
PARALLEL-PREFIX STRUCTURES FOR BINARY AND MODULO

{2n − 1, 2n, 2n + 1} ADDERS

By

JUN CHEN

Bachelor of Science in Information and Control
Engineering

Shanghai Jiao Tong University
Shanghai, China

2000

Master of Science in Electrical Engineering
Illinois Institute of Technology

Chicago, IL, U.S.A.
2004

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
December, 2008

PARALLEL-PREFIX STRUCTURES FOR BINARY AND MODULO

{2n − 1, 2n, 2n + 1} ADDERS

Dissertation Approved:

Dr. James E. Stine
Dissertation Advisor

Dr. Louis G. Johnson

Dr. Sohum Sohoni

Dr. Hermann G. W. Burchard

Dr. A. Gordon Emslie
Dean of the Graduate College

ii

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Dr. James E. Stine, for his continuous efforts

on helping me with the work through a Ph.D. degree. His enthusiasm in teaching, positive

thinking, along with his strong professional strengths, guided me towards the completion

of this degree.

My family’s support is also greatly appreciated. This work cannot be done without the

support from my parents Guangzhao Chen and Shengyuan Chen and sister Yu Chen.

I am very proud of being able to work with Ivan, my fellow at VLSI Computer Archi-

tecture Group (VCAG). Thanks also go to Johannes Grad, an alumni of Illinois Institute of

Technology, who helped me much on EDA tools.

Finally, I would like to thank all the committee members, Dr. Johnson, Dr. Sohoni, Dr.

Burchard and Dr. Stine. Thank you all for everything you have done to help through.

iii

TABLE OF CONTENTS

Chapter Page

1 Introduction 1

1.1 Motivations . 1

1.2 Carry-Propagate Adders . 2

1.3 Algorithmic Architectures for Parallel-Prefix Binary and Modulo 2n ± 1

Adders . 3

1.4 Research Contributions . 4

1.5 Dissertation Organized . 5

2 Binary Adder Schemes 6

2.1 Binary Adder Notations and Operations 6

2.2 Ripple-Carry Adders (RCA) . 9

2.3 Carry-Select Adders (CSEA) . 10

2.4 Carry-Increment Adders (CINA) . 13

2.5 Carry-Skip Adders (CSKA) . 15

2.6 Carry-Lookahead Adders (CLA) . 17

2.6.1 Algorithmic Analysis . 19

2.7 Ling Adders . 20

2.8 NAND/NOR Adders . 23

2.9 Parallel-Prefix Structures . 27

2.10 Carry Save Adders (CSA) . 28

2.11 Summary . 30

iv

3 Building Prefix Structures 31

3.1 Prefix Tree Family . 32

3.2 Prefix Structure Synthesis . 33

3.2.1 Taxonomy . 33

3.2.2 Synthesis Rules . 35

3.2.3 Preparing Prefix Tree . 36

3.2.4 Kogge-Stone Prefix Tree . 40

3.2.5 Knowles Prefix Tree . 43

3.2.6 Brent-Kung Prefix Tree . 48

3.3 Other Prefix Trees . 51

3.3.1 Sklansky Prefix Tree . 51

3.3.2 Ladner-Fischer Prefix Tree . 52

3.3.3 Han-Carlson Prefix Tree . 53

3.3.4 Harris Prefix Tree . 54

3.3.5 Algorithmic Analysis for Prefix Trees 55

3.4 Parallel-Prefix Ling Structures . 56

3.5 Prefix Tree with Carry-Save Notation . 58

3.5.1 Carry-Save Notation . 58

3.5.2 Carry-Save Notation and Application to Prefix Tree 60

3.5.3 Adding Binary Carry-Save Numbers 63

3.5.4 Incorporating Parallel-Prefix Structure with Carry-save Notation . . 64

3.6 Summary . 67

4 Modulo 2n ± 1 Adders 68

4.1 Modulo 2n − 1 Adders . 68

4.1.1 Background . 69

4.1.2 Full Parallel-Prefix Structure . 71

4.1.3 Reduced Parallel-Prefix Structure 75

v

4.1.4 Parallel-Prefix Ling Structures for Modulo 2n − 1 Adders 75

4.1.5 Carry-Select Incrementer . 78

4.1.6 Summary . 81

4.2 Modulo 2n + 1 Adders . 82

4.2.1 Background . 82

4.2.2 Reduced Parallel-Prefix Structure 83

4.2.3 Parallel-Prefix Ling Structures for Modulo 2n + 1 Adders 85

4.2.4 Full Parallel-Prefix Structure . 85

4.2.5 Carry-Select Incrementer . 91

4.3 Combination of Binary and Modulo 2n ± 1 Adder 91

4.4 Summary . 94

5 Results of Parallel-Prefix Structures and Comparisons 95

5.1 Binary Parallel-Prefix Adders . 96

5.2 Modulo 2n − 1 Adders with Prefix Implementation 98

5.3 Modulo 2n + 1 Adders with Prefix Implementation 102

5.4 A Combination of Modulo 2n ± 1 and Binary Adders with Prefix Imple-

mentation . 106

5.5 Summary . 113

6 Conclusion 114

6.1 Dissertation Summary . 114

6.2 Future Directions . 116

6.3 In Summary . 118

BIBLIOGRAPHY 119

vi

LIST OF FIGURES
Figure Page

1.1 Binary Adder Example. 2

2.1 1-bit Half Adder. 7

2.2 1-bit Full Adder. 8

2.3 Ripple-Carry Adder. 9

2.4 Carry-Select Adder. 11

2.5 2-1 Multiplexor. 12

2.6 Carry-Increment Adder. 15

2.7 Carry-Skip Adder. 16

2.8 Reduced Full Adder. 17

2.9 Carry-Lookahead Adder. 19

2.10 NAND Adder Carry Chain. 23

2.11 NOR Adder Carry Chain. 25

2.12 8-bit Parallel-Prefix Structure. 28

2.13 Sklansky Parallel-Prefix Examples. 29

2.14 4-bit Carry-Save Adder. 30

3.1 Cell Definitions. 32

3.2 Valid Prefix Structure Synthesis. 34

3.3 Invalid Prefix Structure Synthesis. 36

3.4 8-bit Empty Prefix Tree. 38

3.5 Build 8-bit Sklansky Prefix Tree: Step 1. 38

3.6 Build 8-bit Sklansky Prefix Tree: Step 2. 39

vii

3.7 Build 8-bit Sklansky Prefix Tree: Step 3. 40

3.8 16-bit Kogge-Stone Prefix Tree. 41

3.9 16-bit Kogge-Stone Prefix Tree with Buffers. 43

3.10 16-bit Knowles [2,1,1,1] Prefix Tree. 44

3.11 16-bit Knowles [4,2,1,1] Prefix Tree. 44

3.12 16-bit Knowles [2,1,1,1] Prefix Tree with Buffers. 47

3.13 16-bit Brent-Kung Prefix Tree. 49

3.14 16-bit Brent Kung Prefix Tree with Buffers. 50

3.15 16-bit Sklansky Prefix Tree. 51

3.16 11-bit Ladner-Fischer Prefix Tree Synthesis. 52

3.17 16-bit Han-Carlson Prefix Tree. 53

3.18 Taxonomy of 16-bit Prefix Tree (Adapted from [1]). 54

3.19 16-bit Harris Prefix Tree. 55

3.20 Cell Definition for Ling’s Parallel-Prefix Tree. 56

3.21 8-bit Sklansky Prefix Tree with Ling’s Scheme. 57

3.22 n-bit Binary Adder with Carry-Save Notation. 59

3.23 16-bit Sklanksy Prefix Tree with Carry-Save Notation. 61

3.24 8-bit Example of Carry-Save Add. 63

3.25 9-bit Sklansky Parallel-Prefix Adder Comparison. 64

3.26 16-bit Han-Carlson Parallel-Prefix Structure with Carry-Save Notation. 65

3.27 8-bit Parallel-Prefix Adder with Carry-Save Notation. 66

4.1 General Block Diagram Modulo 2n − 1 Adder. 70

4.2 Cell Definitions. 71

4.3 Modulo 2n − 1 Adder with the Full Parallel-Prefix Structure. 72

4.4 Another Way to Look at Modulo 2n−1 Adder with the Full Parallel-Prefix Structure. 72

4.5 Modulo 2n − 1 Adder with the Reduced Parallel-Prefix Structure. 76

4.6 The Reduced Sklansky Parallel-Prefix Tree. 76

viii

4.7 8-bit Sklansky with Ling’s Scheme for Modulo 2n − 1 Adders. 77

4.8 Modulo 2n − 1 Adder with the Reduced Parallel-Prefix Ling Structure. 79

4.9 8-bit Carry-Select Modulo 2n − 1 Adder. 80

4.10 CSEI with NAND Adder. 81

4.11 General Block Diagram Modulo 2n + 1 Adder. 83

4.12 Modulo 2n + 1 Adder with the Reduced Parallel-Prefix Structure. 85

4.13 Modulo 2n + 1 Adder with the Reduced Parallel-Prefix Ling Structure. 86

4.14 Additional Cell Definitions. 87

4.15 Modulo 2n + 1 Adder with the Full Parallel-Prefix Structure. 91

4.16 8-bit Carry-Select Modulo 2n + 1 Adder. 92

4.17 Combined Binary and Modulo 2n ± 1 Adders. 93

4.18 Combined Binary and Modulo 2n ± 1 Adders using Ling’s Scheme. 94

5.1 Methodology of This Work. 97

5.2 TSMC 180nm Technology for Parallel Prefix Adders. 99

5.3 Cadence GSCL 90nm Technology for Parallel Prefix Adders. 100

5.4 FreePDK 45nm Technology for Parallel Prefix Adders. 101

5.5 TSMC 180nm Technology for Modulo 2n − 1 Adders. 103

5.6 Cadence GSCL 90nm Technology for Modulo 2n − 1 Adders. 104

5.7 FreePDK 45nm Technology for Modulo 2n − 1 Adders. 105

5.8 TSMC 180nm Technology for Modulo 2n + 1 Adders. 107

5.9 Cadence GSCL 90nm Technology for Modulo 2n + 1 Adders. 108

5.10 FreePDK 45nm Technology for Modulo 2n + 1 Adders. 109

5.11 TSMC 180nm Technology for Modulo 2n ± 1 and Binary Prefix Adders. 110

5.12 Cadence GSCL 90nm Technology for Modulo 2n ± 1 and Binary Prefix Adders. . 111

5.13 FreePDK 45nm Technology for Modulo 2n ± 1 and Binary Prefix Adders. 112

ix

LIST OF TABLES
Table Page

2.1 Algorithmic Analysis . 20

3.1 Verifying the Pseudo-Code of Building a Kogge-Stone Prefix Tree 42

3.2 Verifying the Pseudo-Code of Building a Knowles [2,1,1,1] Prefix Tree . . 47

3.3 Verifying the Pseudo-Code of Building a Brent-Kung Prefix tree 50

3.4 Algorithmic Analysis . 55

3.5 Comparison of selected parallel-prefix structures 65

6.1 Results for 64-bit Parallel-Prefix Adders within FreePDK 45nm Technology 116

6.2 Results for 64-bit Modulo 2n − 1 Parallel-Prefix Adders within FreePDK

45nm Technology . 117

6.3 Results for 64-bit Modulo 2n + 1 Parallel-Prefix Adders within FreePDK

45nm Technology . 117

x

CHAPTER 1

Introduction

1.1 Motivations

To humans, decimal numbers are easy to comprehend and implement for performing arith-

metic. However, in digital systems, such as a microprocessor, DSP (Digital Signal Proces-

sor) or ASIC (Application-Specific Integrated Circuit), binary numbers are more pragmatic

for a given computation. This occurs because binary values are optimally efficient at rep-

resenting many values [2].

Binary adders are one of the most essential logic elements within a digital system. In

addition, binary adders are also helpful in units other than Arithmetic Logic Units (ALU),

such as multipliers, dividers and memory addressing [3]. Therefore, binary addition is

essential that any improvement in binary addition can result in a performance boost for any

computing system and, hence, help improve the performance of the entire system.

The major problem for binary addition is the carry chain [4]. As the width of the input

operand increases, the length of the carry chain increases. Figure 1.1 demonstrates an

example of an 8-bit binary add operation and how the carry chain is affected. This example

shows that the worst case occurs when the carry travels the longest possible path, from

the least significant bit (LSB) to the most significant bit (MSB) [4]. In order to improve

the performance of carry-propagate adders, it is possible to accelerate the carry chain, but

not eliminate it. Consequently, most digital designers often resort to building faster adders

when optimizing a computer architecture, because they tend to set the critical path for most

computations.

1

1

+

1 1 1

1

1 11 1

0 0 00 00 0

0 0 00 00 001

11111111 Carries

Carry-out Sum

Figure 1.1: Binary Adder Example.

1.2 Carry-Propagate Adders

Binary carry-propagate adders have been extensively published, heavily attacking problems

related to carry chain problem. Binary adders evolve from linear adders, which have a de-

lay approximately proportional to the width of the adder, e.g. ripple-carry adder (RCA) [5],

to logarithmic-delay adder, such as the carry-lookahead adder (CLA) [6]. There are some

additional performance enhancing schemes, including the carry-increment adder [7] and

the Ling adder [8] that can further enhance the carry chain, however, in Very Large Scale

Integration (VLSI) digital systems, the most efficient way of offering binary addition in-

volves utilizing parallel-prefix trees [9] [10] [11] [12] [13] [14], this occurs because they

have the regular structures that exhibit logarithmic delay.

Parallel-prefix adders compute addition in two steps: one to obtain the carry at each

bit, with the next to compute the sum bit based on the carry bit. Unfortunately, prefix trees

are algorithmically slower than fast logarithmic adders, such as the carry propagate adders,

however, their regular structures promote excellent results when compared to traditional

CLA adders. This happens within VLSI architectures because a carry-lookahead adder,

such as the one implemented in one of Motorola’s processors [15], tends to implement

the carry chain in the vertical direction instead of a horizontal one, which has a tendency

to increase both wire density and fan-in/out dependence. Therefore, although logarith-

mic adder structures are one of the fastest adders algorithmically, the speed efficiency of

the carry-lookahead adder has been hampered by diminishing returns given the fan-in and

2

fan-out dependencies as well as the heavy wire load distribution in the vertical path. In

fact, a traditional carry-lookahead adder implemented in VLSI can actually be slower than

traditional linear-based adders, such as the Manchester carry adder [16].

1.3 Algorithmic Architectures for Parallel-Prefix Binary and Modulo 2n ± 1 Adders

Although parallel-prefix structures are discussed in many articles, the process utilized to

create them is briefly mentioned or described in most texts. More importantly, there is still

a lack of insight how the architecture impacts circuit technology. As technology advances

and minimum feature sizes within integrated circuit technology get smaller, there is lim-

ited quantitative data for binary adders using nanometer range technologies. Also good

circuit design depends on a balance between architecture, circuit and technology choices.

If a VLSI designer ignores any one of these design aspects, it can lead to design failures.

This work addresses the problem of forming and algorithmically assembling parallel-prefix

architectures as well as comparing their performance under nanometer technologies.

This work also extends binary adders to perform modulo addition. Modular arithmetics

find applications in a wide range of areas since the operations are the basis for Residue

Number Systems (RNS) [17]. Modulo addition/subtraction and multiplication are applied

to digital filters [18] in digital signal processing, cryptography [19], error detection and

correction [20], as well as checksum computation in high-speed networks [21]. There-

fore, utilizing efficient architectures for modulo operations can impact many fields within

science and engineering.

Modulo addition, an operation with a small variation to binary addition, can also be

applied with prefix architectures [22] [23] [24] [25]. Common modulo addition can even

be found in memory addressing. Modulo 2n−1 addition is one of the most common oper-

ations that has been put to hardware implementations because of its circuit efficiency [26].

Furthermore, modulo 2n + 1 addition is critical to improving advanced cryptography tech-

niques.

3

As the variations of binary adders, modulo 2n−1, 2n and 2n + 1 adders face the same

problem as binary adders do: the carry chain dominates any performance seen at the output.

There are multiple ways to algorithmically implement modulo adders. The most straight-

forward way to perform modulo addition is using an end-around addition [27], which is

usually inefficient in terms of delay. The more aggressive architectures for modulo addition

utilize modified parallel-prefix structures with minimum logic levels [23] [24]. There are

also schemes that have a trade-off between logic levels and structural complexity [28].

Ling [8]’s scheme is not only effective on carry-propagating adders, but also can be uti-

lized with parallel-prefix adders. Previously, Ling’s scheme has be combined with parallel-

prefix adder structures, however, there is limited work done on applying Ling’s scheme,

especially for modulo prefix adders [29].

According to Moore’s law, the number of transistors that can be put on a integrated

circuit doubles every two years [30]. More functional parts can be present on a single

die, leading engineers with the resource to add new and improved logic to an architecture,

such as modulo addition, with dramatic performance improvements. Based on the work

presented in this dissertation, it is feasible to incorporate both binary and modulo 2n ± 1

adders in a single architecture. More importantly, this work also describes how to efficiently

build modulo adders and combine them with traditional binary carry propagate adders.

1.4 Research Contributions

The implementation that have been developed in this dissertation help to improve the de-

sign of parallel-prefix adders and their associated computing architectures. This has the

potential of impacting many application specific and general purpose computer architec-

tures. Consequently, this work can impact the designs of many computing systems, as well

as impacting many areas of engineers and science. The following list are contributions of

this work.

1. Simple algorithms that describe how to build parallel-prefix trees for various operand

4

sizes;

2. Parallel-prefix structures embedded with carry-save notation;

3. Modulo 2n±1 adder architectures that employ traditional prefix and Ling algorithms;

4. A better understanding of the relationship between addition and its algorithmic im-

plementation in nanometer VLSI technology.

1.5 Dissertation Organized

This work is organized as follows. Chapter 2 reviews the basic arithmetic and background

information on the implementation of binary adders. Chapter 3 illustrates the methods of

building binary adders with prefix structures. This chapter also compares different types

of prefix structures algorithmically. Chapter 4 offers the background of doing modulo

2n ± 1 adders and discusses various implementation methods, including parallel-prefix

Ling structures. A combined binary and modulo 2n ± 1 adder architecture is proposed in

this chapter. Chapter 5 presents results under 3 different technologies and compares the

adder performance. Chapter 6 summarizes and concludes the work.

5

CHAPTER 2

Binary Adder Schemes

Adders are one of the most essential components in digital building blocks, however, the

performance of adders become more critical as the technology advances. The problem

of addition involves algorithms in Boolean algebra and their respective circuit implemen-

tation. Algorithmically, there are linear-delay adders like ripple-carry adders (RCA) [5],

which are the most straightforward but slowest. Adders like carry-skip adders (CSKA) [31],

carry-select adders (CSEA) [32] and carry-increment adders (CINA) [7] are linear-based

adders with optimized carry-chain and improve upon the linear chain within a ripple-

carry adder. Carry-lookahead adders (CLA) [6] have logarithmic delay and currently have

evolved to parallel-prefix structures. Other schemes, like Ling adders, NAND/NOR adders

and carry-save adders can help improve performance as well.

This chapter gives background information on architectures of adder algorithms. In the

following sections, the adders are characterized with linear gate model, which is a rough

estimation of the complexity of real implementation. Although this evaluation method

can be misleading for VLSI implementers, such type of estimation can provide sufficient

insight to understand the design trade-offs for adder algorithms.

2.1 Binary Adder Notations and Operations

As mentioned previously, adders in VLSI digital systems use binary notation. In that case,

add is done bit by bit using Boolean equations. Consider a simple binary add with two

n-bit inputs A, B and a one-bit carry-in cin along with n-bit output S.

6

ai

bi

ci+1

si

Figure 2.1: 1-bit Half Adder.

S = A + B + cin. (2.1)

where A = an−1, an−2...a0, B = bn−1, bn−2...b0.

The + in the above equation is the regular add operation. However, in the binary world,

only Boolean algebra works. For add related operations, AND, OR and Exclusive-OR

(XOR) are required. In the following documentation, a dot between two variables (each

with single bit), e.g. a · b denotes ’a AND b’. Similarly, a + b denotes ’a OR b’ and a ⊕ b

denotes ’a XOR b’.

Considering the situation of adding two bits, the sum s and carry c can be expressed

using Boolean operations mentioned above.

si = ai ⊕ bi

ci+1 = ai · bi (2.2)

The Equation (2.2) can be implemented as shown in Figure 2.1. In the figure, there is a

half adder, which takes only 2 input bits. The solid line highlights the critical path, which

indicates the longest path from the input to the output.

Equation (2.2) can be extended to perform full add operation, where there is a carry

input.

si = ai ⊕ bi ⊕ ci

ci+1 = ai · bi + ai · ci + bi · ci (2.3)

A full adder can be built based on Equation (2.3). The block diagram of a 1-bit full adder

is shown in Figure 2.2. The full adder is composed of 2 half adders and an OR gate for

7

ai

bi

ci

ci+1

si

Figure 2.2: 1-bit Full Adder.

computing carry-out. The gates in Figure 2.2 do not implement directly Equation 2.3.

Using Boolean algebra, the equivalence can be easily proven.

To help the computation of the carry for each bit, two binary literals are introduced.

They are called carry generate and carry propagate, denoted by gi and pi. Another literal

called temporary sum ti is employed as well. There is relation between the inputs and these

literals.

gi = ai · bi

pi = ai + bi

ti = ai ⊕ bi (2.4)

where i is an integer and 0 ≤ i < n.

With the help of the literals above, output carry and sum at each bit can be written as

ci+1 = gi + pi · ci

si = ti ⊕ ci (2.5)

In some literatures, carry-propagate pi can be replaced with temporary sum ti in order to

save the number of logic gates. Here these two terms are separated in order to clarify the

concepts. For example, for Ling adders, only pi is used as carry-propagate.

The single bit carry generate/propagate can be extended to group version G and P . The

8

cin+

A3:0 B3:0

S3:0

cout

cin+

a0 b0

s0

c1

+

a1 b1

s1

c2

+

a2 b2

s2

c3

+

a3 b3

s3

cout

Figure 2.3: Ripple-Carry Adder.

following equations show the inherent relations.

Gi:k = Gi:j + Pi:j · Gj−1:k

Pi:k = Pi:j · Pj−1:k (2.6)

where i : k denotes the group term from i through k. Using group carry generate/propagate,

carry can be expressed as expressed in the following equation.

ci+1 = Gi:j + Pi:j · cj (2.7)

2.2 Ripple-Carry Adders (RCA)

The simplest way of doing binary addition is to connect the carry-out from the previous

bit to the next bit’s carry-in. Each bit takes carry-in as one of the inputs and outputs sum

and carry-out bit and hence the name ripple-carry adder. This type of adders is built by

cascading 1-bit full adders. A 4-bit ripple-carry adder is shown in Figure 2.3. Each trape-

zoidal symbol represents a single-bit full adder. At the top of the figure, the carry is rippled

through the adder from cin to cout.

9

It can be observed in Figure 2.3 that the critical path, highlighted with a solid line, is

from the least significant bit (LSB) of the input (a0 or b0) to the most significant bit (MSB)

of sum (sn−1). Assuming each simple gate, including AND, OR and XOR gate has a delay

of 2∆ and NOT gate has a delay of 1∆. All the gates have an area of 1 unit. Using this

analysis and assuming that each add block is built with a 9-gate full adder, the critical path

is calculated as follows.

ai, bi → si = 10∆

ai, bi → ci+1 = 9∆

ci → si = 5∆

ci → ci+1 = 4∆ (2.8)

The critical path, or the worst delay is

trca = {9 + (n − 2) × 4 + 5}∆

= {4n + 6}∆ (2.9)

As each bit takes 9 gates, the area is simply 9n for a n-bit RCA.

2.3 Carry-Select Adders (CSEA)

Simple adders, like ripple-carry adders, are slow since the carry has to to travel through

every full adder block. There is a way to improve the speed by duplicating the hardware due

to the fact that the carry can only be either 0 or 1. The method is based on the conditional

sum adder [33] and extended to a carry-select adder [32]. With two RCA, each computing

the case of the one polarity of the carry-in, the sum can be obtained with a 2−1 multiplexer

with the carry-in as the select signal. An example of 16-bit carry-select adder is shown in

Figure 2.4. In the figure, the adder is grouped into four 4-bit blocks. The 1-bit multiplexors

for sum selection can be implemented as Figure 2.5 shows. Assuming the two carry terms

10

cin+

A3:0 B3:0

S3:0

c4

+

+
01

A7:4 B7:4

S7:4

c8

+

+

01

A11:8 B11:8

S11:8

c12

+

+

01

A15:12 B15:12

S15:12

cout

0

1

0

1

0

1

Figure 2.4: Carry-Select Adder.

are utilized such that the carry input is given as a constant 1 or 0:

c0
k , ck|cj=0

c1
k , ck|cj=1 (2.10)

In Figure 2.4, each two adjacent 4-bit blocks utilizes a carry relationship

ci+4 = c0
i+4 + c1

i+4 · ci. (2.11)

The relationship can be verified with properties of the group carry generate/propagate in

Equation (2.7) and c0
i+4 can be written as

c0
i+4 = Gi+4:i + Pi+4:i · 0

= Gi+4:i. (2.12)

Similarly, c1
i+4 can be written as

c1
i+4 = Gi+4:i + Pi+4:i · 1

= Gi+4:i + Pi+4:i. (2.13)

11

a

b

out

sel

10

out

sel

a b

Figure 2.5: 2-1 Multiplexor.

Then

c0
i+4 + c1

i+4 · ci = Gi+4:i + (Gi+4:i + Pi+4:i) · ci

= Gi+4:i + Gi+4:i · ci + Pi+4:i · ci

= Gi+4:i + Pi+4:i · ci

= ci+4 (2.14)

Varying the number of bits in each group can work as well for carry-select adders. Similar

to (2.10), temporary sums can be defined as follows.

s0
i+1 = ti+1 · c

0
i

s1
i+1 = ti+1 · c

1
i . (2.15)

The final sum is selected by carry-in between the temporary sums already calculated.

si+1 = cj · s
0
i+1 + cj · s

1
i+1 (2.16)

Assuming the block size is fixed at r-bit, the n-bit adder is composed of k groups of

r-bit blocks, i.e. n = r × k. The critical path with the first RCA has a delay of (4r + 5)∆

from the input to the carry-out, and there are k − 2 blocks that follow, each with a delay of

4∆ for carry to go through. The final delay comes from the multiplexor, which has a delay

12

of 5∆, as indicated in Figure 2.5. The total delay for this CSEA is calculated as

tcsea = 4r + 5 + 4(k − 2) + 5∆

= {4r + 4k + 2}∆. (2.17)

The area can be estimated with (2n − r) FAs, (n − r) multiplexors and (k − 1) AND/OR

logic. As mentioned above, each FA has an area of 9 and a multiplexor takes 5 units of

area. The total area can be estimated

9(2n − r) + 2(k − 1) + 4(n − r) = 22n − 13r + 2k − 2 (2.18)

The delay of the critical path in CSEA is reduced at the cost of increased area. For

example, in Figure 2.4, k = 4, r = 4 and n = 16. The delay for the CSEA is 34∆

compared to 70∆ for 16-bit RCA. The area for the CSEA is 310 units while the RCA has

an area of 144 units. The delay of the CSEA is about the half of the RCA. But the CSEA

has an area more than twice that of the RCA. Each adder can also be modified to have a

variable block sizes, which gives better delay and slightly less area [34].

2.4 Carry-Increment Adders (CINA)

The delay of carry-select adders is reduced by duplicating the carry and sum part and

hence, the area increase is significant. Tyagi [7] proposed a scheme that can have similar

delay of carry-select adders without much increase in area. This type of adder is called a

carry-increment adder. Zimmermann [35] expanded the idea to have multi-level structures.

The area can be reduced in that the carries defined in Equation (2.10) has the following

relationship.

c1
i = Gi−1:j + Pi−1:j · cj|cj=1

= Gi−1:j + Pi−1:j (2.19)

These requires that c1
i is the carry when carry-in cj = 1 and c0

i is the carry when cj = 0. The

superscript of ”1” and ”0” can be switched in the definition, however, the implementation

13

is not affected. Conversely, the carry-out equation assuming a carry-in of 0 can be written

as

c0
i = Gi−1:j + Pi−1:j · cj|cj=0

= Gi−1:j. (2.20)

Inserting Equation (2.20) into Equation (2.19), the following relationship is established,

which is the central equation for carry-increment adders.

c1
i = c0

i + Pi−1:j (2.21)

The carry-out ci can be also expressed with c0
i and c1

i .

ci = cj · c
0
i + cj · c

1
i (2.22)

Inserting Equation (2.21) into Equation (2.22), ci can finally be rewritten as

ci = cj · c
0
i + cj · (c

0
i + Pi−1:j)

= c0
i + Pi−1:j · cj. (2.23)

As Equation (2.20) indicates, c0
i = Gi−1:j, the above equation agrees with Equation (2.7).

A 16-bit carry-increment adder example is shown in Figure 2.6. This is a 1-level structure

with fixed 4-bit block size. Incrementers, instead of full adders are used to compute the

sum (i.e. the temporary sum will be incremented either by 0 or by 1). Variable block size

and multi-leveling can help improve the performance of CINA [36].

The critical path is similar to that of CSEA. The difference is that the incrementers

replace the multiplexors in CSEA. The incrementor can be implemented using HAs as

shown in Figure 2.1. An r-bit RCA using HAs has a delay of {2(r−1)+3}∆ = {2r+1}∆.

From Equation (2.23), the carry computation is through an OR after AND, which has a

delay of 4∆. The first RCA has a delay of (4r +5)∆ from the input to the carry-out. There

are k − 2 carry generation blocks that follow, each has a delay of 4∆.

14

cin+

A3:0 B3:0

S3:0

c4

+

A7:4 B7:4

S7:4

c8

+

A11:8 B11:8

S11:8

c12

+

A15:12 B15:12

S15:12

cout

000

P15:12

G15:12

INC INC

P11:8

G11:8

INC

P7:4

G7:4

Figure 2.6: Carry-Increment Adder.

tcina = {4r + 5 + 4(k − 2) + 2r + 1}∆

= {6r + 4k − 2}∆ (2.24)

The group propagate/generate is not in the critical path and does not contribute to the

delay estimation. For an r-bit group propagate/generate, it takes 2r gates for generating sin-

gle bit propagate/generate. For group propagate, one AND gate will suffice and r gates will

be required for group generate. An r-bit group propagate/generate requires a total of 3r+1

gates. The area is estimated with n-bit RCAs, k−1 groups of propagate/generate logic and

carry generation blocks along with incrementers. Hence, the total area is estimated as

9n + (3r + 1)(k − 1) + 2(k − 1) + 4r(k − 1) = 16n + 3k − 7r − 3 (2.25)

The delay of a CINA is slightly larger than a CSEA but the area is obviously reduced. The

block size and the number of blocks can be varied to implement CINAs. Multi-leveling

carry architectures can further improve the performance of this adder [35].

2.5 Carry-Skip Adders (CSKA)

There is an alternative way of reducing the delay in the carry-chain of a RCA by checking

if a carry will propagate through to the next block. This is called carry-skip adders [31].

15

cin

+

S3:0

A3:0 B3:0

+

S7:4

A7:4 B7:4

+

S11:8

P7:4

A11:8 B11:8

+

S15:12

P11:8

A15:12 B15:12

cout

c12 c8 c4

Figure 2.7: Carry-Skip Adder.

The idea of this adder is to modify the Equation (2.7), as shown in Equation (2.26).

ci+1 = Pi:j · Gi:j + Pi:j · cj (2.26)

Figure 2.7 shows an example of 16-bit carry-skip adder.

The carry-out of each block is determined by selecting the carry-in and Gi:j using Pi:j.

When Pi:j = 1, the carry-in cj is allowed to get through the block immediately. Otherwise,

the carry-out is determined by Gi:j. The CSKA has less delay in the carry-chain with only

a little additional extra logic. Further improvement can be achieved generally by making

the central block sizes larger and the two-end block sizes smaller [37].

Assuming the n-bit adder is divided evenly to k r-bit blocks, part of the critical path is

from the LSB input through the MSB output of the final RCA. The first delay is from the

LSB input to carry-out, which is 4r + 5. Then, there are k − 2 skip logic blocks with a

delay of 3∆. Each skip logic block includes one 4-input AND gate for getting Pi+3:i and

one AND/OR logic. The final RCA has a delay from input to sum at MSB, which is 4r+6.

The total delay is calculated as follows.

tcska = {4r + 5 + 3(k − 2) + 4r + 6}∆

= {8r + 3k + 5}∆ (2.27)

The CSKA has n-bit FA and k − 2 skip logic blocks. Each skip logic block has an area of

3 units. Therefore, the total area is estimated as

9n + 3(k − 2) = 9n + 3k − 6 (2.28)

16

ai

bi

ci

gi

si

pi

Figure 2.8: Reduced Full Adder.

2.6 Carry-Lookahead Adders (CLA)

The carry-chain can also be accelerated with carry generate/propagate logic, as in Equation

(2.7). Carry-lookahead adders employ the carry generate/propagate in groups to generate

carry for the next block [6]. In other words, digital logic is used to calculate all the carries

at once. When building a CLA, a reduced version of full adder, which is called a reduced

full adder (RFA) is utilized. Figure 2.8 shows the block diagram for an RFA. The carry

generate/propagate signals gi/pi feed to carry-lookahead generator (CLG) for carry inputs

to RFA.

The theory of the CLA is based on Equation (2.6) and (2.7). Figure 2.9 shows an

example of 16-bit carry-lookahead adder. In the figure, each block is fixed at 4-bit. BCLG

stands for Block Carry Lookahead Carry Generator, which generates generate/propagate

signals in group form [6]. For the 4-bit BCLG, the following equations are created.

Gi+3:i = gi+3 + pi+3 · gi+2 + pi+3 · pi+2 · gi+1 + pi+3 · pi+2 · pi+1 · gi

Pi+3:i = pi+3 · pi+2 · pi+1 · pi (2.29)

The group generate takes a delay of 4∆, which is an OR after an AND, therefore, the

carry-out can be computed, as follows.

ci+3 = Gi+3:i + Pi+3:i · ci (2.30)

The carry computation also has a delay of 4∆, which is an OR after an AND. The 4-bit

BCLG has an area of 14 units [38].

17

The critical path of the 16-bit CLA can be observed from the input operand through 1

RFA, then 3 BCLG and through the final RFA. That is, the critical path shown in Figure 2.9

is from a0/b0 to s7. The delay will be the same for a0/b0 to s11 or s15, however, the critical

path traverses logarithmically, based on the group size. The delays are listed below.

a0, b0 → p0, g0 = 2∆

p0, g0 → G3:0 = 4∆

G3:0 → c4 = 4∆

c4 → c7 = 4∆

c7 → s7 = 5∆

a0, b0 → s7 = 19∆ (2.31)

The 16-bit CLA is composed of 16 RFAs and 5 BCLGs, which amounts to an area of

16 × 8 + 5 × 14 = 198 units.

Extending the calculation above, the general estimation for delay and area can be de-

rived. Assume the CLA has n-bits, which is divided into k groups of r-bit blocks. It

requires dlogrne logic levels. The critical path starts from the input to p0/g0 generation,

BLCG logic and the carry-in to sum at MSB. The generation of (p, g) takes a delay of 2∆.

The group version of (p, g) generated by the BCLG has a delay of 4∆. From next BCLG,

there is a 4∆ delay from the CLG generation and 4∆ from the BCLG generation to the

next level, which totals to 8∆. Finally, from ck+r to sk+r, there is a delay of 5∆. Thus, the

total delay is calculated as follows.

tcla = {2 + 8(dlogrne − 1) + 4 + 5}∆

= {3 + 8dlogrne}∆ (2.32)

An n-bit CLA requires n RFAs and a logarithmical number of BCLGs assuming each

BCLG has the same block size
logrn
∑

l=1

n

rl
(2.33)

18

g3

RFA RFARFARFA

BCLG

p3 p1g1p2g2 g0 p0

c3 c2 c1

s3 a3 b3 s2 a2 s1 a1 b1 s0 a0 b0b2

g7

RFA RFARFARFA

BCLG

p7 p5g5p6g6 g4 p4

c7 c6 c5

s7 a7 b7 s6 a6 s5 a5 b5 s4 a4 b4b6

g11

RFA RFARFARFA

BCLG

p11 p9g9p10g10 g8 p8

c11 c10 c9

s11 a11 b11 s10 a10 s9 a9 b9 s8 a8 b8b10

g15

RFA RFARFARFA

BCLG

p15 p13g13p14g14 g12 p12

c15 c14 c13

s15 a15 b15 s14 a14 s13 a13 b13 s12 a12 b12b14

BCLG

c0

c4

c8

c12

G3:0 P3:0

G7:4 P7:4

G11:8 P11:8

G15:12 P15:12

G15:0 P15:0

Figure 2.9: Carry-Lookahead Adder.

Each BCLG requires (3+r)r
2

gates and each RFA requires 8 gates, therefore, the total area

of a CLA can be estimated as follows.

8n +
(3 + r)r

2

logrn
∑

l=1

n

rl
(2.34)

2.6.1 Algorithmic Analysis

As seen in previous chapters, the basic adder algorithms have several algorithmic enhance-

ments based on the length of their carry-chain. The algorithmic analysis is summarized in

Table 2.1, and assumes all the adders have a width of n. Some of the adders divide these n

19

Table 2.1: Algorithmic Analysis

Adder Type Delay(∆) Area (gates)

Ripple-Carry 4n + 6 9n

Carry-Select 4r + 4k + 2 22n − 13r + 2k − 2

Carry-Increment 6r + 4k − 2 16n − 7r + 3k − 3

Carry-Skip 8r + 3k + 5 9n + 3k − 6

Carry-Lookahead 3 + 8dlogrne 8n + (3+r)r
2

∑logrn
l=1

n
rl

bits into k groups, with a constant r-bits in each group.

2.7 Ling Adders

Although CLA structures are optimal for speeding up addition, they still can be improved.

Ling adder [8] optimizes the performance by reducing fan-in of the logic gates. The idea is

to utilize the property of carry generate and propagate.

gi = ai · bi pi = ai + bi, (2.35)

The inherent relation can be observed as shown in the following equation.

gi = gi · pi (2.36)

since

ai · bi = ai · bi · (ai + bi) (2.37)

The group carry generate can then be re-written as

Gi:k = pi · (gi + gi−1 + pi−1 · gi−2 + ... + pi−1 · ... · pk+1 · gk)

= pi · Hi:k (2.38)

where

Hi:k = gi + gi−1 + pi−1 · gi−2 + ...

+pi−1 · ... · pk+1 · gk (2.39)

20

Since the carry depends on a new term, it can be re-written as

ci+1 = Gi:k + Pi:k · ck

= pi · (Hi:k + Pi−1:k)

= pi · di+1 (2.40)

where the pseudo carry is introduced as

di+1 = Hi:k + Pi−1:k (2.41)

In the case of k = −1,

ci+1 = Gi:−1 (2.42)

and

di+1 = Hi:−1. (2.43)

Ling adders extract pi, such that the fan-in of logic gates in the carry-chain is reduced.

This is useful for dynamic logic since the serial stack of NMOS can be reduced by one

and subsequently reduces sizing constraints. For example, consider a 4-bit group generate,

such that

Gi+3:i = gi+3 + pi+3 · gi+2 + pi+3 · pi+2 · gi+1

+pi+3 · pi+2 · pi+1 · gi (2.44)

while

Hi+3:i = gi+3 + gi+2 + pi+2 · gi+1

+pi+2 · pi+1 · gi. (2.45)

Hi+3:i takes 7 inputs to 3 gates with a maximum fan-out of 3 whereas Gi+3:i takes 10 inputs

to 4 gates with a maximum fan-out of 4. It is obvious that the H term is much easier to

obtain than the G term.

21

The H term shares the property of G, such that H can be derived as a group version as

expressed in the following equation.

Hi:k = Hi:j+1 + Pi−1:j · Hj:k (2.46)

Thus, the carry chain can be calculated with H instead of G. Due to the simpler circuit

to computing H , the carry chain can be significantly reduced compared to a carry chain

computing from G. If a long carry chain is divided with several blocks using H , the speed

gain can significantly enhance the critical path, as opposed to using G in the blocks.

The sum for Ling adder can, therefore, be expressed in the following form.

si = pi ⊕ Hi:−1 + gi · pi−1 · Hi−1:−1 (2.47)

To prove Equation (2.47), there is another important relation that can be derived from

Equation (2.45).

Hi+3:i = gi+3 + pi+2 · (gi+2 + gi+1 + pi+1 · gi)

= gi+3 + pi+2 · Hi+2:i (2.48)

since Hi+2:i = gi+2+gi+1+pi+1 ·gi. Rewriting Equation (2.48), a more general and simpler

expression can be derived.

Hi:k = gi + pi−1 · Hi−1:k (2.49)

As si = ti ⊕ ci and ci = Gi−1:−1 = pi−1 · Hi−1:−1,

si = ti ⊕ pi−1 · Hi−1:−1

= ti · pi−1 · Hi−1:−1 + ti · pi−1 · Hi−1:−1

= (gi + pi) · pi−1 · Hi−1:−1 + pi · gi · pi−1 · Hi−1:−1 (2.50)

where ti = gi + pi and ti = pi · gi. These two inserted equations can be easily proven by

reducing the terms with ai/bi. Continue with Equation (2.50),

si = pi · pi−1 · Hi−1:−1 + pi · gi · pi−1 · Hi−1:−1 + gi · pi−1 · Hi−1:−1 (2.51)

22

pi

di

ci

pi-1

ci+1

ei+1di+2

pipi+1pi+1pj-1

cj-1

ej

pj-1

cj

dj+1

pjpj

Figure 2.10: NAND Adder Carry Chain.

Adding another term pi · gi to the Equation (2.51) also reduces the logic significantly. The

added term has no effect on altering the logic since pi · gi = 0. Rewrite Equation (2.51)

and applying Equation (2.49), the following equation can be derived, which is the same as

Equation (2.47).

si = pi · (gi + pi−1 · Hi−1:−1) + pi · gi + pi−1 · Hi−1:−1 + gi · pi−1 · Hi−1:−1

= pi · Hi:−1 + pi · Hi:−1 + gi · pi−1 · Hi−1:−1 (2.52)

2.8 NAND/NOR Adders

Ling’s equations can be further modified to enhance ripple-carry adders. This type of

adders are also called NAND or NOR adders [39] [40]. In CMOS logic, NAND gates are

usually faster than NOR gates while NOR adders are more suitable for domino logic. Be-

cause CMOS NOR gates have stacked PMOS transistors, they are usually slower than the

NMOS transistors stacked in NAND gates. In domino logic, NOR gates has NMOS tran-

sistors in parallel, which is faster than NAND gates, where NMOS transistors are stacked

in serial.

NAND/NOR adders utilize a similar idea as Ling’s, but use a complemented version of

23

the propagate and generate from the following equations.

ĝi = ai · bi

p̂i = ai + bi (2.53)

These equations can be formed into a new equation using the complemented values of the

propagate/generate.

ĉi+1 = ĝi + p̂i · ci (2.54)

An important property between the carry terms is

ĉi+1 = ci+1. (2.55)

This can be proven as the following procedure.

ci+1 = gi + pi · ci

= gi · (pi + ci)

= pi + gi · ci

= ĝi + p̂i · ci = ĉi (2.56)

Besides Ling’s pseudo-carry d, a second pseudo-carry e is introduced as following def-

inition.

ei , d̂i (2.57)

For NAND adders, the pseudo-carries can be written as

di+1 = gi + ci

ei+1 = ĝi + ci (2.58)

Applying DeMorgan’s law and the relation ĝi = pi and p̂i = gi, the complemented pseudo-

carries can be expressed as

di+1 = p̂i · ci

ei+1 = pi · ci (2.59)

24

gi

di

ci

gi-1

ci+1

ei+1di+2

gigi+1gi+1gj-1

cj-1

ej

gj-1

cj

dj+1

gjgj

Figure 2.11: NOR Adder Carry Chain.

Insert the following relation between carry and pseudo-carries into the equations above.

ci = pi−1 · di

ci = p̂i−1 · ei (2.60)

The NAND equations can now be rewritten as

di+1 = p̂i · p̂i−1 · ei

ei+1 = pi · pi−1 · di (2.61)

or

di+1 = p̂i:i−1 · ei

ei+1 = pi:i−1 · di (2.62)

The carry chain in NAND adders with two pseudo-carries is shown in Figure 2.10. Thus,

sum can be obtained using the following equation.

si = ti ⊕ ci (2.63)

or, in a different expression,

si = ti ⊕ (pi−1 · di)

= ti(pi−1 · di) + ti(p̂i−1 · ei) (2.64)

25

by referencing Equation (2.60). This can be implemented with a multiplexor with ti as the

select signal.

Similarly, the NOR adder can be derived from rewriting Equation (2.61).

di+1 = p̂i · p̂i−1 · ei

ei+1 = pi · pi−1 · di (2.65)

Further simplification can be achieved using DeMorgan’s law.

di+1 = gi + gi−1 + ei

ei+1 = ĝi + ĝi−1 + di (2.66)

or

di+1 = gi + gi−1 + ei

ei+1 = ĝi + ĝi−1 + di (2.67)

Similar to the NAND adder, when computing the sum, the following equation can be uti-

lized.

si = ti ⊕ ci (2.68)

In other words, the carry-chain has to be complemented and applied through Boolean logic

to form the sm.

si = ti � ci

= ti(gi−1 + ei) + ti(ĝi−1 + di) (2.69)

These simplifications assume two carries produced after the carry tree.

ci = gi−1 + ei

ci = ĝi−1 + di (2.70)

26

2.9 Parallel-Prefix Structures

To resolve the delay of carry-lookahead adders, the scheme of multilevel-lookahead adders

or parallel-prefix adders can be employed [41]. The idea is to compute small group of in-

termediate prefixes and then find large group prefixes, until all the carry bits are computed.

These adders have tree structures within a carry-computing stage similar to the carry prop-

agate adder. However, the other two stages for these adders are called pre-computation and

post-computation stages.

In pre-computation stage, each bit computes its carry generate/propagate and a tem-

porary sum as in Equation (2.4). In the prefix stage, the group carry generate/propagate

signals are computed to form the carry chain and provide the carry-in for the adder below.

Equation (2.6) is repeated here as a reminder

Gi:j = Gi:k + Pi:k · Gk−1:j

Pi:j = Pi:k · Pk−1:j (2.71)

In the post-computation stage, the sum and carry-out are finally produced. The carry-out

can be omitted if only a sum needs to be produced.

si = ti ⊕ Gi:−1

cout = gn−1 + pn−1 · Gn−2:−1 (2.72)

where Gi:−1 = ci with the assumption g−1 = cin. The general diagram of parallel-prefix

structures is shown in Figure 2.12, where an 8-bit case is illustrated.

All parallel-prefix structures can be implemented with the equations above, however,

Equation (2.71) can be interpreted in various ways, which leads to different types of parallel-

prefix trees. For example, Brent-Kung [9] is known for its sparse topology at the cost of

more logic levels. There are several design factors that can impact the performance of

prefix structures [42]

• Radix/Valency

27

s1

b4a4

t4g4

s2

b5

t5g5

a5

s3

b6a6

t6g6

s4

b7

t7g7

a7 cin

g-1

Pre-
computation

Prefix Tree

Post-
computation

c0c1c2c3

cout

b1a1

t1g1

b2

t2g2

a2b3a3

t3g3

b0a0

t0g0

c4c5c6c7

s0s5s6s7

Figure 2.12: 8-bit Parallel-Prefix Structure.

• Logic Levels

• Fan-out

• Wire tracks

To illustrate a sample prefix structure, an 8-bit Sklansky [12] prefix tree is shown in

Figure 2.13. Although Sklansky created this prefix structure with relationship to adders, it

is typically referred to as a member of the Ladner-Fischer [13] prefix family. More details

about prefix structures, including how to build the prefix structures and the performance

comparison, will be described the next chapter of this dissertation.

2.10 Carry Save Adders (CSA)

Instead of performing binary addition by carry-propagating, it is possible to use redundant

notation, to represent a number by using a carry-save adder [43] [44] [45]. Carry-save nota-

tion utilizes two vectors to store the carry bits and sum bits. In this way, carry-propagation

is avoided but generally still required to form a final sum. Carry-save notation is usually

28

0:-1

2:-1

2:14:36:5

6:3

c7 c6 c5 c4 c3 c2 c1 c0

-16 5 4 3 2 1 0

1:-15:3

Figure 2.13: Sklansky Parallel-Prefix Examples.

used in multi-operand addition/subtraction, where multiple inputs are joined into two out-

puts. A 4-bit three-input carry-save adder example is shown in In Figure 2.14. The top of

the figure shows the 4-bit adder bit by bit and bottom shows the vector form of the adder.

Each bit is a full adder that takes three inputs and has two outputs. This can also be called

as 3−2 counter. The computation at each bit for bit 0 through bit n is as follows.

vsi = di ⊕ ei ⊕ fi,

vci = di · ei · fi (2.73)

The only exception is that

vc0 = cin (2.74)

Since every bit is independent of each other and thus, there is no carry-chain. To com-

pute the final binary sum, one more carry-propagate addition is required. The final process

is,

S = V C + V S

cout = vcn (2.75)

Although not straight-forward, carry-save notation can also be applied to parallel-prefix

structures to obtain a more balanced architecture, which will be discussed later on in this

dissertation.

29

cin+

D3:0 E3:0

VS3:0

cout

cin+

d0 e0

vs0

f0

+

d1 e1

vs1

f1

+

d2 e2

vs2

f2

+

d3 e3

vs3

f3

vc3

vc4=cout

vc2 vc1

VC3:0

vc0

F3:0

Figure 2.14: 4-bit Carry-Save Adder.

2.11 Summary

This chapter gives the background of binary carry propagate adders. Basic adder algo-

rithms, from linear-based adders to logarithmic adders, are discussed in this chapter. Based

on the defined terms and knowledge about the adders, next chapter will illustrate how to

build prefix trees for use in logarithmic adders.

30

CHAPTER 3

Building Prefix Structures

Parallel-prefix structures are found to be common in high performance adders because of

the delay is logarithmically proportional to the adder width. Such structures can usually be

divided into three stages, pre-computation, prefix tree and post-computation. An example

of an 8-bit parallel-prefix structure is shown in Figure 2.12

In the prefix tree, group generate/propagate are the only signals used. The group gen-

erate/propagate equations are based on single bit generate/propagate, which are computed

in the pre-computation stage.

gi = ai · bi

pi = ai ⊕ bi (3.1)

where 0 ≤ i ≤ n. g−1 = cin and p−1 = 0. Sometimes, pi can be computed with OR logic

instead of an XOR gate. The OR logic is mandatory especially when Ling’s [8] scheme is

applied. Here, the XOR logic is utilized to save a gate for temporary sum ti.

In the prefix tree, group generate/propagate signals are computed at each bit.

Gi:k = Gi:j + Pi:j · Gj−1:k

Pi:k = Pi:j · Pj−1:k (3.2)

More practically, Equation (3.2) can be expressed using a symbol ” ◦ ” denoted by Brent

and Kung [9]. Its function is exactly the same as that of a black cell. That is

(Gi:k, Pi:k) = (Gi:j, Pi:j) ◦ (Gj−1:k, Pj−1:k), (3.3)

31

i:k k-1:j

i:j

i:k k-1:j

i:j

Gi:kPk-1:j Gk-1:j

Gi:jPi:j

Pi:k Gi:kGk-1:j

Gi:j

Pi:k

Black cell Gray cell

Figure 3.1: Cell Definitions.

or

Gi:k = (gi, pi) ◦ (gi−1, pi−1) ◦ ... ◦ (gk, pk)

Pi:k = pi · pi−1 · ... · pk. (3.4)

The ” ◦ ” operation will help make the rules of building prefix structures.

In the post-computation, the sum and carry-out are the final output.

si = pi · Gi−1:−1

cout = Gn:−1 (3.5)

where ”-1” is the position of carry-input. The generate/propagate signals can be grouped in

different fashion to get the same correct carries. Based on different ways of grouping the

generate/propagate signals, different prefix architectures can be created.

Figure 3.1 shows the definitions of cells that are used in prefix structures, including

black cell and gray cell. Black/gray cells implement Equation (3.2) or (3.3), which will be

heavily used in the following discussion on prefix trees.

3.1 Prefix Tree Family

Parallel-prefix trees have various architectures. These prefix trees can be distinguished by

four major factors. 1) Radix/Valency 2) Logic Levels 3) Fan-out 4) Wire Tracks In the

following discussion about prefix trees, the radix is assumed to be 2 (i.e. the number of

32

inputs to the logic gates is always 2). The more aggressive prefix schemes have logic levels

dlog2(n)e, where n is the width of the inputs. However, these schemes require higher fan-

out, or many wire-tracks or dense logic gates, which will compromise the performance e.g.

speed or power. Some other schemes have relieved fan-out and wire tracks at the cost of

more logic levels. When radix is fixed, The design trade-off is made among the logic levels,

fan-out and wire tracks.

In the following sections, discussion on how to build a prefix tree will be presented.

First, the basic elements to build a prefix tree are defined with a small example given

as an introduction. After that, three representatives of the prefix family are described in

detail, starting with Kogge-Stone [10], Knowles [11], followed by Brent-Kung [9]. Subse-

quently, Sklansky [12], Ladner-Fischer [13], Han-Carlson [14], and Harris [1] prefix trees

are generally described. Finally, a new prefix scheme embedded with carry-save notation

is introduced along with the explanation on how to form its structure.

3.2 Prefix Structure Synthesis

3.2.1 Taxonomy

The prefix trees can be classified using the factors mentioned above. Since the radix is

fixed, the taxonomy uses the (l, f, t) [1], with each variable representing Logic Levels,

Fan-out and Wire Tracks, respectively.

• Logic Levels: L + l

• Fan-out: 2f + 1

• Wire Tracks: 2t

For Logic Levels, L = log2(n) for any n-bit prefix tree. l,f and t are integers between

0 and L − 1. Brent-Kung (L − 1, 0, 0) prefix tree has the least fan-out and wiring tracks.

This type of prefix tree always has a maximum fan-out of 20 + 1 = 2 and maximum wire

33

{[(Gi:j, Pi:j) o (Gj-1:k, Pj-1:k)] o (Gk-1:l, Pk-1:l)} o (Gl-1:m, Pl-1:m)

[(Gi:j, Pi:j) o (Gj-1:k, Pj-1:k)] o [(Gk-1:l, Pk-1:l) o (Gl-1:m, Pl-1:m)]

(Gi:j, Pi:j) o {[(Gj-1:k, Pj-1:k) o (Gk-1:l, Pk-1:l)] o (Gl-1:m, Pl-1:m)} {(Gi:j, Pi:j) o [(Gj-1:k, Pj-1:k) o (Gk-1:l, Pk-1:l)]} o (Gl-1:m, Pl-1:m)

(Gi:j,
Pi:j)

(Gj-1:k,
Pj-1:k)

(Gk-1:l,
Pk-1:l)

(Gl-1:m,
Pl-1:m)

(Gi:j,
Pi:j)

(Gj-1:k,
Pj-1:k)

(Gk-1:l,
Pk-1:l)

(Gl-1:m,
Pl-1:m)

(Gi:j,
Pi:j)

(Gj-1:k,
Pj-1:k)

(Gk-1:l,
Pk-1:l)

(Gl-1:m,
Pl-1:m)

(Gi:j,
Pi:j)

(Gj-1:k,
Pj-1:k)

(Gk-1:l,
Pk-1:l)

(Gl-1:m,
Pl-1:m)

(Gi:j, Pi:j) o {(Gj-1:k, Pj-1:k)] o [(Gk-1:l, Pk-1:l) o (Gl-1:m, Pl-1:m)]}

(Gi:j,
Pi:j)

(Gj-1:k,
Pj-1:k)

(Gk-1:l,
Pk-1:l)

(Gl-1:m,
Pl-1:m)

(Gi:m, Pi:m) (Gi:m, Pi:m)

(Gi:m, Pi:m)(Gi:m, Pi:m)

(Gi:m, Pi:m)

Figure 3.2: Valid Prefix Structure Synthesis.

34

track of 20 = 1. But it requires the most logic levels among the prefix trees. For logic

levels, a 16-bit Brent-Kung prefix tree has L = 4 and l = L − 1 = 3, which indicates a

total of 7 logic levels is required. Kogge-Stone (0, 0, L − 1) prefix tree has the least logic

levels and fan-out. However, the wire tracks is 2L−1, which is based on input width as L is

logarithmically proportional to n. A 16-bit Kogge-Stone prefix tree has a maximum wire

track of 24−1 = 8 with a dense gate structure. Sklansky (0, L − 1, 0) prefix tree has the

smallest number of logic levels and wiring tracks while the fan-out increases with wider

inputs in the form of 2L−1 + 1. A 16-bit Sklansky prefix tree has a maximum fan-out of

24−1 + 1 = 9. Knowles family (0, f, t) has the least logic levels whereas the fan-out and

wire tracks depend on the specific structure. Like Kogge-stone, Knowles prefix tree family

use a high density gate structure. Ladner-Fischer (L − 2, 1, 0) prefix tree targets at a fixed

maximum fan-out which is 21 +1 = 3, compared to Sklansky prefix tree without too much

compromise on logic levels. Han-Carlson (1, 0, L − 2) prefix tree reduces the gate density

compared to Kogge-Stone prefix tree with one more extra logic level than minimum. Its

wire tracks is logarithmically proportional to input width.

3.2.2 Synthesis Rules

The key operation in a prefix structure is described in Equation (3.4). To build a prefix

structure, the key operation is that the ” ◦ ” in (3.4), which is associative but not commu-

tative. That is, which two of the neighboring term comes to the ” ◦ ” operation does not

matter but the sequence of the neighboring terms can not be altered. For example, consider

the following operation.

(Gi:m, Pi:m) = (Gi:j, Pi:j) ◦ (Gj−1:k, Pj−1:k) ◦ (Gk−1:l, Pk−1:l) ◦ (Gl−1:m, Pl−1:m), (3.6)

Only the neighboring two terms can go through a ” ◦ ” operation. The sequence of the 4

terms on the right side of the equation can not be changed. The associativity, or the valid

combination of the operations are shown in Figure 3.2.

35

[(Gi:j, Pi:j) o (Gl-1:m, Pl-1:m)] o [(Gj-1:k, Pj-1:k) o (Gk-1:l, Pk-1:l)] {(Gi:j, Pi:j) o [(Gj-1:k, Pj-1:k) o (Gl-1:m, Pl-1:m)]} o (Gk-1:l, Pk-1:l)

(Gi:j,
Pi:j)

(Gj-1:k,
Pj-1:k)

(Gk-1:l,
Pk-1:l)

(Gl-1:m,
Pl-1:m)

(Gi:j,
Pi:j)

(Gj-1:k,
Pj-1:k)

(Gk-1:l,
Pk-1:l)

(Gl-1:m,
Pl-1:m)

Invalid!

Invalid!

Figure 3.3: Invalid Prefix Structure Synthesis.

All the topologies in Figure 3.2 can be applied to building prefix structures. It can be

observed that the last combination is the most efficient since it only take 2 logic levels while

the other takes 3. This will be further discussed in the following sections.

Altering the order of the terms is not allowed because it will introduce invalid result.

Two examples of invalid operations are shown in Figure 3.3.

3.2.3 Preparing Prefix Tree

The synthesis rules apply to any type of prefix tree. In this section, the methodology utilized

to build fixed prefix structures is discussed. Moreover, procedure to build fixed prefix tree

can be adapted to building non-fixed prefix tree with a slight modification.

In general, building prefix trees can be reduced to solving the following problems.

• How to align the bit lines.

• Where to place cells that compute group generate G and propagate P , i.e. black cells

in this case (gray cells are ignored here to simplify the discussion.).

• How to connect input/output of the cells.

The solutions are based on the numbers which are power of 2 as both of the locations of

the cells and wires can be related to those numbers.

36

To solve the problems, 3 terms are defined.

• llevel: logic level;

• u: maximum output bit span;

• v: maximum input bit span;

The llevel refers to the logic row where group generate G and propagate P are computed.

u/v are the maximum output bit span and input bit span of the logic cells. If the logic level

is not the last of the prefix tree, the output of the current logic level will be the input to the

next logic level. The maximum bit span sets the limit of the bit span at a certain logic level.

The relations between these terms are described by the following equations

u = 2llevel

v = 2llevel−1 (3.7)

The value of v is 1/2 of the value of u. To further ease the illustration, the term (Gi:m, Pi:m)

is briefed as GPi:m. For example,

GP6:3 = GP6:5 ◦ GP4:3 (3.8)

which is equal to

G6:3 = G6:5 + P6:5 · G4:3

P6:3 = P6:5 · P4:3 (3.9)

For this case, llevel = 2, u = 4, v = 2. The inputs are GP6:3 and GP4:3 that have a bit span

of 2, as the subscripts of GP indicate. The output is GP6:3, which has a bit span of 4.

Figure 3.4 shows an 8-bit example of an empty matrix with only bit lines and dashed

boxes filled in. The inputs gi/pi go from the top and the outputs ci are at the bottom. The

LSB is labeled as −1 where the carry-input (cin) locates. The objective is to obtain all ci’s

in the form of Gi−1:−1’s, where c0 = G−1:−1, c1 = G0:−1, c2 = G1:−1, ..., cn−1 = Gn−2:−1

37

c7 c6 c5 c4 c3 c2 c1 c0

-16 5 4 3 2 1 0

Bit

Logic
Level

Figure 3.4: 8-bit Empty Prefix Tree.

c7 c6 c5 c4 c3 c2 c1 c0

-16 5 4 3 2 1 0

c7 c6 c5 c4 c3 c2 c1 c0

-16 5 4 3 2 1 0

6:5 4:3 2:1 0:-1

Figure 3.5: Build 8-bit Sklansky Prefix Tree: Step 1.

38

c7 c6 c5 c4 c3 c2 c1 c0

-16 5 4 3 2 1 0

6:5 4:3 2:1 0:-1

c7 c6 c5 c4 c3 c2 c1 c0

-16 5 4 3 2 1 0

2:-16:3 1:-15:3 4:3 0:-1

6:5 2:1

Figure 3.6: Build 8-bit Sklansky Prefix Tree: Step 2.

The way of building a prefix tree can be processed as the arrows indicate (i.e. from LSB to

MSB horizontally and then from top logic level down to bottom logic level vertically).

Next, the empty matrix will be filled to compose a Sklansky prefix tree. In the first logic

level, black cells are filled every other bit, which means the neighboring 2 bits will be the

input to only one black cell. (For example, Kogge-Stone prefix trees, the gi/pi will be the

input to 2 black cells.) This complies with the term mentioned above (i.e. maximum input

span is 1 bit and maximum output span is 21 = 2 bits). The inter-connect can be wired

according the the location of the black cell and the maximum output span. The process is

shown in Figure 3.5 as step 1.

The 2nd logic level can be continued, such that the black cells are placed as step 2

shown in Figure 3.6. Two black cells are grouped together and the distance between the

neighboring group is 2 bits (i.e. 2 empty bit slots). The maximum input span is 2 bits and

the maximum output span is 22 = 4 bits, e.g. GP6:3. In this level, the maximum fan-out is

3.

The similar fashion applies to logic level 3, where black cells are placed in a group

of 4. The distance between the neighboring group is supposed to be 4 bits. As this is a

8-bit example, there exists only one such group. The maximum input span is 4 bits and the

maximum output span is 23 = 8 bits, e.g. G6:−1. In this logic level, the maximum fan-out

increases to 5. Finally, the prefix tree is complete when the tree computes all the carry-out

39

c7 c6 c5 c4 c3 c2 c1 c0

-16 5 4 3 2 1 0

2:-16:3 1:-15:3 4:3 0:-1

c7 c6 c5 c4 c3 c2 c1 c0

-16 5 4 3 2 1 0

2:-16:3 1:-15:3 4:3 0:-1

6:-1 5:-1 4:-1 3:-1

Figure 3.7: Build 8-bit Sklansky Prefix Tree: Step 3.

bits.

The example shown in Figure 3.7 is an 8-bit Sklansky prefix tree. Other types of pre-

fix trees can be built following the similar procedure by utilizing the bit span and black

cell placement according to the specific structure requirement. In the following sections,

building several fixed prefix trees will be discussed with pseudo-code and examples given.

3.2.4 Kogge-Stone Prefix Tree

Kogge-Stone prefix tree is among the type of prefix trees that use the fewest logic levels.

A 16-bit example is shown in Figure 3.8. In fact, Kogge-Stone is a member of Knowles

prefix tree 3.10. The 16-bit prefix tree can be viewed as Knowels [1,1,1,1]. The numbers

in the brackets represent the maximum branch fan-out at each logic level. The maximum

fan-out is 2 in all logic levels for all width Kogge-Stone prefix trees.

The key of building a prefix tree is how to implement Equation (3.2) according to the

specific features of that type of prefix tree and apply the rules described in the previous

section. Gray cells are inserted similar to black cells except that the gray cells final output

carry outs instead of intermediate G/P group. The reason of starting with Kogge-Stone

prefix tree is that it is the easiest to build in terms of using a program concept. The example

in Figure 3.8 is 16-bit (a power of 2) prefix tree. It is not difficult to extend the structure to

any width if the basics are strictly followed.

40

0:-1

2:-1

2:14:36:5

6:3

8:710:9

10:7

c7 c6 c5 c4 c3 c2 c1 c0

12:11

12:5

14:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14:7

1:-113:10

13:6 11:4

5:2

13:12 11:10 9:8 7:6 5:4 3:2 1:0

12:9 11:8 9:6 8:5 7:4 4:1 3:0

10:3 9:2 8:1 7:0 6:-1 5:-1 4:-1 3:-1

Figure 3.8: 16-bit Kogge-Stone Prefix Tree.

For the Kogge-Stone prefix tree, at the logic level 1, the inputs span is 1 bit (e.g. group

(4:3) take the inputs at bit 4 and bit 3). Group (4:3) will be taken as inputs and combined

with group (6:5) to generate group (6:3) at logic level 2. Group (6:3) will be taken as inputs

and combined with group (10:7) to generate group (10:3) at logic level 3, and so on so

forth. With this inspection, the structure can be described with the Algorithm 3.1 listed

below.

Algorithm 3.1 Building Kogge-Stone Prefix Tree
L = log2(n);

for llevel = 1; llevel ≤ L; llevel ++ do

u = 2llevel; {output bit span}

v = 2llevel−1; {input bit span}

for i = v − 1; i < n − 1; i ++ do

GPi:i−u+1 = (GPi:i−v+1) ◦ (GPi−v:i−u+1);

end for

end for

In Algorithm 3.1, the number of logic levels is calculated first. At each logic level, the

maximum input bit span and maximum output bit span are computed. Equation (3.2) is

applied in the inner loop, where bit goes from bit v − 1 though bit n − 1. If any of the

subscript goes less than −1, the value stays at −1. This means there is no crossing over bit

41

Table 3.1: Verifying the Pseudo-Code of Building a Kogge-Stone Prefix Tree
Logic u v Output Input1 Input2 Equation

Levels (i : i−u+ 1) (i : i−v+1) (i−v : i−u+1) Mapping

1 2 1 7 : 6 7 : 7 6 : 6 GP7:6 = GP7 ◦ GP6

2 4 2 11 : 8 11 : 10 9 : 8 GP11:8 = GP11:10 ◦ GP9:8

3 8 4 14 : 7 14 : 11 10 : 7 GP14:7 = GP14:11 ◦ GP10:7

4 16 8 7 : −1 7 : 0 −1 : −1 GP7:−1 = GP7:0 ◦ GP−1

−1, or the LSB boundary.

The statement in the inner for loop is applying Equation (3.2). The validity of this

implementation can be verified by looking at Table 3.1. In the table, one group opera-

tion is randomly selected at each logic level. Other operations can be verified by inserting

the numbers as listed in Table 3.1. The term GPi:i = GPi and LSB boundary of the

inputs/outputs is bit −1. Table 3.1 can also be matched against Figure 3.8 to see the corre-

spondence.

The pseudo-code is a simplified version of the exact program. In the real program, the

code should tell where are the black cells and gray cells. The program also needs control

so that the LSB never goes beyond −1 and utilizes optional buffers. In Figure 3.8, there

are fan-outs more than 2 because the structure is not buffered. Figure 3.9 shows a buffered

16-bit prefix tree, however, the exact number of buffers is based on the capacitance and

resistance of the interconnect network [46]. Both figures indicate a wire track of 8.

The algorithmic delay is simply the number of logic levels. The area can be estimated

as the number of cells in the prefix tree. To simply the calculation, all cells are counted as

black cells. To understand this structure, remember that the number of gray cells always

equals to n − 1 since the prefix tree only outputs n − 1 carries. A black cell has one more

AND gate than a gray cell, and therefore, a more accurate area estimation will just subtract

that n − 1 AND gates.

42

0:-1

2:-1

2:14:36:5

6:3

8:710:9

10:7

c7 c6 c5 c4 c3 c2 c1 c0

12:11

12:5

14:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14:7

1:-113:10

13:6 11:4

5:2

13:12 11:10 9:8 7:6 5:4 3:2 1:0

12:9 11:8 9:6 8:5 7:4 4:1 3:0

10:3 9:2 8:1 7:0 6:-1 5:-1 4:-1 3:-1

Figure 3.9: 16-bit Kogge-Stone Prefix Tree with Buffers.

The number cells for a Kogge-Stone prefix tree can be counted as follows. Each logic

level has n − m cells, where m = 2llevel−1. That is, each logic level is missing m cells.

That number is the sum of a geometric series starting from 1 to n/2 which totals to n − 1.

The total number of cells will be nlog2n subtracting the total number of cells missing at

each logic level, which winds up with nlog2n− n + 1. When n = 16, the area is estimated

as 49.

3.2.5 Knowles Prefix Tree

Knowles [11] proposed a family of prefix trees with flexible architectures. Knowles prefix

trees use the fan-out at each logic level to name their family members. As mentioned in the

previous section, Kogge-Stone is actually Knowles [1,1,1,1]. Figure 3.10 shows a 16-bit

Knowles [2,1,1,1] prefix tree. Knowles prefix structure for 16-bit adders can be in other

topologies, such as with Knowles [4,2,1,1], [4,4,2,1], [8,2,2,1], [8,4,1,1]. A 16-bit Knowles

[4,2,1,1] prefix tree is illustrated in Figure 3.11, where the fan-out in logic level 3 and 4 are

2 and 4, respectively. Even different fan-out in the same logic level is allowed in Knowles

prefix trees, which is called hybrid Knowles prefix tree.

The Knowles prefix tree family has multiple architectures which it can implement.

However, the idea here is to clarify how to build Knowles prefix trees based on previ-

ously mentioned Kogge-Stone prefix trees, and gradually move on to more complex prefix

43

0:-12:14:36:5

6:3

8:710:9

10:7

c7 c6 c5 c4 c3 c2 c1 c0

12:11

12:5

14:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14:7

1:-113:10

13:6 11:4

5:2

13:12 11:10 9:8 7:6 5:4 3:2 1:0

12:9 11:8 9:6 8:5 7:4 4:1 3:0

10:3 9:2 8:1 5:-1 4:-1 3:-16:-17:0

2:-1

Figure 3.10: 16-bit Knowles [2,1,1,1] Prefix Tree.

0:-12:14:36:5

6:3

8:710:9

10:7

c7 c6 c5 c4 c3 c2 c1 c0

12:11

12:5

14:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14:7

1:-113:10

13:7 11:5

5:2

13:12 11:10 9:8 7:6 5:4 3:2 1:0

12:9 11:8 9:6 8:5 7:4 4:1 3:0

10:3 9:3 8:1 7:1 5:-1 4:-1 3:-16:-1

2:-1

Figure 3.11: 16-bit Knowles [4,2,1,1] Prefix Tree.

44

structures (e.g. Brent-Kung prefix tree). To proceed without introducing much distraction,

only the construction of Knowles [2,1,1,1] is described in detail. It will not be difficult to

extend the algorithm once the basic concepts on the prefix trees are firmly established.

The only difference between Figure 3.10 and Figure 3.8 is at the final or logic level 4.

In Knowles [2,1,1,1] prefix tree, the fan-out at logic level 4 is 3 instead of 2. To build such

prefix trees, the pseudo-code made for Kogge-Stone prefix tree can be reused except for

the change at the last level.

Algorithm 3.2 Building Knowels [2,1,1,1] Prefix Tree
L = log2(n);

for llevel = 1; llevel ≤ L; llevel ++ do

u = 2llevel; {output bit span}

v = 2llevel−1; {input bit span}

if llevel == L then

for i = v − 1; i < n − 1; i+= 2 do

GPi:i−u+1 = (GPi:i−v+1) ◦ (GPi−v+1:i−u+1);

GPi+1:i−u+2 = (GPi+1:i−v+2) ◦ (GPi−v+1:i−u+1);

end for

else

{same as building Kogge-Stone prefix tree}

end if

end for

In Algorithm 3.2, the inner for loop has i increment by 2. Two GP group share one

same input. An observation can be made that there is overlap at bit i− v + 1 in the first GP

operation. This is valid and can be proved as follows, which is to prove

(GPi:j) ◦ (GPj:k) = (GPi:j) ◦ (GPj−1:k) (3.10)

45

or

(Gi:j, Pi:j) ◦ (Gj:k, Pj:k) = (Gi:j, Pi:j) ◦ (Gj−1:k, Pj−1:k) (3.11)

The left side for G in the equation above can be rewritten as

Gi:j + Pi:j ·Gj:k = Gi:j+Pi:j ·(Gj:j+Pj:j ·Gj−1:k)

= Gi:j+Pi:j ·Gj:j+Pi:j ·Pj:j ·Gj−1:k

= Gi:j+Pi:j ·gj +Pi:j ·Gj−1:k (3.12)

where Gj:j = gj . The term Gi:j of the Equation (3.12) can be expanded as

Gi:j =gi+pi ·gi−1+Pi:i−1 ·gi−2+...+Pi:j+1·gj (3.13)

Adding with the second term in Equation (3.12),

Gi:j+Pi:j ·gj = gi+pi ·gi−1+Pi:i−1 ·gi−2+ ...

+Pi:j+1·gj+Pi:j ·gj (3.14)

The last two terms in the equation above can be absorbed as one term since

Pi:j+1 ·gj+Pi:j ·gj = Pi:j+1 ·gj+Pi:j+1·pj ·gj

= Pi:j+1 ·gj ·(1+pj)

= Pi:j+1 ·gj (3.15)

Inserting Equation (3.15) into Equation (3.14) and compare the right side with Equation

(3.13), the following relationship is established.

Gi:j+Pi:j ·gj =Gi:j (3.16)

Therefore, Equation (3.12) becomes

Gi:j + Pi:j ·Gj:k =Gi:j+Pi:j ·Gj−1:k, (3.17)

46

Table 3.2: Verifying the Pseudo-Code of Building a Knowles [2,1,1,1] Prefix Tree

Logic u v Output Input1 Input2 Equation

Levels (i : i−u+ 1) (i : i−v+1) (i−v+1: i−u+1) Mapping

4 16 8 11 : −1 11 : 4 4 : −1 GP11:−1 = GP11:4 ◦ GP4:−1

Logic u v Output Input1 Input2 Equation

Levels (i : i−u+ 2) (i : i−v+2) (i−v+1: i−u+1) Mapping

4 16 8 12 : −1 12 : 5 4 : −1 GP12:−1 = GP12:5 ◦ GP4:−1

0:-12:14:36:5

6:3

8:710:9

10:7

c7 c6 c5 c4 c3 c2 c1 c0

12:11

12:5

14:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14:7

1:-113:10

13:6 11:4

5:2

13:12 11:10 9:8 7:6 5:4 3:2 1:0

12:9 11:8 9:6 8:5 7:4 4:1 3:0

10:3 9:2 8:1 5:-1 4:-1 3:-17:0 6:-1

2:-1

Figure 3.12: 16-bit Knowles [2,1,1,1] Prefix Tree with Buffers.

which proves the G part of Equation (3.11). The P part is easier to prove because P is

computed using a AND operation. Any redundant term is absorbed by other terms.

Pi:j · Pj:k = Pi:j · (pj · Pj−1:k)

= Pi:j · Pj−1:k (3.18)

where Pi:j · pj = Pi:j. It can be proven that overlapping is allowed even for more than 1 bit

as it is allowed in prefix trees (e.g. Knowles [4,2,1,1]).

Figure 3.12 shows a properly buffered structure that has a maximum fan-out of 3 (i.e.

f = 1). Both Kogge-Stone and Knowles [2,1,1,1] prefix tree have the same number of

logic levels. More interestingly, they also have the same number of cells. Hence, the area

for Knowles [2,1,1,1] prefix tree is also estimated as nlog2n − n + 1.

47

3.2.6 Brent-Kung Prefix Tree

Brent-Kung prefix tree is a well-known structure with relatively sparse network. The fan-

out is among the minimum as f = 0. So is the wire tracks where t = 0. The cost is the

extra L − 1 logic levels. A 16-bit example is shown in Figure 3.13. The critical path is

shown in the figure with a thick gray line.

Brent-Kung prefix tree is a bit complex to build because it has the most logic levels. To

build such a structure, the pseudo-code can be composed as Algorithm 3.3.

Algorithm 3.3 Building Brent-Kung Prefix Tree
L = log2(n);

for llevel = 1; llevel ≤ L; llevel ++ do

u = 2llevel; {output bit span}

v = 2llevel−1; {input bit span}

for i = u − 2; i < n − 1; i+= u do

GPi:i−u+1 = (GPi:i−v+1) ◦ (GPi−v:i−u+1);

end for

end for

for llevel = L − 1; llevel ≥ 1; llevel −− do

u = 2llevel; {output bit span}

v = 2llevel−1; {input bit span}

for i = u + v − 2; i < n − 1; i+= u do

GPi:−1 = (GPi:i−v+1) ◦ (GPi−v:i−1);

end for

end for

The algorithm deals with this prefix tree in 2 major for loops. The first for loop

handles logic level by logic level from 1 up to L with the second for loop handling the rest

L − 1 logic levels in a decremental fashion. Figure 3.13 can be divided as the top 4 logic

levels and the bottom 3 logic levels. The structure starts with cells every 2 bits. The input

48

0:-1

2:-1

2:14:36:5

6:3

6:-1

8:710:9

10:7

c7 c6 c5 c4 c3 c2 c1 c0

12:1114:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14:7

10:-1

12:-1

14:-1

8:-1 4:-1

Figure 3.13: 16-bit Brent-Kung Prefix Tree.

span is 1 bit and the output span is 2 bits. At logic level 2 and 3, the distance between each

cell is 4 and 8 bits, respectively. The input/output span is 2/4 bits at logic level 2 and 4/8

bits at logic level 3. At logic level 4, the only cell is at MSB (bit 14 from input) with input

spanning 8 bits and output spanning 16 bits. By logic level 4, some carries are already

generated. At logic level 5 through 7, the input bit span is decremented instead of being

incremented as in the previous cases. The input bit spans at logic level 5 through 6 and 7

are 4, 2 and 1 bit, respectively. The term output span no longer applies to these L−1 levels

since all the outputs are the final carries with the form Gi:−1. Table 3.3 lists the examples

to further understand and verify the pseudo-code. The pseudo-code above does not include

any buffer or tell where to insert gray cells. Figure 3.14 shows a properly buffered 16-bit

prefix tree that has a maximum fan-out of 2.

The delay is estimated as the number of logic levels (i.e. L). The total number of cells

can be calculated in the following way. In the first log2n logic levels, the number of cells is

a geometric series. For example, in the 16-bit prefix tree, at logic level 1 through 4, there

are 8, 4, 2, 1 cell at each level. The sum of this series is n − 1. For the rest of the logic

levels, there only exist gray cells. The total number of gray cells is n−1 for any prefix tree

49

Table 3.3: Verifying the Pseudo-Code of Building a Brent-Kung Prefix tree

Logic u v Output Input1 Input2 Equation

Levels (i : i−u+ 1) (i : i−v+1) (i−v : i−u+1) Mapping

1 2 1 6 : 5 6 : 6 5 : 5 GP6:5 = GP6 ◦ GP5

2 4 2 10 : 7 10 : 9 8 : 7 GP10:7 = GP10:9 ◦ GP8:7

3 8 4 6 : −1 6 : 3 2 : −1 GP6:−1 = GP6:3 ◦ GP2:−1

4 16 8 14 : −1 14 : 7 6 : −1 GP14:−1 = GP14:7 ◦ GP6:−1

Logic u v Output Input1 Input2 Equation

Levels (i :−1) (i : i−v+1) (i−v :−1) Mapping

5 8 4 10 : −1 10 : 7 6 : −1 GP10:−1 = GP10:7 ◦ GP6:−1

6 4 2 12 : −1 12 : 11 10 : −1 GP12:−1 = GP12:11 ◦ GP10:−1

7 2 1 1 : −1 1 : 1 0 : −1 GP1:−1 = GP1 ◦ GP0:−1

0:-1

2:-1

2:14:36:5

6:3

6:-1

8:710:9

10:7

c7 c6 c5 c4 c3 c2 c1 c0

12:1114:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14:7

10:-1

12:-1

14:-1

8:-1 4:-1

Figure 3.14: 16-bit Brent Kung Prefix Tree with Buffers.

50

0:-1

2:-1

2:14:36:5

6:3

8:710:9

10:7

c7 c6 c5 c4 c3 c2 c1 c0

12:11

12:7

14:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14:7

1:-113:11

13:7 11:7

5:3

Figure 3.15: 16-bit Sklansky Prefix Tree.

as mentioned before. However, in the previous log2n logic levels, the prefix tree contains

log2n gray cells. The sum of cells is 2(n − 1) − log2n. When n = 16, the number of cells

required is 26.

3.3 Other Prefix Trees

3.3.1 Sklansky Prefix Tree

Sklansky prefix tree takes the least logic levels to compute the carries. Plus, it uses less cells

than Knowles [2,1,1,1] and Kogge-Stone structure at the cost of higher fan-out. Figure 3.15

shows the 16-bit example of Sklansky prefix tree with critical path in solid line.

For a 16-bit Sklansky prefix tree, the maximum fan-out is 9 (i.e. f = 3). The structure

can be viewed as a compacted version of Brent-kung’s, where logic levels is reduced and

fan-out increased. A similar pseudo-code listed for Brent-Kung prefix tree can be used

to generate a Sklansky prefix tree. However, the maximum input span is still a power of

2, relating with the number of logic levels. The difference is that one more for loop is

required to account for the multiple fan-out (e.g. at logic level 2 through 4 in Figure 3.15,

where the cells are placed in group of 2,4 and 8, respectively).

The number of logic levels is log2n. Each logic level has n/2 cells as can be observed

in Figure 3.15. The area is estimated as (n/2)log2n. When n = 16, 32 cells are required.

51

0:-1

2:-1

2:14:36:5

6:3

6:-1 4:-1

8:7

8:-1

10:9

10:7

c7 c6 c5 c4 c3 c2 c1 c0

12:11

12:5

14:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14:7

10:-112:-114:-1

Figure 3.16: 11-bit Ladner-Fischer Prefix Tree Synthesis.

3.3.2 Ladner-Fischer Prefix Tree

Sklansky prefix tree has the minimum logic levels, and uses less cells than Kogge-Stone

and Knowles prefix trees. The major problem of Sklansky prefix tree is its high fan-out.

Ladner-Fischer prefix tree is proposed to relieve this problem.

To reduce fan-out without adding extra cells, more logic levels have to be added. Fig-

ure 3.16 shows a 16-bit example of Ladner-Fischer prefix tree.

Ladner-Fischer prefix tree is a structure that sits between Brent-Kung and Sklansky

prefix tree. It can be observed that in Figure 3.16, the first two logic levels of the structure

are exactly the same as Brent-Kung’s. Starting from logic level 3, fan-out more than 2

is allowed (i.e. f > 0). Comparing the fan-out of Ladner-Fischer’s and Sklansky’s, the

number is reduced by a factor of 2 since Ladner-Fischer prefix tree allows more fa-nout

one logic level later than Sklansky prefix tree.

Building a Ladner-Fischer prefix tree can be seen as a relieved version of Sklansky

prefix tree. For a structure like Figure 3.16, a extra row of cells are required to generate the

missing carries.

The delay for the type of Ladner-Fischer prefix tree is log2n+1. The first and last logic

level take n/2 and n/2 − 1 cells. In between, there are log2n − 1 logic levels, each having

n/4 cells. Summing up the cells, n/2 + n/2 − 1 + (n/4)(log2n − 1), which is equal to

52

0:-1

2:-1

2:14:36:5

6:3

6:-1 4:-1

8:7

8:5

8:1

10:9

10:7

10:3

c7 c6 c5 c4 c3 c2 c1 c0

12:11

12:9

12:5

14:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4:1

14:7

Figure 3.17: 16-bit Han-Carlson Prefix Tree.

(n/4)log2n + 3n/4 − 1. When n = 16, total cells required is 27.

3.3.3 Han-Carlson Prefix Tree

The idea of Han-Carlson prefix tree is similar to Kogge-Stone’s structure since it has a

maximum fan-out of 2 or f = 0. The difference is that Han-Carlson prefix tree uses much

less cells and wire tracks than Kogge-Stone. The cost is one extra logic level.

Han-Carlson prefix tree can be viewed as a sparse version of Kogge-Stone prefix tree. In

fact, the fan-out at all logic levels is the same (i.e. 2). The pseudo-code for Kogge-Stone’s

structure can be easily modified to build a Han-Carlson prefix tree. The major difference

is that in each logic level, Han-Carlson prefix tree places cells every other bit and the last

logic level accounts for the missing carries. Figure 3.17 shows a 16-bit Han-Carlson prefix

tree, ignoring the buffers. The critical path is shown with thick solid line.

This type of Han-Carlson prefix tree has log2n + 1 logic levels. It happens to have

the same number cells as Sklansky prefix tree since the cells in the extra logic level can

be move up to make the each of the previous logic levels all have n/2 cells. The area is

estimated as (n/2)log2n. When n = 16, the number is 32.

53

f (Fanout)

t (Wire Tracks)

l (Logic Levels)

0 (2)
1 (3)

2 (5)

3 (9)

0 (4)

1 (5)

2 (6)

3 (8)

2 (4)

1 (2)

0 (1)

3 (7)

Kogge-
Stone

Sklansky

Brent-
Kung

Han-
Carlson

Knowles
[2,1,1,1]

Knowles
[4,2,1,1]

Ladner-
Fischer

Han-
Carlson

Ladner-
Fischer

l + f + t = L-1
plane

Figure 3.18: Taxonomy of 16-bit Prefix Tree (Adapted from [1]).

3.3.4 Harris Prefix Tree

The idea from Harris about prefix tree is to try to balance the logic levels, fan-out and wire

tracks. Harris proposed a cube to show the taxonomy for prefix trees in Figure 3.18, which

illustrates the idea for 16-bit prefix trees [1]. In the figure, all the prefix trees mentioned

above are on the cube, with Sklansky prefix tree standing at the fan-out extreme, Brent-

Kung at the logic levels extreme, and Kogge-Stone at the wire track extreme.

The balanced prefix structure is close to the center of cube (i.e.when n = 16, l = 1,

f = 1 and t = 1 or represented in short by (1, 1, 1)). The logic levels is 24 + 1 = 5,

maximum fan-out is 2f + 1 = 3 and wire track is 2t = 2. The diagram is shown in

Figure 3.19 with critical path in solid line. Observation can be made that there is bit overlap

in logic level 4 similar to Knowles [2, 1, 1, 1]. The overlap is valid for producing correct

carries as it has be proven for Knowles [2, 1, 1, 1].

For n ≥ 16, (1, 1, 1) will not be sufficient to build a prefix tree. More logic levels, or

fan-out, or wire tracks need to be added. For example, when n = 32, the prefix tree can be

54

0:-1

2:-1

2:14:36:5

6:3

6:-1 4:-1

8:7

8:5

8:1

10:9

10:7

10:3

c7 c6 c5 c4 c3 c2 c1 c0

12:11

12:9

12:5

14:13

14:11

c15 c14 c13 c12 c11 c10 c9 c8

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4:1

14:7

Figure 3.19: 16-bit Harris Prefix Tree.

Table 3.4: Algorithmic Analysis

Types Logic Levels Area Fan-out Wire tracks

Brent-Kung 2log2n − 1 2n − log2n − 2 2 1

Kogge-Stone log2n nlog2n − n + 1 2 n/2

Ladner-Fischer log2n + 1 (n/4)log2n + 3n/4 − 1 n/4 + 1 1

Knowles[2, 1, 1, 1] log2n nlog2n − n + 1 3 n/4

Sklansky log2n (n/2)log2n n/2 + 1 1

Han-Carlson log2n (n/2)log2n 2 n/4

Harris log2n + 1 (n/2)log2n 3 n/8

in the form of (1, 1, 2),(1, 2, 1) and (2, 1, 1). Like Ladner-Fischer and Han-Carlson prefix

tree illustrated in the previous sections, Harris prefix tree has log2n + 1 logic levels. It

needs the same number of cells required for Han-Carlson and Sklansky prefix tree, which

is (n/2)log2n.

3.3.5 Algorithmic Analysis for Prefix Trees

Unfolding the algorithms mentioned, prefix trees can be built structurally either by HDL or

schematic entry. Table 3.4 summarizes the prefix trees’ parameters, including logic levels,

area estimation, fan-out and wire tracks.

55

i:k k-1:j

i:j

i:k k-1:j

i:j

Hi:kIk-1:j Hk-1:j

Hi:jIi:j

Ii:k Hi:kHk-1:j

Hi:j

Ii:k

Black cell Gray cell

Hi:i-1Ii:i-1

gi-1gi

Hi:i-1

Reduced
Black cell

Reduced
Gray cell

gi-1gipi-2pi-1

i:i-1i:i-1

i i-1i i-1,i-2

Figure 3.20: Cell Definition for Ling’s Parallel-Prefix Tree.

3.4 Parallel-Prefix Ling Structures

As mentioned in Chapter 2, similar to CLA’s, Ling adders have a faster critical path than

CLA’s, and parallel-prefix adders are based on the same idea as CLA’s. Ling’s scheme

can apply to parallel-prefix structure as well. To build a Ling parallel-prefix adder, starting

from pre-computation stage, carry-generate/propagate are repeated as follows.

gi = ai · bi pi = ai + bi, (3.19)

In the equation above, pi can no longer be mixed with XORing ai and bi.

In the parallel-prefix tree stage, unlike regular parallel-prefix adder, Ling adder has

its own group generate/propagate terms H and I . This requires a redefinition of cells to

build Ling type of parallel-prefix adders. Figure 3.20 shows the new cell definitions. The

relationship between H/I pair and G/P can be described in the following equations.

Hi:k = gi + Gi−1:k

Ii:k = Pi−1:k−1 (3.20)

With a bit span of one, the H/I can start from p/g, which will be the first logic level of the

56

1:-1

2:-1

2:14:36:5

6:3

d7 d6 d5 d4 d3 d2 d1 d0

-16 5 4 3 2 1 0

1:-15:3

Figure 3.21: 8-bit Sklansky Prefix Tree with Ling’s Scheme.

prefix tree.

Hi:i−1 = gi + gi−1

Ii:i−1 = pi−1 · pi−2 (3.21)

As for i = 0, i − 2 = −2 which is a non-existent bit, this corresponds to I0:−1. In the

real application, there is no such worry since I0:−1 is not used. In regular prefix tree, even

P0:−1 is not needed since at bit i = 0, there is always a gray cell, which means only G is

computed.

The terms H/I have the similar recurrence relation as G/P .

Hi:k = Hi:j + Ii:j · Hj−1:k

Ii:k = Ii:j · Ij−1:k (3.22)

These equations are essentially the same as those for regular parallel-prefix structure, which

means that same cells can be used to implement the equations. In actuality, starting from

logic level 2, the prefix tree with Ling’s scheme has no physical difference than the regular

prefix tree. The difference is merely logical, i.e. Ling’s prefix tree produce pseudo-carry

Hi:−1 or di+1, while regular prefix tree produce real carry Gi:−1 or ci+1.

Ling’s scheme also makes the final post-computation stage unique. To compute the

57

sum, an equation presented earlier can be used

si = pi ⊕ Hi:−1 + gi · pi−1 · Hi−1:−1, (3.23)

which concludes the computation.

3.5 Prefix Tree with Carry-Save Notation

3.5.1 Carry-Save Notation

Carry-save notation utilizes the redundant notation to store the sum and carry-out. This

idea can be incorporated in the prefix tree. There are two steps required for this scheme:

use carry-save notation and then add the notation with carry lookahead equations.

Start from the first step with the carry-save formula.

si = ai ⊕ bi = ti

ci = ai · bi = gi (3.24)

Figure 3.22 shows a n-bit example how to align the ti and gi. Here temporary sum ti is

set apart from carry-propagate pi. The carry-in bit is illustrated as the following equation

indicates.

g−1 = cin. (3.25)

Using a carry-save notation, the sum and carry can be expressed into a prefix structure.

The temporary sum t′i’s are obtained by XOR gates as normal binary add operation does.

t′0 = t0 ⊕ g−1

t′1 = t1 ⊕ g0

...

t′n−1 = tn−1 ⊕ gn−2 (3.26)

Using the carry lookahead Equation (2.5) to compute c′i+1, i = 0, 1, ..., n − 1.

c′i+1 = g′
i + p′i · c

′
i (3.27)

58

an-1

+

Sum

an-2 a1 a0

bn-1 bn-2 b1 b0

tn-1 tn-2 t1 t0

gn-1 gn-2 gn-3 g0 g-1

0

Carry

cn' cn-1' cn-2' c1'

tn-1' tn-2' t1' t0'

sn-1 sn-2 s1 s0cout

0

0+

Figure 3.22: n-bit Binary Adder with Carry-Save Notation.

where

g′
i = ti · gi−1

p′i = ti + gi−1 (3.28)

The sum si is the result of XORing t′i and c′i, i.e.

si = t′i ⊕ c′i (3.29)

Finally, the carry-out can be derived as

cout = gn−1 ⊕ c′n (3.30)

or, in another expression,

cout = gn−1 + tn−1 · cn−1. (3.31)

This equation differs drastically from previous carry-out equations, however, it can easily

be proven using simple definitions. The following proof documents this relationship.

Proof

cout = gn−1 ⊕ c′n

= gn−1 ⊕ (tn−1 · cn−1)

= gn−1 · tn−1 · cn−1 + gn−1 · (tn−1 · cn−1) (3.32)

59

When gn−1 = 0

cout = tn−1 · cn−1. (3.33)

This result is the same as Equation (3.31) indicates when gn−1 = 0. If gn−1 = 1,

cout = tn−1 · cn−1. (3.34)

When gn−1 = 1, tn−1 has to be 0 because of the relation in Equation (3.37). Thus

cout = 0 = 1, (3.35)

which agrees with Equation (3.31) when gn−1 = 1. Hence the expression in Equation

(3.30) computes exactly the same outcome as Equation (3.31).

3.5.2 Carry-Save Notation and Application to Prefix Tree

By looking at Figure 3.22, the carry-save notation, i.e. sum and carry can be directly input

to a prefix tree. Figure 3.23 shows a 16-bit Sklansky prefix tree adapted to carry-save

notation without considering the MSB carry output.

From Figure 3.23, the structure is observed to be a shifted right 1-bit version compared

to Figure 3.15. The outputs are c′is and the logic for MSB in Figure 3.15 can be saved.

However, this is at the cost of extra carry-save logic and most importantly, the number of

logic levels stays the same. Plus, the assumption is to ignore the MSB carry output. If the

carry output is to be considered, either the same structure as Figure 3.15 or some extra logic

out of the prefix tree is required. In summary, the saving of directly applying the carry-save

notation to a prefix structure is not general. In fact, carry-save notation is not targeting at

reducing the logic of those prefix trees with minimum logic levels.

Further observation needs to be made so that the carry-save notation can help in a

general sense. In Figure 3.22, there is no carry input at bit 0 as cin = g−1, which is aligned

60

1:0

3:0

3:25:47:6

7:4

9:811:10

11:8

13:12

13:8

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2:014:12

14:8 12:8

6:4

c2'c6' c4' c1'c3'c5'c7'c8'c9'c10'c11'c12'c13'c14'c15'

Figure 3.23: 16-bit Sklanksy Prefix Tree with Carry-Save Notation.

with t0, i.e. c′0 = g−2 = 0. Use Equation (2.5)

c′1 = g′
0 + p′0 · c

′
0

= t0 · g−1 + (t0 + g−1) · 0

= t0 · g−1 (3.36)

The important element here is that

ti · gi = 0, (3.37)

since (ai · bi + ai · bi) · (ai · bi) = 0. This will be applied to the following computation.

Proceed to c′2

c′2 = g′
1 + p′1 · c

′
1

= t1 · g0 + (t1 + g0) · (t0 · g−1)

= t1 · g0 + t1 · t0 · g−1 (3.38)

The normal carry c1 can be computed as c1 = g0 + t0 · g−1, c′2 can be written in terms of c1.

c′2 = t1 · c1 (3.39)

61

Similarly,

c′3 = g′
2 + p′2 · c

′
2

= t2 · g1 + (t2 + g1) · (t1 · g0 + t1 · t0 · g−1)

= t2 · g1 + t2 · t1 · g0 + t2 · t1 · t0 · g−1

= t2 · c2 (3.40)

where c2 = g1 + t1 · g0 + t1 · t0 · g−1. By simply expanding the equation, c′n−1 and c′n can

be computed as

c′n−1 = tn−2 · cn−2

c′n = tn−1 · cn−1 (3.41)

This can be generalized as

c′i = ti−1 · ci−1 (3.42)

The fastest parallel-prefix tree computes the carry using dlog2ne levels of logic assum-

ing n-bit addition and 2-input gates only. For example, a 16-bit addition take 4 logical

levels to obtain the carry in the most significant bit by using the parallel-prefix structure

such as Sklansky, Kogge-Stone or Knowles [2, 1, 1, 1]. One more observation can be made

that from bit 7 to bit 15, logic level is increased to 4. That is, the increasing point of logic

level are at bit i and i = 2j − 2, where j = 1, 2, ..., dlog2ne − 1.

As Equation (3.42) indicates, c′i can take advantage when the previous carry ci−1 is

available. Assuming a 16-bit addition, computing the carry at bit 15 takes the most logic

levels (i.e. 4). On the other hand, using a carry-save notation will not help reduce the logic

levels anywhere below 4, since the carry at bit 14 take 4 logic levels, as well.

A simple application of Equation (3.42) cannot help reduce logic levels except for the

2m + 1 bit additions (m is an integer) where the number of bits is at the boundary of logic

level increase. For example, a 9-bit addition normally using Sklansky parallel-prefix struc-

ture takes dlog29e = 4 logic levels or gray/black cells as shown on the left of Figure 3.25.

62

123 0567 4 -1Bit

010 0000 0 1gi

010 1001 0ai

110 0110 0bi

+

100 1111 0ti

111 1000 0ci

101 0111 0ti'

110 0000 0ci'

cin 1

0

0

Example: 85 (hex) + 66 (hex) + 1 = EC (hex)

Figure 3.24: 8-bit Example of Carry-Save Add.

Using carry-save notation takes 3 logic levels plus 1 AND gate, saving 1 OR gate compared

to normal addition. This is shown on the right part of Figure 3.25. c′8 will need its counter-

part t′8 and this will be discussed more soon. Therefore, the carry-save notation must utilize

Equation (3.42) inter-digitally to achieve a more balanced prefix structure.

3.5.3 Adding Binary Carry-Save Numbers

This section illustrates the validity of using a prefix adder that utilizes carry-save notation.

The most important equation derived from the previous section is Equation (3.42). The

normal carry-lookahead equation can be changed to the following form.

ci = gi−1 + ti−1 · ci−1

= gi−1 + c′i (3.43)

This means that computing ci takes one more OR operation than computing c′i. This can

be exploited to optimize the critical path from input to sum. As proven in the previous

section, the saving here doesn’t apply to the path from input to carry-out since the carry-

save notation takes the same effort as normal carry-lookahead adder does. To get the correct

63

0:-1

2:-1

2:14:36:5

5:36:3

c7 c6 c5 c4 c3 c2 c1 c0c8

-17 6 5 4 3 2 1 0

0:-1

2:-1

2:14:36:5

5:36:3

c7 c6 c5 c4 c3 c2 c1 c0c8'

-17 6 5 4 3 2 1 0

Figure 3.25: 9-bit Sklansky Parallel-Prefix Adder Comparison.

sum with c′i, t′i is required.

t′i = ti ⊕ gi−1 (3.44)

Then final sum can be derived as Equation (3.29).

The XOR operation to get t′i indicates an extra gate to compute the right sum. However,

it can be inserted into pre-computation stage, which is not in the critical path. Next section

will discuss more about this.

An 8-bit carry-save add example is shown in Figure 3.24. In the figure, two numbers

A = a7, a6, ..., a0 and B = b7, b6, ...b0 are added with carry cin. ti’s and gi’s are obtained

using Equation (2.4). In this case, g−1 = 1 since g−1 = cin. ci’s are derived with simple

observation regarding to A, B and cin. c′i’s and ti’s are computed with Equation (3.42) and

Equation (3.44) respectively. It is easy to verify that bitwise XORing ti’s with ci’s has the

same result as bitwise XORing t′i’s with c′i’s. They both end up with binary string 11101100

which is EC in hex.

3.5.4 Incorporating Parallel-Prefix Structure with Carry-save Notation

Simple carry-save notation will not help the prefix tree as described earlier. However, carry-

save notation can help optimize the prefix tree with a combination of carries of ci and c′i.

This is applicable to the prefix trees with reduced wire tracks or fan-out at the cost of more

logic levels. Such type of prefix trees include Brent-Kung, Han-Carlson, Ladner-Fischer or

64

0:-1

2:-1

2:14:36:5

6:3

6:-1 4:-1

8:7

8:5

8:1

10:9

10:7

10:3

c7 c6' c5 c4' c3 c2' c1 c0

12:11

12:9

12:5

14:13

14:11

c15 c14' c13 c12' c11 c10' c9 c8'

-114 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4:1

14:7

Figure 3.26: 16-bit Han-Carlson Parallel-Prefix Structure with Carry-Save Notation.

Table 3.5: Comparison of selected parallel-prefix structures

Type Logic Levels Max Fan-out Wire Tracks

Brent-Kung 2log2n − 1 2 1

Sklansky log2n n/2 + 1 1

Han-Carlson log2n + 1 2 n/4

Modified Han-Carlson log2n + 0.5 2 n/4

Ladner-Fischer log2n + 1 n/4 + 1 1

Modified Ladner-Fischer log2n + 0.5 n/4 + 1 1

Harris’s structures. The idea is to have inter-digitated ci and c′i so that Equation (3.42) can

be utilized. In this way, not every bit needs to be in carry-save notation. In the positions

where c′i’s are generated, t′i’s are required for the sum. In the rest positions, gi/ti can still

function as in normal prefix trees. It will be illustrated that the difference happens at the

final logic level. Figure 3.17 shows that a 16-bit Han-Carlson prefix tree takes 5 levels of

logic. The final logic level is to reduce dense gates in those fast prefix trees which take 4

logic levels as mentioned.

The carry-save notation can be applied to Han-Carlson prefix tree as follows. Instead of

having a last row of gray cells, a row of AND gates are placed in that logic level to produce

c′i’s instead of ci’s, and thus, saving one OR logic. As the neighboring ci is available,

65

s1

b4a4

t4g4

s2

b5

t5g5

a5

s3

b6a6

t6g6

s4

b7

t7g7

a7 cin

g-1

Pre-
computation

Prefix Tree

Post-
computation

c0c1c2'c3

cout

b1a1

t1g1

b2

t2g2

a2b3a3

t3g3

b0a0

t0g0

t2'

c4'c5c6'c7

s0s5s6s7

t4't6'

Figure 3.27: 8-bit Parallel-Prefix Adder with Carry-Save Notation.

the next c′i+1 can be computed immediately by using Equation (3.42). The modified Han-

Carlson structure is illustrated in Figure 3.26. Only the even bits except bit 0 have carry

c′i, i = 2, 4, ..., 14. These carries will be XORed with t′i’s to get the right sum bits.

For odd bits and bit 0, the sum is calculated as follows.

si = ti · ci (3.45)

For even bits except bit 0, an alternative is used to compute the sum.

si = t′i ⊕ c′i

= ti ⊕ gi−1 ⊕ c′i (3.46)

To adopt the relation above, the pre-computation will have extra XOR gates. But these

gates will not incur extra logic delay since in the critical path, c′i is expected to arrive later

than t′i, especially when bits go near MSB. Figure 3.27 shows an 8-bit example of parallel-

prefix adder incorporating with carry-save notation.

As the final sum is either bit XORing ti/ci pair or XORing t′i/c
′
i and these pairs never

interfere with each other, the sum computed with interdigitated ci and c′i will be always

correct. Table 3.5 summarizes selected parallel-prefix trees qualitatively in terms of logic

levels, fan-out and wire tracks.

66

3.6 Summary

The algorithmic construction of parallel-prefix adders are described in detail in this chapter.

Simple algorithms and examples are given to build the understanding of parallel-prefix

structures. Based on prefix trees, Ling’s algorithm has been applied. In the end, a prefix

architecture embedded with carry-save notation is proposed.

67

CHAPTER 4

Modulo 2n ± 1 Adders

Modular arithmetics find applications in a wide range of areas since the operations are the

basis in Residue Number Systems (RNS) [17]. Modulo addition/subtraction and multi-

plication are applied to digital filters [18] in digital signal processing, cryptography [19],

error detection and correction [20], as well as checksum computation in high-speed net-

works [21].

4.1 Modulo 2n − 1 Adders

Modulo 2n−1 addition is one of the most common operations that has been put to hardware

implementations because of its circuit efficiency [26]. There are several ways of doing

modulo 2n − 1 addition. The basic idea is to add the carry-out to the sum as in the fashion

of end-around add. The most straight-forward scheme takes two steps, add and increment,

which results in more delay but less complex circuit. Carry-select adder can be used for

this type of implementation. An alternative way of doing modulo addition is to utilize the

carry-lookahead equations and use carry-generates/propagates signals recursively to get the

final result in just one step. In this method, modified parallel-prefix structure is employed

to achieve the fastest architecture.

Many techniques can help modulo addition [7] [1] [47] [48]. This section reviews

the publications about modulo 2n − 1 adders and proposes improvement over the current

work in publication. The scheme employed here is based on Ling’s equations [8] and the

methods are extended to modulo 2n − 1 addition with parallel-prefix structure. The end-

around adder structure is also implemented with NAND adders. For less distraction, only

68

double representation of zero modulo 2n − 1 addition is discussed.

4.1.1 Background

Modulo Operation

Modular arithmetic is to get the remainder of M dividing by A, or to a reduce number A to

subtract the modulus M until A < M . The operation can be written as

A mod M,

or briefed as

|A|M

. Modulo adders simply perform addition followed by the modulo operation.

S = |A + B|M . (4.1)

Modular arithmetic has the property that

S = |A + B|M = |A|M + |B|M . (4.2)

For the modulo 2n − 1,

S = |A + B|(2n−1). (4.3)

Or

S = A + B + cout. (4.4)

The equation above can be implemented in hardware by using a end-around adder as men-

tioned in Figure 4.1.

Review of Binary Addition Basics

The binary addition is the base of modulo addition. Brief review and the key equations

are repeated for modulo addition. The major difference at the inputs between binary and

69

Incrementer

Binary
Adder

an-1 bn-1 a0 b0

S

S

cout cin=0

Figure 4.1: General Block Diagram Modulo 2n − 1 Adder.

modulo adders is that modulo adders generally do not have carry-in. For binary addition,

various techniques can be utilized as mentioned in Chapter 2. The binary add operation

with carry-in is to obtain a carry and sum. For a single bit addition, sum and carry can be

computed as follows.

s = a ⊕ b ⊕ cin

cout = a · b + b · cin + a · cin (4.5)

For an n-bit addition, S = A+B+cin, where A = {an−1, an−2, ...a0}, B = {bn−1, bn−2, ...b0}.

Remember that the relationship between carry and carry generate/propagate is as Equation

(4.6) indicates.

gk = ak · bk

pk = ak + bk

ck+1 = gk + pk · ck (4.6)

Group version of carry generate/propagate and their relation with carry is expressed in

Equation (2.71).

Modulo adders can be built using any type of adders. The most efficient ways em-

ploy the generate/propagate terms. The cells defined in Figure 4.2 are utilized for modulo

70

i:k k-1:j

i:j

i:k k-1:j

i:j

Gi:kPk-1:j Gk-1:j

Gi:jPi:j

Pi:k Gi:kGk-1:j

Gi:j

Pi:k

Black cell Gray cell

i i

i

ai bi

pigi

White cell

Figure 4.2: Cell Definitions.

adders. The white cell is to compute gi and pi.

Implementing Modulo 2n − 1 Adders

As mentioned before, the most straight-forward adders (i.e. end-around adders take two

steps). In the first step, the sum and carry-out are obtained by adding the inputs with no

carry-in. In the second step, the sum is incremented with carry-out. This is a simple way

of doing modulo 2n − 1 addition. This type of adders can be improved with a smart

incrementer.

Parallel-prefix structures can be utilized for modulo 2n − 1 adders as well. There are

two categories of architectures present in publication. One is called the full parallel-prefix

structure [22] and the other is called the reduced parallel-prefix structure [35]. The follow-

ing presentation on modulo 2n−1 adders starts with parallel-prefix structure and ends with

end-around adders.

4.1.2 Full Parallel-Prefix Structure

The first idea to combine the two steps of modulo addition to a single step is proposed

in [22]. This is done by inserting the carry-out in the first step into the carry equation to

generate a real carry at bit 0. Then traverse rest of the bits. The required cells are defined

in Figure 4.2. The white cells are for pre-computation.

71

1:0

2:73:0

3:25:47:6

6:37:4

6:5 4:3 2:1 0:7

5:2 4:1 1:6 0:5

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

c7 c6 c5 c4 c3 c2 c1 c0

Figure 4.3: Modulo 2n − 1 Adder with the Full Parallel-Prefix Structure.

1:0

2:73:0

3:25:47:6

6:37:4

6:5 4:3 2:1 0:7

5:2 4:1 1:6 0:5

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

c7 c6 c5 c4 c3 c2 c1 c0

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1

6:37:4 5:2 4:1

3:25:47:6 6:5 4:3 2:1

Figure 4.4: Another Way to Look at Modulo 2n − 1 Adder with the Full Parallel-Prefix Structure.

72

In the first step, c0 = 0, therefore,

cout = cn−1

= gn−1 + pn−1 · gn−2 + ... + pn−1 · pn−2...p1 · g0. (4.7)

In the second round, c0 = cout, Equation (4.6) is used in the following pattern.

c1 = g0 + p0 · c0

= g0 + p0 · gn−1 + p0 · pn−1 · gn−2 + ...

+p0 · pn−1...p1 · g0 (4.8)

The first and the last terms in the equation above can be combined to one term, i.e. g0 +

p0 · pn−1...p1 · g0 = g0. Thus,

c1 = g0 + p0 · gn−1 + p0 · pn−1 · gn−2 + ...

+p0 · pn−1 · pn−2...p2 · g1

= g|n+0|n
+ p|n−1+1|n

· g|n−2+1|n
+ ...

+p|n−1+1|n · p|n−2+1|n...p|1+1|n · g|0+1|n (4.9)

The subscripts for p and g start from the current bit, then go around to the next right bit,

and so forth. If the current bit is already LSB, subscripts go to MSB until all the subscripts

are traversed. The subscripts indicate the end-around add for the modulo adder. From the

previous expression, c1 can be rewritten as in the following equation.

c1 = g|n+0|n +

n−2
∑

j=0

(

n−1
∏

k=j+1

p|k+1|n) · g|j+1|n (4.10)

The rest carries can be written as

c2 = g|n+1|n +

n−2
∑

j=0

(

n−1
∏

k=j+1

p|k+2|n) · g|j+2|n

...

cn−1 = g|n+n−2|n +
n−2
∑

j=0

(
n−1
∏

k=j+1

p|k+n−1|n) · g|j+n−1|n (4.11)

73

In general, the carries are expressed as follows

ci+1 = g|n+i|n +

n−2
∑

j=0

(

n−1
∏

k=j+1

p|k+i+1|n) · g|j+i+1|n (4.12)

where 0 ≤ i ≤ n − 2.

As the equations indicate above, the modulo 2n − 1 addition can be completed in a

single step. This idea was originally applied to Carry-Lookahead Adder (CLA). It is easy

to adapt the idea to fast parallel-prefix structures since they share the same equations [23].

For example, a 4-bit modulo 2n−1 adder utilizes the following group generates/propagates

to get the cout.

cout = c4

= G3:2 + P3:2 · G1:0. (4.13)

Then c1 is computed as

c1 = g0 + p0 · c4

= g0 + p0 · G3:2 + p0 · P3:2 · G1:0

= g0 + p0 · g3 + p3 · p0 · g2 + p3 · p2 · p0 · g1

= G0:3 + P0:3 · G2:1 (4.14)

where G0:3 = g0 + p0 · g3, P0:3 = p0 · p3. This indicates the exact idea of an end-around

addition. Similarly, c2 and c3 can be derived as

c2 = G1:0 + P1:0 · G3:2 (4.15)

c3 = G2:1 + P2:1 · G0:3. (4.16)

An 8-bit full parallel-prefix structure is shown in Figure 4.3. The structure has more

black cells and wires when compared to regular parallel-prefix structures. A Sklansky [12]

Parallel-Prefix Tree is shown in Figure 2.13.

Figure 4.4 shows another way of looking at 8-bit modulo 2n − 1 addition. With du-

plicated white cells, the wires now are always feeding forward while in Figure 4.3, some

74

wires are going backward. According to Figure 4.4, computation of each carry requires all

of the input bits. For example, c0 takes all the bits a0 b0, a7 b7, ...a1 b1. In the triangle, the

cells used to generate c1 are marked with an ’x’ in them and wires are highlighted with bold

lines.

4.1.3 Reduced Parallel-Prefix Structure

The full parallel-prefix structure computes modulo addition with a small number of stages.

However, it has the disadvantages of dense gates and congestive wire tracks. It is important

to understand that even though there are many different parallel-prefix algorithms, not every

architecture can utilize the algorithm presented above.

Zimmermann [35] presented the idea of being capable of utilizing any type of parallel-

prefix tree, by slightly changing the prefix tree and adding one logic level at the bottom of

the tree. Figure 4.5 illustrates the block diagram for prefix tree stage. An 8-bit modified

Sklansky prefix tree is shown as an example in Figure 4.6, which can be inserted into the

box of Figure 4.5. Using a parallel-prefix tree, a new carry block c′i (0 < i < n) can be

derived. Then, cout can be inserted backward as c0 to complete the carry computation.

ci+1 = Gi:0 + Pi:0 · cout (4.17)

The final row of gray cells in Figure 4.5 implements the equation above.

The modified prefix tree can be viewed as one-bit right shifted (towards LSB) version

of regular prefix tree since there is no carry input. The general objective here is to reduce

the density of gates and wires with the flexibility of choosing any type of desired prefix

tree. The cost is one extra level of logic and large fan-out at this level.

4.1.4 Parallel-Prefix Ling Structures for Modulo 2n − 1 Adders

The original end-around addition was proposed for performing modulo 2n − 1 adders. A

carry-select incrementer (CSEI) [27] can be such a solution, where a conventional adder is

75

cout

cn-1 c2 c1 c0cn-2

Modified Parallel-Prefix Tree

gn-1

pn-1

gn-2

pn-2

gn-3

pn-3

g0

p0

g1

p1

cn-1' cn-2' c2' c1'

Figure 4.5: Modulo 2n − 1 Adder with the Reduced Parallel-Prefix Structure.

1:0

3:0

3:25:47:6

7:4

c7' c6' c5' c4' c3' c2' c1'cout

7 6 5 4 3 2 1 0

2:06:4

Figure 4.6: The Reduced Sklansky Parallel-Prefix Tree.

76

1:0

3:0

3:25:47:6

7:4

d7' d6' d5' d4' d3' d2' d1'dout

7 6 5 4 3 2 1 0

2:06:4

Figure 4.7: 8-bit Sklansky with Ling’s Scheme for Modulo 2n − 1 Adders.

followed by an incrementer implemented by a tree of AND gates and a set of multiplexors.

Taking the effort of two steps, the resulted implementation is slower, and consumes more

area and power than parallel-prefix structures.

To build a parallel-prefix Ling modulo 2n − 1 adder, starting from pre-computation

stage, carry-generate/propagate are required as indicated in Equation (4.6). In the parallel-

prefix tree stage, unlike regular parallel-prefix adder, Ling adders have their own group

generate/propagate terms H and I . This requires a redefinition of cells to build parallel-

prefix Ling adders. Figure 3.20 shows the new cell definitions. Starting from a bit span

of one, the equations in Chapter 3 are modified slightly to indicate the difference where

carry-in is absent for modulo adders.

Hi+1:i = gi+1 + gi

Ii+1:i = pi · pi−1 (4.18)

At this level, the reduced cells in Figure 3.20 are used. Similar to binary prefix trees, for

i = 0, i − 1 = −1 which is a non-existent bit, which corresponds to a not used term I1:0.

An example is shown in Figure 4.7, where an 8-bit Sklansky prefix tree with Ling’s scheme

is illustrated. The tilted lines in the first logic level indicate the Ling’s implementation of

Equation 4.18.

The recurrence terms H/I have been discussed as (Equation 3.22) in Chapter 3. The

77

only difference is that there is no carry for modulo adders, therefore, Ling’s prefix tree

produces pseudo-carry Hi:0 or di+1.

Like the regular reduced parallel-prefix structure, Ling’s scheme also requires an extra

logic level to turn d′
i to di. In regular parallel-prefix structure, cout needs to be inserted as

c0, as Equation (4.17) does. The operation required for Ling’s structure is to get cout from

pseudo-carry dout.

cout = pn−1 · d
′
n,

= pn−1 · dout. (4.19)

The parallel-prefix tree stage is shown in Figure 4.8 where dout is ANDed with pn−1 to

generate cout and this term is inserted as d0 at LSB. The last logic level computes the

pseudo-carry at each bit using the following equation.

di+1 = Hi:0 + Ii:0 · d0 (4.20)

If both sides of Equation (4.20) are ANDed with pi, the equation will become exactly the

same as Equation (4.17).

Ling’s scheme also makes the final post-computation stage unique by computing the

sum as

si = pi ⊕ di+1 + gi · pi−1 · di. (4.21)

In the case of i = 0, s0 = p0 ⊕ d1 + g0 · d0. Equation (4.21) is an alternative representation

of Equation (3.42) in terms of computing the sum as it has been proven in Chapter 2.

4.1.5 Carry-Select Incrementer

General Implementation

Parallel-prefix structure is fast, but end-around add is still the simplest way of doing modulo

2n − 1 addition. This method offers an alternative to compute the add instead of using the

78

dout

dn-1 d2 d1 d0dn-2

Modified Ling’s Parallel-Prefix Tree

gn-1

pn-1

gn-2

pn-2

gn-3

pn-3

g0

p0

g1

p1

dn-1' dn-2' d2' d1'

Figure 4.8: Modulo 2n − 1 Adder with the Reduced Parallel-Prefix Ling Structure.

congestive full parallel-prefix structure. A carry-select incrementer (CSEI) can be a good

candidate for such implementation [27].

Since the carry-out can either be 1 or 0, CSEI can be employed to choose the S or

S + 1 using multiplexors (MUX). An incrementer is supposed to increment the input by

1, i.e. S = A + 1. In the modulo addition, it is required such that S = A + cout, where

A = {an−1, an−2, ...a1, a0}. Since cout only has the LSB that is either 1 or 0, the following

relationship can be utilized.

For 0 ≤ i ≤ n − 1,

gi = ai · bi = 0

pi = ai + bi = ai

ci+1 = gi + pi · ci = ai · ai−1 · ...a0 · cout (4.22)

The critical path of the incrementer logic is the path to generate the most significant bit

of carry for the MUX to choose the modulo sum, cn−1 = an−2 · an−3 · ...a0 · cout. This

can be implemented with dlogm(n − 1)e logic levels if only m-input AND gates are used.

For example, assuming only 2-input AND gates are available, a 32-bit incrementer requires

dlog2(31)e = 5 levels of logic.

Besides carry, the inputs to the MUX are simply the first stage sum bit S ′ and its com-

79

Adder

0 10 10 10 10 10 10 10 1

c7 c6

S7

c5 c4 c3 c2 c1 cout

S7 S6 S5 S4 S3 S2 S1 S0

cout

S6 S5 S4 S3 S2 S1 S0

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0 cin=0

Figure 4.9: 8-bit Carry-Select Modulo 2n − 1 Adder.

plement. An 8-bit example of this type of modulo 2n − 1 adders is shown in Figure 4.9.

The adder at the top of the figure can be of any type, including the parallel-prefix trees.

The increment logic is in the rounded rectangle and its structure is similar to parallel-prefix

trees. There is no large fan-out from the cout as can be observed from the figure.

Carry-Select Incrementer with NAND Adder

Ling’s equations not only can help to improve parallel-prefix tree, they can also enhance

ripple-carry adders. This type of adders are also called NAND or NOR adders [39]. In

CMOS logic, NAND gates are usually faster than NOR gates while NOR adders are more

suitable for domino-logic. Here only NAND adders are introduced for modulo 2n − 1

addition since the circuit will be implemented with CMOS standard-cell library, where in

CMOS circuits, NAND gates are usually faster then NOR gates because of less slow PMOS

in series.

Recall from Chapter 2 that the NAND equations are

di+1 = p̂i · p̂i−1 · ei

ei+1 = pi · pi−1 · di (4.23)

80

NAND
Adder

S7

S7 S6 S5 S4 S3 S2 S1 S0

cout

S6 S5 S4 S3 S2 S1 S0

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0 cin=0

Incrementer

Figure 4.10: CSEI with NAND Adder.

or

di+1 = p̂i:i−1 · ei

ei+1 = pi:i−1 · di (4.24)

The modulo adder is constructed as the end-around add, i.e. normal addition followed

by an incrementer. Grad has proven that this type of adders are much faster than traditional

ripple-carry adders [40] due to the reduction form AOI gates to NAND gates. An 8-bit

example of modulo 2n − 1 adder using this type of scheme is shown in Figure 4.10.

4.1.6 Summary

For modulo 2n − 1 adders with prefix tree implementation, since every carry-out bit takes

the full effort of the all logic levels, it makes sense to have higher fan-out, i.e. radix greater

than 2, to compute the carries. Higher fan-out structure can utilize Naffziger’s [49] method,

which is an improved fan-out of 4 adder based on Ling’s idea.

Radix 2 results, which can be compared with binary parallel-prefix adders, will be pre-

sented in Chapter 5. Various implementations with prefix trees, including the full and the

reduced parallel-prefix trees, and carry-select incrementer with NAND Adders are com-

pared in the following chapter.

81

4.2 Modulo 2n + 1 Adders

4.2.1 Background

Modulo 2n + 1 adders are very similar to modulo 2n − 1 adders. As mentioned in the

previous chapter, modulo 2n + 1 add can be expressed as follows.

S = |A + B|2n+1. (4.25)

The diminished-one system is used here where a number A is represented as A′ = A−1

and the value 0 is not used. This type of addition has the following relationships.

A + B = S

(A′ + 1) + (B′ + 1) = S ′ + 1

A′ + B′ + 1 = S ′ (4.26)

Modulo 2n + 1 addition is formulated as

|A′ + B′ + 1|2n+1 =

A′ + B′ + 1 − (2n + 1) if A′ + B′ + 1 ≥ 2n + 1

A′ + B′ + 1 otherwise
(4.27)

Equation (4.27) can be reduced to the following expression, which is easy to implement in

digital logic.

|A′ + B′ + 1|2n+1 =

|A′ + B′|2n if A′ + B′ ≥ 2n

A′ + B′ + 1 otherwise
(4.28)

This can be written in the expression similar to modulo 2n − 1 adders.

S ′ = A′ + B′ + cout. (4.29)

That is, when A′+B′ < 2n, the sum of A′+B′ is incremented. Otherwise, the sum remains

as it is. The equation above can be adapted to compute modulo 2n + 1 add in hardware by

using a end-around adder as illustrated in Figure 4.11.

82

Incrementer

Binary
Adder

an-1 bn-1 a0 b0

S

S

cout cin=0

Figure 4.11: General Block Diagram Modulo 2n + 1 Adder.

It can be observed that in Figure 4.11 the only difference between modulo 2n + 1 adder

and modulo 2n − 1 adder is the inverter that takes cout as input. In this end-around adder,

cout needs to be inverted before going to the incrementer.

The ways of building a modulo 2n + 1 can also be divided into three categories. One

utilizes the reduced parallel prefix tree with an extra logic level at the bottom [35]. A

second method uses the similar idea as the full parallel prefix tree. The third one is the

end-around adder with any type of adder followed by an incrementer.

4.2.2 Reduced Parallel-Prefix Structure

To compute modulo 2n+1 add, parallel-prefix structure has to be modified for the operation.

There is no easy way of doing modulo 2n + 1 add with a full parallel-prefix structure as

that for modulo 2n − 1 add. One efficient way of doing this type of add is to employ the

structures of Zimmermann, i.e. having an extra level at the end of a prefix tree to compute

the exact carry for each bit. Then the carries go ahead for the final sum computation.

The carries in the modulo 2n + 1 adder can be generalized as

ci =

Gn−1:0 if i = 0

Gi−1:0 + Pi−1:0 · Gn−1:0 1 ≤ i ≤ n − 1
(4.30)

83

For example, an 8-bit modulo 2n + 1 adder computes carries as the following equations

indicate.

c8 = G7:0. (4.31)

The c0 through c7 will base on c8 or c8.

c0 = G7:0 = c8

c1 = g0 + p0 · G7:0

c2 = G1:0 + P1:0 · G7:0

c3 = G2:0 + P2:0 · G7:0

c4 = G3:0 + P3:0 · G7:0

c5 = G4:0 + P4:0 · G7:0

c6 = G5:0 + P5:0 · G7:0

c7 = G6:0 + P6:0 · G7:0 (4.32)

The general form is simply expressed as

ci+1 = Gi:0 + Pi:0 · cout. (4.33)

There is no bit −1 since no carry-in is required. Figure 4.12 shows the block diagram

of Zimmermann’s idea of diminished-one modulo 2n +1 adder. The number of logic levels

needed for this type of modulo 2n + 1 adder is log2(n) + 1 assuming the radix is 2.

Similar to modulo 2n−1 adder, there is no congested wires or dense gates compared to a

full parallel prefix version. Any type of parallel-prefix tree can be used. The modification is

the same as it is required for modulo 2n − 1 adders. The cost is the extra level of gray cells.

However, such effort is not very obvious since a full parallel-prefix tree implementation is

far more complex than that of modulo 2n − 1 adders.

84

cout

cn-1 c2 c1 c0cn-2

Modified Parallel-Prefix Tree

gn-1

pn-1

gn-2

pn-2

gn-3

pn-3

g0

p0

g1

p1

cn-1' cn-2' c2' c1'

Figure 4.12: Modulo 2n + 1 Adder with the Reduced Parallel-Prefix Structure.

4.2.3 Parallel-Prefix Ling Structures for Modulo 2n + 1 Adders

Ling’s scheme can be applied to modulo 2n + 1 adders in the similar way as the reduced

parallel-prefix structures for modulo 2n − 1 adders. The idea is applicable for full parallel-

prefix structure for modulo 2n + 1 adders [50]. However, due to the complexity of the full

parallel-prefix structure, the benefit tend to diminish when Ling’s equations are utilized,

especially for wide adders (i.e. 64-bit or larger). As there is an inverted carry-in for modulo

2n + 1 adders, the same logic will be there in Ling’s reduced prefix tree, i.e.

di+1 = Hi:0 + Ii:0 · d0 (4.34)

Figure 4.13 shows the block diagram. A quick observation can be made that the only

difference between this prefix tree and the one for modulo 2n − 1 adders is that the inverter

at the lower left, where carry-out is generated.

4.2.4 Full Parallel-Prefix Structure

Diminished-one modulo 2n + 1 adder can be implemented with the least logic levels (i.e.

log2(n) levels). The scheme was proposed by Vergos [51] et al. The idea is to modify

85

dout

dn-1 d2 d1 d0dn-2

Modified Ling’s Parallel-Prefix Tree

gn-1

pn-1

gn-2

pn-2

gn-3

pn-3

g0

p0

g1

p1

dn-1' dn-2' d2' d1'

Figure 4.13: Modulo 2n + 1 Adder with the Reduced Parallel-Prefix Ling Structure.

the Equation (4.30) utilizing the properties of group carry-generate/propagate in order to

eliminate the extra logic level.

To ease the explanation of the scheme, the symbol ” ◦ ” mentioned in Chapter 3 is

addressed, where the symbol is used with (G, P) pairs.

(Gi:k, Pi:k) = (Gi:j, Pi:j) ◦ (Gj−1:k, Pj−1:k). (4.35)

Or Gi:j and Pi:j can be expressed separately as follows.

Gi:k = (gi, pi) ◦ (gi−1, pi−1) ◦ ... ◦ (gk, pk)

Pi:k = pi · pi−1 · ... · pk (4.36)

To simplify Equation (4.30), two theorems have to be applied.

Theorem 1. ci = Gi−1:0 + Pi−1:0 · Gn−1:i, for 1 ≤ i ≤ n − 1.

Proof. From (4.30)

ci = Gi−1:0 + Pi−1:0 · Gn−1:0

= Gi−1:0 + Pi−1:0 · Gn−1:i + Pn−1:i · Gi−1:0

= Gi−1:0 + Pi−1:0 · Gn−1:i · (Pn−1:i + Gi−1:0)

= Gi−1:0 + Pi−1:0 · Gn−1:i · Pn−1:i + Pi:0 · Gn−1:i · Gi−1:0 (4.37)

86

ai bi

(gi, pi) (gi, pi)

(Gi:j, Pi:j) (Gk:l, Pk:l)

(Gi:j, Pi:j) o (Gk:l, Pk:l) (Gi:j, Pi:j) o (Gk:l, Pk:l)

(Gi:j, Pi:j) (Gk:l, Pk:l)

(Gi:j, Pi:j) o (Gk:l, Pk:l)

Figure 4.14: Additional Cell Definitions.

If Gi−1:0 = 1, ci = 1;

If Gi−1:0 = 0,

ci = Pi−1:0 · Gn−1:i · Pn−1:i + Pi:0 · Gn−1:i · 1

= Pi−1:0 · Gn−1:i (4.38)

Considering both of the above cases of Gi−1:0, the following relationship can be estab-

lished.

ci = Gi−1:0 + Pi−1:0 · Gn−1:i. (4.39)

According to Theorem 1 and using the ◦ operation, an 8-bit diminished-one modulo

2n + 1 add in (4.32) becomes

c0 = (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (g0, p0)

c1 = (g0, p0) ◦ (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1)

c2 = (g1, p1) ◦ (g0, p0) ◦ (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (g2, p2)

c3 = (g2, p2) ◦ (g1, p1) ◦ (g0, p0) ◦ (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3)

c4 = (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (g0, p0) ◦ (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4)

c5 = (g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (g0, p0) ◦ (g7, p7) ◦ (g6, p6) ◦ (g5, p5)

c6 = (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (g0, p0) ◦ (g7, p7) ◦ (g6, p6)

c7 = (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (g0, p0) ◦ (g7, p7)

(4.40)

87

Equation (4.40) cannot be implemented with the minimum logic levels (i.e. log2(8) = 3

logic levels). For example, in computing c1, it takes at least 3 (dlog2(7)e) logic levels to

compute (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1). To do another

◦ operation with (g0, p0), one more level has to be included. Computing c2 has the same

problem. Only c4 has no such problem because both the non-inverting and inverting logic

have 4 terms which can be computed within 2 logic levels and c4 can be derived with one

more level.

To illustrate the full parallel structure for modulo 2n + 1, group version of ĝ and p̂

defined in Equation (2.53), Ĝ and P̂ are introduced. Similar to Equation (4.36), there is

relationship as the following equations illustrate.

Ĝi:j = (ĝi, p̂i) ◦ (ĝi−1, p̂i−1) ◦ ... ◦ (ĝj, p̂j)

P̂i:k = p̂i · p̂i−1 · ... · p̂j (4.41)

Another theorem needs to be applied in order to compute modulo 2n + 1 addition with the

minimum logic levels.

Theorem 2. (Gi:j, Pi:j) ◦ (Gk:l, Pk:l) = (Ĝi:j, P̂i:j) ◦ (Gk:l, Pk:l).

Proof.

On the left side of the equation, the following relationship can be observed.

(Gi:j, Pi:j) ◦ (Gk:l, Pk:l) = Gi:j + Pi:j · Gk:l (4.42)

On the right of the equation, the expression can be deduced as follows.

(Ĝi:j, P̂i:j) ◦ (Gk:l, Pk:l) = Ĝi:j + P̂i:j · Gk:l

= Ĝi:j · (P̂i:j + Gk:l) (4.43)

88

Since

Ĝi:j = ĝi + p̂i · (ĝi−1 + ... + p̂j+2 · (ĝj+1 + p̂j+1 · ĝj)...)

= pi + gi · (pi−1 + ... + gj+2 · (pj+1 + gj+1 · pj)...)

= pi · (gi + pi−1 · (gi−1 + ... · (gj+2 + pj+1 · (gj+1 + pj))...)

= gi + pi · gi−1 + Pi:i−1 · gi−2 + ... + Pi:j+2 · gj+1 + Pi:j

= Gi:j+1 + Pi:j (4.44)

and

P̂i:j = gi · gi−1 · ... · gj+1 · gj

= gi + gi−1 + ... + gj+1 + gj (4.45)

The right side of Equation (4.43) can now be expanded as

Ĝi:j · (P̂i:j + Gk:l) = (Gi:j+1 + Pi:j) · (P̂i:j + Gk:l)

= Gi:j+1 · P̂i:j + Pi:j · P̂i:j + Gi:j+1 · Gk:l + Pi:j · Gk:l (4.46)

And, simplifying the first term of Equation (4.46) using the property that gk + gk ·X = gk,

X can be any term or multiple terms.

Gi:j+1 · P̂i:j = (gi + pi · gi−1 + ... + Pi:j+2 · gi+1) · (gi + gi−1 + ... + gj)

= gi + pi · gi−1 + ... + Pi:j+2 · gi+1 + (gi + pi · gi−1 + ... + Pi:j+2 · gi+1) · gj

= gi + pi · gi−1 + Pi:i−1 · gi−1... + Pi:j+2 · gi+1

= Gi:j+1 (4.47)

Inserting the result above, right side of Equation (4.46) becomes

= Gi:j+1 + Pi:j · P̂i:j + Pi:j · Gk:l

= gi+pi ·gi−1+...+Pi:j+2·gi+1 + Pi:j ·(gi+gi−1+...+gj)+Pi:j ·Gk:l (4.48)

89

Some of the terms in the equation above can be absorbed.

gi + Pi:j · gi = gi

pi · gi + Pi:j · gi−1 = pi · gi−1 · (1 + Pi−1:j) = pi · gi−1

Pi:i−1 · gi−2 + Pi:j · gi−2 = Pi:i−1 · gi−2 · (1 + Pi−2:j) = pi · gi−1

...

Pi:j+2 · gj+1 + Pi:j · gj+1 = Pi:j+2 · gi+1 · (1 + Pj+1:j) = Pi:j+2 · gj+1 (4.49)

Equation (4.46) is reduced as

= gi + pi · gi−1 + ... + Pi:j+2 · gi+1 + Pi:j · gj + Pi:j · Gk:l

= Gi:j + Pi:j · Gk:l (4.50)

By applying Theorem 2, Equation (4.32) for the 8-bit example can be transformed as

c0 = (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (g0, p0)

c1 = (p0, g0) ◦ (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1)

c2 = (p1, g1) ◦ (p0, g0) ◦ (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (g2, p2)

c3 = (p2, g2) ◦ (p1, g1) ◦ (p0, g0) ◦ (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3)

c4 = (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (g0, p0) ◦ (g7, p7) ◦ (g6, p6) ◦ (g5, p5) ◦ (g4, p4)

c5 = (g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (p0, g0) ◦ (g7, p7) ◦ (g6, p6) ◦ (g5, p5)

c6 = (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (p1, g1) ◦ (p0, g0) ◦ (g7, p7) ◦ (g6, p6)

c7 = (g6, p6) ◦ (g5, p5) ◦ (g4, p4) ◦ (g3, p3) ◦ (p2, g2) ◦ (p1, g1) ◦ (p0, g0) ◦ (g7, p7)

(4.51)

Using the Equation (4.51), the 8-bit modulo 2n + 1 adder can be constructed with the full

parallel-prefix structure as shown in Figure 4.15.

As Figure 4.15 shows, the adder has the minimum logic levels of log28 = 3. The

structure is more complicated than its modulo 2n−1 counterpart. Each bit follows Equation

90

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

c7 c6 c5 c4 c3 c2 c1 c0

Figure 4.15: Modulo 2n + 1 Adder with the Full Parallel-Prefix Structure.

(4.51). Take c1 for example, in level 1, the top-right black cell unites (p0, g0) and (g7, p7).

In level 2, the black cell unites the result from above and (g6, p6) ◦ (g5, p5). In level 3, the

gray cell unites the previous result with (g4, p4)◦(g3, p3)◦(g2, p2)◦(g1, p1) and then inverts

the output. This is exactly the same c1 as described in Equation (4.51).

4.2.5 Carry-Select Incrementer

Modulo 2n + 1 adder can be implemented using end-around add as described in a similar

fashion of modulo 2n − 1 adder. As Equation (4.29) indicates, the end-around add for

modulo 2n + 1 adder only needs an inverter at the cout of the first adder. Figure 4.16 shows

an 8-bit example of modulo 2n + 1 adder implemented with a Carry-Select Incrementer.

Compared to modulo 2n − 1 adder, the bold inverter near top-right is the only extra logic

that is required for the Carry-Select Incrementer.

4.3 Combination of Binary and Modulo 2n ± 1 Adder

Reviewing binary and modulo 2n±1 adder architectures, it can be found that the prefix tree

can be applied to all these adders. Modulo adders are an extension of binary adders. The

91

Adder

0 10 10 10 10 10 10 10 1

c7 c6

S7

c5 c4 c3 c2 c1 cout

S7 S6 S5 S4 S3 S2 S1 S0

cout

S6 S5 S4 S3 S2 S1 S0

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0 cin=0

Figure 4.16: 8-bit Carry-Select Modulo 2n + 1 Adder.

reduced parallel-prefix structure applies to both modulo 2n−1 and 2n +1 adders, however,

with the only difference of one inverter, as shown in Figure 4.5 and 4.12. If the input of the

last gray cell row in Figure 4.5 comes from the cin instead of cout, the structure functions

exactly as a binary adder does. Controlling the carry input to the last gray cell row with a

multiplexor can accommodate the functions of binary and modulo 2n ± 1 add. Figure 4.17

shows the prefix tree part of such adders.

In Figure 4.17, gi/pi comes from the pre-computation stage. The selections 0, 1 and

2 in the multiplexor are for modulo 2n + 1, modulo 2n − 1 and binary addition, respec-

tively. Utilizing Equation (4.4) and (4.29) and the general equation for binary addition, the

combined-function adder can be formulized as the following equation shows.

S =

A+B+cout modulo 2n + 1 add

A+B+cout modulo 2n − 1 add

A+B+cin binary add

(4.52)

Inserting this structure between pre- and post-computation, the adder architecture is com-

plete. The modified parallel-prefix tree does not handle the carry-input. This is the only

difference between this special prefix tree and that solely for binary adder. The carry input

92

cn-1 c2 c1 c0cn-2

Modified Parallel-Prefix Tree

gn-1

pn-1

gn-2

pn-2

gn-3

pn-3

g0

p0

g1

p1
cin

sel
0 1 2

cn-1' cn-2' c2' c1'
cout

Figure 4.17: Combined Binary and Modulo 2n ± 1 Adders.

is handled at the last row of gray cells. This agrees with the associativity of the synthe-

sis rule. The prefix tree can be modified from any type of normal binary prefix tree, e.g.

Brent-Kung.

To expedite the carry-chain, Ling’s scheme can be employed. The architecture men-

tioned above can be easily modified using Ling’s equation as shown in Figure 4.18, which

is similar to Figure 4.17. For modulo addition, the carry input is from the carry output as

described previously. The difference is that the pseudo carries replace the regular carries at

the output of the rectangle box and the final row of gray cells. The AND gate at the left is to

compute the carry-out, which performs exactly the same function as previously discussed

modulo 2n − 1 adder with Ling’s scheme. The For binary add operation, cin can be the

input as the pseudo-carry to the last row of gray cells as well. By referencing Equation

(2.43) and (3.21), the of following relationship can be established.

d0 = H−1 = g−1 = cin (4.53)

This corresponds to the 2nd selection of the multiplexor.

93

Modified Ling’s Parallel-Prefix Tree

gn-1

pn-1

gn-2

pn-2

gn-3

pn-3

g0

p0

g1

p1
cin

sel
0 1 2

dn-1 d2 d1 d0dn-2

dn-1' dn-2' d2' d1'

Figure 4.18: Combined Binary and Modulo 2n ± 1 Adders using Ling’s Scheme.

4.4 Summary

This chapter reviews the previous works done for modulo 2n ± 1 adders. The imple-

mentation choice can be divided into three categories: the full parallel-prefix structures,

the reduced parallel-prefix structures and carry-select incrementers. Based on the reduced

parallel-prefix structures, which is a compromise between the fast full parallel-prefix struc-

tures and slow carry-select incrementers, Ling’s algorithm is applied to these structures.

The objective is to speed up the carry chain without loosing the structure regularity. Fi-

nally, a combined architecture for traditional binary and modulo 2n ± 1 adders is proposed.

This new architecture is extended from the reduced parallel-prefix structures with a multi-

plexor controlling the carry input.

94

CHAPTER 5

Results of Parallel-Prefix Structures and Comparisons

To see how the architecture impacts the circuit, quantitative data extracted from placed

and routed circuits are desired, however, the implementation of parallel-prefix adders and

modulo 2n±1 adders with state-of-the-art technology is limited in publications. To address

this problem, the implementation methodology shown in Figure 5.1 is employed. First,

binary and modulo 2n ± 1 addition are all formalized with Boolean equations. Modulo 2n

addition is the same as binary addition except that the carry-in/out are not required. After

the formalization, multiple structures of the adders, especially the parallel-prefix structures

are built as described in Chapter 3. Then the architectures are built with HDL and put

through standard-cell based design flow to collect the data.

The methodology adopted is to quantify the algorithmic implementation. Several adder

architectures were created and analyzed using a commercial-based VLSI design flow. To

see the impact of the technology, this work includes TSMC 180nm, Cadence GSCL 90nm

and a 45nm design kit called FreePDK [52]. FreePDK is an open source, variation aware

Process Design Kit (PDK), based on Scalable CMOS (SCMOS) design rules, which is pro-

vided by North Carolina State University. With these kits, universities are able to perform

System-on-Chip (SoC) implementations and statistical circuit analysis through commercial

front-end and back-end tools, without violating the intellectual property (IP) controls. As

the PDK is free, it can be modified and redistributed. In this way, research can be promoted

to close the gap between industry and education facilities.

All designs start with Verilog HDL models, which are automatically generated with Perl

scripts. The Perl scripts implement the algorithms of building the parallel-prefix structures,

95

with the extension to Ling’s structure, modulo 2n ± 1 adders, and the combined adder.

The adders to be compared have the size of 8, 16, 32, 64 and 128-bit. The HDL models

are verified using testbench written in Verilog and put to synthesis with Synopsys Design

Compiler, and placed and routed with Cadence Design Systems SoC Encounter. The pa-

rameters to be observed are Delay, Area, Power, Leakage Power, Energy and EDP (Energy

Delay Product). Delay is derived from the placed and routed layout. Area is estimated by

calculating the total area of all the gates composing the adder with Synopsys tool. Power

numbers were generated from a 100, 000-vector VCD file and analyzed back through SoC

Encounter. Energy is the product of power and delay. EDP [42] is the product of energy

and delay, which is a good metric when design is targeting at low power without much

compromise in delay.

5.1 Binary Parallel-Prefix Adders

A total of seven different types of parallel-prefix adders, along with their Ling versions

and those architectures that can be embedded with carry-save notation are implemented.

The selection includes the architectures proposed by Brent-Kung, Sklansky, Kogge-Stone,

Han-Carlson, Knowles [1,1,1,1], Ladner-Fischer and Harris. Carry-save notation can be

only applied to Brent-Kung, Han-Carlson, Ladner-Fischer and Harris prefix trees. Hence,

there are 4 types of carry-save parallel-prefix adders being implemented. Figure 5.2, 5.3

and 5.4 show the results of the implementations. In the figures, the adder types are briefed

as BK, Sk, KS, HC, Kn, LF and Ha, respectively. Ling’s versions will have a prefix of

Ln− and carry-save version with a prefix CS−.

For 180nm technology, Ling’s scheme can generally help to reduce the delay compared

to the regular parallel-prefix structure. Carry-save notation demonstrates some savings in

delays over regular structures and Ling’s scheme has about the same delays. Ling’s imple-

mentation has the largest area as it can be seen in Figure 5.2. Ling’s scheme also consumes

more power and has more leakage power than regular and carry-save implementations. In

96

Formalize
Prefix for

Binary Addition

Formalize
for

Modulo 2n-1
Addition

Formalize
for

Modulo 2n+1
Addition

Build Structures
for Binary and
Modulo 2n±1

Adders

Generate HDL
Description

Synthesis

Data Analysis
Delay, Area, Power

Place &
Route

Figure 5.1: Methodology of This Work.

97

terms of EDP, Ling’s version is no better than the regular and carry-save versions. Regular

parallel-prefix structure has almost the same EDP as that with carry-save notation.

For 90nm technology, again, Ling’s scheme helps with delay. Carry-save notation

shows little better delay than Ling’s version. Similar to 180nm technology, Ling’s im-

plementation takes more area, showing more power consumption and leakage power. The

best EDP rests in either regular or carry-save parallel-prefix structure.

For 45nm technology, carry-save notation embedded architecture shows apparently less

delay than regular implementation while Ling’s scheme demonstrates even better numbers

in delay. Unlike the cases for 180nm and 90nm technology, Ling’s scheme is not the most

area intensive. Ling’s parallel-prefix structure consumes less power and has less leakage.

In the category of EDP, Ling’s scheme is better than both regular and carry-save parallel-

prefix structure.

5.2 Modulo 2n − 1 Adders with Prefix Implementation

The results for modulo 2n − 1 adders include the reduced parallel-prefix structure and the

full parallel-prefix structure. The end-around type of adders are implemented and data

are retrieved. However, they are much slower than parallel-prefix structures with large

area and power consumption and hence, the results are not included in the comparison.

The reduced parallel-prefix structure include Brent-Kung, Sklansky, Kogge-Stone, Han-

Carlson, Knowles [1,1,1,1], Ladner-Fischer and Harris, which are briefed as BK, Sk, KS,

HC, Kn, LF and Ha, respectively in Figure 5.5, 5.6, 5.7. The Ling’s version has a prefix

of Ln−. The full parallel-prefix structure is briefed as FP .

For 180nm technology, the full parallel-prefix adders have the best delay in almost

cases. Ling’s scheme helps to reduce delay in most adders. The full parallel-prefix adders

have larger area and consumes more power in general. The reduced parallel-prefix Ling

adders take more area and consume more power than the regular parallel-prefix adders.

The best EDP is in the reduced parallel-prefix adders, e.g. the 64-bit Han-Carlson prefix

98

Figure 5.2: TSMC 180nm Technology for Parallel Prefix Adders.

99

Figure 5.3: Cadence GSCL 90nm Technology for Parallel Prefix Adders.

100

Figure 5.4: FreePDK 45nm Technology for Parallel Prefix Adders.

101

adder.

For 90nm technology, the full parallel-prefix adders have the best delay. Ling’s scheme

again helps the regular structure to reduce delay. The cost of the full and Ling parallel-

prefix adders is the area, power consumption and leakage. The reduced parallel-prefix

adders, like Brent-Kung’s structures, have the best EDP in general.

For 45nm technology, interestingly, Ling’s scheme has better delay than the full parallel-

prefix adders. Generally, Ling and the full parallel-prefix adders have larger area. Ling’s

version tends to have less power consumption than non-Ling’s applications. As it can be

observed in EDP category, Brent-Kung reduced parallel-prefix Ling adders are the best.

5.3 Modulo 2n + 1 Adders with Prefix Implementation

The results for modulo 2n + 1 adders are presented in the same fashion as modulo 2n −

1 adders. The implementations include Brent-Kung (BK), Sklansky (Sk), Kogge-Stone

(KS), Han-Carlson (HC), Knowles [1,1,1,1] (Kn), Ladner-Fischer (LF), Harris (Ha),

the Ling’s reduced parallel-prefix adders (with a prefix Ln−), and the full parallel-prefix

structure (FP). Figure 5.8, 5.9 and 5.10 illustrate the results.

The results are similar to those for modulo 2n + 1 adders. For 180nm technology, the

full parallel-prefix adders have the best delay. The reduced parallel-prefix Ling adders are

among the second best. In terms of area, power and leakage, the regular reduced parallel-

prefix adders are better than their Ling versions and the full parallel-prefix adders. The

number of EDP indicate that Ling’s scheme is no better than regular prefix structures.

For 90nm technology, the best delay is at the full parallel-prefix adders in general.

Ling’s scheme does not help to improve delay in as many cases as it does for modulo

2n − 1 adders. The full parallel-prefix adders take the most area, consume most power and

have the greatest leakage. The reduced parallel-prefix Ling adders are ranked the second

and the regular reduced parallel-prefix adders, the third. As a result, the regular reduced

parallel-prefix adders have the best EDP than the other two types of adders.

102

Figure 5.5: TSMC 180nm Technology for Modulo 2n − 1 Adders.

103

Figure 5.6: Cadence GSCL 90nm Technology for Modulo 2n − 1 Adders.

104

Figure 5.7: FreePDK 45nm Technology for Modulo 2n − 1 Adders.

105

For 45nm technology, Ling’s reduced parallel-prefix adders show their advantages in

delay. Ling’s scheme also helps to reduce area, power consumption, even in some cases,

leakage. The full parallel-prefix adders are no long the fastest. Ling’s reduced parallel-

prefix adders wind up with better EDP than the full and the regular reduced parallel-prefix

adders.

5.4 A Combination of Modulo 2n ± 1 and Binary Adders with Prefix

Implementation

The combination of modulo 2n ± 1 and binary adder is implemented using the reduced

parallel-prefix structure, which can be easily applied to modulo 2n ± 1 and binary adders.

The selected structures are modified version of Brent-Kung (BK), Sklansky (Sk), Kogge-

Stone (KS), Han-Carlson (HC), Knowles [1,1,1,1] (Kn), Ladner-Fischer (LF), Harris

(Ha) along with their Ling’s counterparts. Figure 5.11, 5.12 and 5.13 show the results.

For 180nm technology, Ling’s scheme shows the advantage in delay. However, the

regular structures are more area and power efficient, e.g. Brent-Kung’s structure. The best

EDP occurs at the regular reduced parallel-prefix structure as can be observed from the

figure.

For 90nm technology, Ling’s scheme does not help much in terms of delay. As for area

and power, the regular structures show the similar advantage as those for 180nm technol-

ogy. The regular structures are better in EDP than Ling’s structures.

For 45nm technology, the improvement in delay of Ling’s scheme is obvious, e.g.

Knowles parallel-prefix Ling adder has superior savings in delay. Ling’s structures some-

times consume more area but in most cases, less power. The EDP category also demon-

strates the benefit of using Ling’s approach.

106

Figure 5.8: TSMC 180nm Technology for Modulo 2n + 1 Adders.

107

Figure 5.9: Cadence GSCL 90nm Technology for Modulo 2n + 1 Adders.

108

Figure 5.10: FreePDK 45nm Technology for Modulo 2n + 1 Adders.

109

Figure 5.11: TSMC 180nm Technology for Modulo 2n ± 1 and Binary Prefix Adders.

110

Figure 5.12: Cadence GSCL 90nm Technology for Modulo 2n ± 1 and Binary Prefix Adders.

111

Figure 5.13: FreePDK 45nm Technology for Modulo 2n ± 1 and Binary Prefix Adders.

112

5.5 Summary

The results indicate that there is no best adder architecture for all technology. For a certain

technology, the choice of architecture is important for performance.

Ling’s scheme can generally help to improve critical path so it usually demonstrates

better delay. Carry-save notation is another potential way of improving the parallel-prefix

adders. For 180nm and 90nm technologies, carry-save notation offers better EDP. For

45nm, Ling’s scheme is the best at EDP.

For modulo 2n − 1 adders, the full parallel-prefix structures offer the best delay except

the cases under 45nm technology. The full parallel-prefix structures are more area inten-

sive and consume more power compared to the reduced parallel-prefix structures. Ling’s

scheme is the second best in terms of delay. For 45nm, Ling’s scheme has the best EDP.

The full parallel-prefix structures are not always the fastest for modulo 2n + 1 adders,

especially the cases under 90nm and 45nm technologies. The full parallel-prefix structures

for modulo 2n +1 require many more gates and congestive wires than the reduced parallel-

prefix structures, which leads to their inefficiency in performance for wide adders. Ling’s

algorithm can help to reduce delay. Furthermore, Ling’s scheme has the best EDP under

45nm technology.

As for the combined-function adder, the results agree with those from modulo 2n ± 1

adders, i.e. Ling’s scheme is helpful as can be observed from the numbers in delay. For

180nm and 90nm technologies, Ling’s structure consumes more area, power and has larger

EDP than regular structures. For 45nm technology, Ling’s structures consumes the least

power and have the best EDP.

113

CHAPTER 6

Conclusion

Parallel-prefix structures have been a hot topic because of their regular structure and log-

arithmic delay. However, few of the publications mentioned the construction of prefix

structures and implementations with the state-of-the-art technology, i.e. technology in the

nanometer range. Hence, there is still a lack of view how different parallel-prefix adders

will behave in modern technology. The description on how parallel-prefix structures can

contribute to modulo adders is also limited.

6.1 Dissertation Summary

This work starts with a review of basic adder architectures. Linear adders and non-linear

adders are discussed with algorithmically analysis. The trade-offs between delay and area

is presented. After that, parallel-prefix structures along with some other adder schemes are

introduced, which offers a broad insight in how to build an adder.

After the review, the details of building the parallel-prefix structures for binary or 2n

adders are illustrated. To understand the properties of the architectures and their vari-

ants, design heuristics and simplified pseudo code for constructing the adders are provided.

Ling’s scheme is applied to parallel-prefix structure to see the potential improvement. Com-

bining with carry-save notation, a new parallel-prefix structure is proposed. The parallel-

prefix structure embedded with carry-save notation is a more balanced structure consider-

ing the trade-off factors for parallel-prefix adders. The theory is that the more balanced the

structure is, the adder is more likely to have better overall performance.

For modulo 2n ± 1 adders, the implementation of parallel-prefix structures can be cate-

114

gorized into the full parallel-prefix and the reduced parallel-prefix type of adders. The full

parallel-prefix adders are algorithmically faster while the reduced parallel-prefix adders are

less complicated. However, the reduced parallel-prefix adders have the flexibility to be

easily modified from the existing parallel-prefix architectures and Ling’s scheme can be

applied to help enhance the performance.

Finally, quantitative results are provided with 180nm, 90nm and 45nm standard-cell

libraries. All the parallel-prefix adders, along with their Ling versions and carry-save ver-

sions are implemented. Modulo 2n ± 1 adders in the full and the reduced parallel-prefix

structures are implemented. A combo adder, which is capable of handling with both binary

and modulo 2n ± 1 addition, is also implemented with parallel-prefix structure. Impor-

tant design parameters, including delay, area, power, energy and EDP are listed and com-

pared. The results suggest that no single type of architecture is the best for all technologies.

However, the results offer enough insights of which type of adders is the best for a given

technology. In general, the quantitative results agree with the qualitative analysis.

The selected results within FreePDK 45nm technology are summarized in Table 6.1, 6.2

and 6.3 to further clarify the comparison of binary, modulo 2n − 1 and modulo 2n + 1

parallel-prefix adders. The naming convention is the same as in Chapter 5, i.e. Brent-Kung,

Sklansky, Kogge-Stone, Han-Carlson, Knowles [1,1,1,1], Ladner-Fischer and Harris are

briefed as BK, Sk, KS, HC, Kn, LF and Ha, respectively. Ling’s versions will have a

prefix of Ln− and carry-save version with a prefix CS−. The best numbers are highlighted

in bold fonts.

For binary parallel-prefix adders, it is apparent that Ling’s scheme can help the carry-

chain problem in parallel-prefix structures. For example, Brent-Kung parallel-prefix Ling

structure has the best delay with a little more power consumption than minimum. For

modulo 2n ± 1 adders, the reduced parallel-prefix structures that have better delay than the

full parallel-prefix structures. Ling’s scheme always helps to reduce the power, up to over

50%, while the delay is not always better. However, the benefit is more obvious for Ling’s

115

Table 6.1: Results for 64-bit Parallel-Prefix Adders within FreePDK 45nm Technology
Types Area (um2) Delay (ns) Power (uw) EDP (fJ/GHz)

BK 5,246 1.344 10,163 18,357

Ln-BK 5,287 0.809 6,543 4,282

CS-BK 5,246 1.344 10,163 18,357

HC 6,243 1.339 11,141 19,974

Ln-HC 6,651 0.914 7,881 6,584

CS-HC 6,189 1.331 11,982 21,226

LF 4,355 1.513 7,945 18,187

Ln-LF 4,482 0.923 6,110 5,205

CS-BK 4,738 1.368 9,357 17,510

Ha 5,627 1.297 10,225 17,200

Ln-Ha 7,225 1.297 7,001 11,777

CS-Ha 5,994 1.385 10,496 20,133

KS 4,347 1.602 7,942 20,384

Ln-KS 5,952 0.900 6,708 5,433

Sk 7,497 1.391 13,594 26,302

Ln-Sk 7,373 0.985 8,578 8,322

Kn 7,575 1.933 11,263 42,084

Ln-Kn 7,646 1.036 7,699 8,263

structures when EDP is taken into consideration.

6.2 Future Directions

Parallel-prefix structure is attractive for adders because of its logarithmic delay. The influ-

ence of design trade-offs can be easily observed from adder designs. In this work, the radix

is fixed as 2. However, higher radix may be desirable in some applications as indicated

by [49]. With higher radix, the prefix tree will be more sparse, allowing savings in area

and power. With Doran’s formula [39], the hybrid ripple-carry and prefix adders may have

even better performance. Another direction can lead to the combination of Ling’s idea with

carry-save notation. Considering all the possibilities, there are still plenty to explore for

adder design.

Current adder design is getting more complex and adders are having wider applications

116

Table 6.2: Results for 64-bit Modulo 2n − 1 Parallel-Prefix Adders within FreePDK 45nm

Technology
Types Area (um2) Delay (ns) Power (uw) EDP (fJ/GHz)

BK 5,792 1.521 10,584 24,485

Ln-BK 4,943 1.251 5,907 9,244

KS 8,145 1.569 14,761 36,338

Ln-KS 9,155 1.916 7,189 26,393

Sk 6,145 1.567 10,803 26,526

Ln-Sk 5,960 1.436 6,226 12,839

Kn 8,845 1.934 14,070 52,626

Ln-Kn 7,971 1.503 8,088 18,272

HC 6,488 1.520 11,078 25,594

Ln-HC 5,701 1.532 5,613 13,175

LF 5,354 1.493 9,565 21,321

Ln-LF 4,815 1.376 5,426 10,274

Ha 6,488 1.408 11,343 22,487

Ln-Ha 5,370 1.380 5,754 10,958

FP 7,269 1.327 8,625 15,189

Table 6.3: Results for 64-bit Modulo 2n + 1 Parallel-Prefix Adders within FreePDK 45nm

Technology
Types Area (um2) Delay (ns) Power (uw) EDP (fJ/GHz)

BK 4,945 1.454 9,355 19,778

Ln-BK 5,618 1.516 5,663 13,016

KS 8,277 2.091 12,470 54,522

Ln-KS 8,627 2.399 5,696 32,784

Sk 5,943 1.246 11,518 17,881

Ln-Sk 5,469 1.458 5,979 12,709

Kn 8,507 1.663 13,792 38,142

Ln-Kn 8,214 1.676 7,603 21,358

HC 6,775 1.721 10,082 29,861

Ln-HC 6,053 1.342 6,407 11,539

LF 6,292 1.484 11,083 24,407

Ln-LF 5,612 1.262 6,826 10,872

Ha 6,116 1.491 10,225 22,731

Ln-Ha 7,010 2.393 4,822 27,615

FP 17,888 2.143 9,345 42,919

117

than ever before. Quantitative analysis using certain technology is required instead of sim-

ple gate model for performance analysis. Corner simulation is also desirable for compre-

hensive characterization of adder architectures. Custom design techniques can be employed

for implementing adders. However, this kind of task is usually more time-consuming.

Therefore, automated custom design flow may be worthwhile when design cost is justified.

6.3 In Summary

The goals of this work are to clarify the construction of parallel-prefix structures, with the

extension to modulo 2n±1 adders, and to study the mutual influence of modern technology

and algorithmic architectures. As presented in previous sections, the objectives have been

achieved.

118

BIBLIOGRAPHY

[1] D. Harris, “A taxonomy of parallel prefix networks,” in Record of the Thirty-Seventh

Asilomar Conference on Signals, Systems and Computers, Nov. 2003, pp. 2213–2217.

[2] D. Goldberg, “What every computer scientist should know about floating point arith-

metic,” ACM Computing surveys, vol. 23, no. 1, pp. 5–48, 1991.

[3] J. Chen and J. E. Stine, “Optimization of bipartite memory systems for multiplica-

tive divide and square root,” 48th IEEE International Midwest Symp. Circuits and

Systems, vol. 2, pp. 1458–1461, 2005.

[4] S. Winograd, “On the time required to perform addition,” J. ACM, vol. 12, no. 2, pp.

277–285, 1965.

[5] R. K. Richards, Arithmetic Operations in Digital Computers. D. Van Nostrand Co.,

Princeton, N.J., 1955.

[6] A. Weinberger and J. Smith, “A logic for high-speed addition,” National Bureau of

Standards, no. Circulation 591, pp. 3–12, 1958.

[7] A. Tyagi, “A reduced area scheme for carry-select adders,” IEEE Trans. Computers,

vol. 42, no. 10, pp. 1163–1170, Oct. 1993.

[8] H. Ling, “High speed binary adder,” IBM Journal of Research and Development,

vol. 25, no. 3, pp. 156–166, 1981.

[9] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE Trans. Com-

puters, vol. C-31, no. 3, pp. 260–264, Mar. 1982.

119

[10] P. Kogge and H. Stone, “A parallel algorithm for the efficient solution of a general

class of recurrence relations,” IEEE Trans. Computers, vol. C-22, no. 8, pp. 786–793,

Aug. 1973.

[11] S. Knowles, “A family of adders,” in Proc. 15th IEEE Symp. Comp. Arith., June 2001,

pp. 277–281.

[12] J. Sklansky, “Conditional-sum addition logic,” IRE Trans. Electronic Computers, vol.

EC-9, pp. 226–231, June 1960.

[13] R. Ladner and M. Fischer, “Parallel prefix Computation,” J. ACM, vol. 27, no. 4, pp.

831–838, Oct. 1980.

[14] T. Han and D. Carlson, “Fast area-efficient VLS Adders,” in Proc. 8th Symp. Comp.

Arith., Sept. 1987, pp. 49–56.

[15] A. Naini, D. Bearden, and W. Anderson, “A 4.5ns 96b CMOS adder design,” in Proc.

IEEE Custom Integrate Circuits Conference, vol. 38, no. 8, Apr. 1965, pp. 114–117.

[16] T. Kilburn, D. B. G. Edwards, and D. Aspinall, “Parallel addition in digital computers:

a new fast carry circuit,” in Proc. IEE, vol. 106, pt. B, Sept. 1959, p. 464.

[17] N. Szabo and R. Tanaka, Residue Arithmetic and Its Applications to Computer Tech-

nology. McGraw-Hill, 1967.

[18] W. K. Jenkins and B. J. Leon, “The use of residue number systems in the design

of finite impulse response digital filters,” IEEE Trans. Circuits and Systems, vol. 24,

no. 4, pp. 171–201, Apr. 1977.

[19] X. Lai and J. L. Massey, “A proposal for a new block encryption standard,” in Ad-

vances in Cryptology - EUROCRYPT’90, Berlin, Germany: Springer-Verlag, 1990,

pp. 389–404.

120

[20] S. S.-S. Yau and Y.-C. Liu, “Error correction in redundant residue number systems,”

IEEE Trans. Computers, vol. C-22, no. 1, pp. 5–11, Jan. 1973.

[21] F. Halsall, Data Communications, Computer Networks and Open Systems. Addison

Wesley, 1996.

[22] C. Efstathiou, D. Nikolos, , and J. Kalamatianos, “Area-time efficient modulo 2n − 1

adder design,” IEEE Trans. Circuits and System-II, vol. 41, no. 7, pp. 463–467, 1994.

[23] L. Kalamboukas, D. Nikolos, C. Efstathiou, H. T. Vergos, , and J. kalamatianos,

“High-speed parallel-prefix modulo 2n − 1 adders,” IEEE Trans. Computers, vol. 49,

no. 7, special issure on computer arithmetic, pp. 673–680, July 2000.

[24] C. Efstathiou, H. T. Vergos, and D. Nikolos, “Fast parallel-prefix modulo 2n + 1

adders,” IEEE Trans. Computers, vol. 53, no. 9, pp. 1211–1216, Sept. 2004.

[25] H. T. Vergos, C. Efstathiou, and D. Nikolos, “Modulo 2n ± 1 adder design using

select-prefix blocks,” IEEE Trans. Computers, vol. 52, no. 11, pp. 1399–1406, Nov.

2003.

[26] V. Paliouras and T. Stouraitis, “Novel high-radix residue number system multipliers

and adders,” in Proc. 1999 IEEE Int’l Symp. Circuits and Systems VLSI (ISCAS ’99),

1999, pp. 451–454.

[27] S. Bi, W. J. Gross, W. Wang, A. Al-khalili, and M. N. S. Swamy, “An area-reduced

scheme for modulo 2n − 1 addition/subtraction,” in Proc. 9th International Database

Engineering & Application Symp., 2005, pp. 396–399.

[28] R. Zimmermann, “Efficient VLSI implementation of modulo (2n ± 1) addition and

multiplication,” in Proc. 14th IEEE Symp. Computer Arithmetic, 1999, pp. p.158–167.

[29] J. Chen and J. E. Stine, “Enhancing parallel-prefix structures using carry-save nota-

tion,” 51st Midwest Symp. Circuits and Systems, pp. 354–357, 2008.

121

[30] G. E. Moore, “Cramming more components onto integrated circuits,” in Electronics,

May 1965, pp. 25.5.1–25.5.4.

[31] M. Lehman and N. Burla, “Skip techniques for high-speed carry propagation in binary

arithmetic units,” IRE Trans. Electron. Comput., pp. 691–698, Dec. 1961.

[32] O. J. Bedrij, “Carry-select adder,” IRE Trans. Electron. Comput., pp. 340–346, June

1962.

[33] J. Sklansky, “Conditional sum addition logic,” IRE Trans. Electron. Comput., pp. 226–

231, June 1960.

[34] V. G. Oklobdzija, B. Zeydel, H. Dao, S. Mathew, and R. Krishnamurthy, “Energy-

delay estimation technique for high-performance microprocessor VSLI adders,” Proc.

16th IEEE Symp. Computer Arithmetic (ARITH-16’03), p. 272, June 2003.

[35] R. Zimmermann, “Binary adder architectures for cell-based vlsi and their synthesis,”

Ph.D. dissertation, ETH Dissertation 12480, Swiss Federal Institute of Technology,

1997.

[36] R. Zimmermann and H. Kaeslin, “Cell-based multilevel carry-increment adders with

minimal AT- and PT-products.”

[37] S. Majerski, “On determination of optimal distributions of carry skips in adders,”

IEEE Trans. Electron. Comput., pp. 45–58, Feb. 1967.

[38] J. E. Stine, Digital Computer Arithmetic Datapath Design Using Verilog HDL.

Kluwer Academic, 2004.

[39] R. W. Doran, “Variants of an improved carry-look-ahead-sum adder,” IEEE Trans.

Computers, vol. 37, no. 9, pp. 1110–1113, 1988.

122

[40] J. Grad, “Analysis and implementation of binary addition in nanometer cmos technol-

ogy,” Ph.D. dissertation, Department of Electrical Engineering: Illinois Institute of

Technology, May 2006.

[41] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective.

Addison Wesley, 2004.

[42] D. Patil, O. Azizi, M. Horowitz, R. Ho, and R. Ananthraman, “Robust energy-efficient

adder topologies,” in 18th IEEE International Symposium on Computer Arithmetic,

June 2007, pp. 16–28.

[43] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A System Perspective.

Addison-Wesley, 1985.

[44] A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE

Trans. Electron. Comput., pp. 389–400, Sep. 1961.

[45] ——, “A study of redundant number representations for parallel digital computers,”

Ph.D. dissertation, University of Illinois, Urbana, Jan. 1960.

[46] I. Sutherland, B. Sproull, and D. Harris, Logic Effort: Designing Fast CMOS Circuits.

Morgan Kaufmann, 1999.

[47] P. M. Seidel and G. Even, “Delay-optimized implementation of IEEE floating-point

addition,” IEEE Trans. Computers, vol. 53, no. 2, pp. 97–113, Feb. 2004.

[48] N. Burgess, “Prenormalization rounding in IEEE floating-point operations using a

flagged prefix adder,” IEEE Trans. VLSI Systems, vol. 13, pp. 266–277, February

2005.

[49] S. Naffziger, “A subnanosecond 0.5µm 64b adder design,” in Proc. IEEE Int’l Solid-

State Circuits Conf., 1996, pp. 362–363.

123

[50] H. T. Vergos and C. Efstathiou, “Efficient modulo 2n + 1 adder architectures,” Inte-

gration VLSI J. (2008), p. doi:10.1016/j.vlsi.2008.04.004, 2008.

[51] H. T. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-one modulo 2n + 1 adder

design,” IEEE Trans. Computers, vol. 51, no. 12, pp. 1389–1399, 2002.

[52] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D. Fran-

zon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal, “FreePDK: An open-source

variation-aware design kit,” in Proc. IEEE International Microelectronic System Ed-

ucation, 2007, pp. 173–174.

124

VITA

Jun Chen

Candidate for the Degree of

Ph.D.

Dissertation: PARALLEL-PREFIX STRUCTURES FOR BINARY AND MODULO
{2n − 1, 2n, 2n + 1} ADDERS

Major Field: Electrical and Computer Engineering

Biographical:

Education: Completed the requirements for the Ph.D. degree with a major in Elec-
trical and Computer Engineering at Oklahoma State University in December,
2008.

Experience: Dr. Jun Chen received his Master’s Degree in Electrical and Computer
Engineering from Illinois Institute of Technology in 2004. He worked as a
Firmware Engineer from 2000 to 2002 in ALi (Shanghai) Corp., China. He
graduated from Shanghai Jiao Tong University with his Bachelor’s Degree in
2000.

Professional Memberships: IEEE Student Member

Name: Jun Chen Date of Degree: December, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: PARALLEL-PREFIX STRUCTURES FOR BINARY AND MODULO
{2n − 1, 2n, 2n + 1} ADDERS

Pages in Study: 124 Candidate for the Degree of Ph.D.

Major Field: Electrical and Computer Engineering

Adders are the among the most essential arithmetic units within digital systems. Parallel-
prefix structures are efficient for adders because of their regular topology and logarithmic
delay. However, building parallel-prefix adders are barely discussed in literature. This work
puts emphasis on how to build prefix trees and simple algorithms for building these archi-
tectures. One particular modification of adders is for use with modulo arithmetic. The most
common type of modulo adders are modulo 2n − 1 and modulo 2n + 1 adders because they
have a common base that is a power of 2. In order to improve their speed, parallel-prefix
structures can also be employed for modulo 2n ± 1 adders. This dissertation presents the
formation of several binary and modulo prefix architectures and their modifications using
Ling’s algorithm. For all binary and modulo adders, both algorithmic and quantitative anal-
ysis are provided to compare the performance of different architectures. Furthermore, to
see how process impact the design, three technologies, from deep submicron to nanometer
range, are utilized to collect the quantitative data .

ADVISOR’S APPROVAL:

