
STRATEGIES FOR IMPROVING EFFICIENCY AND EFFICACY

OF IMAGE QUALITY ASSESSMENT ALGORITHMS

By

THIEN DUC PHAN

Bachelor of Science in Information Technology
Hanoi University of Science and Technology

Hanoi, Vietnam
2008

Master of Science in School of
Electrical and Computer Engineering

Oklahoma State University
Oklahoma, USA

2014

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
Doctor of Philosophy

May, 2015

STRATEGIES FOR IMPROVING EFFICIENCY AND EFFICACY

OF IMAGE QUALITY ASSESSMENT ALGORITHMS

Dissertation Approved:

Dr. Damon M. Chandler

Advisor

Dr. Guoliang Fan

Dr. Keith A. Teague

Dr. R. Russell Rhinehart

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Damon M. Chandler, for his limitless

patience and expert guidance. He is the greatest advisor I have ever had; I would not

have been who I am/where I am at today without him. This work would have never

become truth without his guidance.

I would like to thank Dr. Guoliang Fan, a great professor of two very difficult but

so interesting and useful courses, Computer Vision and Pattern Recognition and Ma-

chine Learning, for all his knowledge and support. These courses also provided some

ideas for Eric Larson, another Dr. Chandler’s student, to complete Most Apparent

Distortion (MAD) algorithm, which is an important factor of my thesis.

I would like to thank Dr. Keith Teague for all his help and support, and for all

his comments and guidelines for this dissertation. In the past, now, and future, I still

need you on my side. Thank you.

I would like to thank Dr. R. Russell Rhinehart, who has given me knowledge in

the course Optimization Applications. This course made me think differently about

optimization. Its usefulness remains relevant now and in the future. Dr. Rhinehart

also have read my previous reports and given so many helpful comments. Thank you

so much for your insightful feedbacks.

I also would like to thank Phong Vu, Cuong Vu, and Dr. Sohum Sohoni, who

have helped me to finish one conference, On the use of image quality estimators for

improved JPEG2000 coding, and two journals, A spectral and spatial measure of local

perceived sharpness in natural images andMicroarchitectural analysis of image quality

assessment algorithms, and of course, Dr. Chandler, who have been helping me with

iii

these three above and a few more papers, which provided the main ideas for this

thesis report. I have had an incredible time working with you. It has been the best

time I have ever had in my student life that I will never forget.

Furthermore, I would like to thank Eric Larson because of his MAD algorithm,

a FR IQA algorithm. What a pity that Eric had left OSU before I came. However,

his work with Dr. Chandler inspires not only me, but also Phong Vu and other

researchers to keep working on Image and Video Quality Assessment.

This material is based upon work supported by, or in part by, the National Sci-

ence Foundation, Award #1054612 and #0917014, and by the U.S. Army Research

Laboratory (USARL) and the U.S. Army Research Office (USARO) under contrac-

t/grant number W911NF-10-1-0015. Many thanks for the money, and for giving me

an opportunity to be a great person working with great people in great projects.

Last, but not least, I would like to thank my wife, my family, and my labmates,

who have been so supportive when I was in OSU. A few words cannot describe all

my feeling; I’ll talk to you later.

Acknowledgments reflect the views of the author and are not endorsed by committee members

or Oklahoma State University.

iv

Name: THIEN DUC PHAN

Date of Degree: May, 2015

Title of Study: STRATEGIES FOR IMPROVING EFFICIENCY AND EFFICACY
OF IMAGE QUALITY ASSESSMENT ALGORITHMS

Major Field: Electrical Engineering

Image quality assessment (IQA) research aims to predict the qualities of images in a
manner that agrees with subjective quality ratings. Over the last several decades, the
major impetus in IQA research has focused on improving prediction efficacy globally
(across images) of distortion-specific types or general types; very few studies have ex-
plored local image quality (within images), or IQA algorithm for improved JPEG2000
coding. Even fewer studies have focused on analyzing and improving the runtime per-
formance of IQA algorithms. Moreover, reduced-reference (RR) IQA is also a new
field to be explored, when the transmitting bandwidth is limited, side information
about original image was received with distorted image at the receiver. This report
explored these four topics. For local image quality, we provided a local sharpness
database, and we analyzed the database along with current sharpness metrics. We
revealed that human highly agreed when rating sharpness of small blocks. Overall,
this sharpness database is a true representation of human subjective ratings and cur-
rent sharpness algorithms could reach 0.87 in terms of SROCC score. For JPEG2000
coding using IQA, we provided a new JPEG2000 image database, which includes only
same total distortion images. Analysis of existing IQA algorithms on this database
revealed that even though current algorithms perform reasonably well on JPEG2000-
compressed images in popular image-quality databases, they often fail to predict the
correct rankings on our database’s images. Based on the framework of Most Apparent
Distortion (MAD), a new algorithm, MADDWT is then proposed using local DWT
coefficient statistics to predict the perceived distortion due to subband quantization.
MADDWT outperforms all others algorithms on this database, and shows a promising
use in JPEG2000 coding. For efficiency of IQA algorithms, this paper is the first to
examine IQA algorithms from the perspective of their interaction with the underlying
hardware and microarchitectural resources, and to perform a systematic performance
analysis using state-of-the-art tools and techniques from other computing disciplines.
We implemented four popular full-reference IQA algorithms and two no-reference al-
gorithms in C++ based on the code provided by their respective authors. Hotspot
analysis and microarchitectural analysis of each algorithm were performed and com-
pared. Despite the fact that all six algorithms share common algorithmic operations
(e.g., filterbanks and statistical computations), our results revealed that different IQA
algorithms overwhelm different microarchitectural resources and give rise to different
types of bottlenecks. For RR IQA, we also provide a new framework based on multi-
scale sharpness map. This framework employs multiscale sharpness maps as reduced
information. As we will demonstrate, our framework with 2% reduced information
can outperform other frameworks, which employ from 2% to 3% reduced information.
Our framework is also competitive to current state-of-the-art FR algorithms.

v

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 Background on IQA . 1

1.2 IQA Challenges . 4

1.3 Dissertation Overview . 6

1.4 Structure of the dissertation . 8

2 LOCAL PERCEIVED SHARPNESS 11

2.1 Background . 11

2.2 Local Sharpness Experiment . 12

2.2.1 Images . 12

2.2.2 Design . 12

2.2.3 Result . 14

2.3 Analysis Criteria . 14

2.4 Performance Analysis . 16

2.5 Summary . 18

3 IQA ALGORITHM FOR JPEG2000 CODING 20

3.1 Background . 20

3.2 A Database For JPEG2000 Compression 22

3.2.1 Images and compression . 22

3.2.2 Experiment . 25

3.2.3 Apparatus and Subjects . 26

vi

3.2.4 Results And Image Database 27

3.2.5 Summary . 30

3.3 IQA Algorithms on Jpeg2000 Compression 30

3.3.1 Proposed Criteria . 31

3.3.2 Results of Existing IQA Algorithms 32

3.4 A New Algorithm Using DWT . 34

3.4.1 Overview of Most Apparent Distortion (MAD) 35

3.4.2 Detection-based map calculating 36

3.4.3 Appearance-based map calculating 38

3.4.4 Collapsing and combining . 40

3.4.5 MAD using Discrete Wavelet Transform 40

3.4.6 MADDWT results . 41

3.5 Summary . 43

4 MICROARCHITECTURAL ANALYSIS OF IQA ALGORITHMS 44

4.1 Background . 44

4.2 Algorithms . 51

4.2.1 Multi-Scale Structural Similarity (MS-SSIM) 51

4.2.2 Visual Information Fidelity (VIF) 53

4.2.3 Visual Signal-to-Noise Ratio (VSNR) 55

4.2.4 Most Apparent Distortion (MAD) 57

4.2.5 Blind Image Integrity Notator using DCT Statistics (BLIINDS-II) 59

4.2.6 Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) 62

4.3 Analysis Methodology . 65

4.3.1 Algorithms and profiler . 65

4.3.2 Sample images . 65

4.3.3 Analysis platform . 66

4.4 Architectural Concepts . 68

vii

4.4.1 Virtual Memory . 68

4.4.2 CPU Caches . 69

4.4.3 Address Calculation . 69

4.4.4 Speculative Loads . 70

4.5 Results . 71

4.5.1 Performance Analysis of MAD 71

4.5.2 Performance Analysis of MS-SSIM 75

4.5.3 Performance Analysis of VIF 80

4.5.4 Performance Analysis of VSNR 82

4.5.5 Performance Analysis of BLIINDS-II 86

4.5.6 Performance Analysis of BRISQUE 90

4.6 Discussion . 95

4.6.1 Memory Bottlenecks . 95

4.6.2 Core Bottlenecks . 98

4.6.3 Summary and Recommendations for a Framework for Custom

Image Quality Assessment Hardware 100

4.7 Summary . 104

5 A RR IQA FRAMEWORK BASED ON SHARPNESS MAPS 105

5.1 Introduction . 105

5.2 Related work . 110

5.2.1 Methods based on natural scene statistic 110

5.2.2 Methods in a transformed domain 111

5.2.3 More distortion types, closer to the general distortion 111

5.2.4 Methods based on current FR algorithms 112

5.2.5 Summary of existing methods 112

5.3 New Reduced-Reference IQA Framework 114

5.3.1 Reduced-reference information 114

viii

5.3.2 Sharpness features . 119

5.3.3 Distortion family classification 120

5.3.4 Maximum and average difference measurements 122

5.3.5 Combining measures and distortion families adaptively 124

5.4 Results and discussion . 126

5.4.1 Correlation with human opinions 126

5.4.2 Classification Accuracy . 128

5.4.3 Database Independence . 131

5.5 Summary . 134

6 CONCLUSIONS 136

6.1 Summary and Contributions . 136

6.2 Future work . 141

ix

LIST OF TABLES

Table Page

2.1 Overall performance of all sharpness algorithms on the entire set of

images in our sharpness map database. The best two performances are

bolded. 18

3.1 The performances of several well-known IQA algorithms. Two best

performances are bolded. 32

3.2 VNSR’s quality scores for all 96 images 33

3.3 VNSR’s quality rankings for all 96 images 34

3.4 MS-SSIM’s quality rankings for all 96 images 35

3.5 MADDWT ’s ranking scores for all 96 images 42

3.6 The performances of MADDWT and other IQA algorithms. Two best

performances are bolded. 42

4.1 A summary of the experiment images. 66

4.2 Processor and system hardware specifications for the experiment . . . 67

4.3 Analysis results of MAD. Average execution time for top hotspots func-

tions/blocks of 42 images is presented with the standard deviation. The

total execution for each hotspot is calculated from the average. The

hardware bottlenecks are also provided. 71

4.4 Analysis results of MS-SSIM. Average execution time for top hotspots

functions/blocks of 42 images is presented with the standard deviation.

The total execution for each hotspot is calculated from the average.

The hardware bottlenecks are also provided. 76

x

4.5 Analysis results of VIF. Average execution time for top hotspots func-

tions/blocks of 42 images is presented with the standard deviation.

The total execution for each hotspot is calculated from the average.

The hardware bottlenecks are also provided. 81

4.6 Analysis results of VSNR. Average execution time for top hotspots

functions/blocks of 42 images is presented with the standard deviation.

The total execution for each hotspot is calculated from the average.

The hardware bottlenecks are also provided. 83

4.7 Analysis results of BLIINDS-II. Average execution time for top hotspots

functions/blocks of 42 images is presented with the standard deviation.

The total execution for each hotspot is calculated from the average.

The hardware bottlenecks are also provided. 87

4.8 Analysis results of BRISQUE. Average execution time for top hotspots

functions/blocks of 42 images is presented with the standard deviation.

The total execution for each hotspot is calculated from the average.

The hardware bottlenecks are also provided. 91

5.1 All 19 features, their formulas and purposes. 121

5.2 Mappings between seven distortion families and 17 distortion types in

the TID2008 database . 122

5.3 k1 and k2 vectors. The algorithm adaptively selects scalar based on

distortion families. 125

5.4 CC and SROCC scores of S4RR and other algorithms in the TID2008

database. Best performances are bolded, italic entries are second-best

performances, and italic algorithms are full-reference. 127

xi

5.5 The SROCC scores of S4RRX and other algorithms on 17 distortion

types of the TID2008 database. Bold entries denote the best perfor-

mance. The last row shows the number of times the SROCC was above

0.92. 129

5.6 CC and SROCC of S4RRL and other algorithms in LIVE, CSIQ, and

TID2013, and the average weighted by the number of images each

database. Bold entries denote the best performance for each row. Italic

algorithms are full-reference algorithms. There are 779, 866, and 3000

images in LIVE, CSIQ, and TID2013, respectively. CC scores are in

the first haft of the table. 132

5.7 SROCC scores of S4RRL and other algorithms for six distortion types

in CSIQ, five distortion type in LIVE, and 24 distortion types in

TID2013 with bold entries for the best performance. Italic algorithms

are full-reference algorithms. The last row of the table also shows the

number of times that the SROCC was above 0.95. 133

xii

LIST OF FIGURES

Figure Page

2.1 Six images in the database and their corresponding average subjective

sharpness maps. Eleven subjects highly agreed with each other where

the correlation coefficients between average maps and subjects’ maps

were 0.89 or higher. 13

2.2 Interface of the experiment. Subjects rated the sharpness level for

each 16 × 16 block in the image in the left on a scale from 1 to 3

where 1 means the block is very sharp. Two buttons Level 1 and Level

2 correspond to scale 1 and 2, respectively. A right click on a block

would assign the sharpness value of that block to scale 3. The same

image was displayed in the right hand side for reference. 14

2.3 Comparison of sharpness maps from different algorithms. In general,

the maps from S3 algorithm are the most close to the groundtruth

maps. Note that black blocks in MDWE maps are blocks which the

MDWE algorithm failed to run on. 17

3.1 Some original images used in the experiment. They span a variety of

commonplace subject matters in five categories animals, landscapes,

people, plants, and urban. They also contain different regions, such as

texture, edge, structure, blank, smooth, and blurred regions. 23

xiii

3.2 An example of four levels of DWT decomposition of the image mon-

ument. The effects of orientation were not tested; each triplet of sub-

bands (LH, HL, HH) at the same level i = 1, 2, 3, 4 of decomposition

was distorted with the same amount. 24

3.3 Some images used in the experiment. Image (a) is distorted with 60%

amount of distortion on level 1, and 40% distortion on level 2. Image

(b) has 40% amount of distortion on level 2, 40% distortion on level 3,

and 20% on level 4. Image (c) has 60% amount of distortion on level

1, 20% distortion on level 2, and 20% distortion on level 3. Image (d)

has 20% amount of distortion on level 1, 60% distortion on level 2, and

20% amount of distortion on level 4. 26

3.4 The interface of the experiment to collect ranking order. 27

3.5 The amounts of distortion for four levels that generated highest-quality

images (a), and lowest-quality images (b). 28

3.6 The average amounts of distortion for four levels that generated highest-

quality images and lowest-quality images. 29

3.7 Two sets of four images generated using various distortion-allocation

proportions. The images labeled (a)-(d), (e)-(h) are the best, best-

by-average, worst-by-average, and worst quality images for image wa-

terside archway and urban ranger, respectively, based on the rankings

from our experiment . 30

3.8 Original MADs framework with two stages: a detection-based stage

and an appearance-based stage. 36

xiv

3.9 Block diagram of the detection-based strategy used to compute a vis-

ible distortion map. Both the reference and the distorted image are

first converted to perceived luminance, and then filtered by a contrast

sensitivity function (CSF). The local distortion visibility map is ob-

tained by comparing the local contrast of the reference image and the

error image. 37

3.10 Block diagram of the appearance-based strategy used to compute a

statistical difference map. A computational neural model using a log-

Gabor filterbank is employed. The standard deviation, skewness, and

kurtosis are computed for each subband’s block. The differences of

local standard deviation, skewness, and kurtosis between each pair

of reference and distorted subbands are combined into a statistical

difference map. 39

3.11 Block diagram of the appearance-based maps of the original MAD and

MADDWT . A computational neural model using a log-Gabor filter-

bank is employed. Original MAD uses log-Gabor filter with four ori-

entations and five scales (20 subbands) in Figure (a), while MADDWT

employs discrete wavelet transform decomposition with four scales (4×

3 + 1 = 13 subbands) in Figure (b). 41

4.1 Diagram of the MS-SSIM algorithm. LPF1 is a low-pass filter of size

2 × 2. ↓ 2 is a downsampling by a factor of two. LPF2 is a low-pass

filter of size 11 × 11. The reference and distorted images serve as the

first scale. The other four scales are obtained by applying LPF1 and

↓ 2 repeatedly. For each scale, the similarity between two images is

measured by applying LPF2 to prevent artifacts. Finally, the MS-

SSIM index is formed via a combination of the luminance, contrast,

and structure comparisons from different scales. 52

xv

4.2 The block diagram of our implementation of VIF algorithm. First, two

input images are filtered via a six-orientation and four-level Steerable

Pyramid which is modified to yield eight subbands for faster computa-

tion. The parameters of reference and distorted channels are calculated

from the filtered images. Finally, the information of reference and dis-

torted images are calculated and collapsed into a VIF index. 54

4.3 The diagram of VSNR algorithm. First two input images are sub-

tracted to generate an error image. The reference and error images are

then filtered via a five-scale 2D discrete wavelet transform. Each set

of filtered subbands is employed to calculate the perceived contrast.

Finally, the VSNR is obtained by computing the disruption of global

precedence. 56

4.4 The diagram of MAD algorithm. For detection-based stage, reference

and distorted images are first filtered using a contrast sensitivity func-

tion. The distortion map is then computed from filtered images and

collapsed via a MSE measure to obtain a detection-based index. For

the appearance-based stage, both images first are filtered using Log-

Gabor with five scales and four orientations. The statistical difference

map is computed from the 20 filtered subbands and then collapsed

into an appearance-based index. Finally, the MAD index is given by

taking a weighted geometric mean of the appearance-based index and

detection-based index. 58

xvi

4.5 BLIINDS-II algorithm. LPF is a low-pass filter of size 3× 3. ↓ 2 is a

downsampling by a factor of two. The input image serves as the first

scale. Two more scales are obtained by the low-pass filter and down-

sampling. Each of three scales is divided into blocks of size 5 × 5 so

that the DCT can be applied for each block. The transformed coeffi-

cients are then modeled using generalized Gaussian to extract features.

Finally, a probabilistic modeling is applied to yield the BLIINDS index. 60

4.6 BRISQUE algorithm. LPF is a low-pass filter and ↓ 2 is a downsam-

pling by a factor of two; they are utilized to obtain a smaller scale of

the input image, which serves as the first scale. Each of two scales

is employed to compute locally normalized luminance via local mean

subtraction and divisive normalization. The luminances and their pair-

wise products of neighboring MSCN coefficients along four orientations

(H, V, D1, and D2) are fitted with generalized Gaussian distribution

(GGD) and asymmetric generalized Gaussian distribution (AGGD)

models to extract 36 features. Finally, the support vector machine

(SVM) regressor is applied to yield the BRISQUE quality index. . . . 63

4.7 Seven original images span a variety of commonplace subject matters

in five categories, animals, landscapes, people, plants, and urban. . . . 66

4.8 Some distorted versions (AWGN5, BLUR5, and JPEG5) of I2, I3, and

I7. Original images are shown in Figure 4.7. 67

4.9 The execution time of MAD for each pair of reference and distorted

images. The contributions of hotspot functions are stacked together to

form the total execution time. 72

xvii

4.10 Mapping between hotspots/hardware bottlenecks and the algorithmic

blocks for MAD. Figure (b) is the detail of CSF block, and figure (c)

is the detail of Log-Gabor filtering block. Log-Gabor block suffers

from L1D and L2D replacements, LLC misses, and DTLB overhead.

FFT and IFFT blocks suffer from L1D and L2D replacement, and LLC

misses, the Appearance-Based Statistical Difference Map Computation

and Detection-Based Visible Distortion Map Computation functions

are a part of statistical computation block, which suffer from DTLB

overhead and LLC misses. 76

4.11 The execution time of MS-SSIM for each pair of reference and distorted

images. The contributions of hotspot functions are stacked together to

form the total execution time. 77

4.12 Mapping between hotspots/hardware bottlenecks and the algorithmic

blocks for MS-SSIM. The LPF2 block suffers from L1D and L2D re-

placements, and LLC misses, Similarity Measures and LCS Average

functions, belong to the block corresponding to computation and com-

parison of luminance, contrast and structure, which suffers from L1D

replacement, L2D replacement, DTLB overhead, assists, and floating-

point divide unit. 80

4.13 The execution time of VIF for each pair of reference and distorted

images. The contributions of hotspot functions are stacked together to

form the total execution time. 81

4.14 Mapping between hotspots/hardware bottlenecks and the algorithmic

blocks for VIF. The Steerable pyramid filtering block suffers from gen-

eration of slow LEA instruction. The statistical computation block

suffers from memory bottlenecks and generation of LEA instructions. 83

xviii

4.15 The execution time of VSNR for each pair of reference and distorted

images. The contributions of hotspot functions are stacked together to

form the total execution time. 84

4.16 Mapping between hotspots/hardware bottlenecks and the algorithmic

blocks for VSNR. The five-level 2-D DWT block (61% of the execution

time) suffers from cache replacements, LLC misses, 4K aliasing, and

machine clears. The statistical computation block is a hotspot with

approximately 28% of the execution time, but there is no bottleneck. 86

4.17 The execution time of BLIINDS-II for all distorted images. The con-

tributions of hotspot functions are stacked together to form the total

execution time. 87

4.18 Mapping between hotspots/hardware bottlenecks and the algorithmic

blocks for BLIINDS-II. The block-based DCT is a hotspot with ap-

proximately 66% of the execution time. However, this block has no

bottlenecks. The Gamma function is the main function of generalized

Gaussian modeling block has no bottlenecks except L1D replacements

for JPEG5 images. The Convolution, one of the LPF block’s functions

suffer from memory bottlenecks, L1D and L2D replacements, and LLC

hits. 90

4.19 The execution time of BRISQUE for all distorted images. The con-

tributions of hotspot functions are stacked together to form the total

execution time. 91

xix

4.20 Mapping between hotspots/hardware bottlenecks and the algorithmic

blocks for BRISQUE. The Compute locally normalized luminance is a

hotspot with approximately 26.32% of the execution time and suffers

from L1 Cache misses, L2D replacements, and LLC misses. In the next

stage, the Compute H, V, D1, and D2 pairwise products block contain

the Circularly Shifting function with point-by-point multiplications be-

tween the MSCN coefficients and their circularly shifted versions. This

block takes approximately 0.65 seconds to operate, which is 24.44% of

the total execution time. The GGD fitting and AGGD fitting blocks

consume 17.5% of the running time and suffer from LLC misses, L1D,

L2D replacements, and DTLB overhead bottlenecks. 94

4.21 Blocks for custom IQA engine framework. It constitutes of three basic

computational blocks generally used in IQA algorithms: image trans-

form engine, the filter banks and the image statistics engine. 102

5.1 Original images and five different sharpness maps. 107

5.2 The demonstration that sharpness maps can capture both distortion

types and distortion intensities. Showing in first column is original

image, its first-scale sharpness map, and scatterplot of the map versus

itself. Showing in a2-a8 and d2-d8 are 14 distorted images of seven

distortion types and two distorted levels. Rows b, e and c, f are first-

scale sharpness maps and scatterplots of the distorted maps versus

original map, respectively. Different distortion types and distortion

intensities can be captured by the change in the scatterplots’ shapes. 109

xx

5.3 Block diagram of the S4RR framework. Multiscale sharpness maps

are the reduced reference information for the S4RR framework. Two

measurements, the maximum and average differences, are calculated

for latter use to assess image quality. From the three-scale sharpness

maps, we compute 19 features to classify all distortion types into seven

distortion families. The soft-classification results with probabilities are

then employed to combine with two calculated measurements to yield

the final S4RR quality index. 114

5.4 An example reduced information (sharpness maps) collecting process.

(Maps are scaled for showing purpose and S, D denote the sharpness

calculating and downsampling operations, respectively.) Three sharp-

ness maps provide an efficient summary of the reference image. For

example, the dark areas in the level 1, level 2 and level 3 maps indicate

a smooth area in the sky of the input image. The brightest areas in the

three maps point out the sharp edges around the building and the horse

statue. Three maps also compensate each other for texture areas. For

example, the texture in the flowers is captured by the corresponding

dark-bright-mixed area in level 1 map, and gray-dark areas in level 2

and level 3 maps. 117

xxi

5.5 Four distorted images [row (a)]: AWGN, contrast-reduced, JPEG, and

JPEG2000 images; first-scale original and distorted sharpness maps

[rows (b) and (c)]. For the AWGN image in column 1, the AWGN

sharpness map in (c,1) is brighter than the original sharpness map in

(b,1), due to the fact that white-noise makes sharpness values higher.

Especially, the most change in the sharpness map is in the sky (the

smoothest area). For contrast-reduced image in column 2, the distorted

map (c,2) is darker than the original map (b,2) because sharpness

values have been decreased. The distortion is captured mostly at the

edges around the hat and wall. For the JPEG image in (a,1), the sky

has been changed from one smooth area to several same-color areas.

This is captured in original and distorted maps, (b,2) and (c,2): The

dark area corresponding to the sky in (b,2) is changed either to black

or brightened (JPEG blocking artifact) in (c,2). The same pattern

happens for the JPEG2000 image in (a,4): The sea area is smooth

(low frequency), and it is distorted to be either blurring or ringing

[lower-area of (a,1)]. This is also captured in the maps (b,2) and (c,2):

The middle area corresponding to the sea is darker (blurring) and the

left area is whiter (ringing). 118

5.6 TID2008 accuracy matrix (%) for classifier across 1000 trials. 123

5.7 Me1 Me2 demonstration. For uniform distorted images [i.e. images (a)

and (b)], both Me1 and Me2 are reasonable. However, for locally dis-

tributed distortion [i.e. image (c) and (d)], Me1 values, which are the

average of three maxima of three scales, are too large. The Me2 values,

which are the average of three L2-norm, are better representations of

image qualities. 125

xxii

5.8 Scatterplots of TID2008 MOS versus four algorithms’ linearized scores,

MS-SSIM, MAD, FSIM, and S4RRL. S4RRL outperformed the other

FR-IQA metrics with less outliers in the high-quality range, MOS > 6. 128

5.9 The accuracy (%) of classifying images in LIVE and CSIQ, and seven

new distortion types in TID2013 into distortion families across 1000

trials. 130

5.10 Scatterplots of LIVE, CSIQ, and TID2013 databases DMOS versus

linearized S4RRL scores. 134

xxiii

CHAPTER 1

INTRODUCTION

1.1 Background on IQA

The quality of digital images is rarely perfects. When we see it on the Internet, on

the TV, on the phone or other displaying devices, there is a high chance that the

images got distorted. The distortions could be at any stage, e.g., during acquisition,

compression, transmission, decompression, or processing. Therefore, it is important

for the system to quantify the degradation in order to maintain, to control, and/or

to enhance the quality of the image automatically.

Although, it is difficult to get all people agreed on the same opinion, the quality

assessment task seems to be easy for human. Giving one person one reference (origi-

nal) image, and one distorted image, he or she can assess image quality easily. Even

when one portion of the reference image or no reference image is provided, human

can still assess quality. This task remains challenge for computer.

The crucial ground-truth information is needed, and thus several image databases

have been provided. Current IQA research also has been focused developing IQA

algorithms, and applying IQA algorithms. Several large image databases have been

provided publicly (smaller-size and oriented databases are not listed here).

The LIVE database [1] was developed in 2003 at the University of Texas at Austin,

USA. It contains 29 reference images and 779 distorted images. The distorted images

were generated from five different distortion types: JPEG compression, JPEG2000

compression, additive Gaussian white noise, Gaussian blurring, and JPEG2000 with

bit errors via a simulated Rayleigh fading channel.

1

The CSIQ database [2] was developed in 2008 at Oklahoma State University, USA.

It contains 30 reference images and 866 distorted images, which were generated from

six distortion types: JPEG compression, JPEG2000 compression, additive Gaussian

white noise, additive Gaussian pink noise (150 distorted images), Gaussian blurring,

and global contrast decrements.

The TID2008 database [3] developed at the Tampere University of Technology,

Finland. It contains 25 reference images and 1700 distorted images generated. There

are 17 distortion types in the database (e.g., different types of noise, blur, denoising,

JPEG and JPEG2000 compression, transmission of JPEG, JPEG2000 images with

errors, local distortions, luminance, and contrast changes). There were four different

levels of each distortion type.

More recently, Ponomarenko el. at provided the TID2013 [4] image database,

which is larger than TID2008. 24 distortion types and five level of distortions are

included in this database to form 3000 images total. New distortion types have

been have been introduced: change of color saturation, Multiplicative Gaussian noise,

Comfort noise, Lossy compression of noisy images, Image color quantization with

dither, Chromatic aberrations, Sparse sampling and reconstruction.

Many techniques are employed to develop IQA algorithms. We list here a few,

more state-of-the-art algorithms are provided in Section 4.2.

The SSIM algorithm was proposed by Wang et al. [5] and published in 2004.

SSIM first measures correlation, luminance, and contrast of reference and distorted

images. The image quality is then captured by three aspects of information loss:

luminance distortion, contrast distortion, and structural distortion. The MS-SSIM

[6] algorithm, proposed by the same authors, is an extension of SSIM for multiple

scales. MS-SSIM argues that the correct scale depends on the viewing conditions

(e.g., display resolution and viewing distance). Basically, MS-SSIM employs SSIM

for first scale (the reference and distorted images) and four smaller scales (filtered

2

and downsampled versions of the inputs) and it uses different weights for different

scales.

The Most Apparent Distortion algorithm (MAD) was developed by Larson and

Chandler [7] in 2010. MAD uses two strategies to estimate image quality. First,

a detection-based strategy is used for near-threshold distortions. In this case, the

image is most apparent, and thus the HVS attempts to look past the image and

look for the distortions. Second, an appearance-based strategy is used for clearly

visible distortions. In this case, the distortions are most apparent, and thus the HVS

attempts to look past the distortion and look for the image’s subject matter.

Today, IQA research has emerged as an active subdiscpline of image processing,

and many of the resulting techniques and algorithms have begun to benefit a wide

variety of applications ranging from image compression ([8–10]), to denoising ([11]),

to gauging intelligibility in sign language video [12], to synthesized texture [13].

Most IQA algorithms are so-called full-reference algorithms, which take as input

a reference image and a processed (usually distorted) image, and yield as output

either a scalar value denoting the overall visual quality or a spatial map denoting the

local quality of each image region. The FR IQA algorithm assumes that the original

(reference) image is available for use. For example, we have to-be-compressed image

and lossy compressed image. In this case, the compressed (distorted) image will be

compared to the original on purposes, such as quality monitoring, compressed rate

maintaining.

Recently, researchers have begun to develop no-reference IQA algorithms, which

attempt to yield the same quality estimates by using only the processed/distorted

image. The NR IQA states that the original image may not be available. For example,

when watching TV, the images we see are processed (distorted), and an algorithm

that can measure the quality can help the TV to control the quality.

More recently, a new field, reduced-reference IQA, has been explored. RR IQA

3

algorithm assesses quality by using the processed/distorted image and only partial

information about the reference image. In this case, the scenario is: The sender has

a limited bandwidth to send partial information about the original image along with

distorted image.

The additional background information on each research topic is presented at the

beginning of each chapter, separately.

1.2 IQA Challenges

Most of the IQA algorithms have been focused on improved prediction accuracy for the

best fit to those above-mentioned image databases. Some algorithms have been devel-

oped for specific distortion types, for example Gaussian blurred, or JPEG/JPEG2000.

However, most consumer photographs contain particular regions which are perceived

to be sharper than others. Indeed, most professional photographers attempt to max-

imize perceived sharpness of some specific areas. Different from the global sharpness

prediction, which is ability to quantify the perceived sharpness of an image, the local

sharpness prediction is also useful for a variety of image processing applications, for

example, auto-enhancement and auto-focus camera, and main subject detection.

Even though almost all existing sharpness measure algorithm can be modified to

run in a block-based fashion to generate a local sharpness map, none of them was

actually designed to generate a map. Moreover, there was no sharpness map database

to analyze these algorithms. Exploring local perceived sharpness is one of the goals

of this report.

An IQA algorithm that performs well in predicting image quality on current image

quality databases does not guarantee the same success in a coding context. During

JPEG2000 encoding, it is possible to generate images with vastly different visual

qualities depending on how the distortions are allocated to different frequency bands.

Moreover, most IQA algorithms have been tested only on standard MSE-optimal

4

JPEG2000 images found in popular image quality databases. Thus, these FR IQA

algorithms have been tested only MSE-optimal images. A new database of JPEG2000

image will be useful to value the performance of current algorithm. This process will

be interesting to know how to obtain good quality images given a total distortion.

Current IQA algorithms have been shown to perform quite well at gauging quality.

Some of the best-performing full-reference algorithms such as MS-SSIM [14], VIF [15],

and MAD [7] have been shown to generate estimates of quality that correlate highly

with human ratings of quality, typically yielding Spearman and Pearson correlation

coefficients in excess of 0.9. Research in no-reference and reduced-reference IQA

is much less mature; however, recent methods such as DIIVINE [16], BLIINDS-II

[17], and BRISQUE [18] can yield quality estimates which also correlate highly with

human ratings of quality, sometimes yielding correlation coefficients which rival the

full-reference methods. The efficiency of these algorithms has not been taken care

of. None of them could reach real time processing. Most of them need from three

seconds to one minute to assess quality of one 512× 512 image.

There are very few studies have focused on analyzing and improving the runtime

performance of IQA algorithms. Their interaction with the underlying hardware and

microarchitectural resources has not been explored. To what extent are the bottle-

necks in IQA algorithms attributable to the decomposition and statistical computa-

tion stages vs. more algorithm-specific auxiliary computations? To what extent are

the bottlenecks attributable to computational complexity vs. limitations in memory

bandwidth? Are there generic implementation techniques or microarchitectural mod-

ifications that can be used to accelerate all or at least several IQA algorithms? The

answers of these questions are important. However, there is no study that can give

us the answer. The research in the microarchitecture will answer this.

Progress on RR IQA has been fastened in recent years and shown promising

results. Many RR algorithms, developed with different approaches, have shown to be

5

competitive with FR algorithm, typically yielding Spearman and Pearson correlation

coefficients in excess of 0.88, comparing 0.90 for FR IQA algorithm.

The human visual system often does not require all information about the reference

image to assess image quality. Therefore, if we can find good RR features, RR IQA

can be as good as FR IQA can. This is the main difference between no-reference

IQA and reduced-reference IQA. The NR IQA could never be as good as FR, but

the RR can. However, two questions remain challenges for RR research: what kind

of reduced information should be used and how much information should be used in

RR task.

1.3 Dissertation Overview

The work presented in this dissertation focuses on four topics: (1) exploring local

perceived sharpness, (2) IQA algorithms for JPEG2000 coding, (3) performing mi-

croarchitectural analysis of IQA algorithms, and (4) a new RR IQA algorithm.

Local sharpness work involves creating a first local sharpness database ever. This

sharpness database will be helpful for local sharpness context, which is also impor-

tant for image auto-enhancement and main subject detection research fields. Current

sharpness metrics focus on improving global sharpness prediction (i.e., giving one

single scalar for one image, and to compare images together). These sharpness met-

rics can be modified to yield local sharpness map by dividing the input image into

small blocks and running sharpness metrics for each block. However, performing well

at global sharpness prediction does not guaranty a good result for local sharpness.

Therefore, we need a ground-truth to compare all algorithms. The local sharpness

database also can answer some important questions, for example, what do human

think about sharpness (since term sharpness lacks a precise technical definition),

what do sharp blocks look like, and do human agree on sharp/blur blocks. At the

time the database was published, there was no sharpness algorithm designed specif-

6

ically for local prediction. By now, there are a few algorithms can do that, e.g. S3

[19], FISHbb [20]. It is also interesting to see how well these algorithms, together

with modified sharpness metrics, perform in terms of sharpness map prediction.

Currently the JPEG2000-compressed images of common image databases were

generated using standard MSE criterion. After that, current state-of-the-art IQA

algorithms were tested on these images. On top of these, improving JPEG2000 cod-

ing leans on using these IQA algorithms to replace MSE. However, it is possible to

generate JPEG2000 images with the same total distortion, but distributed differently

across frequency. Therefore, we provide a new JPEG2000 image database, which in-

cludes non-MSE-criterion images. Our findings reveal that current IQA algorithms,

which perform reasonably well on JPEG2000-compressed images, fail to predict im-

ages in our database. Based on the analysis results, and framework of MAD algorithm,

we propose a new algorithm, MADDWT , which designed specifically for JPEG2000

coding which uses local DWT coefficient statistics.

Current state-of-the-art algorithms perform reasonably well in terms of prediction

accuracy. However, most of them perform slowly. Some of them require from sec-

onds to minutes to assess quality of one 512 × 512 image. This running time is far

from real time processing. The running time, computation complexity and memory

bandwidth have not been focused when developing algorithm. The interaction of

IQA algorithms with the underlying hardware remains unexplored. Several questions

remain challenges, for example, which is more important, computational complexity

or limitations in memory bandwidth? Are there generic implementation techniques

or microarchitectural modifications that can be used to accelerate all or at least sev-

eral IQA algorithms? The study provided in this section (chapter 4) answers these

questions. Moreover, the study also provide important insights for (1) designing new

IQA algorithms, which are likely to draw on multiple approaches used in several exist-

ing IQA algorithms; (2) efficiently implementing multiple IQA algorithms on a given

7

hardware platform; (3) efficiently applying multiple IQA algorithms to specific ap-

plications; and (4) selecting and/or designing specific hardware which can efficiently

execute multiple IQA algorithms.

The reduced reference IQA research has been fasten in recent years. Two questions

remain challenges for RR task: what is and how much reduced information should

we employ to accurately assess quality? In this study, we argue multiscale local

sharpness map is a good reduced reference feature. Because it has good characteristics

required for RR task: (1) it can efficiently summarize the reference images: the

edge and texture areas give us high sharpness values and the blank/smooth areas

have the low sharpness values; (2) it is sensitive to a variety of image distortions:

the sharpness values increase in white noise images, the sharpness values decrease

in Gaussian blurred images, the sharpness values increase for ringing artifacts and

decrease for quantized blocks in JPEG/JPEG2000. Moreover, the multiscale maps,

which are calculated from sharpness maps of downsampled versions of input image,

will provide comprehensive information along with first-scale sharpness map. In this

study, we invent a new RR framework, which employs any sharpness algorithm for

reduced information.

1.4 Structure of the dissertation

The rest of this chapter briefly highlights the content of all other chapters as following:

• Chapter 2: This chapter first provides background information for topic of

local perceived sharpness. The local sharpness experiment, including image, appara-

tus, subjects, experiment design and experiment process, is provided in detail. The

first ever local sharpness database is presented and analyzed. Several sharpness al-

gorithms, which were designed for global sharpness, are modified to work locally.

Analysis results of these algorithms applying on the ground truth maps are provided

at the end of the chapter.

8

• Chapter 3: As IQA algorithms are being employed for improved JPEG2000

coding. However, current JPEG2000-compressed images in common image databases

are generated using standard MSE criterion, and current IQA algorithms were tested

on these images only. This chapter provides a new JPEG2000-compressed image

database that does not employ MSE criterion. The study provided in this chapter

is trying to clarify that a good-general IQA algorithm often fails in coding context.

Based on the database analysis results and based on a current algorithm framework,

we propose a new IQA algorithm that is designed specifically for JPEG2000 compres-

sion.

• Chapter 4: The interaction of IQA algorithms with the underlying hardware and

microarchitectural resources has not been explored. This is the first ever paper that

studies IQA algorithms from hardware and software viewpoints. In this chapter, we

converted six state-of-the-art IQA algorithms into C++ code to have a base-line com-

parison. The analysis methodology, architectural concepts, and results of performance

analysis of all six algorithms are provided. The discussion section reveals that six al-

gorithms, with different approaches, share the same common algorithmic operation,

(e.g., a filtering/transforming step, and a statistical computation step). However,

they overwhelm different microarchitectural resources and give rise to different types

of bottlenecks, in two main categories: memory bottlenecks and core/computational

bottlenecks. Based on these results, microarchitectural-conscious coding techniques

and custom hardware recommendations for performance improvement are proposed

at the end of the chapter.

• Chapter 5: This chapter starts a new topic on reduced reference IQA framework.

The chapter starts with background, related work, RR framework based on sharpness

algorithms, and the results of our algorithms, comparing to other RR frameworks and

FR algorithms on popular image databases. In this chapter, the multiscale sharpness

maps are employed as reduced information. I also examine sharpness feature and

9

prove that this feature can summarize efficiently the reference image, and it is sensitive

to different distortion types. We also examine several sharpness algorithms in our

framework and we will demonstrate, the new RR framework, when utilizes around

2% reduced information can outperform all current RR frameworks, which employ

from 2% to 3% reduced information. Our best version of the RR framework also

outperforms or is competitive to the full-reference IQA algorithms.

• Chapter 6: Final conclusion and remarks, the discussion of future work are

provided in this chapter to finish this dissertation.

10

CHAPTER 2

LOCAL PERCEIVED SHARPNESS

2.1 Background

Although the term sharpness lacks a precise technical definition, any human can

effortlessly point out the sharp regions in an image or assess the overall sharpness

of the image. This is easy for human, however, it remains challenges for computer.

Furthermore, the ability to predict sharpness locally is also as important as globally

sharpness prediction, because most consumer photographs contain some areas that

are perceived to be sharper than others.

Most of the current sharpness metrics, for example, MMZ [21], MDWE [22], ST

[23], CPBD [24], and JNB [25], can predict quite well the Gaussian blur subsets of

current image databases (LIVE [1], CSIQ [26], and TID [27]). Only S3 algorithm

[28] claimed to be able to predict local sharpness. As they have been focused on

global sharpness, a few questions arise: Can they predict local sharpness and point

out sharp areas in an image? Is there a based line image database to compare their

local abilities?

To answer these questions, we provide a local sharpness experiment to collect

human subjective ratings for local blocks in terms of perceived sharpness. We also

examine the database to see if people agree with other when taking the experiment.

For current sharpness algorithms that have not been tested on small local blocks,

we modify them for them to work each 64× 64 blocks with 56 pixels overlap between

neighboring blocks. This is not quite fair for all of them. For example, MDWE and

JNB operate based on the assumption that there is at least one strong edge in the

11

image, and they try to measure the spread of this edge. However, this is the only way

to compare their ability to predict local sharpness.

2.2 Local Sharpness Experiment

2.2.1 Images

Six color images of size 300 × 400 shown in Figure 2.1 were chosen to generate sub-

jective sharpness maps. Stimuli were displayed on a LaCie 324 24-inch LCD monitor

(1920x1200 at 60 Hz). The display yielded the minimum and maximum luminance

of 0.80 and 259 cd/m2, respectively, with γ = 2.2. Stimuli were viewed binocularly

through natural pupils in a darkened room at a distance of approximately 60 cm.

Eleven adult subjects, both male and female whose ages range from 23 to 30, took

part in the experiment. All had the normal or corrected-to-normal visual acuity.

2.2.2 Design

The experiment interface is shown in Figure 2.2. Images were displayed in a mid-gray

background. The left image was divided into blocks of size 16 × 16 (shown by grid)

and the same image (without grid) was displayed in the right hand side for reference.

Subjects rated the sharpness value for each block on a scale from 1 to 3, where 1

means the block is very sharp, 3 means the block is not sharp, and 2 is somewhat

in between. There were only two buttons Level 1 and Level 2, which correspond to

scale 1 and 2, in the interface of the experiment. A right click on a block would

assign the sharpness value of that block to scale 3. There were also options to assign

a sharpness level to multiple blocks and undo an assignment, which facilitated the

experiment process.

For each image, subjects were asked to perform the experiment twice, where in

the second time the grid was offset by 8 pixels both horizontally and vertically. The

two resulting maps were then averaged to make a single map and thus provide us a

12

dragon flower monkey

orchid peak squirrel

Figure 2.1: Six images in the database and their corresponding average subjective
sharpness maps. Eleven subjects highly agreed with each other where the correlation
coefficients between average maps and subjects’ maps were 0.89 or higher.

sharpness map with block size 8×8. In comparison to the method of rating every 8×8

block, in which there are 1800 blocks for each image, this method helped reducing the

number of blocks each subject has to rate by half, while also achieving the resolution

(block size) of 8× 8 for the final subjective sharpness map. On average, each subject

took approximately 10 minutes to finish one map (one session).

13

Figure 2.2: Interface of the experiment. Subjects rated the sharpness level for each
16 × 16 block in the image in the left on a scale from 1 to 3 where 1 means the
block is very sharp. Two buttons Level 1 and Level 2 correspond to scale 1 and 2,
respectively. A right click on a block would assign the sharpness value of that block
to scale 3. The same image was displayed in the right hand side for reference.

2.2.3 Result

For each input image, from the three sharpness levels each subject rated, averaged

over 2 sessions (for each image, subjects were asked to perform the experiment twice)

and across eleven human subjects, we obtained the sharpness map which contains

206−245 grayscale levels. Figure 2.1 also shows the sharpness maps of the six images

in the database. Eleven subjects highly agreed with each other where the correlation

coefficients between average maps and subjects’ maps were 0.89 or higher.

2.3 Analysis Criteria

Before evaluating the performance of a metric, it is common to apply a logistic trans-

form to the predicted ratings to bring the predictions on the same scale as the MOS

or DMOS values. The logistic fitting function is use to nonlinearly map between the

predictions and subjective scores. We adopt the logistic transform suggested by the

14

Video Quality Experts Group [29], which is given by

f(x) =
τ1 − τ2

1 + exp(x−τ3
τ4

)
+ τ2 (2.1)

in which τ1, τ2, τ3, and τ4 are the model parameters which are chosen to minimize

the MSE between the predicted values and the subjective scores.

We use four criteria to compare the performances of different algorithms on the

three databases mentioned above. The most common criteria are the Pearson corre-

lation coefficient (CC), which measures how well an algorithm’s predictions correlate

with the subjective scores, and Spearman rank-order correlation (SROCC), which

measures the relative monotonicity between the predictions and subjective scores.

The other two criteria are the outlier ratio, OR, and outlier distance, OD. These two

criteria attempt to account for the inherent variation in human subjective ratings

of quality. This variability is normally quantified using the standard deviation of

all subjective ratings for a particular image σs. An outlier is defined as a prediction

which is outside 2σs of the DMOS or MOS1. Let Noutlier and Ntotal denote the number

of outliers and the total number of predicted ratings, respectively. The outlier ratio

is defined as:

OR =
Noutlier

Ntotal

(2.2)

In addition to the outlier ratio, the outlier distance, which was proposed in

Ref.[26], attempts to quantify how far of the error bar (±2σs) the outlier falls. It

is defined as:

OD =
∑

x∈Xfalse

min(|f(x)− (s(x) + σs)| , |f(x)− (s(x)− σs)|) (2.3)

where Xfalse is the set of all outliers, s(x) is the DMOS or MOS rating of image x,

1The range 2σs was chosen because it contains 95% of all subjective quality scores for a given

image.

15

and f(x) is the predicted score after the logistic transform in Equation 2.1.

2.4 Performance Analysis

At the time of writing the paper, there was no algorithm that can generate local

sharpness map, excepts S3 [28] algorithm. Five sharpness measures JNB, CPBD, ST,

MMZ, and MDWE are used in this comparison. As none of those algorithms directly

outputs a map, we ran each of algorithm in a block-based fashion in order to generate

sharpness maps. The input to those algorithms, instead of being the whole image, is

now each block of the image.

As described in Ref. [25] and [24], JNB and CPBD algorithm require the smallest

block size to be 64×64. We divide the input image into blocks of size 64×64 with 56

pixels overlap between neighboring blocks. The sharpness maps from JNB or CPBD

generated by running through all blocks therefore have block size of 8× 8. The rest

three algorithms, ST, MMZ, and MDWE, are run through each 32 × 32 block with

24 pixels overlap between neighboring blocks. Their generated sharpness maps thus

also have block size of 8× 8.

Figure 2.3 shows maps of the six algorithms on images dragon and flower. Other

algorithms do not generate good sharpness maps for image dragon but some (e.g.,

CPBD, MMZ) perform quite well for image flower. In general, the maps from S3

algorithm are the most close to the groundtruth maps. Note that this is not quite a

fair comparison as other algorithms are not designed to generate a map

Table 2.1 shows the performance of all algorithms on the entire set of images in

our sharpness map database using CC, SROCC, and KullbackLeibler divergence [30],

noted as KLD. The KLD measures the difference between two probability density

functions p and q. It is not symmetric and is defined as:

KLD(p|q) =
∑

x

log

(

p(x)

q(x)

)

(2.4)

16

Input image Groundtruth

JNB map CPBD map

ST map MMZ map

MDWE map S3 map

ST map MMZ map

JNB map CPBD map

MDWE map S3 map

Input image Groundtruth

Figure 2.3: Comparison of sharpness maps from different algorithms. In general, the
maps from S3 algorithm are the most close to the groundtruth maps. Note that black
blocks in MDWE maps are blocks which the MDWE algorithm failed to run on.

The probability density function deduced from the predicted map is treated as p

and the probability density function deduced from groundtruth is treated as q. Note

that before evaluating the performance of each algorithm, the logistic transform in

Equation 2.1 was also applied to the local sharpness values.

As can be seen from Table 2.1, regarding CC and SROCC, the S3 algorithm gives

best results. The MMZ algorithm generally stands for the second best except image

flower and squirrel where CPBD algorithm is the second best for SROCC. In KLD

criterion, our algorithm is the best for image dragon, monkey, and orchid, and the

second for image flower (the best is from CPBD). These results again demonstrate

17

that the combination of spectral and spatial measure in a block-based fashion helps

build an efficient measure of local sharpness. Again, note that this is not quite a fair

comparison as other algorithms are not designed to generate a map.

Table 2.1: Overall performance of all sharpness algorithms on the entire set of images
in our sharpness map database. The best two performances are bolded.

JNB CPBD ST MMZ MDWE S3

CC dragon 0.6077 0.6298 0.7581 0.8622 0.5178 0.9587

flower 0.6685 0.8235 0.6676 0.8728 0.7183 0.9470

monkey 0.4895 0.8039 0.7941 0.9398 0.6007 0.9597

orchid 0.4027 0.4466 0.4565 0.8678 0.3471 0.9329

peak 0.4164 0.4411 0.8044 0.8807 0.5361 0.9504

squirrel 0.8576 0.9132 0.8965 0.9415 0.8179 0.9696

SROCC dragon 0.5352 0.5909 0.8134 0.8924 0.5744 0.9521

flower 0.6741 0.7264 0.6065 0.5467 0.6030 0.7744

monkey 0.4320 0.8216 0.7499 0.8848 0.5143 0.9606

orchid 0.3691 0.4359 0.4752 0.8412 0.0909 0.9423

peak 0.4582 0.4274 0.8168 0.8808 0.4788 0.9342

squirrel 0.8124 0.8299 0.7509 0.8007 0.6896 0.8536

KLD dragon 2.5665 2.6955 2.4673 2.2691 2.8435 2.0327

flower 3.9633 2.4370 3.9635 3.7239 3.9027 3.7011

monkey 3.3885 1.2467 2.7107 1.9998 2.2816 1.0351

orchid 3.4786 2.6319 2.9661 2.7893 1.3228 0.9952

peak 1.7967 1.8203 2.0881 1.5784 2.1353 2.5528

squirrel 2.2090 2.8211 3.7357 4.4886 3.6146 3.3488

2.5 Summary

In this chapter, we explored a new area, which is local perceived sharpness. We

provided the experiment process to collect subjective rating of local sharpness. The

database is made available online for research community.

We performed analysis the database, and discovered that human subjects are

highly agreed with other in terms of sharpness. In general, the blocks which in-

clude edges or textures often get rated sharper. Blank blocks and smooth blocks are

generally rated not as sharp. However, the ratings are also biased by neighboring

blocks.

Most of the algorithms were not able to predict the sharpness of local blocks. We

modified those algorithms for them to measure small blocks with overlap between

neighboring blocks. Only a few algorithms were designed specifically for local sharp-

18

ness. However, no algorithm could reach 0.87 in terms of SROCC. From this, we can

see that the database is truly a representation of human opinions. There is also a lot

of room for developing a local sharpness algorithm.

19

CHAPTER 3

IQA ALGORITHM FOR JPEG2000 CODING

3.1 Background

Various algorithms for full-reference IQA have been developed and have been shown

to perform very well on current image databases. A common technique involves

measuring local pixelwise differences such as the mean-squared error (MSE) or peak

signal-to-noise ratio (PSNR). More complete algorithms have employed a wide variety

of approaches, for example Structural Similarity Index (SSIM) [5] and Multi-Scale

Structural Similarity Index (MS-SSIM) [6] algorithms estimate quality based on image

structure, Most Apparent Distortion (MAD) [7] estimates quality based on models of

the human visual system.

The SSIM, MS-SSIM, MAD algorithms and other FR IQA algorithms such as

NQM [31], VIF & VIFP [15], VSNR and [32], have been shown to be very good at

predicting the quality ratings on LIVE, CSIQ, TID2008. Some of them have been em-

ployed for improved JPEG2000 coding (e.g., [33], [34]). For example, instead of using

standard MSE-optimal coding schemes applied uniformly to all coefficients, Wang et

al. [33] proposed a new coding scheme which iteratively reallocates the available bits

over the image space based on a maximum of minimal structural similarity criterion.

Richter et al. [34] used MS-SSIM as a criterion to minimize the distortion created

by lossy image compression under a rate constraint. These types of approach try

to replace the squared-error distortion criterion with a perceived distortion measure

based on the output of an IQA algorithm.

However, JPEG2000 subsets from these image databases include only standard

20

MSE-optimal JPEG2000 [35] images, and thus, these FR IQA algorithms have been

tested only MSE-optimal images. After that, they would be employed to replace

the MSE stage of the coding scheme. Therefore, an IQA algorithm which performs

well in predicting quality on an image-quality database (general distortion types or

JPEG2000 compression) does not guarantee that the IQA algorithm will succeed

in a coding context. During JPEG2000 encoding, it is possible to generate images

with vastly different visual qualities depending on how the distortions are allocated

to different wavelet subbands. As argued in [36], the way in which distortions are

distributed across spatial frequency can significantly affect quality.

This is the first JPEG2000 image database that has a same amount of distortion,

but distributed to the subbands differently. As we will demonstrate, most of the

IQA algorithms cannot predict the quality rankings in a manner that agrees with

subjective rankings. We also provide a new algorithm, MADDWT , based on the

framework of MAD, using local DWT coefficient statistics to predict the rankings of

this database. The preliminary results of MADDWT on this database suggest that it

could be a good replacement for MSE in JPEG2000 coding.

The rest of this Chapter is organized as follows: In Section 3.2, we present a

new database designed specifically for JPEG2000 images with a fixed amount of

total distortion but allocated to different subbands. In this section, we introduce

the images and compression method, the experiment process, the apparatus and

subjects, and the results of the experiment. In Section 3.3, we analyze a numerous

current well-known IQA algorithms on our database. The criteria and results of

current IQA algorithms are also provided in this section. Section 3.4 establishes a

new algorithm, MADDWT , designed specifically for JPEG2000 coding which uses

local DWT coefficient statistics based on the framework of MAD. A quick review of

MAD framework, our modification, and MADDWT ’s performance are also provided.

At the end of the chapter, the summary of the whole chapter is provided in the Section

21

3.5.

3.2 A Database For JPEG2000 Compression

In this section, we provide the experiment methodology to obtain the first ever image

database, which contains only non-MSE-standard JPEG2000 images.

3.2.1 Images and compression

We selected 24 color images of size 512 × 512 pixels, which span a variety of com-

monplace subject matters in five categories: animals, landscapes, people, plants, and

urban, mostly from the CSIQ database [2] and personal sources. The original images

were converted to grayscale for use in the experiment.

A subset of five original images is shown in Figure 3.1. Five images span a huge

range of image’s contents, for example, the image geckos has a sandy texture, the

image log seaside and the image child swimming have a different texture in glass,

they both have some structure regions in the log and the baby, the image log seaside

also contains some very strong edge regions, the images cactus and monument have

some blank/smooth regions, and the image monument has some blurred regions.

Let I denote the grayscale 8-bit intensity of one image (I = 0.2989R+0.5870G+

0.1140B, where R, G, and B denote the 8-bit red, green, and blue intensities). First,

a Discrete Wavelet Transform (DWT) was applied to the image I using the 9/7

biorthogonal filters (as used in JPEG2000 [37]) and four levels of decomposition.

(The center radial spatial frequencies are 1.15, 2.3, 4.6, and 9.2 cycles per degree of

visual angle (cpd), respectively.) The DWT subbands were then distorted via scalar

quantization. In our experiment, the effects of orientation were not tested; each triplet

of subbands at the same level of decomposition was distorted with the same amount.

Figure 3.2 shows an example of four levels of DWT decomposition of the image

monument. At each level i = 1, 2, 3, 4, the three subbands (LH, HL, HH) were treated

22

geckos log_seaside child_swimming

cactus monument

Figure 3.1: Some original images used in the experiment. They span a variety of
commonplace subject matters in five categories animals, landscapes, people, plants,
and urban. They also contain different regions, such as texture, edge, structure, blank,
smooth, and blurred regions.

equally.

Let Î denote the reconstructed image. The distortion is given by E = Î − I + µI ,

where µI is the average of I. The Root Mean Square (RMS) contrast CTOT is given

by:

CTOT =
1

µLI

(

1

N
Σk [LE(k)− µLE

]2
)1/2

(3.1)

where µL denotes the average luminance (µ for the average, L for the luminance

domain), LE(k) is the luminance of kth pixel and N is total number of pixels.

The distortion contrast Di at level i is calculated from RMS contrast CTOT in the

23

1

2

3

4

Figure 3.2: An example of four levels of DWT decomposition of the image monument.
The effects of orientation were not tested; each triplet of subbands (LH, HL, HH) at
the same level i = 1, 2, 3, 4 of decomposition was distorted with the same amount.

pixel domain by:

Di ≈ 22i × C2

TOT × ζ (3.2)

where ζ is a parameter that takes into account viewing parameters such as display

gamma [36].

From equations 3.1 and 3.2, the total distortion contrast D is given by:

D =
∑

i

(Di) (3.3)

To generate images with the same desired total distortion contrast D = 0.12, we

chose the quantization step sizes via bisection search to meet the desired distortion

contrast of each level Di. To limit the number of possible proportions, we allowed

24

only four different amounts of distortion per level (0%, 20%, 40%, or 60% of D):

Di ∈ (0%, 20%, 40%, 60%×D) was chosen for level i such that
∑

i(Di) = 100%×D.

This scheme resulted in 40 distorted versions of each original image.

Some of images generated from the images archway and log seaside are shown in

Figure 3.3. The image in Figure 3.3(a) is distorted with 60% amount of distortion

on level 1 and 40% distortion on level 2. Figure 3.3(b) has 40% amount of distortion

on level 2, 40% distortion on level 3, and 20% on level 4. Figure 3.3(c) has 60%

amount of distortion on level 1, 20% distortion on level 2, and 20% distortion on level

3. Figure 3.3(d) has 20% amount of distortion on level 1, 60% distortion on level 2,

and 20% amount of distortion on level 4.

3.2.2 Experiment

To obtain the subjective ranking order of 40 distorted versions for each original image,

we used a pairwise-comparison paradigm. Subjects were asked to choose the better

quality image between each pair of distorted images.

The interface of the experiment to collect ranking order is shown in Figure 3.4.

Each pair of distorted images was displayed against a mid-gray background. Subjects

chose the better quality image by pushing the corresponding buttons. Subject could

also use keyboard shortcut to decide which one is better: left arrow if the left image

is higher quality, or right arrow for the image on the right side. Subject was forced

to choose a winner, even if two images were at about the same quality level.

A merge-sort method was employed to reduce the number of comparison pairs

from
(

40

2

)

= 780 to roughly 40 log(40) ≈ 150 pairs. The idea of using merge-sort is if

the quality of image A1 is lower than image A2, and the quality of image A2 is lower

than image A3, we can conclude that image A1 is lower quality than image A3.

Each subject was asked to perform the experiment with 10 to 20 original images

to ensure that each original image was ranked by at least six subjects. All subjects

25

(c)

(a)

(d)

(b)

Figure 3.3: Some images used in the experiment. Image (a) is distorted with 60%
amount of distortion on level 1, and 40% distortion on level 2. Image (b) has 40%
amount of distortion on level 2, 40% distortion on level 3, and 20% on level 4. Image
(c) has 60% amount of distortion on level 1, 20% distortion on level 2, and 20% dis-
tortion on level 3. Image (d) has 20% amount of distortion on level 1, 60% distortion
on level 2, and 20% amount of distortion on level 4.

were able to finish each trial within one hour. Each subject could finish all 10-20

trials in several days, as long as he or she felt good in the doing mood.

3.2.3 Apparatus and Subjects

Images were displayed on a professional-grade, widegamut LaCie 324 24-inch LCD

monitor (1920x1200 at 60 Hz; 92% NTSC color gamut). The display yielded minimum

and maximum luminances of 0.80 and 259 cd/m2, respectively, with a luminance

gamma of 2.2. Images were viewed binocularly through natural pupils in a darkened

26

Figure 3.4: The interface of the experiment to collect ranking order.

room at a distance of 60 cm. Nine adult subjects, all with normal or corrected-to-

normal vision, took part in the experiment. Subjects ranged from 23 to 34 years in

age.

3.2.4 Results And Image Database

By processing results of subjective ratings, we obtained quality rankings of 40 dis-

torted versions for each original image. The five highest-quality images of each original

image rated by each subject were taken, and the amounts of distortion for each level

of decomposition were computed by averaging those of these highest-quality images.

The amounts of distortion for four levels that generated the highest-quality images

for a subset of the original images are shown in Figure 3.5(a). The x-axis represents

the spatial frequencies of four levels and the y-axis represents amounts of distortion

27

1 2 4 8

10

20

30

40

50

(b)

D
is

to
rti

on
 (p

er
ce

nt
ag

e)

Spatial Frequency (cpd)

 geckos
 jefferson
 justice
 kids
 lighthouse
 rushmore
 snowleaves
 trolley
 urbanrange

1 2 4 8

10

20

30

40

50

60

(a)

D
is

to
rti

on
 (p

er
ce

nt
ag

e)

Spatial Frequency (cpd)

 geckos
 jefferson
 justice
 kids
 lighthouse
 rushmore
 snowleaves
 trolley
 urbanrange

Figure 3.5: The amounts of distortion for four levels that generated highest-quality
images (a), and lowest-quality images (b).

(percentage). For example, for the image justice, in order to have higher quality

images, we should allocate 36% amounts of distortion in level one, 16% in level two,

20% in level three and 28% in level four; for image rushmore, we should allocate 44%,

24%, 20%, 12% for level one, two, three, and four, respectively.

The distribution of distortions that created the lowest-quality images was also

studied with the same method as for the highest-quality images. The amounts of

distortion for four levels that created the lowest-quality images are provided in Figure

3.5(b).

The averages of all highest-quality and lowest-quality distortion-allocations of all

24 images are shown in Figure 3.6. From this figure, we can see that, in general,

higher-quality images were achieved by allocating most of the distortion to the finest

scale and the least to the coarser scales. On the other hand, the lower-quality images

were achieved by allocating the least distortion to finest scale, a little bit more on

coarsest scale, and most distortion to mid-frequency bands. However, the distortion-

allocation strategy which yielded the highest-ranked and lowest-ranked images showed

considerable variation from image to image.

28

1 2 4 8

10

20

30

40

50

D
is

to
rti

on
 (p

er
ce

nt
ag

e)

Spatial Frequency (cpd)

 Avg. of those created highest quality images
 Avg. of those created lowest quality images

Figure 3.6: The average amounts of distortion for four levels that generated highest-
quality images and lowest-quality images.

For each original image, four distorted versions using four distortion-allocation

proportions were created. The first proportion that created the best-quality image

was obtained from the distorted versions with highest quality, as in Figure 3.5(a).

The second and third proportions that created the best-by-average, worst-by-average

images were obtained from the average of proportions that created the highest-quality

and lowest-quality images, respectively, as in Figure 3.5(c). The worst-quality images

are created from fourth proportion obtained from the distorted versions with lowest-

quality, as in Figure 3.5(b). Two sets of four distorted images are shown in Figure

3.7. The best, best-by-average, worst-by-average, and worst-quality images of the

image waterside archway and the image urban ranger are located from left to right.

The full set of 4× 24 images is available online [38].

29

(a) (d) (c)

(f) (e)

(b)

(h) (g)

Figure 3.7: Two sets of four images generated using various distortion-allocation
proportions. The images labeled (a)-(d), (e)-(h) are the best, best-by-average, worst-
by-average, and worst quality images for image waterside archway and urban ranger,
respectively, based on the rankings from our experiment

3.2.5 Summary

This chapter presented a new JPEG2000 compression image database, which includes

24 reference images and 96 distorted images and their rankings. This is the first ever

image database which includes all the non-MSE standard JPEG2000 compression im-

ages. The highest-quality, lowest-quality, and average curves (distortion allocations)

are also provided. The image database is publically available to download at [38].

3.3 IQA Algorithms on Jpeg2000 Compression

In this section, we first propose two criteria to evaluate an algorithm’s performance

in predicting the rankings in our database. We then present the analysis results of

several well-known IQA algorithms using these criteria.

30

3.3.1 Proposed Criteria

To evaluate the abilities of IQA algorithms in predicting these rankings, we first con-

verted the algorithms’ scores to the ranking order, 1, 2, 3, and 4, and then compared

these predicted rankings to the rankings of the image database (i.e., as provided by

the experiment). We proposed two criteria to evaluate the performance: the number

of correct positions, C, and the precision of prediction, P .

Scalar C is given by:

C =
24
∑

i=1

4
∑

j=1

H(i, j) (3.4)

where H(i, j) = 1 if A(i, j) = D(i, j), H(i, j) = 0 if A(i, j) 6= D(i, j), and A(i, j) and

D(i, j) denote the rank order of algorithm and database, respectively, of the image

number i and distorted version j.

Scalar P is given by

P =
1

480

24
∑

i=1

4
∑

j=1

(A(i, j)−D(i, j))2 (3.5)

where the quantity 480 is used to normalize P to the range of [0, 1].

Note that the C score is an integer in the range [0, 96]; the higher C, the better

algorithm; and the P score is a real value in the range [0, 1], the lower P, the better

the prediction. A perfect prediction would give C = 96 and P = 0. A higher C

score does not guarantee a lower P score. For example, if two algorithms have the

same C scores C = 94, it means that two algorithms predict 94 positions correctly,

and two positions incorrectly. However, the P scores can be different, such as when

an algorithm misplaces first and second positions and the other misplaces the first

and fourth position. In this case, the P score will indicate that the first algorithm is

better than the second algorithm.

31

3.3.2 Results of Existing IQA Algorithms

We tested the ability of various IQA algorithms in predicting the rankings in this

image database (NQM [31], PSNR [39], SSIM [5], MS-SSIM [6], VIF & VIFP [15],

VSNR [32], MAD [7]). The performances of these IQA algorithms using the criteria

proposed in Section 3.3.1 are shown in Table 3.1 with two best performances bolded.

Table 3.1: The performances of several well-known IQA algorithms. Two best per-
formances are bolded.

C scores P scores
SSIM 38 0.4250
PSNR 42 0.3135
MS-SSIM 65 0.0833
VIF 61 0.1250
VIFP 51 0.2167
NQM 60 0.3458
VSNR 66 0.0750
MAD 54 0.1625

From Table 3.1, two best algorithms are VSNR and MS-SSIM with C scores of

66 and 65, P scores of 0.0750 and 0.0833, respectively. The results of VSNR and

MS-SSIM are described in detail in Table 3.2-3.4.

Table 3.2 shows the results of VNSR’s quality scores for all 96 images. Note that

the VSNR quality scores are in dB, in the range 0− inf; the higher VSNR, the higher

quality. These scores are then converted to ranking scores (1, 2, 3, and 4) for each

image and they are given in Table 3.3. Table 3.3 shows that VSNR has failed to

predict 30 positions (C = 66). VSNR has perfectly predicted the fourth positions of

all images by pointing out the lowest quality images. For the third positions, VSNR

also gives a good results; it only fails on the images redwood and foxy. VSNR swaps

the highest quality image with the second best several times.

The ranking scores of MS-SSIM are also given in Table 3.4. As seen in this table,

MS-SSIM is also a good predictor with 65 correct positions. However, for the images

redwood and foxy, MS-SSIM gives the worst images the highest scores. For the images

32

Table 3.2: VNSR’s quality scores for all 96 images

Image name
Levels

1 2 3 4

child swimming 27.76 26.34 21.33 20.24
log seaside 31.22 29.81 24.52 20.03
monument 27.05 28.98 24.15 23.24
redwood 25.97 31.96 26.88 25.55
swarm 33.01 30.50 25.51 22.12
archway 27.28 26.03 21.25 19.81
bridge 30.50 29.05 24.32 22.47
cactus 27.38 29.81 24.23 19.35

child fishermen 30.30 29.94 25.04 24.45
couple 25.89 28.14 23.01 19.19
deer 23.98 25.17 20.29 16.41

desert tree 29.94 28.87 23.69 23.49
foxy 25.14 30.80 25.49 21.13
geckos 21.14 25.25 20.19 15.87

jefferson 24.31 25.15 20.21 18.28
justice 29.59 31.00 25.80 23.42
kids 33.61 34.86 29.50 24.91

lighthouse 32.68 30.40 25.33 22.84
rushmore 28.51 27.61 22.65 20.65
snow leaves 30.34 34.14 28.80 27.19

trolley 28.76 29.74 24.45 22.54
urban ranger 29.38 27.65 23.86 21.30

veggies 29.33 32.90 27.52 23.62
waterside archway 26.56 27.82 22.78 20.93

33

Table 3.3: VNSR’s quality rankings for all 96 images

Image name
Database index

Image name
Database index

1 2 3 4 1 2 3 4

child swimming 1 2 3 4 foxy 3 1 2 4
log seaside 1 2 3 4 geckos 2 1 3 4
monument 2 1 3 4 jefferson 2 1 3 4
redwood 3 1 2 4 justice 2 1 3 4
swarm 1 2 3 4 kids 2 1 3 4
archway 1 2 3 4 lighthouse 1 2 3 4
bridge 1 2 3 4 rushmore 1 2 3 4
cactus 2 1 3 4 snow leaves 2 1 3 4

child fishermen 1 2 3 4 trolley 2 1 3 4
couple 2 1 3 4 urban ranger 1 2 3 4
deer 2 1 3 4 veggies 2 1 3 4

desert tree 1 2 3 4 waterside archway 2 1 3 4

geckos and veggies, MS-SSIM rates the third-position images as the most beautiful

images.

Although all tested algorithms failed to predict the correct rankings on many of

the images, the results presented in Table 3.1 are not too surprising. We can see

that SSIM performs poorly (C = 38 and P = 0.4250), but MS-SSIM is much better

by considering the multiple scales (C = 65 and P = 0.0833). Moreover, as reported

in [7], MS-SSIM, VIF, and MAD are three best IQA algorithms on the LIVE [1],

CSIQ [2], TID [27], Toyama [40] image databases, but their performances are not as

good as VSNR and MS-SSIM on our JPEG2000 database. Again, a good algorithm

for general type distortion cannot guarantee the same success in JPEG2000 images,

especially non-MSE-standard JPEG2000 images.

3.4 A New Algorithm Using DWT

As stated in previous section, predicting quality rankings in this database is challeng-

ing for current IQA algorithms because they are not designed to handle the situation

where the same distortion is distributed differently across subbands. Here, we pro-

34

Table 3.4: MS-SSIM’s quality rankings for all 96 images

Image name
Database index

Image name
Database index

1 2 3 4 1 2 3 4

child swimming 1 2 3 4 foxy 4 1 2 3
log seaside 2 1 3 4 geckos 3 1 2 4
monument 2 1 3 4 jefferson 2 1 3 4
redwood 4 1 2 3 justice 2 1 3 4
swarm 1 2 3 4 kids 2 1 3 4
archway 1 2 3 4 lighthouse 1 2 3 4
bridge 1 2 3 4 rushmore 1 2 3 4
cactus 2 1 3 4 snow leaves 2 1 3 4

child fishermen 1 2 3 4 trolley 2 1 3 4
couple 2 1 3 4 urban ranger 1 2 3 4
deer 2 1 3 4 veggies 3 1 2 4

desert tree 1 2 3 4 waterside archway 2 1 3 4

pose a new IQA algorithm, MADDWT , designed specifically for JPEG2000 coding

which uses local DWT coefficient statistics based on the framework of Most Appar-

ent Distortion (MAD) [7]. First, we provide a brief overview of MAD, including the

idea, block diagrams, and the algorithm’s steps. Next, we present the MADDWT al-

gorithm which is based on MAD’s framework. Finally, we conclude the section with

MADDWT ’s results on our JPEG2000 database.

3.4.1 Overview of Most Apparent Distortion (MAD)

The Most Apparent Distortion (MAD) algorithm was developed by Larson and Chan-

dler [7] in 2010. MAD uses two strategies to estimate image quality: a detection-based

strategy is used for near threshold distortions and an appearance-based strategy is

used for clearly visible distortion. The MAD algorithm includes two main stages: (1)

a detection-based stage, which estimates quality based on the extent to which the

distortions are visible; and (2) an appearance-based stage, which estimates quality

based on the extent to which the image is recognizable.

Figure 3.8 shows the two main stage of the original MAD algorithm. In each stage,

35

Original &

distorted images

Calculate Detection-

Based Difference Map

Calculate Appearance-

Based Difference Map

MAD index

Figure 3.8: Original MADs framework with two stages: a detection-based stage and
an appearance-based stage.

MAD operates in a block-based fashion. All small blocks are treated equally and the

differences between reference and distorted properties form the detection-based and

appearance-based maps. The detail of calculating these maps and the collapsing

method are provided in the following subsections.

3.4.2 Detection-based map calculating

Figure 3.9 provides a block diagram of the detection-based map calculating in MAD.

The pixel values of the reference and distorted images are first converted to lightness

values; then, a model of the human contrast sensitivity function is applied via spatial

filtering; then, local RMS contrast values are computed to quantify the masking

capability (the ability to hide distortion) of each region in the reference image. This

resulting masking map is then used to weight a block-based MSE map computed in

the lightness domain to form MAD detection-based map.

This stage requires the grayscale images only, therefore preprocessing step is

needed. The pixel values of the reference and distorted images are first converted

to grayscale via I = 0.2989R + 0.5870G + 0.1140B, where R, G, and B denote the

8-bit red, green, and blue intensities. After that, the grayscale I is converted to

lightness values via L = (a+ kI)γ/3 where a = 0, k = 0.02874, and γ = 2.2 for 8-bit

pixel values of an sRGB display. The division by 3 attempts to take into account

the nonlinear HVS response to luminance by converting luminance into perceived

luminance.

36

Figure 3.9: Block diagram of the detection-based strategy used to compute a visible
distortion map. Both the reference and the distorted image are first converted to
perceived luminance, and then filtered by a contrast sensitivity function (CSF). The
local distortion visibility map is obtained by comparing the local contrast of the
reference image and the error image.

Next, a model of the human contrast sensitivity function is applied via spatial

filtering. The contrast sensitivity function (CSF) [41] is applied by filtering both the

reference image L and the error image ∆L = L− L̂ via:

L̃ = F
−1[H(u, v)× F[L]] (3.6)

where F and F
−1 denote the DFT and inverse DFT, respectively; H(u, v) is the DFT-

based version of the CSF function defined by Equation (3) in Ref. [7].

The ability to hide distortion is different for different image regions. This is so-

called masking capability. To quantify the masking capability of each region in the

reference image, MAD employs a simple spatial-domain measure of contrast masking.

The local RMS contrast values are computed for each small block of size 16 × 16

37

with 75% overlap between neighboring blocks. Two local RMS contrast maps of the

reference and error images are employed to compute a local distortion visibility map.

This map reflects how human can see distortion differently in different regions, even

thought the distortion is uniform for the whole image.

A block-based MSE map is then computed in the lightness domain in the same

block-based fashion from the reference and distorted images. This MSE map is then

weighted by the local distortion visibility map via a point-by-point multiplication to

form detection-based map.

Figure 3.9 illustrates the process of detection-based strategy for the distorted

(noise added) and reference images the image cactus. The white blocks of final visible

distortion map show us that the noise is easily detected in the smooth regions (e.g.

sky). The cactus itself can hide distortion, it is not easy to see noise here, and thus

creates the darker blocks.

3.4.3 Appearance-based map calculating

Figure 3.10 provides a block diagram of the appearance-based map calculating. MAD

employs a computational neural model using a log-Gabor filterbank, which imple-

ments both even-symmetric (cosine-phase) and odd-symmetric (sine-phase) filters.

The even and odd filter outputs are then collapsed to yield magnitude-only subband

values. The variance, skewness, and kurtosis are then computed for each 16 × 16

block (with 75% overlap between blocks) of each subband of the reference and dis-

torted images. The appearance-based map is then given from the differences between

these statistics of the reference and distorted images.

The log-Gabor filterbank employed here is implemented with five scales s ∈

{1, 2, 3, 4, 5} and four orientations o ∈ {1, 2, 3, 4}, and thus yields 20 subbands for

each image. Each subband is then divided into small blocks of size 16× 16 with 75%

overlap between neighboring blocks. With each block, the standard deviation, skew-

38

Figure 3.10: Block diagram of the appearance-based strategy used to compute a
statistical difference map. A computational neural model using a log-Gabor filterbank
is employed. The standard deviation, skewness, and kurtosis are computed for each
subband’s block. The differences of local standard deviation, skewness, and kurtosis
between each pair of reference and distorted subbands are combined into a statistical
difference map.

ness, and kurtosis are calculated. Let σs,o(b), ςs,o(b), and κs,o(b) denote the standard

deviation, skewness, and kurtosis computed from a block located at b of the subband

at sth scale and oth orientation. The appearance-based map, which is statistical differ-

ence map, is computed as the weighted combination of the differences in σ, ς, and κ

for all subbands. Specifically, appearance-based map, AM , at the location b is given

by:

AM(b) =
5
∑

s=1

4
∑

o=1

ws[|σ
s,o(b)− σ̂s,o(b)|+ 2|ςs,o(b)− ς̂s,o(b)|+ |κs,o(b)− κ̂s,o(b)|]. (3.7)

where the weights ws = {0.5, 0.75, 1, 5, 6} (for the finest to coarsest scales, respec-

tively) are used to combine the differences across scales (see Ref. [7] for more details).

39

3.4.4 Collapsing and combining

From detection-based and appearance-based maps obtained from previous steps, a

2-norm is applied to collapse two maps into two single indices, ddetect and dappear,

respectively (e.g. dappear =
(

1

P

∑

p AM(p)2
)1/2

). The two scalar values ddetect and

dappear are combined into an overall distortion value via a weighted geometric mean:

MAD = dαdetect × d1−α
appear, (3.8)

where the weight α is selected to give greater contribution from ddetect for mildly

distorted images and greater contribution from dappear for more heavily distorted

images (see Equation 13 in [7]).

3.4.5 MAD using Discrete Wavelet Transform

Although MAD performs very well in predicting subjective ratings of image quality

for both general distortions and particular distortion including standard JPEG2000

compression distortion, MAD does not perform well on our JPEG2000 database.

Using the same two-strategy framework, we propose a new algorithm, MADDWT , a

modification of MAD, using discrete wavelet transform decomposition.

In MADDWT , the appearance-based stage is performed by using the DWT sub-

bands not the log-Gabor-filtered images as in original MAD. The appearance-based

maps of the original MAD and MADDWT are shown in Figure 3.11(a) and (b), re-

spectively. Original MAD uses log-Gabor filter with four orientations and five scales

(20 subbands), while MADDWT employs discrete wavelet transform decomposition

with four scales (4× 3 + 1 = 13 subbands).

We used the same method to calculate statistical differences. From all 13 pairs

of subbands for the reference and distorted images, the local variance, skewness, and

kurtosis are computed for each block of the size 16 × 16 pixels (with 75% overlap

40

Log-Gabor filter with four

orientations and five scales

Compute 20 statistical

difference maps

Combine 20

maps

DWT decomposition with

four scales

Compute 13 statistical

difference maps

Combine 13

maps

(a)

(b)

Figure 3.11: Block diagram of the appearance-based maps of the original MAD and
MADDWT . A computational neural model using a log-Gabor filterbank is employed.
Original MAD uses log-Gabor filter with four orientations and five scales (20 sub-
bands) in Figure (a), while MADDWT employs discrete wavelet transform decompo-
sition with four scales (4× 3 + 1 = 13 subbands) in Figure (b).

between blocks). However, the appearance-based map calculating need a different set

of weights to combine across scales. Specifically, The block b of the new appearance-

based map is computed as follows:

AM(b) =
4
∑

i=1

wi

∑

B

(|σs,o(b)− σ̂s,o(b)|+ 2|ςs,o(b)− ς̂s,o(b)|+ |κs,o(b)− κ̂s,o(b)|) .

(3.9)

where σi,B(b), ξi,B(b), κi,B(b) denote, respectively, the standard deviation, skew-

ness, and kurtosis of the block b corresponding to level i, and subband B. The

value i = 1, 2, 3, 4 is for the finest to coarsest scales, respectively, and subband

B, B ∈ (LH,HL,HH) for three subbands in each triplet for first three levels,

B ∈ (LL,LH,HL,HH) for level 4. The weight vector w = [1 40 20 5]T is cho-

sen for the best fit.

3.4.6 MADDWT results

The ranking scores of MADDWT are given in Table 3.5. We can see that MADDWT

performs very well on most of the images. MADDWT is able to predict the rankings

perfectly for the third and fourth positions, except the image veggies. For the other

25 images, MADDWT fails to predict only 22 images on the first and second positions.

41

Table 3.5: MADDWT ’s ranking scores for all 96 images

Image name
Database index

Image name
Database index

1 2 3 4 1 2 3 4

child swimming 1 2 3 4 foxy 2 1 3 4
log seaside 2 1 3 4 geckos 2 1 3 4
monument 2 1 3 4 jefferson 2 1 3 4
redwood 2 1 3 4 justice 1 2 3 4
swarm 1 2 3 4 kids 2 1 3 4
archway 2 1 3 4 lighthouse 1 2 3 4
bridge 1 2 3 4 rushmore 1 2 3 4
cactus 1 2 3 4 snow leaves 2 1 3 4

child fishermen 1 2 3 4 trolley 1 2 3 4
couple 1 2 3 4 urban ranger 1 2 3 4
deer 2 1 3 4 veggies 3 1 2 4

desert tree 2 1 3 4 waterside archway 1 2 3 4

Table 3.6: The performances of MADDWT and other IQA algorithms. Two best
performances are bolded.

C scores P scores
SSIM 38 0.4250
PSNR 42 0.3135
MS-SSIM 65 0.0833
VIF 61 0.1250
VIFP 51 0.2167
NQM 60 0.3458
VSNR 66 0.0750
MAD 54 0.1625

MADDWT 71 0.0583

This is much better than the current best algorithm, VSNR, with 30 failed positions.

The performance of MADDWT is given in Table 3.6 other well-known algorithms.

Two best performances are bolded. Table 3.6 shows that MADDWT outperforms

all other IQA algorithms in terms of both C scores and P scores with C = 71

and P = 0.0583. VSNR and MS-SSIM also have competitive performances with

MADDWT .

42

3.5 Summary

In this chapter, we presented an image database designed specifically for JPEG2000

images with a fixed amount of total distortion, but in which the distortions were allo-

cated to different frequency bands in different proportions. The result from subjective

ranking experiment revealed that, in general, higher-quality images were achieved by

allocating most of the distortion to the finest scale and the least to the coarse-to-mid

scales.

We also provided an analysis of existing IQA algorithms on this database which

revealed that even though the algorithms perform reasonably well on JPEG2000-

compressed images in popular image-quality databases, they often fail to predict the

correct rankings on the images here.

We also provided a new IQA algorithm, MADDWT , which designed specifically

for JPEG2000 coding. MADDWT was developed based on MAD algorithm. The

MADDWT employed DWT instead of log-Gabor filtering in original MAD, with dif-

ferent weights to combine across scales. The results demonstrated that MADDWT

outperforms all other IQA algorithms in terms of both C scores and P scores on this

database.

43

CHAPTER 4

MICROARCHITECTURAL ANALYSIS OF IQA ALGORITHMS

4.1 Background

Although a great deal of research on IQA has focused on improving prediction accu-

racy, much less research has addressed performance issues with respect to algorithmic,

microarchitechtural efficiency, and program execution speed. As IQA algorithms move

from the research environment into more mainstream applications, issues surround-

ing efficiency—such as execution speed and memory bandwidth requirements—begin

to emerge as equally important performance criteria. Many IQA algorithms which

excel in terms of prediction accuracy fall short in terms of efficiency, often requir-

ing relatively large memory footprints and runtimes on the order of seconds for even

modest-sized images (e.g., < 1 megapixel). As these algorithms are adapted to pro-

cess frames of video (e.g., Refs. [42, 43]), or are used during optimization procedures

(e.g., during RD optimization in a coding context), efficiency becomes of even greater

importance.

From a signal-processing viewpoint, it would seem that the bulk of computation

and runtime are likely to occur in two key stages which are employed by most IQA

algorithms: (1) local frequency-based decompositions of the input image(s); and (2)

local statistical computations on the frequency coefficients. The first of these two

stages can potentially require a considerable amount of computation and memory

bandwidth, particularly when a large number of frequency bands are analyzed, and

when the decomposition must be applied to the image as a whole. The latter of these

two stages would seem to require more computation, particularly when multiple statis-

44

tical computations are computed for each local region of coefficients. For example, in

MS-SSIM [14], an image is decomposed into different scales, and local image statistics

are computed for each block of coefficients (via a sliding window). In VIF [15], wavelet

subband covariances can be computed via a block-based or overlapping block-based

approach. In MAD [7], variances, skewness, and kurtosis of log-Gabor coefficients

are also computed for overlapping blocks in each subband. These approaches have

been argued to mimic the cortical processing in the human visual system (HVS) in

which the statistics of local responses of neurons in primary visual cortex (modeled

as coefficients) are computed and compared in higher-level visual areas. Yet, unlike

the HVS, most modern computing machines lack dedicated hardware for computing

the coefficients and their local statistics.

Due to their extensive use in image compression and computer vision, a consider-

able amount of research has focused on accelerating two-dimensional image transforms

which provide local frequency-based decompositions. For example, the discrete co-

sine transform (DCT) has been accelerated at the algorithm level by using variations

of the same techniques used in the FFT (e.g., Ref. [44]) and by exploiting various

algebraic and structural properties of the transform, e.g., via recursion Ref. [45], lift-

ing Ref. [46], matrix factorization Ref. [47], cyclic convolution Ref. [48], and many

other techniques (see Ref. [49] for a review). Numerous techniques for hardware-

based acceleration of the DCT have also been proposed using GPGPU-based and

FPGA-based implementations (e.g., Ref. [50–53]). Algorithm- and hardware-based

acceleration has also been researched for the discrete wavelet transform (e.g., Refs.

[54–56]) and Gabor transform (e.g., Refs. [57–60]).

Techniques for accelerating the computation of local statistics in images have also

been researched, though to a much lesser extent than the transforms. One technique,

called integral images, which was originally developed in the context of computer

graphics [61], has emerged as a popular approach for computing block-based sums of

45

any two-dimensional matrix of values (e.g., a matrix of pixels or coefficients). The

integral image, also known as the summed area table, requires first computing a table

which has the same dimensions as the input matrix, and in which each value in the

table represents the sum of all matrix values above and to the left of the current

position. Thereafter, the sum of values within any block of the matrix can be rapidly

computed via addition/subtraction of three values in the table. A similar technique

can be used for computing higher-order moments such as the variance, skewness, and

kurtosis (see, e.g., Refs. [62, 63]).

In Ref. [64], Chen and Bovik presented the Fast SSIM and Fast MS-SSIM algo-

rithms, which are accelerated versions of SSIM and MS-SSIM, respectively. Three

modifications were used for Fast SSIM: (1) The luminance component of each block

was computed by using an integral image. (2) The contrast and structure compo-

nents of each block were computed based on 2 × 2 Roberts gradient operators. (3)

The Gaussian-weighting window used in the contrast and structure components was

replaced with an integer approximation. For Fast MS-SSIM, a further algorithm-

level modification of skipping the contrast and structure computations at the finest

scale was proposed. By using these modifications, Fast SSIM and Fast MS-SSIM

were shown to be, respectively, 2.7x and 10x faster than their original counterparts

on 768x432 frames from videos of the LIVE Video Quality database [1]. Although

algorithm-level modifications were used, the authors demonstrated that these modi-

fications had negligible impact on predictive performance; testing on the LIVE Im-

age Quality and Video Quality databases revealed effectively no impact on Spear-

man rank-order correlation coefficient, Pearson correlation coefficient, and root-mean-

square error. By further implementing the calculations of the contrast and structure

components via Intel SSE2 (SIMD) instructions, speedups of approximately 5x for

Fast SSIM and 14x for Fast MS-SSIM were reported. In addition, speedups of ap-

proximately 17x for Fast SSIM and 50x for Fast MS-SSIM were reported by further

46

employing parallelization via a multithreaded implementation.

In Ref. [65], Okarma and Mazurek presented GPGPU techniques for accelerat-

ing SSIM, MS-SSIM, and CVQM (a video quality assessment algorithm developed

previously by Okarma, which uses SSIM, MS-SSIM, and VIF to estimate quality).

To accelerate the computation of both SSIM and MS-SSIM, the authors described a

CUDA-based implementation in which separate GPU threads were used for comput-

ing SSIM or MS-SSIM on strategically sized fragments of the image. To overcome

CUDA’s memory-bandwidth limitations, the computed quality estimates for the frag-

ments were stored in GPU registers and transferred only once to the system memory.

Okarma and Mazurek reported that their GPGPU-based implementations resulted in

150x and 35x speedups of SSIM and MS-SSIM, respectively.

In Ref. [63], Phan et al. presented the results of a performance analysis and

techniques for accelerating the MAD algorithm [7]. Although MAD is among the best

in predictive performance, it is currently the one of the slowest IQA algorithms when

tested on several modern computers (Intel Core 2 and Xeon CPUs; see Ref. [63]). A

performance analysis revealed that the main bottleneck in MAD stemmed from its

appearance-based stage, which accounted for 98% of the total runtime. Within this

appearance-based stage, the computation of the local statistical differences accounted

for most of the runtime, and computation of the log-Gabor decomposition accounted

for the bulk of the remainder. Phan et al. proposed and tested four techniques of

acceleration: (1) Using integral images for the local statistical computations; (2) using

procedure expansion and strength reduction; (3) using a GPGPU implementation of

the log-Gabor decomposition; and (4) precomputation and caching of the log-Gabor

filters. The first two of these modifications resulted in an approximately 17x speedup

over the original MAD implementation. The latter two resulted in an approximately

47x speedup over the original MAD implementation.

Although these studies have successfully yielded more efficient versions of their

47

respective algorithms, several larger questions remain unanswered, especially with

respect to IQA algorithms: To what extent are the bottlenecks in IQA algorithms at-

tributable to the decomposition and statistical computation stages vs. more algorithm-

specific auxiliary computations? To what extent are the bottlenecks attributable to

computational complexity vs. limitations in memory bandwidth? Are there generic

implementation techniques or microarchitectural modifications that can be used to

accelerate all or at least several IQA algorithms? The answers to these questions can

provide important insights for (1) designing new IQA algorithms, which are likely to

draw on multiple approaches used in several existing IQA algorithms; (2) efficiently

implementing multiple IQA algorithms on a given hardware platform; (3) efficiently

applying multiple IQA algorithms to specific applications; and (4) selecting and/or

designing specific hardware which can efficiently execute multiple IQA algorithms.

In this paper, we present the results of a performance analysis designed to examine,

compare, and contrast the performances of four popular FR IQA algorithms (MS-

SSIM [14] published in 2003 , VIF [15] in 2006, VSNR [66] in 2007, and MAD [7] in

2010) and two NR IQA algorithms (BLIINDS-II [17] and BRISQUE [18] in 2012).

This work draws upon techniques that are standard in the field of performance

analysis and software tuning. Listed below, are some similar studies done in the area

of multimedia applications. We take a similar approach in this paper.

In Ref. [67], Bhargava et al. evaluated the effectiveness of the x86 MMX instruc-

tions for DSP and multimedia applications using Intel’s Vtune Amplifier XE profiler

[68]. Their analysis showed that MMX assembly called within C programs is not an

effective strategy to improve performance. They recommend comprehensive hand-

coding and restructuring of programs to fully utilize MMX capabilities. They also

conclude that parallel processing using the SIMD extensions puts a higher burden on

the memory system. Their recommendations have guided developers and compiler

writers as well as computer architects over the years.

48

In Ref. [69], Gordon et al. analyzed the performance of model-based video com-

pression for a GPGPU implementation using CUDA, and found that surprisingly,

the GPGPU implementation was slower than the native CPU implementation. The

authors analyzed data with the help of Intel’s Vtune Amplifier XE performance an-

alyzer to gain insight into the specific reasons for the surprising results, and found

a high cache miss rate and heavy stalling of the load/store unit of the CPU in the

GPGPU version. This led to the discovery that the GPGPU implementation was

using the CPU’s load store units to access system memory instead of using Direct

Memory Access (DMA).

In Ref. [70], Martinez et al. analyzed the performance of commercial multimedia

workloads on Intel’s Pentium 4, focusing on whether these applications make use of

the 4-wide out of order superscalar pipeline. They found that the count for instruc-

tion per cycle (IPC) is very low, indicating that these applications do not utilize

the underlying microarchitecture. They conclude that the low IPC was a result of

branch mispredictions and data cache misses, and they recommend static code lay-

out techniques that are aware of cache topology to maximize the utilization of data

caches.

Although our examination is limited to six algorithms, we believe that this study

is an important first step toward investigating broader performance-related issues in

the design and application of IQA algorithms. The findings and recommendations

presented in this paper apply broadly to all current-generation Intel IA-32 and Intel

64 based general-purpose computing platforms, whether laptops, servers, or desktops,

even though the actual hotspot and bottleneck details might vary. Architectures that

are radically different, with hardware accelerators, dedicated image processing cores

(such as those found on some tablets and smart phones), and memory shared between

GPUs and CPUs (such as AMD’s Fusion APUs) are expected to show very different

execution characteristics.

49

The rest of this paper is organized as follows: Section 4.2 provides a brief review

of each of the six algorithms, including details of the code implementations and the

results of the performance-analysis for each algorithm. Section 4.3 and 4.4 provide

the analysis methodology and some architectural concepts. The performance analysis

results are presented in Section 4.5. Section 4.6 compares and discusses the differences

in performances of all six algorithms. General conclusions of the chapter are provided

in Section 4.7.

50

4.2 Algorithms

This section provides an introduction and a brief overview of all six algorithms. For

each algorithm, the Basic port of the code to C++ subsection presents some tech-

niques that we used when porting the code to C++, for example: computing FFT,

calculating matrix’s eigenvalues, and code optimizations. The algorithms are ordered

here in terms of year of publication.

4.2.1 Multi-Scale Structural Similarity (MS-SSIM)

The multi-scale structural similarity algorithm (MS-SSIM) was developed by Wang

et al. [14] in 2003. MS-SSIM extends the original SSIM [5] algorithm by applying

and combining SSIM for multiple scales, based on the argument that the correct scale

depends on the viewing conditions. The SSIM algorithm is derived from a hypothesis

that the HVS is highly adapted for extracting structural information. Therefore,

measure of structural similarity between the reference and distorted images can be

extended to estimate visual quality. The hypothesis also states that one could capture

image quality with three aspects of information loss: luminance distortion, contrast

distortion, and structural distortion.

A Overview of the algorithm’s steps

A block diagram of the MS-SSIM algorithm is shown in Figure 4.1. The algorithm

is implemented with five scales, in which the reference and distorted images serve

as the first scale. To obtain the other four scales, a low-pass filter, LPF1, of size

2× 2 pixels and a downsampling by a factor of two are applied repeatedly. For each

scale, a low-pass filter, LPF2, of size 11× 11 is applied to prevent artifacts from the

discontinuous truncation of the image. The luminance, contrast, and structure are

51

Reference

image
LPF1

S
im

il
ar

it
y

m
ea

su
re

Compute and compare luminance, contrast, and structure MS-SSIM

2

LPF2

LPF1 2 LPF1 2 LPF1 2

LPF2 LPF2 LPF2 LPF2

LPF2 LPF2 LPF2 LPF2 LPF2

Distorted

image
LPF1 2 LPF1 2 LPF1 2 LPF1 2

Figure 4.1: Diagram of the MS-SSIM algorithm. LPF1 is a low-pass filter of size 2×2.
↓ 2 is a downsampling by a factor of two. LPF2 is a low-pass filter of size 11 × 11.
The reference and distorted images serve as the first scale. The other four scales
are obtained by applying LPF1 and ↓ 2 repeatedly. For each scale, the similarity
between two images is measured by applying LPF2 to prevent artifacts. Finally, the
MS-SSIM index is formed via a combination of the luminance, contrast, and structure
comparisons from different scales.

computed and compared to yield a different map for each scale. This map is then

combined across scales and collapsed to obtain the MS-SSIM quality index.

Specifically, the luminance comparison between two scales is derived from the

means of scales’ pixel values. The contrast comparison is calculated from the vari-

ances, and the structure comparison is computed from both the variances and covari-

ance of the two scales. The single-scale similarity between the original and distorted

scales is then calculated from the product of these three comparisons.

Finally, the MS-SSIM index is combined from a weighted geometric mean of con-

trast and structure comparisons of all five scales and luminance comparison for the

last scale. These weights are used to adjust the relative importance of different com-

ponents.

B Basic port of the code to C++

We implemented MS-SSIM in C++ by porting its Matlab implementation, which is

publically available from the authors of the algorithm. The input images are loaded

into 1D double arrays, and are accessed as 2D matrices via a thin C++ wrapper class

52

[71]. The filter LPF2 was of size 11× 11 in Matlab version; in our C++ version, we

convolve the image twice with two length 11 1D filters. By taking advantage of this

separable convolution, we reduced the number of multiplications for one 512 × 512

image from 512× 512× 11× 11 to 512× 512× 11× 2.

4.2.2 Visual Information Fidelity (VIF)

The visual information fidelity algorithm (VIF) was developed by Sheikh and Bovik

[15] in 2006. Using natural scene statistic models, VIF quantifies the loss of image in-

formation due to the distortion process by considering the relationship between image

information, the amount of information shared between a reference and a distorted

image, and visual quality. Specifically, VIF quantifies the information content of the

reference image as being the mutual information between the input and output of a

modeled HVS channel; this is the information that the brain could ideally extract. Us-

ing a similar modeled HVS channel, VIF measures information that the brain would

ideally extract from the distorted image. These two information measures are then

combined to form the VIF index that correlates with the visual quality.

A Overview of the algorithm’s steps

A block diagram of the VIF algorithm is shown in Figure 4.2. First, VIF filters the

input images using the Steerable Pyramid [72] to model the image information in

wavelet domain. In this step, the Steerable Pyramid is employed with four scales and

six orientations, but only eight subbands of interest are used later.

In the second step, the subbands of the reference image are modeled using a

Gaussian scale mixtures model. Each subband is modeled as one random field (RF)

which is a product of two independent RFs: The first RF is a positive scalar and

the second RF is a Gaussian vector with zero-mean and a covariance matrix. For

the distorted image, the same idea is applied: signal attenuation by a deterministic

53

Steerable

pyramid

filtering

Reference

image

Distorted

image

Eight

subbands

Steerable

pyramid

filtering

Eight

subbands

Calculate

parameters of

reference

channel

Calculate

parameters of

distorted

channel

Calculate

reference

image

information

Calculate

distorted

image

information

VIF

Filtering
Statistical

computation

Combine

Figure 4.2: The block diagram of our implementation of VIF algorithm. First, two
input images are filtered via a six-orientation and four-level Steerable Pyramid which
is modified to yield eight subbands for faster computation. The parameters of ref-
erence and distorted channels are calculated from the filtered images. Finally, the
information of reference and distorted images are calculated and collapsed into a VIF
index.

scalar gain field, and a stationary additive zero mean Gaussian noise RF in the same

wavelet domain.

In the next step, in order to calculate the reference and distorted image informa-

tion, VIF also models human visual system noises for two channels as two stationary

RFs with zero-means and same covariance, which are uncorrelated multivariate Gaus-

sians with the same dimensionality as the reference image. The image information

for each subband is calculated with this noise.

Finally, the image information is summed over eight subbands, and the VIF index

is given by the ratio between the distorted image information and reference image

information.

B Basic port of the code to C++

We implemented a C++ version of the VIF algorithm by porting the code from its

Matlab implementation, which is publically available from the authors of VIF at

Ref. [73]. The input images are loaded into 1D double arrays, and are accessed as

2D matrices via a thin C++ wrapper class [71]. The original VIF algorithm uses

the Steerable Pyramid toolbox [72] in Matlab; when ported to C++, we used the

54

Steerable Pyramid C library by the same author. Originally, the Steerable Pyramid

library with six orientations and four scales applied the filter 24 times. The VIF

algorithm, however, needs only eight subbands; therefore, we modified the library to

generate only these eight subbands. This modification reduced the number calls to

the filtering function from 24 to 8. To calculate the eigenvalues of covariance matrix,

we employed the Newmat C++ matrix library [74].

4.2.3 Visual Signal-to-Noise Ratio (VSNR)

The visual signal-to-noise ratio algorithm (VSNR) was developed by Chandler and

Hemami [66] in 2007. VSNR estimates the visual perception of distortions in natural

images based on the root-mean-squared (RMS) contrast by computing the contrast

thresholds for detection of distortions, the perceived contrast of the distortions, and

the degree to which the distortions disrupt global precedence and thereby degrade

the image’s structure.

A Overview of the algorithm’s steps

A block diagram of the VSNR algorithm is shown in Figure 4.3. VSNR is computed

via three main steps: A DWT (via filtering with the 9/7 DWT filters), a statisti-

cal calculation to compute the perceived contrast, and a final computation for the

disruption of global precedence.

In the first step, the reference image is filtered via a five-level 2D DWT to generate

16 subbands. An error image, obtained by subtracting the two input images, is also

passed through a 2D DWT transform with the same number of levels. VSNR takes

into account the viewing conditions by transforming images into luminance domain

via a black-level offset, the pixel-value-to-voltage scaling factor, and a power to the

gamma of the display monitor. A set of spatial frequencies, f = [f1, f2, ..., f5], is

used to describe the radial frequency content of visual stimuli expressed in units of

55

Five-level

2-D DWT

Compute

perceived

contrast

Five-level

2-D DWT

Compute

perceived

contrast

Compute

disruption

of global

precedence

VSNR

Error

image

Transform

(via filtering)

Statistical

computation

16

subbands

16

subbands

Reference

image

Distorted

image
_

Figure 4.3: The diagram of VSNR algorithm. First two input images are subtracted
to generate an error image. The reference and error images are then filtered via a
five-scale 2D discrete wavelet transform. Each set of filtered subbands is employed
to calculate the perceived contrast. Finally, the VSNR is obtained by computing the
disruption of global precedence.

cycles per degree of visual angle (cycles/degree), given by fm = 2−mrv tan(π
180

) with

m = 1, 2, ..., 5; r and v denote the resolution of the display and the viewing distance,

respectively. This vector of spatial frequencies is also computed in this first step.

In the next step, the two sets of DWT subbands and the vector of spatial fre-

quencies are employed to assess the detectability of the distortions. The perceived

contrast of each image is computed and the contrast thresholds are calculated within

each band centered at fm to determine whether the distortions in the distorted image

are visible. The contrasts at each level are calculated from the standard deviations

of the three oriented subbands (LH, HL, and HH).

At this point, if the distortions are below the threshold of visual detection for all

subbands, the distortions are not visible, and therefore the distorted image is deemed

to be of perfect visual quality. If the distortions are suprathreshold, the last step

is performed. In this last step, the visual distortion is calculated from a weighted

geometric mean of total RMS distortion contrast and a measure of the disruption of

global precedence. Finally, the VSNR quality estimate is given as the log of the ratio

of the RMS contrast of the reference image and the visual distortion.

56

B Basic port of the code to C++

The original C++ code of VSNR was obtained from the author’s website [71]. The

reference image and distorted image are loaded into a 1D float array, and it is ac-

cessed as 2D matrix via a thin C++ wrapper class [71]. The five-level 2D DWT

decomposition step is implemented based on the lifting scheme (fast DWT [75]) using

the default Cohen-Daubechies-Feauveau 9/7 wavelet. In the statistical computation

step, in order to obtain the image perceived contrasts, we need to calculate the aver-

age luminance of the image, which requires calling power, multiplication, and addition

operations for all pixels. We modified this part by using a look-up table technique to

obtain a faster implementation that uses those operations only 256 times.

4.2.4 Most Apparent Distortion (MAD)

The most apparent distortion algorithm (MAD) was developed by Larson and Chan-

dler [7] in 2010. MAD uses two strategies to estimate image quality. First, a detection-

based strategy is used for near-threshold distortions. In this case, the image is most

apparent, and thus the HVS attempts to look past the image and look for the distor-

tions. Second, an appearance-based strategy is used for clearly visible distortions. In

this case, the distortions are most apparent, and thus the HVS attempts to look past

the distortion and look for the image’s subject matter.

A Overview of the algorithm’s steps

A block diagram of the MAD algorithm is shown in Figure 4.4. From the input

images, the MAD index is computed via two main stages: the detection-based stage

and appearance-based stage. Each stage consists of two basic steps: filtering and

statistical computations. These two stages yield two quantities indicating the quality

of each stage, a detection-based index and an appearance-based index. These two

indices are then combined to obtain the overall quality of the distorted image.

57

Reference

image

Distorted

image

CSF Compute

visible

distortions

map

Compute

statistical

difference

maps

MAD

CSF

Log-Gabor filtering

Log-Gabor filtering

Combine

Detection-

based index

Appearance-

based index

Filtering
Statistical

computation

20

subbands

20

subbands

Figure 4.4: The diagram of MAD algorithm. For detection-based stage, reference and
distorted images are first filtered using a contrast sensitivity function. The distortion
map is then computed from filtered images and collapsed via a MSE measure to
obtain a detection-based index. For the appearance-based stage, both images first
are filtered using Log-Gabor with five scales and four orientations. The statistical
difference map is computed from the 20 filtered subbands and then collapsed into
an appearance-based index. Finally, the MAD index is given by taking a weighted
geometric mean of the appearance-based index and detection-based index.

In the detection-based stage, a model of local visual masking which takes into

account the contrast sensitivity function (CSF), and luminance and contrast masking,

is employed. The two input images are first passed through a contrast sensitivity

function filter [76] in the frequency domain using FFT and inverse FFT. Two local

contrast maps of the two filtered images are computed in an overlapping block-based

fashion with blocks of size 16×16 and a 12-pixel overlap between neighboring blocks.

From these two local contrast maps, the visible distortion map is calculated locally

for the regions that are deemed to be visibly distorted. This map is then collapsed

via MSE measure to obtain a detection-based index.

In the appearance-based stage, the appearance-based difference map is computed

from the difference of low-level statistics (mean, variance, skewness, and kurtosis)

for all local blocks of the log-Gabor filtered images (subbands). First, the input

images are filtered via a log-Gabor filter bank with five scales and four orientations

to obtain 20 subbands. The steps to compute those subbands include computing the

image’s FFT, a product of this image’s FFT with a set of 2-D frequency responses,

58

and an inverse FFT. Each pair of two sets of 20 reference and distorted subbands

is then divided into small blocks, each of size 16 × 16 (and 12 pixels of overlap

between neighboring blocks). The standard deviation, skewness, and kurtosis of each

block is calculated and compared to generate the statistical difference maps for each

scale/orientation. The 20 statistical difference maps are then combined via a weighted

mean across scales and collapsed via a 2-norm to obtain the appearance-based index.

Finally, the overall quality of the distorted image is computed by taking a weighted

geometric mean of the detection-based index and the appearance-based index, where

the weight is chosen based on the detection-based index.

B Basic port of the code to C++

We implemented a C++ version of the MAD code by porting from its Matlab version,

which is publically available to download from the authors of MAD at Ref. [77]. The

input images are loaded into 1D double arrays, and are accessed as 2D matrices via a

thin C++ wrapper class [71]. In the detection-based stage, the images are transformed

to the luminance domain by using a look-up table. The Ooura FFT library [78] is

employed for calculating FFT and inverse FFT. This Ooura library is also used in

the log-Gabor decomposition in the appearance-based stage. The log-Gabor filter

was implemented based on Peter Kovesi’s work [79]. The statistical difference maps

are calculated using integral images for higher orders; details of these modifications

can be found in Ref. [63].

4.2.5 Blind Image Integrity Notator using DCT Statistics (BLIINDS-II)

The BLind Image Integrity Notator algorithm (BLIINDS-II) [17] was developed by

Saad et al. [17] in 2012. BLIINDS-II is a no-reference IQA algorithm using DCT

statistics. It inherits the idea from the BLIINDS-I algorithm [80] that the data his-

tograms of specific-domain-transformed natural images share the same shape. One

59

such domain is local DCT, which utilizes the generalized natural scene statistic based

model. The model’s parameters are transformed into features, the generalized proba-

bilistic model is then applied to these features to predict the visual quality of the input

distorted image. The BLIINDS-II algorithm is trained using features derived directly

from a generalized parametric statistical model of natural image DCT coefficients

against various perceptual levels of image distortion.

A Overview of the algorithm’s steps

A block diagram of the BLIINDS-II algorithm is shown in Figure 4.5. The algorithm

is a multi-scale algorithm, similar to the MS-SSIM algorithm. The input image,

considered as the first scale, is low-pass filtered and downsampled twice to obtain two

more scales. Each scale is then passed through the same procedure: first a block-based

DCT, a generalized Gaussian modeling, and then extraction of features. Finally, all

features from the three scales are combined to create a BLIINDS index indicating the

quality of the distorted image.

Distorted

image

Compute

block-based DCT

Generalized

Gaussian modeling

Extract features

Probabilistic modeling

BLIINDS

Compute

block-based DCT

Generalized

Gaussian modeling

Extract features

Compute

block-based DCT

Generalized

Gaussian modeling

Extract features

LPF 2 LPF 2

Transform

Statistic

computation

Figure 4.5: BLIINDS-II algorithm. LPF is a low-pass filter of size 3 × 3. ↓ 2 is a
downsampling by a factor of two. The input image serves as the first scale. Two more
scales are obtained by the low-pass filter and downsampling. Each of three scales is
divided into blocks of size 5 × 5 so that the DCT can be applied for each block.
The transformed coefficients are then modeled using generalized Gaussian to extract
features. Finally, a probabilistic modeling is applied to yield the BLIINDS index.

60

In the first stage of the algorithm, all three scales of the input image are divided

into small blocks of size 5× 5 with two pixels of overlap between neighboring blocks.

Each block is then subjected to a 2D DCT.

In the second stage, a generalized Gaussian model is applied to each block of 25

DCT coefficients, as well as for specific partitions within each block. Here, the DCT

histogram is fitted with a multivariate Gaussian model to extract parameters via a

line search procedure.

Next, in the feature-extraction stage, eight features are derived from the model

parameters of all blocks. All parameters are pooled in two ways: first, a percentile

pooling that takes the average of the lowest (or highest) 10th percentile; and second,

the ordinary sample mean, which is the average of the 100th percentile. Taking both

the averages of 10th and 100th percentile allow the algorithm to determine if the

distortions are uniform over space.

The final step employs a probabilistic modeling, where the BLIINDS index (the

score for the image quality) is computed by using a simple Bayesian model from a

trained parameters set. This model is applied to the 24 features extracted from three

scales.

B Basic port of the code to C++

The Matlab code was obtained from the first author of BLIINDS-II via email in early

2012, and it has been confirmed to be the latest version available. We ported this

Matlab code to C++. As shown in Figure 4.5, the distorted image is loaded into

a 1D double array, and it is accessed as 2D matrix via a thin C++ wrapper class

[71]. The low-pass filter step was optimized by using a separable convolution; we

convolve the image with two 1D kernels separately, each of size 3× 1. The 2D DCT

for blocks of size 5×5 was also optimized by using a look-up table for 25 values of the

cosine function. In the generalized Gaussian modeling step, some functions are called

61

repeatedly for each small block. In our C++ code, these functions are pre-calculated

out of the main loop. This step includes a fitting process of the DCT data histogram

to the model as a line search procedure over 9970 values in the range of [0− 10]. In

the feature-extraction step, the algorithm needs to sort values to determine 10th and

100th percentiles. This sorting procedure is performed via a quick sort algorithm.

4.2.6 Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)

The Blind/Referenceless Image Spatial Quality Evaluator [18] algorithm (BRISQUE)

was developed by Mittal et al. in 2012. In contrast to BLIINDS-II, which operates in

the DCT domain, BRISQUE claims that in the spatial domain, natural images share

the same properties: The mean subtracted contrast normalized (MSCN) coefficients

of the image and the pairwise products of neighboring MSCN coefficients have the

histograms of Gaussian-like appearances. These histograms distribute vary as a func-

tion of distortion: The histograms of natural images have the bell shape, while the

histograms of distorted images could be of any shape, e.g. Laplacian distributions

for blurred images and unusual tails for white-noise images. The generalized Gaus-

sian distribution (GGD) and asymmetric generalized Gaussian distribution (AGGD)

models are used for quantifying the features from shape, variance, left variance, and

right variance of a histogram. From these features, the final quality score is given via

a trained mapping by using a support vector machine (SVM) regressor.

A Overview of the algorithm’s steps

A block diagram of the BRISQUE algorithm is shown in Figure 4.6. Similar to

previous approaches, this algorithm utilizes two scales by first downsampling the

input image to obtain the second scale. The following three stages are then applied.

In the first stage, the locally normalized luminances are computed via local mean

subtraction and divisive normalization. This step mainly contains a filtering process

62

Distorted

image

Compute locally normalized luminance

Support vector machine regressor

BRISQUE

2

AGGD fitting

Compute H, V, D1,

and D2 pairwise

products

GGD fitting

Compute locally normalized luminance

AGGD fitting

Compute H, V, D1,

and D2 pairwise

products

GGD fitting

Features 1 and 2 Features 3-18 Features 19 and 20 Features 21-36

LPF

Figure 4.6: BRISQUE algorithm. LPF is a low-pass filter and ↓ 2 is a downsampling
by a factor of two; they are utilized to obtain a smaller scale of the input image,
which serves as the first scale. Each of two scales is employed to compute locally
normalized luminance via local mean subtraction and divisive normalization. The
luminances and their pairwise products of neighboring MSCN coefficients along four
orientations (H, V, D1, and D2) are fitted with generalized Gaussian distribution
(GGD) and asymmetric generalized Gaussian distribution (AGGD) models to extract
36 features. Finally, the support vector machine (SVM) regressor is applied to yield
the BRISQUE quality index.

of the image and its divisive normalization by a size 7 × 7 2D circularly-symmetric

weighted Gaussian filter. The statistical relationships between neighboring pixels are

also modeled in this stage. Specifically, four orientations, horizontal (H), vertical (V),

main-diagonal (D1) and secondary-diagonal (D2) of MSCN coefficients are computed

and multiplied point-by-point with the MSCN coefficients.

In the second stage, the generalized Gaussian distribution model is applied to

calculate the shape and variance (feature 1 and feature 2 for first scale, feature 19

and 20 for second scale) from histograms of MSCN coefficients. The asymmetric

generalized Gaussian distribution model is employed to calculate the shape, mean,

left variance, and right variance from histograms of each of the four pairwise products

(each scale has 16 features, four features for four products).

In the final stage, all 36 features (two scales, each scale has two features for GGD

fitting and four features for AGGD fitting of each orientation) are collapsed into one

63

index for the score of image quality via a regression module. Here, the BRISQUE

algorithm is trained to use the support vector machine regressor to map the 36 features

to a quality score.

B Basic port of the code to C++

We implemented a C++ version of the BRISQUE code by porting from its Matlab

version, which is publically available from the authors’ website [1]. The input image is

loaded into 1D double array, and is accessed as a 2D matrix via a thin C++ wrapper

class [71]. In the first stage, the Gaussian filter was optimized by using a separable

convolution; we convolve the image with two 1D kernels separately, each of size 7×1.

In the second stage, the GGD fitting and AGGD fitting functions contain a fitting

process of data histograms to the model as a line search procedure over 9801 gamma

values. In our program, the gamma values were pre-calculated and stored for faster

speed. In the last stage, the SVM regression module, we used the same the LIBSVM

executable [81] as in the Matlab version.

64

4.3 Analysis Methodology

4.3.1 Algorithms and profiler

We define an experimental framework for performance analysis designed to examine,

compare, and contrast the performances of the six algorithms on a typical general-

purpose computing platform. To provide a common codebase, we implemented five

algorithms in C++ based on the original Matlab code provided by the authors. The

C++ implementation for VSNR was directly available from its author and further

optimized as described in Section B. An initial code-level profiling was performed

in both Matlab and Intel’s Vtune Amplifier XE [68] to identify and correct obvious

inefficiencies in the baseline implementations.

For performance profiling, we first used Intel’s Vtune Amplifier XE to identify

segments of the program where most of the execution time was spent. Such sections

of the program are called hotspots, and they should be targeted for improving the

computation performance. After the top hotspot functions were identified, we con-

ducted a microarchitectural analysis to observe the interactions between the hotspot

functions and the processor and other microarchitectural sub-systems. Our specific

goal was to find architectural bottlenecks and map them to specific execution blocks

of the respective algorithm.

4.3.2 Sample images

To get the results shown in this paper, we executed 30 trials of each of the six

algorithms on a set of 42 images. These images were taken from the CSIQ database

[7], including seven different original images (I1 to I7), each with three different

distortion types, additive Gaussian white noise (AWGN), Gaussian blurring, and

JPEG compression, with two levels of distortion each, level 1 for low-distorted images

65

I1 I2 I3

I4 I5 I6 I7

Figure 4.7: Seven original images span a variety of commonplace subject matters in
five categories, animals, landscapes, people, plants, and urban.

(AWGN1, BLUR1, and JPEG1) and level 5 for highly distorted images (AWGN5,

BLUR5, and JPEG5). The original images span a variety of commonplace subject

matters in five categories, animals, landscapes, people, plants, and urban. They are

shown in Figure 4.7. Nine of the highly distorted versions (AWGN5, BLUR5, and

JPEG5) of I2, I3, and I7 are shown in Figure 4.8. A summary of the experiment

images is provided in Table 4.1.

Table 4.1: A summary of the experiment images.
Number of images varying in content 7
Types of distortions AWGN, Blurring, JPEG compression
Levels of distortions 2 (Level 1, Level 5)
Total subject images 42
Image size 512× 512

4.3.3 Analysis platform

For this study, we use the 2nd-generation Intel Core i5-2430M processor clocked at

2.4GHz and a system memory (RAM) of 4 GB. The microarchitecture was Sandy

Bridge. Further details about the caches and memory hierarchy are provided in

Table 4.2.

66

AWGN

Blur

JPEG

Figure 4.8: Some distorted versions (AWGN5, BLUR5, and JPEG5) of I2, I3, and
I7. Original images are shown in Figure 4.7.

Table 4.2: Processor and system hardware specifications for the experiment
Processor Intel core i5-2430M
Frequency 2.4 Ghz
Microarchitecture Sandy Bridge
System memory (RAM) 4 GB
L1 instruction cache 32 KB per core
L1 data cache 32 KB per core
L2 cache (unified instruction and data) 256 KB per core
L3 cache (unified instruction and data) 3 MB shared

67

4.4 Architectural Concepts

This section provides a brief explanation of the architectural concepts which apply to

our results presented in Section 4.5.

4.4.1 Virtual Memory

Virtual memory is an abstraction provided by operating systems to the program-

mer, so that the programmers do not need to worry about size constraints and the

layout of blocks in the actual physical system memory. Without virtual addressing,

the programmer would have to explicitly manage physical memory resources shared

among multiple programs and multiple users. For example, a program would have

to explicitly load and unload sections of the code that correspond to different phases

of the program execution, because loading the entire program and the correspond-

ing working data set would overwhelm the physical memory, and consequently, other

concurrent programs would starve for memory. Thus, all addresses generated by the

program, are virtual addresses, spanning the entire 32-bit or 64-bit address space, and

need to be translated to the actual physical locations held by the data. A mapping

table called the page table handles this process. Pages are typically 4 KB in size, and

they facilitate the virtual to physical mapping of addresses, because a single entry in

the mapping is required for all the addresses in the 4 KB range instead of individual

mappings for each address. The page table is stored in the main system memory,

which takes hundreds of clock cycles to access. To be able to translate faster so as

to be more compatible with the speed of the processor, a cache (faster and smaller

memory) is used to store those translations that are currently in use. This cache is

called the Translation Lookaside Buffer (TLB), and there is usually a separate TLB

for the program instructions (ITLB) and data (DTLB). As the TLB stores only a

68

subset of the page table, there are times when the mapping is not found in the TLB.

This is called a TLB miss. On a TLB miss, the page table entry has to be brought

into the TLB from the main memory. This transfer can take hundreds of clock cycles,

and thus, frequent TLB misses can lead to a performance loss.

4.4.2 CPU Caches

The main system memory (RAM) is fairly slow and takes hundreds of clock cycles

to deliver operands to the processor. Therefore, to deliver operands to the processor

every clock cycle, a fast and small cache memory is placed between the processor

and system memory. The cache memory closest to the processor is the Level-1 (L1)

cache; it is the fastest and smallest cache in the hierarchy. Usually, the L1 is split

into an instruction cache (I-cache) to store the program’s instructions and the data

cache (D-cache) for the operands. The next level of the cache memory is bigger and

slower, and is called the Level-2 (L2) cache. The Level-3 (L3) cache is the last level

cache (LLC) in the hardware architecture for our analysis platform. More details

about cache memories and memory hierarchy can be found in Ref. [82].

4.4.3 Address Calculation

The Load Effective Address (LEA) instruction is an assembly instruction that cal-

culates the effective address of memory operand and places it in a CPU register.

Modern superscalar processors have multiple dispatch ports to dispatch instructions

to execution units. LEA instructions with two operands can be dispatched through

Port 1 and Port 5 on the Intel Sandy Bridge microarchitecture. LEA instructions with

three operands have a longer latency of three clock cycles and can only be dispatched

through Port 1. Thus, a large number of back to back three operand LEA instruction

will cause a performance bottleneck. There are some other special situations in which

the LEA instructions can take three clock cycles to execute even with two operands.

69

Details about these cases can be found in Ref. [83]-p3-30 to 3-32.

4.4.4 Speculative Loads

Modern processors internally execute instructions out of the correct program, in order

to use the hardware more efficiently, and then commit or retire the instructions in

the correct program order. In this process, instructions that load data from the main

memory to the CPU are often given a higher priority because the data that they

load is to be used in subsequent instructions. The speculative load has to be com-

pared with any pending instructions that might be storing data in the same address.

Because this operation could require several comparisons, instead of comparing the

entire 32-bit or 64-bit address, typically, only the last 12 bits are compared. If these

addresses are 4 KB or multiple of 4096 bytes apart, a false hazard is detected. This

is called 4K aliasing [83] (p11-30), and the speculative load has to be reissued in its

correct program order. This reduces the throughput of instructions, and creates a

performance slowdown. These false positives from 12-bit comparisons can also cause

machine clears.

70

4.5 Results

In this section, we provide results of the microarchitectural analysis for each of the

six algorithms. The algorithms’ results are presented here in terms of alphabetical

order for full-reference algorithms, followed by BLIINDS-II and BRISQUE.

4.5.1 Performance Analysis of MAD

To perform hotspot analysis, the MAD algorithm was applied for 30 iterations for each

image. The results of the hotspot analysis are provided in Table 4.3. These results

show that the average execution time for all 42 images for MAD is approximately 41.97

seconds. The average execution time for top hotspots functions/blocks is provided

in second column with the standard deviation. The hotspot functions are listed in

descending order, with the function consuming the highest execution time listed first.

The table shows the average execution time for individual functions calculated across

the 42 images. We also plot the individual execution time for all 42 images in Figure

4.9.

Table 4.3: Analysis results of MAD. Average execution time for top hotspots function-
s/blocks of 42 images is presented with the standard deviation. The total execution
for each hotspot is calculated from the average. The hardware bottlenecks are also
provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks
Gabor Convolution 10.19 ± 0.31 24.29% DTLB overhead
ASDMC 4.06 ± 0.25 9.67% DTLB overhead
DVDMC 2.83 ± 0.10 7.13% LLC misses
FFT 2.91 ± 0.19 6.52% L1D replacement, L2D replacement, LLC misses
Other 21.98 ± 0.44 52.38% N/A
All 41.97 ± 0.48 100% N/A

As shown in Table 4.3, the top hotspot functions contribute approximately 48.62%

of the total execution time, and the other functions add up to the remaining 52.38%.

MAD has minimal variation of total execution time across different image content

71

I1
-A
W
G
N
1

I1
-A
W
G
N
5

I1
-B
LU

R
1

I1
-B
LU

R
5

I1
-J
PE

G
1

I1
-J
PE

G
5

I2
-A
W
G
N
1

I2
-A
W
G
N
5

I2
-B
LU

R
1

I2
-B
LU

R
5

I2
-J
PE

G
1

I2
-J
PE

G
5

I3
-A
W
G
N
1

I3
-A
W
G
N
5

I3
-B
LU

R
1

I3
-B
LU

R
5

I3
-J
PE

G
1

I3
-J
PE

G
5

I4
-A
W
G
N
1

I4
-A
W
G
N
5

I4
-B
LU

R
1

I4
-B
LU

R
5

I4
-J
PE

G
1

I4
-J
PE

G
5

I5
-A
W
G
N
1

I5
-A
W
G
N
5

I5
-B
LU

R
1

I5
-B
LU

R
5

I5
-J
PE

G
1

I5
-J
PE

G
5

I6
-A
W
G
N
1

I6
-A
W
G
N
5

I6
-B
LU

R
1

I6
-B
LU

R
5

I6
-J
PE

G
1

I6
-J
PE

G
5

I7
-A
W
G
N
1

I7
-A
W
G
N
5

I7
-B
LU

R
1

I7
-B
LU

R
5

I7
-J
PE

G
1

I7
-J
PE

G
5

0

5

10

15

20

25

30

35

40

45

E
xe

cu
tio

n
tim

e
(s

)

Pair of reference-distorted mages

 Gabor Convolution
 ASDMC
 DVDMC
 FFT
 Other

Figure 4.9: The execution time of MAD for each pair of reference and distorted
images. The contributions of hotspot functions are stacked together to form the total
execution time.

as well as different distortion types. Thus, any optimizations for MAD can be made

without any specific consideration of image content or distortion.

Also shown in Table 4.3 are hardware bottlenecks (for each hotspot function) iden-

tified via the microarchitechtural analysis. The following subsections describe details

of the observed results for each of the hotspot functions, and include explanations of

underlying computer architecture concepts whenever necessary.

A Gabor Convolution

The Gabor Convolution function is used to decompose input images with five scales

and four orientations to yield a set of 20 subbands. This function is called by the

Log-Gabor filtering block (as shown in Figure 4.10c). This block includes three main

functions: FFT, Gabor Convolution, and inverse FFT. The function takes around

10.19 seconds, which is 24.29% of the total execution time.

By investigating the microarchitectural resources utilized by the Gabor Convolu-

tion function, we find that the performance bottleneck is in the memory sub-system,

specifically with DTLB overheads. The results show that the Gabor Convolution

function has a high DTLB overhead. The function generates a set of 40 filtered im-

72

ages (subbands), which is 40 × 512 × 512 × 8 bytes (80 MB). With a typical page

size of 4 KB, this set spans over 20 thousand pages, with each page requiring its own

entry in the TLB for translation. The hardware architecture of our analysis plat-

form has 64 entries in the Level-1 DTLB and 512 entries in the Level-2 DTLB. Thus,

the 20 thousand translations required for the 40 subbands cause a large number of

misses, each of which takes hundreds of clock cycles to service. One technique to over-

come the problem of TLB overhead is to use superpages. Details on using superpages

along with other techniques to reduce penalties due to TLB overhead are discussed

in Section 4.5.

B Appearance-Based Statistical Difference Map Computation

The Appearance-Based Statistical Difference Map Computation (ASDMC) function

calculates the statistical difference map using variance, skewness, and kurtosis of the

subbands. This function takes two sets of 20 subbands as the inputs. For each pair of

subbands of the same scale and orientation, it calculates the local standard deviation,

skewness, and kurtosis difference maps. The combined statistical difference map is

then collapsed into an appearance-based index. This function takes 4.06 seconds,

which is 9.67% of the total execution time.

The ASDMC function, similar to the Gabor Convolution function, suffers from

bottlenecks in the memory sub-system and faces penalties due to DTLB overhead.

As with the Gabor Convolution, the performance penalty is also due to the traversal

of a large memory space, as the algorithm calculates statistics (standard deviation,

skewness, and kurtosis) for all the 40 subbands.

C Detection-Based Visible Distortion Map Computation

The Detection-Based Visible Distortion Map Computation (DVDMC) function calcu-

lates the detection-based map and then collapses it into a detection-based index. The

73

detection-based map is calculated by finding the luminance of the reference and the

distorted image, calculating the luminance error image, and then applying a contrast

sensitivity function via the FFT to the reference and the error image. The function

takes 2.83 seconds, which is 7.13% of the total execution time.

The DVDMC function suffers from LLC misses, which face a high performance

penalty because they are serviced from the main memory. DVDMC processes input

images, luminance images, and matrices in the Fourier domain. This huge data set

cannot fit in the caches, and consequently, the function suffers from a large number

of LLC misses. The data has to be fetched from the main memory, which causes a

slowdown.

D Fast Fourier Transform

The Fast Fourier Transform (FFT) function converts the reference and distorted

images into the Fourier domain. The FFT function takes 2.91 seconds, which is

6.52% of the total execution time.

From the microarchitectural analysis, we find that there are misses at the levels of

cache, which requires that we investigate the working data set for the FFT function.

The output of the FFT operation is a 512× 512 complex matrix, including both real

and imaginary parts. This matrix uses the data type double to represent floating-

point numbers and hence each pixel is 8 bytes. The total data set for the function is

2×512×512×8 bytes (4 MB). As the total data set is larger than data caches’ sizes,

data needs to be fetched from the main memory, causing performance degradation.

Whether caches are used effectively depends on spatial and temporal locality.

Spatial locality involves accessing memory addresses that are close to each other,

and temporal locality involves repeated accesses to the same data. A higher number

of misses for L1D and L2D caches suggests that the access pattern lacks locality of

reference. Techniques such as cache blocking or loop tiling can be used to improve

74

locality of reference, thereby improving performance by reducing misses. A further

discussion of cache blocking and other techniques to improve cache performance are

discussed in Section 4.6.1.

E Mapping algorithmic blocks to hotspots/hardware bottlenecks

Figure 4.10 shows the mapping between hotspots/hardware bottlenecks and the algo-

rithmic blocks of MAD algorithm. The log-Gabor filtering block includes three main

blocks: FFT (Fast Fourier Transform function), Five-scale and four-orientation de-

composition (Gabor Convolution function), and IFFT (inverse FFT function) blocks.

This block consumes approximately 71% of the execution time. It suffers from L1D

and L2D replacements, LLC hits, and DTLB overhead. The CSF block endures L1D

and L2D replacements, and LLC hits, and consumes approximately 7.5% of the exe-

cution time. The compute visible distortion map block (including DVDMC function

as its main function) faces the LLC misses and consumes approximately 10.5% of the

execution time. The compute statistical difference map block consumes approximately

11% and experiences DTLB overhead and LLC misses.

4.5.2 Performance Analysis of MS-SSIM

To perform hotspot analysis, the MS-SSIM algorithm was applied for 30 iterations

for each image. The results of hotspot analysis are provided in Table 4.4. These

results show that the average execution time for all 42 images is approximately 2.51

seconds. The algorithm spends approximately 56.95% of the total time in the top

hotspot function, and approximately 74.15% or 80.73% of the total time in the top

two or three hotspot functions, while the remaining functions require only 19.27% of

the execution time.

We also plot the individual execution time for all 42 images in Figure 4.11. The

figure shows that MS-SSIM has minimal variation of total execution time across

75

Reference

image

Distorted

image

CSF Compute

visible

distortion

map

Compute

statistical

difference

map

MAD

CSF

Log-Gabor filtering

Log-Gabor filtering

Combine

Detection-

based index

Appearance-

based index

(a)

FFT

L
o
g

-G
ab

o
r

fi
lt

er
in

g

Five-scale

four-orientation

decomposition

IFFT

(c)

Filtering
Statistical

computation

20

subbands

20

subbands

FFT Filtering IFFT

CSF filtering
(b)

11% ± 2%

10.5% ± 0.5% 7.5% ± 0.5%

71% ± 2%
DTLB

overhead

DTLB

overhead and

LLC misses

L1D and L2D

replacements,

and LLC hits

t ti

LLC misses

Figure 4.10: Mapping between hotspots/hardware bottlenecks and the algorithmic
blocks for MAD. Figure (b) is the detail of CSF block, and figure (c) is the detail
of Log-Gabor filtering block. Log-Gabor block suffers from L1D and L2D replace-
ments, LLC misses, and DTLB overhead. FFT and IFFT blocks suffer from L1D and
L2D replacement, and LLC misses, the Appearance-Based Statistical Difference Map
Computation and Detection-Based Visible Distortion Map Computation functions are
a part of statistical computation block, which suffer from DTLB overhead and LLC
misses.

different image content as well as different distortion types. Thus, similar to MAD,

optimizations can be made without specific consideration of the image content or

distortion.

Table 4.4: Analysis results of MS-SSIM. Average execution time for top hotspots
functions/blocks of 42 images is presented with the standard deviation. The total
execution for each hotspot is calculated from the average. The hardware bottlenecks
are also provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks
Low Pass Filter 11 1.43 ± 0.10 56.95% L1D, L2D replacement
Similarity Measures 0.43 ± 0.06 17.20% L1D, L2D replacement, LLC

miss. Assists
LCS Average 0.17 ± 0.03 6.58% L2D replacement, LLC miss,

DTLB overhead. Floating-point
divideOther 0.48 ± 0.09 19.27% N/A

All 2.51 ± 0.03 100% N/A

Also shown in Table 4.4 are hardware bottlenecks (for each hotspot function) iden-

tified via the microarchitechtural analysis. The following subsections describe details

of the observed results for each of the hotspot functions, and include explanations of

underlying architectural concepts whenever necessary.

76

I1
-A
W
G
N
1

I1
-A
W
G
N
5

I1
-B
LU

R
1

I1
-B
LU

R
5

I1
-J
PE

G
1

I1
-J
PE

G
5

I2
-A
W
G
N
1

I2
-A
W
G
N
5

I2
-B
LU

R
1

I2
-B
LU

R
5

I2
-J
PE

G
1

I2
-J
PE

G
5

I3
-A
W
G
N
1

I3
-A
W
G
N
5

I3
-B
LU

R
1

I3
-B
LU

R
5

I3
-J
PE

G
1

I3
-J
PE

G
5

I4
-A
W
G
N
1

I4
-A
W
G
N
5

I4
-B
LU

R
1

I4
-B
LU

R
5

I4
-J
PE

G
1

I4
-J
PE

G
5

I5
-A
W
G
N
1

I5
-A
W
G
N
5

I5
-B
LU

R
1

I5
-B
LU

R
5

I5
-J
PE

G
1

I5
-J
PE

G
5

I6
-A
W
G
N
1

I6
-A
W
G
N
5

I6
-B
LU

R
1

I6
-B
LU

R
5

I6
-J
PE

G
1

I6
-J
PE

G
5

I7
-A
W
G
N
1

I7
-A
W
G
N
5

I7
-B
LU

R
1

I7
-B
LU

R
5

I7
-J
PE

G
1

I7
-J
PE

G
5

0.0

0.5

1.0

1.5

2.0

2.5
E

xe
cu

tio
n

tim
e

(s
)

Pair of reference-distorted mages

 Low Pass Filter 11
 Similarity Measures
 LCS Average
 Other

Figure 4.11: The execution time of MS-SSIM for each pair of reference and distorted
images. The contributions of hotspot functions are stacked together to form the total
execution time.

A Low Pass Filter 11

The Low Pass Filter 11 function is an implementation of an 11 × 11 Gaussian low-

pass filter over the reference image, the distorted image, and their five different scaled

versions. The average execution time is approximately 1.43 seconds, which is 56.95%

of the total execution time.

The results show that the associated hardware bottlenecks are in the memory

sub-system because of the penalties due to L1D and L2D replacements, similar to the

functions in MAD. The filter is initially applied over both the reference and distorted

images, and then the filtered images are downsampled to calculate the next scale,

after which these downsampled images are again filtered. This process is repeated to

achieve total five different scales. We can infer that the filter function demonstrates

the temporal locality: the filtered image is used to further downsample the images

and filter them again. Thus, once the block of data is brought into the cache, it is

accessed repeatedly before it is evicted. Although the function has temporal locality,

there are replacements in L1D and L2D cache due to the large working data set which

is approximately 4 × 512 × 512 × 8 bytes (8 MB). This large working data set leads

77

to cache replacements, which cause a performance penalty and thus higher execution

time.

B Similarity Measures

The Similarity Measures function calculates the SSIM index for all five scales by

using the luminance, contrast and structure maps. The average execution time for

Similarity Measures function is approximately 0.43 seconds, which is 17.20% of the

total execution time.

The microarchitectural analysis indicates that there is a penalty due to L1D re-

placements, L2D replacements, and LLC misses due to the large working data set.

Along with bottlenecks in the memory sub-system, the function also suffers from

hardware bottlenecks due to assists [84]. There are instructions in the block which

cannot be directly executed by the processor. These instructions are converted into a

stream of microcode that can be executed by the processor. Each such instruction can

generate microcode which can be hundreds of instructions long. Therefore, executing

these functions creates a high latency.

Calculation of the SSIM index for each scale requires floating-point operations.

Although the IEEE 754 standard is used for implementation of floating-point op-

erations, if the floating-point numbers are very small (denormals), they cannot be

directly executed by the processor. Thus, these floating-point operations are con-

verted in a stream of microcode and then inserted in the pipeline of the processor.

This microcode is hundreds of instructions long, causing performance degradation.

One solution to this problem is to write assembly code directly to set denormals to

zero.

78

C LCS Average

The LCS Average function calculates the luminance and contrast maps. The function

takes approximately 0.17 seconds, which is 6.58% of the total execution time.

Observing the microarchitectural analysis results, we find that the bottlenecks

fall into two categories: memory sub-system and core sub-system. The bottlenecks

within the memory sub-system are due to L2D replacements, LLC misses, and DTLB

overhead.

The bottleneck within the core sub-system is the floating-point divide unit. The

calculation of luminance and contrast requires floating-point operations, which are

inherently long-latency operations. Because of the continuous feed of floating-point

operations for every pixel and a total of 10 images, the floating-point divide unit

is overwhelmed. One solution to improve the performance is to use single-precision

floating-point instead of double precision.

D Mapping algorithmic blocks to hotspots/hardware bottlenecks

Figure 4.12 shows the mapping between hotspots/hardware bottlenecks and the algo-

rithmic blocks of MS-SSIM algorithm. The hotspot functions belong to two blocks:

LPF2 and the block corresponding to computation and comparison of luminance,

contrast and structure. The Low Pass Filter 11 function belongs to the LPF2 block

(55.5% of the execution time) with L1D and L2D replacements, and LLC misses

as the performance bottlenecks. The remaining functions, the Similarity Measures

and the LCS Average function, belong to the block corresponding to computation

and comparison of luminance, contrast and structure, which suffers from the memory

bottlenecks along with a core bottleneck of floating-point divide unit.

79

Reference

image
LPF1

Compute and compare luminance, contrast, and structure. MS-SSIM

2

LPF2

LPF1 2 LPF1 2 LPF1 2

LPF2 LPF2 LPF2 LPF2

LPF2 LPF2 LPF2 LPF2 LPF2

Distorted

image
LPF1 2 LPF1 2 LPF1 2 LPF1 2

55.5%±2%

L1D, L2D

replacements,

DTLB,

overhead and

LLC misses,

assists

10% ± 1.5%

L1D and L2D

replacements,

and LLC hits

34.5%±3%

Figure 4.12: Mapping between hotspots/hardware bottlenecks and the algorithmic
blocks for MS-SSIM. The LPF2 block suffers from L1D and L2D replacements, and
LLC misses, Similarity Measures and LCS Average functions, belong to the block
corresponding to computation and comparison of luminance, contrast and structure,
which suffers from L1D replacement, L2D replacement, DTLB overhead, assists, and
floating-point divide unit.

4.5.3 Performance Analysis of VIF

To perform hotspot analysis, the VIF algorithm was applied for 30 iterations for each

image. The results of the hotspot analysis are shown in Table 4.5. These results show

that the average execution time for all 42 images is approximately 12.12 seconds. We

also plot the individual execution time for all 42 images in Figure 4.13. The results

show that the top two hotspot functions contribute approximately 53.89% of the total

execution time. There is minimal variation of the total execution time across different

image content as well as different distortion types for VIF, similar to MAD and MS-

SSIM. Therefore, neither the image content or distortion needs to be considered when

making the optimizations for VIF.

A Pyramid Filtering

The Pyramid Filtering function is the main function of the Steerable Pyramid. This

function is employed to compute the reference image’s subbands, which are used

later to compute parameters of the reference channel. It consumes approximately

3.69 seconds, which is 30.47% of the total execution time. The results of the analysis

80

Table 4.5: Analysis results of VIF. Average execution time for top hotspots function-
s/blocks of 42 images is presented with the standard deviation. The total execution
for each hotspot is calculated from the average. The hardware bottlenecks are also
provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks
Pyramid Filtering 3.69 ± 0.10 30.47% Slow LEA stalls

Pyramid Step Filtering 2.84 ± 0.08 23.42%
L1D replacement.
Slow LEA stalls

Parameters Calculation 2.15 ± 0.08 17.71%
L1D, L2D replacement, LLC hit,
LLC miss, DTLB overhead.

Other 3.44 ± 0.14 28.41% N/A
All 12.12 ± 0.07 100% N/A

I1
-A
W
G
N
1

I1
-A
W
G
N
5

I1
-B
LU

R
1

I1
-B
LU

R
5

I1
-J
PE

G
1

I1
-J
PE

G
5

I2
-A
W
G
N
1

I2
-A
W
G
N
5

I2
-B
LU

R
1

I2
-B
LU

R
5

I2
-J
PE

G
1

I2
-J
PE

G
5

I3
-A
W
G
N
1

I3
-A
W
G
N
5

I3
-B
LU

R
1

I3
-B
LU

R
5

I3
-J
PE

G
1

I3
-J
PE

G
5

I4
-A
W
G
N
1

I4
-A
W
G
N
5

I4
-B
LU

R
1

I4
-B
LU

R
5

I4
-J
PE

G
1

I4
-J
PE

G
5

I5
-A
W
G
N
1

I5
-A
W
G
N
5

I5
-B
LU

R
1

I5
-B
LU

R
5

I5
-J
PE

G
1

I5
-J
PE

G
5

I6
-A
W
G
N
1

I6
-A
W
G
N
5

I6
-B
LU

R
1

I6
-B
LU

R
5

I6
-J
PE

G
1

I6
-J
PE

G
5

I7
-A
W
G
N
1

I7
-A
W
G
N
5

I7
-B
LU

R
1

I7
-B
LU

R
5

I7
-J
PE

G
1

I7
-J
PE

G
5

0

2

4

6

8

10

12

E
xe

cu
tio

n
tim

e
(s

)

Pair of reference-distorted mages

 Pyramid Filtering
 Pyramid Step Filtering
 Parameters Calculation
 Other

Figure 4.13: The execution time of VIF for each pair of reference and distorted
images. The contributions of hotspot functions are stacked together to form the total
execution time.

also show that Pyramid Filtering has a bottleneck in the core sub-system with stalls

due to LEA instructions.

B Pyramid Step Filtering

The Pyramid Step Filtering function is similar to Pyramid Filtering function. This

function takes the subsampling according to the START, STEP, and STOP param-

eters. This function is employed to compute the distorted image’s subbands, which

are used later to compute parameters of the channel. It takes approximately 2.84

seconds to execute, which is 23.42% of the total execution time.

The microarachitectural analysis for the blocks shows that the Pyramid Step Fil-

81

tering suffers from bottlenecks in the memory sub-system specifically due to L1D

replacements. The results of the analysis also show a bottleneck in the core sub-

system with stalls due to LEA instructions.

C Parameters Calculation

The Parameters Calculation function computes the parameters of channels from the

filtered subbands. This function takes approximately 2.15 seconds to execute, which is

17.71% of the total execution time. The function also suffers from memory bottlenecks

caused by LLC hits and LLC misses. The processor has to fetch data from the LLC or

the RAM. The penalty for accessing the LLC is approximately 26-31 clock cycles while

the access to main memory is hundreds of clock cycles. Consequently, Parameters

Calculation function is one of the top hotspots.

D Mapping algorithmic blocks to hotspots/hardware bottlenecks

Figure 4.14 shows the mapping between hotspots/hardware bottlenecks and the al-

gorithmic blocks of VIF algorithm. The Steerable pyramid filtering block, which

includes Pyramid Filtering and Pyramid Step Filtering functions, consumes approx-

imately 60% and suffers from generation of slow LEA instruction stalls generated by

the compiler. The statistical computation block (Parameters Calculation is the main

function of this block) consumes approximately 28.5% and suffers from the major

bottleneck in the memory sub-system with L1D and L2D replacements, LLC misses,

and DTLB overheads.

4.5.4 Performance Analysis of VSNR

To perform hotspot analysis, the VSNR algorithm was applied for 30 iterations for

each image. The results of hotspot for VSNR are provided in Table 4.6. These results

show that the average execution time for all 42 images for MAD is approximately 0.72

82

Steerable

pyramid

filtering

Reference

image

Distorted

image

Eight

subbands

Steerable

pyramid

filtering

Eight

subbands

Calculate

parameters of

reference

channel

Calculate

parameters of

distorted

channel

Calculate

reference

image

information

Calculate

distorted

image

information

VIF

Filtering
Statistical

computation

Combine

Slow LEA

stalls

L1D, L2D replacement,

LLC misses, and DTLB

overhead

L1D

replacement,

slow LEA stalls

60%±1.5% 28.5%±0.5%

11.5%±0.2%

Figure 4.14: Mapping between hotspots/hardware bottlenecks and the algorithmic
blocks for VIF. The Steerable pyramid filtering block suffers from generation of slow
LEA instruction. The statistical computation block suffers from memory bottlenecks
and generation of LEA instructions.

seconds. We also plot the individual execution time for all 42 images in Figure 4.15.

The results show that VSNR has minimal variation of total execution time across dif-

ferent image content as well as different distortion types. Thus, any optimizations for

VSNR can be made without any specific consideration of image content or distortion,

similar to MAD, MS-SSIM, and VIF.

Table 4.6: Analysis results of VSNR. Average execution time for top hotspots func-
tions/blocks of 42 images is presented with the standard deviation. The total execu-
tion for each hotspot is calculated from the average. The hardware bottlenecks are
also provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks
1D DWT-Columns 0.24 ± 0.02 32.61% L1, L2 replacement, and LLC hits
Variance 0.12 ± 0.04 16.45% None
1D DWT-Rows 0.10 ± 0.02 13.68% 4K aliasing except JPEG5,

machine clears for JPEG5
Others 0.27 ± 0.05 37.28% N/A
All 0.72 ± 0.03 100% N/A

As shown in Table 4.6, the top two hotspot functions contribute approximately

49.06% of the total execution time, while all others account for the remaining 50.94%.

83

I1
-A
W
G
N
1

I1
-A
W
G
N
5

I1
-B
LU

R
1

I1
-B
LU

R
5

I1
-J
PE

G
1

I1
-J
PE

G
5

I2
-A
W
G
N
1

I2
-A
W
G
N
5

I2
-B
LU

R
1

I2
-B
LU

R
5

I2
-J
PE

G
1

I2
-J
PE

G
5

I3
-A
W
G
N
1

I3
-A
W
G
N
5

I3
-B
LU

R
1

I3
-B
LU

R
5

I3
-J
PE

G
1

I3
-J
PE

G
5

I4
-A
W
G
N
1

I4
-A
W
G
N
5

I4
-B
LU

R
1

I4
-B
LU

R
5

I4
-J
PE

G
1

I4
-J
PE

G
5

I5
-A
W
G
N
1

I5
-A
W
G
N
5

I5
-B
LU

R
1

I5
-B
LU

R
5

I5
-J
PE

G
1

I5
-J
PE

G
5

I6
-A
W
G
N
1

I6
-A
W
G
N
5

I6
-B
LU

R
1

I6
-B
LU

R
5

I6
-J
PE

G
1

I6
-J
PE

G
5

I7
-A
W
G
N
1

I7
-A
W
G
N
5

I7
-B
LU

R
1

I7
-B
LU

R
5

I7
-J
PE

G
1

I7
-J
PE

G
5

0.00

0.25

0.50

0.75
E

xe
cu

tio
n

tim
e

(s
)

Pair of reference-distorted mages

 1D DWT-Columns
 Variance
 1D DWT-Rows
 Other

Figure 4.15: The execution time of VSNR for each pair of reference and distorted
images. The contributions of hotspot functions are stacked together to form the total
execution time.

Also shown in this table are hardware bottlenecks (for each hotspot function) iden-

tified via the microarchitechtural analysis. The following subsections describe details

of the observed results for each of the hotspot functions, and include explanations of

underlying computer architecture concepts whenever necessary.

A 1D DWT-Columns

The 1D DWT-Columns function computes a 1D Discrete Wavelet Transform (DWT)

across the columns of the reference and distorted images. The function takes approx-

imately 0.24 seconds, which is 32.61% of the total execution time.

Investigating the microarchitectural resources utilized by the function, we find

that the major penalty for the DWT-columns function is due to LLC hits, which

means that the function is accessing LLC frequently. The LLC takes approximately

26-31 clock cycles for a single memory access, which is expensive. Consequently, 1D

DWT-Columns is the top hotspot.

Along with LLC accesses as a bottleneck, we find that there are penalties due to

data replacement in L1D and L2D caches. Performance can be improved by reducing

the L1D and L2D misses, which will automatically reduce LLC accesses.

84

B Variance

The variance function takes approximately 0.12 seconds, which is 16.45% of the total

execution time. The variance function is employed to calculate the RMS contrast in

the statistical computation block (Figure 4.3). From the microarchitectural analysis,

we find that there are no hardware bottlenecks. This means that the function has

complex instructions with floating-point numbers that take multiple clock cycles to

execute. The analysis does not show a bottleneck because none of the floating-point

execution units is overwhelmed, and thus none of the units cause stalls in processor.

C 1D DWT-Rows

The 1D DWT-Rows function consumes approximately 0.10 seconds, which is 13.68%

of the total execution time. The 1D DWT-Rows function, similar to 1D DWT-

Columns, calculates the DWT coefficients, but across the rows instead of the columns

of the reference and distorted images.

The microarchitecture analysis shows that the 1D DWT-Rows function has per-

formance bottlenecks in the memory sub-system. There are memory reissues because

of 4K aliasing in this function. In addition, for JPEG5 images, our results show that

there are also micro operations that get cancelled due to machine clears.

D Mapping algorithmic blocks to hotspots/hardware bottlenecks

Figure 4.16 shows the mapping between hotspots/hardware bottlenecks and the al-

gorithmic blocks of VSNR algorithm. The five-level 2-D DWT block, which includes

1D DWT-Columns and 1D DWT-Rows functions, consumes approximately 62% of

the execution time, and it suffers from memory bottlenecks ranging from cache misses

to memory violations. Those bottlenecks, however, are nowhere to be found in the

statistical computation block (variance and some other functions), which is also a

hotspot with approximately 28% of the execution time.

85

Five-level

2-D DWT

Compute

perceived

contrast

Five-level

2-D DWT

Compute

perceived

contrast

Compute

disruption

of global

precedence

VSNR

Error

image

Transform

(via filtering)

Statistical

computation

16

subbands

16

subbands

Reference

image

Distorted

image
_

28% ± 3%

Hotspot but

no

bottlenecks

61% ± 3%

11% ± 2%

L1D, L2D replacements,

LLC hits, 4K aliasing,

and machine clear

Figure 4.16: Mapping between hotspots/hardware bottlenecks and the algorithmic
blocks for VSNR. The five-level 2-D DWT block (61% of the execution time) suffers
from cache replacements, LLC misses, 4K aliasing, and machine clears. The statistical
computation block is a hotspot with approximately 28% of the execution time, but
there is no bottleneck.

4.5.5 Performance Analysis of BLIINDS-II

To perform hotspot analysis, the BLIINDS-II algorithm was applied for 30 itera-

tions for each image. The results of the hotspot analysis are provided in Table 4.7.

These results show that the average execution time for all 42 images for BLIINDS-II

is approximately 8.03 seconds. The top hotspot function, Fast-DCT2, contributes

approximately 47.44% of the total execution time while the second one consumes

approximately 23.44%. The other functions add up to the remaining 29.12%.

Figure 4.17 shows the individual execution time for all 42 images. This figure

shows that the execution time of BLIINDS-II for JPEG5 images is considerably higher

than for the other distortion types. The bottlenecks for JPEG5 images and all the

other images are discussed in the later subsections.

86

AW
G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5

0

2

4

6

8

10

12

14
E

xe
cu

tio
n

tim
e

(s
)

Distorted mages

 Gamma
 Fast-DCT2
 Rho
 Convolution
 Other

Figure 4.17: The execution time of BLIINDS-II for all distorted images. The contri-
butions of hotspot functions are stacked together to form the total execution time.

A Fast-DCT2

The Fast-DCT2 function calculates the 5× 5 DCT of the image at each of the three

scales. The function takes approximately 3.81 seconds, which is 47.44% of the total

execution time.

The microarchitectural analysis shows that Fast-DCT2 function does not have

any bottlenecks. Therefore, to gain further insight, we calculate the throughput of

the function using the retired pipeline slot metric [84] to investigate if the function

traverses the pipeline efficiently. The retired pipeline slot metric for the Fast-DCT2

function is 0.65, which is greater than the acceptable value of 0.6. The hardware

resources are being used optimally in this situation. As mentioned in Section B, the

Table 4.7: Analysis results of BLIINDS-II. Average execution time for top hotspots
functions/blocks of 42 images is presented with the standard deviation. The total
execution for each hotspot is calculated from the average. The hardware bottlenecks
are also provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks
Fast-DCT2 3.81 ± 0.23 47.44% None
Gamma 1.88 ± 1.70 23.44% None/L1D replacement for JPEG5
Rho 0.30 ± 0.11 3.69% None
Convolution 0.29 ± 0.02 3.64% L1D, L2D replacement, LLC hit
Others 1.75 ± 0.22 21.79% N/A
All 8.03 ± 1.69 100% N/A

87

Fast-DCT2 function uses a look-up table to store the cosine values. In addition,

we use single loops for first row and column and a nested loop for the remaining

pixels. Because the cosine operation is eliminated using the look-up table and all

other functions are not relatively inexpensive, the throughput is acceptable, having

few stalls and no hardware bottlenecks.

B Gamma

The Gamma function performs a fitting process of the DCT data histogram to the

Gaussian model as a line search procedure over 9970 values. This function takes

approximately 1.88 seconds to operate, which is 23.44% of the total execution time.

The microarachitectural analysis shows that the bottleneck for this function only

occurs for JPEG5 images. For these images, the Gamma function becomes the top

hotspot. The hardware bottleneck is caused by the data being replaced in the L1D

cache, which means the processor fetches data from the L2 cache, which has higher

latency. During the line search process, the function traverses an array of 9970 val-

ues. If there is a match, the traversal stops. We observe that for JPEG5 images,

the function has to traverse to the end of the array. This 9970-value array needs

approximately 9970× 8 bytes (80 KB). However, the L1 cache is 32 KB and cannot

hold all of the data. Therefore, some of the values in the array are stored in the next

level of cache, and for JPEG5 images, the function has to fetch data from the next

level of cache (L2), resulting in higher latency and higher execution time. To improve

the performance for the Gamma function, one suggestion would be to traverse the

array based on the input image’s profile. For JPEG5 images, traversing the array

from the end would match the value in fewer iterations and improve performance.

88

C Rho

The Rho function is a sorting function used for feature extraction, which takes the

10th percentile of the sorted array. Because it is employed for multiple features, it is

called multiple times in the code. The results of analysis show that the execution time

for Rho function is approximately 0.30 seconds, which is 3.69% of the total execution

time.

No bottlenecks were shown in the microarchitectural analysis, we therefore com-

puted retired pipeline slot metric to find the throughput of the function. The retired

pipeline slot metric is 0.2, which is much lower than the acceptable minimum of 0.6.

This finding suggests that the Rho function inherently has complex computations

which require higher number of clock cycles, but the Vtune Amplifier XE is unable

to identify the exact cause.

D Convolution

The Convolution function performs convolution across the image and is employed to

perform low-pass filtering. Its average execution time is close to the Rho function’s,

at approximately 0.29 seconds, which is 3.64% of the total execution time. From the

microarchitectural analysis, we find that there are L1D as well as L2D replacement

penalties because the function accesses the LLC to fetch its operands.

E Mapping algorithmic blocks to hotspots/hardware bottlenecks

Figure 4.18 shows the mapping between hotspots/hardware bottlenecks and the al-

gorithmic blocks of BLIINDS-II algorithm. The block-based DCT block is a hotspot

with approximately 66% of the execution time. However, this block has no bottle-

necks with the optimized Fast-DCT2 function. The Gamma function is the main

function of generalized Gaussian modeling block (24% of the execution time), and

has no bottlenecks except L1D replacements for JPEG5 images. The Convolution

89

function, one of the LPF block’s functions suffers from memory bottlenecks, L1D

and L2D replacements, and LLC hits.

Distorted

image

Compute

block-based DCT

Generalized

Gaussian modeling

Extract features

Probabilistic modeling

BLIINDS

Compute

block-based DCT

Generalized

Gaussian modeling

Extract features

Compute

block-based DCT

Generalized

Gaussian modeling

Extract features

LPF 2 LPF 2

Transform

Statistic

computation

None

4.5%±0.4%

24%±0.2%

5.5%±0.5%

66%±1%

L1D and L2D

replacements,

LLC hits

24%±0 2%

L1D

replacements

for JPEG5

Figure 4.18: Mapping between hotspots/hardware bottlenecks and the algorithmic
blocks for BLIINDS-II. The block-based DCT is a hotspot with approximately 66% of
the execution time. However, this block has no bottlenecks. The Gamma function is
the main function of generalized Gaussian modeling block has no bottlenecks except
L1D replacements for JPEG5 images. The Convolution, one of the LPF block’s
functions suffer from memory bottlenecks, L1D and L2D replacements, and LLC
hits.

4.5.6 Performance Analysis of BRISQUE

To perform hotspot analysis, the BRISQUE algorithm was applied for 30 iterations

for each image. The results of the hotspot analysis are provided in Table 4.8. These

results show that the average execution time for all 42 images for BRISQUE is ap-

proximately 2.65 seconds. The top hotspot function, Circularly Shifting, contributes

approximately 23.02% of the total execution time. The second hotspot consumes

approximately 20.75%. The others add up to the remaining 56.23%.

Figure 4.19 shows the individual execution time for all 42 images. This figure

shows that the execution time of BRISQUE for JPEG5 images is faster than for the

90

AW
G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5
AW

G
N
1

AW
G
N
5

BL
U
R
1

BL
U
R
5

JP
EG

1
JP
EG

5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
xe

cu
tio

n
tim

e
(s

)

Distorted mages

 Circularly Shifting
 Low Pass Filter 7
 SVM Regressor
 GGD and AGGD Fitting
 Others

Figure 4.19: The execution time of BRISQUE for all distorted images. The contri-
butions of hotspot functions are stacked together to form the total execution time.

other distortion types. Among the top hotspots, the GGD fitting and AGGD fitting

blocks exhibit the most variation; this variation is discussed in Section D.

A Circularly Shifting

The Circularly Shifting function circularly shifts the MSCN coefficients one pixel

to four orientations to obtain horizontal (H), vertical (V), main-diagonal (D1), and

secondary-diagonal (D2) orientated versions. This function is employed to take into

account the statistical relationships between neighboring pixels. This block takes

approximately 0.61 seconds to operate, which is 23.02% of the total execution time.

The Circularly Shifting function clearly shows a loss of performance due to the

Table 4.8: Analysis results of BRISQUE. Average execution time for top hotspots
functions/blocks of 42 images is presented with the standard deviation. The total
execution for each hotspot is calculated from the average. The hardware bottlenecks
are also provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks
Circularly Shifting 0.61 ± 0.01 23.02% LLC misses, and L1D, L2D replacements
Low Pass Filter 7 0.55 ± 0.01 20.75% L1 Cache misses, L2D replacements,

and LLC misses
SVM Regressor 0.47 ± 0.03 17.74% Branch mispredict, front end (I-Cache)
GGD and AGGD Fitting 0.46 ± 0.07 17.36% LLC misses, L1D, L2D replacements,

and DTLB overhead
Others 0.56 ± 0.01 21.13% N/A
All 2.65 ± 0.08 100% N/A

91

CPU caches. The data caches at both the level one and level two caches, and the

combined last level cache are all overwhelmed by this function. This is because

computing the pairwise products of the MSCN coefficients with their four circularly

shifted versions requires large amounts of memory.

B Low Pass Filter 7

The Low Pass Filter 7 function is an implementation of a 7× 7 circularly-symmetric

Gaussian filter. This function is called four times total for two scales. The average

execution time is approximately 0.55 seconds, which is 20.75% of the total execution

time.

Observing the microarchitectural analysis results, we find that the bottlenecks

are again purely in the memory sub-system. Specifically, the bottlenecks are caused

due to L1 Cache misses, L2D replacements and LLC misses. The Low Pass Filter 7

function was optimized to work with two 7× 1 windows instead of one 7× 7 window

(see Section B), and thus there is no core bottlenecks found here. It needs memory

for the MSCN coefficients, squared MSCN coefficients, and Gaussian filtered images.

Consequently, this function also has a large memory footprint causing bottlenecks at

all levels of caches in the memory sub-system.

C SVM Regressor

The SVM Regressor block is basically a function call to the LIBSVM executable via

the system function, similar to the Matlab version. It collapses 36 features into one

single quality index. The time for this function is approximately 0.47 seconds, which

is 17.74% of the total execution time.

The code currently makes calls to the executable file to collapse the previously

calculated 36 features into a single BRISQUE index. Since, this executable is not

compiled as a part of the C++ implementation, there is no prefetching of the in-

92

structions (not fetched into the I-cache), which causes the I-cache misses and branch

mispredictions. Similar issues when linking to external files have been previously

reported (See Ref. [85]).

D GGD and AGGD fitting

The GGD fitting and AGGD fitting blocks perform a fitting of the MSCN coeffi-

cients histogram to the generalized Gaussian model, and four pairwise products with

an asymmetric generalized Gaussian model as a search procedure over 9801 values.

Similar to the Gamma function in BLIINDS-II, GGD and AGGD fitting employs a

line search to fit shape, mean, left variance, right variance to the values of a gamma

function. However, in contrast to BLIINDS-II where the fitting process is applied for

every small 5× 5 DCT block, for BRISQUE, the fitting process is employed only 10

times. During the line search process, there could be an early stop when a match

found. Therefore, the GGD and AGGD fitting block’s execution times have a larger

variation.

This block suffers from memory bottlenecks. Specifically, the bottlenecks are

LLC misses, and L1D, L2D replacements. The block operates on a total of 10 images

(eight are generated from the Circularly Shifting function and two MSCN coefficients).

Because the block operates separately on two different data sets for two scales, there

are replacements in the L1 and L2 cache and misses in the LLC. Since the block

operates on two different data sets, the mapping of the virtual to physical addresses

for both the data sets cannot fit into the small DTLB, which causes the DTLB

overhead.

E Mapping algorithmic blocks to hotspots/hardware bottlenecks

Figure 4.20 shows the mapping between hotspots/hardware bottlenecks and the al-

gorithmic blocks of the BRISQUE algorithm. The Compute locally normalized lumi-

93

Distorted

image

Compute locally normalized luminance

Support vector machine regressor

BRISQUE

2

AGGD fitting

Compute H, V, D1,

and D2 pairwise

products

GGD fitting

Compute locally normalized luminance

AGGD fitting

Compute H, V, D1,

and D2 pairwise

products

GGD fitting

26.32% L1 Cache misses,

L2D replacements,

and LLC misses

24.44%

LLC misses, and L1D,

L2D replacements

17.77% ± 1%

17.5% ± 2.5%

LLC misses, L1D,

L2D replacements,

and DTLB overhead

Branch mispredict,

front end (I-cache)

Features 1 and 2 Features 3-18 Features 19 and 20 Features 21-36

LPF

Figure 4.20: Mapping between hotspots/hardware bottlenecks and the algorithmic
blocks for BRISQUE. The Compute locally normalized luminance is a hotspot with
approximately 26.32% of the execution time and suffers from L1 Cache misses, L2D
replacements, and LLC misses. In the next stage, the Compute H, V, D1, and D2
pairwise products block contain the Circularly Shifting function with point-by-point
multiplications between the MSCN coefficients and their circularly shifted versions.
This block takes approximately 0.65 seconds to operate, which is 24.44% of the to-
tal execution time. The GGD fitting and AGGD fitting blocks consume 17.5% of
the running time and suffer from LLC misses, L1D, L2D replacements, and DTLB
overhead bottlenecks.

nance block contains mainly the Low Pass Filter 7 function. It is a hotspot with

approximately 26.32% of the execution time and suffers from L1 Cache misses, L2D

replacements, and LLC misses. In the next stage, the Compute H, V, D1, and D2

pairwise products block contain the Circularly Shifting function with point-by-point

multiplications between the MSCN coefficients and their circularly shifted versions.

This block takes approximately 0.65 seconds to operate, which is 24.44% of the to-

tal execution time. The GGD fitting and AGGD fitting blocks consume 17.5% of

the running time and suffer from LLC misses, L1D, L2D replacements, and DTLB

overhead bottlenecks.

94

4.6 Discussion

In this section, we discuss the bottlenecks and provide an insight into them across all

the six analyzed algorithms. We first discuss the most common memory bottlenecks

and microarchitectural conscious coding techniques to gain better performance. Fol-

lowing the memory bottlenecks, we discuss the core bottlenecks and the techniques

to boost performance. We also propose a custom hardware framework, which can

be used as a platform to design engines for IQA algorithms and image processing

algorithms in general.

4.6.1 Memory Bottlenecks

The results of the microarchitectural analysis show that all of the IQA algorithms

have a backend-bound memory bottleneck, but the amount of performance degra-

dation due to these bottlenecks vary greatly for individual algorithms. A memory

bottleneck essentially means that the hotspot functions spend a significant amount

of time accessing image data. This is usually because they have read/write access

patterns that result in misses in the CPU caches. These cache misses have to be

serviced from lower levels of the memory hierarchy that are slower to access, which is

why we see the algorithms spending more time in these functions and causing them

to be hotspots. The large number of cache misses is due to the large working data set

for these algorithms. All of the algorithms produce intermediate matrices and process

them to assess the image quality. Accessing these multidimensional arrays multiple

times causes most of the performance bottlenecks for all of the IQA algorithms tested

here.

Even though all the IQA algorithms experience memory bottlenecks, the root

cause of the bottleneck as well as the extent of performance degradation due to

95

these bottlenecks varies across algorithms. For example, all the hotspot functions in

MAD are backend memory bound, whereas VIF has a memory bottleneck for just the

Parameters Calculation function. It should be noted that the Parameters Calculation

function is the last hotspot for VIF, which means that it is not the major cause for

slowdown of the algorithm; its impact on the performance of the algorithm is not

high as other functions, and these other functions are not memory bound. Thus, it

is important to note that even if all the algorithms at some point have a memory

bottleneck, the impact of this memory bottleneck on the speed or throughput of the

complete algorithm depends on the rank of the hotspot, which consequently would

decide the priority for optimization.

Another observation from the analysis is that even though at an abstract level, all

the algorithms show memory as a bottleneck, the actual physical microarchitectural

bottleneck is different for different algorithms. For example, the top two hotspot

functions in MAD have poor performance because of the DTLB overhead, while

the top two hotspots for MS-SSIM and BRISQUE have a higher execution time

because of the L1D replacements, L2D replacements, and LLC misses. Different

microarchitectural resources are overwhelmed by different functions and algorithms.

Apart from issues with the usual suspects in the memory hierarchy (CPU caches

at different levels), there are hotspot functions which show penalties associated with

machine clears and 4K aliasing (as in case of VSNR). Thus, our analysis has revealed

some interesting performance bottlenecks that would otherwise have gone undetected.

One obvious way to reduce cache misses is to change the hardware platform to

a processor with larger caches. This will allow more data to reside in the caches,

and thereby reduce the number of cache misses, and will consequently improve per-

formance. However, there is a limit to how big each level of cache in the memory

hierarchy can be, and the L1 caches are usually kept under 64 KB for fast access.

Thus, it is important that the implementation of an IQA algorithm respects the prin-

96

ciple of locality of reference to maximize temporal and spatial locality. Locality of

reference is the tendency of a program to access the same (temporal locality) or nearby

(spatial locality) memory locations repeatedly and frequently. Thus, caching these

memory locations can reduce misses. Coding an IQA algorithm with more/better

locality can significantly improve performance.

Another technique for improving locality, which is commonly used especially in

image processing is called cache blocking. It works by dividing larger data chunks

into smaller ones that fit in the cache, and making sure that once the small block

is brought into the cache, all the operations to be performed are performed before

moving on to the next block. Thus rather than traversing a whole image to perform

one operation and then reading in the whole image to perform another operation

(thus effectively wiping out the cache repeatedly), parts of the image are read and

processed at a time while that part is still in the cache.

Accesses to the main memory are very expensive, usually hundreds of clock cycles.

For algorithms such as MAD, MS-SSIM, VIF, and BRISQUE where the bottlenecks

are due to LLC misses/replacements, using software instructions that can pre-fetch

the data into the caches from the main memory effectively masks the memory la-

tency, and can thus increase performance. Such pre-fetch instructions are suitable

when memory accesses are predictable and when there are CPU stalls for data being

unavailable for processing.

The final memory bottleneck is the DTLB overhead. The TLB is a small cache,

which stores a section of the page table (a page table stores a mapping between virtual

and physical addresses). When the working data set is large, as in the case of MAD,

the TLB is not able to cache all the active mappings and this causes DTLB misses.

One solution to this problem is to use a larger page sizes or superpages. With a larger

page size, a TLB of the same size can keep track of larger amounts of memory, which

avoids the costly TLB misses, reducing the pressure on the TLB.

97

As an example of applying these techniques, we made slight modifications to the

FFT and Gabor Convolution functions for MAD. We chose these functions because

they are in the top hotspot list. Based on our analysis, we knew that the architectural

bottleneck was related to the memory hierarchy, as the DTLB, LLC misses, and L1D

and L2D replacement feature prominently for MAD. We modified the nested loop in

the FFT function to improve the locality and data reuse by removing one layer of

nesting. This had the effect of accessing a cache block multiple times, as each cache

block brought in 8 elements of the array assuming a 64 Byte block size, and they were

processed sequentially resulting in 7 hits for every miss in the cache for that loop. The

original nested loop processed only one array element per cache block, which resulted

in a 100% cache miss rate for that particular nested loop. The second modification we

made to the Gabor Convolution function was to eliminate the memory required for

additional matrices of the same size of the input image. Essentially, the optimization

was equivalent to changing the statement C = A + B to A = A + B, thus reusing

the memory allocated to A. These two modifications resulted in a 9% improvement

in terms of running time.

While these examples seem somewhat obvious in retrospect, most codecs are writ-

ten with many such opportunities overlooked because the focus may not have been

on efficient use of the underlying hardware. It is also not possible to anticipate the

exact hardware bottlenecks without conducting the kind of analysis illustrated in this

paper. The analysis clearly helps pinpoint the functions that take up the largest share

of the execution time, and highlights the architectural resource being stressed. Thus,

a programmer knows where to look, and what changes to make.

4.6.2 Core Bottlenecks

The next category of bottlenecks is the core bottlenecks or the bottlenecks caused

due to manipulation of data. First, we discuss the performance degradation caused

98

due to floating-point operations, because they have the most significant impact on

performance in the category of core bottlenecks.

The floating-point operations inherently have a longer latency and thus have a

large impact on performance. The floating-point unit is a bottleneck for MS-SSIM

for the LCS Average function. We discuss some generic guidelines to improve perfor-

mance for floating-point units.

Operations carried on single-precision floating-point numbers execute faster than

double precision numbers and consume less memory. For example, the LCS Average

function calculates the luminance and contrast of the reference and distorted images

for multiple scales. The mean of pixel values is used to calculate luminance while the

variance is used to calculate contrast. All of the algorithms currently use an 8-bit

grayscale image, which implies that the resultant luminance and contrast would never

exceed the range supported by 32-bit single-precision floating-point numbers. Since

calculation for luminance and contrast is calculated for multiple scales, using single-

precision floating-point numbers to calculate and represent luminance and contrast

can significantly improve performance. On our test platform, single-precision floating

point can be set through the precision control (PC) field in the x87 FPU.

Another simple solution is to use integers if possible. For example, if a particular

range varies from 0 to 1, the programmer can estimate the degree of precision required,

and choose to express the range from 0 to 10, 0 to 100, 0 to 1000, and so on (depending

on whether one, two or three digit precision is required).

The developer of an IQA algorithm should keep in mind that the operations should

remain in range, i.e., ensure that there are no overflows, underflows, or denormals

(extremely small values) for the results. Denormal values and underflow can cause

high penalties as they require microcode assists. To improve performance for such

a situation, one solution is to write the code in such a way that denormals are not

generated, which means that the developer should keep track of the range of the results

99

produced during the floating-point operations. In addition, by enabling the Flush-

To-Zero (FTZ) and Denormals-Are-Zero (DAZ) modes [86], there can be significant

improvement in performance. Note that the FTZ and DAZ modes are applicable only

for SSE instructions.

The next bottleneck is caused due to generation of slow LEA instructions. LEA

instruction is an X86 assembly instruction generated during compilation. On an Intel

processor, one solution is to use an Intel compiler, which would produce assembly

optimized for Intel’s microarchitectures. For example, in a loop, the LEA instructions

are generated for the index access. If the index access is reduced, it will decrease the

number of LEA instructions to be executed, and thus reduce the overhead.

4.6.3 Summary and Recommendations for a Framework for Custom Im-

age Quality Assessment Hardware

From the microarchitectural analysis, we found that there are two categories of bot-

tlenecks in the IQA algorithms tested here: execution/core bottlenecks and memory

bottlenecks. From the analysis, we found that the majority of the algorithms show

performance degradation because of the memory bottlenecks. Other studies also show

that memory is usually a major bottleneck for image processing algorithms.

Within the memory bottlenecks, the most common issue was due to L1D and L2D

replacements and LLC misses. To improve performance in such cases, having larger

caches is recommended. A suitable size for the caches and its configuration along

with defining a memory hierarchy can be decided by performing cache simulations

with various cache sizes and configurations. A combination of a particular cache size

and configuration that surpasses a predefined threshold for hit/miss rates should be

used. Creating models for a cache configuration that best suits the performance, cost,

and other requirements of IQA and related algorithms are topics of future research.

The next common memory bottleneck was the DTLB overhead. MAD, VIF, and

100

MS-SSIM show performance degradation due to DTLB overhead. A DTLB is special

cache which stores a sub-set of translations from virtual memory to physical memory.

For a custom IQA engine, there is no requirement of a virtual memory system. Hence,

this eliminates the requirement of using a TLB.

Another bottleneck was 4K aliasing. VSNR is the only algorithm with 4K aliasing

bottleneck. This problem is caused due to out-of-order execution of memory instruc-

tions in the processor. If the custom hardware engine design is an in-order machine,

we eliminate the possibility of 4K aliasing.

The most common core bottleneck was the overwhelming of the floating-point unit.

All the image transform, image filtering, and statistic calculation require floating-

point operations and consequently a floating-point execution unit. Operating on

a logarithmic number system would improve the performance. The overhead for

converting to log domain and then transforming back is negligible if the number of

floating-point operations is very large. In a logarithmic system, the multiply and

divide operations change to add and subtract operations respectively, which are less

expensive and can save many clock cycles. A custom IQA engine would have multiple

floating-point units to exploit parallelism. In addition, the unit will be pipelined to

hide/overlap the latency of the instructions for getting data to the IQA execution

engine.

The next core bottleneck was due to the slow LEA instructions. These instruc-

tions are an outcome of the complex addressing mode of the CISC Intel architecture.

Therefore, if the memory control hardware is designed as a load store machine, the

performance degradation is automatically eliminated. In addition, the proposed cus-

tom engine is hardcoded, which eliminates issues due to generation of such instructions

by the compiler.

The final core bottleneck was the generation of micro assists. Floating-point micro

assists occurred because the operands or results of an operation were denomals. If

101

the precision can be traded-off, these denormals are directly converted to zero and if

precision is required, a custom hardware just to process denormals can be designed.

A special port can be designated to dispatch the denormals to this unit. If there are

no denormals, this unit can work as a normal floating-point unit.

In general, all tested IQA algorithms contain the same operation at an abstract

level: an image transform or filtering and a statistical computing. For example, MS-

SSIM and BRISQUE use low-pass filters, whereas VIF, VSNR, MAD, and BLIINDS-

II transform the image into frequency domains via Steerable Pyramid, DWT, FFT,

and DCT, respectively. These algorithms also perform a statistical computation. For

example, MS-SSIM needs the mean and variance to calculate the structure similarity;

MAD calculates the standard deviation, skewness, and kurtosis to form the statistical

difference maps. Therefore, a generic IQA engine would have a transform engine, a

filtering engine, and a statistical computation engine.

Secondary

storage

Cache memory

hierarchy

Image transform

engine

Image filter

banks

Image statistics engine

Figure 4.21: Blocks for custom IQA engine framework. It constitutes of three basic
computational blocks generally used in IQA algorithms: image transform engine, the
filter banks and the image statistics engine.

A block diagram for a general IQA hardware engine is shown in Figure 4.21. We

have a secondary storage to store the input images. These images are brought into

the fast memory, the caches. From the caches, the images act as operands to one

or more of the three engines depending on the sequence of operations performed by

the specific IQA algorithm. In addition, there are instances where an operation is

performed multiple times. Therefore, we propose a fully connected internetwork.

Such an interconnected network helps to feed data directly to the respective engine,

which leads to reuse of the existing hardware and saves chip area and cost.

102

The different execution engines are designed as follows:

1: The transform block can be a general purpose floating-point unit or a transform

specific custom design such as a DWT unit in VSNR.

2: The filter blocks can be implemented as a general-purpose filter if multiple

filter banks are used or can be a specific implementation, such as a log-Gabor filter

unit in MAD.

3: The image statistics block can be implemented as a general purpose engine or

a custom engine. However, if we observe the algorithms, they comprise of multiple

statistical computations. Therefore, it is not recommended to create an engine for all,

but rather to utilize a general purpose floating-point unit. In order to define which

operation needs to be performed, control signals can be generated. It is suggested

to pipeline these engines. Pipelining would hide some latency for accessing memory

and also improve the throughput of the hardware. Further details about pipelining,

tradeoffs for a pipeline and designing a pipelined hardware can be found in Ref. [82].

103

4.7 Summary

This chapter presented performance analyses of six popular image quality assessment

algorithms. Even though the approaches to the six IQA algorithms are different, the

algorithms shared the same main stages: a filtering (transforming), and a statistical

computation. Our results revealed that different IQA algorithms overwhelm different

microarchitectural resources and give rise to different types of bottlenecks in two

main categories: memory bottlenecks and core/computational bottlenecks. Specific

microarchitectural bottlenecks for each function/block of each algorithm were pointed

out. We also proposed the hardware/microarchitectural conscious coding techniques

for optimization and performance improvement. The findings and recommendations

presented in this paper apply broadly to all current-generation Intel IA-32 and Intel

64 based general-purpose computing platforms, whether laptops, servers, or desktops,

even though the actual hotspot and bottleneck details might vary. Architectures

that are radically different, with hardware accelerators, dedicated image processing

cores (such as those found on some tablets and smart phones), and memory shared

between GPUs and CPUs (such as AMD’s Fusion APUs) are expected to show very

different execution characteristics. Further studies using a similar methodology are

recommended to analyze the performances of IQA algorithms on these specialized

architectures.

104

CHAPTER 5

A RR IQA FRAMEWORK BASED ON SHARPNESS MAPS

5.1 Introduction

The RR IQA approaches can be classified based on blockiness/edge quantification in

either spatial domain or frequency domain, analysis in a transformed domain, using

natural-scene statistics, or developing RR IQA based on an existing FR idea. In

section 5.2, we provide a review of existing approaches to RR quality assessment.

Current works on RR are mainly limited by two factors: They are either limited

by the number of distortion types (up to four common distortion types: AGWN,

Gaussian blur, JPEG, and JPEG2000) or limited in their ability to achieve good

performance because of the small number of scalars for reduced information. These

distortion-specific RR and some other NR algorithms ([16, 87]) were trying to be

generic by combining few distortion types. However, they have never been tested

with all 17 distortion types in TID2008[3] or 24 distortion types in TID2013 [4]

image databases. The others employed from a few to a hundred scalars for reduced

information, and could only achieve performance at the level of about the same as

MSE/PSNR. More recently, Soundararajan and Bovik [88], and Liu et al. [89] have

provided two RR frameworks, RRED and SPCRM, respectively. These frameworks

can achieve better performance with increase in data rate. When utilizing 2.8% and

3.1% reduced information (for RRED and SPCRM, respectively), these algorithms

are competitive to current state-of-the-art FR algorithms such as MS-SSIM[14], VIF

[15], MAD [7], or FSIM [90] on all big image databases (TID2008 [3], LIVE [1], CSIQ

[2]). Therefore, what we desire in this paper is a fully generic distortion types RR

105

algorithm (by utilizing distortion families), which is better than above-mentioned FR

algorithms with around 2% of reduced information.

In this paper, we develop a new RR IQA framework based on multi-scale image

sharpness maps and seven distortion families. Previous work on image sharpness has

been focused mainly on developing sharpness index, a single value, which quantifies

the overall sharpness of an image [19, 20, 91–94], only a few of them (S1, S2, S3 in [19]

and FISH in [20]) can generate a sharpness map, which quantifies the perceived sharp-

ness of different areas within an image. The image sharpness map has been employed

in NR IQA of blurred images [19, 20], and NR IQA of JPEG2000-compressed images

[95]. Now, we employ sharpness map in our RR framework, named S4RR (Sharpness

for Reduced Reference task). In S4RR framework, any sharpness maps (S1, S2, S3,

FISH, or local standard deviation) can be used as reduced reference features. The

amount of reduced information depends on which sharpness algorithm has been used,

and the block-size of the algorithm.

We stated that the local standard deviation could generate sharpness map, because

local standard deviation could yield a meaningful sharpness maps comparing to our

local sharpness map database, as presented in Chapter 2.

For RR task, Wang and Simoncelli [96] suggested that the appropriate RR features

should provide an efficient summary of the reference images, be sensitive to a variety

of image distortions, and be relevant to visual perception of image quality. We argue

that the multi-scale sharpness maps are reasonable to assess image quality because of

two main reasons. First, they provide an efficient summary of the reference images,

i.e., smooth areas, texture areas, or sharp areas. Second, they are sensitive to a

variety of image distortions; for example, the sharpness values increase in a noise-

added image (AWGN, ColorNoise, PinkNoise); the sharpness values decrease in a

blurred image (Gaussian blurring, Contrast distortion, Denoised image); or both

increasing and decreasing (JPEG: block artifact and block quantization. JPEG2000:

106

aliasing/ringing and blurring).

Original image FISH sharpness map LSD map

S1 sharpness map S2 sharpness map S3 sharpness map

Figure 5.1: Original images and five different sharpness maps.

Figure 5.1 shows an original image and its five level-one sharpness maps: FISH

sharpness map, local standard deviation (LSD) maps, and S1, S2, and S3 sharpness

map. The maps are generally much smaller than the input image, with different

ranges. Here, we scale and normalize them for showing purposes. We can see that

the maps can summarize efficiently the input image. For example, smooth areas on

the left side on the background and under the girl’s eye are captured by dark-gray

areas in all the maps. The strong edges between the girl’s face and the background

are highlighted by the most whitest areas in the maps. The texture/busy area on the

girl’s shoulder is stressed out by mid-gray with different values in the maps.

From Figure 5.1, we can see that all types of sharpness maps can capture well the

characteristics of the input image. The S2 and LSD maps look similarly and darker

than the other three maps, because of sharpness values’ distribution. The S1 map

has a large black area because of the algorithm’s quantization. However, as we will

show, they can replace each other in S4RR framework. From this point, we employ

107

LSD map as sharpness map for demonstrating purposes.

Figure 5.2 demonstrates that sharpness maps can capture both distortion types

and distortion intensities. Showing in first column is original image, its first-scale

sharpness map, and scatterplot of the map versus itself. Showing in a2-a8 and d2-d8

are 14 distorted images of seven distortion types and two distorted levels. Rows b, e

and c, f are first-scale sharpness maps and scatterplots of the distorted maps versus

original map, respectively. We can see that different distortion types can be captured

by the change in the scatterplots’ shapes. For example, when the image is original

(figure 5.2(c1)), the shape (in green) is fit perfectly on the red line, which is a linear

matching. In c2 and f2, the scatterplot spreads both sides of the red line, especially

the left-bottom area. On columns 3 and 4, the white noise and high-frequency noise

modify mostly the lower areas of the shapes (c3, f3 and c4, f4). On columns 5 and 6,

contrast-changing images produce very well-correlated scatterplots, with the contrast

reduction shapes fall under the red line (c5 and f5), while the contrast enhancement

shapes mostly above the red line (c6 and f6). The blurred image scatterplots in c7

and f7 have a large drop-down in the higher area. For localized distorted images,

figure 5.2(c8 and f8) has most of the green dots on the red line, and some sparse dots

everywhere else. Distortion intensities can also be captured by sharpness map if we

compare row c and row f.

Our framework, S4RR (Sharpness maps for Reduced Reference task), is a generic

RR framework via employing seven distortion families. It also employs two mea-

surements on a multi-scale sharpness to assess quality. Two employed measurements

are the average of three maxima of the differences (for uniform distortion types),

and the average of three L2-norms of the differences (for the nonuniform distortion

types). Seven distortion families employed in our algorithm are: (1) Spatially corre-

lated broadband distortions, (2) Uniform White Noise, (3) High-frequency Noise, (4)

Contrast reduction, (5) Contrast enhancement, (6) Blurring, and (7) Spatially local-

108

(1) Original (2) JPEG2000 (3) AWGN (4) High-freq Noise (5) Contrast Reduction (6) Cont. Enhancement (7) Blurring (8) Local

(c)

(b)

(a)

(f)

(e)

(d)

Figure 5.2: The demonstration that sharpness maps can capture both distortion
types and distortion intensities. Showing in first column is original image, its first-
scale sharpness map, and scatterplot of the map versus itself. Showing in a2-a8 and
d2-d8 are 14 distorted images of seven distortion types and two distorted levels. Rows
b, e and c, f are first-scale sharpness maps and scatterplots of the distorted maps
versus original map, respectively. Different distortion types and distortion intensities
can be captured by the change in the scatterplots’ shapes.

ized distortions. Namely, S4RR adaptively selects and switches among seven scalars

and two measurements to estimate quality. The framework provided in this paper is

also useful for other feature maps, as long as these feature maps can capture the effec-

tively reference information, change differently for different distortion types/families,

and capture the distortion intensities. As we will demonstrate on four largest image

databases, our method - S4RR, when utilizing approximately 2.08% of reduced infor-

mation, is better than current RR frameworks, which employed around 3% reduced

information. S4RR also outperforms current state-of-the-art FR algorithms on most

of the criteria.

The rest of this Chapter is organized as follows. Section 5.2 summarizes existing

methods of reduced-reference image quality assessment. Section 5.3 provides the

detail steps of the S4RR framework, including the reduced information extraction,

109

collecting 19 multiscale sharpness features to classify an image into seven distortion

families, the average of three maxima and average of three L-2 norms measurements,

and combining measures and distortion families process. The results and discussion of

the our algorithm in predicting a subjective quality rating on TID2008 [3], LIVE [1],

CSIQ [2], and TID2013 [4] image databases are provided in Section 5.4. This section

provides prediction performance on training database, TID2008, and the classification

accuracy and the prediction performances on all other databases. General summaries

are presented in Section 5.5.

5.2 Related work

Even though what and how much reduced information remain challenging questions,

a lot of relevant progress has been made in RR area [88, 89, 96–114]. It is difficult to

classify RR IQA algorithms into separated classes. However, there are a few noticeable

trends to calculate reduced information and to estimate image quality. Some RR

IQA works employ the natural scene statistic (NSS) models to extract RR features

[96, 102, 106]. Some other works extract the statistics of image in some transformed

domains [100, 101, 103, 105, 108]. On another trend, some works focus on developing

RR algorithms, which employ more than one strategy for as many distortion types

as possible [97, 104, 109]. More recently, some researchers were trying to find the

relationship between current FR models and their RR algorithms [88, 107, 111–113].

In this section, we provide a brief review of current RR methods based on these main

trends.

5.2.1 Methods based on natural scene statistic

Natural scene statistics were explored early in image processing research [115, 116].

NSS has been also employed widely to develop RR IQA algorithms. For example, in

[96], Wang and Simoncelli used the Kullback-Leibler divergence between the marginal

110

probability distribution of wavelet coefficients based on a wavelet-domain statistical

model to estimate the quality. In [102], Li and Wang employed a Gaussian-scale

mixture-based statistical model of wavelet coefficients to quantify image quality. In

[106], Ma et al. developed an RR algorithm based on a generalized Gaussian distri-

bution model on DCT domain.

5.2.2 Methods in a transformed domain

Besides wavelet and DCT to calculate NSS features, calculating the differences on

grouplet, curvelet, and contourlet transforms is also a common RR approach. For ex-

ample, in [100], Maalouf et al. calculated information regarding textures and gradients

of the images via grouplet transform and employed a CSF filtering and thresholding

to estimate quality. In [101], Gao et al. performed multiscale geometric analysis

including curvelets, bandlets, wavelets, and contourlets to develop the RR IQA algo-

rithm. In [103], Tao et al. employed the city-block distance to measure the quantity

differences of the visual sensitive coefficients in the contourlet domain. In [105], Xue

and Mou developed the algorithm based on Weibull distribution of wavelet coefficients

in wavelet domain. In [108], Linet al. used the directional information of the image

obtained from the complex wavelet domain to measure image quality.

5.2.3 More distortion types, closer to the general distortion

In contrast to using one single strategy to model HVS [98, 99], many algorithms

advocate that the HVS uses multiple strategies to determine image quality. For ex-

ample, in [97], Gunawan and Ghanbari proposed gain and loss idea. The algorithm

first applied Sobel edge detection for original and distorted images and computed

local harmonic amplitude information of edge maps as the reduced information. By

performing analysis of the local harmonic amplitude information, the authors divided

the local harmonic amplitude maps into gain (positive) and loss (negative) informa-

111

tion areas, and combined two separated measurements to estimate image quality. In

[104], Engelke et al. calculated five measures for four artifacts in wireless imaging:

blocking, blur, ringing, and intensity masking and lost blocks. In [109], Bordevic et

al. refined four quality features to qualify image quality in three distortion types,

Gaussian blur, JPEG, and JPEG2000.

5.2.4 Methods based on current FR algorithms

More recently, another RR approach inspired by the ideas of the state-of-the-art

FR IQA models has been developed. For example, in [107], Rehman and Wang

developed the RR-SSIM algorithm, which is reduced information estimation of the

SSIM [5] algorithm. From the same SSIM idea, Bhateja et al. [112, 113] measured

the structural dissimilarity to estimate the quality. Visual information fidelity [15]

also inspired RR algorithms [88, 111]. Especially, in [88], Soundararajan and Bovik

used to develop a framework for RR IQA based on information theoretical measures

of differences between the reference and distorted images by using the entropic of

wavelet coefficients. When the reduced reference information (the number of scalars

required) is around 2.8% of the image size, the algorithm performs nearly as good as

the best performing FR IQA algorithms.

5.2.5 Summary of existing methods

In summary, current methods share a common thread: using one or a few strategies

to model the way the HVS operates, e.g., measuring how unnatural an image is,

measuring the difference in some transformed domains, or a combination of different

distortion measures. Some researchers have been focused on using more than one

strategy and tried to be generic at the same time. However, they archived only good

results for a few distortion types [97, 104, 109].

In the following section, we describe our approach to RR IQA, the S4RR frame-

112

work, considering a distorted image in distortion families, not distortion types. Via

dividing common distortion types (five distortion types in LIVE, six distortion types

in CSIQ, and 24 types in TID2013 image databases) into seven distortion families,

we demonstrate that S4RR is truly generic, and with approximately 2.05% reduced

information, S4RR can perform as good as the state-of-the-art FR IQA algorithms.

113

5.3 New Reduced-Reference IQA Framework

This section describes the details of S4RR framework. The block diagram of S4RR

is shown in Figure 5.3 with five main stages. We will go through each stage in

detail in each subsection (Section 5.3.1 to 5.3.5). In general, the reduced reference

information is the three-scale sharpness maps. From three pairs of sharpness maps,

we compute 19 futures to class the distorted image using seven-class classification.

Two measurements, the average of three maxima and average of three L2-norms,

are calculated from reduced information. Finally, the soft-classification results with

probabilities are employed to combine a class-weighted average of two measurements

to yield the final S4RR quality index.

Distorted

image

Reference

image

Compute three-scale

sharpness maps
Compute 19

sharpness features

Compute average of three

maxima and average of

three L2-norms

Compute three-scale

sharpness maps

Perform soft

classification

Combine class-

weighted and two

measurements

Seven classes

with probabilities

S4RR index

Reduced-information

Figure 5.3: Block diagram of the S4RR framework. Multiscale sharpness maps are
the reduced reference information for the S4RR framework. Two measurements, the
maximum and average differences, are calculated for latter use to assess image quality.
From the three-scale sharpness maps, we compute 19 features to classify all distortion
types into seven distortion families. The soft-classification results with probabilities
are then employed to combine with two calculated measurements to yield the final
S4RR quality index.

5.3.1 Reduced-reference information

This section first provides the method to collect the reduced-reference information

from multi-scale sharpness maps of original and distorted images. We analyze the

amount of reduced reference information (number of scalars versus image size) based

on sharpness algorithm, block size, block overlapping, and image size. We also demon-

114

strate that the three-scale sharpness maps can provide an efficient summary of the

original image and they are sensitive to a variety of distortion types via some ex-

amples. Two more scales of sharpness maps are obtained by applying sharpness

algorithm to filtered and down-sampled image by a factor of two (via imresize in

Matlab, which includes anti-aliasing filter with bicubic option).

A S1, S2, and S3 sharpness maps

The S3 algorithm was first presented in [93] and then further developed in [19]. S3

claimed to be the first algorithm that could yield a sharpness map in which greater

values denote sharper regions. Sharpness map S3 is a combination of a spectral

measure based on the slope of the local magnitude spectrum (S1 map) and a spatial

measure based on local maximum total variation (S2 map).

In S1 map, block of size 32 pixels and 24 pixels overlapping between neighboring

block were applied. Therefore, this sharpness map has the sizes of 1/8 input image’s.

Using this sharpness map, the amount of reduced information for three scales is:

1/82 + 1/22/82 + 1/42/82 ≈ 2.05%.

In S2 map, block of size 8 pixels and 4 pixels overlapping between neighboring

block were applied. Therefore, S2 and S3 sharpness maps have the sizes of 1/4 input

image’s. Using S2 or S3 sharpness maps, the amount of reduced information for all

three scales is: 1/42 + 1/22/42 + 1/42/42 ≈ 8.20%.

B FISH sharpness map

FISH sharpness map is a block-based version of Fast wavelet-based Image SHarpness

algorithm [20]. A three-level discrete wavelet transform (DWT) were employed in

FISH. The sharpness index for each block of size 16 × 16 is then given by a com-

bination of the log-energies of blocks of size 8 × 8,4 × 4, and 2 × 2, respectively for

three triplet subbands. FISH employs 50% overlap between neighboring blocks to

115

generate sharpness map. Therefore, FISH sharpness map is 1/8 size of the input

image. Consequently, the amount of reduced information for all three scaled maps is:

1/82 + 1/22/82 + 1/42/82 ≈ 2.05%.

C LSD map

The local standard deviation (LSD) has been employed previously in noise estimation

[117], contrast enhancement [118], or texture analysis [119]. Here, we argue that LSD

map is also a good candidate for sharpness map. The LSD map is formed locally by

calculating the standard deviation for each block of size 12× 12 (4 pixel overlapping

between neighboring blocks) of the input image. As seen in Figure 5.1, LSD map is

similar to S2 map. The main difference between the two maps is on the texture areas

such as the shoulder of the girl. Moreover, the correlation coefficient between LSD

maps applied on the sharpness image database provided in [19] is high (CC > 0.90).

The LSD map has the size of 1/(12 − 4) = 1/8 the input image. Therefore, the

amount of reduced information for all three scaled maps is: 1/82+1/22/82+1/42/82 ≈

2.05%.

Figure 5.4 shows an example reduced information (sharpness maps) collecting

process, in which maps are scaled for showing purpose and S, D denote the sharp-

ness calculating and downsampling operations, respectively. We can see that three

sharpness maps provide an efficient summary of the reference image. For example,

the dark areas in the level 1, level 2, and level 3 maps indicate a smooth area in the

sky of the input image. The brightest areas in the three maps point out the sharp

edges around the building and the horse statue. Three maps also compensate each

other for texture areas. For example, the texture in the flowers is captured by the

corresponding dark-bright-mixed area in level 1 map, and gray-dark areas in level 2

and level 3 maps.

Figure 5.5 demonstrates that sharpness maps are sensitive to a variety of distortion

116

Input image Sharpness map level 1

Sharpness map

level 2

Sharpness map

level 3

S

D

S

D

S

Figure 5.4: An example reduced information (sharpness maps) collecting process.
(Maps are scaled for showing purpose and S, D denote the sharpness calculating and
downsampling operations, respectively.) Three sharpness maps provide an efficient
summary of the reference image. For example, the dark areas in the level 1, level 2
and level 3 maps indicate a smooth area in the sky of the input image. The brightest
areas in the three maps point out the sharp edges around the building and the horse
statue. Three maps also compensate each other for texture areas. For example, the
texture in the flowers is captured by the corresponding dark-bright-mixed area in
level 1 map, and gray-dark areas in level 2 and level 3 maps.

types. Four distorted images are shown in row a: AWGN, contrast-reduced, JPEG

image, and JPEG2000 images, respectively. Four original and distorted LSD maps

are shown in rows b and c for comparison (first scale only). We can clearly see that,

for the AWGN image in column 1, the AWGN sharpness map in (c,1) is brighter than

the original sharpness map in (b,1), due to the fact that white-noise makes sharpness

values higher. Especially, the most change in the sharpness map is in the sky (the

smoothest area). For contrast-reduced image in column 2, the distorted map (c,2)

is darker than the original map (b,2) because sharpness values have been decreased.

The distortion is captured mostly at the edges around the hat and wall. For the JPEG

image in (a,1), the sky has been changed from one smooth area to several same-color

areas. This is captured in original and distorted maps, (b,2) and (c,2): The dark area

corresponding to the sky in (b,2) is changed either to black (due to quantization)

or brighter (due to blocking artifact) in (c,2). The same pattern happens for the

117

JPEG2000 image in (a,4): The sea area is smooth (low frequency), and it is distorted

to be either blurring or ringing (lower-area of (a,1)). This is also captured in the

maps (b,2) and (c,2): The middle area corresponding to the sea is darker (due to

blurring artifact) and the left area is whiter (due to ringing artifact).

(a)

(b)

(c)

(2) (3) (4) (1)

Figure 5.5: Four distorted images [row (a)]: AWGN, contrast-reduced, JPEG, and
JPEG2000 images; first-scale original and distorted sharpness maps [rows (b) and (c)].
For the AWGN image in column 1, the AWGN sharpness map in (c,1) is brighter than
the original sharpness map in (b,1), due to the fact that white-noise makes sharpness
values higher. Especially, the most change in the sharpness map is in the sky (the
smoothest area). For contrast-reduced image in column 2, the distorted map (c,2)
is darker than the original map (b,2) because sharpness values have been decreased.
The distortion is captured mostly at the edges around the hat and wall. For the JPEG
image in (a,1), the sky has been changed from one smooth area to several same-color
areas. This is captured in original and distorted maps, (b,2) and (c,2): The dark area
corresponding to the sky in (b,2) is changed either to black or brightened (JPEG
blocking artifact) in (c,2). The same pattern happens for the JPEG2000 image in
(a,4): The sea area is smooth (low frequency), and it is distorted to be either blurring
or ringing [lower-area of (a,1)]. This is also captured in the maps (b,2) and (c,2): The
middle area corresponding to the sea is darker (blurring) and the left area is whiter
(ringing).

118

5.3.2 Sharpness features

As shown in Section 5.3.1, sharpness maps are sensitive to a variety of distortion

types. This section describes what the sharpness features are, and how to extract

sharpness features to classify images into different distortion families.

The sharpness maps (reduced information) are calculated for both reference and

distorted images. Let Sref and Sdst denote the first scale sharpness map of reference

and distorted images, respectively. As seen in figure 5.2, the shapes of scatterplots

between distorted and original maps can capture the distortion types/intensities.

Perfect quality image would have the shape lines perfectly on the red line as seen in

figure 5.2 (1c). Looking at the scatterplots, the changes that distortions make to the

shapes can be seen clearly in four areas of the x-axis: low values, mid values, high

values, and very high values. Therefore, we divide each of sharpness maps Sref and

Sdst into four sub-maps based on the values of Sref : low values, mid values, high

values, and very high values maps (Lref , M ref , Href , and V ref maps for Sref , and

Ldst, Mdst, Hdst, and V dst maps for Sdst, respectively). The eight maps are given by:

Lref (l) = Sref (l), (5.1)

Ldst(l) = Sdst(l), ∀l|Sref (l) < T/6 (5.2)

M ref (m) = Sref (m), (5.3)

Mdst(m) = Sdst(m), ∀m|T/6 ≤ Sref (m) < T/3 (5.4)

Href (h) = Sref (h), (5.5)

Hdst(h) = Ddst(h), ∀h|T/3 ≤ Sref (h) < T/2 (5.6)

V ref (v) = Sref (v), (5.7)

V dst(v) = Dref (v), ∀v|T/2 ≤ Sref (v) (5.8)

where l, m, h, and v denote the indices of the Sref map corresponding to low, mid,

119

high, and very high values, and T denote the maximum value that a sharpness algo-

rithm can generate.

All 19 features, f(1)-f(19), and their purposes are given in Table 5.1, where l, m,

h, and v indices are obtained in eq. 5.1-5.8 . These 19 features are useful to classify

an image into any distortion type. For example, an AWGN image will have a large

f(3) and f(5), while f(4) is close to zero; a JPEG image will have a large f(10) and

f(13), f(11) × f(12) < 0, and f(13) × f(14) < 0; a JPEG2000 image will have the

opposite sign of f(8) and f(9), high f(15) and f(18).

5.3.3 Distortion family classification

In this section, we provide the training process in TID2008 and results of soft-

classification when classifying a distorted image into seven distortion families: (1) Spa-

tially correlated broadband distortions, (2) Uniform White Noise, (3) High-frequency

Noise, (4) Contrast reduction, (5) Contrast enhancement, (6) Blurring, and (7) Spa-

tially localized distortions. These seven distortion families are chosen based on the

tendency of the 19 features. For example, the Spatially correlated broadband distor-

tions family contains both gain and lost of sharpness values; Uniform White Noise

contains mainly the incremental in low frequency regions; the Spatially localized dis-

tortions family’s sharpness maps are locally distorted; Contrast families include well

correlated sharpness maps; and Blurring includes mainly the decrement in high fre-

quency regions.

The training process requires only the distortion types in TID2008. The mappings

between seven distortion families and 17 distortion types in TID2008 are provided

in Table 5.2. Here, TID2008 contrast subset includes both contrast reduction and

contrast enhancement images; therefore, we need two families for contrast distortion.

All 19 features are calculated for each image in TID2008 to prepare for the train-

ing procedure. We divide the database into two randomly no-overlapped subsets −

120

Table 5.1: All 19 features, their formulas and purposes.

Feature Formulas Purpose/Good for:

Linear correlation
between two maps

f(1) = corr(Sref , Sdst)
High value of f(1) suggests a
high quality image or a con-
trast distorted image

Linear correlation between
reference and error maps

f(2) = corr(Sref , (Sdst − Sref))
High values f(1), f(2) suggests
contrast enhanced images

Maximum of the error map f(3) = max(Sdst − Sref)
Sharpened if f(3) + f(4) > 0
Blurred if f(3) + f(4) < 0

Minimum of the error map f(4) = min(Sdst − Sref)

Average of the error map f(5) = mean(Sdst − Sref)
Image appears to be sharpened
if f(5) > 0 and appears to be
blurred if f(5) < 0

Average of the increment
in Sref map

f(6) = mean(Sdst(s)− Sref (s))
for all Sdst(s) > R(s)

(1) f(6) ≈ 0 and f(7) << 0:
blurred family.
(2) f(6) >> 0 and f(7) ≈ 0:
Noise family.

Average of the decrement
in Sref map

f(7) = mean(Sdst(s)− Sref (s))
for all Sdst(s) < Sref (s)

(3) f(6) >> 0 and f(7) << 0:
two-sided distortions

Average of the increment
in Lref map

f(8) = mean(Ldst(l)− Lref (l))
for all Ldst(l) > L(l)

High value suggests a noise-
added image.

Average of the decrement
in Lref map

f(9) = mean(Ldst(l)− L(l))
for all Ldst(l) < Lref (l)

Low value for quantization in
pixel domain in smooth area.

Number of zeros in Ldst map f(10) = count(Ldst(l) == 0)
High value suggests JPEG, lo-
cal intensity, or highly dis-
torted image.

Average of the increment
in M ref map

f(11) =
mean(Mdst(m)−M ref (m))
for all Mdst(m) > M ref (m)

Similar to f(8)

Average of the decrement
in M ref map

f(12) = mean(Mdst(m) −
M ref (m))
for all Mdst(m) < M ref (m)

Similar to f(9)

Number of zeros in Mdst map f(13) = count(Mdst(m) == 0) Similar to f(10)

Average of the increment
in Href map

f(14) = mean(Hdst(h) −
Href (h))
for all Hdst(h) > Href (h)

Similar to f(8)

Average of the decrement
in Href map

f(15) = mean(Hdst(h) −
Href (h))
for all Hdst(h) < Href (h)

Similar to f(9)

Number of zeros in Hdst map f(16) = count(Hdst(h) == 0) Similar to f(10)

Average of the increment
in V ref map

f(17) = mean(V dst(v) −
V ref (v))
for all V dst(v) > V ref (v)

Similar to f(8)

Average of the decrement
in V ref map

f(18) = mean(V dst(v) −
V ref (v))
for all V dst(v) < V ref (v)

Similar to f(9)

Number of zeros in V dst map f(19) = count(V dst(v) == 0) Similar to f(10)

121

80% training and 20% testing. We employed a support vector machine regressor to

perform this training process by utilizing the LIBSVM package [81]. Furthermore,

this randomizing train-test procedure is repeated 1000 times to avoid performance

bias.

Table 5.2: Mappings between seven distortion families and 17 distortion types in the
TID2008 database

Id Distortion families Distortion types

1
Spatially Correlated
Broadband Distortions

JPEG, JPEG2000, CorrNoise

2 Uniform White Noise AWGN, ColorNoise
3 High-frequency Noise HiNoise
4 Contrast reduction CNT dst, MeanShift
5 Contrast enhancement CNT enh
6 Blurring BLUR, Denoise

7 Spatially localized distortions
JPPackageErr, JP2KPackageErr, ImpulseNoise,
QuanNoise, Local, MaskedNoise, NEPNoise

Overall, the median classification accuracy reaches 97.58% for 1700 images in the

TID2008 database if we employ LSD sharpness. For all other sharpness algorithms,

the classification accuracies are from 95% to 98%. Figure 5.6 provides the accuracy

(%) of LSD sharpness, where the sum of each row in the matrix is 100%, and each value

represents the average of 1000 train-test trials. From the table, we can see that White

Noise and High-Frequency Noise are the most confused distortion types: 9.41% White

Noise images were classified to High-Frequency Noise, and 13.03% High-Frequency

Noise images were classified to Uniform White Noise. All the other distortion types

have correction rates greater than 95%, including two contrast subsets, which are

49.96% and 49.83%, respectively.

5.3.4 Maximum and average difference measurements

From three pairs of sharpness maps, we employ a simple masking model using a

sigmoid to calculate the different maps. This sigmoid takes into account the low-value

(0−T/6), mid-value (T/6−T/3), and high-value (≥ T/3) of reference sharpness maps,

122

 Broadband White noise Hi-noise Cnt_dec Cnt_inc Blurring Local

AWGN 0.29 90.30 9.41 0.00 0.00 0.00 0.00

ColorNoise 0.24 98.25 1.35 0.00 0.00 0.00 0.16

CorrNoise 99.07 0.50 0.02 0.00 0.00 0.00 0.42

MarkedNoise 0.05 0.02 0.00 0.00 0.00 0.01 99.93

HiNoise 0.20 13.03 86.74 0.00 0.00 0.00 0.03

ImpulseNoise 0.00 0.34 0.01 0.00 0.00 0.00 99.65

QuanNoise 0.86 0.01 0.00 0.00 0.00 0.05 99.08

Blur 1.10 0.00 0.00 0.00 0.00 98.84 0.06

Denoise 3.31 0.00 0.00 0.01 0.00 95.96 0.72

JP 98.52 0.00 0.00 0.00 0.00 0.21 1.27

JP2K 95.91 0.00 0.00 0.00 0.00 3.59 0.51

JPpackageErr 0.13 0.00 0.00 0.00 0.00 0.05 99.82

JP2KPackageErr 0.82 0.06 0.00 0.00 0.00 0.00 99.12

NEPNoise 0.60 0.00 0.00 0.00 0.00 0.04 99.36

Local 0.40 0.00 0.00 0.00 0.00 0.01 99.59

MeanShift 0.19 0.19 0.08 0.01 0.00 0.64 98.89

CNT 0.00 0.00 0.00 49.96 49.83 0.04 0.17

Figure 5.6: TID2008 accuracy matrix (%) for classifier across 1000 trials.

where the differences in lower sharpness values are more sensitive than the difference

in higher values. Specifically, the sigmoid is given by:

Sig(x) = 1 + g1 − g1/(1 + exp(t1 × (x− t2)))

+g2 − g2/(1 + exp(t3 × (x− t4))) (5.9)

where t1 = −0.8, t3 = −0.5 are two slopes, t2 = 20, t4 = 40 are two cut-offs, and

g1 = g2 = 10 are the gains of the sigmoid. The values −0.8,−0.5, 10, 20, 40 are

chosen empirically, and for the best fit to the TID2008 image database [3], assuming

sharpness value x is in the range of 0− 120.

The differences between the reference and distorted maps, Pi, after applying sig-

moid are then given for three scales, i = 1, 2, 3, by:

Pi = (Ri −Di)× Sig(Ri) (5.10)

where the sigmoid function is applied for the reference maps to highlight the difference

123

in areas that have the lower sharpness values.

From three different maps, Pi, we calculate two measurements for latter use to

assess quality: The average of three maxima, and the average of L2-norms of three

different maps. Specifically, two measurements are given by:

Me1 =
1

3
× (max |P1|+max |P2|+max |P3|) (5.11)

Me2 =
1

3
×

3
∑

i=1

(

1

Ni

∑

Ni

P 2

i

)1/2

 (5.12)

where the summation is over all ith map’s values and Ni is the number of scalars in

ith map.

The average of three maxima, Me1, is reasonable for uniform-distortion families,

such as Spatially correlated broadband distortion and Uniform White Noise families.

Whereas the average of three L2-norms,Me2, is mainly used for nonuniform-distortion

families, such as blurring and spatially localized distortions. Figure 5.7 demonstrates

Me1 and Me2 for a variety of image distortions. Four distortion types are AWGN,

contrast-reduction, JPEG package error, and JPEG2000 package error. For uniform

distorted images [i.e. images (a) and (b)], both Me1 and Me2 are reasonable. How-

ever, for locally distributed distortion [i.e. image (c) and (d)], Me1 values, which are

the average of three maxima of three scales, are too large. The Me2 values, which

are the average of three L2-norm, are better representations of image qualities.

5.3.5 Combining measures and distortion families adaptively

This section provides the last stage of S4RR framework (as shown in Section 5.3,

Figure 5.3), which adaptively combines the maximum and average differences into a

final quality index based on the distortion family classification. One scalar is selected

to combine with one measurement based on the distortion family. Since it is soft

classification, the probability of each distortion family is provided. The final quality

124

(a) (c) (b) (d)

Me2 = 77.05

Me1 = 188.71

Me2 = 89.40

Me1 = 165.91

Me2 = 56.02

Me1 = 456.40

Me2 = 136.46

Me1 = 541.75

Figure 5.7: Me1 Me2 demonstration. For uniform distorted images [i.e. images (a) and
(b)], both Me1 and Me2 are reasonable. However, for locally distributed distortion
[i.e. image (c) and (d)], Me1 values, which are the average of three maxima of three
scales, are too large. The Me2 values, which are the average of three L2-norm, are
better representations of image qualities.

index, S4RRX (where X ∈ {S1, S2, S3, F, L} for S1, S2, S3, FISH, or LSD sharpness

algorithms, respectively), is the weighted summation between probabilities, scalars,

and measurements. Specifically, S4RRX is given by:

S4RRX =
7
∑

i=1

Pr(i)× [k1(i)×Me1 + k2(i)×Me2] (5.13)

where Pr(i) is the probability that the distorted image belongs to the ith distortion

family. Two scalar vectors k1 and k2 of length seven are adaptively selected based on

the distortion family. The seven values of k1, k2 are provided in Table 5.3.

Table 5.3: k1 and k2 vectors. The algorithm adaptively selects scalar based on dis-
tortion families.

Id Distortion families k1 k2

1 Spatially correlated broadband distortions 1 0
2 Uniform White Noise 1/1.25 0
3 High-frequency noise 1/1.75 0
4 Contrast reduction 1/2.5 0
5 Contrast enhancement -1/5 0
6 Blurring 0 2.25
7 Spatially localized distortions 0 2.5

The values of k1 and k2 in Table 5.3 are chosen empirically, and for the best

fit to the TID2008 image database [3]. However, it is reasonable to come up with

125

these values for two main reasons: First, from the properties of L2-norm and the

maximum operation, Me2 is expected to be 2.5 times less than Me1, and thus k2

is expected to be 2.5 times greater than k1. Second, within the uniform distortion

families, Id = 1− 4, distortion families are sorted based on their effects on the high

frequency areas. Since the distortions in the smooth areas (low frequency) are more

sensitive than in the edge areas (high frequency), the smaller k1 values are chosen

for the greater group index. The algorithm can detect a contrast-enhanced image,

therefore k1(5) is negative. A negative quality index implies an enhanced image, and

zero means perfect quality image.

5.4 Results and discussion

5.4.1 Correlation with human opinions

We tested the performance of the S4RRX algorithm using distortion-family-training

database, TID2008 [3], which consists of 25 reference images and 1700 distorted im-

ages spanning 17 distortion types (JPEG, JPEG2000, CorrNoise, BLUR, Denoised,

AWGN, ColorNoise, MaskedNoise, JPpackageErr, ImpulseNoise, QuanNoise, Local,

JP2KPackageErr, HiNoise, Contrast, MeanShift, and NEPNoise). The results re-

ported here were the average numbers of 1000 trials. Each trial, with 80% training

and 20% testing data points, has been randomly selected to eliminate performance

bias.

The Spearman rank ordered correlation coefficient (SROCC) and Pearson correla-

tion coefficient (CC) between the predicted score from the algorithm and MOS values

were employed to access performance. A logistic transform was employed before com-

puting SROCC and CC scores (see [19]). Scores are in the range of [0-1], where higher

values denote better performance and ones are for perfect prediction.

For comparison, we also calculated the performances of one classic FR IQA algo-

rithm: peak signal-to-noise ratio (PSNR); four state-of-the-art FR IQA algorithms:

126

Table 5.4: CC and SROCC scores of S4RR and other algorithms in the TID2008
database. Best performances are bolded, italic entries are second-best performances,
and italic algorithms are full-reference.

CC SROCC

PSNR 0.5355 0.5245
MS-SSIM 0.8390 0.8528

VIF 0.8055 0.7496
MAD 0.8306 0.8340
FSIM 0.8710 0.8805
RRED 0.8252 0.8237

SPCRM 0.8509 0.8325
S4RRS1

0.7312 0.7467
S4RRS2

0.8584 0.8601
S4RRS3

0.7970 0.8046
S4RRF 0.6937 0.7048
S4RRL 0.8809 0.8915

multi-scale structural similarity index (MS-SSIM) [14], visual information fidelity

(VIF) [15], most apparent distortion (MAD) [7], and feature similarity index (FSIM

- grayscale version) [90]; and two state-of-the-art RR IQA frameworks: reduced ref-

erence entropic differencing (RRED) [88] and regularity of phase congruency metric

(SPCRM) [89]. Notice that, in terms of reduced reference, S4RRX is using 2.05%

(X = S1, F, or L), or 8.20% number of scalars (X = S2 or S3), whereas RRED and

SPCRM use 2.8% and 3.1% number of scalars, respectively.

Table 5.4 summarizes the performance of S4RR and other algorithms in the

TID2008 database. In terms of both CC and SROCC, S4RRL outperformed all other

algorithms with CC = 0.8809 and SROCC = 0.8915. The second-best algorithm,

FSIM, which is a FR IQA algorithm, could reach CC = 0.8710 and SROCC = 0.8805

only. S4RRS2
and SPCRM are two RR algorithms, which are better than other FR

IQA algorithms, except FSIM.

In addition, scatterplots of TID2008 MOS versus four algorithms’ linearized scores,

MS-SSIM, MAD, FSIM, and S4RRL-the best version of S4RR framework, are pro-

vided in Figure 5.8. We can see that all four scatterplots have outliers in the low-range

127

MOS values (low quality images - MOS < 1). However, the main differences are in

the high-quality range, MOS > 6. Because the TID2008 image database has 50 con-

trast enhancement images, these images appear to be high quality. MS-SSIM, MAD,

and FSIM failed to predict these images’ scores. Only S4RRL classified these images

into the right distortion family, and obtained a better result. However, S4RR frame-

work does not take into account the over-increased images and color changing (see

[120]); therefore, there are still a few outliers in the high-quality range. To conclude,

these scatterplots show that S4RRL outperformed the other state-of-the-art FR-IQA

metrics.

Linearized MS-SSIM Linearized MAD Linearized FSIM

T
ID

2
0

0
8

 M
O

S

Linearized LASTD

T
ID

2
0

0
8

 M
O

S

T
ID

2
0

0
8

 M
O

S

T
ID

2
0

0
8

 M
O

S

S4RR

Linearized S4RR

Figure 5.8: Scatterplots of TID2008 MOS versus four algorithms’ linearized scores,
MS-SSIM, MAD, FSIM, and S4RRL. S4RRL outperformed the other FR-IQA metrics
with less outliers in the high-quality range, MOS > 6.

The SROCC scores of S4RRX and other algorithms on 17 individual distortion

types are given in Table 5.5, where bold entries denote the best performances. The

last row shows the number of times the SROCC was above 0.92. We can see that

among 17 distortion types, S4RRL has the highest SROCC scores four times, while

the others have three times or less. On the last row, S4RRL’s SROCC was above

0.92 six times, while the others were four times or less. Again, S4RRL shows a very

good performance not only on the whole database of 1700 images, but also on each

individual distortion type.

5.4.2 Classification Accuracy

Although classification accuracy is not our main goal, it is useful to know how good

S4RRL, the best version of S4RR framework, can classify different distortion types in

128

Table 5.5: The SROCC scores of S4RRX and other algorithms on 17 distortion types
of the TID2008 database. Bold entries denote the best performance. The last row
shows the number of times the SROCC was above 0.92.

PSNR MSSSIM VIF MAD FSIM RRED SPCRM S4RRL

AGWN 0.911 0.809 0.880 0.863 0.857 0.820 0.815 0.930
JPEG 0.901 0.935 0.917 0.941 0.928 0.933 0.917 0.927

JPEG2000 0.830 0.974 0.971 0.972 0.977 0.968 0.959 0.956
Gaussian Blur 0.868 0.961 0.955 0.914 0.947 0.957 0.912 0.848

Contrast 0.613 0.640 0.819 0.492 0.648 0.679 0.076 0.834
JPEG
Package Err

0.766 0.874 0.858 0.851 0.871 0.871 0.887 0.872

JPEG2000
Pkg. Err

0.777 0.852 0.851 0.840 0.854 0.742 0.848 0.836

Quantization
Noise

0.870 0.854 0.796 0.850 0.856 0.831 0.855 0.876

Denoised 0.938 0.957 0.919 0.945 0.960 0.949 0.948 0.937
Color Noise 0.907 0.806 0.878 0.839 0.853 0.850 0.799 0.886
Corr Noise 0.923 0.820 0.870 0.898 0.848 0.842 0.829 0.923

Masked Noise 0.849 0.816 0.870 0.736 0.803 0.833 0.760 0.782
High Freq.
Noise

0.932 0.868 0.907 0.897 0.909 0.909 0.883 0.920

Impulse Noise 0.918 0.687 0.883 0.512 0.745 0.741 0.676 0.677
NEP Noise 0.593 0.734 0.761 0.838 0.749 0.713 0.819 0.777
Local Block 0.585 0.762 0.832 0.161 0.849 0.824 0.849 0.088
Mean Shift 0.697 0.737 0.513 0.589 0.672 0.538 0.714 0.587

#>0.92 3 4 2 3 4 4 2 6

129

 Broadband White noise Hi-noise Cnt_dec Cnt_inc Blurring Local

LIVE/JP 85.09 0.01 0.00 0.00 0.00 0.20 14.70

LIVE/JP2K 85.60 0.00 0.00 0.00 0.00 7.63 6.77

LIVE/Blur 6.22 0.00 0.00 0.00 0.00 93.65 0.12

LIVE/Noise 13.98 45.51 26.94 0.00 0.46 0.00 13.11

LIVE/Ray 71.95 0.02 0.00 0.00 0.00 10.41 17.62

CSIQ/Contrast 0.18 0.02 0.00 87.70 0.00 5.61 6.49

CSIQ/JP 70.68 2.64 0.05 0.00 0.00 0.23 26.41

CSIQ/JP2k 83.60 0.11 0.00 0.00 0.00 7.25 9.04

CSIQ/Blur 14.98 0.00 0.00 0.00 0.00 84.40 0.62

CSIQ/AWGN 18.26 65.40 8.39 0.00 0.00 0.00 7.94

CSIQ/Fnoise 67.11 1.13 0.00 0.00 0.00 0.15 31.61

TID2013/Color Saturation 3.02 0.32 1.22 3.63 3.75 0.34 87.72

TID2013/Multiplicative

Gaussian noise
16.40 2.24 34.25 4.94 15.38 24.78 2.01

TID2013/Comfort noise 26.73 0.29 1.11 4.57 18.09 36.86 12.35

TID2013/Lossy

compression of noisy

images

25.31 0.92 3.58 11.61 18.43 33.62 6.52

TID2013/Quantization

with dither
12.46 2.21 10.20 10.55 18.12 18.98 27.47

TID2013/Chromatic

aberrations
8.60 2.39 9.23 29.75 23.77 24.84 1.42

TID2013/Sparse sampling

and reconstruction
17.53 1.27 4.89 19.82 13.24 41.43 1.82

Figure 5.9: The accuracy (%) of classifying images in LIVE and CSIQ, and seven
new distortion types in TID2013 into distortion families across 1000 trials.

the LIVE [1], CSIQ [2], and TID2013 [4] image databases into the distortion families.

Besides nine new distortion types in LIVE and CSIQ (RAY - fast fading channel

[121] in LIVE, PinkNoise -1/Fnoise in CSIQ [2], and seven new distortion types in

TID2013 [4]), it is also helpful to understand how classification accuracy affects the

prediction performances on these databases (see Section 5.4.3). The accuracy (%) of

classifying images in LIVE and CSIQ, and seven new distortion types in TID2013

(since TID2013 has seven new distortion types comparing to TID2008), are provided

in Figure 5.9, where the sum of each row in the confusion matrix is 100 (%), and each

value represents the average of 1000 trials.

From Figure 5.9, for LIVE subsets, we can see most of the time, the algorithm

classified correctly, e.g., 85.09%, 85.60%, and 93.65% for JPEG, JPEG2000, and Blur

130

subsets, respectively. For of RAY (fast fading) images, 71.95% were classified to the

Spatially Correlated Broadband Distortions family, 10.41% to Blurring, and 17.62%

to Local. This is reasonable because the algorithm has not been trained on Rayleigh

fading channel distortion, which is based on the JPEG2000 scheme (JPEG Bit Error),

and plus, highly compressed JPEG2000 can introduce blurring.

Figure 5.9 also shows two failure cases on two AWGN subsets: only 45.51% of

Live/Noise and 65.40% of CSIQ/AWGN were classified correctly to Uniform White

Noise. This is explainable: because the distortion level for the AWGN images in

TID2008 is not as wide as in LIVE and CSIQ. Specifically, the AWGN subset of

TID2008 has the PSNR in range of 24.44 − 34.29 dB. Whereas in the LIVE and

CSIQ databases, PSNR of AWGN images are in the range of 7.87 − 41.93 dB and

23.01− 41.45 dB, respectively.

For seven new distortion types in TID2013 showed in Figure 5.9, 87.72% of Color

Saturation were classified to the Local family. This is acceptable, because the S4RR

does not take into account color information, and thus S4RR treated all Color Sat-

uration images as high quality images. The other six distortion types span all seven

distortion families. Except the Color Saturation images, the performances of S4RRL

on these six distortion types are still very good as will be demonstrated in Section

5.4.3.

5.4.3 Database Independence

The S4RRL algorithm, the best version of S4RR framework, has been trained using

the TID2008 distortion types, and S4RRL has shown an excellent performance in this

database. We now demonstrate that the performance of S4RRL is not bound by the

trained database. The LIVE [1], CSIQ [2], and TID2013 [4] databases are employed

to evaluate the S4RRL’s prediction performance.

There were some limitations in the distortion-family classification results of LIVE

131

Table 5.6: CC and SROCC of S4RRL and other algorithms in LIVE, CSIQ, and
TID2013, and the average weighted by the number of images each database. Bold
entries denote the best performance for each row. Italic algorithms are full-reference
algorithms. There are 779, 866, and 3000 images in LIVE, CSIQ, and TID2013,
respectively. CC scores are in the first haft of the table.

CC PSNR MSSSIM VIF MAD FSIM RRED SPCR S4RRL

LIVE 0.8707 0.9330 0.9595 0.9683 0.9539 0.9337 0.9412 0.9468
CSIQ 0.7998 0.8972 0.9252 0.9502 0.9095 0.9079 0.9464 0.9557

TID2013 0.6726 0.8341 0.7468 0.8221 0.8568 0.8164 0.8180 0.8506
Average 0.7295 0.8625 0.8157 0.8705 0.8829 0.8531 0.8626 0.8863
SROCC PSNR MSSSIM VIF MAD FSIM RRED SPCR S4RRL

LIVE 0.8763 0.9437 0.9633 0.9675 0.9634 0.9429 0.9444 0.9484
CSIQ 0.8056 0.9137 0.9192 0.9466 0.9242 0.9184 0.9410 0.9567

TID2013 0.6395 0.7872 0.6085 0.7807 0.8007 0.7632 0.7559 0.8155
Average 0.7102 0.8370 0.7259 0.8430 0.8510 0.8223 0.8220 0.8641

and CSIQ (presented in Section 5.4.2). This is because some subsets TID2008 have

limited distortion levels and distortion types, on which the algorithm has not been

trained. To build the classification accuracy matrix, we had to hard classify into

distortion families. However, the algorithm actually does not need to perform the

hard classification, and therefore, the overall performance does not drop dramatically,

as shown in Table 5.6 and 5.7.

Table 5.6 shows the performances of S4RRL and other algorithms on the entire

set of images from the LIVE, CSIQ, and TID2013 databases using CC and SROCC.

Also shown in Table 5.6 is the average performance of three databases weighted by

the number of images in each database. Bold entries denote the best performance

for each row. Italic algorithms are FR algorithms. We can see that in LIVE, MAD

is the best algorithm with CC = 0.9683 and SROCC = 0.9675; and FSIM is the

best for CC score on TID2013. For all the other criteria of the other databases

and on average, S4RRL shows the best performances with CC/CSIQ = 0.9557,

CC/Average = 0.8506, SROCC/CSIQ = 0.9567, SROCC/TID2013 = 0.8155, and

SROCC/Average = 0.8641 .

Table 5.7 provides SROCC scores of S4RRL and other algorithms for each indi-

132

Table 5.7: SROCC scores of S4RRL and other algorithms for six distortion types in
CSIQ, five distortion type in LIVE, and 24 distortion types in TID2013 with bold
entries for the best performance. Italic algorithms are full-reference algorithms. The
last row of the table also shows the number of times that the SROCC was above 0.95.

PSNR MSSSIM VIF MAD FSIM RRED SPCRM S4RRL # imgs

Awgn CSIQ 0.936 0.947 0.957 0.960 0.926 0.935 0.919 0.958 150
LIVE 0.985 0.973 0.985 0.971 0.965 0.978 0.973 0.983 145

TID2013 0.929 0.874 0.849 0.884 0.902 0.852 0.874 0.951 125
Blur CSIQ 0.929 0.972 0.975 0.966 0.973 0.963 0.969 0.963 150

LIVE 0.781 0.959 0.973 0.899 0.971 0.968 0.959 0.922 145
TID2013 0.915 0.971 0.964 0.932 0.957 0.967 0.941 0.909 125

Jpeg CSIQ 0.888 0.962 0.970 0.966 0.965 0.952 0.956 0.967 150
LIVE 0.881 0.979 0.984 0.949 0.983 0.976 0.975 0.973 175

TID2013 0.919 0.931 0.916 0.922 0.930 0.927 0.916 0.935 125
Jpeg2000 CSIQ 0.936 0.969 0.967 0.977 0.969 0.963 0.958 0.971 150

LIVE 0.895 0.965 0.969 0.938 0.972 0.958 0.957 0.965 169
TID2013 0.884 0.950 0.941 0.951 0.958 0.954 0.946 0.955 125

Contrast CSIQ 0.862 0.952 0.936 0.917 0.942 0.938 0.924 0.952 116
TID2013 0.441 0.468 0.833 0.407 0.472 0.643 0.245 0.874 125

JP2KBitError LIVE 0.893 0.930 0.965 0.883 0.950 0.943 0.928 0.927 145
JP2KPackageErr TID2013 0.888 0.889 0.873 0.879 0.895 0.790 0.879 0.891 125

1/fnoise CSIQ 0.934 0.933 0.951 0.954 0.923 0.936 0.923 0.926 150
ColorNoise TID2013 0.898 0.781 0.794 0.802 0.823 0.789 0.783 0.871 125
CorrNoise TID2013 0.920 0.866 0.862 0.891 0.879 0.852 0.865 0.956 125

MarkedNoise TID2013 0.831 0.813 0.833 0.738 0.800 0.804 0.763 0.780 125
HiNoise TID2013 0.914 0.869 0.868 0.888 0.898 0.896 0.884 0.916 125

ImpulseNoise TID2013 0.897 0.775 0.834 0.277 0.811 0.793 0.749 0.753 125
QuanNoise TID2013 0.878 0.874 0.761 0.851 0.872 0.828 0.875 0.878 125
Denoise TID2013 0.948 0.929 0.900 0.925 0.931 0.923 0.923 0.932 125

JPpackageErr TID2013 0.768 0.849 0.830 0.828 0.845 0.847 0.854 0.842 125
NEPNoise TID2013 0.686 0.794 0.770 0.832 0.789 0.781 0.811 0.773 125

Local TID2013 0.154 0.479 0.534 0.510 0.555 0.549 0.565 0.190 125
MeanShift TID2013 0.766 0.775 0.591 0.645 0.730 0.614 0.781 0.600 125

Color Saturation TID2013 0.545 0.515 0.534 0.362 0.515 0.046 0.325 0.463 125
MGaussian Noise TID2013 0.890 0.800 0.785 0.841 0.854 0.795 0.842 0.846 125
Comfort noise TID2013 0.841 0.862 0.834 0.906 0.913 0.904 0.906 0.925 125

Compressed of Noisy TID2013 0.914 0.914 0.893 0.944 0.948 0.920 0.938 0.962 125
Color quantization TID2013 0.927 0.865 0.781 0.874 0.877 0.865 0.846 0.857 125

Chromatic aberration TID2013 0.888 0.885 0.892 0.831 0.874 0.891 0.852 0.852 125
Sparse sample/rec TID2013 0.904 0.950 0.925 0.957 0.957 0.954 0.954 0.939 125

#>0.95 1 11 11 8 10 10 8 12

vidual distortion type with bold entries for the best performance. The last row of

the table also shows the number of times that the SROCC was above 0.95. Again,

the S4RRL algorithm, using 2.05% of the reduced information, shows an good per-

formance with nine bold entries and 12 times SROCC at above 0.95, whereas RRED

(2.8% number of scalars), SPCRM (3.1% number of scalars), and other FR metrics

reaches eight bold entries and 11 times SROCC at above 0.95 or less.

Scatterplots of DMOS/MOS versus linearized S4RRL can be seen in Figure 5.10

133

for LIVE, CSIQ, and TID2013. We can see that there are several outliers on the LIVE

database in the low DMOS range, on the CSIQ database in the high DMOS range,

and on TID2013 low MOS range. This indicates that S4RRL receives significant

influence from the mis-classification results (described in Section 5.4.2). We believe if

there is a better database to train on distortion types/families, S4RRL can perform

better.

There are a fair number of outliers on the scatterplot of TID2013 in Figure 5.10 for

the S4RRL scores around 5.8. These outliers arise from Color Saturation subset in the

database, because Color Saturation distortion images, when converted to grayscale,

appear to be high quality images.

Linearized LASTD Linearized LASTD Linearized LASTD

D
M

O
S

D
M

O
S

M
O

S

 Linearized S4RR Linearized S4RR Linearized S4RR

Figure 5.10: Scatterplots of LIVE, CSIQ, and TID2013 databases DMOS versus
linearized S4RRL scores.

5.5 Summary

This work presented a new reduced-reference IQA framework, S4RR, based on mul-

tiscale sharpness maps. S4RR extracts 19 features from three-scale sharpness maps

to classify the distorted image into seven distortion families. S4RR then adaptively

switches among seven scalars, combining with the average of three maxima and three

L2-norms to assess quality. We provided the training process on TID2008’s (17 dis-

tortion types into seven distortion families) and the excellent performances on this

database. S4RRL, the best version of S4RR with 2.05% reduced information, was

able to outperform all state-of-the-art algorithms, including full-reference and other

134

reduced-reference frameworks (2.8%-3.1% reduced information). We also demon-

strated that the chosen seven distortion families were efficient to assess quality by

performing analysis on LIVE, CSIQ, and TID2013 databases, which include new dis-

tortion types (six distortion types in CSIQ, including one new distortion type; five

distortion types in LIVE, including one new distortion type; and 24 distortion types

in TID2013, including seven new distortion types.). The new distortion types raised

some small issues with classification accuracy. However, the results on LIVE, CSIQ,

and TID2013 showed that S4RR was able to outperform all other metrics on most of

the criteria.

135

CHAPTER 6

CONCLUSIONS

Two main sections will be provided in this chapter. The section Summary and con-

tribution briefly summarizes the work and its contributions. The section Future work

provides some directions that other researchers and I can go on.

6.1 Summary and Contributions

We have explored four areas in IQA research: local quality (local sharpness), IQA

for improved JPEG2000 coding, microarchitectural analysis of IQA algorithms, and

a reduced reference IQA framework.

The study on local sharpness suggested that a sharp block does not need to be an

edge block. (Many algorithms tried to calculate the edge’s characteristics to measure

sharpness). A local sharpness map database was provided in the report. The analysis

results claimed that an algorithm, which was good at global sharpness prediction,

could fail to predict local sharpness on many blocks. The database was made available

online for research community.

We performed analysis the database, and discovered that human subjects are

highly agreed with other in terms of sharpness. In general, the blocks which in-

clude edges or textures often get rated sharper. Blank blocks and smooth blocks are

generally rated not as sharp. However, the ratings are also biased by neighboring

blocks.

Most of the algorithms were not able to predict the sharpness of local blocks. We

modified those algorithms for them to measure small blocks with overlap between

136

neighboring blocks. Only a few algorithms were designed specifically for local sharp-

ness. However, no algorithm could reach over 0.87 in terms of SROCC. From the

analysis results, we could see that the database is truly a representation of human

opinions.

The study on IQA for improved JPEG2000 coding revealed that an IQA algorithm

which performed reasonably well on standard-MSE JPEG2000-compressed images in

popular image-quality databases (e.g., LIVE, CSIQ, TID2008, TID2013) does not

guaranty a good result in coding context. A new database for JPEG2000 images was

provided with a new algorithm on DWT domain. The new algorithm outperformed

all other IQA algorithms on predicting the ranking of the image in our database.

We presented an image database designed specifically for JPEG2000 compression

with a fixed amount of total distortion, but in which the distortions were allocated

to different frequency bands in different proportions. The result from subjective

ranking experiment revealed that, in general, higher-quality images were achieved by

allocating most of the distortion to the finest scale and the least to the coarse-to-mid

scales.

We also provided an analysis of existing IQA algorithms on this database which

revealed that even though the algorithms perform reasonably well on JPEG2000-

compressed images in popular image-quality databases, they often fail to predict the

correct rankings on the images here.

We proposed a new IQA algorithm, MADDWT , which designed specifically for

JPEG2000 coding. MADDWT was developed based on MAD algorithm. The MADDWT

employed DWT instead of log-Gabor filtering in original MAD, with different weights

to combine across scales. The results demonstrated that MADDWT outperforms all

other IQA algorithms in terms of both C scores and P scores on this database.

The study on IQA algorithms’ efficiency, which was reported in Chapter 4, was

the first ever to examine IQA algorithms to determine microarchitecture bottlenecks.

137

The results showed us that different algorithms, with different approaches, shared

the same algorithmic operation (filtering/transforming and statistical computation),

but with different memory bottlenecks and core/computational bottlenecks. In this

study, we also proposed microarchitectural-conscious coding techniques and custom

hardware recommendations for performance improvement.

A performance analysis of six popular image quality assessment algorithms was

presented. Even though the approaches to the six IQA algorithms are different, the

algorithms shared the same main stages: a filtering (transforming), and a statistical

computation. Our results revealed that different IQA algorithms overwhelm different

microarchitectural resources and give rise to different types of bottlenecks in two

main categories: memory bottlenecks and core/computational bottlenecks. Specific

microarchitectural bottlenecks for each function/block of each algorithm were pointed

out. We also proposed the hardware/microarchitectural conscious coding techniques

for optimization and performance improvement. The findings and recommendations

presented in this study apply broadly to all current-generation Intel IA-32 and Intel

64 based general-purpose computing platforms, whether laptops, servers, or desktops,

even though the actual hotspot and bottleneck details might vary. Architectures

that are radically different, with hardware accelerators, dedicated image processing

cores (such as those found on some tablets and smart phones), and memory shared

between GPUs and CPUs (such as AMD’s Fusion APUs) are expected to show very

different execution characteristics. Further studies using a similar methodology are

recommended to analyze the performances of IQA algorithms on these specialized

architectures.

The study on reduced-reference IQA framework, presented in Chapter 5, pro-

vided a family of RR algorithms that are based on multiscale sharpness maps. The

amount of reduced information was depended on the employed sharpness map algo-

rithm and the algorithm’s block sizes. However, when utilizing approximately 2% of

138

reduced information, our framework provided the best version, which outperformed

all other RR frameworks that employed around 3% of reduced information on pre-

dicting the DMOS/MOS scores on several popular image databases (LIVE, CSIQ,

TID2008, TID2013). Our framework was also competitive or better than current

state-of-the-art full-reference IQA algorithms.

Our framework, S4RR, extracts 19 features from three-scale sharpness maps to

classify the distorted image into seven distortion families. S4RR then adaptively

switches among seven scalars, combining with the average of three maxima and

three L2-norms to assess quality. We provided the training process on TID2008’s

(17 distortion types into seven distortion families) and the excellent performances

on this database. S4RRL, the best version of S4RR with 2.05% reduced informa-

tion, was able to outperform all state-of-the-art algorithms, including full-reference

and other reduced-reference frameworks (2.8%-3.1% reduced information). We also

demonstrated that the chosen seven distortion families were efficient to assess quality

by performing analysis on LIVE, CSIQ, and TID2013 databases, which include new

distortion types (six distortion types in CSIQ, including one new distortion type; five

distortion types in LIVE, including one new distortion type; and 24 distortion types

in TID2013, including seven new distortion types.). The new distortion types raised

some small issues with classification accuracy. However, the results on LIVE, CSIQ,

and TID2013 showed that S4RR was able to outperform all other metrics on most of

the criteria.

The contributions of this dissertation are summarized as following:

• A local sharpness database, and database analysis. This sharpness map is the

first ever local quality database at the time it is presented. By now, several algorithms

aim to, and are designed to predict local sharpness. Their ability of local sharpness

prediction is verified using the ground-truth in the database.

• A new JPEG2000-compressed image database and new algorithm designed

139

specifically for JPEG2000 coding, which uses local DWT coefficient statistics. The

proposed algorithm outperformed current state-of-the-art IQA algorithms on predict-

ing ranking order of this database.

• Results of current IQA algorithms’ microarchitecture analysis, and hardware/mi-

croarchitectural conscious coding techniques for optimization and performance im-

provement. The results revealed that different IQA algorithms with different ap-

proaches share the same algorithmic operations (such as filtering/transforming and

statistical computation). However, they overwhelmed different microarchitectural re-

sources and give rise to different types of bottlenecks in two main categories: memory

bottlenecks and core/computational bottlenecks. Hardware/microarchitectural con-

scious coding techniques for optimization and performance improvement were pro-

vided, not only for improving these algorithms, but also for any algorithm in the

future.

• A foundation for custom IQA engine hardware. In the near future, if any

company wants to design a custom hardware for one of these algorithms, for a new

algorithm, or for several algorithms, this should be in their starter kit, if they want

the algorithms run efficiently.

• A family of reduced-reference IQA algorithms - a RR framework based on local

sharpness maps. This framework utilizes any sharpness map algorithm as reduced

reference features. It then divides any distortion type into seven distortion families

via a soft classification technique with probabilities. The framework switches between

seven scalar (for seven distortion families) and two measurements adaptively to assess

quality. The proposed framework shows the best results testing on several popular

image databases.

140

6.2 Future work

The next stage of the algorithm designed specifically for JPEG2000 coding would

be applying this algorithm to develop a new compression algorithm, which can yield

a better perceived quality with the same compression ratio, comparing to current

JPEG2000. However, at this point the running speed is the main concern. In order

to be widely used application, it needs to respond in a real-time or at least very short

time. The main reason that no algorithm could replace mean square error (MSE)

in JPEG2000 is MSE is too fast. MSE calculates the difference between original

and compressed (distorted) image with a matrix subtraction operation (pixel-wise).

Whereas modern IQA algorithms normally require at least one stage of decomposition

(filtering/transforming), and one stage of statistical computation (mean, variance,

skewness, or kurtosis).

Two main things that need to be done to obtain a new JPEG2000 coding are:

(1) optimizing current MADDWT (proposed in Section 3.4) to run as fast as possible,

and (2) applying this algorithm into JPEG2000 coding efficiently. In this MAD-based

JPEG2000 coding, the MADDWT would be called iteratively. Therefore, it will require

new techniques to optimize, such as caching to save memory or pre-computing to

save computation. The analysis methodology and optimization techniques provided

in Chapter 4 would be useful again in this case. It can show us where, when, and

how to speed up this MAD-based JPEG2000 coding.

The RR IQA framework can be extended to reduced-reference video quality as-

sessment. As any other image quality algorithm, this can also have an extension for

videos. Because human vision system could treat a video differently to a set of frames

(images), video quality assessment is a different task. The work to extend to video, if

applicable, would be useful and it would have a wide application. Reduced reference

video quality assessment is a promising area to explore.

Current RR framework, S4RR, has a main limitation: it converts color images

141

into grayscale before performing quality assessment, therefore it does not keep color

information. Among popular image databases (LIVE, CSIQ, TID2008, TID2013),

only TID2013 has color distortions. We could see that these color-distorted subsets

of TID2013 made many algorithms confused. Special attention needs to be paid

to color distortions, not only for S4RR, but also for other RR frameworks and FR

algorithms.

Another potential work to extend my research is developing a hardware designed

specifically for IQA algorithms and/or two common stages (transforming and statis-

tical computation) of IQA algorithms. Such hardware will be useful for testing IQA

algorithms on frames of videos, other types of images such as medical/radiation/ther-

mal images efficiently. It is also useful in current imaging devices, such as speeding

cameras of police, information-collecting cameras in unmanned aerial vehicle.

142

REFERENCES

[1] H. R. Sheikh, Z. Wang, A. C. Bovik, and L. K. Cormack,

“Image and video quality assessment research at live.” Online.

http://live.ece.utexas.edu/research/quality/.

[2] C. P. I. Q. L. O. S. University, “CSIQ image database,” 2009.

http://vision.okstate.edu/csiq/.

[3] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Bat-

tisti, “TID2008 - a database for evaluation of full-reference visual quality as-

sessment metrics,” Advances of Modern Radioelectronics, vol. 10, pp. 30–45,

2009.

[4] N. Ponomarenko, O. Ieremeiev, V. Lukin, K. Egiazarian, L. Jin, J. Astola,

B. Vozel, K. Chehdi, M. Carli, F. Battisti, et al., “Color image database

TID2013: Peculiarities and preliminary results,” in Visual Information Pro-

cessing (EUVIP), 2013 4th European Workshop on, pp. 106–111, IEEE, 2013.

[5] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment:

From error visibility to structural similarity,” IEEE Trans. Image Process.,

vol. 13, pp. 600–612, 2004.

[6] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural similarity for

image quality assessment,” 37th IEEE Asilomar Conference on Signals, Systems

and Computers 2003.

[7] E. C. Larson and D. M. Chandler, “Most apparent distortion: full-reference im-

143

age quality assessment and the role of strategy,” Journal of Electronic Imaging,

vol. 19, no. 1, p. 011006, 2010.

[8] C. J. van den Branden Lambrecht, “A working spatio-temporal model of the

human visual system for image representation and quality assessment applica-

tions,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,

pp. 2291–2294, May 1996.

[9] Z. Wang, A. C. Bovik, and L. Lu, “Wavelet-based foveated image quality mea-

surement for region of interest image coding,” Proc. IEEE Int. Conf. on Image

Processing, vol. 2001.

[10] K. Yang and H. Jiang, “Optimized-SSIM based quantization in optical remote

sensing image compression,” in Proceedings of the 2011 Sixth International Con-

ference on Image and Graphics, ICIG ’11, (Washington, DC, USA), pp. 117–

122, IEEE Computer Society, 2011.

[11] A. Rehman, M. Rostami, Z. Wang, D. Brunet, and E. R. Vrscay, “Ssim-inspired

image restoration using sparse representation,” EURASIP J. Adv. Sig. Proc.,

vol. 2012, p. 16, 2012.

[12] F. Ciaramello, A. Cavender, S. Hemami, E. Riskin, and R. Ladner, “Predicting

intelligibility of compressed american sign language video with objective qual-

ity metrics,” in 2006 International Workshop on Video Processing and Quality

Metrics for Consumer Electronics, 2006.

[13] D. S. Swamy, K. J. Butler, D. M. Chandler, and S. S. Hemami, “Parametric

quality assessment of synthesized textures,” in IS&T/SPIE Electronic Imaging,

pp. 78650B–78650B, International Society for Optics and Photonics, 2011.

[14] Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity for im-

age quality assessment,” in Conference Record of the Thirty-Seventh Asilomar

144

Conference on Signals, Systems and Computers, vol. 2, pp. 1398 – 1402 Vol.2,

Nov 2003.

[15] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE

Transactions on Image Processing, vol. 15, no. 2, pp. 430–444, 2006.

[16] A. K. Moorthy and A. C. Bovik, “Blind image quality assessment: from natural

scene statistics to perceptual quality.,” IEEE Transactions on Image Processing,

vol. 20, no. 12, pp. 3350–64, 2011.

[17] M. Saad, A. Bovik, and C. Charrier, “Blind image quality assessment: A nat-

ural scene statistics approach in the DCT domain,” Image Processing, IEEE

Transactions on, vol. 21, no. 8, pp. 3339–3352, 2012.

[18] A. Mittal, A. Moorthy, and A. Bovik, “No-reference image quality assessment in

the spatial domain,” Image Processing, IEEE Transactions on, vol. 21, no. 12,

pp. 4695–4708, 2012.

[19] C. T. Vu, T. D. Phan, and D. M. Chandler, “S3: A spectral and spatial mea-

sure of local perceived sharpness in natural images,” Image Processing, IEEE

Transactions on, vol. 21, no. 3, pp. 934–945, 2012.

[20] P. Vu and D. Chandler, “A fast wavelet-based algorithm for global and local

image sharpness estimation,” Signal Processing Letters, IEEE, vol. 19, pp. 423

–426, july 2012.

[21] X. Marichal, W.-Y. Ma, and H. Zhang, “Blur determination in the compressed

domain using dct information,” in Image Processing, 1999. ICIP 99. Proceed-

ings. 1999 International Conference on, vol. 2, pp. 386 –390 vol.2, 1999.

[22] P. Marziliano, F. Dufaux, S. Winkler, T. Ebrahimi, and G. Sa, “A no-reference

145

perceptual blur metric,” in IEEE 2002 International Conference on Image Pro-

cessing, pp. 57–60, 2002.

[23] D. Shaked and I. Tastl, “Sharpness measure: towards automatic image enhance-

ment,” Image Processing, 2005. ICIP 2005. IEEE International Conference on,

vol. 1, pp. I–937–40, Sept. 2005.

[24] N. Narvekar and L. Karam, “A no-reference perceptual image sharpness metric

based on a cumulative probability of blur detection,” in Quality of Multimedia

Experience, 2009. QoMEx 2009. International Workshop on, pp. 87 –91, 2009.

[25] R. Ferzli and L. Karam, “A no-reference objective image sharpness metric based

on the notion of just noticeable blur (jnb),” Image Processing, IEEE Transac-

tions on, vol. 18, no. 4, pp. 717 –728, 2009.

[26] E. C. Larson and D. M. Chandler, “Most apparent distortion: full-reference im-

age quality assessment and the role of strategy,” Journal of Electronic Imaging,

vol. 19, no. 1, 2010.

[27] A. Z. K. E. M. C. N. Ponomarenko, V. Lukin and F. Battisti, “TID2008 a

database for evaluation of full reference visual quality assessment metrics,” Ad-

vances of Modern Radioelectrionics, vol. 10, pp. 30–45, 2009.

[28] C. T. Vu, T. D. Phan, and D. M. Chandler, “S3: A spectral and spatial mea-

sure of local perceived sharpness in natural images,” Image Processing, IEEE

Transactions on, vol. 21, no. 3, pp. 934–945, 2012.

[29] VQEG, “Final report from the video quality experts group on the valida-

tion of objective models of video quality assessment, phase ii,” August 2003.

http://www.vqeg.org.

146

[30] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-

Interscience, 99th ed., August 1991.

[31] N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik,

“Image quality assessment based on a degradation model,” IEEE Trans. Image

Process., vol. 9, 2000.

[32] D. M. Chandler and S. S. Hemami, “VSNR: A wavelet-based visual signal-to-

noise ratio for natural images,” IEEE Trans. Image Processing, vol. 16, pp. 600–

612, September 2007.

[33] Z. Wang, Q. Li, and X. Shang, “Perceptual image coding based on a maximum

of minimal structural similarity criterion,” in Image Processing, 2007. ICIP

2007. IEEE International Conference on, vol. 2, pp. II –121 –II –124, 16 2007-

oct. 19 2007.

[34] T. Richter and K. J. Kim, “A ms-ssim optimal jpeg 2000 encoder,” in Data

Compression Conference, 2009. DCC ’09., pp. 401 –410, march 2009.

[35] M. B. (Ed.), “Information technology the JPEG2000 image coding system:

Part 1,” ISO/IEC IS 15444-1, 2000.

[36] D. M. Chandler and S. S. Hemami, “Dynamic contrast-based quantization for

lossy wavelet image compression,” IEEE Transactions on Image Processing,

vol. 14, pp. 397–410, April 2005.

[37] “Information technology–jpeg 2000 image coding system: Core coding system,”

Tech. Rep. ISO/IEC FDIS15444-1: 2000, International Organization for Stan-

dardization, Geneva, Switzerland, August 2000.

[38] O. supplement, “On the use of image quality estimators for improved jpeg2000

coding,” 2012. http://vision.okstate.edu/mad dwt/.

147

[39] A. T1.TR.74-2001, Objective Video Quality Measurement Using a Peak-Signal-

to-Noise-Ratio (PSNR) Full Reference Technique, 2001.

[40] Y. K. Z. M. P. S. Yuukou Horita, Keiji Shibata, “Subjective quality assessment

Toyama database,” 2008. http://mict.eng.u-toyama.ac.jp/mict/.

[41] S. Daly, “Subroutine for the generation of a two dimensional human visual

contrast sensitivity function,” Eastman Kodak, 1987.

[42] K. Seshadrinathan and A. Bovik, “Motion tuned spatio-temporal quality as-

sessment of natural videos,” IEEE Transactions on Image Processing, vol. 19,

pp. 335 –350, Feb 2010.

[43] P. Vu, C. Vu, and D. Chandler, “A spatiotemporal most-apparent-distortion

model for video quality assessment,” in Image Processing (ICIP), 2011 18th

IEEE International Conference on, pp. 2505 –2508, sept. 2011.

[44] W.-H. Chen, C. Smith, and S. Fralick, “A fast computational algorithm for the

discrete cosine transform,” Communications, IEEE Transactions on, vol. 25,

pp. 1004 – 1009, sep 1977.

[45] H. Hou, “A fast recursive algorithm for computing the discrete cosine trans-

form,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 35,

pp. 1455 – 1461, oct 1987.

[46] J. Liang and T. D. Tran, “Fast multiplierless approximation of the DCT with

the lifting scheme,” IEEE Trans. on Signal Processing, vol. 49, pp. 3032–3044,

2000.

[47] W. Yuan, P. Hao, and C. Xu, “Matrix factorization for fast DCT algorithms,”

in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings.

2006 IEEE International Conference on, vol. 3, p. III, may 2006.

148

[48] C. Cheng and K. Parhi, “Hardware efficient fast DCT based on novel cyclic con-

volution structures,” Signal Processing, IEEE Transactions on, vol. 54, pp. 4419

–4434, nov. 2006.

[49] V. Britanak, P. Yip, and K. Rao, Discrete Cosine and Sine Transforms: General

Properties, Fast Algorithms and Integer Approximations. Academic, 2007.

[50] D. Trainor, J. Heron, and R. Woods, “Implementation of the 2D DCT using a

Xilinx XC6264 FPGA,” in Signal Processing Systems, 1997. SIPS 97 - Design

and Implementation., 1997 IEEE Workshop on, pp. 541 –550, nov 1997.

[51] G. Kiryukhin and M. Celenk, “Implementation of 2D-DCT on XC4000 series

FPGA using DFT-based DSFG and DA architectures,” in Image Processing,

2001. Proceedings. 2001 International Conference on, vol. 3, pp. 302 –305 vol.3,

2001.

[52] B. Fang, G. Shen, S. Li, and H. Chen, “Techniques for efficient DCT/iDCT

implementation on generic GPU,” in Circuits and Systems, 2005. ISCAS 2005.

IEEE International Symposium on, pp. 1126 – 1129 Vol. 2, may 2005.

[53] S. Tokdemir and S. Belkasim, “Parallel processing of DCT on GPU,” in Data

Compression Conference (DCC), 2011, p. 479, march 2011.

[54] T.-T. Wong, C.-S. Leung, P.-A. Heng, and J. Wang, “Discrete wavelet trans-

form on consumer-level graphics hardware,” Multimedia, IEEE Transactions

on, vol. 9, pp. 668 –673, april 2007.

[55] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado, “Parallel imple-

mentation of the 2D discrete wavelet transform on graphics processing units:

Filter bank versus lifting,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 19, pp. 299–310, 2008.

149

[56] J. Franco, G. Bernabe, J. Fernandez, and M. Acacio, “A parallel implementation

of the 2D wavelet transform using CUDA,” in Parallel, Distributed and Network-

based Processing, 2009 17th Euromicro International Conference on, pp. 111

–118, feb. 2009.

[57] M. Unser, “Fast gabor-like windowed fourier and continuous wavelet trans-

forms,” Signal Processing Letters, IEEE, vol. 1, pp. 76 –79, may 1994.

[58] L. Tao and H. K. Kwan, “Fast parallel approach for 2-D DHT-based real-valued

discrete gabor transform,” Image Processing, IEEE Transactions on, vol. 18,

pp. 2790 –2796, dec. 2009.

[59] X. Wang and B. Shi, “GPU implemention of fast gabor filters,” in Circuits

and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,

pp. 373 –376, 30 2010-june 2 2010.

[60] L. Tao and H. K. Kwan, “Multirate-based fast parallel algorithms for 2-D DHT-

based real-valued discrete gabor transform,” Image Processing, IEEE Transac-

tions on, vol. 21, pp. 3306 –3311, july 2012.

[61] F. C. Crow, “Summed-area tables for texture mapping,” SIGGRAPH Comput.

Graph., vol. 18, pp. 207–212, Jan. 1984.

[62] F. Shafait, D. Keysers, and T. M. Breuel, “Efficient implementation of local

adaptive thresholding techniques using integral images,” in Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6815 of Soci-

ety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Jan.

2008.

[63] T. Phan, S. Sohoni, D. Chandler, and E. Larson, “Performance-analysis-based

acceleration of image quality assessment,” in IEEE Southwest Symposium on

Image Analysis and Interpretation, 2012.

150

[64] M.-J. Chen and A. C. Bovik, “Fast structural similarity index algorithm,” J.

Real-Time Image Process., vol. 6, pp. 281–287, Dec. 2011.

[65] K. Okarma and P. Mazurek, “GPGPU based estimation of the combined

video quality metric,” in Image Processing and Communications Challenges

3 (R. Choras, ed.), vol. 102 of Advances in Intelligent and Soft Computing,

pp. 285–292, Springer Berlin / Heidelberg, 2011.

[66] D. M. Chandler and S. S. Hemai, “Vsnr: A wavelet-based visual signal-to-noise

ratio for natural images,” IEEE Transactions on Image Processing, vol. 16,

no. 9, pp. 2284–2298, 2007.

[67] R. Bhargava, L. K. John, B. L. Evans, and R. Radhakrishnan, “Evaluating

MMX technology using DSP and multimedia applications,” in Proceedings of the

31st annual ACM/IEEE international symposium on Microarchitecture, pp. 37–

46, IEEE Computer Society Press, 1998.

[68] Intel, “Available online.” http://developer.intel.com/design/perftool/vtcd/.

[69] B. Gordon, S. Sohoni, and D. Chandler, “Data handling inefficiencies between

CUDA, 3D rendering, and system memory,” in Workload Characterization

(IISWC), 2010 IEEE International Symposium on, pp. 1 –10, dec. 2010.

[70] C. Martinez, M. Pinnamaneni, and E. B. John, “Performance of commercial

multimedia workloads on the Intel Pentium 4: A case study,” Computers &

Electrical Engineering, vol. 35, no. 1, pp. 18–32, 2009.

[71] D. M. Chandler and S. S. Hemami, “Available online.”

http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html.

[72] Internet, “Available online.” http://www.cns.nyu.edu/ eero/steerpyr/.

151

[73] H. R. Sheikh and A. C. Bovik, “Available online.”

http://live.ece.utexas.edu/research/quality/VIF.htm.

[74] R. B. Davies, “Available online.” http://www.robertnz.net/nm intro.htm, 2006.

[75] J. Villasenor, B. Belzer, and J. Liao, “Wavelet filter evaluation for image com-

pression,” IEEE Trans. Image Process., vol. 4, pp. 1053–1060, 1995.

[76] J. L. Mannos and D. J. Sakrison, “The effects of a visual fidelity criterion on

the encoding of image,” IEEE Trans. Info. Theory, vol. 20, pp. 525–535, 1974.

[77] E. C. Larson and D. M. Chandler, “Online supplement.”

http://vision.okstate.edu/MAD, 2010.

[78] T. Ooura, “Available online.” http://www.kurims.kyoto-u.ac.jp/ ooura/, 2006.

[79] P. D. Kovesi, “MATLAB and Octave functions for computer vision and

image processing.” Centre for Exploration Targeting, School of Earth

and Environment, The University of Western Australia. Available

online:http://www.csse.uwa.edu.au/∼pk/research/matlabfns/.

[80] M. Saad, A. Bovik, and C. Charrier, “A DCT statistics-based blind image

quality index,” IEEE Signal Process. Lett., vol. 17, p. 583 586, June 2010.

[81] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,”

ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3,

p. 27, 2011.

[82] J. P. Shen and M. H. Lipasti, Modern processor design: fundamentals of super-

scalar processors, vol. 2, ch 3. McGraw-Hill Higher Education, 2005.

[83] Internet, “Available online.” http://www.intel.com/content/dam/doc/manual/64-

ia-32-architectures-optimization-manual.pdf.

152

[84] Internet, “Available online.” http://software.intel.com/sites/products/documentation/doclib/stdxe/

2013/amplifierxe/win/win ug/index.htm.

[85] S. Vlaovic, E. S. Davidson, and G. S. Tyson, “Improving BTB performance in

the presence of DLLs,” in Proceedings of the 33rd annual ACM/IEEE interna-

tional symposium on Microarchitecture, pp. 77–86, ACM, 2000.

[86] Internet, “Available online.” http://software.intel.com/en-us/articles/x87-

and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-

daz/.

[87] Y. Zhang and D. M. Chandler, “No-reference image quality assessment based

on log-derivative statistics of natural scenes,” Journal of Electronic Imaging,

vol. 22, no. 4, pp. 043025–043025, 2013.

[88] R. Soundararajan and A. C. Bovik, “Rred indices: Reduced reference entropic

differencing for image quality assessment,” Image Processing, IEEE Transac-

tions on, vol. 21, no. 2, pp. 517–526, 2012.

[89] D. Liu, Y. Xu, Y. Quan, and P. L. Callet, “Reduced reference image quality

assessment using regularity of phase congruency,” Signal Processing: Image

Communication, 2014.

[90] L. Zhang, D. Zhang, and X. Mou, “Fsim: a feature similarity index for image

quality assessment,” Image Processing, IEEE Transactions on, vol. 20, no. 8,

pp. 2378–2386, 2011.

[91] J. Caviedes and S. Gurbuz, “No-reference sharpness metric based on local edge

kurtosis,” in Image Processing. 2002. Proceedings. 2002 International Confer-

ence on, vol. 3, pp. III–53 – III–56 vol.3, 2002.

153

[92] J. Dijk, M. van Ginkel, R. J. van Asselt, L. J. van Vliet, and P. W. Verbeek, “A

new sharpness measure based on gaussian lines and edges,” in CAIP, pp. 149–

156, 2003.

[93] C. Vu and D. M. Chandler, “S3: A spectral and spatial sharpness measure,” in

2009 First International Conference on Advances in Multimedia, 2009.

[94] Z. W. Rania Hassen and M. Salama, “No-reference image sharpness assessment

based on local phase coherence measurment,” March 2010.

[95] P. V. Vu and D. M. Chandler, “A no-reference quality assessment algorithm for

jpeg2000-compressed images based on local sharpness,” in IS&T/SPIE Elec-

tronic Imaging, pp. 865302–865302, International Society for Optics and Pho-

tonics, 2013.

[96] Z. Wang and E. P. Simoncelli, “Reduced-reference image quality assessment

using a wavelet-domain natural image statistic model,” in Electronic Imaging

2005, pp. 149–159, International Society for Optics and Photonics, 2005.

[97] I. P. Gunawan and M. Ghanbari, “Reduced-reference picture quality estimation

by using local harmonic amplitude information,” in London Communications

Symposium, vol. 2003, 2003.

[98] M. Carnec, P. Le Callet, and D. Barba, “Visual features for image quality

assessment with reduced reference,” in Image Processing, 2005. ICIP 2005.

IEEE International Conference on, vol. 1, pp. I–421, IEEE, 2005.

[99] M. Carnec, P. Le Callet, and D. Barba, “Objective quality assessment of color

images based on a generic perceptual reduced reference,” Signal Processing:

Image Communication, vol. 23, no. 4, pp. 239–256, 2008.

154

[100] A. Maalouf, M.-C. Larabi, and C. Fernandez-Maloigne, “A grouplet-based re-

duced reference image quality assessment,” inQuality of Multimedia Experience,

2009. QoMEx 2009. International Workshop on, pp. 59–63, IEEE, 2009.

[101] X. Gao, W. Lu, D. Tao, and X. Li, “Image quality assessment based on mul-

tiscale geometric analysis,” Image Processing, IEEE Transactions on, vol. 18,

no. 7, pp. 1409–1423, 2009.

[102] Q. Li and Z. Wang, “Reduced-reference image quality assessment using divisive

normalization-based image representation,” Selected Topics in Signal Process-

ing, IEEE Journal of, vol. 3, no. 2, pp. 202–211, 2009.

[103] D. Tao, X. Li, W. Lu, and X. Gao, “Reduced-reference IQA in contourlet

domain,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transac-

tions on, vol. 39, no. 6, pp. 1623–1627, 2009.

[104] U. Engelke, M. Kusuma, H.-J. Zepernick, and M. Caldera, “Reduced-reference

metric design for objective perceptual quality assessment in wireless imaging,”

Signal Processing: Image Communication, vol. 24, no. 7, pp. 525–547, 2009.

[105] W. Xue and X. Mou, “Reduced reference image quality assessment based on

weibull statistics,” in Quality of Multimedia Experience (QoMEX), 2010 Second

International Workshop on, pp. 1–6, IEEE, 2010.

[106] L. Ma, S. Li, F. Zhang, and K. N. Ngan, “Reduced-reference image quality as-

sessment using reorganized dct-based image representation,” Multimedia, IEEE

Transactions on, vol. 13, no. 4, pp. 824–829, 2011.

[107] A. Rehman and Z. Wang, “Reduced-reference image quality assessment by

structural similarity estimation,” Image Processing, IEEE Transactions on,

vol. 21, no. 8, pp. 3378–3389, 2012.

155

[108] Z. Lin, J. Tao, and Z. Zheng, “Reduced-reference image quality assessment

based on average directional information,” in Signal Processing (ICSP), 2012

IEEE 11th International Conference on, vol. 2, pp. 787–791, IEEE, 2012.

[109] D. Bordevic, D. Kukolj, M. Pokric, and I. Ostojic, “Image quality assessment

using reduced-reference nonlinear model,” in Intelligent Systems and Informat-

ics (SISY), 2013 IEEE 11th International Symposium on, pp. 167–170, IEEE,

2013.

[110] M. Zhang, X. Mou, H. Fujita, L. Zhang, X. Zhou, and W. Xue, “Local binary

pattern statistics feature for reduced reference image quality assessment,” in

IS&T/SPIE Electronic Imaging, pp. 86600L–86600L, International Society for

Optics and Photonics, 2013.

[111] J. Wu, W. Lin, G. Shi, and A. Liu, “Reduced-reference image quality assessment

with visual information fidelity,” 2013.

[112] V. Bhateja, A. Srivastava, and A. Kalsi, “A reduced reference distortion esti-

mation measure for color images,” in Signal Processing and Integrated Networks

(SPIN), 2014 International Conference on, pp. 699–704, IEEE, 2014.

[113] V. Bhateja, A. Kalsi, and A. Srivastava, “Reduced reference IQA based on

structural dissimilarity,” in Signal Processing and Integrated Networks (SPIN),

2014 International Conference on, pp. 63–68, IEEE, 2014.

[114] J. Farah, M.-R. Hojeij, J. Chrabieh, and F. Dufaux, “Full-reference and

reduced-reference quality metrics based on sift,” in Acoustics, Speech and Signal

Processing (ICASSP), 2014 IEEE International Conference on, pp. 161–165,

IEEE, 2014.

[115] D. L. Ruderman, “The statistics of natural images,” Network: computation in

neural systems, vol. 5, no. 4, pp. 517–548, 1994.

156

[116] P. Reinagel and A. M. Zador, “Natural scene statistics at the centre of gaze,”

Network: Computation in Neural Systems, vol. 10, no. 4, pp. 341–350, 1999.

[117] L. Beaurepaire, K. Chehdi, and B. Vozel, “Identification of the nature of noise

and estimation of its statistical parameters by analysis of local histograms,”

in Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE

International Conference on, vol. 4, pp. 2805–2808, IEEE, 1997.

[118] D.-C. Chang and W.-R. Wu, “Image contrast enhancement based on a his-

togram transformation of local standard deviation,” Medical Imaging, IEEE

Transactions on, vol. 17, no. 4, pp. 518–531, 1998.

[119] R. Wang, A. Hanson, and E. Riseman, “Texture analysis based on local stan-

dard deviation of intensity,” in IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, pp. 482–488, 1986.

[120] C. T. Vu, T. D. Phan, P. S. Banga, and D. M. Chandler, “On the quality assess-

ment of enhanced images: a database, analysis, and strategies for augmenting

existing methods,” in Image Analysis and Interpretation (SSIAI), 2012 IEEE

Southwest Symposium on, pp. 181–184, IEEE, 2012.

[121] H. R. Sheikh, Z. Wang, A. C. Bovik, , and L. K. Cor-

mack, “LIVE multiply distorted image quality database.” Online.

http://live.ece.utexas.edu/research/quality/live multidistortedimage.html.

157

VITA

THIEN DUC PHAN

Candidate for the Degree of

Doctor of Philosophy

Dissertation: STRATEGIES FOR IMPROVING EFFICIENCY AND EFFICACY
OF IMAGE QUALITY ASSESSMENT ALGORITHMS

Major Field: Electrical Engineering

Biographical:

Personal Data:
Born in Ha Tinh City, Ha Tinh Province, Vietnam on April 11, 1985.

Education:
Received the B.S. degree from Hanoi University of Technology,
Hanoi, Vietnam, in Information Technology, 2008.
Received the Master of Science degree from Oklahoma State University,
Oklahoma, USA, in Electrical Engineering Oklahoma State University in
December, 2014.
Completed the requirements for the degree of Doctor of Philosophy with
a major in Electrical Engineering Oklahoma State University in December,
2015.

Experience:
Research Assistant, Oklahoma State University 2010-2015.

Selected Journals:
T. D. Phan, S. K. Shah, D. M. Chandler, and S. Sohoni, “Microarchitectural
analysis of image quality assessment algorithms,” Journal of Electronic Imag-
ing (JEI), 23(1), 013030, February 2014. doi: 10.1117/1.JEI.23.1.013030.

C. T. Vu, T. D. Phan, and D. M. Chandler, “S3: A Spectral and Spatial
Measure of Local Perceived Sharpness in Natural Images,” IEEE Transac-
tions on Image Processing, Vol. 21, No. 3, March 2012.

