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CHAPTER I 

INTRODUCTION 

Since the inception of database systems, the processing and space demands have 

been increasing more rapidly than the power of transaction processing systems. The 

database sizes have grown to such a magnitude, they require a lot of memory, usually 

in the range of gigabytes. Because of this size, designing an efficient data structure for 

a fast access mechanism has become the order of the day. 

The most often used data structures in databases are B-tree [4] or its variants as 

main data structures and a combination of dynamic and static hashing [5] as auxiliary 

data structures. But the B-trees cannot grow dynamically or shrink efficiently. A 

dynamic data structure called extendible hashing that can accommodate expansion and 

contraction of data concurrently with the other operations on it has been discussed [4]. 

Since extendible hashing does not require any major reorganization, they are a powerful 

data structure for database systems. 

The power of a data structure can be utilized only with the help of efficient 

algorithms. There are a few algorithms for synchronizing concurrent operations on 

extendible hash files. The first one is proposed by Carla Ellis [1], the second one by 

Hsu and Yang [2] and the latest one by Kumar [3]. Hsu and Yang used a new concept, 

called Verification bits, which has greatly reduced the usage of locks, thereby reducing 
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locking overhead. Kumar further developed this concept, i.e., verification processes at 

the right moment during the execution of concurrent operations to guarantee data 

consistency, eliminating to some extent, the need for locking the directory. The 

verification process minimizes the number of atomic actions for serializing concurrent 

operations and reduces the locking overheads without effecting the performance. 

Though the above said algorithms are good, they do not deal with either bucket 

collapsing or merging. Merging is very important because it saves a lot of memory and 

also saves processing time. Because merging may lead to directory merging, the 

number of entries will be more at any given time in the RAM, there by resulting in fast 

accesses. Thus merging saves both time and space which are very important. But there 

can be a trade off between overhead cost of transferring data from disk to RAM and fast 

access if a lot of merges and splits take place. 

There has been a new technique for merging proposed by Shasha and Johnson[l6] 

called the free at merge, in B-trees. But this has a disadvantage, a lot of memory is 

wasted, because merging does not take place until the whole leaf is empty. 

Reorganization in a B-tree takes a lot of time. While proposing this, they assumed that 

there would be more insertions than deletions, which is not possible in a real-time data. 

Another merging technique is also presented which is known as the merge at half. These 

techniques which were presented are forB-trees and not for Extendible Hashing. The 

merging concept in Extendible Hashing is explained in brief here. 
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Figure 5. Merging Bucket to Save Space 

Both local depth and global depth are not explained in this example, but they are 

taken care of. This is a case in a concurrent operation. Let us consider a bucket having 

two directory entries pointed to it, dl and d2. Let us assume there can be 30 entries in 

the bucket. After having 30 entries filled up, the bucket splits, because it cannot accept 
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any more entries. Again if the bucket is full this time both directory and bucket have 

to be split. So, it splits (Figure 3). After a few more insertions the bucket 3 splits, after 

this we say there were few deletions. The resulting state of the file is shown in Figure 

4. We see that number of entries in bucket 3 and 4 total together are only 21. But each 

bucket can hold up to 30 entries. Thus, there is a potential for merge. But in the 

present algorithms, merging can take place only if there is no lock on bucket at that 

moment. If it has a lock then merging does not take place, resulting in a loss of space. 

Because what could have been in one bucket now there are two buckets storing the same 

amount of keys. To avoid this, merging has to take place. Thus Figure 5 shows how 

it would be if merging was to take place. 

In the above example, we have seen bucket 3 splitting into bucket 3 and bucket 

4. But immediately there were few deletions taking place, resulting in a potential for 

merge. This is a drawback because immediately after a split we are trying for a merge, 

which results in wastage of our system resources. This type of splitting is known as 

blind splitting. One more major drawback which has not been taken care is blind 

merging. Blind merging leads to page split and may even lead to directory split. This 

would not be beneficial, because within few seconds after merging, if there were few 

insertions which may lead to a split, then it would result in heavy loss of system 

resources. 

The research objective of the thesis is to propose a new merging technique for 

concurrent operations in extendible hashing. The new technique requires less storage 

space and may provide faster access speed, than other major techniques. 
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In this thesis, Chapter II tells us about the past work done on concurrent 

operations in extendible hashing. This also gives us an idea about how operations are 

performed on an extendible hash file. Chapter m, explains the new algorithm proposed. 

It also introduces Forced ins en, Check Lock and Wait Status. Chapter IV gives the 

proof of correctness of the proposed solution. Chapter V gives an analysis of the 

proposed solution with appropriate examples and figures. We conclude the thesis with 

Chapter VI which includes conclusion and a discussion for future work. 



CHAPTER IT 

liTERATURE REVIEW 

The growing size of database systems has made an extendible hash me, which is 

a dynamic data structure, an alternative to B-trees. In this chapter some solutions 

proposed by certain researchers are discussed. The first algorithm allows concurrency 

by using locks. The other two algorithms allow concurrency without having to acquire 

locks on both the directory entries and on the data page. These algorithms use a process 

called verification. 

Brief Review of Extendible Hashing 

Consider a typical data structure which is generally used in extendible hashing. 

This data structure has two parts (1) a directory, which is an array of pointers and (2) 

a set of buckets which are on the secondary storage and contain keys and associated 

information. There is a hash function to generate a pseudo key which is used to index 

into the directory. This pseudo key directly gives the depth of the directory which 

changes as the me grows or shrinks [15]. The significant bits (left most) are used to 

give the depth of the directory. For example, if the directory depth is two, it means that 

there are four entries. If the directory depth is three then the number of entries is said 

to be eight. Each bucket has a local depth, which match with the common bits of the 

7 
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keys present in that bucket [1, 14]. It is possible for multiple directory entries to point 

to the same bucket, provided the local depth is less than or equal to the directory depth 

or the global depth [9, 14]. Splitting of a bucket results in rehashing the keys and 

redistributing these keys, along with the key to be inserted in these two buckets. This 

may also increase the local depth which might double the directory. Merging may result 

in directory contraction. 

Researchers like Carla Ellis, Hsu and Yang, and Vijay Kumar employ the above 

data structure in the solutions they propose however, they make some modifications to 

the basic structure. The following sections explain how these algorithms work. 

Appropriate examples are given at the end of each section. 

Ellis's Algorithm 

The structure proposed by Ellis is the modification of the data structure (explained 

at the beginning of the chapter) which includes three new features. 

1. links 

2. common bits 

3. count 

The first feature, links are used when there is a split or merge in a bucket. Links 

aid in easy recovery from concurrent restructuring operations. Each bucket points to the 

next bucket. For example, if there is a split or merge, the new bucket will have the next 

pointer of the old's next pointer, and the old bucket will point to the new bucket. Thus 

there is an added advantage of having an extra path for the desired data during a search 
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operation when the information is involved in a split or merge operation. With the help 

of this field i.e., links, we make sure that there is no loss of memory. Because, if there 

was a potential for merge then with the help of the links we can merge the buckets. 

With the help of the second feature, common bits, it can be detennined whether a 

process has a wrong or right bucket by comparing the common bits in the data structure 

with that of the pseudo key. Common bits field has proved to be effective and 

indispensable and has been used widely in various other solutions with slight 

modifications. 

The third feature, count (named depth count) allows us to record the number of 

buckets whose local depth equals depth [1]. This solution uses a locking protocol which 

is shown in Table I. This has mainly three locks, which are used in different 

combinations to avoid deadlocks. These locks are on the directory and on the individual 

buckets. 

Lock 

p 

Q 

E 

The following section explains how Ellis's algorithm works. 

Request 

Read lock 

Selective lock 

Exclusive lock 

TABLE I 

LOCKING PROTOCOL 

Existing Lock 

p Q E 

Yes Yes No 

Yes No No 

No No No 
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Find Operation 

This process executes a search or fmd operation, a P-lock locks the directory and 

then (1) reads the depth of the directory (2) gets the required bucket pointer. After 

identifying the bucket which is to be searched, the reader places a P-lock on the 

directory, and writes the contents into a private buffer. If a split occurs after selecting 

the bucket and before placing a P-lock on the bucket (data page), this type of locking 

may result in the reader getting a wrong bucket. Here, local depth, low order bits of the 

pseudo key do not match with the common bits of the bucket [1]. The correct bucket can 

be reached by using links. Moreover, a P-lock on a bucket is released only when the 

data received is correct. While using links the next bucket is always P-locked before 

releasing the P-lock on the current bucket. This helps processes from leapfrogging each 

other [l]. A find operation attempts to lock more than one bucket. 

Insert Operation 

In an insert operation a Q-lock is placed on the directory, and is removed only 

when there is no need for further directory manipulation. Moreover, any changes made 

to the structure during this operation appear as atomic operations. The splitting of a 

bucket also appears atomic. During an insert operation, if the bucket is not full, then the 

key can be inserted into the bucket (data page). But, if the inserter's bucket is full, the 

bucket is split into a pair of buckets, and the keys are distributed between the two 

buckets. The new key is placed according to the significant bits of the key into either 
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of the buckets. Since the keys are divided into two halves, the second half of the pair is 

written first into a newly allocated disk page and the frrst half of the pair replaces the old 

bucket. Since the frrst half is written last, the new bucket is not reached by the pointer 

in the hash file. This shows that the operation is equivalent to a single operation of 

writing the first partner. 

If the data has moved to the second half this is detected and it is followed by the 

link. An inserter may have to double the directory, depending upon the depths. So, this 

shows that the whole operation is atomic. The directory space is extended and the old 

contents copied prior to incrementing depth make the new directory entries visible [1]. 

The reader may see the intermediate stages of an insertion operation [1, 13]. 

Delete Operation 

A delete operation exclusively locks the directory, the target bucket and its partner 

(i.e., another bucket) while modifications are taking place. Moreover, in a delete 

operation, unlike the insert operation, the intermediate stages are not visible. A deleting 

process uses B-lock. An B-lock is used, because a reader might interfere during a delete 

operation by trying to access an invalid directory entry. In order to avoid the above 

inconvenience, an B-lock is used. If a bucket has only one entry, and that entry is to be 

deleted, then an attempt is made to merge the empty bucket with its partner. 

Two buckets are defined as partners with respect to bit position d if their common 

bits match in bits d-1 to 1, and differ at bit d. B-locking depends upon bucket order. 

For instance, if there are two buckets 0 and 1, a process trying to delete from the second 
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bucket must release its lock on that bucket inorder to get both partners locked according 

to ordering. In addition, it is impossible for a process to read a pointer for a bucket that 

will be deallocated before it can make its lock request. This is because a deleter 

excludes the other process from parts of the data structure that contain pointers to the 

buckets being removed. This shows that it is important to ensure that lock requests are 

eventually satisfied. 

The above solution, however has some disadvantages. There may be locks on the 

directory for an insertion or deletion operation which may create a deadlock problem. 

This solution is a single step transaction i.e., no two insertions or deletions can be 

performed at the same time. The use of locks extensively increases the locking overhead 

considerably. This type of locking does not bring about any marked improvement in the 

performance. The above solution was proposed to overcome the shortcomings in the two 

phase locking systems [12]. But this solution is not satisfactory as splitting leads to the 

formation of new links, which increase complexities such as space and time. This has 

become more or less a linked list implementation. This type of locking when used may 

result in block transactions which may severely effect the concurrency. The above 

disadvantages are minimized in the algorithm proposed by Hsu and Yang [2]. 

Hsu and Yang's Algorithm 

In the algorithm proposed by Hsu and Yang [2], the issues of underflow and 

compaction are ignored. This algorithm uses a technique called the verification process 

which is used in the processes such as Search, Insert and Delete. 
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The data structure (which was explained at the beginning of the chapter) is 

modified by including one more column called the verification field, in the directory 

field. Let us now examine how Hsu's algorithm works. 

Search Operation 

In this process the key to be searched is sent to the hash function to obtain the 

pseudo key. The directory entry is determined by indexing the significant bits of the 

pseudo key. The directory gives a pointer to the data page or the bucket. Then there 

is a sequential search in the bucket for the key. A wrong page search may result if a 

split occurs in the data page (bucket) during a search operation. Normally, to avoid a 

wrong data page search we have a lock on the directory until the operation ends. This 

type of locking is avoided in this algorithm by re-reading the directory entry when a 

search operation cannot fmd the key in the data page it has just read. This form of re

reading, or verification continues until the key is found, or the value of the directory 

does not change between two consecutive readings [2]. This algorithm verifies the 

directory entry it has read previously, thereby making sure that search operation is not 

a failure. 

Insert Operation 

The key to be inserted is sent to the hash function to obtain the pseudo key. By 

seeing the significant bits (that are decided depending upon the directory depth), it is 

determined which directory entry has to be read. By reading the directory entry, a 
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pointer to the data page is obtained. The data page is searched to detennine whether the 

key is present in the data page, and if not the key is inserted into the page. If the data 

page is full then a split is performed, resulting in the formation of a new data page 

(bucket). Then the directory entry is updated. When two different insertions are 

performed at the same time interference occurs. To eliminate interference, in the 

previous algorithm locks were used on the directory, and on the data page until the 

operation was over. But in this algorithm locks are not used. Instead during this 

operation, verification is done on the content of the directory it has previously read after 

locking the data page and before performing updates on the data page [2]. If the 

verification fails, the operation will unlock the page and will lock a different one and 

perform another verification. So, by this it can be concluded that another page or 

directory is not locked, while one is locked. Thus, deadlock is eliminated. 

During splitting, the newly allocated page is locked until the effected directory 

entry or entries are updated. The algorithm deals with the splitting of a data page and 

decides where to insert the key in a different fashion than the one described by Ellis [1]. 

In this algorithm, the splitting page and also the newly allocated pages are locked. Then 

these keys (contents) are kept in an order in a separate buffer and the key to be inserted 

is also inserted into this buffer. These are written back to the database. Then all the 

new pages and the splitting page are unlocked one after the other. In this way, the 

multiple directory entries are updated one by one but in one atomic action. Single entries 

are updated in one atomic action. 
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Delete Operation 

The deletion algorithm is similar to the insertion operation, except that this 

algorithm does not deal with the issue of underflow and page merging. An example 

given below to show how deletion works. Example: Consider a situation having two 

adjacent directory entries dl and d2, pointing to the same data page p, where pat present 

has a local depth which is less than the global depth. An insertion operation Tl is 

supposed to take place. 

dl 

Hp I 
d2 

Figure 6. Structure Before 
Transaction 

dl 

d2 

Figure 7. Structure After 
Transaction 

p 

Pl 

Transaction Tl indexes the directory entry dl to insert the key in the data page 

P. Transaction Tl after indexing the directory entry and before inserting the key is 

suspended. When Tl is rescheduled, it tries to insert the key in page P. By doing so, 

it may have inserted in a wrong page. Because there might have been modifications to 

the directory, before Tl was rescheduled. This is how the whole process works in the 

conventional system. But Hsu algorithm works in this way. 

Transaction Tl knows in what page the key is to be inserted. Tl goes to that 
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page and sees whether the page is locked or unlocked. If it is unlocked then this locks 

the page, just before locking the page it verifies that it is locking the correct page by 

using directory verification. The bits are compared. This is done because just after 

reading and before putting a lock on the page many things might have happened. That 

is there, might have been a directory split. So, after verifying and when it is found 

correct, the page is locked. The page is split and the keys are rehashed inorder to give 

them the correct pages to reside in. After this, it tries to update the directory entries 

after directory verification and then unlocks the page. This is how we insert the key in 

the page. If the directory verification fails, it ends the transaction without completing. 

It is rescheduled to perform the same operation after some time. 

Though this algorithm eliminates the locking problem considerably and insertion 

can be done while searching, it does not take into account the problems created because 

of compaction and overflow. This is a single step transaction and therefore two 

insertions are not possible concurrently into the same page. The third solution proposed 

by kumar [3] uses the two phase locking and has the advantages of the above solutions. 

Kumar's Algorithm 

This algorithm called the Extendible Hashing Cautious Waiting was proposed by 

Kumar [3]. It is based on a two-phase locking policy. 

The directory entry in the data structure (explained at the beginning of the 

chapter) has two additional columns. 

1. Verification Bits denoted by VB 
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2. Page Status denoted by PS. 

The verification bits are the most significant bits of the pseudo key, which 

increase with the increase in the directory entries. The page status (PS) in the directory 

gives the number of pages in each data page. The algorithm uses a principle called 

rolling back or blocking requestor. This principle is used whenever there is a conflict 

between two transactions, i.e, which one should be allowed to complete its operation 

ftrst. This algorithm also uses three locks and the locking protocol is given in Table n. 

The following section explains how Kumar's algorithm works. 

TABLEll 

COMPA TIBIUTY MATRIX 

read write ce* 

read YES NO YES 

write NO NO YES 

ce YES YES NO 

* Contraction/Expansion mode 

Search Operation 

The key to be searched is taken and sent to the hash function to obtain the pseudo 

key. Then, with the help of this key, we go to a directory entry. The verification bits 

are compared with the index bits (obtained from pseudo key). This is a directory level 
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verification. If we fmd during comparison that both the bits are same, then the directory 

entry is correct. If the comparison gives that the bits are different then, the whole 

process of checking the directory is repeated by checking the most significant bits of the 

pseudo key. Indexing onto the directory is done again. The VB are compared with the 

index bits. This process is repeated until we find a match. The process ends when no 

match is found, because the upper limit of the directory is fixed. 

When a match is found, then it is said that we have found a directory entry. By 

taking the pointer from the directory to the bucket or page we perform page level 

verification. In this verification the VB bits are compared with the local depth of the 

page. If the VB bits were equal to the local depth bits, then the key is supposed to be 

there in the page. By storing the address of the page and the local depth, the key is 

searched in the page [14]. If found, it returns a success message, else it may give 

another type of success message. But if the VB bits were less than the local depth, it 

means that a split has occurred and the whole process is repeated. 

Insert Operation 

For an insertion, we apply the search function. If the search did not fmd a page 

then it is said that there is no record with this key. So, insertion can be done. The page 

address and the local depth are passed to the calling routine. The page that is obtained 

is the one where the key can be inserted. This page is locked in an exclusive mode and 

its current local depth value is compared with that of the local depth value obtained from 

the search operation. This is done in order to verify that no split has occurred in 
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between. If they do not match, then we again restart the whole process right from the 

beginning i.e., from search operation. 

If the page's local depth matches, then it is a correct page. The page status gives 

the number of records in the pages. If the page status number is equal to the number of 

keys that can be inserted in a page, then we split the page. If it is less, then we will 

directly insert the key. For a page split, local depth of the page and the directory depth 

(global depth) are compared. If it is equal, then there will be a directory split, resulting 

in doubling of the directory size [12]. The split is allowed to take place, and the new 

page which resulted due to split is locked in an exclusive mode. Redistributing of keys 

is done, and the insertion of the keys takes place in the right pages and pointers are 

updated. 

During the process, if a directory is locked then the real problem comes into 

effect. But, Kumar in his algorithm has effectively tackled this problem by using his 

principle "Rolling Back or Blocking Requestor." If the directory is free, then it is locked 

in ace (contraction/expansion) mode. If the directory expansion is required, the directory 

is doubled (expanded) and the links to pages are rearranged. The entries in the directory, 

namely VB and PS are also updated. If there is no requirement for a directory 

expansion, meaning that local depth is less than the directory depth or global depth, then 

the pointers are readjusted and the PS fields are updated. The locks on the directory are 

released, but, not on the page because verification has not been done on the page. After 

verification on the pages is done, the locks are removed. This is how insertion works. 



20 

Delete Operation 

The delete operation also uses the application of search. The page address and 

the local depth are passed to the calling routine. A delete can proceed only if a search 

operation succeeds. The page is locked in an exclusive mode which we have obtained 

from the search operation. The local depth of this page and the local depth of the page 

to be searched is compared. If they match, then the page is correct, and the record is 

deleted. If the local depths of the two pages do not match, a split or merge might have 

occurred due to another process (such as insert or another delete operation). So the 

entire process right from the search operation is repeated. Since the upper limit of the 

directory is fixed there is no chance of it going into an infinite loop. 

It is checked whether the page can be merged or not. PS value of the present 

page and its sibling page is added and checked (for a potential merge). H the value is 

equal or less than that of the number of pages in a bucket, then there can be a page 

merge. For example, we have the value PS of present page as 2 and the value of PS of 

the sibling as 1. The total value is three. As our page capacity is three (example) so, 

there can be a merge. Thus reducing the local depth, and sometimes even the directory 

depth. To achieve a page merge the sibling data page is locked in the write mode. If this 

page is locked by another transaction/process, it skips the merge operation and execution 

is continued. Merging is done only to save memory. Further details are given in the 

summary section. All the records are moved into one page, if the sibling page was not 

locked. 

If the directory was locked, then a conflict would arise as to which one should be 
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allowed first. This is resolved by using the rolling back or blocking requestor principle. 

If the directory is free then it should be locked in ce mode. If the directory contraction 

has occurred, then the entries in the directory are updated like the VB and PS fields. 

The pointers are re-arranged. If only page merge is required then the pointers from the 

two directory entries point to the same page. Again, here also, similar to the insertion 

operation, the locks on the directory are removed first. After verifying the page then the 

pages are unlocked. This ends the deletion operation. 

Let us consider an example, where there are two directory entries adjacent to each 

other pointing to the same bucket. The local depth of this bucket is considered to be one 

less than the global depth. Let there be two transactions Tl and T2 both wanting to 

insert a record. The page is already full (to show how split works). The transactions 

Tl and T2 are indexed onto the directory entries dl and d2 respectively. The transaction 

Tl accesses this directory entry dl and stores in its working area, the value of page 

status, VB bits and local depth. It locks P and then gets suspended. T2 begins 

execution, it sees that page P is locked. T2 then stores the number of bits, local depth 

and page status in its working area. 

When Tl is rescheduled, it compares successfully VB bits and local depth of P. 

It finds that a split has to occur. The page P splits and a new page PI is obtained. This 

page Pl is locked by Tl. All the keys are rehashed. If it is a worst case, that is if all 

the keys go to the same bucket, then there is another split. But this case is not 

considered here. The records which were in P before are redistributed between pages 

after rehashing. The key is inserted during this process. The local depth is increased by 
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one. Now the directory is locked in the ce (contraction/expansion) mode and PI is 

linked to correct directory entry. Then the lock is released on the directory. This 

completes the execution of transaction Tl. T2 is rescheduled and it Locks P. Then it 

compares the VB bits in its working space with the new local depth. It is different. T2 

unlocks page P and invokes search and locks Pl , fmds it and inserts key into it. 

Let us consider deletion from the above structure (modified one). The transactions 

T3 and T4 are mapped onto two adjacent directories dl and d2. T3 has to delete the two 

records that are in the Page Pl and T4 to delete one record from the page P. The 

transaction T3 access d2 and see that there is no lock on the page Pl and reads into its 

working space the VB bits, page status and local depth, and it gets suspended. Then 

transaction T4 comes and writes into its working space the VB bits, page status and local 

depth. Then the transaction is rescheduled and compares the VB bits and local depth of 

Pl. It locks the page Pl and deletes the two keys in the page. Then there is a chance 

for a merge operation. It sees whether the parent page is locked or not. If it is not 

locked then it merges with P. Then it locks the directory in ce mode, Updates all the 

pointers and unlocks the pages. But in this case merge would not have been possible if 

page P was locked by the transaction T4. This would have resulted in an empty bucket. 

This case was not considered in Kumar's algorithm. But if there was no lock, the pages 

get merged. When the transaction T4 was rescheduled, it compares the VB bits with the 

local depth which changes due to a merge operation. Then T4 invokes search and locks 

P and deletes the required record (key). 
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Figure 8. Structure Before and After Transaction 

Summary 

It was explained how the three algorithms on concurrent operations in extendible 

hashing work. The solution proposed by Ellis has one advantage that it has no upper 

bound on the directory. The main disadvantage is that when a split occurs then the 

buckets expand thereby increasing the links. Thus, this becomes a linked list approach. 

Ellis uses locks in insert, delete and search operations. By using locks extensively, the 

locking overhead is increased. The lockhead takes one atomic action. This increases the 

cost of serialization of locking processes. This is a single step transaction. This means 

that no two insertions or two deletions can take place simultaneously. The benefit which 

we seek to achieve from a dynamic data structure like extendible hashing is lost and this 

more or less becomes a two-phase locking system in which the directory and page are 

locked during any operation. Though her solution can be applied in distributed data 

bases the other solutions have greater merit as they give higher degree of concurrency 

[8]. 
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The solution given by Hsu and Yang also has some advantages and disadvantages. 

They do not use the linked list approach. Their solution paves a way for the verification 

process. It includes a field for the verification. This generally helps in avoiding locks 

all the time. Moreover, this gives better concurrency than Ellis's algorithm. By using 

this verification process we can insert a key while search or delete operation is going on. 

This algorithm is deadlock free. This algorithm is also a single step transaction. This 

locks one data page at a time. No two simultaneous insertion or deletion operations are 

possible. It has some disadvantages. This algorithm has an upper limit on the directory 

size. They have made an assumption that underflow and compaction would not occur. 

They have not taken into account the problem of merging. This solution was the first 

of its kind which presented a higher degree of concurrency during operations. It is also 

the root of the next algorithm which Kumar developed. 

Kumar's algorithm achieves optimal memory utilization by supporting directory 

expansion, contraction, page split and merge efficiently. The solution given by Kumar 

[3] uses verification at two stages both at the directory level and the page level to 

guarantee data consistency and to avoid locking of directory to a large extent. Thus at 

any time only the particular entry is locked. This reduces locking overheads and 

increases concurrency by allowing page modification and directory modification to 

happen concurrently. It was assumed in this algorithm that if the sibling page is blocked 

by another processes during a merge operation, merging is not taking place, but the 

execution is continuing. Kumar [3] states that usually in database operations there would 

be more page splits than page merging. Merging of buckets was not given much of 
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importance. Though this algorithm works in the present environment, it can be made 

more useful and helpful to even small data bases. This can be taken care by merging the 

buckets at the right time. 

With the help of concurrent operations in extendible hashing insertion, deletion 

and search operations can be performed simultaneously on a particular entry or on 

different entries. There by creating a very useful multi user environment system. The 

algorithms which were explained are for synchronizing concurrent operations in 

extendible hash files. These are very useful for Main Memory Data Bases. It was seen 

how locking overhead could be minimized by using verification processes. It was also 

seen how operations such as search insert and delete are performed concurrently, without 

using locks. These algorithms are deadlock free. Kumar has developed a simulation 

model [3] which proved his algorithm to provide a higher level of concurrency. Though 

Kumar's algorithm is deadlock free and offers a higher level of concurrency, 

modifications are necessary. 

In a real-time data application we can know the number of transactions wanting 

a particular key or entry. With the help of this information we can avoid unnecessary 

splits or merges. By saving a merge or a split we increase the concurrency. During a 

merge or a split we lock the directory. We can also decrease the overhead like lockhead 

and system resources. It will be interesting to see how space complexity versus time 

complexity would behave. This is where my thesis research would take place. There 

can be a trade off between space and time. In the next chapter we propose a new 

merging technique for concurrent operations in extendible hashing. We also give the 
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algorithms for search insert and delete operations. 



CHAPTER ill 

A NEW MERGING TECHNIQUE FOR CONCURRENT 

OPERATIONS IN EXTENDffiLE HASlllNG 

Modification to the Directory 

Some modifications to the directory are necessary for implementation of our 

algorithm. The modified directory is shown in figure 9. Each Directory along with the 

original fields has two extra fields, check lock (CL) and wait status (WS). Therefore we 

have totally four fields together, verification bits (VB), page status (PS), check lock (CL) 

and wait status (WS). The verification bits (VB) of a directory entry are the most 

significant bits of the pseudo key. This is same as the directory entry prefix [3]. The 

page status (PS) field of directory tells us the number of pages each corresponding page 

has. The check lock tells us whether there is any lock on the corresponding page. The 

wait status tells us the number of transactions waiting for that particular entry. The 

number of bits change whenever there is a modification in the directory entry. The page 

status changes whenever there is a change in the number of records in the page. The 

check lock depends upon the lock changes on the corresponding data page. The wait 

status depends on the number of transactions waiting for that particular directory entry. 

The wait status (WS) can help in avoiding page splitting which may be 
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unnecessary. If more deletions were to occur in the near future after an insertion, we 

use a new idea called forced insertion. This type of insertion would increase the page 

size, but it would not split the page. If there were deletions to occur shortly, then it 

would get the page to the nonnal size. By doing this we are able to save lock head, 

memory and other system resources which would have gone waste. 

Let us consider a case which occurs in a concurrent operation extendible hash tile. 

The case is shown in Figure 9. Let there be four transactions Tl, T2, T3 and T4 which 

want to perfonn some operation such as insert, delete or search on two particular buckets 

(data page) pointed by directory entries d3 and d4 respectively. Let us assume that 

transactions Tl, T3 and T4 want to perfonn insertions on the bucket pointed by directory 

entry d3, and T2 wants to perform deletion on the bucket pointed by directory entry d3, 

and read one record in the bucket pointed by directory entry d4. Before performing any 

transactions on the hash ftle, let us see the hash fJle closely. We see that the number of 

records in the buckets pointed by directory entries d3 and d4 when combined together 

is less than the total page (bucket) capacity (page capacity in this example has been ftxed 

at four). There is a potential for merge. When algorithms proposed previously are 

applied, the buckets pointed by d3 and d4 will be merged. Then immediately there will 

be a page split, because we have insertions taking place into the bucket pointed by 

directory entry d3. We see that when the previous algorithms are applied we are 

unnecessarily merging and splitting. The amount of time we will be losing during a split 

or merge is more, because the keys have to be rehashed and then redistributed. But with 

the help of the wait status we can tell whether it will be good to merge or not. 
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In the same situation if the proposed algorithm is applied, We see that wait status 

plus the page status of the page and the sibling page cross the page capacity. We would 

not merge, even though there was a potential for merge. Instead of merging we allow 

insertions to take place, there by effectively saving a page merge and a page split. 

During a page merge or a page split we have to rehash all the keys in the effected page 

and redistribute within the pages. We save a lot of overhead like the lock head and 

system resources, by not doing the page merge and a split. We increase the concurrency 

by not locking the page. During a page merge or a split we lock the directory. 

In the same example the buckets pointed by directory entries dl and d2 can be 

merged but when the previous algorithms were applied merging is not done, because we 

have a lock on the sibling page. But when the proposed algorithm is applied, with the 

help of our wait status we see it could be merged, since there would be no split in the 

near future. So after lock removal we merge the page. We save a lot of space which 

would have gone waste. Thus we can say the proposed algorithm saves both time and 

space which are very valuable. This is an innovative and revolutionary concept in 

concurrency control in extendible hashing. 

A conflict between two operations over the directory or a data page is resolved 

either by rolling back or blocking one of the conflicting transactions. Previously a 

transaction had to wait till it gets to the data page, to check whether a roll back or 

blocking requestor should be called but in the proposed algorithm the roll back or 

blocking requestor call is decided whenever it indexes the directory entry, there by 

saving time. A rollback or a blocking requestor is given top priority in implementation. 
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This is based on a two phase locking system [3]. In the next section, the algorithm on 

concurrent operations in extendible hashing is explained. 

VB CL ws PS PAGE 

Pl 
00 y 0 2 2 
d1 

P2 
01 N 0 1 1 
d2 

P3 
10 N 2 1 1 
d3 

P4 
11 N 0 2 2 
d4 

Directory Page 

Figure 9. Modified data structure with data pages. 

"A directory search is non-atomic, i.e., a search operation is not effected by any 

other transaction nor the directory is locked. This has been made possible by the use of 

verification process. The verification process is applied at the directory as well as the 

data page level. The directory level verification obtains the correct directory entry 

pointing to the desired page. The page level verification gets the correct page containing 

the desired record. A search may proceed concurrently with the directory expansion or 

contraction. Accessing and processing of the data items are done under write( exclusive) 

and read (shared) locks. Concurrent directory expansion or contraction is serialized with 
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the help of a verification scheme, a new lock mode called contractionlexpansion(ce), and 

by rolling back or blocking conflicting transactions" [3]. 

The algorithm is composed of three phases: search, insert and delete. The search 

phase comes in both insert and delete. Search uses the verification technique. 

Search Algorithm 

The search operation on an extendible hash ftle consists of: 

1. Send the key K to the hash function and obtain the pseudo key K'. 

2. Extract the most significant bits of the key to determine the directory to be read. 

3. Index the directory and read the values of VB, PS, CL and the page address stored 

in the directory entry. 

4. Compare VB bits with the index bits (that of the key to be searched). This is a 

directory level verification. If the number of bits differ it means that there had been 

a directory modification and then the search operation should repeat from step 2. This 

is repeated until two consecutive readings remain same. A successful comparison 

means correct directory verification. 

5. The Verification bits VB is compared with that of the local depth (page). If there is 

a difference in the number of bits then there is a change in page. So, we go to step 

2. If there was no change in the bits, then it is the correct data page. 

6. This procedure returns the address of the page, if there is no lock or a read lock on 

the page. 

7. End of Search. 
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What the search operation is vulnerable to is the concurrent insert operation that 

may split a data page and reallocate the keys in a different data page. However, this 

type of interference is avoided by verification process. 

Insertion Algorithm 

The insertion operation in an extendible hash me consists of: 

1. Apply the search algorithm, pass the page address and local depth to the calling 

routine. 

2. Check whether the check lock is active. 

If check lock is active, then it may be one of the following cases: 

(a) There is a transaction going on which is updating one of the records in the 

data page. 

(b) There is a transaction which is inserting a new record into that page at that time. 

The above two conditions can be known at the moment we see the check lock. 

Here we update the wait status and use the rollback or blocking policy. 

3. If check lock is not active, lock the page in exclusive mode, update the check 

lock status. The current local depth value is compared with the local depth of that of 

the search. An unsuccessful comparison indicates interlerence from other transactions; 

hence release the page and go to step 1. 

A successful comparison indicates that the page is correct page. 

4. Check the page status(PS) value. If the page is full, check the wait status if the wait 

status shows a negative number prepare for a forced insertion, if wait status {W) is 
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positive prepare for a page split, else update the page status. 

5. Forced Insen: Check the wait status, if there are more number of deletions to occur, 

then insert the existing record into the page. Update the page status. 

6. Page split: Compare the local depth of the page and the global depth. If they are 

equal then the page will initiate a directory expansion. Split the page. The new 

allocated page is also locked in the memory. The keys are rehashed into the two 

pages. The new record is inserted into the right page. The pointers are updated. The 

page status for both the pages are updated. 

7. If the directory was locked, then a conflict would have arisen. Then the conflict is 

resolved by rolling back or blocking the requestor. 

8. If the directory was not locked, then lock the directory in the ce mode. If an 

expansion is required then expand the directory. Update the directory entries, the 

page status, check lock, wait status and the verification bits. Release the lock on the 

directory but not from the pages. At the end of transaction i.e., at commit time we 

release the locks on the data page. 

9. End of insert. 

Deletion Algorithm 

The Deletion operation in an extendible hash file consists of: 

1. Apply the search algorithm, pass the page address and local depth to the calling 

routine. 

2. Check whether the check lock is active. 
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If check lock is active, then there might be two cases 

(a) There is a transaction going on which is updating one of the records in the data 

page. 

(b) There is a transaction which is inserting/deleting a new record into that page at 

that time. 

Here we update the wait status and call the roll back or blocking policy. 

3. Lock the page in exclusive mode and compare its current local depth with the local 

depth value received from the search. An unsuccessful comparison indicates 

interference from other transactions hence release and go to step I. A successful 

comparison indicates that page is the correct page so we delete. 

4. Add the PS and WS values of this and its sibling (page that can be merged with this 

page). If this value is less than the page capacity then prepare for a page merge. A 

page can be merged only if the sibling page is not locked. This is checked by seeing 

the check lock on the sibling page. 

5. If there was a potential for merge and it could not happen, because of the lock on the 

sibling page. Check the wait status on the sibling page. If the wait status plus the 

page status of the page and the sibling page put together is less than the total page 

capacity then we call the timer. (This function is called when the lock on the sibling 

page is off, it tries to merge with the parent immediately and then goes onto the next 

step) 

6. If the directory is locked then a conflict occurs. Resolve the conflict by rolling back 

or blocking the requestor. 
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7. If the directory is free the directory is locked in ce mode. If a contraction is required 

then contract the directory and link the right page with the directory entry. Update the 

PS, WS, CL and VB fields. If no directory contraction occurs then link the two 

directory pointers to this page. Release lock from the directory, after updating all the 

fields but not from the data pages. 

8. If there is an empty page return it to the memory, by releasing the lock on it. 

9. At the end of transaction unlock the pages. 

10. End of delete. 



CHAPTER IV 

PROOF OF CORRECTNESS 

We follow an approach similar to that taken in [2] to establish the correctness of 

our algorithm. 

This algorithm has used an innovative merging technique which is first of its 

kind. It uses two fields the check lock (CL) and the wait status (WS). We call our 

algorithm Optimistic Extendible Hashing Algoritlun. 

The following assumptions are made. 

1. There exists an upper bound for global depth, and the page. 

2. The search operation consists of a sequence of read steps. Each read step involves 

a directory entry or a data page. 

3. The insert/delete operations consist of a set of read and write steps that are atomic. 

4. An interleave definition is given [3]. 

Proof of termination 

Lemma 1. All operations terminate 

Proof: Since no operation would hold any lock while waiting for another, no circular 

wait is possible, therefore no deadlock is possible. Therefore the termination proof 
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amounts to proving that the potential loop in the termination will terminate. Since all 

operations use the verification technique the loop will terminate whenever the value it 

has read previously remains the same for the next time (Two consecutive times). 

Thereby we end in finding the correct page. We check this by page level verification. 

In case of a failure, it will terminate in finite time, since there is an upper limit to the 

global depth and the number of pages pointed to by the largest directory. 

Correctness of Search Algorithm 

Lemma 2. The Search Operation is correct 

Proof: To prove that search operations are correct, we investigate what could possibly 

be the cause for it to be incorrect. Since all the search operations terminate, they either 

succeed or fail. We consider each of these two cases separately. 

If a search operation S succeeds i.e., if it fmds the key it is looking for, then it 

must be correct. This can be shown as follows. Let us suppose that we have three 

operations insert search and delete one particular record. A serial schedule would be: 

< I(r) S(r) D(r) > . For a successful search a correct serializable schedule is the one 

where S(r) must complete before D(r). This tells us there must exist an insertion 

operation that inserts r. The only way search can fmd rafter it has been deleted by D(r) 

is: 

Let us assume a transaction T wants to insert a record in page p. The insertion 

has resulted into splitting the page pinto p and p'. The record has migrated into p'. If 

there was a search operation going on at the same time, it fmds page p as the one which 
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has the record r since page p was in a transient state holding r. After completion of the 

insertion operation we have a directory entry corresponding tor is pointing top'. The 

search operation accesses the page p and fmds r, and returns to the corresponding 

operation. The following are the steps which represent the above case. 

1. r is inserted into data page by p by I(pr). 

2. Page p was split top and p' and r was migrated top'. 

3. p is in a transient state and still holding r. 

4. Directory entry corresponding to r is pointing top'. 

5. Search accesses p and finds r. 

A serializable schedule is the one when all steps of an interleaved operation 

preserve their order as they appear in the serial schedule. In the case explained above 

the last step i.e 5 cannot possibly occur since I(pr) has already changed the directory 

pointer to p' that contains r. S will therefore, access p' and not p. Moreover, any 

operation would check the check lock status, and if there was any lock on the data page, 

then the search or insert or delete operation would roll back. The operation gets repeated 

from beginning. This implies that there is no such insert operation after which Swill be 

looking into a wrong data page and fail to find r. S is therefore correct since it fmds 

the record r which is present in the file. 

Search fails: If search fails then r cannot be in the ftle, or when there is a concurrent 

reallocation. In other words, it will be not the case that search looks into a wrong page 

and terminates with failure when the record r is in another page. We assume that search 
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fails after the record r was inserted by l(r) in another page. We can see that there are 

few possible interleaved schedules which can lead to that type of situation, but we show 

that these do not appear in our algorithm. 

1. Insertion of a record into a page, then searching the directory entry and the page. This 

can be represented in an interleave schedule as < I(pr) S( d) S(pr) > . If the 

insertion has split the page pinto p and pl and moved the record into pl. If S(pr) 

fails then S was looking for r in a wrong page. i.e., p. But this cannot happen 

since if the record was moved into pl, then the directory entry would be pointing 

to pl and not top. But if the insertion expands the directory then the directory 

verification will take S(d) to the correct directory entry and lead S(pr) to the correct 

page. 

2. Searching the directory entry, then insertion and searching the page for the record. 

In this case the interleaved schedule can be represented as < S(d) l(r) S(pr) >. If the 

search fails as we have assumed, then Swill be looking for r in page p. This cannot 

happen since the verification process will eventually fmd the correct directory pointer. 

By combining both proof of success and failure of the search algorithm we 

conclude that search operation is correct. 

Correctness of Insertion Algorithm 

Since search operations do not update the database, they do not effect the 

correctness of an insertion operation. Therefore, to prove that insertion operations are 

correct we only need to take into account the interferences among insertion operations 
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themselves, and between insertion and deletion. So inorder to prove our above point, 

we follow a similar approach to that taken in [3]. Let us establish an insert operation 

that inserts a record in a correct page and also that two interleaved inserts produces a 

correct result. In a sense insertion is correct. There are three cases which occur in 

insertion. 

Case I. When WS is non-negative integer, and page is full. 

Case II. When WS is negative and PS less than page capacity. 

Case ill. When it is a simple insertion, PS is less than page capacity. 

Case II and Case m are trivial cases, they involve direct insertions in to the page. 

These cases follow the steps of the insertion algorithm. The formal proof is included 

after lemma 3. Case I is proved by proof by contradiction in lemma 3. 

Lemma 3. Any two concurrent insertion or insertion/update operations Tl and T2 

always interleave correctly 

Proof: Let there be two transactions Tl and T2 which want to insert I(r) and update U(r) 

the same record respectively. If they are to be inserted and updated correctly they 

would follow this interleaved schedule. First there would be a directory search and then 

there would be a page search to insert the record. This can be represented in an 

interleave schedule as < S(d) S(r) V(d) I(plr) Sl(d) Sl(rl) Vl(d) U(plr) >. Let us say 

that the insertion of record r into page p has split into p and pl. And the record goes 

into pl page. As soon as insert operation is finished, all the locks on the page are 

removed, and the second operation update is started. The second operation also behaves 
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the same way, as the first. 

Suppose we say that the two interleaves behaved incorrectly and they have got 

wrong pages for insertion and update, this could have been possible for the following 

reason. If Sand Sl have found the same directory entry pointing to the data page p. 

Both the verification process would succeed. The first insertion I would split the page p 

into p and pl, and redistribute the keys, and the record is inserted into pl. For we say 

that U(r) has got a record which is not the one I inserted into p or pl, which is in the 

wrong page. The interleaved schedule for this can be shown as follows, <S(d) S(r) 

Sl(d) V(d) Sl(r) Vl(d) I(Plr) U(pr)>, note the difference. It should have worked as 

the original interleave schedule and must have updated the record in p or pl. But we 

show this interleave (Second one) is not possible since, I(r) will be executed under 2PL 

policy. 

The page split will be performed under exclusive locks, so it is not possible to 

perform another operation on the same page. And after first operation, insertion is 

complete then the second operation update, which was blocked previously as there was 

a lock on the page p would start. The update operation begins with a directory 

verification and a page level verification. If the directory verification succeeds then 

there would be a page level verification. If this also succeeds then we update the record 

in the page. If the directory level verification has failed then it would restart the whole 

process i.e., from search. By this we can conclude that the interleaving between I and 

U is equivalent to serializing I and U therefore they are correct. But we say we have 

another transaction R which wants to read the record r. This has to wait since the page 
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is under lock and no other transaction can accesses it. Soon after releasing the lock the 

transaction R is rescheduled. Let us now examine case ll where there is no split in the 

page, i.e., where it uses the forced insertion. 

Let us say there are four transactions Tl, T2, T3 and T4 which want to insert, 

delete, delete and update respectively, some records in the same page. The interleaving 

schedule for this will be < Sl(d) Sl(r) Vl(d) Il(pr) S2(d) S2(r) V2(d) D2(pr) S3(d) S3(r) 

V3(d) D3(pr) S4(d) S4(r) V4(d) U4(pr) >. Let us say that insertion of a record would 

split the page, but before we split the page we see the wait status, which tells us that 

there are two deletion operations to be done. We force insert the record into the page. 

As soon as this insert is finished, the lock on the page is removed. We are ready for 

the next transaction. The next transaction which was blocked previously due to lock on 

the page, would resume with a directory and page level verification. Since there was no 

directory or page split then the verification remains same and the second operation locks 

the page. Since these transactions are executed under the two phase lock policy, it is not 

possible for other operations to be performed on the same page at the same time. An 

interleaving schedule is equivalent to serializing. The remaining transactions also behave 

the same way. 

By this lemma we can conclude that insertion algorithm is correct. 

Correctness of Deletion Algorithm 

In deletion algorithm as in insertion algorithm we have three cases to be taken 

into account. 



Case I. When WS + PS is less than the page capacity and when lock is present. 

Case IT. When WS + PS is less than the page capacity but when lock is present. 

Case ill. When WS + PS is greater than the page capacity. 
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Case I and Case II formal proof is included in lemma 4. The formal proof for 

Case m is simple, because it is just an ordinary deletion and it follows the step of the 

deletion algorithm. 

Lemma 4. Any two concurrent deletions or delete/insert operations always interleave 

correctly 

proof: Let I and D be two operations which want to insert and delete respectively. If 

they were to be inserted and then deleted they had to follow the following serial 

interleave schedule. < S(d) S(r) V(d) I(plr) Sl(r) Vl (d) D(plr) >. First there would be 

a directory search and S(r) fmds the page where the record r should be. Directory 

verification V(d) is done before I(pr) splits the page into p and pl. The records are 

distributed into p and pl. When the insertion is complete then all locks are released, and 

the deletion from the second transaction begins. 

Suppose these two transactions interleave incorrectly and insert and delete their 

records incorrectly. This is possible if one of their interleaved schedules could be 

< Sl(d) Sl(r) S2(d) Vl(d) Sl(r) V2(d) I(plr) D(pr) > . Under this schedule Sl and S2 

fmd the same directory entry pointing to the same data page p. Both the verifications 

Vl(d) and V2(d) will succeed. If I(plr) splits the page pinto p and pl then redistributes 

the keys, and inserts r into pl. By the same time the verification for the second 

operation is correct so it deletes a record which is from a wrong data page. This 
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interleave schedule is impossible since I(r) will be executed under 2PL policy. The page 

split is performed under exclusive locks. The second operation deletion would be 

blocked because there is a lock on the page. When the insertion operation is done and 

all the locks on the pages have been removed. The deletion transaction is started, then 

it does a directory verification if it succeeds then it does a page level verification, it finds 

the record and deletes it. Here we see that transaction deletion cannot delete the record 

from the page pl, because there was a lock being held by the insertion transaction, and 

therefore it had to wait until I released the lock on it. If there were to be a potential for 

merge, then it would check the wait status along with page status of the page and sibling 

page and a merge is performed. The consistency of the algorithm at any stage wouldn't 

change because of wait status. The wait status checks whether it would be advisable for 

a merge. If there was a lock on the sibling page and still there is a potential for merge, 

immediately after removing the lock, the merge is performed. 

Thereby we can conclude from the above four lemmas that the proposed algorithm 

for concurrent search/insertion/deletion operations are correct. 

In the next section we see the algorithms of our Search Insert and Delete 

operation algorithms. 



Input : Given Key 

Output : Page address 

Search (given key k); 
begin 

Initialization: 
Xold: =0, dnew: = 0; 

hash function(K); 

k' = Po P1 P2 · · · ··Pn-1; 
getpointer; 
read d, base; 

check the global and local depth; 

Search Algorithm 

t: = Po P1 P2 ..... pn-1 /* take the initial g bits */ 
take the directory index 
new is compared with the xold; /* reverification so as to confmn it is correct */ 

while dnew < > xold do 
begin 

comparison and mapping on to the directory entry 
IfCL == 1; 
break; 

roll back or block; 
end 

return(directory entry contents); 
end 
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Insertion Algorithm 

Input : The given key 

Output : Whether Successful or not 

begin 
I * send the key to the search function */ 
tk: = search( key k); 
if result then 
begin 

read( directory . vb, directory .cl, direntry.old_data_page); 
free: = checkstatus 

if free(l) 
A: = get(direntry- >page)/* read the data page pointed by directory entry *I 
if A: = = k /*if the key is already present */ 
return; 

else 

end 

I* prepare for insertion */ 
case.l I A I < ps /* no need to split */ 

A: = insert(A,k); 
case.2 I A I > = ps && ws < 0 I* no need to split forced insert */ 

A: = forced insert(A,k); 
case.3 I A I = ps && ws > = 0 /* split the page */ 

rp: = this is the number of required pages. 
p,,p2,J>3,p4,Ps· ... ··Pn-1: = allocate p new pages 

lock(pt>p2,p3,p4,p5 ..... ·Pn-t) /* the new pages are locked*/ 
A,At>A2 .... An:= rearrange old A and new directory pointers 
writeback(A,A1 ... An- > P or P1); 

directory. modify(D,p"p2,J>3,p4,p5 .... · · Pn-1); 
begin 

end 

update all the directory pointers. 
unlock(pt.p2,p3,p4,p5 .. · · · ·Pn-1); 
update check lock status; 
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The function of the directory modify is 
Procedure directory.modify(D,J>t,p2,p3,p4,p5 •••••• pn-t); 
begin 

for all directory entries j affected by split do; 
i: = subscript of newly allocated page 0 
put (pi, d[j]) ; 

end 
end 

Deletion Algorithm 

Input : Send the Given Key 

Output: Whether Deleted or not 

begin 
I * send the key to the search function *I 

tk: = search( key k); 
if result then 

begin 
read( directory .vb, directory .cl, direntry .olddatapage); 
free: = checkstatus 
if free(l) 
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A: = get(direntry->page) I* read the data page pointed by directory 
entry*/ 

else 

end 

end 

if A: ! = k I* if the key is already Deleted*/ 
return; 

I* prepare for Deletion */ 
case. I IAI < (ps + ps of sibling page)+ ws /*no need to merge*/ 

A: = Delete(A,k); 
case.2 IAI > = (ps + ws) page and sibling page && no lock is present 

A: = Delete(A,k); 
Merge( A); 

case.3 I A I > = (ps + ws ) page and sibling page && lock is present /* 
Merging can be done after lock removal*/ 

A:= Delete(A,K); 
Merge _lockO; 



CHAPTER V 

PERFORMANCE ANALYSIS 

In this chapter we present few examples to show concurrent execution of 

transactions. We use two sets (setl and set2 ) of transactions and run them concurrently 

using our algorithm. Figure 10 gives the initial state of the file. Here we assume that 

each data page can hold up to a maximum of three records (for simplicity). 

TABLEID 

TRANSACTION SET 

SET T1 T2 T3 T4 TS 

1 1,4 1,4 17,2 4,1 7,10 

2 12,10 17,10 9,2 11,4 19,7 
18 

In Table m, we have two sets each consisting of five transactions, and each 

transaction requires one or more records. We investigate the different possible cases 
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which would occur in a concurrent operation on extendible hash ftle. And throughout 

the explanation of cases we have made some assumptions. For example, if we come 

across numbers like 3, 6, 19 etc., then those are the record (key) numbers. If we come 

across 00 11 10 etc., it is the directory entry prefiX. 

Case 1: No Page Split, No Directory Modification, No Forced Insert. 

Here we would be seeing an elementary case, where there is no page, directory split or 

merge. We have our initial state represented in Figure 10. We execute concurrently the 

transactions of set 1. T1 and T2 wish to modify records 1 and 4. Tl is scheduled and 

the frrst two bits of the pseudo key index the directory entry 00. It checks whether there 

is any lock on the page by seeing the status of the check lock. If it ftnds there is no lock 

on it. It accesses and stores in its working area the page status, VB bits, wait status, 

check lock and the local depth, locks pl, and then gets suspended. T2 begins execution, 

and the directory entry 01 is accessed. T2 is blocked over p1, because as soon as it 

accesses this directory entry, it sees a check lock active, if this transaction wanted to 

insert/delete a record it would update the wait status. It was assumed that T2 wants to 

update the record, so it would not update the wait status. When rescheduled T1 does not 

verify since the data page locked by it cannot be acted by any other transaction. T1 

completes its work and commits. When T2 is rescheduled it compares the number of VB 

bits so as to confrrm whether there was any change in the directory or page. If the 

comparison is successful (it is successful in this case) T2 locks pl, fmds the record 

modifies and commits. 
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VB CL WS PS PAGE 

00 N 0 3 1,4,2 
..---

01 N 0 3 
1--

7,8,9 
10 N 0 3 

11 N 0 3 
10,11,12 

Figure 10. Initial state of the flle 

VB CL WS PS PAGE 

17, 2 
00 y -1 4 

u 1, 4 

01 y -1 4 

7,8,9 
10 N 0 3 

11 N 0 3 
10,11 

12 

Figure 11. Transition state. 

Case 2 : No Page Split, Forced Insertion, No Directory Split. 

Consider Figure 10. T3 wants to insert a record 17 and modify 2. T4 wants to modify 

4 and delete 1. T5 wants to modify 7 and 10 records which are indexed by (10) and (11) 
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respectively. T3 is scheduled and gets suspended after reading the VB bits and page 

status check lock by the entry prefixed by 00. Before getting suspended this locks the 

page and updates all other fields. When transaction T4 is scheduled it prefixes directory 

entry 01. T4 checks whether there is any lock on the page. T4 fmds a lock on the page, 

so it updates the wait status telling there is a deletion going to be performed, and writes 

into its buffer space the directory entry contents, and then gets suspended. T3 is 

rescheduled, it updates its wait status in its working area, it modifies the record 2 and 

now tries to insert record 17. T3 fmds the page status as four (full), it then checks wait 

status, which tells T3 that there is going to be a deletion on this page, this is a case for 

forced insertion. Here we do not split the page which is normally the case, and would 

have even lead to directory modification. Ordinarily for a page split, directory is locked 

and the page is linked to the correct directory entry; and ce lock is released from the 

directory, there by not allowing any other transaction to start. After forced insertion 

before committing we update all the fields in the directory entry 00 and commit. T4 is 

rescheduled, it compares the number of VB bits it stored in its working area before it 

was suspended, with the local depth of the page p 1. In this case the comparison would 

be successful since there was no split in the page or directory. So, T4 locks p1, fmds 

and modifies the record 4 and deletes the record 1. Before committing T4 updates all 

the entries on the directory and commits. Here we have saved not only a page split, but 

a re-verification process which T4 would have done if there was a split. Thus we see 

the advantage of forced insertion. T5 in the meantime would complete its transactions 

since they are not in conflict with any other transaction. Figure 11 gives the transition 
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state of forced insertion. Figure 12 gives the state if a split had occurred. In a real time 

data we would have information before, if a insert or a delete operation would be next. 

PAGE 

17, 4 
VB CL ws PS 

00 N 0 2 w 
1, 2 

01 N 0 2 u 
7,8,9 

10 N 0 3 

11 N 0 3 
10,11,12 

Figure 12. The State after a Split. 

Case 3 : Page Split, Transaction Blocking or Roll back, and no Directory Modification. 

Consider Figure 11 and set 2. T2 wishes to modify records 17(00) and wants to insert 

record 18(01), and delete 10(11). T3 wishes to modify record 2, which is prefixed by 

00, and wants to delete record 9 prefixed by 10. T4 wants to modify 11(11) and 4(00). 

T2 begins, reads VB bits, WS, PS, CL and locks pl. T3 begins and reads all the values 

of the data page pointed by directory entry 00 and gets suspended. T4 locks p3 and 

modifies record 11. It then tries to lock page pl. Page p1 is already locked by T2, and 

T2 is not blocked by any other processes we block T4. T2 starts and modifies record 

17. It then tries to insert record 18 into this. Before inserting we check the wait status 

to see whether there are going to be any deletions, but in this case we do not have any. 
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Then we see the page status, it is full then we prepare for a page split. The page is split 

into p 1 and p 1 '. We see that records 2 and 17 go to page p 1 , and 18 and 4 go to page 

pl '. Then T2 tries to lock page p3, which was locked by T4 and is in a suspended state. 

Here in this case we roll back the requestor T2 since T4 is in a blocked state. We 

thereby make the algorithm deadlock free. T4 gets started and modifies record 4. 

During a roll back operation T2 removes the lock on the page pl. T4 then successfully 

completes its operation and releases the lock on page 3 after modifying record 11. Then 

T2 is scheduled and deletes 10. In the mean time T3 deletes 9, and gets ready to modify 

2. In this case we show when we call a requestor and when we block a requestor. This 

case also gives how a page splits, and Figure 13 shows the fmal state. 

In the next case we see how and when we merge. 

PAGE 

17, 2 
VB CL ws PS 

00 N 0 2 _j 
18, 4 

01 N 0 2 _j 

7,8,9 
10 N 0 3 

11 N 0 3 
10,11,12 

Figure 13. The State after a Split for Set 2. 

Case 4 : Page Merge, No Page Split, No Directory Modification, Forced Insertion. 
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Consider Figure 13. Let us run set2. T1 wants to delete 12(11) and 10(11). T5 wants 

to insert 19(11) and delete 7(10). T4 wants to delete 11(11) and modify 4(01). T5 when 

scheduled reads the values of the directory indexed by 10 and 11 respectively. Before 

getting suspended it locks p3 (data page pointed by directory entry 1 0) and p4 (data page 

pointed by directory entry 11) respectively. T1 comes and sees that lock on the directory 

entry 11 and it updates the wait status and gets blocked. T4 comes to directory entry 

11 and sees a lock on the page 4, it updates the wait status, and before getting 

suspended it puts a lock on the page 2, for modifying record 2. T5 is rescheduled. T5 

compares it wait status in its working area and the new wait status. There is no 

verification of bits, since the page was locked no other transaction can act on the page. 

It sees there are going to be three deletions in near future. It checks the page status, but 

it is full. This is a case for forced insert. It force inserts the record 19( 11) in to the 

page 4. It also completes deletion of record 7(10) before committing. T1 which was 

blocked previously is scheduled. It sees the directory entry 11 is lock free, before 

putting a lock on page 4, it writes all the contents into its buffer, and gets suspended. 

T1 is rescheduled and it performs its operation and releases the lock just before 

committing. T4 is scheduled and sees there is no lock. T4 deletes record 11 and sees 

whether there is any possibility of merging with its sibling page. We see it could be 

merged because p3 has two records and p4 one. This is a potential for merge, and we 

merge, because there is no lock on the sibling page. The resulting state is shown in 

Figure 14. We saved in this case one merge and one split. We have also not locked the 

directory, by saving merge and a split. 
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The proposed algorithm at the worst case will behave as the previous algorithms, 

but in an average case or a best case this algorithm saves time and memory. This 

algorithm avoids unnecessary thrashing, by splitting or merging whenever it is safe. 

PAGE 

17, 2 
VB CL ws PS 

00 N 0 2 w 
18, 4 

01 N 0 2 w 
8,9,19 

10 N 0 3 

11 N 0 3 
f---

Figure 14. The State after a Merge for Set 2. 



CHAPTER VI 

CONCLUSIONS 

In this thesis, we present an algorithm on concurrent operations in extendible 

hashing which shows a higher level of concurrency than the traditional one. Locking of 

directory is eliminated to a large extent in cases, which occur very frequently [1]. We 

have also seen a new idea called forced insertion at the right moment during the 

execution of concurrent operations to guarantee there is no unnecessary Jock on the 

directory. This thesis also introduces two new fields Check Lock and Wait Status. The 

algorithm supports directory expansion and contraction, Forced insertion, optimistic 

merging and splitting. This algorithm does not split a page or merge whenever there is 

a potential, but does only when required. This revolutionary concept would make 

extendible hashing a more favorite one for databases. 

Our algorithm manages to reduce locking overheads and increases concurrency 

by allowing page modification and directory contraction/ expansion to proceed 

concurrently. Our algorithm has optimal memory utilization since it tries to split or 

merge, when there is guarantee that at least in the near future there would be deletions 

or insertions. The extra overheads generated by directory management is not significant 

and does not offset the advantages gained by improved concurrency. We believe that 

this algorithm would be an efficient one, for both small and large databases. We make 
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