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Chapter 1

Introduction

The term web is used to describe materials which have their length considerably larger than

their width and width considerably larger than thickness. Webs are materials which are man-

ufactured and processed in a continuous, flexible strip form. Webs consist of a broad spectrum

of materials that are used extensively in every day life such as plastics, paper, textile, metals

and composites. Typically web materials are manufactured into rolls since it is easy to trans-

port and process the materials in the rolled form. An example of a web material is shown in

Figure 1.1.

Figure 1.1: A Web Material used for Packaging

Web handling is a term that is used to refer to the study of the behavior of the web while

it is transported and controlled through the processing machinery from an unwind roll to a
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rewind roll. A typical operation involves transporting a web in rolled, unfinished form from

an unwind roll to a rewind roll through processing machinery where the required process-

ing operations are performed. An example of such a process is commonly seen in the metals

industries. The web (metal strip) that is to be processed is transported on rollers to various

sections where different operations like coating, painting, drying, slitting, etc., are performed.

The process line generally has unwind and rewind rolls, many idle rollers and one or more

intermediate driven rollers. An experimental web handling system with unwind and rewind

sections is shown in Figure 1.2.

REWIND SECTION

UNWIND SECTION

DRIVEN ROLLER

IDLE ROLLERS

WEB

Figure 1.2: Experimental Web Handling System

The longitudinal dynamics of the web is the behavior of the web in the direction of transport

of the web. Web transport velocity and web tension are two key variables of interest that affect

the longitudinal behavior of the web. The lateral dynamics of the web is the behavior of the

web perpendicular to the direction of transport of the web and in the plane of web. Several

parameters which affect the lateral web dynamics include web material, tension, transport

velocity, and web geometry, etc. The quality of the finished web depends on how well the web

is handled on the rollers during transport. The longitudinal and lateral control of the web on

rollers play a critical role in the quality of the finished product.
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The focus of this work is on control of lateral dynamics of a web. Adaptive control strategies

that are capable of providing the required performance in the presence of the variations in the

process and web parameters are investigated. The suitability of these control strategies and

their ability to provide the required performance are studied in detail, both from theoretical

and experimental perspectives.

Web guiding (also called as lateral control) involves controlling web fluctuations in the plane

of the web and perpendicular to web travel. Web guiding is important because rollers in any

web handling machinery tend to have inherent misalignment problems and this may cause

the web to move laterally on the rollers. The lateral movement of the web on the rollers may

produce wrinkles or slackness in the web, or the web may completely fall off the rollers. A

number of web processes like printing, coating, winding may get affected severely due to the

web lateral motion and it becomes important to maintain the lateral position of the web. Web

guides are used to maintain the lateral position of the web on rollers during transport.

EDGE SENSOR

GUIDE ROLLER

LATERAL

LONGITUDINAL

WEB

GUIDE 
MECHANISM

ACTUATOR

Figure 1.3: An Example of a Web Guide

A web guide mechanism typically consist of a roller sitting on a pivoted base, whose motion

is controlled to change the axis of rotation of the roller. The working principle of all web guides

is based on a well understood fundamental principle in web handling – a web approaching a roller
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will always tend to orient itself perpendicular to the axis of rotation of the roller. The lateral motion of

the web is controlled by changing the axis of rotation of the guide roller. The lateral position of

the web is measured using an edge sensor. Based on this measurement as feedback the axis of

rotation of the guide roller is controlled to maintain the lateral position at the required location.

Figure 1.3 shows a web guide mechanism with an electromechanical actuator and an infrared

sensor.

Web guides are positioned at different locations in an industrial process line where guiding

is required. Guides located at either ends in a process line are usually called terminal guides [1].

An unwind guide maintains the lateral position of the web which is fed into the processing line,

whereas a rewind guide maintains the lateral position of the processed web which is wound

onto a roll in the rewind section. Apart from terminal guiding, web guides are extensively used

in the intermediate process sections and they are referred to as intermediate guides.

The intermediate web guides are classified based on the way in which the axis of rotation

of the guide roller is changed. Figure 1.4 shows an end pivoted guide where the change in the

axis of rotation of the roller is about a pivot point which is at one end of the roller. Similarly

the center pivoted guide shown in Figure 1.5 has its pivot point in the center of the guide roller.

An offset-pivot guide (shown in Figure 1.6) utilizes a pair of rollers to change the axis of rotation

while in a remotely pivoted guide (shown in Figure 1.7) the guide roller moves along a curved

path to change its axis. These are some commonly used intermediate web guides in the web

handling industry.

WEB

PIVOT POINT

EDGE SENSOR GUIDE ROLLER

AXES OF ROTATION

Figure 1.4: End Pivoted Guide

WEB

PIVOT

POINT

EDGE SENSOR GUIDE ROLLER

AXES OF ROTATION

Figure 1.5: Center Pivoted Guide
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Figure 1.6: Offset Pivot Guide
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Figure 1.7: Remotely Pivoted Guide or Steering Guide
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1.1. LATERAL DYNAMICS

1.1 Lateral Dynamics

In order to control a web guide it is important to understand the physics behind the transport of

web on rollers. Lateral and longitudinal dynamics of a moving web are dependent on various

process parameters like transport velocity, web tension, web material, and the geometry of the

web material, etc. Understanding the lateral dynamics of the web is important for designing

an effective lateral controller for the web guide mechanism. Lateral dynamics of the web was

first modeled in [2], based on the assumption that the web behaves like a string. A major

improvement to the mathematical model for the lateral dynamics of the web was described

by J. J. Shelton [3]. A first order model of an ideal web was presented in [4] followed by a

second-order model [5] by considering the web as an Euler beam. A model for the web lateral

dynamics for a multiroll system was developed in [6] based on the Timoshenko beam theory.

A stochastic modeling formulation for the lateral dynamics was developed in [7]. An overview

of the lateral and longitudinal dynamics along with a historic perspective of modeling and

control of moving webs was presented in [8]. A detailed modeling of the lateral dynamics of

the web for different types of intermediate guides was presented in [9, 10].

The two types of intermediate guides which are considered in this work are a remotely piv-

oted guide (also called as a steering guide) and an offset-pivot guide (also called as a displacement

guide). The web span lateral dynamics for the two guides are similar and hence the same con-

troller design can be implemented on both the guides. Even though the focus of this research

is on these two intermediate guides, the theory developed can be adapted to other guides as

well.

1.1.1 Remotely Pivoted Guide (Steering Guide)

The action of the remotely pivoted guide on the lateral position of the web is given by

YL(s) = G1s(s)Z(s) +G2s(s)θ0(s) +G3s(s)Y0(s) (1.1)

where YL(s) is the Laplace transform of the web lateral position, Z(s) is the input to the guide

in the lateral direction, θ0(s) denotes the entering span roller misalignment and Y0(s) is the

initial lateral position misalignment (see Figure 1.8). The transfer functions in equation (1.1)

are given by

G1s(s) =
s2 + β2s+ β1

s2 + β2s+ β0
, G2s(s) =

β′
3

s2 + β2s+ β0
, and G3s(s) =

−β3s+ β0

s2 + β2s+ β0
(1.2)
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1.1. LATERAL DYNAMICS

Y0

X

Y

L
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Z
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Figure 1.8: A Schematic of a Remotely Pivoted Guide

where

β0 =

(
1

τ2

)
(KL)2(coshKL− 1)

KL sinhKL− 2(coshKL− 1)
,

(
1

τ2

)

f1(KL)

β1 =

(
L

τ2x1

)
KL(KL coshKL− sinhKL)

KL sinhKL− 2(coshKL− 1)
,

(
L

τ2x1

)

f2(KL)

β2 =

(
1

τ

)
KL(KL coshKL− sinhKL)

KL sinhKL− 2(coshKL− 1)
,

(
1

τ

)

f2(KL)

β3 =

(
1

τ

)
KL(sinhKL−KL)

KL sinhKL− 2(coshKL− 1)
,

(
1

τ

)

f3(KL)

β′
3 =

(
L

τ2

)
KL(sinhKL−KL)

KL sinhKL− 2(coshKL− 1)
,

(
L

τ2

)

f3(KL)

where the web span parameter K is defined as K2 = T
EI , E is the modulus of elasticity of web,

I is the moment of inertia of the web, T is the web tension, L is the length of the entering span,

τ = L/v is the time constant, v is the web transport velocity, and x1 is the distance from the

guide roller to its instant center of rotation.

The variables θ0(s) and Y0(s) are considered as the disturbances, and the objective of the

web guide is to reject these disturbances to maintain the lateral position downstream of the

web guide. Thus the effect of the input guide displacement, Z(s), to the lateral position of the

web, YL(s), is given by

YL(s) =
s2 + β2s+ β1

s2 + β2s+ β0
Z(s) (1.4)
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1.1. LATERAL DYNAMICS

1.1.2 Offset Pivot Guide (Displacement Guide)

Y
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v
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Figure 1.9: A Schematic of an Offset Pivot Guide

The lateral dynamics of the web with a displacement guide is influenced by the input to the

guide mechanism, Z(s), and the initial lateral position misalignment, Y0(s), and is given by

YL(s) = G1dZ(s) +G2dY0(s) (1.5)

where

G1d(s) =

[

−f3(KL)

τ
s+

f1(KL)

τ2

] [

s2 +
f2(KL3)

τ3
s

]
L1 − L

L1
[

s2 +
f2(KL3)

τ3
s+

f1(KL3)

τ2
3

] [

s2 +
f2(KL)

τ
s+

f1(KL)

τ2

]+
s2 +

f2(KL)

τ
s+

f2(KL)L

τ2L1

s2 +
f2(KL)

τ
s+

f1(KL)

τ2

G2d(s) =

[

−f3(KL3)

τ3
s+

f1(KL3)

τ2
3

] [

−f3(KL)

τ
s+

f1(KL)

τ2

]

[

s2 +
f2(KL3)

τ3
s+

f1(KL3)

τ2
3

] [

s2 +
f2(KL)

τ
s+

f1(KL)

τ2

]

with L3 as the span length as shown in Figure 1.9 and τ3 = L3/v.

Displacement guides are typically installed such that the length of the guide span (denoted

by L) is very close to the distance from the pivot axis to the second guide roller (denoted by L1)
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1.2. LATERAL CONTROL

(see Figure 1.9). When L ≈ L1, the transfer function G1d(s) is simplified [9], and the structure

is same as the transfer function G1s(s) in the dynamics of the remotely pivoted guide given by

equation (1.2). With this simplification, the dynamics from the guide input to the web lateral

position is given by

YL(s) =
s2 + β2s+ β′

1

s2 + β2s+ β0
Z(s) (1.6)

where β′
1 =

f2(KL)L

τ2L1
.

1.2 Lateral Control

Lateral control involves the design of a closed-loop control system for regulating the lateral

position of the web in a process line using a web guide mechanism. The guide mechanism

includes an actuator which provides the input to the system and a feedback sensor which is

used to measure the lateral position of the web.

Current industrial controllers for web guiding are simple and do not consider the web lat-

eral dynamics in the controller design. A typical industrial controller consists of three loops.

A very fast current loop, a velocity loop and an outer position loop. The two inner loops are

designed based on the actuator dynamics, and they regulate the current and velocity of the ac-

tuator. The actuator dynamics is assumed to be completely known. The outer position loop is

designed to regulate the lateral position of the web, and the compensation is usually based on

a Proportional (P) controller or a Proportional-Integral (PI) controller. The error in the lateral

position of the web drives the two inner loops. Hence all the three loops work in unison to

regulate the lateral position of the web.

Since the inner two loops are driven by the outer position loop, the lateral position measure-

ment becomes critical. Depending on the web handling application, the type of sensor used to

measure the lateral position of the web varies. Applications which handle opaque webs com-

monly use infrared sensors while transparent film applications employ ultrasonic sensors. The

position loop is dependent on this sensor measurement and the sensor gain affects the position

loop. Both analog and digital industrial controllers commonly have a manual variable gain,

which can be used for tuning the controller gains based on the type of the web. Based on the

sensor gain, the controller gain is adjusted appropriately.

A number of strategies have been presented in the literature to control the lateral position

of the web. The strategies include Proportional (P) control [11] and [7], Proportional-Derivative
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1.3. NEED FOR A DIFFERENT CONTROL STRATEGY

(PD) control [11], a state estimation-proportional gain strategy [12], a state variable feedback

control strategy [13], estimated velocity feedback control [14] and [15], controller based on fre-

quency domain design [16], etc. In most of the control strategies cited above, it is assumed that

the parameters that affect the lateral dynamics of the web are known. Some of the key param-

eters that affect the lateral dynamics are the web material properties, web geometry, transport

velocity, web tension, etc. These parameters may vary due to process condition variations or

due to the processing of different web materials in the same process line. Unless these parame-

ters are measured regularly it is difficult to know the exact dynamic model of the web for each

situation.

1.3 Need for a Different Control Strategy

Some potential shortcomings of the existing lateral control strategies are given in the following.

• Existing industrial strategies do not consider the web lateral dynamics in the analysis

and design of the lateral controllers. Inclusion of the lateral web dynamics in the control

design process has the potential to significantly improve the guiding performance in the

presence of process variations as well as many machine induced lateral disturbances.

• Sensor gain changes as a result of web material variations cause poor guiding with exist-

ing fixed gain controllers.

• Parameters of the dynamic model are not known. In a model based controller design

for lateral guiding, the knowledge of the parameters like tension, web transport velocity,

web material geometry, etc., are important to achieve better tracking performance. But

in most industrial applications these process parameters are not known to the guide con-

troller. Additionally, most industrial process lines are designed to process different web

materials under different operating conditions.

The goal is to find a controller that is capable of providing specified guiding performance

which has the ability to overcome many of the limitations of the existing fixed gain controllers,

including the ones given above. To achieve this goal, adaptive control strategies are investi-

gated in this thesis.

10



1.4. CONTRIBUTIONS

1.4 Contributions

Two main contributions of this work are summarized below:

1. Model reference adaptive control designs that are applicable to web guiding are devel-

oped. A systematic approach for industrial implementation of these new adaptive strate-

gies are developed. Additionally, practical industrial implementation guidelines are pro-

posed.

2. A new performance metric that clearly highlights the web guiding performance is devel-

oped. The new metric is based on histograms. Profiles of commonly observed histograms

are studied and their occurrence in guiding situations are analyzed. This novel perfor-

mance metric can be used as a metric for tuning controllers as well as a diagnostic tool

for lateral web guiding applications.

In addition to the primary contributions, several other secondary contributions are summa-

rized below:

1. Simplified adaptive controllers are developed based on the approximation of the lateral

dynamics by reduced order models.

2. Extensive experimentation of the adaptive strategies on an experimental platform con-

taining various intermediate web guides is carried out. Further, an often used industrial

control strategy is simultaneously implemented for all situations, and the results are com-

pared.

3. Commonly used friction models are investigated and an adaptive friction compensation

scheme based on static friction model is proposed for web guiding applications. A sim-

plified adaptive controller with friction compensation is proposed and an indirect friction

compensation scheme based on recursive least squares is implemented.

4. The output voltage of an optical sensor depends on the opacity of the web. A new method

to determine the range of the optical sensor is developed (see Appendix A).

The rest of the document is organized as follows. In Chapter 2, a detailed description of

the design of model reference adaptive control strategies suitable for web guiding is given.

The results of the experiments carried out on an experimental web handling platform with the
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1.4. CONTRIBUTIONS

proposed adaptive control strategies are presented in Chapter 3. A detailed discussion of the

results along with practical industrial implementation guidelines based on the experimental

observations are also presented in Chapter 3. Chapter 4 gives friction compensation techniques

that are applicable to web guiding. In Chapter 5, a new performance metric for web guiding

based on histograms is discussed. Chapter 6 summarizes the thesis and provides suggestions

for future work.
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Chapter 2

Adaptive Control Design for Web Guiding

2.1 Introduction to Adaptive Control

To adapt means to change to meet requirements or adjust to new circumstances. An adaptive

controller is a scheme that adapts to changes in process dynamics and disturbances. Adaptive

controllers are commonly used when there is a considerable change in the process dynamics

and disturbances, which may not be compensated by using fixed gain controllers.

One practical application of an adaptive control scheme is the autopilot guidance system in

aircrafts. The process dynamics of an aircraft depends on various parameters such as speed,

altitude, head wind, tail wind, etc., and the aircraft also experiences various external distur-

bances. It is difficult to design a linear fixed gain feedback controller which can perform well

under different operating conditions and in the presence of various disturbances. In the early

autopilot design, the adaptive scheme that was commonly used was gain scheduling. Vari-

ous parameters that affect the process dynamics of an aircraft have a direct relationship with

process outputs (or measured variables), and hence these outputs can be used to change the

controller parameters directly. Hence it is possible to determine a suitable constant gain linear

feedback control strategy for each operating condition. The model is thus linearized around

those operating conditions. This is called gain scheduling because the control scheme deter-

mines the operating condition based on the process outputs and consequently an appropriate

controller is chosen to compensate for the process dynamics (or process gain). The system has

basically two loops as shown in Figure 2.1. The inner loop is a standard feedback loop while

the outer loop adjusts the controller in the inner loop based on the operating conditions. Gain

scheduling can be regarded as a mapping from process parameters to controller parameters

[17].
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CONTROLLER PLANT

CONTROL
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GAIN 
SCHEDULE

REFERENCE
COMMAND

OUTPUT

CONTROLLER
PARAMETERS

OPERATING 
CONDITIONS

Figure 2.1: Adaptive Gain Scheduling Scheme

Gain scheduling is possible only when the variations (or the process dynamics) are directly

correlated to the measured variables. In other words, gain scheduling is possible only when

the operating conditions could be characterized based on these measured variables. Variation

in disturbance characteristics cannot be compensated using gain scheduling and hence adap-

tive controllers are used. The modern autopilot for aircrafts employs adaptive controllers to

compensate for various disturbances that act on the plane. The modern autopilot system is not

limited to level flight. Current systems include different autopilot schemes for taxi, take-off, as-

cent, level flight, descent, landing and taxi back to the terminal. Since the disturbance changes

frequently, it is reasonable to adjust the controller parameters to cope with the disturbance

characteristics. A common adaptive control scheme is illustrated in Figure 2.2. Similar to gain

scheduling, there are two loops. The inner loop is a standard feedback loop with a controller.

The outer loop has a parameter adjustment mechanism which modifies the controller based on

variations.

Direct and Indirect Adaptive Control

An adaptive controller consists of two main subsystems. A parameter estimator and a controller

based on the parameter estimator. The parameter adjustment block in Figure 2.2 is the pa-

rameter estimator which estimates the unknown parameters, based on the output of the plant,

reference command, control signal, etc. The estimated parameters are then used by the con-

troller to compute the control signal to the plant. The way in which the parameters are esti-

mated, also referred to as the adaptive law, along with the way in which the control signal is

calculated, gives rise to two main kinds of adaptive control schemes, indirect and direct. Indirect
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CONTROLLER PLANT
CONTROL
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OUTPUT

CONTROLLER
PARAMETERS

Figure 2.2: Adaptive Control System

adaptive control involves the estimation of actual plant parameters which are used to compute

the controller parameters. The controller parameters are computed indirectly and hence the

name indirect adaptive control. In direct adaptive control, the plant model is parametrized in

terms of the controller parameters which are estimated directly without intermediate calcula-

tions involving plant parameter estimates [18]. Indirect adaptive control is also referred to as

explicit adaptive control while direct adaptive control is also referred as implicit adaptive control

because the control design is based on explicit or implicit plant model estimation. Both types of

control schemes can be used for minimum-phase plants, but difficulty arises when designing

an indirect adaptive control scheme for nonminimum-phase plants [18]. In direct adaptive con-

trol scheme, since the plant parameters are parametrized in terms of the controller parameters,

the convergence of parameters to their true values is not of utmost importance. The parameter

estimation is usually driven by the output error. Although the parameters do not converge

to their true values, the controller is capable of meeting the performance requirement on the

output error convergence. On the contrary, convergence of parameters to their true values is of

utmost importance while using indirect adaptive control. The convergence of parameters and

its importance will be discussed later in this chapter.

Model Reference Adaptive Control

In a Model Reference Adaptive Control (MRAC) scheme the control law and adaptive law are

designed such that the closed-loop Input/Output (I/O) properties of the plant exactly match a

reference model. The reference model is any dynamic model which meets a desired closed-loop
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performance requirements for the plant. Hence the control law for the plant is designed such

that the closed-loop dynamics matches the dynamics of the reference model. There are two

kinds of MRAC strategies, direct and indirect MRAC. A schematic of direct MRAC is shown in

Figure 2.3.

CONTROLLER PLANT
CONTROL

SIGNAL

PARAMETER
ADJUSTMENT

REFERENCE
COMMAND OUTPUT

CONTROLLER
PARAMETERS

REFERENCE
MODEL ERROR _

+

Figure 2.3: Model Reference Adaptive Control System

In this thesis a direct model reference adaptive control scheme is investigated for web

guides. In the following sections, the design and analysis of common adaptive control schemes

will be presented along with their application to web guides. On-line parameter estimation,

a key component in adaptive control design, is discussed in section 2.2. A simple adaptive

control example based on on-line parameter estimation is discussed in section 2.3. Model refer-

ence adaptive control schemes suitable for web guiding are developed in sections 2.4 and 2.5.

Model reference adaptive control schemes, based on a simplified models for the web dynam-

ics, are proposed in section 2.4. A model reference adaptive scheme based on the complete web

dynamic model is presented in 2.5.

2.2 On-line Parameter Estimation

On-line parameter estimation is required for any adaptive controller design. Both in direct

and indirect adaptive control schemes some form of parameter estimation is carried out. In
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2.2. ON-LINE PARAMETER ESTIMATION

indirect adaptive control the plant parameters are estimated. But in direct adaptive control the

controller parameters are estimated. In both the cases parameters are estimated in real-time

and the controller is adjusted appropriately.

PARAMETER 
ESTIMATOR

_ +

PLANT 
OUTPUT

ESTIMATED
OUTPUT

ESTIMATION 
ERROR

CONTROL

r(t)

^y(t)
REFERENCE

y(t)

u(t)

Figure 2.4: On-line Parameter Adjustment Mechanism

In an on-line parameter estimation problem a parameter adjustment mechanism is utilized

to estimate the unknown plant parameters, as shown in Figure 2.4. The parameter estimator is

designed such that its structure is similar to the plant structure. The estimator is driven by the

input to the plant u(t), reference command r(t) and the output of the plant y(t). The output of

the estimator ŷ(t) is constantly compared with the output of the plant. The difference between

the estimator output and the actual plant output is called the estimation error. The parameters

in the estimator are constantly adjusted so that the estimation error is minimized. Standard

optimization techniques like the gradient-descent, least-squares, Newton’s method, etc., can

be used to minimize the estimation error in real-time (see Appendix B in [18]).

CONTROLLER PLANT
CONTROL

SIGNAL

PARAMETER
ADJUSTMENT

REFERENCE
COMMAND

OUTPUT

CONTROLLER
PARAMETERS

Figure 2.5: Adaptive Control System
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2.2. ON-LINE PARAMETER ESTIMATION

An on-line estimation problem involve three key steps. First the parameter estimator has to

be parametrized appropriately in terms of the unknown parameters. The second step involves

the design of the adaptive law which defines the way in which the parameters are updated.

The adaptive law is designed such that the optimization techniques used to minimize the es-

timation error results in a stable system. The final step involves the design of the plant inputs

such that the estimates converge to their true values. The final step is important only for iden-

tification problems. For direct adaptive control problems the minimization of the output error

is important rather than the convergence of parameters.

In the following section a simple scalar plant of unknown parameters will be considered

and the procedure for designing an on-line parameter estimation scheme will be discussed.

The example is based on the procedure described in [18]. Additionally, various considerations

for designing the input and the stability properties of the adaptive system will be discussed.

2.2.1 Parameter Estimation: An Example

Consider a first-order system described by

ẋ = ax+ bu, x(0) = x0 (2.1)

where x is the output, u is the input and a, b are unknown constants. We also assume that the

system is stable, i.e., a < 0 and the input u is bounded. The objective is to develop an on-line

estimation algorithm for estimating the unknown parameters using the measured signals x and

u.

For estimation and adaptive control problems, an effective parametrization of estimator in

terms of unknown plant parameters is extremely important. A simple parametrization would

be

x(s) = [ a b ]









x(s)

s

u(s)

s









(2.2)

where x(s) and u(s) are the Laplace transforms of x(t) and u(t). This parametrization is not de-

sirable due to the presence of the integrator. A similar parametrization which is implementable

can be obtained by using a low pass filter for the measured signals x and u.

Let the plant be parametrized by adding and subtracting amx, where am > 0, am ∈ R1. The
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2.2. ON-LINE PARAMETER ESTIMATION

parameter am is the low pass filter parameter whose value will be chosen later.

ẋ = −amx+ (a+ am)x+ bu (2.3a)

x =
1

s+ am
[(a+ am)x+ bu] (2.3b)

= θ∗⊤φ (2.3c)

where θ∗⊤ = [b (a + am)] is the unknown parameter vector and φ = [ 1
s+am

u 1
s+am

x]⊤ is

filtered measurement. Define the estimate of x as

x̂ = θ⊤φ (2.4)

where θ is the estimate of the unknown parameter vector in equation (2.3c), i.e., θ = [b̂ (â +

am)]. Define the estimation error as

ǫ1 = x− x̂ (2.5)

The estimation error dynamics is given by

ǫ̇1 = −amǫ1 − ãx− b̃u (2.6)

where ã , â − a and b̃ , b̂ − b. Equation (2.6) describes the behavior of the estimator which

is influenced by the parameters and their estimates. If the parameter estimates converge to the

true parameter values, i.e., â = a, b̂ = b, then ǫ1 → 0 exponentially1, since am > 0.

The adaptive law for updating the parameter estimates, â and b̂, can be derived using the

estimation error ǫ1 as

˙̂a = f1(ǫ1, x, x̂, u),
˙̂
b = f2(ǫ1, x, x̂, u) (2.7)

Notice that f1 and f2 are functions of the measured signals which are chosen such that the

equilibrium state

âe = a, b̂e = b, ǫ1e = 0 (2.8)

of equations (2.6) and (2.7) is uniformly stable or asymptotically stable or exponentially stable.

Let us consider a Lyapunov function candidate as a function of the three states ǫ1, ã, b̃

V (ǫ1, ã, b̃) =
1

2
(ǫ21 + ã2 + b̃2) (2.9)

1The choice of am determines the rate of convergence of ǫ1, since the decay is as per e−amt.
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2.2. ON-LINE PARAMETER ESTIMATION

The function V is positive definite, decrescent and radially unbounded in R3. The time deriva-

tive of V along the trajectories of equations (2.6) and (2.7) is

V̇ (ǫ1, ã, b̃) = ǫ1(−amǫ1 − ãx− b̃u) + ãf1 + b̃f2 (2.10a)

= −amǫ
2
1 − ãxǫ1 − b̃uǫ1 + ãf1 + b̃f2 (2.10b)

If f1 = ǫ1x, f2 = ǫ1u, we have

V̇ = −amǫ
2
1 ≤ 0. (2.11)

The function V̇ is negative semi-definite since for all ã, b̃ ∈ R and ǫ1 = 0, V̇ = 0. The parameter

update law is given by

˙̂a = ǫ1x,
˙̂
b = ǫ1u (2.12)

where x̂ is generated using equation (2.4).

2.2.1.1 Analysis

Applying Theorem B.2, we conclude that V is a Lyapunov function and the equilibrium given

by equation (2.8) is uniformly stable. Also V > 0, V̇ ≤ 0 implies that V ∈ L∞ which further

implies that ǫ1, ã, b̃ ∈ L∞. Since ǫ1 = x − x̂ ∈ L∞ and x is bounded, x̂ ∈ L∞. Hence all the

signals in the system described by equation (2.6) are bounded. Additionally,

||ǫ1||22 =

∫ ∞

0

ǫ21(τ)dτ = − 1

am

∫ ∞

0

V̇ dτ = − 1

am
(V∞ − V0),

V ∈ L∞ ⇒ ∃V∞| lim
t→∞

V = V∞

⇒ ||ǫ1||22 exists ⇒ ǫ1 ∈ L2

From equation (2.6), since ǫ1, ã, x, b̃, u ∈ L∞, ǫ̇1 ∈ L∞. Since ǫ1 ∈ L2 ∩ L∞ and ǫ̇1 ∈ L∞, using

Lemma B.2, ǫ1 → 0 as t→ 0. From equation (2.12), ˙̂a,
˙̂
b→ 0 as t→ ∞. Now we have established

that ǫ1, ˙̂a,
˙̂
b → 0, as t → ∞ but this does not imply that ã, b̃ → 0 as t → ∞. From equation (2.9)

it is clear that limt→∞ V = V∞ = 1
2 (ã2 + b̃2) but this does not mean that ã, b̃ have a limit. Notice

that there is no restriction on the input u apart from being bounded. To guarantee parameter

convergence additional conditions have to be imposed on the input u.

2.2.1.2 Sufficiently Rich Signals

In this section the properties of the input signal for parameter convergence are discussed in

detail. The notion of sufficiently rich signal and persistent excitation are introduced.
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2.2. ON-LINE PARAMETER ESTIMATION

The general solution for the differential equation (2.1) is

x(t) = eatx0 +

∫ t

0

ea(t−τ)bu(τ)dτ (2.14)

The first part of equation (2.14) decays to zero as t → ∞ since a < 0 . Taking Laplace

transform on both sides for equation (2.1) with zero initial condition we get

X(s) =
b

s− a
U(s) = G(s)U(s) (2.15)

If u = 0, then the solution carries information about the parameter a alone, and if x0 = 0,

information about both the parameters a, b cannot be extracted from the input/output signals.

Similarly if u = c, c 6= 0, a constant, then

u(t) = c ⇒ U(s) =
c

s

⇒ X(s) =
b c

s(s− a)
=

−b c/a
s

+
b c/a

s− a

⇒ x(t) =
−b c
a

+
b c

a
eat

x(t) → − bc
a as t → ∞. Hence, the input/output signals only have the information about

the ratio b
a , and not about the individual values of a and b.

If u(t) = sinω0t, then

X(s) =
ω0 b

(s2 + ω2
0)(s− a)

⇒ x(t) = k1e
at + L

−1{k2s+ k3

s2 + ω2
0

}

where k1, k2, k3 are constants which depend on a and b. Notice that as a < 0 and t→ ∞,

x(t) = L
−1{k2s+ k3

s2 + ω2
0

}

= |G(jω0)| sin(ω0t+ ̺), ̺ = ∠G(jω0)

|G(jω0)| =
|b|

√

ω2
0 + a2

, ∠G(jω0) = tan−1 ImgG(jω0)

ReG(jω0)

By observing the magnitude and the phase of the output signal at steady-state, the unknown

constants a and b can be determined. Hence, with a sinusoidal input the unknown parameters

can be estimated. Such a signal is a sufficiently rich signal for this system. The property of the

signal u to be sufficiently rich is called persistent excitation (PE). Persistent excitation is very

important in identification problems where parameter convergence is of utmost importance.
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2.3. ADAPTIVE CONTROL

For adaptive control problems where output error convergence to zero is desired, it is not

critical. For more information on persistent excitation refer to [17] (pages 63 – 73), [18] (pages

177 – 180) and [22] (Chapter 6).

2.3 Adaptive Control

In this section the design of model reference adaptive control is introduced by considering a

scalar tracking problem. The stability analysis and convergence properties use the mathemati-

cal preliminaries given in Appendix B.

2.3.1 Adaptive Regulation using a Reference Model: An Example

Consider a scalar plant with dynamics described by

ẋ = ax+ u, x(0) = x0 (2.19)

where a is the unknown plant parameter. It is desired to apply a bounded control input, u, such

that the closed system is stable and x → xm as t → ∞, where xm is the output of the reference

model given by

ẋm = −amxm, xm(0) = xm0, am > 0 (2.20)

2.3.1.1 Control Law

Let u = −k∗x be the control law such that a − k∗ = −am. In other words if the parameter a is

known, then one can choose k∗ = a+ am so that the closed-loop dynamics of equation (2.19) is

same as the reference model (2.20). If x0 = xm0, then x(t) = xm(t) for all t ≥ 0. And if x0 6= xm0

then the transient response of the closed-loop system will differ from the reference model, at

steady state x(t) = xm(t).

Because the parameter a is unknown, the feedback gain k∗ cannot be calculated and hence

the control law cannot be implemented. A control law based on the estimate of the unknown

parameter is chosen as

u = −k(t)x (2.21)

where k(t) is the estimate of k∗.
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2.3. ADAPTIVE CONTROL

2.3.1.2 Adaptive Law

An adaptive law is now developed to estimate the unknown parameter by posing the problem

as an on-line estimation problem. Let us define the tracking error as e1 = x− xm. Therefore,

ė1 = ẋ− ẋm = (a− k)x+ amxm (2.22a)

= ax+ amxm − kx

= ax+ amxm − kx+ k∗x− k∗x

= ax− k∗x
︸ ︷︷ ︸

+amxm + k∗x− kx
︸ ︷︷ ︸

= −amx+ amxm
︸ ︷︷ ︸

−k̃x, k̃ = k − k∗

ė1 = −ame1 − k̃x (2.22b)

⇒ e1 =
1

s+ am
(−k̃x) = Gc(s)(−k̃x)

The transfer function Gc(s) is SPR from Theorem B.6. Hence, SPR-Lyapunov2 design scheme

is considered.

All the signals in equation (2.22b) can be measured except k̃ which is a function of time. The

error dynamics in equation (2.22b) is in a suitable form to choose the adaptive law for k(t) such

that e1 → 0 as t→ ∞. Let ˙̃
k(t) = f1(e1, x, u) where f1 is a function to be chosen. Let

V (e1, k̃) =
e21
2

+
k̃2

2γ
(2.23)

be a Lyapunov function candidate with γ > 0 for the system described by ė1 and k̇. Choosing

f1 = γe1x, we get

V̇ = −ame
2
1 ≤ 0 and k̇ = γe1x, k(0) = k0 (2.24)

2.3.1.3 Analysis

Because V > 0 and V̇ ≤ 0, V is bounded i.e., V ∈ L∞ ⇒ e1 ∈ L∞, k̃ ∈ L∞ (from (2.23)).

e1 = x− xm ⇒ x ∈ L∞ (since xm ∈ L∞). Additionally,

∫ ∞

0

e21(τ)dτ =

∫ ∞

0

V̇ (τ)dτ = V (0) − V (∞) ⇒ V̇ ∈ L1 ⇒ e1 ∈ L2 (2.25)

2In this design the estimation error is related to the parameter by a SPR transfer function. Once in this form, the

KYP ( Lemma B.5) or MKY (Lemma B.6) Lemmas can be invoked to choose an appropriate Lyapunov function V such

that V̇ ≤ 0. Refer to chapter 4 (On-Line Parameter Estimation) in [18].
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2.4. SIMPLIFIED GUIDE ADAPTIVE CONTROLLER DESIGN

k̃ ∈ L∞ ⇒ k ∈ L∞ since, k∗ is constant. From equation (2.22b) we get ė1 ∈ L∞. Therefore, all

the signal in the closed-loop system are bounded. Because ė1 ∈ L∞ and e1 ∈ L2 ∩ L∞, from

lemma B.2, e1(t) → 0 as t → ∞. u = −kx ⇒ u ∈ L∞. Hence, all the signals in the closed-loop

system are bounded and the tracking error, e1, converges to zero. It has to be noted that, even

though k ∈ L∞, k̇ → 0 as t → ∞, k̃ may not converge to zero. Convergence of k̃ to zero can be

gauranteed only when k̇ ∈ L∞, k ∈ Lp ∩ L∞ where p ∈ [1,∞] (using lemma B.2).

2.4 Simplified Guide Adaptive Controller Design

In the rest of this chapter model reference adaptive controllers called Guide Adaptive Controller

(GAC) for web guiding applications are developed. In this section a simplified approximation

of the GAC is designed to regulate the position of the web by considering a simple lateral

web dynamic model. Recall that the transfer functions for both the steering guide and the

displacement guide are of relative degree n∗ = 0 and of the order n = 2. By approximating

the system with a reduced order model, the number of estimated parameters in the adaptive

control design is reduced and the controller implementation is simpler.

The transfer function for a steering guide (between the guide position and the lateral web

position) is given by

yL(s) =
s2 + β2s+ β1

s2 + β2s+ β0
Z(s) (2.26)

The transfer function between the voltage input and the lateral web position is given by

yL(s) =
kmCm(s2 + β2s+ β1)

s(s+ a)(s2 + β2s+ β0)
up(s) (2.27)

where km and a are motor parameters and Cm is the transmission ratio between the actuator

position and the guide position. Ignoring the dynamics of the web and considering only the

static gain of the lateral dynamics, we get

yL(s) =
kmCmβ1

s(s+ a)β0
=

K

s(s+ a)
up(s) , kp

Zp

Rp
up(s). (2.28)

The transfer function kp
Zp(s)

Rp(s)
represents a general transfer function where Zp(s), Rp(s) are

monic polynomials and kp is a constant. The complexity of the adaptive controller depends on

the degree of the polynomials Zp(s) and Rp(s). The knowledge of the sign of the constant kp

simplifies the adaptive controller design.
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The dynamics in equation (2.28) in time domain is given by

ÿL + aẏL = Kup. (2.29)

Define state variables y1 = yL and y2 = ẏL. The dynamics in the state space form is






ẏ1

ẏ2




 =






0 1

0 −a











y1

y2




+






0

K




up (2.30a)

= Ay +Bup (2.30b)

yL = [1 0]y = C⊤y (2.30c)

Notice that since K > 0, a > 0, the system is controllable. Since the system is controllable, a

suitable reference model can be chosen such that the closed-loop plant dynamics matches the

reference model dynamics. A reference model with the same relative degree as the plant model

is chosen to be

ym

r
=

ω2
n

s2 + 2ζωns+ ω2
n

= km
Zm

Rm
= Wm(s) (2.31)

The reference model in state space form is






ẋ1

ẋ2




 =






0 1

−ω2
n −2ζωn











x1

x2




+






0

ω2
n




 r (2.32a)

ẋ = Acx+Bcr (2.32b)

ym = [1 0]x = C⊤
c x (2.32c)

Two different types of adaptive controllers can be designed for the simplified system given

in equation (2.28), each of which has a different number of estimated parameters.

By reducing the number of estimated parameters, the controller is simple. But with very

few parameters, it may not be possible to sufficiently capture the dynamic behavior of the sys-

tem. Theoretical and simulation results are presented for the two adaptive controllers designed

based on the reduced order lateral dynamic models. The results indicate that for lateral guiding

applications the simplified adaptive controllers are able to provide good tracking performance

in the presence of process variations and disturbances. Experimental results that illustrate the

effect of the number of the estimated parameters on guiding performance will be discussed in

the next chapter.
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2.4.1 Three parameter Guide Adaptive Controller

2.4.1.1 Control Law

Our objective is to design an adaptive control law such that the closed-loop plant matches the

reference model. Consider a control law with a feedback term and a feed forward term.

up = L∗y + P ∗r = [L∗
1 L∗

2 P ∗]









y1

y2

r









= θ∗⊤ω (2.33a)

where L∗
1, L

∗
2 and P ∗ are the parameter values which make the closed-loop system match the

reference model. Substituting up in equation (2.30)

ẏ =






0 1

0 −a




 y +






0

K




 [L∗

1 L∗
2 P ∗]









y1

y2

r









=






0 1

0 −a




 y +






0 0

KL∗
1 KL∗

2




 y +






0

KP ∗




 r

=






0 1

KL∗
1 KL∗

2 − a




 y +






0

KP ∗




 r (2.34)

Comparing the closed-loop system in equation (2.34) with the desired reference model

given by equation (2.32a) , the desired control parameters that match the closed-loop system

with the reference model are

L∗
1 = −ω

2
n

K

L∗
2 =

a− 2ζωn

K

P ∗ =
ω2

n

K

2.4.1.2 Adaptive Law

Since the parameters K and a are unknown, it is not possible to find the exact values of the

control parameters. The adaptive control problem is posed as an estimation problem with an

objective of minimizing the estimation error. Let us estimate L∗
1, L

∗
2, P

∗ and use the estimates

(θ⊤ = [L1 L2 P ]) in the control input.

26



2.4. SIMPLIFIED GUIDE ADAPTIVE CONTROLLER DESIGN

Consider the open-loop system

ẏ =






0 1

0 −a




 y +






0

K




up (2.35)

Adding and subtracting the desired control input we get

ẏ =






0 1

0 −a




 y +






0

K






[

up + θ∗⊤ω − θ∗⊤ω
]

(2.36)

where θ∗⊤ = [L∗
1 L∗

2 P ∗] , ω⊤ = [y1 y2 r]

ẏ =






0 1

0 −a




 y +






0

K




 [up + L∗

1y1 + L∗
2y2 + P ∗r − L∗

1y1 − L∗
2y2 − P ∗r] (2.37)

=






0 1

0 −a




 y +






0

K




 [L∗

1y1 + L∗
2y2 + P ∗r]

︸ ︷︷ ︸

+






0

K




 [up − L∗

1y1 − L∗
2y2 − P ∗r]

︸ ︷︷ ︸

(2.38)

=






0 1

−ω2
n −2ζωn




 y +






0

ω2
n




 r

︸ ︷︷ ︸

+






0

K






[

up − θ∗⊤ω
]

︸ ︷︷ ︸

(2.39)

= Acy +Bcr
︸ ︷︷ ︸

+






0

K






[

up − θ∗⊤ω
]

︸ ︷︷ ︸

(2.40)

Denote the state estimation error by ǫ , y−x and the tracking error by e1 , yL − ym. Then,

ǫ̇ = Acǫ+B
[

up − θ∗⊤ω
]

= Acǫ+Bθ̃⊤ω, θ̃ = θ − θ∗ (2.41)

e1 = [1 0]ǫ = C⊤
c ǫ (2.42)

Therefore,

e1 = C⊤
c [sI −Ac]

−1






0

K






[

up − θ∗⊤ω
]

(2.43)

Since

Wm(s) = C⊤
c [sI −Ac]

−1






0

KP ∗




 , we have (2.44)

e1 = Wm(s)ρ∗θ̃⊤ω (2.45)
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where ρ∗ =
1

P ∗
. One can think of an adaptive law based on the SPR-Lyapunov approach and

hence could take advantage of the KYP (B.5) and MKY lemmas (B.6). Since the relative degree

of the reference model is 2, Wm(s) is not SPR and hence a modification to the system has to be

made so that the error e1 relates to the parameters through a SPR transfer function. With this

modification the adaptive controller design procedure is similar to a relative degree one system

(controller design for a relative degree one system is presented in Appendix C.1).

If the controller can have differentiators, one can choose a transfer function L(s) = (s+ p0)

such that Wm(s)L(s) is SPR and follow the same procedure as in Appendix C.1. Narendra

and Valavani [23] introduced a new control structure which was able to make Wm(s)L(s) SPR

without using differentiators in the controller. Since Wm(s) has a relative degree 2, let us use

the operator PL(θ) , L(s)θL(s)−1 in equation (2.45) and follow the same modification to the

control structure and the error equation as in [23] to find the adaptive control law.

The error equation changes to

ǫ̇ = Acǫ+Bρ∗θ̃⊤φ, B = (s+ p0)BP
∗ (2.46a)

e1 = Wm(s)(s+ p0)
︸ ︷︷ ︸

ρ∗θ̃⊤φ, φ =
1

s+ p0
ω (2.46b)

= Wm1(s)ρ
∗θ̃⊤φ, where Wm1(s) is SPR (2.46c)

= Wm1(s)ρ
∗(θ⊤φ− θ∗⊤φ) (2.46d)

= Wm1(s)ρ
∗(L(s)−1θ⊤ω − θ∗⊤φ) (2.46e)

Let the estimate of tracking error be

ê1 = Wm1(s)ρ(L(s)−1up − θ⊤φ) (2.47)

Notice that equation (2.47) is similar to equation (C.3). In order to use the procedure as in

Appendix C.1, the estimation error ǫ1 = e1 − ê1 should be e1, hence the controller has to be

modified such that the term (L(s)−1up − θ⊤φ) is zero.

up = L(s)θ⊤φ

= (s+ p0)θ
⊤φ

= θ̇⊤φ+ θ⊤φ̇+ p0θ
⊤φ

= θ̇⊤φ+ θ⊤ (φ̇+ p0φ)
︸ ︷︷ ︸

= θ̇⊤φ+ θ⊤ω (2.48a)
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With the appropriate modifications to the estimation error dynamics and the controller, the

dynamics of the system resemblems a relative degree one system. The procedure in Appendix

C.1 is followed to find the adaptive law that results in a stable system with limt→∞ e1(t) = 0.

The adaptive law is

θ̇ = −Γe1φsgn(ρ∗) = −Γe1φ ∵ ρ∗ > 0 (2.49)

Notice that the controller has a differentiator, but θ̇ can be obtained from the adaptive law

given in equation (2.49). This modified structure was first introduced in [23]. For a detailed

analysis of this problem (relative degree = 2) refer to chapter 5, pages 199 - 226, [22] and the

article by Narendra and Valavani [23].

2.4.1.3 Simulation

In order to understand the validity of the simplified model, the GAC based on the simplified

model was simulated in Simulink using the complete plant model. The lateral web dynamics

block in Figure 2.7 represents the second order model for the web dynamics. The adaptive law

and the control law are based on the simplified model. Figure 2.6 shows the performance of the

controller with a sinusoidal reference trajectory. The top plot shows the tracking performance,

the middle shows the controller output while the bottom plot shows the time history of the

estimated parameters. Notice that the estimated parameters reach a steady value but these

parameter values are not necessarily their true values. The parameter update stops as soon as

the error reaches zero. The Simulink block diagram for this simulation is shown in Figure 2.7.

The simulation results indicate that the adaptive control scheme based on the approximate

model is capable of regulating the position of the web. A sinusoidal reference with a bias was

used as the output of the reference model in order to observe the transient, steady-state and

tracking performance of the controller.

2.4.2 Simplified GAC with an Estimator

In consideration of the implementation of the controller in practice note that it is not possible

to obtain the measurement of the lateral velocity ẏL (Notice that the control input depends on

ω which depends on ẏL). One possible way to obtain the lateral velocity ẏL would be to use the

finite difference approximation from the lateral position measurement yL. One can also setup

an estimator for the measurement ẏL based on the previous assumption that the dynamics of
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Figure 2.6: Simulation Results for 3-Parameter GAC
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the web is a constant and if the motor velocity measurement is available.

The relationship between the motor velocity and the lateral velocity can be approximated

as

ẏL = Kwθ̇ = Kwvm (2.50)

where ẏL is the lateral web velocity, Kw is a constant which is the approximated lateral web

dynamics and θ̇ = vm is the motor velocity. Filtering both left and right hand side of equation

(2.50) by a low pass filter F (s) = 1
τs+1 and taking the Laplace transform we get

sF (s)yL = KwF (s)vm (2.51)

Let an intermediate system be defined as

Z = ϕ∗⊤φ (2.52)

where Z , F (s)vm, φ = sF (s)yL and ϕ∗ = 1
Kw

. Hence φ is obtained by filtering the lateral

position measurement using the filter s
τs+1 and Z is obtained by filtering the motor velocity

vm by using the filter 1
τs+1 . Let e be the estimation error y − ϕ⊤φ with ϕ being the estimate

of ϕ∗. Notice that this is a linear estimation problem and hence the minimum can be reached

in a single step if the update is in the direction of negative gradient of the cost function. It is

common to choose the cost function as J(ϕ) = e2

2 and hence the gradient is ▽J(ϕ) = eė = −eφ.

Hence the update law for the ϕ is ϕ̇ = γeφ, where γ > 0 and ϕ(0) = ϕ0. From the estimate of

ϕ = 1
Kw

, we can use the equation (2.50) to find the estimated lateral velocity of the web.

2.4.2.1 Simulation

Figure 2.8 shows the simulation result for the simplified guide adaptive controller with the

estimated lateral velocity. The top plot shows the tracking performance of the controller while

the middle plot shows the control effort and the bottom plot shows the estimated parameters.

The simulation results indicate a similar performance as observed with the previous controller.

The Simulink model is presented in shown in Figure 2.9.

2.4.3 Four Parameter Guide Adaptive Controller

Notice that the adaptive controllers derived in the previous section require two measurements,

the lateral position yL and the velocity ẏL. It is possible to derive a model reference adaptive
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control law for the system described by equation (2.30) using one measurement, the lateral

position measurement yL. The following section describes the design process.

2.4.3.1 Control Law

Let us define the following control law for the system described by equation (2.30) so that

the dynamics of the closed-loop plant matches the dynamics of the reference model given in

equation (2.32a) .

up = θ∗1
1

Λ(s)
up + θ∗2

1

Λ(s)
yL + θ∗3yL + c∗0r (2.53)

where Λ(s) = s + a0 be a Hurwitz polynomial and θ∗i ’s, c∗0 are the true parameters which

make the closed-loop system dynamics match the reference model dynamics. The usefulness

of parametrizing the control law in this manner will be evident later. Rewriting the control law

in terms of the feedback and feedforward terms we get

up =
θ∗3s+ (θ∗2 + a0θ

∗
3)

s+ (a0 − θ∗1)
yL +

(s+ a0)c
∗
0

s+ (a0 − θ∗1)
r (2.54)

Substituting the control law given by equation (2.54) in the system described by equation (2.28)

we get

s2yL + asyL = K

[
θ∗3s

s+ (a0 − θ∗1)
yL +

θ∗2 + a0θ
∗
3

s+ (a0 − θ∗1)
yL +

(s+ a0)c
∗
0

s+ (a0 − θ∗1)
r

]

(2.55)

[
(s2 + as)(s+ (a0 − θ∗1)) −Kθ∗3s−K(θ∗2 + a0θ

∗
3)
]
yL = K(s+ a0)c

∗
0r (2.56)

yL

r
=

K(s+ a0)c
∗
0

s3 + (a0 − θ∗1 + a)s2 + [a(a0 − θ∗1) −Kθ∗3 ] s−K(θ∗2 + a0θ∗3)
=

w2
n

s2 + 2ζωns+ ω2
n

(2.57)

Notice that in order to have the closed-loop system dynamics match the reference model dy-

namics, there has to be a pole-zero cancellation. The cancellation will occur at −a0 and hence

the filter Λ(s) = s+a0 has to be Hurwitz. If Λ(s) is not Hurwitz, then the pole-zero cancellation

will occur in the right-half plane which is not desirable.

If Kc∗0 = ω2
n then,

(s+ a0)(s
2 + 2ζωns+ ω2

n) = s3 + (a0 − θ∗1 + a)s2 + [a(a0 − θ∗1) −Kθ∗3 ] s−K(θ∗2 + a0θ
∗
3)

(2.58a)
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Equating both we obtain the true parameters to be

θ∗1 = a− 2ζωn (2.59a)

θ∗3 =
1

K
(aa0 − a2 + 2ζωna− ω2

n − 2ζωna0) (2.59b)

θ∗2 = −a0ω
2
n

K
− a0θ

∗
3 (2.59c)

c∗0 =
ω2

n

K
(2.59d)

It is not always possible to find the desired control law which can make the closed-loop

system match the reference model. A few conditions on the type of the plant model and the

reference model have to be made [18].

1. The polynomial Zp(s) should be Hurwitz and monic.

2. The order, n, of the plant should be known or at least an upper bound should be known.

3. The relative degree of the plant (n∗) should be known.

4. The sign of kp should be known.

5. Zm(s), Rm(s) should be monic and Hurwitz and the order of the reference model should

not be greater than the order of the plant.

6. The relative degree of the reference model should be same as that of the plant model.

From equation (2.57) it can be seen that if the zeros of the reference model are not the same

as the plant zeros, then the plant zeros will be cancelled by the control in order to match the

closed-loop system dynamics to the reference model dynamics. If Zp(s) is not Hurwitz, then

pole-zero cancellation would occur in the right half plane which is not desirable. If Zp(s) is not

monic, then the constant term of the leading coefficient can be pulled out and augmented to the

gain kp. The requirement for the sign of kp to be known will be evident from the adaptive law

derivation. Without the knowledge of the relative degree of the plant, it would not be possible

to design an adaptive control law. The order of the plant is important because it is not always

possible to find a parametrized control law such that the closed-loop system dynamics matches

the reference model. But we can use the Bezout Identity to overcome the problem (refer to [22]

sections 5.4.1 and 5.4.2).

In order to obtain proper parametrization of the controller parameters θ∗i ’s, both the numer-

ator and denominator polynomials of the reference model transfer function should be Hurwitz.
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In order to have the minimum number of controller parameters, it is necessary that both poly-

nomials of the transfer function of the reference model be monic.

Since the parameters a and K are unknown it is not possible to use the control law in equa-

tion (2.54) and hence the adaptive control problem is posed as an estimation problem with the

objective of minimizing the parameter estimation error. We can follow the same procedure of

adding and subtracting the desired control effort, but first we need to represent the control law

in the state-space form in order to simplify the analysis. We shall also define an augmented

system which is useful for our analysis both in this section as well as in the next section.

up = θ∗1
1

s+ a0
up + θ∗2

1

s+ a0
yL + θ∗3yL + c∗0r

up = θ∗⊤ω

where θ∗⊤ = [θ∗1 , θ
∗
2 , θ

∗
3 , c

∗
0] and ω⊤ =

[
1

s+ a0
up,

1

s+ a0
yL, yL, r

]

.

ω̇1 = Fω1 + gup, ω1(0) = 0, F = −a0 (2.60a)

ω̇2 = Fω2 + gyp, ω2(0) = 0, g = 1 (2.60b)

The state-space representation of the closed-loop system with the desired control effort

can be obtained by augmenting the states y of the system described by equation (2.30) with the

states of the controller in equation (2.60).

Ẏ = AsY +Bsc
∗
0r (2.61a)

yL = C⊤
s Y (2.61b)

where Y =
[
y⊤, ω1, ω2

]⊤
and

ẏ = Ay +Bup = Ay +B [θ∗1ω1 + θ∗2ω2 + θ∗3yL + c∗0r] (2.62a)

ω̇1 = Fω1 + gup = Fω1 + g [θ∗1ω1 + θ∗2ω2 + θ∗3yL + c∗0r] (2.62b)

ω̇2 = Fω2 + gyp = Fω2 + gC⊤y (2.62c)

∴ Ẏ =









A+Bθ∗3C
⊤ Bθ∗1 Bθ∗2

gθ∗3C
⊤ F + gθ∗1 gθ∗2

gC⊤ 0 F









Y + c∗0









B

g

0









r (2.63a)

yL = [C⊤ 0 0]Y (2.63b)
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From equation (2.57)

yL(s)

r(s)
=

K(s+ a0)c
∗
0

s3 + (a0 − θ∗1 + a)s2 + [a(a0 − θ∗1) −Kθ∗3 ] s−K(θ∗2 + a0θ∗3)
= Wm(s) (2.64)

and from equation (2.61)

yL(s)

r(s)
= C⊤

s (sI −As)
−1Bsc

∗
0 = Wm(s) =

ym

r
(2.65)

The reference model can be described by the following state space representation.

Ẏm = AsYm +Bsc
∗
0r (2.66a)

ym = C⊤
s Ym (2.66b)

Similarly, the augmented closed-loop system with the control up can be obtained as

Ẏc = A0Yc +Bsup (2.67a)

yL = C⊤
s Yc (2.67b)

where Yc =
[
y⊤, ω1, ω2

]⊤
.

ẏ = Ay +Bup (2.68a)

ω̇1 = Fω1 + gup (2.68b)

ω̇2 = Fω2 + gyp = Fω2 + gC⊤y (2.68c)

Therefore,

Ẏc =









A 0 0

0 F 0

gC⊤ 0 F









Yc +









B

g

0









up (2.69a)

yL = [C⊤ 0 0]Yc (2.69b)

2.4.3.2 Adaptive Law

Our objective now is to obtain an estimate of θ∗ so that the closed-loop system described in

equation (2.69) matches the reference model in equation (2.66). Adding and subtracting the
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desired control effort θ∗⊤ω we get

Ẏc = A0Yc +Bsup +Bsθ
∗⊤ω −Bsθ

∗⊤ω (2.70a)

= A0Yc +Bsθ
∗⊤ω

︸ ︷︷ ︸
+Bs(up − θ∗⊤ω) (2.70b)

= AsYc +Bsc
∗
0r +Bs(up − θ∗⊤ω) (2.70c)

yL = C⊤
s Yc (2.70d)

Let ǫ = Yc − Ym be the state estimation error and e1 = yL − ym be the tracking error. Hence

the error equations can be obtained from equations (2.70) and (2.66) as

ǫ̇ = Asǫ+Bs(up − θ∗⊤ω), ǫ(0) = ǫ0 (2.71a)

e1 = C⊤
s ǫ (2.71b)

Notice that

e1

up − θ∗⊤ω
= C⊤

s (sI −As)
−1Bs (2.72)

and

Wm(s) = C⊤
s (sI −As)

−1Bsc
∗
0 (2.73)

⇒ e1 = Wm(s)ρ∗(up − θ∗⊤ω), ρ∗ =
1

c∗0
(2.74)

The error equation is similar to the form seen in equation (C.5) and the same procedure can be

continued if Wm(s) is SPR. Since the relative degree of the reference model is 2, Wm(s) is not

SPR and hence we shall use the operator PL(θ) as before and the modified error equation is

ǫ̇ = Asǫ+Bcρ
∗θ̃⊤φ (2.75a)

e1 = C⊤
s ǫ (2.75b)

which is similar to the error equation (2.46). The same procedure is followed and the adaptive

law and control law which result in a stable system with e1(t) → 0 as t→ ∞ are given by

θ̇ = −Γe1φsgn(ρ∗) = −Γe1φ (2.76a)

up = θ⊤ω + θ̇⊤φ (2.76b)

2.4.3.3 Simulation

Figure 2.10 shows the performance of the adaptive controller. The plant used in this simulation

is the complete plant model instead of the simplified plant. The top plot shows the tracking per-

formance, the middle plot shows the control input, while the bottom plot shows the estimated
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parameters. The Simulink block diagram for the simulation is shown in Figure 2.12. Similar

to the previous controller the adaptive controller with four parameters is capable of regulating

the lateral position of the web. By observing the control effort for the two controllers one can

notice that the controller with four parameters exhibits a better transient response behavior.

This can be attributed to the fact that the controller with three parameters has no knowledge

of the control effort generated. The estimated parameters settle to a steady state value after the

plant starts tracking the sinusoidal reference. A common disturbance which helps in charac-

terizing the transient response is a pulse disturbance. The performance of the controller with

a pulse disturbance is shown in Figure 2.11 and the plots indicate that the controller is capable

of rejecting the pulse disturbances.
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Figure 2.10: Simulation Results for 4-Parameter GAC

2.5 Guide Adaptive Controller

In the previous section a simplified guide adaptive controller was designed based on the as-

sumption that the dynamics of the web is a constant. Here in this section we shall consider the

complete dynamics of the web and develop a guide adaptive controller. The transfer function

for a steering guide is given by equation (2.27) and its state space form is

ẏ = Ay +Bup, yL = C⊤y (2.77)
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Figure 2.11: Simulation Results for 4-Parameter GAC with a Pulse Disturbance

Consider the reference model in equation (2.32a) and the objective is to design a control law

such that the closed-loop system matches the reference model. So far our first step in de-

signing an adaptive controller has been to find the desired control input which can ensure

that the closed-loop system matches the reference model. Then we would pose the problem

as an estimation problem and use the estimated parameters in the control law. In a general

model reference adaptive control problems with relative degree n∗ = 1, it is simple to choose

a parametrized control law which can algebraically render the closed-loop system to have the

same roots as the reference model. But in a general adaptive control problem with relative de-

gree n∗ ≥ 2, finding the desired control is not simple. In the previous section, we were able to

choose a desired control (θ∗⊤ω) which resulted in a closed-loop system that matched the refer-

ence model. As discussed in [22] (section 5.4.1 and 5.4.2), Bezout Identity can be used to show

that it is always possible to find a parameter vector θ∗ so that the following control law [18]

will result in a closed-loop system whose dynamics is same as the reference model dynamics:

up = θ∗1
⊤ α(s)

Λ(s)
up + θ∗2

⊤ α(s)

Λ(s)
yL + θ∗3yL + c∗0r (2.78)

where α(s) = [s2 s 1]⊤, Λ(s) is an arbitrary monic Hurwitz polynomial of degree 3 which has

to be chosen. Similar to the procedure in the previous section (section (2.60) on page 35) we can
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represent the control law in the state-space form as

ω̇1 = Fω1 + gup, ω1(0) = 0 (2.79a)

ω̇2 = Fω2 + gyp, ω2(0) = 0 (2.79b)

up = θ∗⊤ω (2.79c)

where ω1, ω2, θ1, θ2 ∈ R3, θ∗ = [θ∗1
⊤ θ∗2

⊤ θ∗3 c
∗
0] and ω = [ω⊤

1 ω⊤
2 yL r]. The matrix F and g are

realized as

F =









−λ2 −λ1 −λ0

1 0 0

0 1 0









, g =









1

0

0









(2.80)

where Λ(s) = s3 + λ2s
2 + λ1s+ λ0.

The adaptive control design is similar to the design in the previous section but with more

estimation parameters which are a result of considering the complete web lateral dynamic

model. Notice that in equation (2.59) we have shown the existence of the true parameters

with the desired control given by equation (2.53). Similarly, it is possible to show the existence

of the true parameters for the adaptive controller with the desired control given in equation

(2.78). Same procedure as in the previous section can be followed to obtain the adaptive law

and control law (refer to chapter 6 in [18] for a comprehensive formulation).

2.5.1 Control Law

up = θ⊤ω + θ̇⊤φ (2.81a)

φ =
1

s+ p0
ω (2.81b)

ω = [ω⊤
1 ω⊤

2 yL r] (2.81c)

ω̇1 = Fω1 + gup, ω1(0) = 0 (2.81d)

ω̇2 = Fω2 + gyp, ω2(0) = 0 (2.81e)

2.5.2 Adaptive Law

θ̇ = −Γe1φ, e1 = yL − ym (2.82)
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2.5. GUIDE ADAPTIVE CONTROLLER

2.5.3 Analysis

It has been shown in [18] that the above adaptive law along with the control law results in a

stable closed-loop system with e1(t) → 0 as t→ ∞. The proof is similar to the one described in

section C.1.0.1. The chosen Lyapunov-like function is

V (θ̃, ǫ) =
ǫ⊤Pcǫ

2
+
θ̃⊤Γ−1θ̃|ρ∗|

2

and with the above control law and adaptive law the time derivative of V is given by

V̇ = −ǫ
⊤qq⊤ǫ

2
− ǫ⊤νcL

⊤
c ǫ

2

where q is a vector and νc > 0 is a scalar and Lc is a positive definite matrix.

Because V > 0 and V̇ ≤ 0, V is bounded or V ∈ L∞ ⇒ ǫ, θ, θ̃ ∈ L∞. With ǫ ∈ L∞

we get Yc, Ym ∈ L∞. In addition to proving that u = θ⊤ω ∈ L∞, we need to prove that

u = θ⊤ω + θ̇⊤φ ∈ L∞. Since φ is a filtered version of ω and F being a stable filter, it is clear

that u ∈ L∞.

2.5.4 Simulation

Figures 2.13 and 2.14 show the performance of guide adaptive controller. The top plot in each

figure shows the tracking performance, the middle plot shows the controller output while the

bottom plot shows the estimated parameters. In Figure 2.14 in addition to the sinusoidal ref-

erence, a pulse disturbance of 0.25 V amplitude is introduced at two time instants, 4 and 12

seconds. The controller is capable of rejecting the pulse disturbance. The Simulink block dia-

gram for the GAC is shown in Figure 2.15.
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Figure 2.13: Simulation Results for Guide Adaptie Controller
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Chapter 3

Experimental Results

In the previous chapter the design and analysis of model reference adaptive control strate-

gies suitable for web guiding were presented. Three different guide adaptive controllers were

developed based on the number of estimated parameters in the control law. Two adaptive

controllers were designed based on a simplified model for the lateral web dynamics and one

was based on the complete model. In this chapter the controller designs are implemented

on an experimental web platform containing two intermediate web guides and their perfor-

mance under different operating conditions are evaluated. Guidelines for implementation of

the adaptive algorithms are given and discussed.

3.1 Experimental Platform

The experimental web handling platform used for implementing the designed controllers is

shown in Figure 3.1. A line schematic of the platform is shown in Figure 3.2. The platform

is an endless web line with several idle rollers and one driven roller (Master Speed Roller). The

platform does not have an unwind or a rewind section; the web runs in a loop around the

rollers. The transport velocity of the web is set by the speed of the driven roller. In order to

provide traction between the driven roller and the web, a nip roller is used on the driven roller.

The nip roller applies pressure at the contact surface to maintain web traction on the driven

roller during the start-up of the line.

The platform is equipped with a passive dancer and an active dancer which can be used to

control the tension of the web in the platform [24, 25]. In an active dancer, the dancer roller

position is controller by an actuator. The tension in the web line can be increased or decreased

by varying the position of the dancer roller. In a passive dancer mechanism the dancer roller is
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Figure 3.1: Experimental Web Handling Platform
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Figure 3.2: Line Schematic of the Experimental Web Handling Platform
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Ultrasonic Sensor

Web

Figure 3.3: offset pivot Guide

Infrared
Sensor

Web

Figure 3.4: Remotely Pivoted Guide

free to move about a pivot or on a linear slide [25]. The dancer roller in a passive dancer is not

actuated but floats due to the pressure from an air cylinder.

There are two web guides in the platform; an offset pivot guide and a remotely pivoted

guide. The offset pivot guide is a Fife Narrow web guide and the remotely pivoted guide is a

Fife Kamberoller guide. The offset pivot guide is equipped with an ultrasonic sensor and the

remotely pivoted guide is equipped with an infrared sensor.

The actuators (servo motors) and the sensors of each guide mechanism are connected to

a dSPACE DS1103 real-time board through Fife controller hardware. The Kamberoller guide

and its infrared sensor is connected to the real-time hardware through a Fife A9 analog con-

troller. Electrical provisions are made such that the guide can be controlled either with the A9

controller or with the dSPACE hardware. The offset pivot guide is connected to the dSPACE

hardware through a Fife DP-01 controller. The offset pivot guide can only be controlled using

the dSPACE hardware.

The feedback signals from the sensors and the control signals to the actuators are processed

by the dSPACE hardware. The DS1103 hardware has eight A/D converters for a total of 20 A/D

channels, of which 16 channels are multiplexed by four converters. The digital output from the

real-time hardware is converted into analog output by 8 D/A converters. The input and output

range of the dSPACE board is ± 10 V. The dSPACE board is driven by a PowerPC CPU running

at 400 MHz. The real-time control software is written in C using dSPACE RTLib real-time

libraries. The control software is driven by interrupts which occur every sampling period. At

each sampling time the following operations are performed by the real-time software:

1. the sensor feedback signals are read;
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3.2. EXPERIMENTAL PROCEDURE

2. the control algorithm is executed and the required control effort is calculated; and

3. the control effort is then supplied to the actuators.

The dSPACE board is installed inside a host computer running Microsoft Windows 2000

operating system. The dSPACE ControlDesk software is utilized to communicate between the

real-time hardware and the host computer. The real-time hardware is capable of buffering

the data using its internal memory. Trace variables can be setup so that the buffered data in the

real-time control hardware can be stored/displayed in the host computer. These trace variables

can also be used to change the variable values in the real-time control software while executing

in real-time.

3.2 Experimental Procedure

Experiments were carried out to observe the guiding performance of the designed adaptive

controllers for process variations and disturbances. The experimental results presented in this

thesis cover only the Kamberoller guide. Experiments were also conducted on the offset pivot

guide and similar results were observed.

The Kamberoller is located four spans downstream of the offset pivot guide. Any arbitrary

disturbance can be created using the offset pivot guide and the Kamberoller can be used to re-

ject the disturbance. On the contrary, since the web has to travel 13 spans from the Kamberoller

to the offset pivot guide, the lateral disturbances generated at the Kamberoller do not propa-

gate to the offset pivot guide. The Kamberoller guide is connected to the dSPACE hardware

through the Fife A9 controller. Electrical modifications to the A9 controller were made so that

either the A9 controller or the controller implemented on the dSPACE hardware can be used

to control the Kamberoller guide. This setup provides a convenient way to compare the two

controllers. Such an arrangement is not available with the offset pivot guide.

The adaptive control schemes were compared with an A9 analog controller (PI controller).

The A9 controller is the only industrial controller in the experimental platform which can be

directly compared with the adaptive control schemes. Modifications to the existing setup are

required in order to incorporate other industrial controllers in the experimental platform.

The following sections present the process variations and the disturbances that were created

for controller evaluation.
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3.2.1 Process Variations

The guiding performance of the developed adaptive control schemes were evaluated with dif-

ferent process parameters. Two main process parameters that affect the coefficients of the web

lateral dynamic model are the web span parameter K and the longitudinal velocity of the web

v. The parameter K is affected by the properties of the web material. Two different web ma-

terials with distinct physical characteristics were used; an optically opaque magnetic film like

material (Figure 3.5) and an optically transparent polyethylene polymer web (Figure 3.6). The

webs used were of different dimensions. The experiments were conducted with different web

transport velocities and with different tensions in the web line.

Figure 3.5: Opaque Web

Figure 3.6: Transparent Web

Whenever the web material is changed from opaque to transparent web, the gain of the

infrared sensor changes. The full scale voltage range changes from 0 - 6 V (opaque) to approx-

imately 5 - 6 V (transparent) as illustrated in Figure 3.7. One of the drawbacks of the existing

controllers is their inability to cope with sensor gain variations. Due to sensor gain variations

the guide-point also changes. The guide-point is the physical reference position of the web in-

side the sensing window. Notice from Figure 3.7, the minimum voltage output from the sensor
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is 5 V for a transparent web. This is due to the fact that the maximum signal attenuation with

the transparent web is only 1 V.

ACTUAL WEB POSITION

S
E

N
S

O
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T
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0 V
0 in 0.7 in

6 V

5 V

Transparent Web Opaque Web

Figure 3.7: The Effect of Opacity on Sensor Gain for an Infrared Sensor

Experiments were conducted with the two web materials to evaluate the performance of the

controllers for sensor gain variations. All the parameters of the controllers including the gain

matrix and the filter parameters remained constant with both webs. Similarly the PI controller

gains remained constant with both webs. Since the guide-point changes with the opacity of the

web material, different guide-points were used with the two webs. For example, the guide-

point for the opaque was 3 V while the guide-point with the transparent web was 5.4 V. Both

guide-points correspond to the same physical position of the web. A new technique for auto-

matic guide-point detection called offset-adaptation is presented in Appendix A.

3.2.2 Disturbances

Some common lateral disturbances in industrial lines are the result of misaligned rollers, tele-

scoped unwind rolls, splicing, improper web edges, wrinkled web, etc. To mimic these distur-

bances in the experimental web platform, sinusoidal, step and pulse disturbances were created

by the offset pivot guide and with changes to the web edge.

A common disturbance observed in an industrial web line is due to misaligned rollers.
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It is seldom possible to have exact alignment for all the rollers in a web line. The angular

misalignment of a series of rollers may produce lateral disturbances which can be periodic.

Telescoping of rolls may produce periodic disturbances when unwound. In order to simulate

a periodic disturbance, the offset pivot guide in the web line is used. The offset pivot guide,

which is located before the Kamberoller in the web line (refer Figure 3.2), was made to follow

a sinusoidal reference. As the sinusoid propagates, a periodic disturbance is created at the

Kamberoller.

In order to characterize the transient response, the performance of the controller with a

pulse disturbance was evaluated in the experiments. The pulse disturbance was generated by

adding a small strip of web material about one feet long and 0.2 inches wide to the edge of

the web. Since the strip is of constant length, the duration of the pulse is dependent on the

transport velocity of the web. As the web transport velocity increases, the pulse width reduces

and tends to an impulse.

In order to observe the performance characteristics such as the percentage overshoot and

settling time, step-reference-change experiments were conducted. The guide-point or the lat-

eral position reference was changed and the performance of the controllers for this change was

evaluated.

The sensor signals from both the infrared sensor and the ultrasonic sensor were noisy. In

industrial controllers, analog or digital signal conditioning are carried out on the raw signal to

filter the noise. The error signal for the adaptive controllers were unfiltered in order to observe

the performance of the controllers with noisy measurements.

3.3 Three Parameter Guide Adaptive Controller

The performance of the three parameter guide adaptive controller under different operating

conditions and disturbances are presented in this section. The three parameter GAC requires

an additional measurement, i.e., the lateral web velocity. While implementing the controller

using the real-time hardware, the lateral velocity measurement was approximated by the finite

difference of the lateral position.

Recall that the control law and the adaptive law for the three parameter GAC is given by

Control Law

up = θ̇⊤φ+ θ⊤ω
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3.3. THREE PARAMETER GUIDE ADAPTIVE CONTROLLER

Adaptive Law

θ̇ = −Γe1φ

where θ⊤ = [L1 L2 P ], ω⊤ = [yL ẏL r], e1 = yL − ym and φ =
1

s+ p0
ω.

3.3.1 Experiments with opaque web

Figures 3.8 to 3.11 show a representative sample of experimental results with the three param-

eter adaptive controller with the opaque web. In Figure 3.8 the top plot shows the sinusoidal

disturbance observed by the Kamberoller when the guide is not actuated. The middle plot

shows the performance of the PI controller. And the bottom plot shows the performance of

the adaptive control scheme. A significant amount of the sinusoidal disturbance generated at

the offset pivot guide has propagated to the Kamberoller. The three parameter guide adaptive

controller is able to significantly attenuate the disturbance when compared to the PI controller.

The guide-point for the two experiments were not the same. In subsequent experiments the

guide-points for the adaptive scheme and the PI controller were matched to maintain consis-

tency.

In Figure 3.9 the performance of the adaptive controller with sine disturbance is shown in

the top plot, the control effort is shown in the middle plot, and the parameter estimates are

shown in the bottom plot. The control effort generated is well within the actuator limits which

is ± 10 V. Even though the parameters may not converge to their true values, it is important

to observe the evolution of the estimated parameters. Notice that the last two parameters (L2

and P ) vary sinusoidally while the first parameter (L1) slowly increases. It was experimentally

observed that L1 reaches a steady-state value while the other two parameters vary about zero

sinusoidally. These observations are useful in improving the robustness properties of the adap-

tive controller. One such algorithm which can increase the robustness of the adaptive controller

is parameter projection. For more information on parameter projection refer to page 565 in [18]

and page 328 in [17].

The top plot in Figure 3.10 shows the performance of the PI controller with a pulse distur-

bance while the bottom plot shows the performance of the three parameter GAC. The adaptive

controller is able to provide a faster response with better guiding performance. Similar perfor-

mance is also seen at different transport speeds.

The performance of the adaptive controller for step-reference-change is shown in the Figure
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3.11. The adaptive controller is capable of following the reference model accurately. The tran-

sient response characteristics of the guiding system is similar to the reference model transient

response characteristics.
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Figure 3.8: Performance Comparison: 3 Parameter, Sine Disturbance, 300 fpm, Opaque Web

3.3.2 Experiments with transparent web

Figures 3.12 to 3.14 show the performance of the three parameter guide adaptive controller

with the transparent web. Figure 3.12 compares the performance of the PI controller and the

adaptive controller. The top plot shows the disturbance observed at the Kamberoller when the

guide is not actuated. The middle plot shows the performance of the PI controller. Comparing

the top and the middle plots, no disturbance attenuation is observed. The PI controller is not

able to cope with the sensor gain change. The adaptive controller on the other hand is able to

attenuate the sinusoidal disturbance. Notice that a small streak is observed in all the three plots.

This streak is observed when the joint passes the sensor window. The web opacity variation at

the joint is significant to cause a sudden jump in the sensor output which causes the streak.

In Figure 3.13 the top plot shows the adaptive controller performance, the middle plot

shows the control effort generated and the bottom plot shows the time history of the estimated

parameters. Similar to the experiments with the opaque web, the last two parameters vary
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Figure 3.9: Adaptive Controller: 3-Parameter, Sine Disturbance, 300 fpm, Opaque Web
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Figure 3.10: Performance Comparison: 3-Parameter, Pulse Disturbance, 300 fpm, Opaque Web
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Opaque Web

sinusoidally. The sinusoidal variation is centered around zero while the parameter L1 slowly

increases and reaches a steady state value.

In Figure 3.14 the performance of the PI controller and the adaptive controller for a pulse

disturbance is shown. The top plot shows the performance of the PI controller while the bottom

plot shows the performance of the adaptive controller. Even though the results look similar, a

careful examination would reveal that the PI controller is non-responsive to the pulse distur-

bance. Due to the change in the sensor gain the PI controller is not capable of providing good

guiding performance. In fact the response observed using the PI controller is exactly the same

as the response when the Kamberoller is unactuated.

To clearly visualize the performance of the adaptive controller it is necessary to examine the

typical response for a pulse disturbance. The pulse disturbance is formed by a series of two

steps. The first step has a positive magnitude and the second has the same magnitude but a

negative sign. As soon as the first step passes the sensor, an error in lateral position is created.

The controller tries to regulate the position by bringing the web back to its reference position.

Therefore as soon as the pulse disturbance enters the sensor a sudden dip is observed and the

guide is actuated to bring the web back to its reference position. The second step creates a
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Figure 3.12: Performance Comparison: 3-Parameter, 500 fpm, Sine Disturbance, Transparent

Web
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Figure 3.13: Adaptive Controller: 3-Parameters, 500fpm, Sine Disturbance, Transparent Web
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Figure 3.14: Performance Comparison: 3-Parameter, 500 fpm, Pulse Disturbance, Transparent

Web

similar error but in the opposite direction, i.e., it creates a positive error. Therefore, when the

pulse disturbance leaves the sensor, a spike is observed and the controller tries to regulate the

web edge back to its reference. If the guide is unactuated the lateral position of the web is

unchanged as the pulse passes the sensor. The complete pulse is observed in the sensor output.

Observing the plots in Figure 3.14, we can notice that the PI controller is unable to regu-

late the lateral position in the presence of a pulse disturbance. While the adaptive controller

is capable of providing good guiding performance in the presence of the pulse disturbance.

Additional experimental results for the three parameter adaptive controller are presented in

Appendix D section D.1.

From the experimental results it is evident that the three parameter adaptive controller is

suitable for web guiding. The controller is capable of compensating for the common distur-

bances and process variations. The adaptive algorithm is able to adapt to the process variations

and is capable of providing the appropriate control effort to regulate the lateral edge position.

The adaptive controller is also able to provide good guiding performance in the presence of

measurement noise.
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3.4 Four Parameter Guide Adaptive Controller

The same set of experiments with the two types of web materials were carried out with the four

parameter guide adaptive controller. In this controller implementation only one measurement

is needed, the lateral web position. The performance of the four parameter adaptive controller

was similar to the three parameter adaptive controller. The adaptive controller provides good

guiding perfromance in the presence of the common disturbances and process variations. A

complete set of the experimental results is presented in Appendix D.2.

Figure 3.15 shows the guiding performance of the adaptive controller at different guide-

points for a sinusoidal disturbance. Interestingly, at different guide-points the performance

of the same controller is different. When the guide-point is around 3 V clear indication of

the sinusoidal disturbance is observed. Additionally, the Kamberoller guide was positioned

at different guide-points and the magnitude of the sinusoidal disturbance was observed. The

magnitude was higher at 3 V compare to a guide-point of 5 V. This may be attributed to sensor

nonlinearity. The slope of the sensor may not be linear along its entire window length.
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Figure 3.15: Adaptive Controller: 4-Paramater, 300 fpm, Sine Disturbance, Opaque Web
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3.5 Guide Adaptive Controller

The guide adaptive controller (with eight parameters) has a similar implementation as the four

parameter GAC: it is a SISO system with eight parameters. Figure 3.16 shows a representative

sample of the performance of the eight parameter adaptive controller and the PI controller.

A complete set of the experimental results is presented in Appendix D.3. The experimental

results indicate that the controller provides good guiding perfromance in the presence of the

common disturbances and process variations.

While implementing the adaptive controller on the real-time hardware no assumption on

the values of the parameters were made. The initial values for all the parameters were set to

zero. The plots in Figure 3.17 shows the performance of the adaptive controller as soon as it

is started. The plots in Figure 3.18 show the performance of the adaptive controller after the

adaptation is continued for a long time. Observe the bottom plots in Figures 3.17 and 3.18. The

plots show the evolution of the estimated parameters. As the time progresses the estimated

parameters reach steady state values. The guiding performance of the controller is unaffected

during the evolution of the parameters. This clearly indicates that the variables associated with

the system are bounded. Similar results were found with all the adaptive control schemes, and

with all the disturbances that were discussed previously.

Recall that the control law and the adaptive law for an eight parameter adaptive controller

is given by:

Control Law

up = θ⊤ω + θ̇⊤φ (3.1a)

φ =
1

s+ p0
ω (3.1b)

ω = [ω⊤
1 ω⊤

2 yL r] (3.1c)

ω̇1 = Fω1 + gup, ω1(0) = 0 (3.1d)

ω̇2 = Fω2 + gyp, ω2(0) = 0 (3.1e)

Adaptive Law

θ̇ = −Γe1φ, e1 = yL − ym (3.2)

Notice that the control law not only depends on the actual value of the parameter vector θ,

but also depends on the rate of change (θ̇) of the parameter vector. This is one of the reasons

why the adaptive controller provides good guiding performance even when the parameters
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does not reach a steady-state value. Once the parameters reach a steady-state value then the

control will only be dependent on the parameter vector θ and the regressor vector ω.
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Figure 3.16: Performance Comparison: 8-Parameter, 300 fpm, Sine Disturbance, Transparent

Web

3.6 Systematic Procedure for Adaptive Controller

Implementation

The theory developed in the previous chapter does not impose any constraint on the value of

design parameters. Most of the design parameters have to be positive in the case of scalars

and positive definite in the case of matrices. When implementing the adaptive controller, it

is important to consider the actuator rate constraints, the bandwidth of the actuator, etc., and

the design parameters cannot be chosen arbitrarily. This section presents a systematic proce-

dure for choosing various design parameters in the adaptive control schemes presented in the

previous chapters.

1. Choose a suitable reference model: In a model reference adaptive controller design, the

first step is to choose a reference model. The choice of the reference model is based on

common performance characteristics like the settling time and the percentage overshoot.
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Figure 3.17: Adaptive Controller: 8-Parameter, 300 fpm, Sine Disturbance, Transparent Web
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Choose a model which is well damped. The settling time can be chosen based on the

performance requirements and the actuator rate constraints.

2. Perform computer simulations: Computer simulations are important because they pro-

vide a good starting point for practical implementation. Some basic information about

the evolution of the estimated parameters, the gain matrices and the control effort gener-

ated can be obtained from the computer simulations.

3. Choose the polynomial Λ(s): This polynomial is chosen only in the four parameter and

the eight parameter case. A simple choice would be

Λ(s) = (s+ a0)
n (3.3)

where n = 1 for the four parameter case and n = 3 for the eight parameter case. Notice

that the polynomial Λ(s) filters the control input signal up and the lateral position signal

yL (refer equations (2.53) and (2.78)). This polynomial can be chosen based on the band-

width of the motor. The polynomial is chosen such that the filtered versions of up and yL

have the same bandwidth as the actuator.

4. Choose the parameter p0: Based on the necessary and sufficient conditions derived in

section C.2, p0 is chosen according to the constraint 0 < p0 < 2ζωn. This parameter sets

the bandwidth of the filter L(s)−1 which is defined as

L(s)−1 =
1

s+ p0

Recall that this filter is added to satisfy the SPR condition. The filter L(s)−1 filters all

the regressor signals. Large values for the parameter p0 will significantly attenuate the

magnitude of the regressor vector. This may lead to poor guiding performance due to

very slow adaptation. Figure 3.19 shows the performance of the adaptive controller with

different values of the parameter p0. The value of the parameter p0 is decreased after 15

seconds and the guiding performance improves with the decrease. Small values for the

parameter p0 may help in quick adaptation but may also cause the system to be sensitive

(equations (2.76b) and (3.1a)).

5. Choose gains based on simulation: The initial choice of the gains can be based on the

simulation results. A positive definite diagonal matrix can be chosen as the gain matrix.

As a starting point all the diagonal elements may have the same value.
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6. Observe the evolution of parameters: Observing the way in which the parameters adapt

is important in the design parameter selection process. The experiments with pulse dis-

turbance help in selecting the adaptation gains. The control effort supplied to the actuator

is directly related to the magnitude and the rate at which the estimated parameters vary

((2.76b) and (3.1a)). When the parameters vary quickly, the magnitude of the control

effort tends to increase. This may not be desirable in most cases.

7. Set a bound on the parameter estimates: Simple bounding of parameters improves the

robustness of the controller. In order to set a bound, knowledge of the estimated param-

eters is required. Conservative bounds can be set based on the experiments with pulse

disturbance.

8. Observe the control effort: The control effort supplied to the actuator can help us in choos-

ing some parameters such as p0. If the parameter p0 is very small, then the guiding system

may be sensitive. This can be clearly observed even without a pulse disturbance experi-

ment. When the parameter p0 is small, noisy measurement may cause a ringing effect (the

guide may vibrate with a very high frequency about the guide-point). The parameter p0

may be increased to reduce this effect.

0 5 10 15 20 25 30
4

4.5

5

5.5

6
Performance of eight parameter GAC with different p0

Time (Seconds)

L
at

er
al

 P
o

si
ti

o
n

 (
V

)

Figure 3.19: Performance Comparison: 8-Parameter, 500 fpm, Pulse Disturbance, Effect of p0,

Transparent Web

Based on the observations from the experiments some guidelines for practical implementa-

tion are as follows:
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• The estimated parameters reach a steady-state value after some time. How fast the pa-

rameters reach the steady-state value is dependent on the adaptation gains. Once the

steady-state value is reached there is no significant change in the estimated parameters.

Therefore, adaptation can be stopped or the estimated parameters can be frozen. Once

the parameters are frozen, the controller behaves like a fixed gain controller.

• When changes in the process parameters are made, adaptation can be continued. This can

be implemented by continuously monitoring the error variable. Once the error variable

exceeds a predefined limit, the adaptation of the parameters can be continued.

• Instead of stopping all the parameters, the estimated parameters can be selectively frozen.

All the parameters except the last two parameters can be frozen.

• The decision on when to stop the adaptation can be made based on the adaptive law.

Notice that the adaptive law is given by:

θ̇ = −Γe1φ, e1 = yL − ym (3.4)

When the parameters reach a steady-state value, the vector θ̇ would be zero. Whenever

all the elements of the vector θ̇ are close to zero, then the adaptation can be stopped.
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Chapter 4

Friction Compensation in Web Guides

Friction is a type of phenomena that is found in almost all servo-mechanisms. Friction is in-

evitable in mechanisms with relative motion between parts which are in contact with each

other. Although friction is essential in some mechanisms, such as braking, it is usually not de-

sired in high precision motion control systems. Typically friction may cause steady-state errors

in position regulation and tracking and may lead to limit cycle behavior. Hence it is important

to consider the effect of friction when designing and implementing a closed-loop control sys-

tem. In this chapter we consider static friction models and analyze compensation techniques

which are specific to web guides.

4.1 Static Models

Early modeling of friction involved static models of friction which are simply a function of rel-

ative velocity between contacting surfaces. Static friction takes into account only a few proper-

ties of friction with the main idea being that the friction force opposes motion and the magni-

tude of friction is independent of the surface area of contact. A brief discussion of some well

known static friction models are given below.

Coulomb investigated Da Vinci’s friction model and proposed the model in 1785 [26]. Coulomb

friction in dynamic systems is modeled as a piecewise continuous function which is positive

for positive velocities and negative for negative velocities. Coulomb friction is given by

F = Fcsgn(v) (4.1)

where F is the friction force, Fc is the Coulomb friction coefficient, sgn(.) denotes the sign

function, and v is the relative velocity between contacting surfaces.
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0

0 

Coulomb Friction Coefficient Fc

Friction F

Velocity v

Figure 4.1: Static Friction Model with Coulomb Friction Effect

Morin (1833) [26] introduced the idea of static friction in which the friction forces opposes

the direction of motion when the relative velocity is zero. The equation describing the model

is given by

F = Fssgn(Ft) (4.2)

where Fs is the static friction (stiction) coefficient and Ft is the applied tangential force.

Reynolds (1886) introduced the following viscous friction model for fluids where the fric-

tion force is a linear function of the relative velocity:

F = Fvv (4.3)

where Fv is viscous friction coefficient.

Common models of static friction considered in engineering analyses are a combination of

the above basic models. Coulomb + viscous friction, as the name suggests, is a combination of

Coulomb and viscous friction models and is given by

F = Fcsgn(v) + Fvv (4.4)

The viscous friction is included to consider the influence of lubrication between contacting

surfaces.
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0

0
Coulomb Friction Coefficient Fc

Friction F

Velocity v

Viscous Friction Coefficient
Fv = slope

Figure 4.2: Static Friction Model with Coulomb and Viscous Effects

Further, if static friction is included to consider the force required to initiate the motion, the

model that is generally used in engineering analyses is given by

F =







Fcsgn(v) + Fvv for v 6= 0

Fssgn(Ft) for v = 0

(4.5)

Stribeck in 1902 observed a different phenomenon at low velocities. He observed that the

friction decreased as velocities increased for low velocities. The velocity decrease was continu-

ous, contrary to the model given by a combination of Coulomb, viscous and static friction. This

phenomenon is called the Stribeck effect.

The model that includes Stribeck effect in place of stiction is given by

F = Fvv + Fcsgn(v) + (Fs − Fc)e
( v

vs
)2sgn(v) (4.6)

where vs is the Stribeck velocity constant. Figure 4.4 shows the model that includes the Stribeck

effect.
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Figure 4.3: Static Friction Model with Coulomb, Viscous and Stiction Effects
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Figure 4.4: Static Friction Model with Stribeck Effect
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4.2 Friction Compensation Based on Static Models

To compensate for stiction, in some applications, it is typical to add high frequency, low am-

plitude signals (dither) to the control signal. The main drawback of using a dither signal is

the need for accurate prediction of stiction coefficient, and further the dither signal does not

compensate for viscous and Stribeck effects.

For nonlinear systems with friction, it is common to use control laws that employ feedback

linearization to achieve desired closed-loop characteristics. With an accurate friction model and

an estimate of its coefficients, it is common to compensate for friction by adding the estimated

friction to the control signal. The friction force is estimated using velocity feedback and friction

coefficient estimates, and the estimated friction force F̂ is added to the control signal. The

friction coefficients are generally estimated by using least mean-square (LMS) estimation or by

using recursive least-square (RLS) algorithms.

Friedland and Park [27] proposed a simple estimator for Coulomb friction coefficient, which

is an adaptive estimator with asymptotic convergence. This estimate of Coulomb friction co-

efficient is used to estimate the friction force and is added to the control signal to compensate

for friction. A simple block diagram of such a compensation is given in Figure 4.5. But this

method imposes the constraint that the velocity should be bounded away from zero.

Linear 

Controller

Friction

Estimate

Servo 

Mechanism

Actual

Friction

/s
+

_

e + +

_

Reference

Position

Actual

Positionv

Figure 4.5: Friction Compensation using Estimated Friction

Gilbart and Winston [28] used an adaptive compensation technique for optical tracking tele-

scopes based on the Coulomb friction model using Lyapunov based model reference adaptive

controller. Zhu [29] implemented adaptive static and dynamic friction compensation tech-

niques on a planar robot manipulator. Extensive experiments were conducted to validate the
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proposed adaptive controllers; it was shown that the adaptive controllers with friction com-

pensation had superior tracking error performance when compared to the adaptive controllers

without friction compensation.

In all of the above mentioned methods, a reference velocity trajectory is tracked with friction

compensation or a position reference (assumed to be differentiable twice) is tracked. Most of

the existing friction compensation methods does not deal with position regulation. Adaptive

friction compensation techniques for position regulation which are applicable for web guiding

is discussed in the subsequent sections.

4.2.1 Friction Compensation for Web Guides Based on a Static Model

A simple compensation technique that is used frequently is based on feedback linearization

in which the control input compensates for friction by directly adding the friction torque to it.

The friction can be identified off-line based on a friction model. Friction torque is added to the

control based on the identified friction parameters.

Consider a static friction model based on Coulomb and viscous friction as

F = Fcsgn(θ̇) + Fv θ̇ (4.7)

The dynamics of a DC motor actuator for a web guide is given by

Jθ̈ + F = T (4.8a)

L
di

dt
+Ri = Up −Keθ̇ (4.8b)

where T is the torque to the motor, J is the rotor inertia, L is the inductance of the coil, R is

the resistance of the coil, Up is the voltage input to the motor, i is the motor current and Ke is

the back e.m.f (electro-motive force) constant. Neglecting electrical characteristics, substituting

T = Kti, and taking the Laplace transform we get

Θ(s) =
Km

s(s+ am)
Up(s) −

1/J

s(s+ am)
F (s)

where Km =
Kt

JR
and am =

KtKe

JR
. If viscous friction is considered then the system reduces to

Θ(s)

Up(s)
=

Km

s(s+ am +KjFv)
(4.9)

where Kj = 1
J . Clearly the system dynamics changes with the type of friction model consid-

ered. Let us first consider friction given by equation (4.7). A straight-forward compensation
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4.2. FRICTION COMPENSATION BASED ON STATIC MODELS

would involve adding friction estimate F̂ to the control torque and can be given as

T = Tlin + F̂ (4.10)

where Tlin is the control input for the linear system when friction is neglected. With a perfect

estimation of F̂ the nonlinear friction term is compensated and hence linear control law can be

obtained using well established control techniques. An offline estimate of F̂ can be given by

F̂ = F̂csgn(θ̇) + F̂v θ̇ (4.11)

where F̂c and F̂v are estimates of Coulomb and viscous friction which are identified offline

using common identification techniques. The following section details the procedure for iden-

tifying the friction parameters for a web guide mechanism.

4.2.2 Friction Parameters Identification

4.2.2.1 Motor Parameters

Parameters Value Units

Max. Operating Speed 6000 rpm

Torque Sensitivity (Kt) 7.54 oz-in/amp

Back EMF constant (Ke) 5.58 V/Krpm

D.C. Resistance (R) 0.977 Ohms

Inductance L 1.5 mH

Rotor Inertia 0.0045 oz-in-sec2

Tachometer Voltage Sensitivity 14.2 (V/Krpm)

Table 4.1: Kamberoller Guide Motor Parameters

4.2.2.2 Identification of Coulomb and Viscous Friction Coefficients

The friction parameters can be identified using common estimation techniques such as a Least

Square Estimation. To avoid the Stribeck effect, the identification is carried out at velocities

greater than the Stribeck velocity. The dynamics of an inertia load with a static friction model

is given by

Jθ̈ = T − Fcsgn(θ̇) − Fv θ̇ (4.12)
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which can be parametrized as

T =
[

θ̈ θ̇ sgn(θ̇)
]









J

Fv

Fc









= ϕ⊤
u φ (4.13)

Applying a low-pass filter (F (s) = 1
τs+1 ) to each signal in equation (4.13) we get

y = ϕ⊤φ (4.14)

where y is the filtered version torque T and ϕ is the filtered version of the regressor ϕu.

Hence from the normal equation for least square estimation, the vector φ is obtained as

φ = (ψψ⊤)−1ψY (4.15)

where

ψ = [ϕ(1), . . . , ϕ(n)] , Y = [y(1), . . . , y(n)]
⊤ (4.16)

and n is the total number of data points.

Hence the estimates of Fv and Fc can be obtained from input-output data set of the web

guide. Sinusoidal inputs were given to the guide at various amplitude and frequency. Using

the least-square-estimator the parameters Fv and Fc were estimated and they were found to

be Fv = 0.0167705 N-m-s/rad and Fc = 0.030709 N-m. The filter was assumed to have the

following transfer function 1
0.001τs+1 and the Stribeck velocity was assumed to be 0.1 rad/sec.

Table 4.2 shows the estimates for different input-output pairs. A representative sample of the

experimental results is given in Figure 4.6. Figure 4.6 shows the tachometer output for a sinu-

soidal input voltage to the guide motor. The input voltage was applied with a frequency of 2π

rad/sec and amplitudes of 4.8 and 12 volts. In Figure 4.7 the friction effect when the velocity

crosses zero is clearly observed.

4.2.2.3 Stiction Coefficient

Stiction can be identified by finding the torque at which the guide starts to move, when a ramp

input is given to the guide. The slope of the ramp is small, i.e., the control input is incremented

in small steps and the torque at which the guide starts to move is the stiction coefficient Fs.

As the guide starts to move the motor velocity is very small, therefore the current in the motor

coil can be approximated as
Up

R
and hence Fs = Kt

Up

R
. Fs was found to be 0.325968 N-m. A

representative sample of the experimental results is shown in Figure 4.8.
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Exp No. Amplitude (Volts) Frequency (rad/sec) Fv (Nm/rad/s) Fc (Nm)

1 4.8, 12 2π 0.016259 0.032497

2 7.2 2π 0.016459 0.030559

3 4.8 4π 0.016595 0.028851

4 4.8 4π 0.016585 0.029035

5 6 2π 0.016742 0.031159

6 3 4π 0.017302 0.031879

7 3 2.75π 0.017451 0.030985

Table 4.2: Coulomb and Viscous Friction Estimates
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Figure 4.6: Velocity Output for a Sinusoidal Input Voltage
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Figure 4.7: Zero Velocity Crossing Friction Effect
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Figure 4.8: Estimation of Stiction Using a Ramp Input
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4.2.2.4 Stribeck Velocity

The static friction model with the Stribeck effect is given by

F = Fv θ̇ + Fcsgn(θ̇) + (Fs − Fc)e
( θ̇

vs
)2sgn(θ̇) (4.17)

where vs is the Stribeck velocity. When the guide moves at sufficiently low velocities, friction

is given by

F = Fcsgn(θ̇) + (Fs − Fc)e
( θ̇

vs
)2sgn(θ̇) (4.18)

and substituting F in equation (4.8a) we get

Jθ̈ = T − Fcsgn(θ̇) − (Fs − Fc)e

“

θ̇

vs

”

2

(4.19)

Equation (4.19) can be simplified as

[

(T − J (̈θ))sgn(θ̇) − Fc

]

= (Fs − Fc)e

“

θ̇

vs

”

2

(4.20)

and further as

θ̇2 = ln

(

Fs − Fc

[T − Jθ̈]sgn(θ̇) − Fc

)

v2
s (4.21)

Therefore, from the previously estimated values of Fc and Fv and from the response of the

system for a given sinusoidal input, Stribeck velocity is estimated using

y = ϕ⊤φ (4.22)

where

y = θ̇2, φ = v2
s , ϕ = lnγ (4.23)

Only values of γ ≥ 1 yield real solutions and hence only those values are considered for

estimation. The representative sample of experimental results is shown in Figure 4.9. Stribeck

velocity was observed to be negligible for the web guide.

It is not possible to identify all the friction parameters each time and compensate by adding

the extra control input. It is known that friction parameters vary based on normal forces,

change in temperature and vary over time due to change in lubricating conditions. Hence,

an adaptive friction compensator is required to effectively compensate for friction. The fol-

lowing section will discuss an adaptive scheme to compensate for friction in web guides. The

identification carried out in this section is used as a basis for validating the results from the

adaptive controller.
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Figure 4.9: Stribeck Velocity Identification

4.3 Adaptive Static Friction Compensation for Web Guides

Offline friction parameter identification and compensation is not suitable for web guiding ap-

plications. Friction parameters are known to change and hence an adaptive friction compen-

sation is suitable. In this section, static friction model with Coulomb and viscous effects is

considered; Coulomb and viscous friction coefficients are unknown. An adaptive static friction

compensation technique is developed in this section. The dynamics of the system with friction
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is given by

Jθ̈ + Cθ̇ + F = αu, where α =
Kt

R
(4.24a)

J

α
θ̈ +

C

α
θ̇ +

1

α
F = u (4.24b)

β1θ̈ + β2θ̇ +
1

α
[Fv θ̇ + Fcsgn(θ̇)] = u (4.24c)

β1θ̈ + β2θ̇ +
1

α
Fv θ̇ +

1

α
Fcsgn(θ̇) = u (4.24d)

β1θ̈ + (β2 +
1

α
Fv

︸ ︷︷ ︸

)θ̇ +
1

α
Fcsgn(θ̇) = u (4.24e)

β1θ̈ + β2θ̇ + β3sgnθ̇ = u (4.24f)

where β2 = β2 +
1

α
Fv and β3 =

1

α
Fc

Representing the system in equation (4.24f) in the state space form with state variables x1 = θ

and x2 = β1θ̇ yields,






ẋ1

ẋ2




 =






0 α1

0 −α2











x1

x2




+






0

1




u−






0

α3sgn(x2)




 (4.25)

where

α1 =
1

β1
, α2 =

β2

β1
, α3 = β3

The equilibrium for equation (4.25) is x1 = 0 and x2 = 0. If the coefficients α1, α2 and α3 are

known, then one can choose the control law to be

u = α3sgn(x2) − α1x1 (4.27)

Then the closed loop system is given by






ẋ1

ẋ2




 =






0 α1

−α1 −α2











x1

x2




 (4.28)

Consider a Lyapunov function candidate which is a function of states as

V (X) =
1

2
X⊤X, X =






x1

x2




 (4.29)
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Taking the time derivative of the Lyapunov function candidate along the trajectories of equa-

tion (4.28) we get

V̇ (X) = Ẋ⊤X =

[

ẋ1 ẋ2

]






x1

x2




 (4.30a)

= α1x1x2 − α1x1x2 − α2x
2
2 (4.30b)

= −α2x
2
2 (4.30c)

⇒ V̇ (X) ≤ 0 (4.30d)

Since α1, α2 and α3 are unknown, let us consider the control to be

u = −α̂1x1 + α̂3sgn(x2) (4.31)

Only two unknowns are needed for control and hence the parameters, their estimates, estima-

tion error are defined as follows.

Θ =






α1

α3




 , Θ̂ =






α̂1

α̂3




 , Θ̃ =






α̃1

α̃3




 =






α1 − α̂1

α3 − α̂3




 and ˙̃Θ =






− ˙̂α1

− ˙̂α3




 (4.32)

The closed loop control system is given by






ẋ1

ẋ2




 =






0 α1

−α̂1 −α2











x1

x2




−






0

α3 − α̂3




 sgn(x2) (4.33)

i.e.,

ẋ1 =α1x2 (4.34a)

ẋ2 = − α2x2 − α̂1x1 − α̃3sgn(x2) (4.34b)

Consider a Lyapunov function candidate

V (X, Θ̃) =
1

2
X⊤X +

1

2γ
Θ̃⊤Θ̃, γ > 0 (4.35)

78



4.3. ADAPTIVE STATIC FRICTION COMPENSATION FOR WEB GUIDES

The time derivative of V along the trajectories of equation (4.33) is given by

V̇ (X, Θ̃) = Ẋ⊤X +
1

γ
˙̃Θ⊤Θ̃ (4.36a)

=

[

ẋ1 ẋ2

]






x1

x2




+

1

γ
˙̃Θ⊤Θ̃ (4.36b)

= α1x1x2 − α̂1x1x2 − α2x
2
2 − α̃3x2sgn(x2) +

1

γ
˙̃Θ⊤Θ̃ (4.36c)

= −α2x
2
2 + (α1 − α̂1)

︸ ︷︷ ︸
x1x2 − α̃3x2sgn(x2) +

1

γ
˙̃Θ⊤Θ̃ (4.36d)

= −α2x
2
2 + α̃1x1x2 − α̃3x2sgn(x2) +

1

γ
˙̃Θ⊤Θ̃ (4.36e)

= −α2x
2
2 +

[

x1x2 −x2sgn(x2)

]






α̃1

α̃3




+

1

γ
˙̃Θ⊤Θ̃ (4.36f)

= −α2x
2
2 +

[

x1x2 −x2sgn(x2)

]

Θ̃ +
1

γ
˙̃Θ⊤Θ̃ (4.36g)

= −α2x
2
2 +

[

x1x2 −
1

γ
˙̂α1 −x2sgn(x2) −

1

γ
˙̂α3

]

Θ̃ (4.36h)

Hence for a stable system each element in the second term is equated to zero, which yields the

adaptive control law.

˙̂α1 = γx1x2, ˙̂α3 = −γx2sgn(x2) and α̂1(0) 6= 0, α̂3(0) 6= 0 (4.37)

The above adaptive law results in V̇ (X, Θ̃) ≤ −α2x
2
2. To prove asymptotic stability, let us

consider the invariant set Ω = {x1, x2|x2 = 0, x1 6= 0}. When x2 is zero and x1 is non-zero, then

x2 will move away from zero since ẋ2 = −α̃1x1. Hence the solutions in the invariant set will

not stay inside the set and will always reach the only equilibrium that is x1 = x2 = 0. Hence

the system is globally asymptotically stable.

A Simulink block diagram of the nonlinear adaptive friction compensation is given in Fig-

ure 4.10. The plant considered in the Simulink model had the friction modeled as viscous and

Coulomb friction, whose coefficients were the identified values from the previous section. The

response of the system with position and velocity initial conditions are given in Figures 4.11

and 4.13.

This method regulates the states (angular velocity and angular position) to zero. Position

regulation can be achieved by a simple coordinate transformation. Consider the following
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coordinate transformation:

x̃1 = θ − θdes, where θdes is the desired position (4.38a)

x̃2 = β1θ̇ (4.38b)

⇒ ˙̃x1 = θ̇ = α1x̃2 (4.38c)

⇒ ˙̃x2 = β1θ̈ = u− β2

β1
x̃2 − β3sgn(x̃2) (4.38d)

= u− α2x̃2 − α3sgn(x̃2) (4.38e)

By choosing a similar Lyapunov function candidate as given in equation (4.35), where X is

replaced by X̃ a similar adaptive law is obtained, which is given by

˙̂α1 = γx̃1x̃2, ˙̂α3 = −γx̃2sgn(x̃2) and α̂1(0) 6= 0, α̂3(0) 6= 0 (4.39)

The modified Simulink model is shown in Figure 4.15. Figure 4.16 shows a representative
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Figure 4.15: Simulink Block Diagram: Position Regulation

sample of simulation results for position regulation with zero initial conditions.

The adaptive friction compensation is the inner loop for the controller which compensates

for the uncertain nonlinearities, while the outer loop is involved in compensating for the re-
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sulting linear system. Figure 4.18 shows a strategy for implementing model reference adaptive

controller along with adaptive friction compensation for web guides. This controller is capable

of compensating both uncertain parameters of the plant as well as the uncertain nonlinearities

due to friction.

Control Law
+ _

r Servo 

Mechanism

Adaptive Friction

Compensation

/s
+

+
Cm

Web

Dynamics

Reference Model

Adaptive Law

θθ
.

Z e

Ym

Yp

Up

Figure 4.18: Model Reference Adaptive Control with Adaptive Friction Compensation

4.4 Adaptive Friction Compensation with Web Dynamics

The adaptive friction compensation scheme developed in the previous section requires the an-

gular position measurement. Even though an actuator with a position encoder is available, it

is currently not possible to include the actuator in the experimental platform. In this section

an adaptive friction compensation scheme which does not require the motor angular position

feedback is presented. In contrast to the friction compensation technique in the previous sec-

tion, the controller in this section has only one loop. The adaptive controller presented in this

section compensates for both the friction coefficient uncertainty and the web dynamics uncer-

tainty simultaneously.

The simplified web dynamics with the actuator dynamics is given by

yL

up
=

kmCmβ1

s(s+ a)β0
(4.40)

Let yplat be the position of the platform or the guide, θL be the angular position of the motor
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and Cm the transmission ratio. The system can be divided into the following:

• Motor Dynamics

θL

up
=

km

s(s+ a)

• Transmission Ratio

yplat

θL
= Cm

• Web Dynamics

yL

yplat
=
β1

β0
= β =

1

α

Friction does not affect the web dynamics and hence one can include the friction force in the

following dynamics.

yplat

up
=

kmCm

s(s+ a)

Re-writing

ÿplat + aẏplat + F = kmCmup (4.41)

αÿL + aαẏplat + F = kmCmup (4.42)

Equation (4.42) can be represented in the state variable form as follows:

x1 = yL, ẋ1 = ẏL =
x2

α
(4.43a)

x2 = αẏL = ẏplat, ẋ2 = αÿL = kmCmup − F − aαẏL (4.43b)

= Kup − F − ax2 K = kmCm (4.43c)

= Kup − [Fvx2 + Fcsgn(x2)] − ax2 (4.43d)






ẋ1

ẋ2




 =






0 1/α

0 −(a+ Fv)











x1

x2




+






0

K




up −






0

Fcsgn(x2)




 (4.44)

If all the constants are known, then we can choose up =
1

K
[−α1x1 − α2x2 + Fcsgn(x2)] which

results in the following closed loop system.






ẋ1

ẋ2




 =






0 1/α

−α1 −(α2 + a+ Fv)











x1

x2




 (4.45)

The constants α1, α2 can be chosen such that the desired closed-loop pole location is met. Let us

consider that the constants α, a, Fv and Fc as unknown and setup the adaptive control problem
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as an estimation problem. Notice that in order to cancel the signum term, it is necessary that

we assume K = kmCm is known. This is a valid assumption since it is possible to know

the motor parameters while it is difficult to know the parameters in the web dynamics. If

u =
1

K

[

−α1x1 − α2x2 + F̂csgn(x2)
]

then the closed-loop system is






ẋ1

ẋ2




 =






0 1/α

−α1 −(α2 + a+ Fv)











x1

x2




+






0

F̂csgn(x2) − Fcsgn(x2)




 (4.46)

ẋ1 =
1

α
x1 (4.47a)

ẋ2 = −α1x1 − (α2 + a+ Fv)x2 + F̃csgn(x2) (4.47b)

where F̃c , F̂c−Fc. Notice that the closed-loop system has one equilibrium that is x1 = x2 = 0.

Let us setup a Lyapunov function candidate and find an adaptive law that would make the

system asymptotically stable. Consider the following Lyapunov function candidate

V (X,Θ) =
1

2
X⊤X +

1

2γ
Θ̃⊤Θ̃, Θ̃ , F̂c − Fc (4.48)

Then,

V̇ = Ẋ⊤X +
1

γ
Θ̇⊤Θ

=
1

α
x1x2 − α1x1x2 − (α2 + a+ Fv)x2

2 + F̃csgn(x2)x2 +
1

γ
˙̃Θ⊤Θ̃

=
1

α
x1x2 − α1x1x2 − (α2 + a+ Fv)x2

2 + F̃csgn(x2)x2 +
1

γ
˙̂
F⊤

c Θ̃

=
1

α
x1x2 − α1x1x2 − (α2 + a+ Fv)x2

2 +

[

sgn(x2)x2 +
1

γ
˙̂
Fc

]

Θ̃

If
˙̂
Fc = −γx2sgn(x2) then

V̇ = −(α2 + a+ Fv)x
2
2 − (α1 −

1

α
)x1x2

If we know α we can set 1
α = α1 so that

V̇ = −(α2 + a+ Fv)x2
2 ≤ 0

We can prove that the equilibrium (the system) is asymptotically stable by considering the

invariant set Ω = {x1, x2|x2 = 0}. When x2 = 0 and x1 6= 0, the solution does not stay inside
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the invariant set and will always move towards the equilibrium, as long as α1 > 0. But since

we do not know α we shall setup a different Lyapunov function candidate by modifying the

system.

Θ =






β

Fc




 , Θ̂ =






β̂

F̂c




 , Θ̃ =






β̃

F̃c




 ,

˙̃Θ =






˙̂
β

˙̂
Fc




 , β ,

1

α

The open-loop system can then be represented as






ẋ1

ẋ2




 =






0 β

0 −(a+ Fv)











x1

x2




+






0

K




up −






0

Fcsgn(x2)




 (4.50)

Let the desired control input be u =
1

K
[−βx1 − α2x2 + Fcsgn(x2)] and since we do not know

β and Fc let us use their estimates in the control law u =
1

K

[

−β̂x1 − α2x2 + F̂csgn(x2)
]

, then

the closed-loop system is given by






ẋ1

ẋ2




 =






0 β

−β̂ −(α2 + a+ Fv)











x1

x2




+






0

F̂csgn(x2) − Fcsgn(x2)




 (4.51)

Let the Lyapunov function candidate be

V (X,Θ) =
1

2
X⊤X +

1

2
Θ̃⊤Γ−1Θ̃, Γ = diag(γ1, γ2) > 0 (4.52)

Then

V̇ = Ẋ⊤X + ˜̇Θ⊤Γ−1Θ̃

= βx1x2 − β̂x1x2 − (α2 + a+ Fv)x2
2 + F̃cx2sgn(x2) +

[
˙̂
β,

˙̂
Fc

]

Γ−1Θ̃

= −(α2 + a+ Fv)x2
2 + [−x1x2, x2sgn(x2)] Θ̃ +

[
˙̂
β,

˙̂
Fc

]

Γ−1Θ̃

= −(α2 + a+ Fv)x2
2 +

[
1

γ1

˙̂
β − x1x2,

1

γ2

˙̂
Fc + x2sgn(x2)

]

Θ̃

If we set
˙̂
β = γ1x1x2 and

˙̂
Fc = −γ2x2sgn(x2), then

V̇ = −(α2 + a+ Fv)x2
2 ≤ 0 (4.54)

Hence the equilibrium (the system) is asymptotically stable in the large as long as β̂ 6= 0. One

can obtain a similar transformation of the equilibrium as in the previous section (page 83) so

that regulation to a non-zero point can be achieved.
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Analysis

If Θ̃ = 0, then the system reduces to






ẋ1

ẋ2




 =






0 β

−β − (α2 + a+ Fv)
︸ ︷︷ ︸











x1

x2




 =






0 β

−β −ζ











x1

x2






whose eigenvalues are

e1,2 = −1

2
β1 ±

1

2

√

ζ2 − 4β2

Hence the closed-loop system is exponentially stable since ζ = α2 + a + Fv > 0. The constant

α2 is a design parameter which we can be choose. Convergence of the estimated parameters is

possible only if the input is sufficiently rich.

Theoretically the system is asymptotically stable in the large, but while implementing in

Simulink or on an experimental web platform, the system may not behave as expected. Let us

look at the adaptive law.

˙̂
β = γ1x1x2,

˙̂
Fc = −γ2x2sgn(x2) = −γ|x2|

Hence as long as x2 is non-zero, the adaptive law for F̂c will always reduce the value of F̂c,

which might not be suitable unless a theoretical bound is set on the parameter.

4.5 Adaptive Friction Compensation using RLS Algorithm

This section details the procedure for indirect friction compensation using recursive least squares

(RLS) algorithm. The friction parameters are identified on-line using the RLS algorithm and

the friction is compensated by feedback linearization. The friction compensation can be imple-

mented as an inner loop as shown in Figure 4.18.

Recursive least squares is one of the simplest algorithm for parameter estimation and is

based on one of the oldest algorithms for estimation of parameters (developed by Gauss in late

18th century). Notice that for static friction compensation the unknown friction parameters

appear in a linear form

Jθ̈ = T − Fcsgn(θ̇) − Fv θ̇ (4.55)

and hence the minimum can be reached in a single step. We can used the same Least Square

Estimation algorithm as described in section 4.2.2.2 on page 71 but in a recursive form. Chapter

13 in [30] presents a detailed description of the RLS algorithm along with modified forms of
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the algorithm and also the convergence and initialization issues. In [31] an adaptive friction

compensation for DC-motor drives was presented along with experimental results. The same

algorithm can be utilized for friction compensation in web guides. Another application of the

RLS algorithm along with experimental results is presented in [32].

Applying a low pass filter F (s) =
1

τs+ 1
to the system in equation (4.55) we obtain the

following linear parametrized equation.

y = ϕ⊤φ

where,

y , F (s)T, φ =









J

Fv

Fc









, ϕ =









sF (s){ ˙̃
θ}

F (s){ ˙̃
θ}

F (s){sgn(
˙̃
θ)}









and ˙̃
θ = F1(s)θ̇, F1(s) =

1

τ1s+ 1

(4.56)

˙̃
θ is a filtered version of θ̇ and the low pass filter F1(s) is designed such that the measurement

noise is filtered. Let us define the error equation as

ǫ = y − ϕ⊤φ̂

The objective of the RLS algorithm is to minimize the sum of the squared error. The analytical

solution for the problem in non-recursive form is given by

ˆ̇
φ = (Φ⊤Φ)−1Φ⊤Y

when Φ⊤Φ is invertible.

Φ[t] =












ϕ⊤[1]

ϕ⊤[2]

...

ϕ⊤[t]












, Y [t] =












y[1]

y[2]

...

y[n]












In the recursive form the parameter vector φ̂ is obtained as [17]

φ̂(t) = φ̂(t− 1) +K(t)
[

y(t) − ϕ⊤(t)φ̂(t− 1)
]

K(t) = P (t− 1)ϕ(t)
[
I + ϕ⊤P (t− 1)ϕ(t)

]−1

P (t) =
[
I −K(t)ϕ⊤(t)

]
P (t− 1)

t− sample number
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The algorithm can be initialized as [30]

P (0) = δ−1I, δ = small positive constant

φ̂(0) = 0

The initialization procedure is referred to as soft-constrained initialization. Based on the practical

experience with the RLS algorithm, it is recommended that δ is chosen such that it is smaller

than 0.01σ2
ϕ, where σ2

ϕ is the variance of ϕ [30]. For large lengths, the exact value of the ini-

tialization constant δ does not have any significant effect on the convergence of the parameters

[30]. Refer to lesson 4 in [33] for more information on how and why the algorithm is initialized

as above and some useful comments about different forms of RLS algorithms.

4.5.1 Implementation

• Initialize P (0) = δ−1I3x3 and φ(0) = [0 0 0]⊤.

• Repeat the following indefinitely

– Compute the correction vector, K(t)3x1 = P (t− 1)3x3ϕ
⊤
3x1

(
1

1 + ϕ⊤(t)P (t− 1)ϕ(t)

)

– Update the estimates as φ̂(t) = φ̂(t − 1) + K(t)
[

y(t) − ϕ⊤(t)φ̂(t− 1)
]

based on the

error between the actual and the predicted output.

– Update the covariance matrix P (t) =
[
I3x3 −K(t)ϕ⊤(t)

]
P (t− 1)

• At each sampling time we obtain the estimates Ĵ , F̂c and F̂v. Using these estimates com-

pute the fiction force F̂ = F̂v
˙̃
θ + F̂csgn(

˙̃
θ) and add it to the control input.

4.5.2 Experimental Results

Friction compensation using the recursive least squares algorithm computes the additional con-

trol effort needed to compensate for friction. The RLS implementation can be used along with

any existing web guiding algorithm. Experiments were conducted to observe the performance

of the adaptive controllers with friction compensation using the RLS algorithm. Figures 4.19

to 4.21 show a representative sample of experiments with the transparent web. The top plots

show the performance of the adaptive controller without fiction compensation and the bottom

plots shows the performance of the adaptive controller with friction compensation. The plots

on the left shows the time history of the lateral position while the plots on the right show the
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4.5. ADAPTIVE FRICTION COMPENSATION USING RLS ALGORITHM

histogram of error. Experimental results show that the adaptive controller with friction com-

pensation exhibits a slightly better performance in all the three cases.
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Figure 4.19: Performance Comparision: 3-Parameter, with and without Friction Compensation
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Figure 4.20: Performance Comparision: 4-Parameter, with and without Friction Compensation
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Figure 4.21: Performance Comparision: 8-Parameter, with and without Friction Compensation
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Chapter 5

Histogram : A New Performance Metric for

Web Guiding

In web guiding, lateral regulation error as a function of time is predominantly used to evaluate

the performance of the lateral control system. In this chapter a new visual performance metric

for guiding application is introduced. Several properties of the performance metric helps us to

clearly understand the performance of the lateral control system.

Plots comparing the regulation error for two controllers are shown in Figures 5.1 and 5.2.

From the plots in Figure 5.1 one can easily distinguish the guiding performance of the two data

sets. Whereas, from the plots in Figure 5.2, a visual inspection does not help in comparing

the guiding performance. Although the regulation error gives a visual quantitative indication

of web guiding performance for some situations, it is not clear how well a web position is

regulated in many cases.

Another performance measure one could consider is the simultaneous comparison of the

regulation error and the control effort supplied to the actuator. When the regulation error ap-

pears the same, as in Figure 5.2, one can compare the control effort to choose a better controller.

This performance measure is suitable for guiding control system manufacturers to compare

different control structures and control algorithms. We are interested in a performance metric

which could be used by the operator to tune the gains of a controller. In most industrial lines

the operator cannot change the control algorithm or the controller structure; only the gains of

the controller can be tuned.

An alternate performance measure is the two norm of the error. This serves as an accurate

measure if the error signal is not noisy. If the error signal is noisy, then the two norm of the error

is not a clear indicator of lateral performance. For example, the unexpected peaks observed in
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Figure 5.1: Performance Comparison Based on Regulation Error: Clear Distinction

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

V
ol

ts

Performance of PI at 600 fpm for pulse disturbance

0 5 10 15 20 25 30
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4

Time (Seconds)

V
ol

ts

Performance of MRAC at 600 fpm for pulse disturbance

Error

Error

Figure 5.2: Performance Comparison Based on Regulation Error: Difficult to Compare
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Figure 5.1 are mainly due to noisy measurements and not due to the guiding performance. In

this case taking two norm of error would result in inaccurate performance comparison. One

measure that is expected to clearly indicate the guiding performance uses histograms. This

method provides several important characteristics of the guiding performance and is discussed

in detail in the next section.

5.1 Histograms

A better way of measuring performance based on the error distribution is by using the his-

tograms. The purpose of a histogram is to visually encapsulate the distribution of a data set.

The following characteristics can be observed from a histogram:

• center of the data;

• spread of the data;

• skewness of the data;

• presence of multiple modes in the data; and

• presence of outliers.

A histogram of error is a frequency distribution of error. A histogram is divided into ’n’

equally spaced bins of error; frequency of occurrence of error within each bin is plotted as a

function of error range. Figures 5.3 and 5.4 show the histogram for experimental data shown

in Figures 5.1 and 5.2, respectively. The horizontal axis shows the error and the vertical axis

shows the frequency of occurrence of error. In this section we concentrate on studying various

types of histograms and their importance in web guiding applications.

5.1.1 Normally Distributed Histograms

Figure 5.5 shows a normally distributed histogram. This is the most common shape of the

histogram observed in engineering practice and in nature. The key characteristics of this dis-

tribution is the bell-shaped curve which is symmetric about the center. The axis of symmetry

is usually the mean of the distribution and the frequency of occurrence gradually decreases

towards the tail1 of the distribution.

1The extreme regions of a distribution are commonly referred to as the tail of the distribution.
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Figure 5.3: Performance Comparison using Histograms:
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Figure 5.4: Performance Comparison using Histograms:
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Figure 5.5: Normally distributed Histogram, with Zero Mean

A normal distribution can be completely characterized by the mean and variance of the data

set. The function that describes the normal distribution is given by

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

where f(x) represents the frequency of occurrence of the value x, µ is the mean, σ2 is the

variance and σ is the standard variation.

Mean of the Normal Distribution

Mean of a normal distribution represents the center or the axis of symmetry for the distribution.

In Figure 5.6 the approximate normal error distribution for two data set are plotted. The data

set represented by dashed line is symmetric about zero indicating zero mean. For web guiding

application, if the histogram is symmetric/centered about zero, then the system exhibits no

steady state regulation error.

Spread of Normal Distribution

The spread of the normal distribution is due to the variance of the error. If the variance is

large, then the normal distribution is broader at the base and shorter in height, while a low

variance results in thinner distribution at the base. Figure 5.7 shows two data sets with different
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Figure 5.6: Mean of a Normal Distribution

variances.

Height of a Normal Distribution

The height of a normal distribution is the frequency of occurrence of the mean value. For

guiding applications, it is desired to have the maximum height around zero. This implies that

the frequency of error occurrence about mean is high, i.e., good guiding performance. Figure

5.7 shows two data sets with different heights.

Ideally one would like to see an impulse for the error distribution. But getting an impulse

in practice is not possible. In fact the best possible distribution one could observe from any

data set is a normal distribution.

A normally distributed histogram of error in web guiding indicates normal operation. This

kind of distribution shows that there are no abnormalities in guiding. The regulation error can

be considered as a random variable. Since the overall guiding process can be considered as a sta-

tionary process, a normally distributed error with zero mean indicates that the regulation error

is white. Therefore, the regulation error is unpredictable and hence the guiding performance

achieved does not exhibit any abnormalities. If the error is predictable, then the controller can

be tuned to compensate for the predictable error to achieve better performance.
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Figure 5.7: Variance of a Normal Distribution
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Figure 5.8: Experimental Data: Bottom Plot Shows Normal Distribution

100



5.1. HISTOGRAMS

5.1.2 Symmetric, Non-Normal, Short-Tailed Histograms

A short-tailed distribution is characterized by the tail which approaches zero quickly as shown

in Figure 5.9. A classical short tailed distribution is a uniform distribution which has very short

tails or in fact no tails.
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Figure 5.9: Short-Tailed Histogram Characteristic with “Fat” Body

A short-tailed histogram in web guiding indicates that the error is bounded between a small

region in which it is uniformly distributed. The histogram shown in Figure 5.9 has the center

located at around 0.2 which indicates steady state error of 0.2. Almost 90% of the error is

distributed between 0.1 and 0.5. For applications where the error tolerance is known, a shorted

tailed error distribution within the tolerance limit would result in satisfactory performance. A

distribution with lean body and short tail would indicate an ideal guiding performance.

Unbiased and accurate estimation of center of a distribution is influenced by the length

of the tails of the distribution. The center of the distribution obtained using sampled mean

is generally misleading for short-tailed and long-tailed distributions. For example, a uniform

distribution which varies between ±0.1 will have its center at zero. This does not indicate

that the error is zero predominantly. On the contrary, the error is equally likely to lie between

0.1 and −0.1. Observe the top plot in Figure 5.10 and assume that the mean is zero. Clearly

this does not indicate good guiding performance compared to bottom plot. The histogram in

the bottom plot clearly indicates that the error is predominantly zero. Also the frequency of
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Figure 5.10: Experimental Data: Top Plot Indicates Short-Tailed Distribution

occurrence of the error rapidly decreases as we move away from zero; which is not the case

with the histogram in the top plot.

5.1.3 Symmetric, Non-Normal, Long-Tailed Histograms

For a long-tailed distribution, the tails decline to zero very slowly as shown in Figure 5.11 and

bottom plot of Figure 5.12. In this distribution the error is close to zero. The presence of a

long-tail indicates that occasionally the error is large.

A symmetric long-tailed error distribution indicates poor guiding performance if the tail

extends beyond the tolerance limits. In applications where the error cannot go beyond a certain

value, a sampled data with long-tail would indicate how far the tail has to be reduced to achieve

the required performance. Hence based on the tail length, the controller gains may be tuned to

achieve the required performance. If the tail does not extend beyond the error tolerance limits,

then the controller provides the required guiding performance.
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Figure 5.11: Long-Tailed Histogram Characterized by “Lean” Body and Long Tails
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Figure 5.12: Experimental Data: Bottom Plot Shows Long-Tailed Distribution
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5.1.4 Symmetric Bimodal histogram

The mode of a distribution is the value with high frequency of occurrence. Unimodal distri-

butions are those with single mode around which the distribution is cluttered and gradually

spreads out towards the tails. A normal distribution is a classical example of a unimodal distri-

bution. Bimodal distributions have two modes around which the data is distributed as shown

in Figure 5.13. An experimentally observed data is shown in Figure 5.14.

A bimodal error distribution is not an ideal distribution for web guiding applications. A

bimodal distribution is usually seen in the presence of a periodic disturbance. This could mean

that one or a few rollers upstream is severely misaligned or a periodic disturbance is being

generated by some other process abnormalities.

The common statistical measures such as the mean (center of distribution) and variance

(spread of the distribution) do not really indicate the true behavior of the guiding control sys-

tem. For example, the top plot in Figure 5.14 shows the experimental data set with a bimodal

error distribution. The mean for the data set is 0.02 and the variance is about 0.004. With just

the mean and the variance statistics, it would not have been possible to deduce the presence

of a periodic disturbance. Clearly, the use of histograms gives more information and captures

several important characteristics of the web guiding control system.

−1.5 −1 −0.5 0 0.5 1 1.5
0

100

200

300

400

500

600

Error

F
re

q
u

en
cy

Histogram

Figure 5.13: Symmetric Bimodal Distribution
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Figure 5.14: Experimental Data: Top Plot Indicates Bimodal Distribution

5.1.5 Skewed Non-Normal histogram

Until now all the histograms were symmetric about an axis. A skewed distribution is a distri-

bution with no symmetry. Skewed histograms are characterized by a single tail, either to the

left or to the right and are called “skewed left” and “skewed right” correspondingly.

For a skewed distribution obtaining a measure of location2 becomes difficult. None of the

measures like mean, median and mode can describe the characteristics of the distribution well.

An example of a skewed distribution is shown in Figure 5.15.

Skewed distributions often occur when there is a lower bound and an upper bound on the

data. A typical case in web guiding would be the case of sensor saturation. Based on the

direction of the skew one can determine if the sensor gets saturated due to complete closure of

the sensing window or if the web is completely away from the sensor window. The top plot in

Figure 5.16 shows experimental data with sensor saturation. The flat surface observed is due

to the saturation of the sensor. The bottom plot shows the corresponding histogram.

2Measure of location is a single representative value for a distribution [34]. Examples include mean, median, mode,

etc.
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Figure 5.15: A Right Skewed Histogram
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Figure 5.16: Experimental Data: Skewed Histogram
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5.1.6 Symmetric Histogram with Outliers

Outliers are data points that appear from a distribution different (in location, scale, or distribu-

tion form) from the bulk of the data. A histogram with outliers is shown in Figure 5.17, Figure

5.18 shows the experimentally observed data.

Possible cause for outliers in web guiding applications are

• operator errors,

• web edge discontinuity,

• dust particles in a region of a transparent web,

• or a disturbance similar to a pulse disturbance, etc.

When histograms with outliers are observed in web guiding application, it is important to

investigate the cause for their occurrence. The common practise of neglecting outliers, which

are located at values greater than 4σ (σ is the standard deviation), should be avoided. The

occurrence of outliers may indicate some machine or web induced abnormalities. The very

fact that one can observe outliers indicates that the abnormality has occurred a considerable

number of times. Therefore, the reason for their occurrence should be investigated. An exper-

imental data with the presence of outliers is shown in Figure 5.18. The outliers are observed

to the far left of the histograms. This indicates that a large error with a negative magnitude is

observed quite frequently. Outliers in web guiding application may be observed when pulse

disturbances are encountered.

5.1.7 Ideal Error Distribution

The ideal error distribution for guiding applications should be unimodal, with zero value for

all measures such as mean, median and mode. The distribution should be normally distributed

with a lean body. The variance of the distribution should be within the guiding tolerances. Such

a distribution that is observed experimentally is shown in the bottom plot of Figure 5.19. A

unimodal distribution indicates the absence of periodic disturbances while a lean distribution

indicates good guiding performance.

In this chapter we have seen that histograms are useful in characterizing the guiding per-

formance. In an event that visual displays are not available for operators, a possible alternative

performance metric to histograms is presented in the following. This performance metric does
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Figure 5.17: A Histogram with Outliers

−1.5 −1 −0.5 0 0.5
0

50

100

150

Mean = 0.015171

Variance = 0.041734

Histogram over the error distribution for PI

−1.5 −1 −0.5 0 0.5
0

50

100

150

Mean = 0.00050909

Variance = 0.042334

Histogram over the error distribution for MRAC

Error range

Figure 5.18: Experimental Data: Presence of Outliers
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Figure 5.19: Experimental Data: The Ideal Distribution for Guiding Applications

not characterize the error distribution completely but can be used when no visual display is

available.

A single measure of location is not capable of describing the characteristics of an error distri-

bution completely. Hence a combination of these measures can be used to describe the guiding

performance. From the observations with the type of histograms, we can deduce a few good

performance characteristics based on the measures of location.

• Mean is desired to be close to zero.

• Median of the distribution is desired to be the mean of the distribution.

• Error distribution should be unimodal with mode value at zero.

The ideal statistical performance measure should be a combination of mean, median, mode,

standard deviation and variance. All the common measures can be calculated using standard

statistical tools and does not require any graphical visual unit for display. A good tracking

performance would be a unimodal distribution with values for mean, median, mode all equal

to zero. Also, the standard deviation has to be close to zero.
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Chapter 6

Summary and Future Work

Maintaining the lateral position of the web on rollers is an important aspect of any web han-

dling system. Inability to maintain the lateral position results in loss of productivity and poor

quality of the finished products. In this thesis adaptive control strategies that can provide the

specified lateral position regulation performance in the presence of process variations and un-

certainty in web material properties were developed.

The lateral behavior of the web on rollers is affected by various process parameters such as

transport velocity, web tension and material properties such as opacity and modulus. Indus-

trial guiding control systems neglect the web lateral dynamics to simplify the controller design.

While the control strategies developed in the literature assume that the process parameters are

known and remain fixed. The adaptive control strategies developed in this thesis do not ne-

glect the lateral web dynamics and do not assume the knowledge of the process parameters.

Adaptive control strategies that are capable of adapting to variations in the process parameters

were proposed in this work. A chapter by chapter summary of the thesis is given below.

In Chapter 2, design and formulation of a model reference adaptive controller suitable for

web guiding were addressed. The chapter starts off with a basic introduction to adaptive con-

trol. Since the structure of the lateral dynamics of the web is well understood, a model reference

adaptive control strategy was developed. The structure and complexity of the model reference

adaptive control system depends on the structure and complexity of the lateral dynamics of the

web. Two adaptive control strategies were developed by assuming a reduced order model for

the lateral web dynamics. Another model reference adaptive controller was developed based

on the complete model for the web dynamics. In all the three adaptive controller designs, the

process parameters that affect the lateral dynamics of the web were considered to be unknown;

the parameters of the actuator dynamics were also considered to be unknown. Computer sim-
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ulations were conducted to evaluate the performance of the adaptive controllers. The results

of the simulations indicated that the adaptive control strategies provide good guiding perfor-

mance in the presence of disturbances and process variations.

In Chapter 3, the experimental results of the developed adaptive control strategies were

presented and discussed. Experiments were conducted on an experimental web handling plat-

form containing two intermediate web guides. Two different web materials of distinct physical

characteristics were transported under different operating conditions on the experimental web

handling platform. Several common disturbances observed in an industrial processing line

were created. The effectiveness of the developed control strategies were evaluated with sinu-

soidal, step, and pulse disturbances and a number of process variations such as changes in

web opacity, web tension, and transport velocity. All three adaptive controllers were able to

cope with the process variations and provided good guiding performance in the presence of

disturbances. The performance of the adaptive controllers were compared with an industrial

PI controller.

One of the significant performance characteristic of the adaptive controller was its ability

to cope with sensor gain variations. Industrial controllers fail to provide good guiding perfor-

mance when the sensor gain changes. Experimental results clearly indicate that the adaptive

controllers are able to provide good guiding performance with sensor gain variations.

A systematic procedure for choosing various design parameters in the adaptive control

schemes were provided in Chapter 3. From the experimental observations of the simplified

adaptive controllers, some key characteristics of the adaptive controllers for web guiding ap-

plications were noted. Based on these observations guidelines for practical implementation

were presented.

In Chapter 4, adaptive fiction compensation strategies suitable for web guiding application

were proposed. Experiments were carried out to identify static friction coefficients of a guide

mechanism. An adaptive friction compensation strategy was proposed to compensate for fric-

tion in web guides. This compensation technique can be used as an inner loop of a control

strategy used for lateral guiding. Another adaptive control strategy which considers the co-

efficients of friction and the parameters of web dynamics to be unknown was proposed. The

controller was shown to be globally asymptotically stable. But such a controller design needs

prior information about the friction parameters in order to implement it practically. Finally, a

recursive least square (RLS) algorithm for static friction compensation was presented. The RLS

111



algorithm can be used as an inner loop of an existing lateral guiding strategy. The proposed

RLS algorithm was implemented as an inner loop for the adaptive control schemes presented

in Chapter 2. Experimental results indicate that the friction compensation based on RLS algo-

rithm is capable of providing improved performance.

In Chapter 5, a new performance metric for web guiding applications was proposed. Com-

mon performance metrics such as the two norm of the regulation error, visual plots of regula-

tion error as a function of time, etc., do not completely describe the performance characteristics

of the guide control system. A new performance metric based on histograms which can clearly

indicate the guide performance was discussed. Several different types of histograms and their

significance in identifying lateral performance characteristics were discussed.

The adaptive strategies proposed in this thesis exhibit good guiding performance in the

presence of process variations and disturbances. Several improvements to the adaptive control

algorithm can be made to enhance its robustness. Projection of estimated parameters based on

parameter bounds is one way of improving the robustness of the adaptive controller which has

to be investigated in the future.

The control algorithms in this thesis were developed for intermediate guides. This algo-

rithm can be extended to unwind and rewind guides. Future work should also focus on imple-

menting adaptive control strategies for unwind and rewind guiding.

In some industrial applications the edge sensor is positioned one span downstream of the

guide roller. The transfer function from the lateral displacement of the web at the guide to

the lateral displacement at the subsequent roller (free span lateral dynamics) is non-minimum

phase. Therefore, placement of the edge sensor one or more spans downstream of the guide

roller would require consideration of the additional dynamics in the analysis. Future work

should investigate the effects of placement of the sensor in spans downstream of the guide

roller. To improve robustness of the guiding control system feedforward control should also be

investigated.

Friction compensation based on RLS algorithm has shown improvements in guiding perfor-

mance. Additional theoretical work has to be conducted in order to investigate the possibility

of simultaneous compensation of unknown parameters in the web lateral dynamics and fric-

tion models.
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APPENDIX A

Offset Adaptation

For an infrared sensor, the opacity variation in web material affects the sensor output. Experi-

mental results in chapter 3 indicate that the developed adaptive controller is able to cope with

the sensor gain variation. Apart from the sensor gain variation, whenever the web opacity

changes guide-point also changes. In this section we present an automatic reference detection

(guide-point detection) algorithm called offset adaptation which can determine the appropriate

reference position based on the opacity of the web material.

The infrared sensor provides a larger sensing window when compared to the ultrasonic sen-

sor. In some applications, because of larger web edge errors, infrared sensors are desired. An

ideal infrared sensor gives full scale voltage when it is completely uncovered and zero voltage

when completely covered by an ideal opaque material. Therefore, the lower limit of the output

voltage increases based on the web material used and its opacity. One does not have knowl-

edge of this lower limit of the sensor output when different web materials are used. Figure A.1

shows the output voltage as a function of sensor window width for a typical infrared sensor of

0.7 in physical sensing window width. The abscissa represents the width of blocked portion of

sensor window the ordinate represents the output voltage. A completely opaque web would

have the voltage range between 0 to 6 volts (full scale reading) while a semi-transparent web

has a lesser voltage range, for example, in the range of 5 − 6 volts as shown.

As seen from the Figure A.1, if the opacity of the material changes, then the guide point also

changes, i.e., it is offset. Hence, it becomes important to know this offset value for each web

material used. At present, one simple solution is suggested that can ascertain the offset value

using adaptation. The following is the procedure for implementing offset adaptation.

• Run MRAC and set the reference to 97% of the full scale sensor reading.

• As soon as the web edge reaches the reference, reduce the reference by a small step size
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Figure A.1: Output voltage range and typical curves for opaque and transparent webs

(step size was considered as 0.1 volt and can be varied based on the full scale reading of

the sensor and the application).

• Repeat the above step until the sensor output saturates.

• The output of the edge sensor gives the current position of the web when the web com-

pletely covers the sensor window.

• The new reference is set by taking the average of current web position and the full scale

sensor reading.

• Stop offset adaptation and start the regular adaptation with the new reference.

Figures A.2, and A.3 show the offset adaptation when implemented with the opaque web

and the transparent web. For both the experiments on offset adaptation, the web is kept sta-

tionary.

118



0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6
Offset adaptation for black web

V
ol

ts

Time (sec)

Edge Position
Reference

Figure A.2: Offset adaptation on the opaque web

0 5 10 15 20 25 30
5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9
Offset adaptation for transparent web

V
ol

ts

Time (sec)

Edge Position
Reference

Figure A.3: Offset adaptation on the transparent web
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APPENDIX B

Mathematical Preliminaries

Definitions, theorems, lemmas, and some important results which are helpful in understanding

the design and analysis of the adaptive control developed in this thesis, is presented in this

chapter. Proofs for the theorems are not within the scope of this work and hence they are

omitted. The mathematical preliminaries in this chapter are from [18], [35], and [36].

B.1 Continuous Functions and their Limits

Definition B.1 (norm) The norm |x| of a vector x is a real valued function with the following:

• |x| ≥ 0 with |x| = 0 if and only if x = 0

• |αx| = |α||x| for any scalar α

• |x+ y| ≤ |x| + |y|

Definition B.2 (Lp norm) For functions of time, Lp norm can be defined as

||x||p ,

(∫ ∞

0

|x(τ)|pdτ
)1/p

for p ∈ [0,∞) and say that x ∈ Lp when ||x||p exists (i.e., x is locally integrable and ||x||p <∞)

Definition B.3 (L∞ norm) L∞ norm can be defined as

||x||∞ , sup
t≥0

|x(t)|

and say that x ∈ L∞ when ||x||∞ exists (i.e., ||x||∞ is finite.)

Definition B.4 (Continuity) A function f : [0,∞) 7−→ R is continuous on [0,∞) if for any given

ǫ0 > 0 ∃ a δ(ǫ0, t0) such that ∀ t0, t ∈ [0,∞) for which |t− t0| < δ(ǫ0, t0) we have |f(t)− f(t0)| < ǫ0.
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B.2. INPUT-OUTPUT STABILITY

Definition B.5 (Uniform Continuity) A function f : [0,∞) 7−→ R is uniformly continuous on

[0,∞) if for any given ǫ0 > 0 ∃ a δ(ǫ0) such that ∀ t0, t ∈ [0,∞) for which |t − t0| < δ(ǫ0) we have

|f(t) − f(t0)| < ǫ0.

Remark B.1 A function f with ḟ ∈ L∞ is uniformly continuous on [0,∞).

Fact 1 limt→∞ ḟ(t) = 0 does not imply that f(t) has a limit as t→ ∞.

Fact 2 limt→∞ f(t) = c for some constant c ∈ R does not imply that ḟ(t) → 0 as t→ ∞.

Lemma B.1 The following is true for scalar-valued functions:

• A function f(t) that is bounded from below and is nonincreasing has a limit as t→ ∞.

• Consider the nonnegative scalar functions f(t), g(t) defined for all t ≥ 0. If f(t) ≤ g(t)∀ t ≥ 0

and g ∈ Lp, then f ∈ Lp ∀p ∈ [1,∞]

Lemma B.2 If f, ḟ ∈ L∞ and f ∈ Lp for some p ∈ [1,∞], then f(t) → 0 as t→ ∞.

Lemma B.3 (Barbălat’s Lemma) If limt→∞

∫ t

0
f(τ)dτ exists and is finite, and f(t) is uniformly con-

tinuous function, the limt→∞ f(t) = 0.

B.2 Input-Output Stability

Consider an LTI system described by the convolution of two functions u, h : R+ → R defined

as

y(t) = u ∗ h ,

∫ t

0

h(t− τ)u(τ)dτ =

∫ t

0

u(t− τ)h(τ)dτ (B.1)

where u, y is the input and output of the system. Let H(s) be a Laplace transform of the h(.).

H(s) is called the transfer function and h(t) is called the impulse response of the system.

Let D ne an open interval in the real line R and let f(.) be a function defined on D.

Definition B.6 (Analytic) A function of a real variable, f(.), is said to be analytic on D if f ∈ C∞

and if ∀ t0 ∈ D ∃ a positive real number ǫ0 such that, ∀ t ∈ (t0 − ǫ0, t0 + ǫ0), f(t) is representable by a

Taylor series expansion about the point t0:

f(t) =

∞∑

n=0

(t− t0)
n

n!
f (n)(t0)
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B.3. LYAPUNOV STABILITY

Theorem B.1 Let H(s) be a strictly proper1 rational transfer function of s. Then H(s) is analytic in

Re[s] ≥ 0 if and only if h ∈ L1

Corollary B.1 If h ∈ L1, then

• h decays exponentially, i.e., |h(t)| ≤ α1e
−α0t for some α0, α1 > 0

• u ∈ L1 ⇒ y ∈ L1 ∩ L∞, ẏ ∈ L1, y is continuous and limt→∞ |y(t)| = 0

• u ∈ L2 ⇒ y ∈ L2 ∩ L∞, ẏ ∈ L2, y is continuous and limt→∞ |y(t)| = 0

• For p ∈ [1,∞], u ∈ Lp ⇒ y, ẏ ∈ Lp and y is continuous

Corollary B.2 LetH(s) be a biproper2 and analytic inRe[s] ≥ 0. Then u ∈ L2∩L∞ and limt→∞ |u(t)| =

0 imply that y ∈ L2 ∩ L∞ and limt→∞ |y(t)| = 0.

B.3 Lyapunov Stability

Consider a system described by

ẋ = f(t, x), x(t0) = x0 (B.2)

where x ∈ R, f : T × B(r), T = [t0,∞) and B(r) = {x ∈ Rn | |x| < r}. Assume that f is of that

for every x0 ∈ B(r) and every t0 ∈ R+, B.2 possesses one and only one solution x(t; t0, x0). The

system is autonomous if f does not depend on t,

ẋ = f(x) (B.3)

otherwise, it is non-autonomous.

Definition B.7 A state xe is said to be an equilibrium state of the system described by B.2 if

f(t, xe) ≡ 0 ∀ t ≥ t0

Definition B.8 The equilibrium state xe is said to be stable (in the sense of lyapunov) if for arbitrary

t0 and ǫ > 0 ∃ a δ(ǫ, t0) such that |x0 − xe| < δ implies |x(t; t0, x0) − xe| < ǫ ∀t ≥ t0.

Definition B.9 The equilibrium state xe is said to be uniformly stable if it is stable and if δ(ǫ, t0), in

the above definition, does not depend on t0.

1For a strictly proper transfer function the degree of the numerator polynomial is less than the degree of the de-

nominator polynomial.
2A biproper transfer function has equal number of poles and zeros.
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B.3. LYAPUNOV STABILITY

Definition B.10 The equilibrium state xe is said to be asymptotically stable if (i) it is stable, and (ii)

∃ δ(t0) such that |x0 − xe| < δ(t0) implies limt→∞ |x(t; t0, x0) − xe| = 0.

Definition B.11 The equilibrium state xe is said to be uniformly asymptotically stable if (i) it is

stable, (ii) for every ǫ > 0 and any t0 ∈ R+,∃aδ0 > 0 independent of t0 and ǫ and a T (ǫ) > 0

independent of t0 such that |x(t; t0, x0) − xe| < ǫ ∀t ≥ t0 + T (ǫ) whenever |x0 − xe| < δ0.

Definition B.12 The set of all x0 ∈ Rn | x(t; t0, x0) → xe as t → ∞ for some t0 ≥ 0 is called the

region of attraction of the equilibrium state xe. If condition (ii) of the above definition is satisfied, then

the equilibrium state xe is said to be attractive.

Definition B.13 The equilibrium state xe is said to be exponentially stable if there exists an α > 0,

and for every ǫ > 0 there exists a δ(ǫ) > 0 such that

|x(t; t0, x0) − xe| ≤ ǫe−α(t−t0) ∀ t ≥ t0

whenever |x0 − xe| < δ(ǫ).

Definition B.14 The equilibrium state xe is said to be unstable if it is not stable.

Definition B.15 A solution x(t; t0, x0) of B.2 is bounded if ∃ a β > 0 such that |x(t; t0, x0)| <

β ∀ t ≥ t0, where β may depend on each solution.

Definition B.16 The solutions of B.2 are uniformly bounded if for any α > 0 and t0 ∈ R+, there

exists a β = β(α) independent of t0 such that if |x0| < α, then |x(t; t0, x0)| < β ∀ t ≥ t0.

Definition B.17 The solutions of B.2 are uniformly ultimately bounded (with boundB) if ∃ aB > 0

and if corresponding to any α > 0 and t0 ∈ R+, ∃ a T = T (α) > 0 (independent of t0) such that

|x0| < α implies |x(t; t0, x0)| < B ∀ t ≥ t0 + T .

Definition B.18 The equilibrium point xe of B.2 is asymptotically stable in the large if it is stable

and every solution of B.2 tends to xe as t→ ∞ (i.e., the region of attraction of xe is for allRn).

Definition B.19 The equilibrium point xe of B.2 is uniformly asymptotically stable in the large

if (i) it is uniformly stable, (ii) the solutions of B.2 are uniformly bounded, and (iii) for any α > 0, any

ǫ > 0 and t0 ∈ R+,∃ T (ǫ, α) > 0 independent of t0 such that if |x0 − xe| < α then |x(t; t0, x0)| <

ǫ ∀ t ≥ t0 + T (ǫ, α).
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B.3. LYAPUNOV STABILITY

Definition B.20 The equilibrium point xe of B.2 is exponentially stable in the large if there exists

α > 0 and for any β > 0, there exists k(β) > 0 such that

|x(t; t0, x0)| ≤ k(β)e−α(t−t0) ∀ t ≥ t0

whenever |x0| < β.

Definition B.21 A continuous function ϕ : [0, r] → R+ (or a continuous function ϕ : [0,∞) → R+)

is said to belong to classK, i.e., ϕ ∈ K if, (i) ϕ(0) = 0, (ii)ϕ is strictly increasing on [0, r] (or on [0,∞)).

Definition B.22 A continuous function ϕ : [0, r] → R+ is said to belong to class KR, i.e., ϕ ∈ KR

if, (i) ϕ(0) = 0, (ii)ϕ is strictly increasing on [0,∞), and, (iii) limr→∞ ϕ(r) = ∞.

Definition B.23 A function V (t, x) : R+ × B(r) → R with V (t, 0) = 0 ∀ t ∈ R+ is positive

definite if there exists a continuous function ϕ ∈ K such that V (t, x) ≥ ϕ(|x|) ∀ t ∈ R+, x ∈ B(r)

and some r > 0. V (t, x) is called negative definite if −V (t, x) is positive definite.

Definition B.24 A function V (t, x) : R+ × B(r) → R with V (t, 0) = 0 ∀ t ∈ R+ is said to be

positive (negative) semidefinite if V (t, x) ≥ 0(V (t, x) ≤ 0)∀ t ∈ R+ and x ∈ B(r) for some r > 0.

Definition B.25 A function V (t, x) : R+ × B(r) → R with V (t, 0) = 0 ∀ t ∈ R+ is said to be

decrescent if ∃ ϕ ∈ K such that |V (t, x)| ≤ ϕ(|x|) ∀ t ≥ 0 and ∀ x ∈ B(r) for some r > 0.

Definition B.26 A function V (t, x) : R+×Rn → Rwith V (t, 0) = 0 ∀ t ∈ R+ is said to be radially

unbounded if ∃ ϕ ∈ KR such that V (t, x) ≥ ϕ(|x|) ∀ x ∈ Rn and t ∈ R+.

Theorem B.2 Suppose there exists a positive definite function V (t, x) : R+ × B(r) → R for some

r > 0 with continuous first-order partial derivatives with respect to x, t, and V (t, 0) = 0 ∀ t ∈ R+.

Then the following statements are true:

• if V̇ ≤ 0, then xe = 0 is stable.

• if V is decrescent and V̇ ≤ 0, then xe = 0 is uniformly stable.

• if V is decrescent and V̇ < 0, then xe = 0 is uniformly asymptotically stable.

• if V is decrescent and ∃ ϕ1, ϕ2, ϕ3 ∈ K of the same order of magnitude such that

ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|), V̇ (t, x) ≤ −ϕ3(|x|)

∀ x ∈ B(r) and t ∈ R+, then xe = 0 is exponentially stable.
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B.3. LYAPUNOV STABILITY

Theorem B.3 Suppose that B.2 possesses unique solutions for all x0 ∈ Rn. Suppose ∃ a positive

definite, decrescent and radially unbounded function V (t, x) : R+ ×Rn → R+ with continuous first-

order partial derivative with respect to t, x and V (t, 0) = 0 ∀ t ∈ R+. Then the following statements

are true:

• if V̇ < 0, then xe = 0 is uniformly asymptotically stable in the large.

• if ∃ ϕ1, ϕ2, ϕ3 ∈ KR of the same order of magnitude such that

ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|), V̇ (t, x) ≤ −ϕ3(|x|)

then xe = 0 is exponentially stable in the large.

Theorem B.4 Assume that B.2 possesses unique solution ∀ x0 ∈ Rn. If ∃ a function V (t, x) defined

on |x| ≥ R (where R may be large) and t ∈ [0,∞) with continuous first-order partial derivatives with

respect to x, t and if ∃ ϕ1ϕ2 ∈ KR such that

• ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|)

• (̇V )(t, x) ≤ 0

∀ |x| ≥ R and t ∈ [0,∞), then, the solution of B.2 are uniformly bounded. If in addition ∃ϕ3 ∈ K

defined on [0,∞) and

• V̇ (t, x) ≤ −ϕ3(|x|) ∀|x| ≥ R and t ∈ [0,∞)

then, the solution of B.2 are uniformly ultimately bounded.

Definition B.27 A set Ω in Rn is invariant with respect to equation B.3 if every solution of B.3

starting in Ω remains in Ω ∀ t.

Theorem B.5 Assume that B.3 possesses unique solutions ∀ x0 ∈ Rn. Suppose there exists a positive

definite and radially unbounded function V (x) : Rn → R+ with continuous first-order derivatives

with respect to x and V (0) = 0. If

• V̇ ≤ 0 ∀ x ∈ Rn

• The origin x = 0 is the only invariant subset of the set

Ω = {x ∈ Rn|V̇ = 0} (B.4)

then the equilibrium xe = 0 of B.3 is asymptotically stable in the large.

125



B.4. POSITIVE REAL AND STRICTLY POSITIVE REAL TRANSFER FUNCTIONS

B.4 Positive Real and Strictly Positive Real Transfer Functions

Definition B.28 A rational transfer function G(s) of the complex variables s = σ + jω is called PR if

• G(s) is real for real s.

• Re[G(s)] ≥ 0 ∀ Re[s] > 0.

Lemma B.4 A ration proper transfer function G(s) is PR if and only if

• G(s) is real for real s.

• G(s) is analytic in Re[s] > 0, and the poles on the jω-axis are simple and such that the associated

residues are real and positive.

• For all real value of ω for which s = jω is not a pole of G(s), one has Re[G(jω)] ≥ 0.

Definition B.29 Assume thatG(s) is not identically zero for all s. ThenG(s) is SPR ifG(s− ǫ) is PR

for some ǫ > 0.

Theorem B.6 Assume that a rational function G(s) of the complex variable s = σ + jω is real for real

s and is not identically zero for all s. Let n∗ be the relative degree3 of G(s) = Z(s)/R(s) with |n∗| ≤ 1.

Then, G(s) is SPR if and only if

• G(s) is analytic in Re[s] ≥ 0

• Re[G(jω)] > 0,∀ ω ∈ (−∞,∞)

• 1. When n∗ = 1, lim|ω|→∞ ω2Re[G(jω)] > 0.

2. When n∗ = -1, lim|ω|→∞
G(jω)

jω
> 0.

Corollary B.3 1. G(s) is PR (SPR) if and only if 1/G(s) is PR (SPR)

2. If G(s) is SPR, then, |n∗| ≤ 1, and the zeros and poles of G(s) lie in Re[s] < 0.

3. if |n∗| > 1, then G(s) is not PR.

Lemma B.5 (Kalman-Yakubovich-Popov (KYP) Lemma) Given a square matrix A with all eigen-

values in the closed left half complex plane, a vector B such that (A,B) is controllable, a vector C and a

scalar d ≥ 0, the transfer function defined by

G(s) = d+ C⊤(sI −A)−1B (B.5)

3relative degree is the difference between, the degree of denominator polynomial and the degree of numerator

polynomial
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B.4. POSITIVE REAL AND STRICTLY POSITIVE REAL TRANSFER FUNCTIONS

is PR if and only if there exist a symmetric positive definite matrix P and a vector q such that

A⊤P + PA = −qq⊤ (B.6)

PB − C = ±q
√

2d (B.7)

Lemma B.6 (Meyer-Kalman-Yakubovich (MKY) Lemma) Given a stable matrix, vector B, C and

a scalar d ≥ 0, we have the following:

G(s) = d+ C⊤(sI −A)−1B (B.8)

is SPR, then for any given L = L⊤ > 0, there exists a scalar ν > 0, a vector q and a positive definite

matrix P = P⊤ such that

A⊤P + PA = −qq⊤ − νL (B.9)

PB − C = ±q
√

2d (B.10)

Theorem B.7 IfAc is stable matrix andG(s) = C⊤(sI−Ac)
−1Bc is SPR, then e, θ, ω ∈ L∞; e, θ̇ ∈

L∞ ∩ L2 and e(t), e1(t), θ̇(t) → 0 as t→ ∞
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APPENDIX C

Model Reference Adaptive Control:

Supplement

This appendix provides additional material for the adaptive control designs in Chapter 2. A

brief discussion on model reference adaptive control design for a relative degree one system is

discussed. This appendix also includes the necessary and sufficient condition for the choice of

the parameter p0 in the ploynomial L(s). The polynomial L(s) is added to the system to satisfy

the SPR condition.

C.1 MRAC for Relative Degree 1 System

In this section the model reference adaptive controller design for relative degree one systems

is described in detail. This design procedure can be extended to relative degree two systems as

long as the SPR condition is satisfied. The design and analysis in this section forms the basis

for the model reference adaptive controllers designed in chapter 2.

Consider a system and a desired reference model both having relative degree one.

ẏ = Ay +Bu, yL = C⊤y (C.1a)

ẋ = Acx+Bcr, ym = C⊤
c x (C.1b)

Assuming that it is possible to find a parametrized control law u = θ∗⊤ω which could result in

a closed-loop system having the same dynamics of the reference model, then the error equation

ǫ̇ = ẏ − ẋ and hence the tracking error is given by

ǫ̇ = Acǫ+Bθ̃⊤ω, θ̃ = θ − θ∗ (C.2a)

e1 = yL − ym = [1 0]ǫ = C⊤
c ǫ (C.2b)

128



C.1. MRAC FOR RELATIVE DEGREE 1 SYSTEM

Let us define the estimate of tracking error to be

ê1 = Wm(s)ρ
[
u− θ⊤ω

]
(C.3)

where ρ is an estimate of ρ∗, θ is the estimate of the parameter vector θ∗. Notice that

ê1 = Wm(s)ρ
[
u− θ⊤ω

]
= Wm(s)ρ[0], ∵ u = θ⊤ω (C.4)

Notice that since Wm(s) is SPR, when ê1(0) = 0, ê1 = 0,∀t ≥ 0. Hence there is no need to

generate ê1 ⇒ ǫ1 = e1 − ê1 = e1. Hence the error dynamics reduces to

ǫ̇ = Acǫ+Bcρ
∗[θ⊤ω − θ∗⊤ω] = Acǫ+Bcρ

∗θ̃⊤ω (C.5a)

e1 = Wm(s)ρ∗θ̃⊤ω, θ̃ , θ(t) − θ∗ (C.5b)

This error dynamics is suitable for SPR-Lyapunov design since the output tracking error e1 is

related to the parameter error θ̃ by a SPR transfer function.

Consider a lyapunov function candidate as

V (θ̃, ǫ) =
ǫ⊤Pcǫ

2
+
θ̃⊤Γ−1θ̃|ρ∗|

2
(C.6)

where Γ = Γ⊤ > 0, Pc = P⊤
c > 0 satisfies the following algebric equations

PcAc +A⊤
c Pc = −qq⊤ − νLc (C.7)

PcBc = Cc (C.8)

for some matrix Lc = L⊤
c > 0, some vector q, and a small positive constant. ∵ Ac is stable

using the MKY lemma (B.6) we can always find a positive definited matrix Pc. Taking the time

derivative of V in equation C.6 along the trajectories of C.5.

V̇ =
ǫ⊤A⊤

c Pcǫ

2
︸ ︷︷ ︸

+
(Bcρ

∗θ̃⊤ω)⊤Pcǫ

2
︸ ︷︷ ︸

+
ǫ⊤PcAcǫ

2
︸ ︷︷ ︸

+
ǫ⊤Pc(Bcρ

∗θ̃⊤ω)

2
︸ ︷︷ ︸

+
˙̃
θ⊤Γ−1θ̃|ρ∗| (C.9)

= −ǫ
⊤qq⊤ǫ

2
− ǫ⊤νcL

⊤
c ǫ

2
︸ ︷︷ ︸

+ ǫ⊤PcBcρ
∗θ̃⊤ω

︸ ︷︷ ︸
+

˙̃
θ⊤Γ−1θ̃|ρ∗| (C.10)

if

˙̃
θ⊤Γ−1θ̃|ρ∗| = ǫ⊤PcBcρ

∗θ̃⊤ω (C.11)

then, V̇ ≤ 0. Notice that in equation C.11 ρ∗ can be written as ρ∗ = |ρ∗|sgn(ρ∗) and the equation

reduces to

˙̃
θ⊤Γ−1θ̃|ρ∗| = −ǫ⊤PcBcω

⊤θ̃|ρ∗|sgn(ρ∗) (C.12)
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C.2. CHOICE OF PARAMETER P0

using the fact that θ̃⊤ω = ω⊤θ̃ ∈ R. Hence the adaptive law is given by

˙̃
θ
⊤

= −sgn(ρ∗)ǫ⊤ PcBc
︸ ︷︷ ︸

ω⊤Γ (C.13)

= −sgn(ρ∗) ǫ⊤Cc
︸ ︷︷ ︸

ω⊤Γ (C.14)

˙̃
θ = −e1sgn(ρ∗)Γω (∵ Γ = Γ⊤) (C.15)

˙̃
θ = θ̇ − θ̇∗ = θ̇ = −e1sgn(ρ∗)Γω (C.16)

C.1.0.1 Analysis

Because V > 0 and V̇ ≤ 0, V is bounded or V ∈ L∞ ⇒ ǫ, θ, θ̃ ∈ L∞. With ǫ ∈ L∞ we

get y, x ∈ L∞. ω being the states or the filtered version of the states along with the reference

trajectory, ∵ y ∈ L∞,⇒ ω ∈ L∞ ⇒ u = θ⊤ω ∈ L∞. Therefore all the signals in the closed-loop

system are bounded. As seen in section ?? on page ??, it can been shown that ǫ ∈ L2 and hence

e1 = C⊤
c ǫ ∈ L2. From the error, since the matirx Ac is stable and the input θ̃⊤ω ∈ L∞, ⇒ ǫ̇ ∈

L∞ ⇒ ė1 = C⊤
c ǫ̇ ∈ L∞. Therefore from e1, ė1 ∈ L∞ and e1 ∈ L2, using lemma B.2 we have

e1(t) → 0 as t→ ∞.

C.2 Choice of parameter p0

This section formulates the necessary and sufficient condition for the choice of the design pa-

rameter p0 in L(s) = s + p0 which makes Wm(s)L(s) SPR. The relative degree of the reference

model and the plant model is 2. In order to use the SPR lyapunov design a relative degree

n∗ = −1 transfer function, (s + p0), is cascaded with the reference model so that the relative

degree of the combined system is one1.

K(s) = G(s)(s+ p0)

where,

G(s) =
ω2

n

(s2 + 2ζωns+ ω2
n)

Applying theorem corollary B.3 we find that p0 > 0. Applying theorem B.6 we find the follow-

ing.

1Note that a transfer function G(s) can be SPR only if its relative degree is less than or equal to one and 1/G(s) is

SPR (Corollary B.3).
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C.2. CHOICE OF PARAMETER P0

• If G(s) is stable and p0 > 0, then K(s) is analytic in Re[s] ≥ 0.

• For Re[K(jω)] > 0,∀ ω ∈ (−∞,∞)

K(s) =
(s+ p0)ω

2
n

s2 + 2ζωns+ ω2
n

K(jω) =
(jω + p0)ω

2
n

−ω2 + 2ζωωnj + ω2
n

=
ω2

n(jω + p0)[(ω
2
n − ω2) − 2ζωnωj]

(ω2
n − ω2)2 + (2ζωnω)2

Re[K(jω)] =
ω2

np0(ω
2
n − ω2) + 2ζω3

nω
2

(ω2
n − ω2)2 + (2ζωnω)2

ω2
np0(ω

2
n − ω2) + 2ζω3

nω
2 > 0 for Re[K(jω)] > 0

if (2ζω3
n − p0ω

2
n)ω2 > 0 then, Re[K(jω)] > 0

Hence, p0 has to be less than 2ζωn.

• For the third condition i.e., When n∗ = 1, lim|ω|→∞ ω2Re[K(jω)] > 0

lim
|ω|→∞

ω2Re[K(jω)] = lim
|ω|→∞

ω2ω
2
np0(ω

2
n − ω2) + 2ζω3

nω
2

(ω2
n − ω2)2 + (2ζωnω)2

= lim
|ω|→∞

[2ζω3
n − p0ω

3
n] + p0ω

4
n/ω

2

1 + ω4
n/ω

4 + (4ζω2
n − 2ζω2

n)/ω2

= 2ζω3
n − p0ω

3
n

⇒ 2ζωn > p0 to satisfy the above condition.

Hence p0 has to be chosen based on the reference model such that 0 < p0 < 2ζωn.
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APPENDIX D

Additional Experimental Results

D.1 Three Parameter Guide Adaptive Controller

D.1.1 Experiments with opaque web
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Figure D.1: Performance Comparison: 3-Parameter, 500 fpm, Sine Disturbance, Opaque Web
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Figure D.2: Adaptive Controller: 3-Parameter, 500 fpm, Sine Disturbance, Opaque Web
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Figure D.3: Performance Comparison: 3-Parameter, 500 fpm, Pulse Disturbance, Opaque Web
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D.1.2 Experiments with transparent web
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Figure D.4: Performance Comparison: 3-Parameter, 300 fpm, Sine Disturbance, Transparent

Web
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Figure D.5: Adaptive Controller: 3-Parameter, 300 fpm, Sine Disturbance, Transparent
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Figure D.6: Performance Comparison: 3-Parameter, 300 fpm, Pulse Disturbance, Transparent
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D.2. FOUR PARAMETER GUIDE ADAPTIVE CONTROLLER

D.2 Four Parameter Guide Adaptive Controller

D.2.1 Experiments with opaque web
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Figure D.7: Performance Comparison: 4-Parameters, 300 fpm, Sine Disturbance, Opaque Web
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Figure D.8: Adaptive Controller: 4-Parameters, 300 fpm, Sine Disturbance, Opaque Web
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Figure D.9: Performance Comparison: 4-Parameters, 500 fpm, Sine Disturbance, Opaque Web
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Figure D.10: Adaptive Controller: 4-Parameters, 500 fpm, Sine Disturbance, Opaque Web
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Figure D.11: Performance Comparison: 4-Parameters, 300 fpm, Pulse Disturbance, Opaque
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Figure D.12: Adaptive Controller : 4-Parameters, 300 fpm, Pulse Disturbance, Steady-State,

Opaque Web
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Figure D.13: Performance Comparison: 4-Parameters, 500 fpm, Pulse Disturbance, Opaque
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Figure D.14: Performance Comparison: 4-Parameters, 500 fpm, Pulse Disturbance, Steady-

State, Opaque Web
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D.2.2 Experiments with transparent web
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Figure D.16: Performance Comparison: 4-Parameters, 300 fpm, Sine Disturbance, Transparent

Web
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Figure D.17: Adaptive Controller: 4-Parameters, 300 fpm, Sine Disturbance, Transparent Web
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Figure D.18: Performance Comparison: 4-Parameters, 500 fpm, Sine Disturbance, Transparent

Web
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Figure D.19: Adaptive Controller: 4-Parameters, 500 fpm, Sine Disturbance, Transparent Web
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Figure D.20: Performance Comparison: 4-Parameters, 300 fpm, Pulse Disturbance, Transparent

Web
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Figure D.21: Performance Comparison: 4-Parameters, 500 fpm, Pulse Disturbance, Transparent

Web
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Figure D.22: Adaptive Controller: 4-Parameters, 300 and 500 fpm, Step Reference Changes,

Transparent Web
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D.3 Guide Adaptive Controller

D.3.1 Experiments with opaque web
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Figure D.23: Performance Comparison: 8-Parameters, 300 fpm, Sine Disturbance, Opaque Web
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Figure D.24: Adaptive Controller: 8-Parameters, 300 fpm, Sine Disturbance, Opaque Web
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Figure D.25: Adaptive Controller: 8-Parameters, 300 fpm, Sine Disturbance, Setady-State,

Opaque Web
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Figure D.26: Performance Comparison: 8-Parameters, 500 fpm, Sine Disturbance, Opaque Web
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Figure D.27: Adaptive Control: 8-Parameters, 500 fpm, Sine Disturbance, Opaque Web
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Figure D.28: Adaptive Control: 8-Parameters, 500 fpm, Sine Disturbance, Steady-State, Opaque

Web
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Figure D.29: Performance Comparison: 8-Parameters, 300 fpm, Pulse Disturbance, Opaque

Web
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Figure D.30: Performance Comparison: 8-Parameters, 500 fpm, Pulse Disturbance, Opaque

Web
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D.3.2 Experiments with transparent web
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Figure D.31: Performance Comparison: 8-Parameters, 500 fpm, Sine Disturbance, Transparent

Web
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Figure D.32: Adaptive Controller: 8-Parameters, 500 fpm, Sine Disturbance, Transparent Web
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Figure D.33: Adaptive Controller: 8-Parameters, 500 fpm, Sine Disturbance, Steady-State,

Transparent Web
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Figure D.34: Performance Comparison: 8-Parameters, 300 fpm, Pulse Disturbance, Transparent

Web
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Figure D.35: Performance Comparison: 8-Parameters, 500 fpm, Pulse Disturbance, Transparent

Web
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