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CHAPTER I 

INTRODUCTION 

Models have been used for structural analysis for many decades. It 

is now more than forty years since useful accounts of model analysis of 

structures were first published. There were some isolated examples of 

the use of models even before that time, such as the investigation of 

stresses in dams by rubber models as long ago as 1908. 

Although model analysis has many advantages, it has never been 

granted the importance it deserves. Certainly there are some elements 

that hamper this method, and keep it from being popular in both practical 

calculation and classroom teaching. Possibly the main reason for the 

neglect of model methods is the fear of expense involved in obtaining the 

proper tools and apparatus for making and testing models. Also, the 

amount of time involved in achieving an acceptable technique is sometimes 

considered excessive. 

Most of the work done recently in indirect model testing has had 

satisfactory results. Still, this has not encouraged popular use of the 

model method, since it emphasizes accurate construction, mounting, and 

testing of the models with expensive and delicate tools and apparatus. 

As for direct model testing, most of the models have been built from the 

designs before the structures were erected to determine any unexpected 

destructive factors. There is no formulation derived for structural 

analysis by direct model method. 

1 



Great accuracy, which was always emphasized, was not neces·sary, 

especially when the· method was used for checking of the mathematical 

results, or for classroom teaching where the purpose of the·model was 

to link the student's mathematical concept of the structure with the 

visiblebehavior of the·model. 

2 

It was this idea that led the writer to try to find some type of 

model that can be built·without special tools, is easy for inexperienced 

persons to construct, and is simple to operate and measµre without ex­

pensive apparatus, yet which can obtain results close enough for practi­

cal use or for checking purposes, and to try to find some general simple 

form4las that would connect the ~elation of behavio~ of the model and 

its prototype for structural analysis, Also, the writer hopes that this 

kind of model would give observers a clear impression of the behavior 

of the·structure. 



CHAPTER II 

THEORY AND METH.OD 

In dealing with model structural analysis the first thing involved 

is model theory, or theory of similarity. Model theory is a theory deal­

ing with the relationship of two objects f or which , because of havi ng 

some particular relations between their dimensions and material proper­

ties, determining the behavior of either one under some condition, wil l 

predict the behavior of the other under the same condition. A thorough 

understanding of the theory must begin from the study of dimensional 

analysis. By this analysis, the complicated relationships among material 

properties and structural shape and behavior, like those of an airplane 

or a ship, can be found. Aa for an architectural structure, these re­

lationships are so simple that the application of this analysis is not 

necessary. In this chapter only a simple model theory, understandable 

with common structural knowledge, will be shown as an example. 

Model structural analysis generally is classified in two branches: 

(1) indirect model method, (2) direct model me thod. In the direct mode l 

method, the mode l is loaded by true weights, so tha t i ts deformations 

modi f i ed by t he scal e fac tors wi ll .become the deforma t i ons of i t s proto­

type. In the indirect method there is no loading similar to that of 

the prototype, and the deformations of t he model modi f ied by the scale 

fac tors will become t h e influence l i nes for certain stresses of the 

prototype. 

3 
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Indirect Model Method 

There are many ways to obtain the influence lines of a structure 

by analyses of its scale model which are·merely different experimental 

techniques of utilizing an idea based on the Muller·Breslau principle. 

The principle may be stated as follows: · "The ordinates of the influence 

line for any stress elements such as moment, shear,. or' axial force of any 

structure are proportional to those of the deflection curve·which is ob~ 

tained by removing the restraint corresponding to that element from the 

structure and introducing in its place a displacement in the primary 

structure". This principle· is limited to the structure constructed with 

p = 1 

1
• L/2 t L/2 

~1 
B E c 

L . Figure 1. Portal 

Frame Fixed at A and D 

H.a ~A 

~ 
Va 

D 

I' L ____ Ji. __ 

Figure 2. Apply Forces and 

L Moment at A After Restraint 

at A and Load at E 

A Being Removed 



materials that follow Hooke's Law. This principle can be explained by 

Maxwell's reciprocal theorem. 
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For instance, in the prototype structure as shown in Fig. I, in 

order to obtain the influence lines of the stresses at A, the load P and 

the restraint at A should be removed. A system of forces at A as shown 

in Fig. 2 is applied, which causes the displacements at A. The displace­

ments correspond to forces Ha', Va', and Ma' are Dh, Dv, and Dm, and the 

deflection at the middle point in P direction is De. According to Max­

well's reciprocal theorem: 

P x De+ Ha x Dh +Vax Dv +Max Dm 

= Ha' x O + Va' x O + Ma' x O 

where Ha, Va, and Ma are the shear, axial force, and moment of the struc­

ture at A under the load P, and zeroes in the equation mean A is fixed, 

The equation becomes: 

P x De= -(Ha x Dh +Vax Dv +Max Om), ....... (1) 

If Ha', Va', and Ma' are so arranged that the deformations Dv and 

Dm equal to O, Dh not equal to zero, and Pis a unit, then: 

P x De= -Ha x Dh 

Ha = -De/Dh .••••.•.. , ..•..•.•..• , (2) 

Similarly if Dh and Dv are equal to zero and Dm is not equal to 

zero,. then: 

Ma = ;..De/Dm, .•.••................ (3) 
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If Dh and Dm are equal to zero and Dv is not equal to zero, then: 

Va·=·-De/Dv .•....•.••••.•.•..•.•.•.• (4) 

If there has been more than one force acting on the structure, there 

would be as many De's representing the deformations in the direction of 

each force involved in the equation (2), (3), and (4). It becomes clear 

that the deformations of a restraint~removed structure divided by Dh, Dv, 

and Dm would be the influence lines of Ha, Va, and Ma, 

It is impractical and uneconomical to try to analyze a structure by 

applying deformations to the prototype .. Therefore, if the structure is 

to be analyzed by such a method, then a model must be used. 

If Fig. 1 is a prototype, and subscript pis used for clearness, 

then: 

~p = (L3p/Epip) x (Ha'pK' + Va'pK" +MI K'''/L) . . . . . • (A) a p p 

Dvp = (L3p/Epip) x (Ha 'pa' + V I a11 + Ma, pa' , ' /Lp) = 0 . . .(B) a p 

Drop -· (L2p/Epip) x (Ha' pS' + Va'pS" + Ma' pS'' '/Lp) = 0 . . . .(C) 

Dep =· (L3p/Epip) x (Ha 'pR' + v ' R" + M ' RI I ' /L ) a p a p p . . . . . .(D) 

If Fig. 1 is a model, and subscript m is used, then: 

Dhm = (L3m/Emim) x (Ha 'mK' +· Va'mK" + Ma 'mK'' '/Lm) . . . . . .(E) 

Dvm =· (L3m/Emim.) x (Ha 'ma' + Va 'ma" + Ma 'ma''' /Lm) = 0 . . . .(F) 

Dmm =· (L2m/E!l1Im) x (Ha 'mS' + Va 'mS" + Ma 'mS'' '/Lm) = 0 . . . .(G) 

Dem = (L3m/Emim) x (H I R I + v I R" am. am +MI R'''/L) , am ·m. . . . . . • (H) 
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From Equations A, B, C, D, E, F, G and H: 

therefore, from equation (2), (3), and (4): 

Hap = -Deml~m ••.••..•.••..••.••• • ..•• (5) 

Similarly: 

Map= (-De'm/Dmm) x (Lp/Lm) ••...•...•..••.... (6) 

Vap = -De"m/Dvm, ......... • .....•.••...• (7) 

Kand Rare constants; their values depend on the shape of the struc­

ture . . L, E, and I are length, elastic modulus, and moment of inertia of 

the cross-section of the prototype or its model. The length proportion 

and moment of inertia proportion of each part of the model must be the 

same as that of the prototype. From equation (5), (6), and (7), the scale 

factors of E and I will not be involved in the calculation; the ordinate 

of the influence line for shear and axial forces of the model are also 

ordinates of the influence lines of the corresponding forces of the proto­

type. The position of the forces in the model times the scale factor 

a(a • Lp/Lm) will be the position of corresponding forces in the proto­

type. The ordinate of the influence line of moment in the model times 

the scale factor a will be the ordinate of the influence line of moment 

in the prototype; loading position in the model times the scale factor 

a will be the corresponding position in the prototype. 

Equaticns(5), (6), and (7) show how to obtain influence lines of a 

structure by analyzing its model. 
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Direct Model Method 

< ·, 
Instead of solving simultaneous equations, model analysis can deter- ' 

mine the unknowns of the equations by measurement, and easier calculation. 

This can be demonstrated with a steel cantilever, dimensions as shown in 

Fig. 3, loaded by a concentrated load at its free end. 

By structural theory, the deflection at B will be 

Suppose that this o is to be found from the model; plexiglas model is 

built as shown in Fig. 4: 
Pp 

I Lp 

Figure 3, Steel Cantileve.r 

Figure 4. Model 

. (8) 

Pp= lOkip, Pm= O.OOlkip, LP= 100", Lro = 10", Ep = 3 x 106, 

6 Em - 0.3 x 10, hp 10", bm· = 1", hp = 15", bro - 0.3" 
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Therefore, if the·measured deflection oB' of the model were l" then 

by· Eq. (8) the deflection of the prototype would be 0.811 • It· is im-

practical to use a model to find out the deflection of a cantilever, as 

it can be calculated easily by a known formula. This example is simply 

meant to illustrat_e how the dimensional relation. of two structures would 

predict the relation of their beha·vior. If a portal frame is subjected 

to a concentrated load acting at Fas shown in Fig. 5, then from slope-

deflection equations: 
p 

aL bL 
MAB 

=_2EI ( SB - 3p) 
L ·' --

B EI c 

MBA 
2EI (2 SB - 3p) =--
L E E 

P(aLHbL/ 
I I 

MBC 
= 2EI (29B + ec) - L 

L L2 a+ b = 1 

·McB·. 2EI (26c + e) + P(aL)2(bL) A D =--
L b L2 

Men = 2EI (26c - 3P) Figure 5. A Simple 
L Portal Frame 

MDC 
= 2EI (6C - 3P) 

L 

EMB = 0 

46B + Sc - 3p = ab2PL2 . . . . . . . 0 . . . . . . . . . .(1) 
2EI 

EMc = 0 

SB + 4ec 3p 2 PL2 
.'(2) - = -a b2EI" . . . . . . . . . . . . . . . 

EH - 0 

eB + ec - 4P = o • . • . . • • • • • • • . . • . . • . • • ( 3) 
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Solve (1), (2) and (3) simultaneously: (P = -i-9) 

F' PL2 
EI 

PL.2 
F" 

EI 

3 
Fil' PL 

EI 

• • . . . . • . . . . . . • . • • • . • • • . ( 4) 

. . . . • . . . . . . . . . . . . . . . • . . ( 5) 

••• 0 • 0 0 0 0 " 0 " ••• 0 •••• " •• (6) 

F 1 , F11 and F rn are cons ta.nts, dependents on the shape and loading 

condition of the structure. 

If the structure shown in Fig. 5 were a model, a subscript mis 

used: 
2 

8bm = F' PmL m 
Em Im 

••• " 0 0 0 • 0 0 " •• " ,9 •••••• • (7) 

2 

8cm = F11 
PmL·m 

Em Im 
0 •• 0 0 " • ll 1111 0 •••• 0 • " •••• • (8) 

3 
om F ! II PmL m 

Em Im 
U e G • 0 0 o, 0 0 II • e e O e e u I> 8 e •• (9) 

If the structure is a prototype, subscript p is used: 

F' 
p L2 

ebp p p 
EPIP 

0 0 0 0 e e O O O QI g u O O e O e II O • • (10) 

8cp F11 PEL2E 
Epip 

• 0 • • • • Q O • 0 0 0 • • 0 0 • • • • • (11) 

0 = p 
Fi II P2L312 

Eplp 
0 0 • 0 D O D O O O O II O O O O D O O e O (12) 

If the dimensional relation between the model and its prototype are 

as follows, 

op 8p 
0 

Pp 
N 

6m a 1)rri Pm 

~ K 
Ip s .!::£. >.. 

Em Im ~ 
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then from (7), (8), (9), (10), (11)' and (12): 

ebp _ 8cp. F'P L2 · Emim 
= I! I! 

8bm 8cm Epip F'P L2 m m 

Sp - Em Im Pp . L2 
'6m - Ip ·r . pm O L2! p 

I cr . = - • I • N • 11.2 
8 

• • • • • . • • • • • • • • • ( 13) 
K 

a. = 1 . _I • N , 3 (14) ~ I\ • • • • • • • • • • • • • • • • . . 

K 8 

Equations (13) and (14) were derived by the writer. These two 

equations can be applied to any complicated portal frame structure when 

the effect of bending moment only is considered. 

In Equations (13) and (14) it is clear·that any of four factors 

could be chosen arbitrarily, and the fifth factor would be expressed in 

terms of the other four factors. 

In most cases, K would be known when the model material is decided, 

11. would be known when the length scale of the structural member is de-

cided, 8. would be known when cross-sectional dimension of the model is 

chosen, and the angular 'rotational factor cr would be picked according to 

· experience. 

After the four factors K,. 11., 8, and cr, are fixed one by one as de-

scribed above, the load factor N.would be fixed in terms of K, 11., 8, 

and q' and then the linear deformation factor a. would be fixed in terms 
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of K, A, B, and N. 

The load on the prototype divided by N would be the weight to be 

applied to the model. After loading of the model, the rotation and de­

flection of the model at any point can be measured. These values multi­

plied by a and a would become the rotation and deflection of the proto­

type at corresponding points. With these deformation values the stresses 

of the structure at any point can be calculated easily by slope-deflection 

equations. 

In case the factor N is such as to make the calculated loads on the 

model become too large or too small, the·model would be stressed so much 

as to have large configuration or to run out of its elastic range and 

make the measurements far from accurate, or the deformation of the model 

would be so small that measurement with a commercial scale would be im­

possible, then at least two of the scale factors must be revised; in 

such occasion, usually a would be revised and accordingly revise the 

factors Nanda. In this way a proper loading weight of the model could 

be found by trial and error. 



CHAPTER III 

DESIGN AND MAKING OF MODELS AND MOUNTING FRAME 

Many kinds of materials have been used in the making of models. 

Among these are concrete, plaster, metal wire, plexigl.as, balsa wood, 

and even paper ,board. Almost any kind of material that is homogeneously 

composed and obeys Hooke's Law could be used as model material. 

In selecting the model material in this project, some special factors 

had to be taken into consideration: in this project it was necessary for 

(1) the model to be cut, trimmed, and connected by common school work­

shop tools, (2) model deformations to be measurable by commercial scale, 

(3) the model to be tested both by direct and indirect methods. These 

requirements implied that the model material must be easy to cut, trim, 

and connect. It must be flexible enough to make the application of large 

scale deformations possible. In addition, it must be easy to procure and 

not expensive. 

First paper board was chosen and a portal frame was made. However, 

several indirect tests proved that paper board was not a very homogenous 

material and, therefore, it was not considered an ideal one. 

After this, the writer found one kind of rather flexible plexiglas 

in the school workshop. After some simple testings of its properties, 

the material proved desirable. Although it creeps under load, this draw­

back can be overcome if the character of creep is known. 

13 
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Most plastic models made before for structural analysis were cut 

out of a single sheet. Therefore, the thickness of the sheet became 

the width of the structural members, and because they were cut from 

solid plate as shown in Fig. 6, no artificial connection was needed. 

·Plexiglas Sheet 

-- ··r -- - - b - - - -1·-·· 
rr--------, 
I I I I 
I I I I 
I I I I 
18fE- Saw Line 
I I 
I I 
I I 

~Cl 
I I 
I I 
I I 

b 

a 

Figure 6. Solid Cut of Plexiglas Model 

c 

This kind of cut, though assuring an ideal connection, requires 

much time and skill. The cut requires great accuracy, because the 

width of the strip, which is decided by the cut, will become the depth 

of the model structural member and affect moment of inertia of the cross 

section of the member very much. This type of model, when tested, tends 

to buckle,1 because the lateral dimension of its member is small in com-. 

parison with the transverse dimension. The deformations of the model 

under test always will be very small. Therefore, expensive precision 

apparatus must be used for the measurement. 

Considering all these facts, the type of model described above was 

not used in this test. Instead the type of model which needs some arti-

ficial connections was used. In constructing this kind of model, model 

members were cut strip by strip from the sheet and connected by plastic 



cement to form the structure. The model is so constructed that the 

thickness of the plastic plate becomes the depth of the model member, 

and the width of the strip which is determined by the cut becomes the 

width of the model metnber, as shown in Fig. 7. 

Plexiglas 

' 

Saw 

I I I 

I I I 

I I I 
Sheet lb 1alc 

I I I 

l I I 
Line ~ I I 

I r1 

[) 

a 

I I 
I I 

Figure 7" Method of Cut of Plexiglas 
Model in this Test 

c 
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In this type of model, an inaccurate cut will not seriously affect 

the moment of inertia of member cross section, which plays an important 

role in structural analysis. Besides, this type of model will not easily 

buckle under the transverse·load, and the application of large scale de-

formations. Therefore measurements with a commercial scale are possible. 

The 1/16" thick plexiglas plate supplied by Rohm and Haas Company 

was used in this test. The cut of the material was first done by a band 

saw. If great accuracy is needed, the cut edge may be machined, but 

hand sanding proves accurate enough for this use. An accuracy within 

1/32" could be achieved by inexperienced persons by careful trimming of 

the strip on a sanding block. For connections, Pleximent cement by 

Cope Plastics, Inc. was used. This is a straight solvent type cement 

for plexiglas, which requires two days to set to assure a firm connec-

tion. 
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It was later discovered that the thickness of this kind of plexiglas 

is not exactly 1/16" as termed, and even within the same sheet the thick­

ness varies from one point to another. Although this variation is small, 

it is significant since sheet thickness represents member depth. It is 

necessary to modify values for moments of inertia to take these variations 

into account. 

To avoid the friction that a horizontally mounted model always has, 

and to make the loading of a true weight possible, the model must be 

mounted vertically, although the weight of the model itself may distort 

the structure a little when it is vertically mounted. Since the weight 

of the plexiglas is small, the distortion caused by its own weight is not 

great. 

It was expected that during the measurement of the deformations, the 

model should not be loaded by hands or the scale; also it was expected 

that the mounting frame should be stable enough to hold the model in an 

immovable condition during the test. Concerning all these factors a 

mounting frame consisting of a wood frame and a calibrated plastic plate 

was constructed, as shown in Fig. 8. The calibrated transparent plastic 

plate made the measurement from behind the model possible. The holes on 

the wooden board were for the holding of the aluminium plates which in 

turn held the models, and the calibration on the same board was for the 

applications of deformations to the models in the indirect model method. 

In the direct model method, models would be held by the same aluminium 

plates in the desired positions. The type of anchorage was an imitation 

of the fixed base of prototype structure. Hinges or roller bases can 

not be reproduced in this mounting frame. 
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Figure 8 ~- Mounting Frame 



CHAPTER IV 

TEST OF THE PROPERTIES OF PLEXIGLAS 

In the indirect model method, the use of Muller~·Breslau I s principle 

is restricted to materials that obey Hooke's Law. In the direct method~ 

in addition to the material obeying Hooke's Law, its elastic modulus 

must also be known. The mate.rial should be submitted to tests to deter­

mine its elastic modulus and type of creep. 

For this purpose, three strips of plexiglas were sawed and trimmed, 

Their measurements are shown. in Table 1. Each st.rip was mounted as a 

cantilever and loaded at its end by many different weights, as shown in 

Fig. 9, and its end deflections were measured several times at intervals 

of 18 minutes. 

This test showed clearly (Table 2 and Fig. 10) that the material 

obeys Hooke's Law. Table 3 and Fig. 11 show the characteristic of the 

creep of the material, and the various elastic modulii within 18 minutes 

after loading. The average elastic modulus of three strips at 18 min­

utes after loading would be used throughout the whole test. Fig. 11 

shows that the elastic modulus became nearly constant after 18 minutes. 

18 
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Cantile~er test of properties of plexiglas 

-- ----:::.-
I L 

p 

I ~ p I 

oT is end deflection at time T. 

ET is elastic modulus at time T. 

Beam size is known. Pis known. By measurement of oT, ET can be 

calculated. 

TABLE 1 

DATAS OF THREE CANTILEVERS 

Height of Width of Length Mom. of inertia 
Cantilever Section h Section b L of Section 1 

in iri in in4 

A . 0.0632 9.6/32 10 6.22 x 10-6 

B , 0.0632 17.8/32 10 11.54 x 10-6 

c . o. 0632 31.5/32 10 20.43 x 10-6 
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Figure 9. Test of Cantilever C 
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TABLE 2 

LOADS AND DEFLECTIONS OF CANTILEVER C 

Weight lb 

9.69 x 10-3 

11.00 x 10-3 

19.30 x 10-3 

28.10 x 10-3 

43 .80 x 10-3 

50 x 10-3 

40 x 10-3 

30 x 10-3 

20 x 10-3 

10 x 10-3 v 
O x 10-3 

0/50 20/50 

Deflection at 18 Minutes 
After Loading. in 

18.5/50 

21.0/50 

36.5/50 

54.0/50 

81.0/50 

/~ 

/ 
/ 

/ 

v / 
~ 

/ 

· 40/50 60/50 80/50 

Deflection . (in) 

Figure 10. Deflection of Cantilever C by Load 

21 

100/50 
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TABLE 3 

VARIOUS E OF THREE CANTILEVERS 

Elastic 
Weight P Time T .· De flee tion ·Modulus E 

,Cantilever lb Minute in lb/in2 

0.25 57.0/50 0.451 x 106 

9.69 x 10-3 3 60.5/50 0.429 x 106 
i.9 62.5/50 0.415 x-106 
18 64.0/50 0.406 x 106 

A 

.. 0.25 66.0/50 0.446 x 106 

11.00 x 10-3 .3 68.0/50 0.433 x 106 
9 70.0/50 0.421 x 106 

18 70.5/50 0.417 x 106 

0.25 60.0/50 0.465 x 106 

19.38 x 10-3 3 64.0/50 0.437 x 106 
9 66.0/50 0.424 x 106 

18 66.5/50 0.421 x 106 

B 

. 0.25 89.0/50 0.455 x 106 

28.lOxl0-3 3 92 .5/50 0.438 x106 
9 95 .5/50 0.426 x· 106 

18 97.0/50 0.419 x 106 

0.25 50.5/50 0.453 x 106 

28.10 x 10-3 3 52.0/50 0.440 x 106 
9 53.0/50 0.431 x106 

18 54.0/50 0.424 x 106 

c 
0.25 73.0/50 0.488 x 106 

43.'80 x 10·3 3 78.0/50 o.452 x 1oi 
9 79.5/50 0.449 x 106 

18 81.0/50 0.440 x 10 
.. 
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·.-4 -,.c 

0.6 x 106 

~ 0 .5 x 106 
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;::i 
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'd 
0 
~ 

-~ 0.4 x 106 .µ 
(/) 

<tl 
,-I 

lli:l 

0.3 x 106 

0.25 3 9 18 

Time (minute) 

""""""',._ Curve through average points 

Figure 11. Elastic Modulus of Plexiglas by Time 

Time (minute) 0.25 3 9 

E (lb/in2) 0.461 x 106 0.440 x 106 0.428 x 106 
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CHAPTER V 

ANALYSIS OF STRUCTURES BY 

DIRECT AND INDIRECT MODEL METHODS 

5-1 An analysis of a simple portal frame, with uniform cross sec­

tion, by indirect model method was performed in order to determine if 

the various techniques employed in this test would work. 

The prototype is shown in Fig. 12 and its model (No. 1) is shown 

in Fig. 13 and Fig. 14. 

The model was mounted and deformation applied at D, as shown in 

Fig, 14, in order to find Ma, Ha, and Va of the prototype under load. 

2.5-radians clock-wise angular rotation, 1" to right horizontal displace­

ment, and 1" up vertical displacement were applied one by one at D by 

adjusting the aluminium plate, which held the model at D, along the cali­

brated lines. At each adjustment the vertical deflection at E was meas­

ured. The calculated stresses and their comparison with those from the 

moment distribution method was shown in Table 4. 

The percentage of difference shown in. Table 4 is quite large. 

Apparently, the application of large scale deformations had distorted 

the model so much that the results were also distorted. Some former 

tests suggested that on such occasions application of a pair of equal 

and opposite deformations should be made in each test; then the influ­

ence value would be the average of those measured from the two opposite 

24 



25 

deformations. 

The 2.5 radian counter-clockwise angular rotation, 111 to the left 

horizontal, and 111 down vertical displacements which were in opposite 

directions to the three deformations applied before were applied one by 

one. The stresses calculated by taking the average of the two influence 

values are shown in Table 5. These results came out surprisingly close 

to those values from the moment distribution method. From these results, 

it is realized that the application of two opposite equal deformations 

will cancel most of the effect of distortion. In the indirect model 

method, if the large-scale deformation technique is used, two opposite 

and equal deformations must be applied in each operation in order to 

assure dependable results. 

Sign convention follows: 

I. Stress 

moment clockwise, plus 

counter-clockwise, minus ~ 

axial force tension, plus --__±_-

compression, minus - ---~ 

shear clockwise, plus 

counter-clockwise, minus 

2. Applied deformation 

angular rotation clockwise, plus 

counter-clockwise, minus (:' 



horizontal dis-

·placement 

vertical displace-

ment 

. 2 I 

. ,~ 4" 

B 

'l" ~ 
Im 

'' A 

t 
E 

20' 

. E I p p 

8" 

. Emim 

26 

to the left, plus 

to the right, minus ---+ 

down, plus 

up, min.us 

Figure 12. Prototype No. 1 . 

1 
c 

E Figure 13. Model No. 1. Im 
m 

.D 



27 

TABLE 4 

RESULTS FROM TEST OF MODEL NO. 1 

(Deformations, Each Applied in One Direction Only) 

Applied Vertical Stress from 
Deforma- Deflection Moment Dis- Percentage 
tion at at E Influence · Load tribution of 

D in Value kip Stress · Method Difference 

Mo Mo 

G 0.25 -0.181 -21. 73" 18 -32.6 -26.54 22.8% 
Radians 

K - Ft · K - Ft 

HD HD 
~ 

- l" -0.196 0.196 18 3.53 3.38 5.07% 

K K 

Vo Vo 

t - l" +0.332 -0.332 18 -5.98 -5.75 4.0% 

K K 



TABLE 5 

RESULTS FROM INDIRECT TEST OF MODEL NO. 1 

(Deformations Applied in Equal and Opposite Directions) 

Applied 
De for-
mation 

at 
D 

(! 0.25 

( 0.25 

-- l" 

-+ l" 

i - l" 

i+ l" 

Ver ti- Average Stress 
cal De- In flu- In flu- from 
flee- ence ence Load Moment 
tion Value Value kip Stress Distri-
at E but ion 
in Method 

-0 .181 -21.7311 Mo Mo 
-18.0911 18 -27.10 -26.54 

+o .121 -14.45" K-Ft K-Ft 

-0.196 + 0.19~ Ho Ho 

+0.189 18 +3.4 +3.38 

+0.181 + 0.181 K K 

+0.332 - 0. 332 Vo Vo 
-0.326 18 -5.87 -5.75 

-0.320 - 0.32( K K 

Figure 14. Model No. 1 Under Test 
(-0.25 Radians Rotation at D) 

Percent-
age 
of 

Differ-
ence 

2 .07% 

0.59% 

2 .09% 

28 
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5-2 An analysis of a simple portal frame with members of different 

cross sections was made by indirect model method. 

Connections of members of different sizes probably would not function 

as well as the ideal rigid connection which is usually assumed in mathe-

matical analysis. As shown in Fig. 15, in a connection with two differ-

ent size members, at points A and B there·would probably be some stress 

concentrations and in the shaded area, as shown, there would probably be 

reduced stress. These would make the connection different from the struc-

tural assumption. 

· Possible 
Stress 
Concentration 

Figure 15. Improper 
Connection 

The main purpose of this test was to determine to what extent this 

type·of connection would affect the results. Model (No. 2) was construe-

ted with the three strips which previously had been used in the properties 

test. The model and its prototype are shown in Fig. 17 and 18. 'The pro-

totype shown is imaginary . 

. The model was mounted and submitted to test. The results are shown 

in Table 6. Though the results were close to those obtained from the 

moment distribution, they were not as good as in the first test. 

As the same test was applied again and again, the percentage of·· 



30 

error became larger and larger. After a careful inspection, it became 

clear that the connection was weakening. This model was tested one day 

after construction, while the model in the first test had more than two 

days to set before being tested. It was then the writer found that if 

Pleximent cement was used, at least two days must be given for the con-

nection to set to assure a firm connection. 

The connections of the model were reconstructed with two pieces of 
I 
I 

plexiglas reinforcement on.both sides of the smaller member, as shown in 

Fig. 16, and the·mod.el was given two days to set. 

Reinforce­
. ment 

Figure 16. Connection used 
in this Test 

By doing this the writer hoped that two days would be enough to 

assure a firm connection, and two pieces of reinforcement would transmit 

the stresses properly between two members to avoid any stress concentra-

tion and therefore make the connections closer to the assumption. 

This kind of connection might make the portions near the connection 

stronger than assumed but since the reinforcements were so small the 

writer hoped that this would not affect the results much. 

Two days after construction the reinforced model (No. 2) was mount-

ed and tested, as shown in Fig. 19. The·measured and calculated results 

are .. shown ·in .. Table 7. The results could be termed as satisfactory as to 



31 

the performance of .this type of connection. 

12 kip 
10' 10' 

B E 

I1p = 610 in4 

2 I I2p I1p I2p = 1132 in4 

I3p = 2003 in4 

A D 

Figure 17. Prototype No. 2 

r 
5'' t 5" 

1 
B 13m c 11m = 6.10 xio-6 in4 

I2m = 11.32 x 10-6 in4 

1 II I2m I1m 13m = 20.03 x 10-6 in4 

· D >.. = · Lp · = 24 
Lm 

11 !2· I p = ~ : . ..:..32.. 
I1m · 12m 13m 

~igure 18. Model No. 2 
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TABLE 6 

RESULTS FROM ANALYSIS OF MODEL NO. 2, 

BEFORE PROPER CONNECTIONS WERE MADE 

Applied Vertical Average Stress from 
De for• Deforma· lnflu- Load· Moment Percentage 
.mat:i.on tion at E lnfluence ence at E Distribution of 
at A in Value Value kip Stress Method Difference 

~ 0,25 
i 

+0,016 +1.536" MA MA 
5.958" 12 5,958 5.23 14.5% 

( 0,25 -0.108 +10.380" K•Ft K·Ft 

--+ 
- l" +0.065 -0.065 HA HA 

-0.076 12 -0.912 .. o.982 7 .12% -+ 1" -0.087 -0.087 K K 

t- l" +0.486 -0.486 VA VA 
._.._...:... 

' -0.509 12 -6.11 -6 .101 0.15% 

! + l" -0.53l -0.531 K K 

TABLE 7 

RESULTS FROM ANALYSIS OF MOD.EL NO. 2, 

AFTER PROPER CONNECTIONS WERE MADE 

Applied Vertical Average Stress from 
De for- Deforma- lnflu- Load Moment Percentage 
mat ion tion at E lnfluence ence at E Distribution of 
at A in Value Value kip Stress Method Difference 

~·0.25 +0.0125 +1.2 MA MA 
! 

I 4,8811 12 4.88 5.23 6.7% 

(; 0.25 .. o.0891 +8.55 K·Ft K·Ft 

-+ - l" +0,0594 -0.0594 HA HA 

-0.0765 12 -0.918 -0.982 6.9% 
+----
+ l'' -0,0937 -0.0937 K K 

t- 111 +0.484 -0.484 VA VA 

•0,521 12 -6.25 -6.101 2.4% 

! + l" ·0,558 -0.558 K K 

·, 



Figure 10. Model No. 2 Under Test 
(111 Dovm · Displacement at A.) 
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5-3 An analysis of a simple portal frame with uniform cross section 

w .a. s. made by direct mode 1 .method. 

The prototpye and its model (No. ·1) used in this test were the same 

ones that had been used in test 5-1,. shown in Figs. 20 and 21. 

If K is the elas~ic modulus scale factor 

8 is the momeqt of inertia scale factor 

N is the load scale factor 

A is the length scale factor of the· member 

(J is the angul~r rotation scale factor 

al. is the linear deformation scale factor 

From data in Figs. 20 and 21: 

· K Ep/Ero·= 2.9 x 106/0.422 x 106 = 6.90 

S =Ip/Im~ 911/7.60 x 10-6 = 120 x 106 

A . = Lp/I;n·= 30 x 12/12 = 30 

N = Pp/Pm , Pp = 18 x 1 o3 1 b 

From equations (13) and (14): 

cr =N 2/K 

a = N 3/K 

Then if the weight load on the model is 97 gm (0.214 lb) 

N = 18 x 103/0.214 - 8.4 x 104 

(J, = 8.4 x 104 x 302/6.9 x 120 x 106 = 1/10.9 

(l = 8 .. 4 x 104 x· 303/6.9 x 120 x 106 = 2.75 

This·means that the angular deformation at any point of the prototype will 

be 1/10.9 times the angular deformation at the corresponding point of the 

· model, and the linear defo:bnation of the prototype at any point will be 

2.75 times the linear deformation of the moqel at the car.responding point. 



If the weight load on the model is 27.21 gm: 

N.-30 x 104 

a= 1/3.06 

a.= 9.78 

35 

The two different weights were composed of screws, nuts, washers, 

and wire, all of which had been carefully weighed on a beam balance. 

These various items were bound together by wire to become hang-weights. 

At the loading point on the model a hole was drilled through the center 

· of the member to provide a hang point for the weight. The drill hole was 

small;. its effect on moment of inertia could be neglected. 

First the 97 gm weight was loaded, as shown in Fig. 22 and the angu­

lar rotation at points Band C were measured directly from the rotations 

of the extensions of both ends of the beam, as shown in Fig. 22. The 

sidesways. were measured from the horizontal displacements at Band C. 

The value used in the calculation-was the average of the two. The meas­

ured and calculated results are shown in Table 8. 

The percentage of difference-in this test was rather large. It was 

understandable since, because the weight was too large for the model, dur­

ing the test the-model was being distorted very much, as shown in Fig. 22. 

From previous tests it was observed that measurement of angular ro­

tation by measuring of the rotation of beam extensions not only gives 

trouble but also is not accurate enough. The use of a moment indicator 

in this test would be necessary. This is described in the following 

·paragraph. 

As shown in Fig. 24, Band Care the points on amember of a struc­

ture where one wants to know the rotations when the structure is loaded. 
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One bar is attached to each point~ as shown, so that when the points 

Band C rotate, the distances between two attached bars at certain points 

will change. By measurement of the change of distances, the angular ro­

tations at Band C can be found by certain calculation. ~his is applicable 

only·when rotations are small. 

In this test balsa wood was used to construct the·moment indicator 

because of its lightness and the ease of construction. Thin balsa wood 

strips were attached to the connections Band C of the model, and the 

27.21 gm weight was loaded. This loaded model with moment indicator is 

shown in Fig. 23. The measured and final calculated results are shown in 

Table 9. Th~ results are sufficiently accurate for this study. 



2/3 p 

2/3 

2/3 Lp 

p p 

Ep Ep 
Ip Ip 

Figure 20. Prototype No. 1 

p 

rl/3 bu t 
B E 

A 

2/3 Lm 

Figure 21. Model No. 1 

Em 
I m 

c 

D 

D 
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Ep 2.9 x 106 lb/in2 

Ip 911 in4 

LP 30 x 12 in 

pp 18 x 103 lb 

Em= 0.422 x · 106 lb/in2 

I = m 7 .60 x 10-6 in4 

.Lm = 12 in 

p = m ·97, 27.21 gm 
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Figure 22. Model No . 1 Under 97 gm Weight 

Figure 23. Model No . 1 Unoer 27.2. gm Weight 
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. L/3 L/3 L/3 I c B 

9c 

Figure 24 .. Moment Indicator 

Let b" and c" be changes of the distance of the bars 

b" = b • ... h = (2L/3) x ec + r,p,L/3 (1) 

c" = c' - c + (2L/3) x 6B + 6CL/3 .•...••.••••. (2) 

From (1), (2) 

2 6 + A.. = · 3C:" /L B '\;: • • •. (3)' 2ec + eB = 3b11 /L •.•••. (4) 

Solve (3), (4) 

6B = .l (2C" - b11 ) 
L 

• . • • • • • • • • • • • • • .• . . • • • . ( 5) 

6 · = _l ( 2b11 - C11 ) • • • • 

C L 
•. (6) 

When the left hand side bar is above the right hand side bar then: 

.eB. = ... .l (2c1• - b") L • ., • • • • • •••••• " •• 0 •• (7) 
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AB 

BC 

CD 

40 

8 = .C 
1 (2b'' - c") • . . . . . . . . . . . . . . . . . . . . (8) 
L 

These equations are applicable only when SB and Sc are very small. 

a 1/10.9 a.= 2.75 

SB = 0; 02 Radian, Sc -0.0LRadian, cS = 0.591" 

TABLE 8 

RESULTS FROM ANALYSIS OF MODEL NO. 1 

BY LOADING 97 gm WEIGHT 

Moment From 
Slope 

Moment from Model Deflection 
E I L Mom. Analysis k-ft Method 

MAB 2EI (SB - 1-) = 20.55 18.5 
• 2.9 L L 

x 911 20' 
106 MBA 

2EI (29E-~) = 57.1 49.1 
lb/in2 in4 L L 

2.9 MBc = -MBA = -57.1 -49.1 

x 
106 

911 30' 

lb/in2 in4 McB = -- Men = 52.8 41.0 

Men 2EI (2 8c .. ~) = .. 52.E -41.0 
2.9 L L 

x 911 20' 
106 

in4 MDC 
2EI ( Sc - l.2.) -34.4 -26.54 lb/ih2 = 
L L 

Pm= 27 .. 21 gm, a = 1/3.06, a.= 9. 78. 

8Bm = 0, 0515 Radian, Scm = -0. 022 7 Radian, cSm = 0. 0485" 

SB= 8Bm x a= 0.01685 Radian. 

Sc= 8Cm x a= -0.00742 Radian. 

cS = om x a. =·0.475" 

Percent-
age of 

Differ-
ence 

11.1% 

16.3% 

16.3% 

28.8% 

28.8% 

29.6% 
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. Calculated stresses and their comparison with those from slope­

deflection method are shown on next page. 
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TABLE 9 

STRESSES,FROM ANALYSIS OF MODEL NO. 1 BY LOADING OF 27.21 gm WEIGHT 

Stress From 
Slope Percentage· 

DeJ;lection of 
. Mlll.. E t L Stress Stress From Model Method Difference 

MAB ill (8 - 1§.) = 19.9 K-Ft 18.50 K-Ft 7.57% 
L B L · 

' 
?t MBA ill (28:s - ~) = 50,8 K-Ft 49.10 K-Ft 3.46% 

L L 

2.9 VAB VAB = VBA = -12.23 K -12,25 K 0.16% 
AB x 911 20' 

106 

lb/:!.n2 in4 VBA VBA = -Vnc = -12.23 K -12.25 K 0.16% 

RAB 
6EI 26 -3.38 K 4. 737, -~ ( 613 - -) = -3 .54 K 
L L 

HBA 
6EI 20 -3.38 K 4.73% - '"72' (613 - L) = -3.54 K 
L 

'· MBC 2EI (2 \ + SC) 
Pab2 

49.1 K-Ft .2.44% 
;,= 

- ~ 2- = •47.9 K·Ft 
·' 

L L . 

2EI (2 6c + 2 
McB 6ii) + P~Zb = 42 .46 K-Ft 41.06 K-Ft 3.567, 

L 

2.9 - [ 6~i ( % + 6c) - !h 
BC x 911 3q1 VBC L 

106 
Pab ) . 

lb/in2 in4 
- 3 (b - a ] = 12,23 K 12,25 K 0,16% 

L 

H:sc HBC = HBA = -3.54 K •3.38 K 4.73% 

HCB HcB = -Hco = -3.13 K -3.38 K 7.40% 

VcB 
.. [~ (\+ Sc) + ta 

i Pab ( ) . - ~ b - a]= 5,77 K 5,75 K 0,357. 
i 

Meo 2EI (2 (t _ 36) = -38,l K-Ft -41.06 K-Ft 7.22% 
L L 

Moc 
2EI ( 6c - ~ 0) = -23.81 K-Ft -26,54 K-Ft 10.30% 

2,9 L 
CD x 911 20 1 

106 Vco Vco = -VcB = -5.77 K •5.75 K 0.35% 

tb/in2 in4 
Voe v0c = Vco = -5.77 K •5,75 K 0.357, 

' 
Hco 

6EI Ct\:: .. L°) = 3,13 K 3,38 K 7.40% 
t2 L 

HDC 
6EI <ec -~) = 3,13 I< 3,38 K 7,40% 

i 
"""iJ :t. 
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5-4 An analysis of a two-bay one-story frame was made by indirect 

and direct model methods. 

The tests of simple portal frame~·all had desirable results. The 

following test was made to see if a more complicated structure would do 
.J 

as well. A two-bay one-story portal frame was chosen for analysis. The 

prototype and the model are shown in Figs. 25 and 26 and Fig. 27. 

Indirect method: 

The model was mounted and deformations were applied at A and D. 

The measured values and final calculated results are shown in Table 10. 

The results were close to those from the slope-deflection method. 

Direct method: 

The balsa wood moment indicators were attached to the model at the 

three points B, C, and E. Then the model was mounted and submitted to 

the loading of a 26.25 gm weight at Oas shown in Fig. 28. The measured 

values and calculated final results are shown in Table II. The results 

generally were close, but for some, especiallyME, the difference ran as 

high as 47.9%. After a careful study of the measured angular rotations, 

sidesway, and the same deformations from the slope-deflection method with 

Table 11,. it seems that in the condition of loading that made large and 

comparatively small stresses exist in a structure, the model (direct) 

method could obtain rather close values for those large stresses and 

probably rather distorted values for small stresses. This is explained 

by the fact that a slight difference in angular rotation and sidesway by 

model method would not greatly affect the calculation of large stresses, 

but would affect the calculation of small stresses very much. To show 

this effect the model was loaded again with two 26 .. 25 gm weights at O 
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and O'; as shown in Fig. 29 and Fig. 30. The measured value and results 

are shown in Table 12. Results generally came out fairly close but in 

the two extremely small moments, MBc and Men, each equal to zero, the 

percentage of difference became infinite. 

This effect can only be eliminated when the measured rotations 

and sidesways are almost exactly the same values as those obtained from 

mathematical methods;. this is impossible to achieve since no precision 

apparatus is used in this method. In design, however, these extremely 

small stresses generally do not control the determination of member 

sizes .. For instance, for the member CD of the structure, from Table 12, 

the calculated values are M_ --c.:n = -19.75 in-lb, Mnc = 9.87 in-lb, Ven 

Vnc = 95.27 lb, and Hen= Hnc = 0.297 lb. It is clear that Ven and 

.vDC govern the design of this member. The values of .vCD and VDC differ 

only slightly from the mathematical results. 
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80 lb 
5011 5011 10011 

p p E 

Ep Ep E Ep 2.9 x 106 lb/in 

Ip I Ip 
8.51 in4 p p Ip 

10 II pp 80 lb 

LP 100 in 

A D F 

Figure 25. Prototype No. 3 

511 t 511 

t 
10'.' 

1 
Em Im c Em Im E 

Em . = 0.422 x106 lb/in 

Em Em I 8.51 x 10-6 in4 
m 

Im Im p . 26.25 gm m 
1 II 

. Lm - 10 in 

A D F 

FigurE:1 26. Model No. 3 
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TABLE 10 

RESULTS OF PROTOTYPE NO. 3 BY INDIRECT ANALYSIS OF I.TS : MOO. E Ii 

Vertical Streu fr011 Percent• 
Applied De· Deflection Average Slope De• a1e of 
formation at O lnfluenc, Influence Load flection Differ• 
at A. ·-An in Value Value lb ureu Method ence 

~ 0.25 +0.0485 +1.941" MA HA 
2.9705 80 236 lb·ft 234.4 lb-ft 0,68'1. 

(; 0.25 -0.1000 +4.000'' in 

-At • 111 +0,081t4 -0.0844 HA HA 

-0.09695 80 ·7, 76 lb -7,85 lb 1.15'1. -A + 111 -0.1095 •0.1095 
.. -

l· 1" _0,445 ·0.445 VA VA 

-0,4560 80 ·36.5 lb ·36, 72 lb 0.61'1. 

!+ 1" -0.467 -0.467 

c; 0.25 ·0,1188 -4. 75" "o Ho 

-3. 7200 80 ·297.5 lb-ft ·312 .5 lb•ft 4.80'!. 

(; 0,25 +0.0672 -2 ,69" in 

-At - l" -0.1172 +0.1172 HD HD 

+0.10315 80 +8,25 lb 8,44 lb 2 .25'1. 

D -+ 111 +0,0891 -0,0891 

t· l" +0.567 •0,567 Yo Vo 

-0 . 582 80 -46.6 lb 47 .49 lb 1.8'1. 

!+ l" ·0,597 ·0.597 

Figure 27. Indirect Test of Model No. 3 
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Figure 28. Model No. 3 Under Direct Test 

Figure 29. Model No. 3 Under Symmetrical Loading 



From Fig. 25, 26: 

E = 2.9 x 106 lb/in2, I = 
p p 

6 
E = 0.422 x 10 , I - 8.51 

m m 

If P = 26.25 gm 
m 

1 
a = -' 

5 
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8.51 in4 , P = 80 lb, L = 
p p 

100". 

10-6 ' 4 L 10". x . in , m -

1 
(J = -

100 

By model analysis the· rotations and sidesway of prototype are as 

following: 

Moment .. 

eB = 0.00066, Sc = 0,,000466, SE - 0.0002, 

o = 0.0078" 

TABLE 11 

RESULTS OF PROTOTYPE NO. 3 BY ANALYZING 

ITS. MOOEL WITH 26. 25 gm WEIGHT 

Moment from Model Analysis 
(lb-f.t> 

lli ce + o - 30 .) = 210 
L B L 

2EI 
1 c2eB + ec> - 1000 = -579 

ZEI (28 + 6E) = 352 
L C 

ZEI (26 + SC) = 32.6 
L E 

2EI ( 8 - ]§_) = -345 
L C L 

2EI (8 - ]§_) = 16 a· . L E L ' . 

Moment from 
Slope-Deflection 
Method· (lb-,ft} · 

234.4 

562.5 

890 

531.2 

359. 3 

62.5 

312.5 

15 .6 

Percent­
age of 

Difference 

10.4% 

2.9% 

2. 7% 

8.4% 

2.0% 

47 .9% 

10.4% 

7. 7% 
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With an additional 80 lb load on point ' in Fig. 30, the structure 

is in symmetrical loading condition. For analysis, the model is also 

loaded at corresponding points O and O'. 

The scale factors of previous test are used. The obtained rotations 

and sidesway are shown below. 

8B O .000522 

ec · -o. 000020 

8E -0.000506 

6 0 

The calculated stresses and their comparisons with those from slope­

deflection method are shown on next page. 

80 lb 80 lb 
50" 50" 50" 50" 

B E 

· 1 O" 

A D F 

Figure 30. Symmetrical Loading 
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TABLE 12 

RESULTS OF SYMMETRICAL LOADING OF MODEL, NO. 3 

BY.26.25 gm.WEIGHT 

'· Value of Stress Percentage, ,· 
From Slope Deflec• of 

'Stress Value of Stress From. Modei Anal us is tion Method Difference 

MAB ¥ (9B + O) .. 251,5 250,00 3.00% 

VAB VA =VB= .j2,54 ·32.507 0.12% 

~ ~ (6» + 0) = •1.15 ' 
HAB -7.97 2.76% L . 

.. , 

. MB + lli (20n + 0) = + 32,54 
- L .. -

±500,00 3.007, 

VB 
p 6Ei · · · 

±12 • V (Sjj + Bc)J=.± 32.54 ±32.507 0.12% 

; 

llii IIB "± IIA,. ± 7,a .. ± 7,97 2,76% 

. McB 2_EI (20c + 0B) + .f1. = 1237 
L . B 

1249.30 1.00% 

VcB P + fil (0 + 0 ) s 47 46 2 · t2 B C • 47.47 0,06% 

11CB HcB·· H»c "•7,7S .. 7,97 2 .• 76% 

: Mei;: . 2EI. (20c + 0~) ~ 1000 + ·1230 .:1249,30 1,53% 
L . . . 

VcE f • fil (0c + 0i;:) • 47,81 
2 02 

47.49 9.10% 

i!ci;: He£ .. 11Ec " •1,51 -7.97 ~.80%. 

' 
McQ .2EI (28c + O) "' ·19,75 0 L . 

Veil -<1icE + VcB) "•(47,81 + 47,46) = 95,27 94,98 ·o.34% 

' 8cn·· ~ cs0 + ·O) .. 0,297 0 
L 

'·M· E 2fl (20F + 0) " ± 499 ±500,00 0,207, 

'· Vt; ±c! +.~ c0~ + 0c>J • ± 32,19 ±32,50 0.98% 

; 

·IIE IIE .,. ± llcE a± 7,51 ±7,97 5,80% 
.. 

Mp .~EI (0c + O) .; 9,87 0 
, L .. 

---
Vo Vn .. Ven • •95 ,27 ·94,98 0,34% 

lln ~ (60 + 0) • 0,297 (i 

! 

:~ lli (a + 0) • •250 
t. E . 

250,QO 0 

; 

. Vp Vp • V!iP • ~32,19 32.507 0,98% 

H Hp• HEF • 7,51 7,97 5.80% F ; 
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5~5 Intermediate deformations were applied qsing the indirect model 

method, 

All the deformations of the previous tests were applied to fixed ends 

of the structures. This is satisfactory for analyzing one story frames 

only. To find stresses in a particular part of a frame which rises more 

than two stories, a cut-point within the frame must be made for the ap-

plication of various deformations. 

A one-bay two-story portal frame with uniform load as shown in Fig. 

3~ was chosen for the test. A model of one 12th scale (length ratio) 

was constructed, as shown in Fig. 33 and Fig. 34. 

Point G is the cut-point for applying the deformations. The methods 

of applying deformations at this point are as shown in Fig. 31. 

,, - , 
, r , 

• • = 0.35 • • Radian • • I· • • 
• • 
• 0 

• • 
07 .. • • 
? 

_.; 
,, 

a b 

Figure 31. Methods for Applying Intermediate Deformations 
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On both sides of the cut, four small holes were drilled as shown in 

Fig. 3la. For application of axial deformation a straight piece of plexi­

glas with drill holes matching those on both sides of the cut was attach­

ed to the model at point G, as in Fig. 3lb, to make al" axial deforma­

tion (other deformations equal zero). The deformation would be the 

influence line of the axial force at G. Similarly, relative horizontal 

displacement and relative angular rotation were applied by attaching 

small pieces of plexiglas to point G, as shown in Fig. 3lc and 3ld, in 

order to find out the influence lines of the shearing force and moment 

at G. Fig. 34 shows the model during application of horizontal displace­

ment. 

In this test, the horizontal and angular deformations were applied 

in two opposite directions to cancel the error caused by the configura­

tions of the structure. The uniform loads were divided into several con­

centrated loads to make the calculation easier. The results of the test 

and its comparison with the results from mathematical calculation are 

shown in Table 13. 
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llp = 8.08 x 102 in3 

9' l2p l2p 6.84 x 102 in3 

l3p 6.95 x 102 in3 
B 

l4p = 3 .96 x 102 in3 

8 I J:1p l1p 

A F 

Figure 32, Prototype No. 4 

1~ 12" 
d c 

l4m 3' 
1 lm = 8 .08 x 10-6 in3 

12m 12 
l2m = 6.84 x 10-6 in3 

6' 

l3m 13m = 6.95 x 10-6 in 3 

14m = 3 .96 x 10-6 in3 

II l1m 11 

A F A = 12 

l1m = I2m = .l3m 14m - =-
llp l2p l3p l4p 

Figure 33. Model No. 4 
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TABLE 13 

RESULTS OF INDIRECT TEST OF MODEL NO. 4 

Apply Relative Verti- Apply Relative Horizon• Apply Relative Angular 
cal Displacement tal Diep lacements at G Rotations at G 

~oints at G (·l") 
De flee· Influence De flee- Deflection Average Deflection De flee tion Average Load 
tions Value tion Due Due to Influence Due to Due to Influence 
(in) Svi to (+l.125") (·l.125") Value (·0,35 RAD,) (+0.35 RAD,) Value (kip) 

at G (in) at G (in) 6hi at G (in) at G (in) !imi (in\ 

l 59.5/64 -59. 5/64 6 .l/64 -l ,4/64 3 .36/64 ·8 .8/64 0.4/64 4,6 x 12 l 
64 x 0.35 

2 48.5/64 -48.5/64 10.3/64 •8 ,0/64 8, 14/64 -15 .8/64 6 .2/64 11. 0 x --1-2-- l 
64 x 0,35 

3 37,1/64 037. l/64 12 .6/64 -11.9/64 10.8/64 -16.9/64 10,6/64 13.75 x 12 
64 x 0.35 

l 

4 26, l/64 -26, l/64 13,2/64 -12.6/64 11.47/64 -13 .8/64 13.3/64 13 .55 x 12 l 
64 x 0,3' 

5 13 .8/64 -13.8/64 9 .6/64 -10,8/64 9 ,06/64 -8 .8/64 11.9/64 
12 

10.35 x 64 x 0.3 l 

6 4. 7 /64 -4.7/64 2 ,6/64 -5 .4/64 3, 56/64 -3.5/64 4. 2 /64 3.85 x 12 
64 x 0,35 

1 

7 0 0 l. 7 /64 -1.1/64 1.24/64 2 .0/64 -1.3/64 -1.65 x 12 2 
64 x 0,3' 

8 0 0 3 ,3/64 -3 .2/64 2 ,89/64 3 ,3/64 -3.5/64 -3.4 x 12 2 
64 x 0.35 

9 0 0 . 4 .4/64 -4.5/64 3 .96/64 2,9/64 -3,5/64 -3.2 x --1-2--
64 x 0,35 

2 

10 0 0 4. l/64 -4,5/64 3 .82/64 l. 2/64 -2 ,2/64 
-1. 7 x __ 1_2 __ 

2 
64 x 0,35 

11 0 0 3, l/64 -3.9/64 3, 11/64 0.2/64 -1. 0/64 -0.6 x 12 2 
64 x 0,35 

12 0 0 1.6/64 •l.3/64 1.29/64 0.2/64 -.0.8/64 -0,5 x --1-2-- 2 
: 64 x 0.35 

Vg Hg Mg 

6 6 6 
~ 6vi x l.000 I: S11i x 1.0 L Smi x 1.0 

By i=l i=l 
Model 12 12 

Analysis = +L.Shix2.o +L.Smi x 2.0 
i=7 i=7 

2 ,960 kip 
= 1. 234 kip = l.875 k' 

By 
Mathematical 3.000 kip 1.1933 kip 1.680 k' 
Calculation 

Percentage 
of l. 337. 3.41% 11. 67, 

Difference 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The results are bette+ from the indirect method than from the direct 
' 

method .. However, the indirect method is more laborous, especially when 

the frame is more than one-story. In addition, if accuracy is desired, 

deformations must be applied to every point where stresses are to be 

known. This means that solving the redundants and reducing the frame to 

a statically determinate structure by the model method, then determining 

the forces in other parts of the structure by statical methods would some-

times yield erroneous results,. because a slight error in force by the 

model method would cause unpredictable errors in forces calculated by the 

statical method with the value of the former. The comparison shown makes 

this clear (from Table 5). 

Stress by model method 

Percentage of difference 

Stresses calculated by 
static with values 
of Mn,· Hn, and Vn 

Percentage of difference 

56 

27.1 

2.07% 

MA 

22.64 

23.3% 

3.4 

0.59% 

0.59% 

Vo 

-5.87 

• 2.09% 

VA 

12.15 

0.82% 
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Therefore, in order to find reliable forces at A, deformations must 

be applied at A. 

However, in case of complicated loading, the indirect method could 

be of great advantage, because in this method all the displacewents in 

the direction of loads can be found in one operation. 

Percentage of difference in stress of some structures by the direct 

· model method is somewhat larger than that from other methods. YCi;1t, ex-

cept in complicated loading, the direct method generally has adva~tages 

of simplicity. In the direct method, once deflections and rotatiqns of 
·! 

joints are found, all the stresses at connections or fixed ends c~p. be 

easily calculated by slope deflection equations and the deflection of 

any part of the structure can be measured at the same time. Also, in 

this kind of test the model shows clearly how the structure behave~ under 

loads. 

The results obtained from this testing are satisfactory considtring 

the simplicity of procedure and equipment used. 

If plexiglas strips of various sizes could be accurately produ~ed in 

the factories and a larger, proper mounting frame could be designed, the 

model method could become very advantageous as a classroom supplement. 

Provided reasonable specifications are framed, application of this method 

to practical use would be possible. Not only as a time-saving methqd but 

also as an economical one, this method has definite possibilities. 
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