-P or TMV-C). The mixtures were held for a few 

sec and transferred to glass tubes containing 200 ~1 of 3 mM 

CaC12 and 3 mM 2[N-Morpholino]ethanesulfonic acid {MES) 

containing 40% (wfv) polyethylene glycol (PEG 1540, 

Polysciences, Inc.), pH 5.8. The contents were mixed well 

and held for 10 sec. One ml of 13% mannitol was added and 

tubes were incubated for 20 min at room temperature. 

Protoplasts were sedimented at 500 rpm for 4 min and washed 

three times in 13%' mannitol at room temperature. The same 

procedure was used to inoculate protoplasts with 32P labeled 

virions. 

Inoculation with viral nucleic acid (RNA) was done by 

resuspending 3 X lOs protoplasts in 10 ~1 of 1% KH2P04 

containing 0.5 ~g of RNA from TMV-C or TMV-P. The mixtures 

were immediately transferred to glass tubes containing 100 

~1 of 40% PEG prepared as above. The mixtures were held for 

10 sec, and then 1 ml of 13% mannitol was added. 

Protoplasts were incubated on ice for 20 min and then washed 

once in 13% mannitol. Mock inoculated protoplasts from 

healthy tissues, dark green and light green area tissues 
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were used as controls for all experiments. 

Culture and sampling of inoculated protoplasts. After 

washing, protoplasts were resuspended in culture medium 

(Aoki and Takebe, 1969), containing 13% mannitol and 

200 ~gfml of carbenicillin (3 X 105/ml). Four ml of 

protoplast suspension was transferred to a 25 cm2 

polystyrene tissue culture flask (Corning) and incubated for 

72 hr at 25 c in continuous light at approximately 2000 lux. 

Every 12 hr flasks were gently swirled to prevent 

protoplasts from attaching to the bottom surface of the 

flasks. 

Samples of 600 ~1 were taken from inoculated and mock 

inoculated protoplasts at zero, 24, 48, and 72 hr after 

inoculation. Protoplasts were sedimented in microcentrifuge 

tubes at 1000 rpm for 5 min in a microfuge (Savant). 

Protoplasts were resuspended in 600 ~1 of PBS containing 

0.05% Tween (PBS-Tween) and 2% polyvinylpyrrolidone (PVP). 

Samples were frozen at -20 C for ELISA and infectivity 

tests. 

Fluorescent-antibody staining of infected protoplasts. 

After incubation for 72 hr in culture medium, protoplasts 

were prepared for immunofluorescence microscopy. Glass 

slides were coated with Mayer's egg albumin. One hundred 

microliters of protoplast suspension was centrifuged at 

1500 rpm for 3 min. All but 10 ~1 of the supernatant was 

discarded. Protoplasts were resuspended in the remaining 

10 ~1 of supernatant, placed on the slides and quickly dried 
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,with warm air. Protoplasts were fixed in acetone for 30 min 

and then allowed to dry at room temperature. After the 

slides were washed in PBS for 15 min, 100 ~1 of the cross 

absorbed antiserum diluted 1:500 in PBS was added to the 

slides. Slides were incubated in a moist chamber for 2 hr 

at 36 c, and then washed in PBS for 15 min. One hundred 

microliters of rabbit IgG conjugated with fluorescein 

isothiocyanate (FITC) (Sigma, F-0382), diluted 1:100 in PBS, 

was added to the slides. Slides were incubated in a moist 

chamber for 2 hr at 30 C and then were washed 15 min in PBS. 

A few drops of glycerol in PBS (1:9 v:v) were placed on the 

slides, the cover slips were mounted and protoplasts were 

observed with an Olympus BH-2 microscope with UV. 

Detection of virus attachment. Protoplasts inoculated 

with 32P labeled TMV-P or TMV-C were washed as described to 

remove virions remaining in solution after inoculation. 

After the third washing, pellets of 3 X 105 protoplasts were 

resuspended in 1 ml of 13% mannitol. Protoplasts inoculated 

with unlabeled virions were used as control. Radioactivity 

of inoculated and control samples was measured in a Quick­

count Bioscan (QC 2000) to determine attachment and/or 

uptake of virions in protoplasts. 

Enzyme linked immunosorbent assay (ELISA). The double 

sandwich ELISA procedure used was similar to that of Clark 

and Adams (1977). ELISA plates were coated with 10 ,~gjml 

anti-TMV-P IgG or 1 ~g/ml anti-TMV-C IgG diluted in 0.05 M 

carbonate buffer, pH 9.6. Plates were incubated for two hr 



at room temperature. Plates were rinsed 3 times with PBS­

Tween. Samples of protoplasts were thawed at room 

temperature and then added to the plates (100 ~lfwell). 
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When TMV-C was the challenge strain, samples of protoplasts 

were thawed, diluted to 1:50 in PBS-Tween containing PVP and 

then added to the plates. Known concentrations of the 

challenge strain being tested were added to other wells in 

the same ELISA plate. After incubation at 4 c overnight, 

plates were rinsed 3 times with PBS-Tween. Alkaline 

phosphatase labeled anti-TMV-P IgG diluted 1:500 or alkaline 

phosphatase labeled anti-TMV-C IgG diluted 1:800 in PBS­

Tween containing 2% PVP and 0.2% ovalbumin was added to the 

plates. After incubation for 5 hr at room temperature, 

plates were rinsed as above and p-nitrophenyl phosphate 

(Sigma, N-2765) dissolved in diethanolamine substrate 

buffer, pH 9.8 was added. After incubation for varied 

times, plates were read in a BIO-TEK-EIA plate reader (BIO­

TEK Instrument, Inc, Burlington, VT). 

Quantitation of the challenge strain produced in 

protoplasts. Yield of TMV-P in superinfected protoplasts 

was estimated by means of absorbance values from ELISA. 

Absorbance values obtained for inoculated protoplasts from 

healthy tissue and from dark and light green area tissues 

were subtracted from the absorbance values for their 

respective mock inoculated samples. This procedure was used 

to eliminate absorbance due to nonspecific reaction between 

the anti-TMV-P IgG and the TMV-C strain already present in 
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protoplasts ·from dark and light green areas. Absorbance 

values obtained for the standard concentrations of TMV-P 

(32, 64, 128, 256, 512, 1024 and 2048 ng of virusfml) were 

analyzed by a multiple linear regression analysis (Steel and 

Torrie, 1980). Subtracted absorbance values were then 

substituted into the regression equation in order to 

estimate the concentration of TMV-P in each type of 

protoplasts at different intervals after inoculation. The 

same procedure was applied to estimate the concentration of 

TMV-C when it was the challenge strain. The standard 

concentrations of TMV-C used were 16, 32, 64, 128, 256, 512 

and 1024 ng of virusfml. 

Infectivity tests. Samples from mock inoculated 

protoplasts and from protoplasts inoculated with TMV-P were 

diluted 1:3 in 0.2 M phosphate buffer, pH 6.8. Each sample 

was then mechanically inoculated on 3 half-leaves of N­

sylvestris to test the infectivity of TMV-P produced in 

superinfeted protoplas~s. Lesions were counted 4-5 days 

after inoculation. When.TMV-C was the challenge strain, 

samples were diluted 1:50 in the same buffer and then 

inoculated on 3 half-leaves of H· tabacum cv. Xanthi-ne. 

Lesions were counted 4-5 days after inoculations. Lesions 

produced by samples from inoculated protoplasts were 

subtracted from lesions produced by samples from mock 

inoculated protoplasts in order to determine superinfection 

by TMV-C. 
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Quantitation of TMV-C in protoplasts and tissues. 

samples of uninoculated protoplasts (3 x 105/ml) from dark 

and light green areas were diluted 1:100 in PBS Tween 

containing PVP and tested by ELISA. Concentration of TMV-C 

was estimated using a linear regression equation obtained by 

plotting the absorbance values from ELISA against standard 

concentrations of TMV-C (16, 32, 64, 128, 256, 512 and 1024 

ng of virusfml) . 

Leaf discs were collected from dark and light green 

areas with a 2 mm diameter cork borer. Discs were 

individually ground in PBS Tween .containing PVP. Samples 

from dark green areas were diluted 1:6000 to 1:8000, while 

samples from light green area,s ~ere diluted 1:17000 to 

1:25000. Samples were individually tested on ELISA and 

TMV-C concentration was estimated as before. 

· RESULTS 

Attachment of radiolabeled TMV to protoplasts. When 

protoplasts from dark and light green areas from H. 

sylvestris systemically infected with TMV-C were inoculated 

with 32P labeled TMV-P, the radioactivity counts indicated 

that protoplasts were as receptive to virus binding andjor 

uptake as compared to protoplasts from healthy tissues 

(Table 4). The same receptivity was also found when 

protoplasts from both origins were inoculated with 32p 

labeled TMV-C (Table 5). 

Infection and superinfection of protoplasts. 

Protoplasts from dark and light green areas from H. 
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sylvestris systemically infected with TMV-C did not have 

complete protection against superinfection with TMV-P, but 

showed different levels of susceptibility to superinfection 

(Table 6). TMV-P antigen was first detected in protoplasts 

from dark green areas 24 hr after challenge inoculation and 

showed a gradual accumulation until 72 hr of incubation. 

The same was found with protoplasts from healthy tissue used 

as controls for the inoculation. Protoplasts from light 

green areas, on the other hand, showed partial protection to 

superinfection with TMV-P'virions. Such partial protection 

was characterized by a delay of 24 hr for detection of 

measurable amount of TMV-P antigen in superinfected 

protoplasts and by a lower estimated yield of TMV-P compared 

to the yield of TMV-P in protoplasts from dark green areas 

and from healthy tissue. The susceptibility of protoplasts 

from light green areas to superinfection with TMV-P RNA was 

higher than that to TMV-P virions (Table 7). TMV-P antigen 

was detected in these protoplasts 24 hr after inoculation, 

and a higher accumulation of TMV-P antigen was found after 

incubation for 72 hr. The efficiency of inoculation of 

protoplasts, tested by the immunofluorescent assay, showed 

that when TMV-P virions were used as inoculum an average of 

80% of protoplasts from healthy tissue (control) were 

infected after 72 hr of incubation. When TMV-P RNA was used 

as inoculum, an average of 50% of infected protoplasts was 

found after incubation for 72 hr. The immunofluorescent 

assay was also used to estimate the percentage of 



protoplasts from dark and light green areas superinfected 

with TMV-P. However, because of cross reaction between 

antiserum to TMV-P and antigen to TMV-C the test was 

ineffective. The problem of cross reaction was not 

eliminated even when antiserum cross absorbed with the 

heterologous virus was used. Cross reaction was not a 

limiting factor for the ELISA tests. 
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Results of infectivity tests on H· sylvestris showed 

that protoplasts from dark and light green areas 

superinfected with either TMV-P virions or RNA contained 

infectious TMV-P progeny based on the necrotic lesions 

produced on the inoculated leaves (Tables 8 and 9). The 

lower number of local lesions produced by samples from 

superinfected protoplasts from dark and light green areas 

was a result of the interference due to the presence of 

TMV-C in the inoculum. Such interference between strains of 

a virus is a well known phenomenon occurring when a mosaic 

causing strain is inoculated in a mixture with a necrotic 

lesion forming strain and decreases the number of lesions 

produced (Sadasivan, 1940; Sherwood and Fulton, 1983). 

Attempts to superinfect protoplasts from dark and light 

green areas of TMV-C infected H· sylvestris with the same 

mosaic causing strain (TMV-C) gave inconclusive results. 

ELISA tests and infectivity assays on H· tabacum cv. 

Xanthi-ne were not sensitive enough for detection of 

additional replication of TMV-C. 



43 

concentration of THV-C in protoplasts and tissues. 

Quantitative analysis of TMV-C antigen present in samples of 

protoplasts from dark and light green areas and from leaf 

pieces of dark and light green areas from H· sylvestris 

showed that the concentration of virus is not homogeneous 

(Table 10 and Fig. 1). The concentration of TMV-C in 

protoplasts from dark green areas varied from 1.017 to 

51.870 ~g/3 x lOs protoplasts, while in protoplasts from 

light green areas it varied from 6.381 to 155.57 ~g/3 x lOs 

protoplasts (Table 10). This wide range in TMV-C 

concentration in both types of protoplasts results in some 

protoplasts from light green areas having a virus content 

similar to that present in protoplasts from dark green 

areas. The same variability in the concentration of TMV-C 

was found in tests with leaf discs obtained from dark and 

light green areas of mosaic leaves of H· sylvestris (Fig. 

1). The majority of samples from dark green areas fell 

within the range of below detectable level (BDL) to 

8-9 mg of TMV-C/g of tissue, while samples from light green 

areas showed concentration of virus varying from BDL to 

21 mg/g of tissue. Overlapping concentrations of TMV-C in 

leaf discs from dark and light green areas were found within 

the range of BDL to 9 mg of virusfg of tissue. 

Concentration of TMV-C below detectable level in some leaf 

discs from dark and light green areas may be attributed to 

the dilution used for the samples. 
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DISCUSSION 

The experiments on superinfection of protoplasts from 

dark and light green areas from N· sylvestris indicated that 

protoplasts from dark and light green areas were receptive 

to the challenge strain. The challenge virus could also 

replicate in the protoplasts from dark and light green 

areas. 

The use of radioactively labeled virions to show 

attachment of virus particles to plant mesophyll protoplasts 

was reported by Zhuravlev et al. (1975) and Roenhorst et al. 

(1988). The results of this study suggest that TMV-C 

infected protoplasts from dark and light green areas were 

not protected from the challenge strain. Attachment or 

uptake was not specific since TMV-P and.TMV-C attached to 

protoplasts already infected with TMV-C. Whether the 

challenge strain only bound or entered the protoplasts 

20 min after indculation cannot be determined from these 

experiments. However, since protoplasts from dark and light 

green areas were superinfected with TMV-P, it is likely that 

at least part of the measured radioactivity,could have come 

from virus particles within the protoplasts. Also, several 

washings of the protoplasts did not remove the labeled 

virions. 

Our finding of the protection in protoplasts from light 

green areas from TMV-C infected N· sylvestris is not 

consistent with that found by Fulton (1951) and Sherwood and 

Fulton (1982) in whole leaves. They found that light green 
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areas on whole leaves offered full protection against 

infection by TMV-P and other necrotic lesion forming strains 

of TMV. The same type of variation on protection was also 

found by Barker and Harrison (1978) in studies of cross 

protection between strains s and E of raspberry ringspot 

virus (RRV) at the level of whole plants and protoplasts. 

They found that recovered leaves of H· benthamiana Domin 

systemically infected with RRV-S were protected against 

infection by RRV-E. However, when protoplasts from 

recovered leaves were inoculated with RRV-E, protection was 

partial, even though at least 98% of the protoplasts 

contained RRV-S antigen before challenge inoculation. In 

experiments with transgenic tobacco plants expressing coat 

protein, where protection is not complete, protection 

against TMV infection is similar to the protection expressed 

in protoplasts from transgenic plants (Register and Beachy, 

1988) . 

An intriguing question from our experiments is what 

makes protoplasts from light green areas from TMV-C infected 

H· sylvestris partially protected against superinfection by 

TMV-P, while light green areas on whole leaves were fully 

protected against TMV-P. Sherwood and Fulton (1982) found 

that the resistance of light green areas on whole leaves of 

H· sylvestris to superinfection by TMV-P and other 

necrotizing strains of TMV was a result of the prevention of 

uncoating of the challenge strain. They suggested that the 

prevention of uncoating might be regulated by the kind and 
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amount of viral coat protein already present in the cell. 

This suggestion was based on the knowledge that the average 

concentration of TMV in light green areas is higher than the 

concentration of virus in dark green areas (Fulton, 1951; 

Atkinson and Matthews, 1970; Sherwood, 1981). Work with 

transgenic tobacco plants that express the TMV coat protein 

gene showed that the degree of resistance to TMV infection 

was directly related to the amount of coat protein 

accumulated in the plants (Nejidat and Beachy, 1989). In 

the present study it was also observed that the average 

concentration of TMV-C in protoplasts from light green areas 

was higher than in protoplasts from dark green areas. In 

addition, it was also found that even within dark and light 

green areas TMV-C was not homogeneously distributed. Tests 

with leaf discs revealed that some samples from light green 

areas had concentration of TMV-C within the range of virus 

concentration in dark green areas, which are known as being 

susceptible to superinfection (Fulton, 1951; Sherwood and 

Fulton, 1982). Therefore, it is suggested that the uneven 

distribution of TMV-C in cells of light green areas may 

result in some cells with a virus concentration lower than 

the amount required to prevent superinfection. However, 

this breakdown in protection can be observed in experiments 

with isolated protoplasts from light green areas but may not 

be visibly expressed in light green areas on leaves 

inoculated by mechanical means. The absence of visible 

superinfection on light green areas on whole leaves of H· 
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sylvestris may be attributed to subliminal infection, in 

which the challenge strain replicates in individual cells on 

inoculated leaves, but remains restricted in its 

translocation to neighbor cells. Subliminal infections have 

been found to occur in other host-virus interactions 

(Zaitlin and Keswani, 1964; Cheo, 1970; Sulzinski and 

Zaitlin, 1982). 

The absence of the cell wall in experiments with 

protoplasts may be another factor that renders protoplasts 

more susceptible to superinfection., The cell wall is 

apparently the first barrier that a virus encounters during 

the inoculation process and cannot be dismissed in studies 

of cross protection. Development of techniques for 

inoculation and culture of isolated cells would open an 

opportunity to investigate the involvement of the cell wall 

in the process of adsorption of the challenge strain and 

subsequent superinfection of previously infected cells. 
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TABLE 4. Attachment or uptake of a necrotic lesion causing 
strain of tobacco mosaic virus (TMV-P) labeled with 32P to 
protoplasts from healthy Nicotiana sylvestris and to 
protoplasts from dark and light green areas from H. 
sylvestris infected with the common strain of TMV {TMV-C). 

Origin of Fraction Radioacti vi tr 
protoplasts 

cpm/3 x 105 protoplasts 
Healthy Protoplasts after 1928 ± 512 
{control) 20-min inoculation 

Solution from 14 ± 4 
3rd washing 

Dark green Protoplasts after 1574 ± 408 
areas 20-min inoculation 

Solution from 15 ± 3 
3rd washing 

Light green Protoplasts after 2859 ± 672 
20-min inoculation 

Solution from 17 ± 4 
3rd washing 

• Average of three experiments. 
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TABLE 5. Attachment or uptake of the common strain of 
tobacco mosaic virus (TMV-C) labeled with 32P to protoplasts 
from healthy Nicotiana sylvestris and to protoplasts from 
dark and light green areas from H· sylvestris infected with 
TMV-C. 

origin of Fractions Radioacti vi tya 
protoplasts 

cpm/3 x 105 protoplasts 
Healthy Protoplasts after 3884 ± 818 
(control) 20-min inoculation 

Solution from 68 ± 23 
3rd washing 

Dark green Protoplasts after 3285 ± 522 
areas 20-min inoculation 

Solution from 43 ± 15 
3rd washing 

Light green Protoplasts after 2494 ± 1359 
areas 20-min inoculation 

Solution from 43 ± 8 
3rd washing 

a Average of three experiments. 
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TABLE 6. superinfection of protoplasts from dark and light 
green areas from Nicotiana sylvestris infected with the 
common strain of tobacco mosaic virus (TMV-C) with the 
necrotic lesion causing strain of TMV (TMV-P). 

Origin of Exp. 
protoplasts 

Healthy 
(control) 

Dark 
green 
areas 

Light 
green 
areas 

I 
II 

III 
IV 

Ave. 
S.D. 

I 
II 

III 
IV 

Ave. 
S.D. 

I 
II 

III 
IV 

Ave. 
S.D. 

Yield of TMV-P (~g)/3 X 105 protoplasts 

0 h 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000· 
0.000 
0.000 
0 0 000, 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

24 h 

1.365 
1.506 
0.465 
1.155 
1.122 
0.461 

0.804 
0.882 
0.282 
0.264 
0.5'58 
0.330 

0.000 
0·. 000 
0.000 
0.000 
0.000 
0.000 

48 h 

1.773 
1. 713 
2.142 
2.412 
2.010 
0.328 

1. 080 
1.230 
0.027 
0.567 
0.726 
0.545 

0.330 
0.552 
0.000 
0.021 
0.225 
0.264 

72 h 
1.824 
1.854 
1. 686 
1.956 
1.830 
0.111 

1. 572 
1. 713 
1.233 
1. 323 
1. 460 
0.221 

0.729 
0.843 
0.000 
0.219 
0.448 
0.403 
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TABLE 7. Superinfection of protoplasts from dark and light 
green areas from Nicotiana sylvestris infected with the 
common strain of tobacco mosaic virus (TMV-C) with RNA from 
the necrotic lesion causing strain of TMV (TMV-P). 

Origin of Exp. Yield of TMV-P {JJg)/3 X 105 protoplasts 
protoplasts 

0 h 24 h 48 h 72 h 
Healthy I 0.000 0.852 1.446 1.692 
(control) II o.ooo 0.390 1.029 1.455 

III 0.000 1.467 1.815 2.079 
Ave. o.ooo 0.903 1.430 1. 742 
S.D. 0.000 0.540 0.393 0.314 

Dark I 0.000 0.306 0.537 1.047 
green II 0.000 0.000 0.000 0. 351 
areas III 0.000 1.521 0.990 1.563 

Ave. 0.000 0.609 0.509 0.987 
S.D. 0.000 0.804 0.495 0.608 

Light I 0.000 0.027 0.198 0.573 
green II 0.000 0.000 0.000 0.000 
areas III 0.000 0.444 1.683 1. 377 

Ave. 0.000 0.157 0.627 0.650 
S.D 0.000 0.248 0.919 0.691 
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TABLE 8. Infectivity of the progeny of the necrotic lesion 
causing strain of tobacco mosaic virus {TMV-P) produced in 
protoplasts from healthy Nicotiana sylvestris and in 
protoplasts from dark and light green areas from H· 
sylvestris infected with the common strain of TMV {TMV-C) 
and superinfected with TMV-P virions. 

Origin of 
protoplasts 

Healthy 
(control) 

Dark 
green 
areas 

Light 
green 
areas 

Exp. 

I 
II 

III 
IV 

Ave. 
S.D. 

I 
II 

III 
IV 

Ave. 
S.D. 

I 
II 

III 
IV 

Ave. 
S.D. 

No. of loca,l lesions on 3 half-leaves 
of Nicotiana sylvestris 

0 h 24 h 48 h 72 h 
0.0 88.0 431.0 214.0 
0.0 85.0 414.0 152.0 
0.0 60.0 22.0 150.0 
0.0 151.0 55.0 58.0 
0.0 96.0 230.5 143.5 
0.0 38.7 222.2 64.3 

0.0 24.0 142.0 31.0 
0.0, 38.0 104.0 135.0 
0.0 9.0 35.0 1.0 
0.0 43.0 56.0 9.0 
o.o 28.5 84.2 44.0 
0.0 15.2 48.1 61.9 

0.0 0.0 5.0 4.0 
0.0 0.0 4.0 5.0 
0.0 0.0 o.o 0.0 
0.0 o.o 2.0 0.0 
0.0 o.o 2.8 2.3 
0.0 0.0 2.2 2.6 
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TABLE 9. Infectivity of the progeny of the necrotic lesion 
causing strain of tobacco mosaic virus (TMV-P) produced in 
protoplasts from healthy Nicotiana sylvestris and in 
protoplasts from dark and light green areas from N· 
sylvestris infected with the common strain of TMV (TMV-C) 
and superinfected with the TMV-P RNA. 

Origin of 
protoplasts 

Healthy 
(control) 

Dark 
green 
areas 

Light 
green 
areas 

Exp. 

I 
II 

III 

Ave. 
S.D. 

I 
II 

III 
Ave. 
S.D. 

I 
II 

III 
Ave. 
S.D. 

No. of local lesions on 3 half-leaves 
of Nicotiana sylvestris 

0 h 

0.0 
0.0 
0.0 

o.o 
0.0 

0.0 
o.o 
0.0 
o.o 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 

24 h 
3.0 

180.0 
155.0 

112.6 
95.7 

0.0 
20.0 
23.0 
14.3 
12.5 

0.0 
0.0 

12.0 
4.0 
6.9 

48 h 

4.0 
233.0 
331.0 

189.3 
167.8 

1.0 
31.0 
48.0 
26.6 
23.8 

0.0 
3.0 

41.0 
14.6 
22.8 

72 h 

17.0 
360.0 
660.0 

345.6 
321.7 

4.0 
67.0 

136.0 
69.0 
66.0 

1.0 
1.0 

58.0 
20.0 
32.9 
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TABLE 10. Concentration of the common strain of tobacco 
mosaic virus (TMV-C) in protoplasts from dark and light 
green areas from Nicotiana sylvestris systemically infected 
with TMV-C. 

Plant group 

I 
II 

III 
IV 

Concentration in ~g/3 X lOs protoplasts 
Dark green areas Light green areas 

1.017 14.240 
7.290 34.820 

51.870 155.570 
1.767 6.381 
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FIGURE 1. Concentration of the common strain of tobacco 
mosaic virus (TMV-C) in leaf discs from dark green areas 
(DGA) and light green areas (LGA) of Nicotiana sylvestris. 
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ABSTRACT 

Reciprocal cross protection between the common strain 

of tobacco mosaic virus (TMV-C) and TMV-P (necrotizing 

strain in H· sylvestris) in plants of H· tabacum. cvs. 

Samsun and Xanthi was dependent on the concentration of the 

challenge inoculum. Concentrations of 1 ~g/ml or higher of 

either TMV-P or TMV-C caused complete breakdown of 

protection in plants infected with the other virus. The 

susceptibility to superinfection of dark green areas on 

mosaic leaves of cvs. Samsun and Xanthi infected with TMV-C 

or TMV-P was apparently responsible for the majority of 

breakdown in protection. Dark green areas were much more 

susceptible to superinfection by virions than light green 

areas, and challenge inoculation with TMV-P RNA dramatically 

overcame the resistance to superinfection of light green 
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areas of TMV-C i~fected cvs. Samsun and Xanthi. Systemic 

superinfection by the challenge strain occurred in all 

plants in which superinfection was detected in either dark 

or light green areas. Dark and light green areas were 

equally susceptible to superinfection with tobacco etch 

virus. Uneven concentration of virus in dark and light 

green areas was suggested as an apparent cause for breakdown 

in protection between TMV-C and TMV-P. 

Cross protection is a phenomenon in which plants 

infected with one strain of a virus are protected from the 

effects of subsequent infection by related strains (Wingard, 

1928; McKinney, 1929). The mechanism(s) of cross protection 

has been the subject of much research, speculation and 

review {Fulton, 1982; Hamilton, 1980; Ponz and Bruening, 

1986; Zaitlin and Hull, 1987; Sherwood, 1987a; Urban et al., 

1989). Since the discovery of this phenomenon, cross 

protection has been used to establish relationships among 

viruses and for controlling diseases such as citrus tristeza 

{MUller and Costa, 1977; Costa and MUller, 1980) and papaya 

ringspot (Yeh et al., 1988). However, the phenomena that 

control the outcome of the interaction between virus strains 

in the host have not been fully explained. 

Cross protection has also been used for control of 

tomato mosaic caused by tobacco mosaic virus {TMV) (Rast, 

1975; Fletcher and Rowe, 1975). However, due to breakdown 

in protection growers now rely primarily on resistant 
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varieties to control the disease (Fulton, 1986). The 

occurrence of breakdown in protection has also been reported 

for other host-virus combinations. Holmes (1934) selected a 

masked strain of TMV for protection against the severe 

strain by culturing TMV infected tomato stem tissue at about 

35 C. He found that when the masked strain was introduced 

about one wk before inoculation of the severe~strain, the 

masked~ strain interfered with the movement of the severe 

strain, but a complete protection was not achieved. 

Price (1936b) found that tobacco "ringspot no. 1" did 

not protect Nicotiana tabacum L. cv·. Turkish and !f. 

sylvestris Spegaz & Comes against yellow ringspot, although 

yellow ringspot did protect completely against "ringspot 

no. 1". Bald (1948) superinfected potatoes carrying a 

masked strain of PVX by inoculating a severe strain to the 

top leaves. Inoculation of the severe strain to the lower 

leaves rarely produced severe symptoms. Bawden and Kassanis 

(1951) described failures of cross protection by potato 

viruses thought to be closely serologically related. 

Fulton (1951) found that mosaic leaves,of N. sylvestris 

infected with TMV were susceptible to superinfection in dark 

green areas but not in light green areas when challenge 

inoculated with strains of TMV that cause localized necrotic 

lesions in that host. Since tissue of dark green areas 

contain much less virus than the light green areas, it was 

suggested that superinfection was related to the 

concentration of the mosaic causing strain in the leaves. 
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Fulton (1978) also reported superinfection between strains 

of tobacco streak virus (TSV) in recovered leaves of 

tobacco, but did not find evidence relating superinfection 

with low amount of the protecting virus in recovered leaves 

of the plants. Recovered leaves of TSV infected plants 

contained as much virus or more virus than symptomatic 

leaves of the same plants {Fulton, 1949). 

The use of mild or mutant strains of virus as 

immunizing agents in commercial crops commonly provides only 

incomplete or partial protection {Fletcher and Rowe, 1975; 

Cassells and Herrick, 1977; Bar-Joseph, 1978; Burgyan and 

Gaborjanyi, 1984; Yeh et al., 1988). Fulton (1978) 

suggested that superinfection in these cases may result 

from: 1) the protecting mild strain may not completely 

invade the plant; 2) it may not reach a concentration 

sufficient to occupy all infection sites, or all 

multiplication sites; or 3) the process involved in 

replication of one strain may be different from that of 

another strain so they do not interfere. None of these 

mechanisms has been demonstrated. 

In this study we investigated the factor(s) that leads 

to breakdown of cross protection between strains of TMV in 

H· tabacum cvs. Samsun and Xanthi. 

MATERIALS AND METHODS 

Viruses and purifications. Two strains of TMV and 

tobacco etch virus (TEV) were used in this study. The 

common strain of TMV {TMV-C) was propagated in H· sylvestris 
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and a strain originally isolated from petunia (TMV-P) 

(Sherwood and Fulton, 1982) was maintained in H· tabacum cv. 

Samsun. TEV was propagated in H· tabacum cv. Samsun. Both 

strains of TMV were purified by differential centrifugation 

(Sherwood, 1981). TEV was purified following the procedure 

described by Purcifull and Hiebert (1982). One hundred 

grams of TEV infected tobacco leaves were homogenized in 

150 ml of 20 mM [N-2-Hydroxyethylpiperazine­

N'-2-ethanesulfonic acid] (HEPES), pH 7.5 containing 0.1% 

sodium sulfate and 21 ml of n-butanol. The suspension was 

filtered through cheesecloth and then centrifuged at 

5000 rpm for 10 min at 4 c in a Beckman rotor JA-14. The 

virus was precipitated from the supernatant by adding Triton 

X-100 to 1% (vfv), polyethylene glycol (PEG, MW 8000) to 4% 

(wfv) and NaCl to 100 mM and stirring for 1 hr at 4 C. The 

mixture was centrifuged at .8000 rpm for 10 min at 4 C in the 

same rotor as before. The pellet was resuspended in 50 ml 

of 20 mM HEPES, pH 7.5 and then centrifuged at 8000 rpm for 

10 min at 4 c. The virus was precipitated from the 

supernatant fluid by adding PEG to 8% and NaCl to 100 mM and 

stirring for 1 hr at 4 C. The solution was centrifuged at 

8000 rpm for 15 min at 4 c in a Beckman rotor JA-17. The 

pellet was resuspended in 5 ml of 20 mM HEPES, pH 7.5. The 

concentration of TEV was determined based on absorbance at 

260 nm (A200 = 2.4 = 1 mgjml). 

Viral nucleic acid (RNA) from both strains of TMV was 

isolated by phenol extraction using the method of Ralph and 



Berquist (1967). RNA was stored frozen at -70 c in 

1% KH2P04 , pH 7. 0. 

Test-plants and qrowinq conditions. N. tabacum cvs. 

Samsun and Xanthi and H· sylvestris were used in these 
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experiments. Seeds were sown in a commercial soil mix in 10 

em plastic pots. After 2-3 wk plants were individually 
', 

transplanted to the same size pots with commercial soil mix. 

Plants were grown in the greenhouse at 25-28 c. Nutrients 

were supplied weekly with commercial fertilizer (15-30-15). 

Insects were controlled with,Pydrin as required. 

Production of cross absorbed IqG. Antisera against 

TMV-C and TMV-P were produced in rabbits by intramuscular 

injection of purified virus with Freund's complete adjuvant. 

Injections of 1 mg were given twice weekly for 5 wk. The 

IgG was isolated from antisera that ~ad a microprecipitin 

titer of 1024. Antiserum to TMV-C was cross absorbed with 

an equal volume of sap containing TMV-P, diluted 1:10 in 

phosphate buffered saline (PBS). Antiserum to TMV-P was 

cross absorbed with TMV-C antigen as above. Cross absorbed 

antisera were individually precipitated with an equal volume 

of saturated ammonium sulfate, pH 7.2. The IgG fraction of 

each antiserum was then purified by ion-exchange 

chromatography using a DEAE-Trisacryl-M column,washed with 

35 mM NaCl, 25 mM Trisma-Base, pH 8.8. IgG was stored 

frozen at -20 C. Anti-TMV-C IgG and anti-TMV-P IgG were 

conjugated to alkaline phosphatase (Sigma Type VII, P-5521) 

using glutaraldehyde (Clark and Adams, 1977). Conjugated 



IgG was stored at 4 c. 

Antiserum against TEV was obtained from the American 

Type Culture Collection (PVAS 69). 

Challenge inoculation on the entire leaf surface. 
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Plants of H· tabacum cvs. Samsun and Xanthi were 

mechanically inoculated with 1 ~gfml of purified TMV-C or 

TMV-P at the two-leaf stage. The inoculum was prepared in 

0.01 M phosphate buffer, pH 7.0. Two to three wk later 

plants systemically infected with TMV-C were challenge 

inoculated with TMV-P, and vice-versa. Different 

concentrations of the challenge strain (0.01, 0.1, 1, 5, 25 

and 50 ~gfml) were used. The challenge inoculum was 

prepared in the same buffer ,and applied to the two upper 

fully expanded leaves of protected plants. For each test, 

two healthy plants of the same age were used as control for 

the challenge inoculation, while two plants inoculated with 

the protective strain were not challenged. Samples were 

collected from challenge inoculated leaves and upper leaves 

of the plants 12 days after the challenge inoculation. Each 

sample consisted of two 7 mm-leaf discs taken randomly from 

the leaves. These and other samples were obtained with an 

appropriate diameter cork borer. All samples were 

individually ground in PBS containing 0.05% Tween (PBS­

Tween) and 2% polyvinylpyrrolidone (PVP), diluted 1:100. 

The presence of the challenge strain in each sample was 

tested by double antibody sandwich ELISA. An infectivity 

test on H· sylvestris was carried out for all experiments in 
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which TMV-P was used as the challenge strain. The upper 

leaves of the plants were retested for the challenge strain 

25 days after the challenge inoculation. 

Challenge inoculation on dark and light green areas. 

Plants of H· tabacum cvs. Samsun and Xanthi were inoculated 

with TMV-C or TMV-P as before. Two to three wk later plants 

systemically infected with TMV-C or TMV-P were separated 

into three sets. The first set consisted of plants showing 

well defined dark green areas and the second set consisted 

of plants exhibiting distinct light green areas. The third 

set consisted of healthy plants of the same age that were 

used as controls for the challenge inoculation. Six dark 

green areas and six light green areas on the two well 

developed upper leaves were marked with a circle about 1 em 

in diameter (3 areas/leaf). The same number of circles were 

marked on the two developed upper leaves of the healthy 

plants. Plants infected with TMV-C were challenge 

inoculated with TMV-P and vice-versa. The challenge 

inoculum was prepared in 0.01 M phosphate buffer, pH 7.0 at 

the concentration of 1 ~g/ml. The challenge strain was 

mechanically applied within the marked circles with a cotton 

swab. Plants were maintained in the greenhouse at 25-28 c. 

Samples were collected from inoculated areas and upper 

leaves of the plants 12 days after the challenge 

inoculation. Each sample consisted of two 7 mm-leaf discs. 

A total of 4 samples were obtained from each test plant. 

Samples were individually ground in PBS Tween containing PVP 
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and then diluted 1:100. The presence of the challenge 

strain in the samples was tested by the double antibody 

sandwich ELISA. Infectivity tests on H· sylvestris was 

carried out for all experiments in which TMV-P was the 

challenge strain. The presence of the challenge strain in 

the upper leaves of the test plants was retested 25 days 

after the challenge inoculation. Data of systemic 

superinfection were statistically analyzed by the Chi-square 

test and the values were compared by the Two Samples 

Comparison for Proportion test (Steel and Torrie, 1981). 

Challenge inoculations with TMV-P RNA were carried out 

using the same experimental design. The inoculum (50 ~g of 

RNA/ml) was prepared in 1% KH2P04 , pH 7.0. Sampling, 

evaluation of superinfection and statistical analysis were 

done as before. 

Protection to an unrelated virus. Plants of H· tabacum 

cvs. Samsun and Xanthi were inoculated with 1 ~gjml of 

purified TMV-C. Two to three wk later plants were challenge 

inoculated on dark and light green areas with 1 ~gjml of 

TEV, using the same experimental design described before. 

TEV inoculum was prepared in 0.01 M phosphate buffer, pH 

7.0. Samples were collected as before and leaf discs were 

ground in PBS-Tween, diluted 1:50. Superinfection with TEV 

was evaluated by protein-A sandwich ELISA. Data of systemic 

superinfection were statistically analyzed as before. 

Enzyme linked immunosorbent assay (ELISA) procedures. 

The double antibody sandwich ELISA procedure used to test 
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Clark and Adams (1977). ELISA plates were coated with 
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10 ~gfml anti-TMV-P IgG or 1 ~gfml anti-TMV-C IgG diluted in 

0.05 M carbonate buffer, pH 9.6. Plates were incubated for 

two hr at room temperature and then rinsed 3 times with PBS­

Tween. Samples diluted 1:100 in PBS-Tween containing 2% PVP 

were added to the plates (100 ~lfwell). Plates were 

incubated overnight at 4 c and then rinsed 3 time's as 

before. Alkaline phosphatase labeled anti-TMV-P IgG diluted 

1:500 or alkaline phosphatase labeled anti-TMV-C IgG diluted 

1:800 in PBS-Tween containing 2% PVP and 0.2% ovalbumin was 

added to the plates. After incubation for 5 hr at room 

temperature, plates were rinsed as before and p-nitrophenyl 

phosphate (Sigma, N-2765) dissolv~d in diethanolamine 

substrate buffer, pH 9.8 was added. Plates were read in a 

BIO-TEK-EIA plate reader (aiO-TEK Instrument, Inc, 

Burlington, VT) . 

The protein-A sandwich ELISA was used to test 

superinfection by TEV. ELISA plates were coated with 
' ' 

1 ~gfml protein A (Sigma P-6650) diluted in 0.05 M carbonate 

buffer, pH 9.6. Plate~ were incubated for 2 hr at room 

temperature. Plates were washed 3 times with PBS-Tween. 

TEV antiserum diluted 1:500 in PBS-Tween w~s added to the 

plates (100 ~1/well). After incubation for 2 hr at room 

temperature, plates were washed as before. Samples diluted 

1:100 in PBS-Tween were added to the plates. Plates were 

incubated at 4 C overnight and then washed 3 times with PBS-



Tween. TEV antiserum diluted 1:500 in PBS-Tween was added 

and plates were incubated at room temperature for 2 hr. 

Plates were washed with PBS-Tween. Alkaline phosphatase 

labeled protein-A (Sigma, P-9650) diluted 1:500 was added. 

After incubation at room temperature for 2 hr plates were 

washed 3 times with PBS-Tween and p-nitrophenyl phosphate 

dissolved in diethanolamine substrate buffer, pH 9.8 was 

added. Plates were read as before. 

66 

Infectivity tests. Infectivity tests on H· sylvestris 

were carried out for all cross protection experiments in 

which TMV-P was the challenge strain. An aliquot from all 

samples tested by ELISA was mechanically inoculated on 2 

half-leaves of H· sylvestris. Lesions were counted 4-5 days 

after inoculation. 

Quantitation of TMV-c. Two mm leaf discs were 

collected from dark and light green areas and individually 

ground in PBS-Tween containing 2% PVP. To assure the 

absorbance value from the sample in ELISA would be in the 

range of the standard curve, samples from dark green areas 

were diluted 1:6000 to 1:8000 and samples from light green 

areas were diluted 1:17000 to 1:25000. The concentration of 

TMV-C was estimated using a regression equation obtained 

with the absorbance values of standard concentrations of 

TMV-C (16, 32, 64, 128, 256, 512 and 1024 ng of virusjml). 
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RESULTS 

superinfection of plants by challenge inoculation on 

the entire leaf surface. All plants of H· tabacum cvs. 

Samsun and Xanthi systemically infected with TMV-C and 

challenge inoculated with 1, 5, 25 or 50 ~g of TMV-P/ml were 

susceptible to superinfection (Table 11). Results of ELISA 

and infectivity tests on H· sylvestris indicated that TMV-P 

was present in the inoculated leaves and in the upper leaves 

of all challenged plants. When plants were inoculated with 

TMV-P at 0.1 or 0.01 ~g/ml only ~art of the challenge 

inoculated plants were superinfected on the inoculated 

leaves as well as systemically. The susceptibility of cvs. 

Samsun and Xanthi systemically infected with TMV-P to 

superinfection with TMV-C were similar to those presented 

before (Table 12). ELISA tests showed that plants challenge 

inoculated with 1, 5, 25 or 50 ~g of TMV-C/ml were not 

protected against local and systemic superinfection. On the 

other hand, partial or complete protection was found when 

the concentration of TMV-C was reduced to 0.1 or 0.01 ~g/ml. 

Healthy plants used as controls were systemically infected 

in all experiments regardless of the inoculum concentration. 

susceptibility of dark and light green areas to 

superinfection. Dark and light green areas of cvs. samsun 

and Xanthi systemically infected with TMV-C showed different 

susceptibility to superinfection with TMV-P (Table 13). 

Results of ELISA and infectivity tests on H· sylvestris 

showed that TMV-P superinfected 67% and 62% of the 
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inoculated dark green areas of cvs. Samsun and Xanthi, 

respectively. Superinfection by TMV-P was not detected in 

inoculated light green areas of cv. Samsun, but it was found 

in 33% of the inoculated light green areas of cv. Xanthi. 

systemic superinfection of cvs. Samsun and Xanthi was 

directly related to superinfection of dark and light green 

areas. The number of plants of cvs. Samsun and Xanthi 

superinfected systemically by TMV-P was greater when the 

challenge inoculum was applied to the dark green areas then 

when applied to the light green areas {Table 14). The same 

difference on the susceptibility of dark and light green 

areas to superinfection occurred when plants of cvs. Samsun 

and Xanthi systemically infected with TMV-P were challenged 

with TMV-C {Table 15). Results of ELISA tests showed that 

superinfection by TMV-C occurred in 79% and 67% of 

inoculated dark green areas of cvs. Samsun and Xanthi, 

respectively. on the other. hand, TMV-C was detected in only 

9% of inoculated light green areas of cv. Samsun and 11% of 

inoculated light green areas of cv. Xanthi. Systemic 

superinfection with TMV-C was also directly related to 

superinfection of dark or light green areas (Table 16). 

Delay in detection of the challenge strain in the upper 

leaves of the plants was observed in a few cases (Table 14 

and 16). 

Dark and light green areas of cvs. Samsun and 

Xanthi systemically infected with TMV-C were more 

susceptible to superinfection with the RNA from TMV-P than 
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with the intact virion (Table 17) .. All dark green areas of 

cvs. Samsun and Xanthi challenge inoculated with TMV-P RNA 

were superinfected 12 days after c~allenge inoculation. 

Fifty nine percent of light green areas of cv. Samsun and 

55% of light green areas of cv. Xanthi were superinfected 

when inoculated with RNA from TMV-P. All plants of cvs. 

Samsun and Xanthi challenge inoculated on dark green areas 

with TMV-P RNA were systemically superinfected 12 days after 

inoculation (Table 18). When the TMV-P RNA challenge 

inoculum was applied to light green areas 50% of plants of 

cv. Samsun and 71% of plants of cv. Xanthi were systemically 

invaded by TMV-P. 

susceptiDility of dark and light green areas to 

superinfection with TEV. Dark and light green areas of H· 

tabacum cvs. Samsun and Xanthi infected with TMV-C were 

equally susceptible to superinfection with an unrelated 

virus (Table 19). TEV was also found in the upper leaves of 

all plants challenge inoculated on dark and light green 

areas, 12 days after challenge inoculation (Table 20). 

Concentration of TMV-C in tis.sues. ELISA data showed 

the concentration of TMV-C in leaf discs of dark and light 

green areas from H· tabacum cvs. Samsun and Xanthi was not 

homogeneous (Fig. 2 and 3). The concentration of TMV-C in 

dark green areas of cv. Samsun varied from below detectable 

level (BDL) to 10-11 mg of virus/g of tissue (Fig. 2). 

Thirty one percent of samples taken from dark green areas of 

cv. Samsun fell BDL while 35% fell within the range of 
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0-1 mg of TMV-C/g of tissue. The concentration of TMV-C in 

light green areas of cv. Samsun ranged from 1-13 mg of 

virusfg of tissue, with the majority of samples falling 

between 6-11 mg of virusfg of tissue. Dark green areas of 

cv. Xanthi showed concentrations of TMV-C varying from BDL 

to 6-7 mg of virusfg of tissue (Fig. 3). In this cultivar, 

22% of the samples from dark green areas had TMV-C 

concentration below detectable level while 37% of the 

samples fell within the range of 0-2 mg of virusfg of 

tissue. The concentration of TMV-C in light green areas of 

cv. Xanthi varied from 2-15 mg of virusfg of tissue, with 

78% of the samples showing concentration of virus between 

5-9 mgfg of tissue. 

DISCUSSION 

TMV-C and TMV-P are two serologically related strains 

that showed cross protection in plants of H· sylvestris 

(Fulton, 1951; Sherwood and Fulton, 1982) and Arabidopsis 

thaliana (L.) Heynh. (Urban et al., 1988). Reciprocal cross 

protection tests between these strains showed that TMV-C and 

TMV-P also protected against each other in plants of H· 

tabacum cvs. Samsun and Xanthi. This protection, however, 

was found to be dependent on the concentration of the 

challenge strain inoculum. Complete or partial protection 

was observed when plants of cvs. Samsun and Xanthi 

systemically infected with one strain was challenge 

inoculated on to the entire surface of 2 leaves with 0.01 or 

0.1 ~gfml of the other (challenge) strain. However, when 
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the concentration of the challenge strain was increased to 

1 ~g/ml or higher, breakdown in protection was found for all 

tested plants. This breakdown in protection was detected by 

means of serology and local lesion assay (when TMV-P was the 

challenge strain), since no change in the severity of the 

symptoms was noticed in doubly infected plants. Cassells 

and Herrick (1977) found that tomato plants systemically 

infected with a mild strain of TMV were superinfected by a 

severe strain, and that the development of severe symptoms 

was dependent on the concentration of the severe challenge 

inoculum. In plants challenged with low concentration of 

the challenge strain (2 ~g/ml), severe strain antigen was 

detected in the upper leaves although severe strain symptoms 

did not develop over the period of observation. They 

suggested that for this host-virus system protection was 

apparently overcome as a consequence of the greater 

productivity and faster rate movement of the severe strain. 

Dodds et al. (1985) on the other hand found that a mild 

strain of cucumber mosaic virus (CMV-S) completely protected 

plants of tobacco, tomato, and squash from the effects of a 

more severe strain (CMV-P), and also prevented the 

accumulation of virions and ds RNAs of the challenge strain 

in the upper leaves of the plants. 

The presence of dark green areas on mosaic leaves of 

cvs. Samsun and Xanthi infected with TMV-C or TMV-P was 

found in subsequent experiments to be apparently responsible 

for the majority of breakdown in protection observed before. 
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Experiments of challenge inoculation on dark or light green 

areas showed that dark green areas were much more 

susceptible to superinfection by the challenge strain than 

light green areas. studies on cross protection between 

strains of TMV in H· sylvestris also showed that dark green 

areas were more susceptible than light green areas to 

superinfection by necrotizing strains, but resistant to 

superinfection by the same mosaic causing strain of TMV 

(Fulton, 1951; Sherwood and Fulton, 1982). On the other 

hand, resistance of dark green areas to superinfection by a 

virus has also been reported for other host-virus 

combinations. Reid and Matthews (1966) reported that dark 

green areas in Chinese cabbage (Brassica pekinensis Rupr. 

cv. Wong Bok) infected with turnip yellow mosaic virus 

(TYMV) were apparently resistant to reinfection by the same 

virus. Loebenstein et al. (1977) found that dark green 

areas developed in H· tabacum cvs. Xanthi-ne and White 

Burley following inoculation with cucumber mosaic virus 

(CMV) Price No. 6 were resistant to reinfection with three 

strains of CMV, but not to infection with TMV. 

The H· sylvestris-TMV system used by Fulton (1951) and 

Sherwood and Fulton (1982) to study cross protection between 

strains of TMV had the disadvantage that it did not allow 

any further observation on the protection against systemic 

invasion of the plants by the challenge strain. That is 

because all challenge strains of TMV used in their 

experiments were strains that caused localized necrotic 
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lesions on N- sylvestris. This type of observation was 

possible in the present study since TMV-C and TMV-P 

systemically invade cvs. Samsun and Xanthi. Our results 

showed that systemic invasion by the challenge strain 

occurred for all plants of cvs. Samsun and Xanthi in which 

superinfection was detected in either dark or light green 

areas. These results suggest that protection in this system 

was apparently related to an early event in the infection 

process, rather than to prevention of systemic movement of 

the challenge strain. Urban et al. (1988), on the other 

hand, reported that cross protection between TMV-C and TMV-P 

in A· thaliana cv. Columbia was due to prevention of 

systemic movement of the challenge strain. They found that 

regardless of the virus strain inoculated first, the 

challenge strain multiplied in inoculated leaves to 

concentrations detectable by ELISA, but it did not move 

systemically in the plants. Urban et al. (1989) pointed out 

that the impairment of systemic movement of the challenge 

strain in A· thaliana may be due to an interaction of the 

30 kDa movement protein with a host component. Since both 

studies used the same strains of TMV and similar 

experimental procedure to evaluate superinfection it can be 

inferred that the host played an important role in the 

systemic movement of the challenge strain. 

The resistance of light green areas of cvs. Samsun and 

Xanthi to superinfection was specific for strains of TMV. 

Both dark and light green areas of cvs. Samsun and Xanthi 
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systemically infected with TMV-C were susceptible to 

superinfection with TEV. Also, infection with TMV-C did not 

affect the systemic movement of TEV in all challenged 

plants. Strain specificity is a characteristic of cross 

protection and it was reported in several other cases 

(Price, 1936b; Fulton, 1951; Zaitlin, 1976; Sherwood and 

Fulton, 1982). 

Challenge inoculation with the nucleic acid (RNA) from 

TMV-P dramatically overcame the resistance of light green 

areas of cvs. Samsun and Xanthi to superinfection. Also, 

100% of the inoculated dark green areas on both cultivars 

were_superinfected when TMV-P RNA was used as inoculum. 

This suggests that uncoating of the challenge strains may be 

involved in the resistance of light green areas to 

superinfection. Prevention of'uncoating of the challenge 

strains was found by Sherwood and Fulton (1982} as 

responsible for the resistance of light green areas of TMV-C 

infected N· sylvestris to superinfection with necrotic 

lesions causing strains of TMV, including TMV-P. 

Superinfection of plants following inoculation with the 

virus RNA was also reported by Dodds et al. (1985) for 

studies of cross protection between strains of CMV. Since 

not all plants of cvs. Samsun and Xanthi challenged on light 

green areas were superinfected with TMV-P RNA, it is 

suggested that other factor(s) may be responsible for their 

resistance to superinfection. All plants of cvs. Samsun and 

Xanthi superinfected in dark or light green areas following 
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inoculation with RNA were systemically invaded by the TMV-P. 

The average virus concentration in dark green areas was 

much lower than in light green areas in TMV-C infected 

plants. Similar differences were also reported for H. 

sylvestris plants infected with TMV (Fulton, 1951; Atkinson 

and Matthews, 1970; Sherwood, 1981), Chinese cabbage 

infected w~th TYMV (Reid and Matthews, 1966) and H. tabacum 

cvs. Xanthi-ne and White Burley infected with CMV 

(Loebenstein et al., 1977). However, when samples of dark 

and light green from cvs. Samsun and Xanthi were 

individually analyzed it was observed that the concentration 

of TMV-C varied in both types of tissue. Variability of 

TMV-C concentration within dark and light green areas was 

also found in H. sylvestris plants infected with TMV-C 

(Rezende and Sherwood, this thesis, chap. IV). Since the 

highest susceptibility to superinfection was found in dark 

green areas, which had the greatest number of samples with 

very low virus.concentration, it is proposed that 

superinfection may be related to the amount of virus present 

in the leaves. The lower number of light green areas 

superinfected by the challenge strain would be due to the 

smaller number of areas with a concentration of virus that 

allows superinfection to occur. This apparent relationship 

between virus concentration and superinfection suggests that 

there must be a limiting concentration of the protecting 

strain necessary in both dark and light green areas for 

complete protection to occur. Below that limit both types 
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of tissues are susceptible to superinfection. Work with 

isolated protoplasts from light green areas of H· sylvestris 

infected with TMV-C showed that they were partially 

susceptible to superinfection with TMV-P (Rezende and 

Sherwood, this thesis, chap. IV). Based on quantitative 

analysis of TMV-C antigen present in protoplasts and leaf 

discs from dark and light green areas of H· sylvestris 

Rezende and Sherwood suggested that susceptibility in this 

case might also be relat~d to the uneven distribution of 

TMV-C in the leaves. Work with transgenic tobacco plants 

that express the TMV coat protein gene showed that the 

degree of resistance to TMV·infection was directly related 

to the amount of coat protein accumulated in the plants 

(Nejidat and Beachy, 1989). 

Development of t,echniques to increase the virus 

concentration in dark green areas would permit further 

investigation on the involvement of virus concentration on 

superinfection by the challenge strain. Also, challenge 

inoculation on dark and light green areas previously 

analyzed for virus concentration would allow studies to 

verify if there is a limiting amount of the protecting 

strain necessary for protection to occur. 



TABLE 11. Susceptibility of Nicotiana tabacum cvs. Samsun 
and Xanthi systemically infected with the common strain of 
tobacco mosaic virus (TMV-C) to superinfection with 
different concentrations of a strain of TMV (TMV-P) that 
causes necrotic lesions on H· sylvestris. 
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Cultivar Concentration 
of TMV-P 
(J.£g/ml) 

No. 9f plants super-/No. of chal-

Samsun 

Xanthi 

0.01 
0.1 
1.0 
5.0 

25.0 
50.0 

0.01 
0.1 
1.0 

infected• lenged plants 

Inoculated leaves 
0/7 
5/9 

12/12 
3/3 
3/3 
6/6 

1/7 
5/9 
9/9 

Upper leaves 
3/7 
7/9 

12/12 
3/3 
3/3 
6/6 

3/7 
7/9 
9/9 

• Based on ELISA and infectivity tests on H- sylvestris. 



TABLE 12. Susceptibility of Nicotiana tabacum cvs. Samsun 
and Xanthi systemically infected with a strain of tobacco 
mosaic virus (TMV-P) that causes necrotic lesions on H· 
sylvestris to superinfection with different concentrations 
of the common strain of TMV (TMV-C). 
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Cultivar Concentration 
of TMV-C 
(~g/ml) 

No. of plants super-/No. of chal-

Samsun 

Xanthi 

0.01 
0.1 
1.0 
5.0 

25.0 
50.0 

0.01 
0.1 
1.0 

a Based on ELISA tests. 

infected• lenged plants 

Inoculated leaves 
1/6 
4/6 
6/6 
3/3 
3/3 
6/6 

0/6 
4/6 
3/3 

Upper leaves 
1/6 
4/6 
6/6 
3/3 
3/3 
6/6 

0/6 
4/6 
3/3 
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TABLE 13. Susceptibility of dark and light green areas of 
Nicotiana tabacum cvs. Samsun and Xanthi systemically 
infected with the common strain of tobacco mosaic virus 
(TMV-C) to superinfection with a strain of TMV (TMV-P) that 
produces necrotic lesions on H· sylvestris. 

Cultivar 

Samsun 

Xanthi 

No. of areas super-{No. of challenge inocu-
infected• · lated areas 

Healthy 
(control) 

19/24 

18/21 

Dark green 
areas. 
30/45 

24/39 

Light green 
areas 

0/60 

15/45 
• Each sample contained leaf discs from 2 independently 

inoculated areas. 
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TABLE 14. Susceptibility of Nicotiana tabacum cvs. Samsun 
and xanthi systemically infected with the common strain of 
tobacco mosaic virus (TMV-C) to systemic superinfection with 
a strain of TMV (TMV-P) that produces necrotic lesions on Ji. 
sylvestris challenge inoculated on dark and light green 
areas separately. 

Cultivar 

Samsun 

Xanthi 

Days after 
challenge 
inoculation 

12 

25 

12 

No. of plants super-/No. of challenged 
infected systemi- plants 

cally 

Healthy Dark green Light green 
(control) areas areas 

7/8 a 13/15 a 0/20 b 

7/8 a 13/15 a 0/20 b 

7/7 a 10/13 b 2/15 c 

25 7/7 a ~1/13 b 5/15 c 
a Means followed by the same'letter in the row are not 

significantly different (Two samples comparison for 
proportion, P=0.05). 
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TABLE 15. Susceptibility of dark and light green areas of 
Nicotiana tabacum cvs. Samsun and Xanthi systemically 
infected with a strain of tobacco mosaic virus {TMV-P) that 
causes necrotic lesions on H· sylvestris to superinfection 
with the common strain of TMV -{TMV-C). 

Cultivar 

Samsun 

x:anthi 

No. of areas super-/No. of challenge inocu-
infected• lated areas 

Healthy 
{control) 

4/12 

9/18 

Dark green 
areas 
19/24 

22/33 

Light green 
areas 
3/33 

4/36 
• Each sample contained leaf discs from 2 independently 

inoculated areas. 
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TABLE 16. Susceptibility of Nicotiana tabacum cvs. Samsun 
and Xanthi systemically infected with a strain of tobacco 
mosaic virus (TMV-P) that produces necrotic lesions on H· 
sylvestris to systemic superinfection with the common strain 
of TMV (TMV-C) challenge inoculated,on dark and light green 
areas separately. 

Cultivar 

Samsun 

Xanthi 

Days after 
challenge 
inoculation 

12 

25 

12 

No. of plants super-/No. of challenged 
infected systemi- plants · 

callya 

Healthy· Dark green Light green 
(control) areas areas 

3/4 a 7/8 a 3/11 b 

3/4 a 7/8 a 4/11 b 

5/6 a 9/11 a 1/12 b 

25 6/6 a 9/11 a 4/12 b 
& Means followed by the same letter 'in the row are not 

significantly different (Two samples comparison for 
proportion, P=0.05). · 



TABLE 17. susceptibility of dark and light green areas of 
Nicotiana tabacum cvs. Samsun and Xanthi systemically 
infected with the common strain of tobacco mosaic virus 
(TMV-C) to superinfection with RNA from a strain of TMV 
(TMV-P) that causes necrotic lesions on H· sylvestris. 
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Cultivar No. of areas super-/No. of challenge inocu-

Samsun 

Xanthi 

infected• lated areas 

Healthy 
(control) 
33/33 

21/21 

Dark green 
areas 
51/51 

36/36 

Light green 
areas 
32/54 

23/42 
• Each sample contained leaf discs from 2 independently 

inoculated areas. 



TABLE 18. susceptibility of Nicotiana tabacum cvs. Samsun 
and Xanthl systemically infected the common strain of 
tobacco mosaic virus (TMV-C) to systemic superinfection 
after challenge inoculation on dark and light green areas 
with RNA from a strain of TMV (TMV-P) that causes necrotic 
lesions on N. sylvestris. 

Cultivar No. of plants superin-/No. of challenged 
fected systemicallyA·b,c plants 
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Healthy 
(control) 

Dark green 
areas 

Light green 
areas 

Sam sun 11/11 a 17/17 a 

Xanthi 7/7 a 12/12 a 
a 12 days after challenge inoculation. 

9/18 b 

10/14 b-

b Number of plants superinfected systemically remained the 
same 25 days after challenge inoculation. 

c Means followed by the same letter in the row are not 
significantly different (Two samples comparison for 
proportion, P=0.05). 



TABLE 19. Susceptibility of dark and light green areas of 
Nicotiana tabacum cvs. Samsun and Xanthi systemically 
infected with the common strain of tobacco mosaic virus 
(TMV-C) to superinfection with tobacco etch virus (TEV). 
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cultivar No. of areas super-/No. of challenge inocu-

Sam sun 

Xanthi· 

infected• lated -areas 

Healthy 
(control) 
10/12 

10/12 

Dark green 
areas 
24/27 

27/30 

Light green 
areas 
27/27 

20/27 
• Each sample contained leaf discs from 2 independently 

inoculated areas. 
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TABLE 20. Susceptibility of Nicotiana tabacum cvs. Samsun 
and Xanthi systemically infected with the common strain of 
tobacco mosaic virus {TMV-C) to systemic superinfection with 
tobacco etch virus {TEV). 

Cultivar No. of plants superin-/No. of challenged 
fected systemicallT-·b plants 

Healthy Dark green Light green 
{control) areas areas 

Samsun 4/4 a 9/9 a 9/9 a 

Xanthi 4/4 a 10/10 a 9/9 a 
a 12 days after challenge inoculation. 

b Means followed by the same letter in the row are not 
significantly different (TWo samples comparison for 
proportion, P=0.05). 
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