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SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 
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In Inches 25.4 millimeters mm 
Ft Feet 0.305 meters m 
Yd. Yards 0.914 meters m 
Mi. Miles 1.61 kilometers km 
AREA 
in2 square inches 645.2 square millimeters mm2 
ft2 square feet 0.093 square meters m2 
yd2 square yard 0.836 square meters m2 
Ac Acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2 

VOLUME 
Floz fluid ounces 29.57 milliliters mL 
Gal Gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 
yd3 cubic yards 0.765 cubic meters m3 
NOTE: volumes greater than 1000 L shall be shown in m3 
MASS 
Oz Ounces 28.35 grams g 
Lb. Pounds 0.454 kilograms kg 
T  short tons (2000 lb.) 0.907 mega grams (or 

"metric ton") 
Mg (or 
"t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 

or (F-32)/1.8 
Celsius oC 

ILLUMINATION 
Fc foot-candles 10.76 lux lx 
Fl foot-Lamberts 3.426 candela/m2 cd/m2 
FORCE and PRESSURE or STRESS 
Lbf Pound force   4.45   newtons N 
lbf/in2 Pound force per square 

inch 
6.89 kilopascals kPa 
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Lx Lux 0.0929 foot-candles Fc 
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N  Newtons 0.225 Pound force Lbf 
kPa kilopascals 0.145 Pound force per 

square inch 
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CHAPTER 1 - INTRODUCTION 

When Duff Abrams wrote Proportioning Concrete Mixtures in 1922, it outlined the 

basic fundamental concepts of a concrete mixture design that people still use today. 

Mixture designs are designed to meet certain specifications such as water-to-

cementitious material (w/cm) ratio, compressive strength, durability, sustainability, 

permeability, and workability (Abrams 1922, Powers 1968).  For many concrete 

producers, the goal has been to not only meet the basic specifications of a mixture 

design, but also create a lower paste content and still obtain a certain workability. To 

reduce paste, concrete producers look towards using aggregates effectively in a mixture 

design, which has been called optimized graded concrete (Shilstone 1990 and Taylor 

et. al. 2007). However, the development and implementation of reducing the paste 

content becomes a very complex subject due to the effects on the workability of the 

concrete (Shilstone 1990, Powers 1968, Abrams 1922).  Duff Abrams stated, 

“Workability of concrete mixes is of fundamental significance.  This factor is the only 

limitation which prevents the reduction of cement and water in the batch to much lower 

limits than are now practicable.” (Abrams 1922) 

Only a limited amount of quantitative guidance can be given to practitioners on 

aggregate proportioning in a mixture to obtain the desired performance.  Furthermore, 

the ACI 211 mixture design procedure has been the most widely taught mixture design 

method, but has not been commonly used in practice due to the method only containing 

a handful of aggregate parameters and many argue about their validity.  This has been 

due to the lack of reliable tests to provide quantitative data about the workability of 
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concrete.  This work focused on establishing useful test methods and then using them 

to better understand how aggregate gradation impacts concrete workability. 

The main goal of this report was to further advance the knowledge of aggregate 

proportioning, developed practical workability tests, and create a practical specification 

for optimized graded concrete in the application of structural concrete such as a bridge 

deck. This was done by creating and validating various workability tests in Chapter 2.  

The workability tests were used to investigate the combined gradations of bridge deck 

mixtures in Chapter 3 and 4.  The following is an outline of the chapters presented.  

• Chapter 2: Developing and validating workability tests. 

• Chapter 3: Investing the combined gradation of coarse aggregate. 

• Chapter 4: Investing the combined gradation of fine aggregate. 

• Chapter 5: Using a concrete pump to further investigate limits. 

• Chapter 6: Recommended Aggregate Gradations for Flowable Concrete. 
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CHAPTER 2 – WORKABILITY TESTS 
 

2.1 INTRODUCTION 

The workability of concrete describes the ability of a concrete mixture to be mixed, 

placed, consolidated, and surface finished for a specific application (Taylor et. al 2007, 

ACI 211 1991, Kosmatka et. al 2011, Neville 2012, Mehta and Monteiro 2006, Powers 

1968, and NSSGA 2013). These tasks require a mixture to obtain a certain stiffness, 

flow, cohesiveness, richness, and surface finishability (Taylor et. al 2007, Kosmatka et. 

al 2011, Neville 2012, and Powers 1932).  If a concrete mixture does not obtain the 

required performance, the workability of the concrete cannot be obtained and therefore 

the concrete is not suitable for the application (Taylor et. al 2007, Kosmatka et. al 2011, 

Neville 2012, and Powers 1932).  This is why many concrete producers make a trial 

batch and measure the workability of the designed mixture before using the mixture in 

production (Taylor et. al 2007, Kosmatka et. al 2011, Neville 2012, and Powers 1932). 

One of the most sought-after achievements in the concrete industry has been a test or 

series of tests to measure the workability of the concrete (Powers 1932, Powers 1968, 

Wong et. al. 2001, Fulton 1961).   Most workability tests measure various properties of 

fresh concrete (Powers 1968, Wong et. al. 2001, Fulton 1961), but very few tests 

measure a useful workability property for a certain application (Cook et. al. 2014). For 

example, the Slump Test (ASTM C 143) has been the most specified workability test, 

but it measures the consistently of fresh concrete to fall under its own weight (Shilstone 

1989). The ability of a mixture to fall will not dramatically indicate if the mixture will be 

suitable for building a floor slab or bridge deck. This inability to adequately measure the 

workability of concrete has created much controversy over the impacts of various 
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mixture components effecting the workability of concrete and the dependability of any 

workability test to measure the workability of fresh concrete (Powers 1932). 

To complicate the issue further, various applications require completely different 

workability properties of fresh concrete.  For example, a slip formed pavement requires 

a mixture to be flowable for consolidation, but stiff enough to hold an edge after the 

vibration has stopped (Taylor et. al. 2007 and Cook et. al 2014). Yet, pumped concrete 

applications require higher flow mixtures for placement, which significantly reduces the 

emphasis on the consolidation behavior of fresh concrete (Kosmatka et. al. 2011).  

Some current workability tests may give insights into this performance but they are not 

specific enough to give direct insights into how the concrete will be used. 

 

2.1.1 Objectives 
 

The focus of this work will be on the various workability properties of structural 

concrete.  Structural concrete for use in a bridge deck must be able to be pumped, but 

still stiff enough to be molded to have a slope to allow drainage.  Also, the surface 

finishability of the mixture is also important.  It is challenging for a test to measure both 

the flowability and surface finishability of a mixture. This chapter presents four ways to 

help evaluate the workability of structural concrete. 
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2.2 EVALUATION TECHNIQUES FOR THE WORKABILITY OF STRUCTURAL 

CONCRETE  

The goal of a workability test should be to provide a standard measurement that 

precisely evaluates the important performance parameters of a mixture in the desired 

application.  Unfortunately, a single workability test may not be able to measure every 

important workability property for an application.  Four different tests were used to help 

evaluate the behavior of the concrete. These include: i) Slump Test (ASTM C 143/ 

AASHTO T119), ii) visual observations, iii) the Float Test, and iv) ICAR Rheometer. 

 

2.2.1 The Slump Test 

The Slump Test (ASTM C143/ AASHTO T119) has been the most specified test 

for the workability of concrete.  It was developed to help monitor the consistency of 

plastic and cohesive fresh concrete.  Using a 12” tall cone with the radius varying from 

4” to 8”, three equal volumes of concrete was added to the cone and rodded 25 times 

per layer.  Then the cone was lifted off the concrete within 3 to 5 seconds and a 

measurement was taken from the distance the top of the concrete deformed as shown 

in Figure 2-1.  Even though the Slump Test has been used to measure all concrete 

applications from roller compacted concrete to highly flowable concrete, the standards 

only recommend using the Slump Test on plastic and cohesive mixtures of 0.5 in. to 9 

in. Some applications such as a footing may require a 2 in. Slump while a floor slab may 

require a 6 in. Slump. For this reason, structural concrete slumps can commonly be 

specified to range between 2 in. and 8 in.   
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Figure 2-1: The Slump Test conducted on a structural concrete mixture. 

 

While the Slump Test has been widely used as a specification to evaluate 

workability, it has been commonly believed to be inadequate at measuring the 

workability of concrete in the field (Powers 1933). Shilstone had this to say about the 

Slump Test, “The highly regarded Slump Test should be recognized for what it is: a 

measure of the ability of a given batch of concrete to sag.”(Shilstone 1989).   While this 

“sag” property of the concrete may have other uses in the quality control department, 

this property does not measure the ease at which a mixture can be mixed, placed, 

consolidated, or surface finished. Despite the Slump Test being simple, work has been 

shown to suggest that the performance of concrete in the test is related to the static 

yield stress of the material (Roussel 2012, Kosmatka et. al. 2011). Other tests are 

needed to measure the workability of concrete.  
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2.2.2 Visual Observations 

Since additional workability tests are needed, contractors often use visual 

observations to evaluate the workability of a concrete mixture (Powers 1932, Collins 

2006, The Contractor’s Guide 2005).  The observations can be conducted by watching 

the concrete flow down a concrete chute, dragging the concrete with a come-along, or 

using a float to smooth the surface of the concrete to evaluate the surface finishability.  

These tasks require a mixture to obtain certain behavior characteristics such as a 

certain stiffness, flow, cohesiveness, richness, and surface finishability (Taylor et. al. 

2007, Kosmatka 2011, Neville 2012, Powers 1932). While stiffness describes the 

resistance of concrete to movement, flow describes the ability of the concrete to 

continuously move (Kosmatka et. al. 2011, Neville 2012, Powers 1932).  Also, richness 

describes the amount of sand and paste in the mixture for proper workability (Neville 

2012, Powers 1932).  Mixture with poor richness may struggle to meet the desired 

workability requirements. Another important behavior of concrete is the cohesiveness of 

the mixture to be homogenous and not segregate (Taylor et. al. 2007, Kosmatka 2011, 

Neville 2012, Powers 1932).  This can have a dramatic impact on stiffness, flow, and 

surface finishability. The proceeding subsections discuss each performance behavior.  

2.2.2.1 Cohesion 

One of the most important properties of concrete is cohesion.  This is the ability 

of the mixture to be a homogenous mixture while moving or at rest. Many times people 

refer to poorly cohesive mixtures as highly segregated mixtures.  To assess the ability 

of the mixture to stay together, the five following performances were used: a mixture 

can be cohesive uniformly homogenous mixture (A), close to a homogenous mixture 
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(B), minor amounts of segregation occur at rest, but not during motion (C), major 

amounts of segregation at rest, but only minor amounts in motion (D), and extreme 

amounts of segregation at rest or while in motion (F).  Table 2-1 contains A, C, and F 

performance ratings with a visual example and description of the performance rating.  

Table 2-1: Different cohesion performance ratings. 

Visual Rating Description 

 

A Uniformly homogenous mixture 

 

C Minor amounts of segregation occur at rest, 
but not during motion 

 

F Extreme amounts of segregation at rest or 
while in motion 

 

2.2.2.2 Richness 

Another important behavior property of the concrete is richness.  This describes 

the ability of a mixture to properly proportion enough sand and paste to achieve the 

required workability performance of the concrete.  Five different performance ratings 

were used to assesses the richness of a mixture and were as follows: well-proportioned 

amount of sand and paste (A), sufficiently proportioned amount of sand and paste (B), 

slightly Inadequately proportioned amount of sand and paste (C), inadequately 
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proportioned amount of sand and paste (D), and impractically proportioned amount of 

sand and paste (F).  Table 2-2 contains A, C, and F performance ratings with a visual 

example and description of the performance rating. 

Table 2-2: Different richness performance ratings 

Visual Rating Description 

 

A Well-proportioned amount of sand and 
paste 

 

C Slightly Inadequately proportioned amount 
of sand and paste 

 

F Impractically proportioned amount of sand 
and paste 

 

2.2.2.3 Finishability 

Finishability of a mixture describes the effort required to adequately finish the 

surface. A scoop of concrete was placed on a flat surface and smoothed using a 

magnesium hand float. Five different performance ratings were used to assesses the 

finishability of a mixture and were as follows: Insignificant effort was required to 

adequately finish the surface (A), reasonable effort was required to adequately finish the 

surface (B), significant effect was required to adequately finish the surface (C), 

excessive effort was required to adequately finish the surface (D), unattainable effort 



Final Report  

10 
 

was required to adequately finish the surface (F). Table 2-3 contains A, C, and F 

performance ratings with a visual example and description of the performance rating. 

Table 2-3: Different finishability behavior performance ratings 

Visual Rating Description 

 

A Insignificant effort was required to 
adequately finish the surface 

 

C Significant effect was required to 
adequately finish the surface 

 

F Unattainable effort was required to 
adequately finish the surface 

 

2.2.2.4 Flowability 

Flowability of a concrete mixture describes the effort required to continuously 

move the concrete. Five different performance ratings were used to assesses the 

flowability of a mixture and were as follows: insignificant effort was required to 

continuously move the concrete (A), reasonable effort was required to continuously 

move the concrete (B), significant effect was required to continuously move the 

concrete (C), excessive effort was required to continuously move the concrete (D), and 

unattainable effort was required to continuously move the concrete (F). Table 2-4 

contains A, C, and F performance ratings with a visual example and description of the 

performance rating. 
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Table 2-4: Different flowability performance ratings 

Picture Visual Rating Description 

 

A Insignificant effort was required to 
continuously move the concrete 

 

C Significant effect was required to 
continuously move the concrete 

 

F Unattainable effort was required to 
continuously move the concrete 

 

2.2.2.5 Stiffness 

Stiffness of a concrete mixtures describes the effort required to initiate movement 

of the concrete. Five different performance ratings were used to assesses the stiffness 

of a mixture and were as follows: insignificant effort was required to initiate movement of 

concrete (A), reasonable effort was required to initiate movement of concrete (B), 

significant effort was required to initiate movement of concrete (C), excessive effort was 

required to initiate movement of concrete (D), and unattainable effort was required to 

initiate movement of concrete (F). Table 2-5 contains A, C, and F performance ratings 

with a visual example and description of the performance rating. 
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Table 2-5: Different stiffness performance ratings 

Visual Rating Description 

 

A Insignificant effort was required to initiate 
movement of concrete 

 

C Significant effort was required to initiate 
movement of concrete 

 

F Unattainable effort was required to initiate 
movement of concrete 

 

2.2.2.6 Procedure for Using Visual Observations 

Currently, these visual observation methods are more qualitative measurements.  

However, visual observations remain the most widely used method of concrete 

workability evaluation at the jobsite.  This work aims to start to standardize some of 

these visual observations.  Table 2-6 contains a basic description of each behavior and 

the laboratory evaluation method for each property of fresh concrete. The operator 

gives a performance rating of an A through F scale for each of the five behavior 

characteristics. Table 2-1 through Table 2-5 can aid the operator in determining the 

rating of each behavior. After each performance behavior rating was determined, an 

average performance rating was calculated for the mixture.  This average performance 
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rating will be used as the final rating of the visual observation and describes the 

workability as: high (A), good (B), useable (C), inadequate (D), and not practical (F). 

 

Table 2-6: Visual observation evaluation methods for each behavior 

Behavior 
Characteristic Visual Observation Evaluation 

Stiffness 

• Assessing effort required to initiate movement of the 
concrete 
Laboratory Evaluation Method: 
 How difficult is it to insert a hand scoop into the 

concrete?  

Flowability 

• Assessing effort required to continuously move the 
concrete 
Laboratory Evaluation Method: 
 How well does the concrete flow while mixing in the 

drum? 

Finishability 
• Assessing effort required to adequately finish the 

surface  
Laboratory Evaluation Method: 
 How difficult is it to float the surface of the concrete?  

Richness 
• Assessing proportioned amount of sand and paste  

Laboratory Evaluation Method: 
 Will the mixture achieve proper flow and surface 

finishing requirements? 

Cohesion 

• Assessing ability of the mixture to stay together 
Laboratory Evaluation Method: 
 Does this mixture segregate while mixing, 

discharging from the mixer, or setting in the 
wheelbarrow? 
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2.2.3 The Float Test 

The workability of concrete not only describes the ability of how a mixture flows, 

but also how easy it is to finish the surface. The surface of the concrete can be floated, 

troweled, straight-edged, broomed, tinned, edged, and jointed depending on the 

applications (Concrete finishers guide 2005). The initial surface process of floating 

removes voids, decreases texture, and further levels the concrete surface. This floating 

process is required before any of these other processes can be later accomplished 

(Concrete finishers guide 2005). In other words, if the concrete was not adequately 

floated, it will later affect the other finishing processes.  

2.2.3.1 Concept of the Float Test 

A very common way to float the surface of the concrete has been to use a bull-

float for removing surface voids and creating a smoother surface texture.  As shown in 

Figure 2-2, this involves a flat rectangular piece of metal that glides over the surface of 

the concrete to fill in voids, remove texture, and further level the surface. Multiple 

passes can be required to glide over the surface of the concrete to achieve the desired 

surface finish. If a large number of passes was required to achieve the desired surface 

finish, the mixture had a poor ability to be surface finished. This number of passes 

required to fill in the surface voids and smooth the concrete surface can measure the 

ability of a mixture to be surface finished. 
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Figure 2-2: A bull-float is used to smooth the surface of the concrete 

 
2.2.3.2 Developing the Float Test 

To further develop the process of bull-floating into a laboratory test, the 

preparation of concrete samples and the parameters of the bull-float process had to be 

consistently controlled. As shown in Figure 2-3, the sample dimensions of 2 ft. by 3 ft. 

with a thickness of 3.5 in. were chosen to provide enough room to adequately evaluate 

the surface finishability, to give proper aggregate cover, and to still limit the amount of 

concrete used.  The fresh concrete was slightly overfilled into the sample form. Then 

any excess concrete can be removed with a strike-off board siting on the top of the 

forms at one end and being pulled to the other end of the forms with a consistent 

forward motion as shown in Figure 2-4.  This strike off motion was only a forward motion 

and not a sawing action due to this sawing action helps create a smooth surface. If any 

low spots were created after the strike off, enough concrete was added to fill in the hole. 

Then using a template, three standard holes with a 1 in. diameter and depth of 1 in. 

were created in the concrete surface of the concrete. 
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Figure 2-3: The dimensions of the float test forms 

 

 

Figure 2-4: The concrete is leveled with a board 

 

Then a modified bull float can be placed on the surface.  This bull-floated was 

modified because in the field a bull-float may have a range of angles, weights, and 

speeds to allow for proper surface finishability of the concrete.  However, to create a 

more consistent and repeatable workability test, the angle, weight, and speed of the 

bull-float was fixed to the following parameters: a fixed bull-float angle of the 2o allowed 

a slight height tilt of less than 0.25 in., the bull-float self-weight of 7.1 lbs. created a 

stress of 0.08 psi on the surface of the fresh concrete, and a constant speed of 0.5 ft. / 

sec using a metronome. These parameters were selected to consistently and 

3.5” 2ft. 

3ft. 
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adequately allow the bull-float to properly finish the surface (Collins et. al. 2006 and The 

Contractor’s Guide 2005).  Figure 2-5 describes the four steps involved in the Float 

Test.  

 

 

 

Step 1 Step 2 
After placing and leveling the concrete 

with a strike off board, place template on 
the form and insert the 1” diameter 

dowel into the concrete to create a hole. 

Place bull float on the surface.  With a 
fixed upward tilt of 2 degree, move the 

bull float at a constant forward motion of 
0.5 ft/sec until it reaches the form. (This 

is one pass.) 

  

Step 3 Step 4 
Using only the middle 1.5 ft. square area, 
determine the texture scale and closing 
of the holes with Figure 2.6 and Figure 

2.7. 

If the texture was a 3 or greater or the 
hole was not removed, the bull float 

passed back and forth until the texture 
was 2 or smaller and the hole closed. 

Figure 2-5: The four steps of the Float Test 
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2.2.3.3 Evaluation of the Float Test 

Multiple passes can be required to glide over the surface of the concrete to 

achieve the desired surface finish. If a large number of passes was required to achieve 

the desired surface finish, the mixture had a poor ability to be surface finished. The 

number of passes to remove texture from the concrete surface and the number of 

passes to fill in the three created holes provides a quantitative way to evaluate the 

finishability of the surface of the concrete. Figure 2-6 was used to quantify the surface 

texture. It shows a numerical textured scale value.  Two values were recorded for each 

test.  The number of passes required to smooth the surface and the number of passes 

required to fill in the hole. 

Another quantifiable measurement was to determine the ability of the concrete to 

fill in the created holes.  To further measure this behavior, three standard holes with a 1 

in. diameter and depth of 1 in. were created in the concrete surface.  These holes are 

supposed to represent holes that are sometimes present from removing large aggregate 

by striking off the surface. Figure 2-7 shows the removal of the holes through the bull-

float passing over the surface each time. 
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Figure 2-6: Examples of the amount of surface texture from Float Test samples 
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Figure 2-7: Examples of the three surface holes closing from each bull-float pass 

 

2.2.4 Rheology 

Critical workability parameters of fresh concrete has been the flowability 

properties of a mixture, which are also called the rheological properties of fresh 

concrete.  Since concrete is a thixotropic fluid (Barnes 2000, Roussel 2012), the 

rheological measurements can be broken down into the static yield stress, dynamic 

yield stress, and the plastic viscosity (Roussel 2012, Koehler and Fowler 2004).  While 

the static yield stress measures the minimum stress to initiate flow, the dynamic yield 

stress is the minimum stress to maintain flow.  The plastic viscosity can be described as 
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the ability to resist flow. A description and example of each parameter is described in 

Table 2-7. 

 

Table 2-7: Rheological parameter 

Rheological 
Parameter Description 

Static Yield 
Stress 

• The minimum stress to initiate flow. 
Examples: 
 What is the difficulty of dragging concrete with a come-

along?  
 Will the concrete leave the mixing drum?   

Dynamic Yield 
Stress 

• The minimum stress to maintain a constant flow. 
Examples: 
 How hard does the pump have to work to keep the flow 

constant? 
 Will the concrete get stuck in the chute? 

Plastic 
Viscosity 

• The ability to resist flow. 
Examples: 
 How fast does the concrete flow in the pipe of the pump? 
 How fast does the concrete flow down the chute? 

 

To measure the rheological properties in a concrete mixture, the ICAR rheometer 

(Koehler and Fowler 2004) uses a 4 blade paddle vane as shown in Figure 2-8. 

Previous work has been done to standardize the vane type, vane dimensions, container 

dimensions, stress growth test speed, and flow curve test speeds (Koehler and Fowler 

2004).  The procedure for using the ICAR rheometer is:  

1. After mixing, hand scoop the concrete into the rheometer container.  

2. Place the ICAR rheometer on an empty bucket and reset it.   

3. At 2 min after the mixer has stopped insert the rheometer vertically into the 

container.  

4. The static growth test was conducted to find the static yield stress. 
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5. The flow curve test was conducted to find the dynamic yield stress and plastic 

viscosity. 

6. The material was then placed back into the concrete mixer and mixed for 30 s. 

7. Steps 2 through 6 were repeated two more times until 3 samples of each test was 

collected. 

  
Figure 2-8: The ICAR rheometer measuring the rheology of the concrete mixture 

 

2.2.5 Developing a Performance Scale for the Application 

Four different workability tests were used to collect seven different workability 

measurements of fresh concrete.  However, a performance scale for any of these tests 

has not been well-established. For example, even though the Slump Test has been the 

most well-established of these workability tests, only a broad range of values can be 

stated to most likely achieve the desired performance.  The workability performance 

scale needs to be constructed for interpreting the data.  After communicating with ten 

different concrete finishers and using visual observations to find performance trends of 

each parameter, Table 2.8 was developed to represent flowable concrete workability 
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performances. Each workability measurement has a practical performance range for the 

application.  Also, the workability rating scale was developed specifically for this 

research and should not necessarily be used as a specification for accepting or 

rejecting a mixture. These five different classifications of excellent through unusable will 

further give insights into the workability performance. 

Table 2-8: Individual Workability Scale 

Performance  
Scale  

Slump 
Test 
(in) 

Visual 
Observation 

ICAR Rheometer Float Test 
(passes) 

Static Yield 
Stress (Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Remove 
Hole 

Remove 
Texture 

Excellent (1) 8 to 6 A or 1 <1000 <250 <10 1 to 2 1 to 2 
Good (2) 6 to 4 B or 2 1000-1500 250-500 10 to 15 3 to 4 3 to 4 
Moderate (3) 4 to 2 C or 3 1500-2000 500-1000 15 to 20 5 to 6 5 to 6 
Poor (4) 2 to 0 D or 4 >2000 >1000 >25 7 to 8 7 to 8 
Unusable (5) 0 F or 5 Too stiff Too Stiff Too Stiff >8 >8 

 

2.2.5.1 Quantifying Workability Assessments 

The seven different measurements in Table 2.8 were determined for each 

mixture.  Depending on their performance each test was given a numerical value.  The 

average numerical value was calculated and used to classify the workability of the 

mixture.  For example, if a mixture received the following rating: excellent (1) for visual 

observations, good (2) for Slump Test, excellent (1) for the Float Test in smoothness, 

excellent (1) for the Float Test in closing holes, good (2) for static yield stress, good (2) 

for dynamic yield stress, and excellent (1) for plastic viscosity, the average overall 

workability rating would be 1.43 and be classified as a good overall workability.  
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2.3 EXPERIMENTAL METHODS 
 
2.3.1 Materials and Mixture Design 

To properly validate the different workability tests, mixtures were designed to 

have various workability characteristics with excellent through unusable workability as 

shown in Table 2-9. This required mixtures to be designed with a different water to 

cementitious (w/cm) ratios, paste volumes, water reducer dosages, and aggregate 

proportions.  All the concrete mixtures described in this paper were prepared using a 

Type I cement that meets the requirements of ASTM C150. A 20% class C fly ash 

replacement was used as per ASTM C618.  Also, some mixtures used a lignosulfonate 

mid-range water reducer (WR) with a type A/F classification according to ASTM C494.  

Two different quarries supplied a coarse and intermediate gradation.  Also two different 

natural sand source were used that met the requirements of ASTM C 33 for fine 

aggregate. More information on the aggregate characteristics can be found in other 

work (Cook et al. 2013). 
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Table 2-9: Mixture designs for variability of the workability tests 

Mix* 
Coarse 
(lbs/cy) 

Int. 
(lbs/cy) 

Sand 
(lbs/cy) 

Cement 
(lbs/cy) 

Fly 
Ash 

(lbs/cy) 
Water 
(lbs/cy) W/CM 

WR 
(oz/cwt) 

1 1940 0 1250 414 103 233 0.45 3 
2 1900 0 1220 414 103 310 0.60 0 
3 1930 0 1090 451 113 282 0.50 0 
4 1830 0 1030 451 113 338 0.60 0 
5 2030 0 1140 451 113 226 0.40 3 
6 2010 0 1070 489 122 244 0.40 0 
7 990 800 1190 451 113 254 0.45 3 
8 1620 20 1200 451 113 254 0.45 6 
9 1780 0 1210 451 113 254 0.45 0 
10 1390 260 1340 451 113 254 0.45 3 
11 1160 160 1680 451 113 254 0.45 6 
12 1390 400 1200 451 113 254 0.45 3 

 

2.3.2 Mixing and Testing Procedure 

Aggregates were collected from outside stockpiles and brought into a 

temperature-controlled room at 73°F for at least 24 h before mixing. Aggregates were 

placed in a mixing drum and spun and a representative sample was taken to determine 

the moisture content and adjust the mixture proportions.  At the time of mixing all 

aggregates were loaded into the mixer along with approximately two-thirds of the mixing 

water. This combination was mixed for three minutes to allow the aggregate surface to 

saturate and ensure the aggregates were evenly distributed. Next, the cement, fly ash, 

and the remaining water was added and mixed for three minutes. The resulting mixture 

rested for two minutes while the sides of the mixing drum were scraped.  After the rest 

period, the mixer was turned on and mixed for three minutes.  The initial testing of the 

mixture included ICAR Rheometer, Slump Test, the Float Test, and visual observations. 

Figure 2.9 provides an overview of the testing. 
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Figure 2-9: Testing steps for each mixture 
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2.4 RESULTS AND DISCUSSION 

Twelve different mixtures were investigated with the Slump Test, Float Test, 

ICAR Rheometer, and visual observations. Each test was measured multiple times by a 

single operator to investigate the repeatability of the test.  For six mixtures two 

operators independently completed the tests and the results are compared. The 

following section will show results, repeatability, suggested improvements, and practical 

applications of each test.  

 

2.4.1 Single Operator Repeatability 

2.4.1.1 Slump Test 

To evaluate the repeatability of the Slump Test by three different users, twelve different 

mixtures were tested and the results are shown in Table 2-10. The Slump values 

ranged from 1.75 in. to 8.5 in. depending on the mixture.  For the mixtures investigated 

the average coefficient of variation of the Slump Test was 5.4%.  The maximum 

standard deviation was 0.38 in. and a maximum difference is 0.75 in. This is within the 

acceptable range of ASTM C 143. 
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Table 2-10: Slump Test and Visual Observations 

Mix 

Slump (in) Visual Observations 
Test 

1 
Test 

2 
Test 

3 Test 1 Test 
2 

Test 
3 

1 3 2.75 3 3 3 3 
2 8.5 8 8.25 3 3 3 
3 8.25 8 8 3 4 3 
4 5.5 5.5 6 3 3 3 
5 3.25 3 3 4 4 4 
6 1.75 2 1.75 3 3 4 
7 3.25 3.75 3.5 3 3 3 
8 5 4.75 5 2 2 2 
9 3.5 3.25 2.75 3 3 3 

10 5.5 5 5 2 2 2 
11 3.75 4 4.25 2 3 2 
12 4.75 4.5 4.75 3 3 3 

 

 

 

 

 

 

 

2.4.1.2 Visual Observations 

Table 2-9 also shows three repeat visual observation rankings of the same mixture. A 

letter grade and equivalent numerical ranking was given for each.  These rankings are 

explained in Table 2-8 and section 2.2.2. 

The average coefficient for a single operator in this test is 9.1%.  This is one of the 

largest variances of all of the tests investigated.  This is expected since the results are 

based on observation.   

2.4.1.3 The Float Test 

The Float test was conducted on twelve different mixtures as shown in Table 2-11.  

The test was conducted twice for each mixture, which counted the number of passes 

required to fill the holes and also the number of passes required to remove the texture. 

The results found mixtures required anywhere from 3 passes to more than 12 passes to 

fill in the holes and also to smooth the surface.  The average coefficient of variation of 
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the measurements to fill the hole (5.5%) is lower than removing the surface texture of 

the concrete (10%).  This seems reasonable as the removal of the surface texture 

requires the operator to observe a much larger area then measuring the size of the 

hole. 

 

Table 2-11: Slump Test and the Float Test 

Mix 
Slump (in) Float Test 1 (passes) Float Test 2 (passes) 

1 2 3 Hole Texture Hole Texture 
1 3 2.75 3 12+ 12+ 12+ 12+ 
2 8.5 8 8.25 12+ 12+ 12+ 12+ 
3 8.25 8 8 10 10 11 10 
4 5.5 5.5 6 12+ 12+ 12+ 12+ 
5 3.25 3 3 12+ 12+ 12+ 12+ 
6 1.75 2 1.75 12+ 12+ 12+ 12+ 
7 3.25 3.75 3.5 10 12 9 11 
8 5 4.75 5 6 6 6 8 
9 3.5 3.25 2.75 8 9 9 10 
10 5.5 5 5 4 4 4 4 
11 3.75 4 4.25 4 5 5 4 
12 4.75 4.5 4.75 4 3 4 4 

 

2.4.1.4 Rheometer Repeatability 

The ICAR rheometer measurements are given in Table 2-12.  The ICAR rheometer was 

shown to have good repeatability.  The average coefficient of variation of these same 

measurements were: static yield stress – 7.4%, dynamic yield stress – 4.2%, and plastic 

viscosity – 5.3%.  These variations are low and shows that this is an acceptable and 

repeatable measurement method. 
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Table 2-12: Rheological measurements of the ICAR rheometer 

 
Test 1 Test 2 Test 3 

Mix 

Static 
Yield 

Stress 
(Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Static Yield 
Stress (Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Static 
Yield 

Stress 
(Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

1 4160 469 38 4540 577 27 4440 426 44 
2 618 191 19 580 206 18 621 195 18 
3 1450 210 19 1240 210 18 1410 202 20 
4 417 205 27 298 192 27 334 210 26 

5 
Too 
Stiff 

Too 
Stiff 

Too 
Stiff 

Too Stiff Too 
Stiff 

Too 
Stiff 

Too 
Stiff 

Too 
Stiff 

Too Stiff 

6 
4600 Too 

Stiff 
Too 
Stiff 

4695 Too 
Stiff 

Too 
Stiff 

4680 Too 
Stiff 

Too Stiff 

7 2230 731 27 2340 675 28 2000 706 27 
8 1640 400 18 1410 410 19 1550 400 18 
9 1170 339 20 1020 354 21 1070 324 21 
10 1210 621 13 1300 648 13 1390 622 13 
11 1760 686 11 1700 709 9.8 1590 723 9.7 
12 1410 634 17 1580 624 18 1470 634 17 
 

2.4.1.5 Repeatability Comparison  

To further summarize repeatability of each test, Table 2-13 shows each test parameter. 
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Table 2-13: Single Operator Repeatability 

Workability Test 
Average 

Coefficient 
of Variation 

Slump Test 5.4% 

Visual Observations 9.1% 

Float Test 

Filling 
Hole 5.5% 

Removing 
Texture 10% 

ICAR Rheometer 

Static 
Yield 

Stress 
7.4% 

Dynamic 
Yield 

Stress 
4.2% 

Plastic 
Viscosity 5.3% 

 

2.4.2 Multiple Operator Comparison 

Multiple operator comparisons were conducted on each test and the average of each is 

shown in Table 2-14. Six different mixtures were conducted with two different operators. 

For the ICAR rheometer test two or three tests were completed and the average and 

one standard deviation is shown.  The proceeding subsections further discuss each of 

the multiple operator repeatability. 
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Table 2-14: Multiple Operators 

Mix Operator 
Visual 

Observation 
Slump   
(in.) 

Static 
Yield 

Stress 
(Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Float Test 
(passes) 

Fill 
Hole Smooth 

7 
A 4 3.75 2040±170 459±1 28±2.0 9 12 
B 3 3.5 2190±170 704±28 27±0.6 10 12 

8 
A 2 5.5 1560±80 461±27 20±0.8 4 6 
B 2 5 1530±120 403±6 19±0.6 6 7 

9 
A 4 4 1010±80 261±32 18±1.3 12 12 
B 3 3.25 1090±80 339±15 21±0.6 9 10 

10 
A 1 5.75 1340±58 559±34 7.8±0.3 2 5 
B 2 5.25 1300±15 630±15 13±0.2 4 4 

11 
A 3 4.5 1340±60 611±8 7.9±0.8 4 4 
B 2 4 1680±82 706±19 10±0.4 4 4 

12 
A 2 4.75 1200±81 413±2 15±0.5 4 4 
B 3 4.75 1490±82 630±6 17.5±0.4 4 3 

 

2.4.2.1 Repeatability Comparison of Two Operators 

The average difference between the two comparisons is given in Table 2-15. Each 

operator completed the testing independently.  The average difference between these 

six comparisons was small.  This suggests these tests are repeatable between two 

operators.  

Table 2-15: Multiple Operator Repeatability 

Workability Test Average 
Difference 

Slump Test 0.17 in. 
Visual Observations 0.42 

Float Test 
Filling Hole .33 pass 
Removing 

Texture 0.50 pass 

ICAR Rheometer 

Static Yield 
Stress 132 Pa 

Dynamic 
Yield Stress 108 Pa 

Plastic 
Viscosity 1.8 Pa/sec 
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2.4.3 Practical Implications  

These tests were developed and validated for flowable concrete.  In a laboratory 

setting each of these can be very useful for understanding and measuring the different 

workability behaviors of fresh concrete. Unfortunately, the ICAR Rheometer and the 

Float Test may not be practical to use in the field, but they provide useful information 

during mixture evaluation.  Furthermore, the Slump Test is continuously used in the field 

and will likely continue to be used to evaluate the consistency of a concrete mixture 

even if it does not provide as much insight into the workability as other tests.  Finally, 

visual observations have been and will continue to be a useful method to evaluate the 

workability of a concrete mixture.  It would be helpful if in the future more standardized 

methods of visual observation could be used to evaluate concrete mixtures.   
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2.5 SUMMARY  
 

Four different workability tests were introduced to evaluate flowable concrete 

applications. These four tests can evaluate the concrete in eleven different ways.  The 

following can be stated about the different workability tests. 

  

• The Slump test has been the most commonly specified workability test, but it 

cannot measure the wide range workability performance required of concrete. 

• Visual observations is used most often in the field. 

• The ICAR Rheometer can measure the rheology parameters of static yield 

stress, dynamic yield stress, and plastic viscosity reliably with reasonable variations.  

• The Float Test measures the ability of a concrete mixture to be adequately 

surface finished. 
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CHAPTER 3 - LABORATORY EVALUATIONS OF COARSE 
AGGREGATE GRADATION FOR OPTIMIZED GRADED CONCRETE 

BRIDGE DECKS 
 

3.1 INTRODUCTION 

A concrete mixture is commonly composed of only a single coarse aggregate and fine 

aggregate (Taylor et. al 2007, ACI 211 1991, Kosmatka et. al 2011, Neville 2012, 

Methta and Monteiro 2006, Powers 1968, Richardson 2005, and NSSGA 2013). While 

these aggregate gradations typically meet the standards of ASTM C 33, the gradations 

standards were established to most economically produce crushed aggregate and not 

necessarily the best performance in a concrete mixture (Lamond and Pielert 2006). 

Furthermore, many different approaches and aggregate concepts have been used to 

guide the design of the proportion and gradation aggregates (Kosmatka 2011, Neville 

2012, NSSGA 2013, ASTM C 33, Powers 1968). Some of these include numerical 

packing methods (Goltermann et. al 1997, Jones et. al 2002, ASTM C 29, Dewar 1999, 

de Larrard 1999), surface area estimations (Richardson 2005, Powers 1968, Edwards 

1918, Day 2006), and graphical combined gradation techniques based on practical 

experience (Taylor et. al 2007, Richardson 2005, Shilstone 1990).  

When a concrete mixture was poorly proportioned or obtains a poor gradation, the 

workability performance of the concrete can be negatively impacted (Taylor et. al 2007, 

Kosmatka et. al 2011, Neville 2012, Methta and Monteiro 2006, Powers 1968, 

Richardson 2005, and NSSGA 2013). In some cases adjustments of larger admixture 

dosages or a higher volume of paste (water and binder) can achieve the desired 

workability (Taylor et. al 2007, Kosmatka et. al 2011, Neville 2012, Methta and Monteiro 

2006, Powers 1968, Richardson 2005, Cook et. al. 2014, and NSSGA 2013). Higher 
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volumes of paste can cause greater overall cost, decrease in durability, and lower 

sustainability of the produced structure (Kosmatka 2011, Mehta and Monteiro 2006, 

Shilstone 1990, Shilstone 1991, Cook et. al. 2013).  Unfortunately, very little published 

work has systematically quantified this relationship (Richardson 2005, Powers 1968, 

Anson-Cartwright 2011, Obla and Kim 2008, Koehler and Fowler 2007, Goldbeck and 

Grey 1968). 

In Chapters 3, 4, and 5 of this work the impact of the aggregate gradation has been 

used to quantitatively compare mixtures using various aggregate concepts and 

proportioning techniques and the workability for flowable concrete.  In past work, the 

combined gradation with the Individual Percent Retained (IPR) chart best predicted the 

impact of the aggregate gradation and proportioning for the workability of concrete in 

slip formed pavements. This will serve as a starting point for this research. 

 

3.1.1 Significance of Work 

This work aims to build on the previous work and establish limits for the 

aggregate gradations for the IPR chart that provide insight into the impact on concrete 

workability for flowable applications, especially those where the concrete has to be 

pumped.  These gradation recommendations will help practitioners choose one or more 

locally available aggregates that can be blended to produce aggregate gradations that 

improve the workability of concrete for slip formed pavements.  With this improved 

workability then improvements can be made in economy, sustainability, and durability of 

these mixtures. 
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3.2 EXPERIMENTAL METHODS 

3.2.1 Materials 

All the concrete mixtures described in this paper were prepared using a Type I 

cement that meets the requirements of ASTM C150 with 20% ASTM C618 class C fly 

ash replacement by weight. To investigate the impact of the aggregate gradation, all of 

the mixtures were designed with the same paste properties: a water-to-cementitious 

material ratio (w/cm) of 0.45, 564 lbs./cy of cement, 20% class C fly ash replacement, 

and a paste content of 32.2% for the mixture volume.  A constant water reducer (WR) of 

6 oz. /cwt was used in every mixture to achieve the high flowability properties of each 

mixture.  This WR was a lignosulfonate mid-range WR with a type A/F classification 

according to ASTM C 494. By holding these paste parameters constant, this allowed 

comparisons between the workability of the mixtures with the various combined 

gradations. 

The aggregate gradations and proportions were change to evaluate the impacts 

of the workability.  Table 3-1 shows the seventy-five different mixture proportions used 

in this study.  Many of the mixtures use a coarse, intermediate, and fine aggregate to 

proportion the combed gradation.  Three crushed limestone sources and three natural 

sand sources were used to evaluate and validate the aggregate proportioning limits. 

One coarse aggregate source and one natural sand source were used to evaluate 

gradation limits, but two different coarse aggregate sources and two different natural 

sand sources were used to validate these results. Many of the gradations were sieved 

to evaluate the different gradation limits and cannot be classified according to any 

standard gradation system. 
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Table 3-1: Batch Weights 

Mix 
Quarry 
Source 

Sand 
Source Coarse (lbs.) Int. (lbs.) Sand (lbs.) 

1 A A 1762 636 705 
2 A A 1639 588 871 
3 A A 1516 539 1037 
4 A A 1393 490 1204 
5 A A 1269 442 1370 
6 A A 1146 393 1536 
7 A A 1979 0 1115 
8 A A 1023 344 1702 
9 A A  900  296 1869  
10 A A 1598 443 1188 
11 A A 1649 0 1433 
12 A A 1476 201 1404 
13 A A 1063 682 1335 
14 A A 856 922 1301 
15 A A 650 1163 1266 
16 A A 443 1403 1232 
17 A A 1115 847 1124 
18 A A 925 1036 1124 
19 A A 542 1414 1126 
20 A A 1050 911 1125 
21 A A 508 1875 710 
22 A A 807 778 1489 
23 A A 987 951 1147 
24 A A 1166 1124 806 
25 A A 1346 1297 464 
26 A A 807 778 1489 
27 A A 987 951 1147 
28 A A 1166 1124 806 
29 A A 1346 1297 464 
30 A A 1306 482 1296 
31 A A 1543 569 981 
32 A A 1781 657 667 
33 A A 987 951 1147 
34 A A 1166 1124 806 
35 A A 807 778 1489 
36 A A 987 951 1147 
37 A A 1166 1124 806 
38 A A 1346 1297 464 
39 A A 1971 0 1122 
40 A A 1971 0 1122 
41 A A 1971 0 1122 
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42 A A 1971 0 1122 

Mix 
Quarry 
Source 

Sand 
Source Coarse (lbs.) Int. (lbs.) Sand (lbs.) 

43 A A 1971 0 1122 
44 A A 1971 0 1122 
45 A A 1971 0 1122 
46 A A 1971 0 1122 
47 A A 1971 0 1122 
48 A A 1971 0 1122 
49 A A 1971 0 1122 
50 A A 1971 0 1122 
51 A A 1971 0 1122 
52 A A 1971 0 1122 
53 B B 1172 408 1455 
54 B B 1292 284 1457 
55 B B 1413 161 1459 
56 B B 1533 37 1461 
57 B B 1052 531 1453 
58 B B 931 655 1452 
59 B B 1062 176 1784 
60 B B 1523 393 1131 
61 B B 832 67 2111 
62 B B 1753 502 804 
63 B B 811 778 1450 
64 B B 690 902 1448 
65 B B 1609 0 1471 
66 C C 1009 818 1151 
67 C C 1174 650 1156 
68 C C 1409 412 1163 
69 C C 1644 173 1170 
70 C C 1806 8 1175 
71 C C 1517 472 994 
72 C C 1301 351 1333 
73 C C 1192 290 1503 
74 C C 1084 229 1673 
75 C C 976 169 1842 

 

3.2.2 Sieve Procedure for Creating a Gradation 

To investigate different aggregate gradations, sieving was used to create the 

majority of the gradations investigated.  Aggregates were oven dried, sieved into 
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individual sizes, and combined into a single gradation.  This process was tedious, but 

effective for closely controlling the gradation of a mixture. 

 

3.2.3 Mixing and Testing Procedure 

Aggregates were collected from outside stockpiles and brought into a 

temperature-controlled room at 72°F for at least 24 h before mixing. Aggregates were 

placed in a mixing drum and spun and a representative sample was taken to determine 

the moisture content to apply the correction.  At the time of mixing all aggregates were 

loaded into the mixer along with approximately two-thirds of the mixing water. This 

combination was mixed for three minutes to allow the aggregate surface to saturate and 

ensure the aggregates were evenly distributed. Next, the cement material and the 

remaining water was added and mixed for three minutes. The resulting mixture rested 

for two minutes while the sides of the mixing drum were scraped.  After the rest period, 

the mixer was turned on and mixed for three minutes.  The initial testing of the mixture 

included Slump Test, visual observations, ICAR rheometer, and the Float Test. These 

Test can be further explained in Chapter 2 of this report. 

 

3.2.4 Using the Workability Tests to Evaluate Structural Concrete 

Four different workability tests were used to collect seven different workability 

measurements of fresh concrete.  However, a performance scale for any of these tests 

has not been well-established. For example, even though the Slump Test has been the 

most well-established of these workability tests, only a broad range of values can be 

stated to most likely achieve the desired performance.  The workability performance 
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scale needs to be constructed for interpreting the data.  After communicating with ten 

different concrete finishers and using visual observations to find performance trends of 

each parameter, Table 3-2 was developed to represent flowable concrete workability 

performance. Each workability measurement has a practical performance range for the 

application.  Also, the workability rating scale was developed specifically for this 

research and should not necessarily be used as a specification for accepting or 

rejecting a mixture. These five different classifications of excellent through unusable will 

further give insights into the workability performance. 

  

Table 3-2: Workability Performance Rating System 

Workability 
Performance  

Scale for 
Each Test 

Slump 
Test 
(in) 

Visual 
Observation 

ICAR Rheometer  Float Test 
(passes) 

Static Yield 
Stress (Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Remove 
Hole 

Remove 
Texture 

Excellent (1) 8 to 6 A or 1 < 1000 <250 <10 1 to 2 1 to 2 
Good (2) 6 to 4 B or 2 1000-1500 250-500 10 to 15 3 to 4 3 to 4 
Moderate (3) 4 to 2 C or 3 1500-2000 500-1000 15 to 20 5 to 6 5 to 6 
Poor (4) 2 to 0 D or 4 >2000 >1000 >25 7 to 8 7 to 8 
Unusable (5) 0 F or 5 Too stiff Too Stiff Too Stiff +9 +9 

 

3.2.5 Quantifying Workability Assessments 

After analyzing the data and comparing each workability test for flowable 

concrete, the quantity of measurements needed to be simplified into a practical manner.  

In other words, these seven different measurements were quantified into a single overall 

workability performance rating for a given mixture.  This was completed by taking the 

average workability performance of each measurement as classified in Table 2-2. After 
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the average numerical value was calculated, it was converted back into the following 

workability scale range: excellent (1), good (2), moderate (3), poor (4), and unusable 

(5). For an example, if a mixture received the following rating: excellent (1) for visual 

observations, good (2) for Slump Test, excellent (1) for the Float Test in smoothness, 

excellent (1) for the Float Test in closing holes, good (2) for static yield stress, good (2) 

for dynamic yield stress, and excellent (1) for plastic viscosity, the average overall 

workability rating would mathematically be 1.43 and be classified as a good overall 

workability. 
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3.3 RESULTS AND DISCUSSION 
Table 3-3: Workability Results 

Mix 
Overall 

Workability 
Visual 

Observation 

Static 
Yield 

Stress (Pa) 

Dynamic 
Yield 
Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Slump 
(in) 

Float Test 
(passes) 

Hole Texture 

1 Unusable Unusable 4400 
Too 
Stiff 

Too 
Stiff 7.25 12+ 12+ 

2 poor poor 1467 272±13 36±2.4 6.25 8 9 
3 moderate moderate 1045±20 327±12 16±0.6 5 5 6 
4 good good 948±92 315±33 10.2±0.7 6.5 4 4 
5 good excellent 1140±142 299±19 12.5±3.0 7 2 2 
6 good good 1139±84 1142±64 10.2±1.5 4 3 3 
7 poor poor 2811±150 720±45 14.4±1.4 2 12+ 12+ 
8 poor poor 2811±150 720±45 14.4±1.4 2.25 12+ 12+ 

9 Unusable Unusable Too Stiff 
Too 
Stiff 

Too 
Stiff 1.5 5 3 

10 moderate poor 1379±195 393±21 15±1.2 8 12+ 12+ 
11 Moderate moderate 943±23 428±1 11.9±1.7 6 5 5 
12 good excellent 796±9 341±48 10.8±1.3 7 3 3 
13 good excellent 1193±6 469±16 11.9±1.3 6.5 6 5 
14 moderate good 1755±354 642±12 9.9±1.0 4 10 10 
15 poor moderate 1974±54 647±3 13.1±1.5 4.25 9 9 
16 poor poor 2457±394 751±8 15.4±0.6 2.5 12+ 12+ 
17 good excellent 791±66 339±21 10.9±1.6 7.5 4 4 
18 good good 773±46 288±14 11.9±0.6 6.5 5 5 
19 good excellent 797±54 415±31 11.8±0.6 5.5 5 4 
20 good excellent 1077±67 378±11 8.3±0.9 7.5 2 2 
21 Moderate good 833±70 390±33 11.8±1.0 6.5 10 8 

22 Unusable poor Too Stiff 
Too 
Stiff 

Too 
Stiff 2.75 11 8 

23 good good 1131±41 509±9 13±0.3 6 4 3 
24 good good 970±53 296±11 7.7±0.8 7.5 6 8 

25 Unusable poor Too Stiff 
Too 
Stiff 

Too 
Stiff 0 12+ 12+ 

26 poor poor 1519±38 450±21 10.7±0.1 3 8 8 
27 moderate good 945±34 318±29 10.6±1.2 7.5 10 10 
28 moderate moderate 882±66 211±15 19.1±1.3 8 5 6 

29 Unusable poor Too Stiff 
Too 
Stiff 

Too 
Stiff 8.5 12+ 12+ 

30 Unusable Unusable Too Stiff 
Too 
Stiff 

Too 
Stiff 0 12+ 12+ 

31 poor poor 2453±179 679±33 27.0±3.0 4.5 6 4 
32 Unusable poor 2119±142 426±100 52.1±6.0 6 12+ 12+ 
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Mix 
Overall 

Workability 
Visual 

Observation 

Static 
Yield 

Stress (Pa) 

Dynamic 
Yield 
Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Slump 
(in) 

Float Test 
(passes) 

Hole Texture 
33 moderate moderate 2178±226 818±21 12.8±0.4 4 4 4 

34 Unusable Unusable Too Stiff 
Too 
Stiff 

Too 
Stiff 7.5 12+ 12+ 

35 Unusable Unusable Too Stiff 
Too 
Stiff 

Too 
Stiff 0 12+ 12+ 

36 Unusable Unusable Too Stiff 
Too 
Stiff 

Too 
Stiff 1.25 12+ 12+ 

37 poor poor 1275±25 133±48 35±14 8.25 6 12 

38 Unusable Unusable Too Stiff 
Too 
Stiff 

Too 
Stiff 0 12+ 12+ 

39 poor poor 936±68 295±11 14.5±0.7 6.75 12+ 12+ 
40 poor poor 1762±70 538±33 13.9±0.7 3.5 12+ 12+ 
41 moderate moderate 1876±144 759±35 6.5±0.4 3.5 4 12 
42 good good 1427±37 423±43 10.1±1.1 4.75 4 4 
43 moderate good 1293±71 389±33 15.2±1.9 5.25 6 8 
44 good good 1375±121 457±19 9.1±0.5 5.25 2 3 
45 good good 1437±28 505±61 12.8±0.9 5.25 4 4 
46 good good 1137±137 513±24 6.5±0.3 5.5 5 6 
47 moderate moderate 1681±51 532±22 9.3±1.6 4 8 8 
48 poor poor 1705±70 497±4 9.8±1.1 4 8 8 
49 moderate moderate 865±57 283±13 10.7±1.2 7.75 4 12 
50 good good 846±62 290±6 12.6±0.9 6.75 4 4 
51 good good 1160±4.5 325±12 12.5±1.1 7.5 4 4 
52 moderate poor 1241±27 422±5 9.9±1.3 5.25 4 12 
53 good excellent 1048±93 383±8 8.9±0.4 6.75 3 4 
54 good excellent 1100±195 327±9 10.3±0.3 6.25 4 4 
55 good excellent 975±115 297±28 7.4±0.4 8 5 5 
56 good excellent 1557±175 557±40 11.1±0.1 5.75 3 2 
57 good excellent 1394±99 512±32 7.3±0.7 5.5 6 4 
58 moderate good 1221±111 444±11 9.6±0.4 5.25 7 6 

59 poor moderate Too Stiff 
Too 
Stiff 

Too 
Stiff 2.75 4 4 

60 good good 1341±106 397±16 14.9±0.6 6 4 5 

61 Unusable poor Too Stiff 
Too 
Stiff 

Too 
Stiff 0.5 2 1 

62 Unusable Unusable Too Stiff 
Too 
Stiff 

Too 
Stiff 7 12+ 12+ 

63 moderate moderate 1147±118 519±33 8.0±0.4 5.5 6 6 
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Mix 

Overall 
Workability 

Visual 
Observation 

Static 
Yield 

Stress (Pa) 

Dynamic 
Yield 
Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Slump 
(in) 

Float Test 
(passes) 

Hole Texture 

64 Unusable Unusable Too Stiff 
Too 
Stiff 

Too 
Stiff 2.75 12+ 12+ 

65 poor poor 1840±154 599±22 18.6±0.8 3.75 8 8 
66 moderate poor 2036±168 459±1 23.3±2.0 3.75 4 12 
67 moderate moderate 1474±77 422±34 14.3±0.9 6.25 3 12 
68 good good 1203±81 413±2 14.5±0.5 4.75 4 4 
69 moderate good 1562±80 461±27 13.1±0.8 5.5 4 6 
70 poor poor 1013±80 261±32 18.2±1.3 8 12 12 

71 Unusable poor Too Stiff 
Too 
Stiff 

Too 
Stiff 3.5 12 12 

72 good excellent 1339±58 559±34 7.8±0.3 5.75 2 5 
73 good good 1341±9 578±5 9.8±0.5 5 3 3 
74 moderate moderate 1343±60 611±8 7.9±0.8 4.5 4 4 

75 poor poor Too Stiff 
Too 
Stiff 

Too 
Stiff 1.5 5 4 

 

3.3.1 Coarse Aggregate  

To begin investigating the minimum and maximum gradation limits, Figure 3-1 

shows gradations with almost constant sand, but varying coarse to intermediate 

aggregate volumes with the overall workability performance.  The four middle 

gradations have an overall good workability for flowable concrete.  However, when the 

amount of coarse or intermediate for a given aggregate became excessive on a single 

sieve or multiple sieves then the workability drastically decreases. This intense amount 

of intermediate and large coarse aggregate can be further shown visually in Figure 3-2 

and also the Slump Test in Figure 3-3. The data suggests the coarse aggregate sieve 

sizes (#4 through ¾”) becomes excessive at 20% retained on a sieve size. This will be a 

continuous trend throughout this investigation and a maximum limit of 20% should be 

set at this value. 
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Figure 3-1: Comparison of the overall workability with the different proportions of 

coarse and intermediate of limestone A 

 
 

 
Figure 3-2: Examples of excessive amounts of coarse and intermediate sieve 

sizes 
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Figure 3-3: The Slump Test with excessive amounts of coarse and intermediate 

sieve sizes 

 
3.3.1.1 Using other Aggregate Sources 

One coarse aggregate source and one sand source was used to investigate 

many of the gradation concepts.  Two more crushed limestone sources and two more 

natural sand sources were selected to further validate the findings. Figure 3-4 uses 

limestone B and sand B and Figure 3-5 plots limestone C and sand C. 
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Figure 3-4: The overall workability of Limestone B as the gradation of the coarse 

aggregate was changed. 

 
 

 
Figure 3-5: The overall workability of Limestone C as the coarse aggregate 

gradation was changed. 
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3.3.2 Maximum Boundary Limit 

Due to excessive amounts on a single sieve size creating workability problems, 

maximum sieve size limits from the field have been proposed and range from 15 to 22 

% for each sieve size. The results of this work showed excessive amounts can create 

workability issues. Even though the maximum limits did slightly vary, a simple gradation 

limit of 20% could be set for a single sieve size ranging from #4 to 0.75 in.  The 20% 

retained on the #4 to 0.75 in. sieve size range will be a reoccurring trend throughout 

these results and serve as a key finding of this work.  These results also match the 

recommendations made for slip formed pavements in another publication (Cook et. al. 

2013). 

 

3.3.3 Theoretical Bell-Shaped Curve 

As discussed previously it has been suggested that an ideal packing of 

aggregates should be obtained with a bell shaped curve on the percent retained chart. 

This ideal bell shaped curve fits within the 8-18 limits of the Individual Percent Retained 

Chart.  Figure 3-6 compares the ideal bell shaped curve and a practical gradation curve 

that was obtained by combining two aggregates locally available in Oklahoma.  

Compared to the practical gradation, the bell shaped curve did not increase the 

workability of the mixture.  In fact, this bell shaped curve reduced the finishability 

properties of the mixture due to the high amounts of #8 and #16 as shown in Figure 3-7.  

More investigations have been conducted on these two sieve sizes in the coarse sand 

section.    
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Figure 3-6: The overall workability of the theoretical bell shaped curve is 

compared with a practical gradation.  *note: this mixture had surface finishability issues 

 

 

Figure 3-7: A visual comparison of the bell shaped curve and a practical 

gradation. 
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3.3.4 Minimum Boundary Limit  

Several of the gradations in this research have contained “low” values of certain 

aggregate sizes.  These low spots in the gradation have been called “valleys” and are 

commonly thought to reduce the workability of the mixture and should be avoided.   To 

investigate the impacts of valleys on gradation curves, Figure 3-8 shows combined 

gradations containing a valley, a double valley, and a gradation used in the field. The 

workability performance of the mixture did not drastically change if gradation had a 

single or a double valley. It should be noted that while changing the gradation of this 

mixture no single sieve size was greater than 20%. 

 

 
Figure 3-8: The overall workability from a single and double valley in the 

gradation. 
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3.3.4.1 Developing a Minimum Boundary 

Even though maximum limits of 20% retained on the #4 to 0.75 in. sieve size 

range could be a reoccurring trend, the results of this work didn’t consistently show 

deficient amounts of coarse aggregate sieve sizes (#4 to 0.75 in.) effecting the 

workability of concrete.  Deficient sieve size amounts can indirectly effect the workability 

by actually forcing other sieve sizes to exceed a maximum boundary limit of 20%.  It 

should also be stated that fine aggregate sieve sizes have yet to be investigated for 

effects of the minimum boundary limits. 

 

3.3.5 Nominal Maximum Coarse Aggregate Size  

Multiple mixture design methods and publications claim the maximum size of the 

coarse aggregate affects the workability of the concrete (Taylor et. al. 2007, Kosmatka 

et. al. 2011, Neville 2012, Mehta and Monteiro 2006, ACI 211).  To determine the 

validity of these claims, 0.5 in, 0.75 in., and 1 in. maximum size gradations were 

evaluated in Figure 3-9.  Each gradation was designed to have similar sand contents 

and no sieve size above 20%.  The results show gradations with various maximum 

sizes can produce satisfactory mixtures with no significant differences in workability. 

This data suggests that the guidance of only increasing the aggregate size by itself 

does not lead to an improvement in the workability of a mixture.  However, using a 

larger maximum aggregate size is beneficial because it more easily produces an 

aggregate gradation that does not have an excessive amount of material on a single 

sieve size.  In other words, it gives the producer a larger number of sieves to distribute 

their gradation without creating an excessive amount on a single sieve size. 
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Figure 3-9: A comparison of the overall workability of the different maximum 

sieve sizes with closely consistent sand amounts. 

 
3.3.6 Recommended boundary limits 

Throughout this research, a common trend of coarse aggregate sieve sizes (#4 

and larger) retaining over 20% could have a decrease in workability. However, a 

gradation with low amounts on one or two sieve sizes does not necessarily affect the 

performance of the concrete.  Yet, it becomes difficult to stay within the maximum 

boundary limits if a gradation missing or having a small amount on an adjacent sieve 

sizes. 

 

3.3.7 Well-Graded versus Gap-Graded  

Even though well and gap-graded definitions are broad, Figure 3-1 shows that 

more well-graded and gap-graded mixtures could both perform well as long as the 

gradations did not increase above 20%.  The three gradations that were concentrated in 
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the middle 

 of the chart had similar WR even though the degree of gaps were drastically different.  

Even in Figure 3-6, an idea bell shape curve and many other practical gradations had 

similar workability. This shows a combined gradation does not have to be well-graded or 

gap-graded. Multiple varieties of gradations will all perform similar.  

 

3.3.8 Practical Applications 

This work was able to develop some basic and simple guidelines for 

proportioning the coarse aggregate sieve sizes in a combined gradation.  These 

gradation guidelines can be extremely beneficial to improve the construction 

specifications and practices. Furthermore, the guidelines give the ability of a mixture to 

reduce the total cementitious material content and thus decreasing the cost of the 

mixture, improving durability of the concrete, and reducing CO2 emissions (Taylor et. al. 

2007, Kosmatka et. al. 2011, Cook et. al. 2013). 
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3.4 SUMMARY 

The aggregate proportioning methods were investigated for the workability of flowable 

concrete applications.  Based on the data collected, the following have been found: 

• If a single sieve size of the coarse aggregate (#4 and larger) retained more than 

20%, the workability performance of the concrete would tend to decrease.   

• Unless a sieve size retains more than 20%, a large range of gradations can be 

used without drastically affecting the workability of the concrete.  

• Deficient amounts of a single sieve size or consecutively adjacent sieve sieves 

did not affect the workability of the concrete until a sieve size retained above 

20%.  

• Ideal bell shaped curve created surface finishability issues and is not 

recommended in practice.  

• The maximum aggregate size did not have a major effect on the workability.  

However, the maximum aggregate size can help reduce the high amounts on a 

single sieve size by increasing the number of sieves used.  

 

The gradation and proportioning of fine aggregate is essential to understanding and 

developing concrete mixtures with the ability to be placed, consolidated, and surface 

finished. Understanding the gradation limits of an individual percent retained chart is a 

fundamental step into adequately proportioning aggregates.   This will allow for a better 

approach to predict workability and reduce the paste content of a mixture. 
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CHAPTER 4 - LABORATORY EVALUATIONS OF FINE AGGREGATE 
GRADATION FOR OPTIMIZED GRADED CONCRETE BRIDGE DECKS 

 

4.1 INTRODUCTION 

One of the most important properties of concrete is workability, which has been 

commonly described as the ability of a concrete mixture to be mixed, placed, 

consolidated, and surface finished in desirable manner (Taylor et. al 2007, Kosmatka et. 

al 2011, Neville 2012, Mehta and Monteiro 2006, Powers 1968, Power 1932).  One 

contributor to this property is fine aggregate (Neville 2012, Mehta and Monteiro 2006, 

Powers 1968, Powers 1932, NSSGA 2013).  A concrete mixture should be proportioned 

with an adequate volume and gradation consistency of fine aggregate. For surface 

finishing of concrete, fine aggregate plays an important role in the surface finish of 

concrete (Neville 2012, Mehta and Monteiro 2006, Powers 1968, Power 1932, NSSGA 

2013) and also to be cohesive (Taylor et. al. 2007, Neville 2012).  People have used the 

phrases “fine sand” and “coarse sand” to describe the consistency for the particle 

distribution of the fine aggregate gradation and the relationship to the workability 

properties of concrete (Neville 2012, Richardson 2005, Abrams 1918).  These two 

phrases have given powerful meanings.  While fine sand helps contribute to the smooth 

surface finishability and consolidation of the concrete (Kosmatka 2011, Neville 2012), 

coarse sand helps to “stiffen up” the concrete mixture to prevent segregation (Taylor 

2007, ACI 302, Harrison 2004). A variety of fine aggregate gradations can be used to 

adequately proportion a concrete mixture (Neville 2012, Mehta and Monteiro 2006), but 

this gradation should not get “too coarse of sand or “too” fine of sand. Unfortunately, 
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very little published work has systematically quantified this relationship (Powers 1968, 

Abrams 1918, Anson-Cartwright 2011, Obla and Kim 2008, Koehler and Fowler 2007, 

Goldbeck and Grey 1968). 

In another report by the authors (Cook et. al 2013) it was shown that aggregate 

gradation concepts and proportioning techniques have a significant impact on the 

workability of concrete for slip formed pavements.  The findings suggest a combined 

gradation based on the Individual Percent Retained (IPR) chart best predicted the 

impact of the aggregate gradation and proportioning for the workability of concrete for 

slip formed pavements.  

4.1.1 Objectives 

This work aims to build on the previous work and establish limits for the fine 

aggregate gradations for the IPR chart that provide insight into the impact on concrete 

workability for flowable applications, especially those where concrete should be 

pumped.  These gradation recommendations will help practitioners choose one or more 

locally available aggregates that can be blended to produce aggregate gradations that 

improve the workability of concrete for slip formed pavements.  With this improved 

workability then improvements can be made in economy, sustainability, and durability of 

these mixtures. 
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4.2 MATERIALS AND METHODS 

4.2.1 Materials 

All the concrete mixtures described in this work were prepared using a Type I 

cement that meets the requirements of ASTM C150 with 20% ASTM C618 class C fly 

ash replacement by weight. To investigate the impact of the aggregate gradation, all of 

the mixtures were designed with the same paste properties: a water-to-cementitious 

material ratio (w/cm) of 0.45, 564 lbs./cy of cement, 20% class C fly ash replacement, 

and a paste content of 32.2% for the mixture volume. A constant water reducer (WR) of 

6 oz. /cwt was used in every mixture to achieve flowable concrete.  This WR was a 

lignosulfonate mid-range WR with a type A/F classification according to ASTM C494. 

However, the aggregate proportions were changed.  By holding these paste parameters 

constant, this allowed comparisons between the workability of the mixtures with the 

various combined gradations. 

4.2.2 Mixture Design 

To investigate the impact of the aggregate gradation, all of the mixtures were 

designed with the same paste properties: a water-to-cementitious material ratio (w/cm) 

of 0.45, a paste content of 32.2% of the mixture volume, and 20% class C fly ash 

replacement. However, the aggregate proportions were changed.  By holding these 

paste parameters constant, this allowed comparisons between the workability of the 

mixtures with the various combined gradations.  
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Table 4-1 shows the batch weights for seventy-five different concrete mixtures 

used in this study.  Many of the mixtures use a coarse, intermediate, and fine aggregate 

to proportion the combed gradation.  Three crushed limestone sources and three 

natural sand sources were used to evaluate and validate the aggregate proportioning 

limits. One coarse aggregate source and one natural sand source were used to 

evaluate gradation limits, but two different coarse aggregate sources and two different 

natural sand sources were used to validate these results. Many of the gradations were 

sieved to evaluate the different gradation limits and cannot be classified according to 

any standard gradation system. 
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Table 4-1: Batch Weights 

Mix 
Quarry 
Source 

Sand 
Source 

Coarse 
(lbs.) 

Int. 
 (lbs.) 

Sand 
(lbs.) 

1 A A 1762 636 705 
2 A A 1639 588 871 
3 A A 1516 539 1037 
4 A A 1393 490 1204 
5 A A 1269 442 1370 
6 A A 1146 393 1536 
7 A A 1979 0 1115 
8 A A 1023 344 1702 
9 A A  900  296 1869  

10 A A 1598 443 1188 
11 A A 1649 0 1433 
12 A A 1476 201 1404 
13 A A 1063 682 1335 
14 A A 856 922 1301 
15 A A 650 1163 1266 
16 A A 443 1403 1232 
17 A A 1115 847 1124 
18 A A 925 1036 1124 
19 A A 542 1414 1126 
20 A A 1050 911 1125 
21 A A 508 1875 710 
22 A A 807 778 1489 
23 A A 987 951 1147 
24 A A 1166 1124 806 
25 A A 1346 1297 464 
26 A A 807 778 1489 
27 A A 987 951 1147 
28 A A 1166 1124 806 
29 A A 1346 1297 464 
30 A A 1306 482 1296 
31 A A 1543 569 981 
32 A A 1781 657 667 
33 A A 987 951 1147 
34 A A 1166 1124 806 
35 A A 807 778 1489 
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36 A A 987 951 1147 
37 A A 1166 1124 806 
38 A A 1346 1297 464 
39 A A 1971 0 1122 
40 A A 1971 0 1122 
41 A A 1971 0 1122 

Mix 
Quarry 
Source 

Sand 
Source 

Coarse 
(lbs.) 

Int. 
 (lbs.) 

Sand 
(lbs.) 

42 A A 1971 0 1122 
43 A A 1971 0 1122 
44 A A 1971 0 1122 
45 A A 1971 0 1122 
46 A A 1971 0 1122 
47 A A 1971 0 1122 
48 A A 1971 0 1122 
49 A A 1971 0 1122 
50 A A 1971 0 1122 
51 A A 1971 0 1122 
52 A A 1971 0 1122 
53 B B 1172 408 1455 
54 B B 1292 284 1457 
55 B B 1413 161 1459 
56 B B 1533 37 1461 
57 B B 1052 531 1453 
58 B B 931 655 1452 
59 B B 1062 176 1784 
60 B B 1523 393 1131 
61 B B 832 67 2111 
62 B B 1753 502 804 
63 B B 811 778 1450 
64 B B 690 902 1448 
65 B B 1609 0 1471 
66 C C 1009 818 1151 
67 C C 1174 650 1156 
68 C C 1409 412 1163 
69 C C 1644 173 1170 
70 C C 1806 8 1175 
71 C C 1517 472 994 
72 C C 1301 351 1333 
73 C C 1192 290 1503 
74 C C 1084 229 1673 
75 C C 976 169 1842 
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4.2.3 Sieve Procedure for Creating a Gradation 

To investigate different aggregate gradations using a single source, sieving was 

used to create the vast majority of the gradations described.  Aggregates were oven 

dried, sieved into individual sizes, and combined into a single gradation.  This process 

was tedious, but effective for closely controlling the gradation of a mixture. 

4.2.4 Mixing and Testing Procedure 

Aggregates were collected from outside stockpiles and brought into a 

temperature-controlled room at 72°F for at least 24 h before mixing. Aggregates were 

placed in a mixing drum and spun and a representative sample was taken to determine 

the moisture content to apply the correction.  At the time of mixing all aggregates were 

loaded into the mixer along with approximately two-thirds of the mixing water. This 

combination was mixed for three minutes to allow the aggregate surface to saturate and 

ensure the aggregates were evenly distributed. Next, the cement material and the 

remaining water was added and mixed for three minutes. The resulting mixture rested 

for two minutes while the sides of the mixing drum were scraped.  After the rest period, 

the mixer was turned on and mixed for three minutes.  The initial testing of the mixture 

included Slump Test [20], visual observations, ICAR rheometer, and the Float Test. 

These Test can be further explained in Chapter 2 of this report 
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4.2.5 Using Workability Tests to Evaluate Flowable Concrete 

The four different workability tests were used to collect seven different workability 

measurements of fresh concrete.  However, a performance scale for any of these tests 

has not been well-established. For example, even though the Slump Test has been the 

most well-established of these workability tests, only a broad range of values can be 

stated to most likely achieve the desired performance.  The workability performance 

scale needs to be constructed for interpreting the data.  After communicating with ten 

different concrete finishers and using visual observations to find performance trends of 

each parameter, Table 4-2 was developed to represent flowable concrete workability 

performances. Each workability measurement has a practical performance range for the 

application.  Also, the workability rating scale was developed specifically for this 

research and should not necessarily be used as a specification for accepting or 

rejecting a mixture. These five different classifications of excellent through unusable will 

further give insights into the workability performance.  

Table 

4-2: 

Work

abilit

y 

Perfo

rman

ce 

Rating System 

Workability 
Performance  

Scale for 
Each Test 

Slump 
Test 
(in) 

Visual 
Observation 

ICAR Rheometer  Float Test 
(passes) Static 

Yield 
Stress 
(Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Remove 
Hole 

Remove 
Texture 

Excellent (1) 8 to 6 A or 1 <1000 <250 <10 1 to 2 1 to 2 

Good (2) 6 to 4 B or 2 1000-
1500 250-500 10 to 15 3 to 4 3 to 4 

Moderate (3) 4 to 2 C or 3 1500-
2000 

500-
1000 15 to 20 5 to 6 5 to 6 

Poor (4) 2 to 0 D or 4 >2000 >1000 >25 7 to 8 7 to 8 
Unusable (5) 0 F or 5 Too stiff Too Stiff Too Stiff +9 +9 
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4.2.6 Quantifying Workability Assessments 

After analyzing the data and comparing each workability test for flowable 

concrete applications, the quantity of measurements needed to be simplified into a 

practical manner.  In other words, these seven different measurements were quantified 

into a single overall workability performance rating for a given mixture.  This was 

completed by taking the average workability performance of each measurement as 

classified in Table 4-2. After the average numerical value was calculated, it was 

converted back into the following workability scale range: excellent (1), good (2), 

moderate (3), poor (4), and unusable (5). For an example, if a mixture received the 

following rating: excellent (1) for visual observations, good (2) for Slump Test, excellent 

(1) for the Float Test in smoothness, excellent (1) for the Float Test in closing holes, 

good (2) for static yield stress, good (2) for dynamic yield stress, and excellent (1) for 

plastic viscosity, the average overall workability rating would mathematically be 1.43 

and be classified as a good overall workability.  
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4.3. RESULTS AND DISCUSSION 

The purpose of the research was to develop fine aggregate sieve sizes (#8 and 

less) limits for a combined gradation in order to better control the workability of a 

concrete mixture design. To achieve this, the workability of 75 mixtures were evaluated 

as shown in Table 4-3. This table was color coated with black representing good or 

excellent workability performance, yellow representing moderate workability 

performance, and red representing poor or unusable workability performance. Also 

through the results, the combined gradation of each mixture will be plotted using the 

individual percent retained chart with the overall workability rating. The sieve ranges 

that make-up coarse sand and fine sand and the volumes required to achieve the 

preferred workability were each developed.  Unless otherwise stated, crushed limestone 

A and river sand A were used as the aggregate sources for developing the individual 

sieve limits. Other aggregate sources were utilized to validate the limits.  
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Table 4-3: Workability Performance Rating System 

Mix 
Overall 

Workability 
Visual 

Observation 

Static 
Yield 

Stress 
(Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Slump 
(in) 

Float Test 
(passes) 

Hole Texture 
1 Unusable Unusable 4400 Too Stiff Too Stiff 7.25 12+ 12+ 
2 poor Poor 1467 272±13 36±2.4 6.25 8 9 
3 moderate Moderate 1045±20 327±12 16±0.6 5 5 6 
4 good Good 948±92 315±33 10.2±0.7 6.5 4 4 
5 good Excellent 1140±142 299±19 12.5±3.0 7 2 2 
6 good Good 1139±84 1142±64 10.2±1.5 4 3 3 
7 poor Poor 2811±150 720±45 14.4±1.4 2 12+ 12+ 
8 poor Poor 2811±150 720±45 14.4±1.4 2.25 12+ 12+ 
9 Unusable Unusable Too Stiff Too Stiff Too Stiff 1.5 5 3 

10 moderate Poor 1379±195 393±21 15±1.2 8 12+ 12+ 
11 Moderate Moderate 943±23 428±1 11.9±1.7 6 5 5 
12 good Excellent 796±9 341±48 10.8±1.3 7 3 3 
13 good Excellent 1193±6 469±16 11.9±1.3 6.5 6 5 
14 moderate Good 1755±354 642±12 9.9±1.0 4 10 10 
15 poor Moderate 1974±54 647±3 13.1±1.5 4.25 9 9 
16 poor Poor 2457±394 751±8 15.4±0.6 2.5 12+ 12+ 
17 good Excellent 791±66 339±21 10.9±1.6 7.5 4 4 
18 good Good 773±46 288±14 11.9±0.6 6.5 5 5 
19 good Excellent 797±54 415±31 11.8±0.6 5.5 5 4 
20 good Excellent 1077±67 378±11 8.3±0.9 7.5 2 2 
21 Moderate Good 833±70 390±33 11.8±1.0 6.5 10 8 
22 Unusable Poor Too Stiff Too Stiff Too Stiff 2.75 11 8 
23 good Good 1131±41 509±9 13±0.3 6 4 3 
24 good Good 970±53 296±11 7.7±0.8 7.5 6 8 
25 Unusable Poor Too Stiff Too Stiff Too Stiff 0 12+ 12+ 
26 poor Poor 1519±38 450±21 10.7±0.1 3 8 8 
27 moderate Good 945±34 318±29 10.6±1.2 7.5 10 10 
28 moderate Moderate 882±66 211±15 19.1±1.3 8 5 6 
29 Unusable Poor Too Stiff Too Stiff Too Stiff 8.5 12+ 12+ 
30 Unusable Unusable Too Stiff Too Stiff Too Stiff 0 12+ 12+ 
31 poor Poor 2453±179 679±33 27.0±3.0 4.5 6 4 
32 Unusable Poor 2119±142 426±100 52.1±6.0 6 12+ 12+ 
33 moderate Moderate 2178±226 818±21 12.8±0.4 4 4 4 
34 Unusable Unusable Too Stiff Too Stiff Too Stiff 7.5 12+ 12+ 
35 Unusable Unusable Too Stiff Too Stiff Too Stiff 0 12+ 12+ 
36 Unusable Unusable Too Stiff Too Stiff Too Stiff 1.25 12+ 12+ 
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Mix 
Overall 

Workability 
Visual 

Observation 

Static 
Yield 

Stress 
(Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Slump 
(in) 

Float Test 
(passes) 

Hole Texture 
37 poor Poor 1275±25 133±48 35±14 8.25 6 12 
38 Unusable Unusable Too Stiff Too Stiff Too Stiff 0 12+ 12+ 
39 poor Poor 936±68 295±11 14.5±0.7 6.75 12+ 12+ 
40 poor Poor 1762±70 538±33 13.9±0.7 3.5 12+ 12+ 
41 moderate Moderate 1876±144 759±35 6.5±0.4 3.5 4 12 
42 good Good 1427±37 423±43 10.1±1.1 4.75 4 4 
43 moderate Good 1293±71 389±33 15.2±1.9 5.25 6 8 
44 good Good 1375±121 457±19 9.1±0.5 5.25 2 3 
45 good Good 1437±28 505±61 12.8±0.9 5.25 4 4 
46 good Good 1137±137 513±24 6.5±0.3 5.5 5 6 
47 moderate Moderate 1681±51 532±22 9.3±1.6 4 8 8 
48 poor Poor 1705±70 497±4 9.8±1.1 4 8 8 
49 moderate Moderate 865±57 283±13 10.7±1.2 7.75 4 12 
50 good Good 846±62 290±6 12.6±0.9 6.75 4 4 
51 good Good 1160±4.5 325±12 12.5±1.1 7.5 4 4 
52 moderate Poor 1241±27 422±5 9.9±1.3 5.25 4 12 
53 good Excellent 1048±93 383±8 8.9±0.4 6.75 3 4 
54 good Excellent 1100±195 327±9 10.3±0.3 6.25 4 4 
55 good Excellent 975±115 297±28 7.4±0.4 8 5 5 
56 good Excellent 1557±175 557±40 11.1±0.1 5.75 3 2 
57 good Excellent 1394±99 512±32 7.3±0.7 5.5 6 4 
58 moderate Good 1221±111 444±11 9.6±0.4 5.25 7 6 
59 poor Moderate Too Stiff Too Stiff Too Stiff 2.75 4 4 
60 good Good 1341±106 397±16 14.9±0.6 6 4 5 
61 Unusable Poor Too Stiff Too Stiff Too Stiff 0.5 2 1 
62 Unusable Unusable Too Stiff Too Stiff Too Stiff 7 12+ 12+ 
63 moderate Moderate 1147±118 519±33 8.0±0.4 5.5 6 6 

 

  

 

 

 

 



Final Report  

69 
 

Mix 
Overall 

Workability 
Visual 

Observation 

Static 
Yield 

Stress 
(Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Slump 
(in) 

Float Test 
(passes) 

Hole Texture 

64 Unusable Unusable Too Stiff 
Too 
Stiff Too Stiff 2.75 12+ 12+ 

65 poor Poor 1840±154 599±22 18.6±0.8 3.75 8 8 
66 moderate Poor 2036±168 459±1 23.3±2.0 3.75 4 12 
67 moderate Moderate 1474±77 422±34 14.3±0.9 6.25 3 12 
68 good Good 1203±81 413±2 14.5±0.5 4.75 4 4 
69 moderate Good 1562±80 461±27 13.1±0.8 5.5 4 6 
70 poor Poor 1013±80 261±32 18.2±1.3 8 12 12 

71 Unusable Poor Too Stiff 
Too 
Stiff Too Stiff 3.5 12 12 

72 good Excellent 1339±58 559±34 7.8±0.3 5.75 2 5 
73 good Good 1341±9 578±5 9.8±0.5 5 3 3 
74 moderate Moderate 1343±60 611±8 7.9±0.8 4.5 4 4 

75 poor Poor Too Stiff 
Too 
Stiff Too Stiff 1.5 5 4 

 
4.3.1 Proportioning Fine Sand 

Traditionally fine aggregate has been defined as the material retained on the #8-

200 sieve sizes (Neville 2012).  A concrete mixture must contain a certain amount of 

fine aggregate to accomplish placement, consolidation, and surface finishing for the 

desired application. This fine aggregate behavior has been further broken down into 

coarse sand and fine sand to better understand this behavior. Based on previous work 

from the authors (Cook et. al. 2013), the fine sand sieves were found to be #30 through 

#200 and the coarse sand sieves were from #8 through #30.  Figure 4-1 shows varying 

amounts of sand with a constant ratio of the coarse to intermediate aggregate.  Without 

exceeding the developed sieve size limits shown later in the results section, various 

combined gradations will be investigated to determine adequate volume proportioning 

ranges for fine aggregate. 



Final Report  

70 
 

 

Figure 4-1: The overall workability with different amounts of sand and fixed ratio 

of coarse to intermediate aggregate. *note: this mixture had surface finishability or 

cohesion issues 

 
Figure 4-1 shows the trends of workability and fine sand volume. If the gradation 

was proportioned with inadequate volume amounts of “too much” or “too little” fine sand, 

the workability was poor. Figure 4-2 shows the pictures of low, sufficient, and high 

amounts of fine sand.  Also in Figure 4-3, a picture of the low, sufficient, and high 

amounts of fine sand mixtures in the Slump Test.  When the volume of fine sand was 

low in the mixture, the mixture looked like coarse aggregates coated with a small film of 

paste as shown in Figure 4-2 and Figure 4-3.  This low sand volume mixture visually 

flowed like a coarse aggregate stockpile.  Also the low sand mixture was discharged 

from the mixing and into a wheel barrow.  Figure 4-4 was a picture shows the poor 

exhibited poor cohesion properties as shown in Figure 4-3. When excessive volumes of 
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fine sand were used, the mixture became “sandy”, which created a very stiff and poor 

flowability properties.   

 

Figure 4-2: Images showing the visual observation with excessive and deficient 

amounts of sand 

 
Figure 4-3: Images showing the Slump Test measuring the excessive and 

deficient amounts of sand. 
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Figure 4-4: Visual observation of the deficient amounts of sand and the resulting 

segregation. 

 
 
4.3.1.1 Developing Proportioning Limits for Fine Sand  

Other sources were needed to help develop fine sand volume proportioning 

limits.  Figure 4-5 and Figure 4-6 both different aggregate sources with varying amounts 

of sand with a constant ratio of the coarse to intermediate aggregate.  These fine sand 

volume limits cannot be easily displayed on an individual percent retained chart.  Figure 

4-7 plots the mixtures from Figure 4-4 through 4-6 using the fine sand volume and 

overall workability performance.  A distinct upward parabola trend can be shown and 

recommended limits were set between 25% to 40% fine sand volume. 
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Figure 4-5: The sand proportions for overall workability of limestone B and sand 

B. 

 

 

Figure 4-6: The sand proportions for overall workability of limestone C and sand 

C 
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Figure 4-7: The overall workability and different fine sand volumes 

 
4.3.1.2 Fine Sand Distribution 

Past investigations (Cook et. al. 2013) presented similar workability behaviors 

with a variety of fine sand distributions. Figure 4-8 shows distributions of fine sand for 

flowable applications.  The combined gradation stayed constant from #16 and larger 

with the exception of one very ultra-fine gradation.  The purpose of the figure was to 

compare the workability behaviors of different distributions of #30 through #200.   
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Figure 4-8: Various fine sand distributions and the overall workability. *note: this 

mixture had surface finishability issues 

 

4.3.1.2.1 Effects of #30 

Mixture 27 had a gradation close to 30% on the #30 sieve and also had issues 

with surface finishing as shown in Figure 4-9.  The large amount of #30 created a very 

poor finishability and could be described as gritty.  This is not a desirable for mixtures 

requiring a surface finish, especially with a hard trowel. In another report (Cook et. al. 

2013) has found the same behavior with high amounts of #30 with a boundary limit of 

20%.  A practical boundary limit of 20% on the #30 was also concluded for the flowable 

concrete research.   
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Figure 4-9: Pictures of mixtures with excessive amounts of #30 in mixture 27 

 

4.3.1.2.2 Effects of #50 

Also, the gradation with 30% retained on the #50 was shown to create a very 

smooth surface finish. While this mixture was being mixed, the sides of the drum 

finished the mixture as shown Figure 4-10. In other words, this was a very easy mixture 

to finish.   
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Figure 4-10: Pictures of the 30% of #50 in mixture 23. 

 

4.3.1.2.3 Effects of #100 and #200 

Mixture 30 in Figure 4-8 had very poor workability performance.  Figure 4-11 shows the 

visual observations of the mixture.  The amounts of #100 and #200 sieve sizes created 

a mixture with sand and paste around the coarse aggregate particles. Obviously, this 

gradation is not desirable. A similar limit for concrete to be used for slip formed 

pavements was established in another report (Cook et. al. 2013).  For this work a limit of 

10% on the #100 is recommended.  More research needs to be conducted into 

understanding the behavior of #100 and #200. 
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Figure 4-11: Pictures of mixtures with excessive amounts of #100 and #200 in 

mixture 30. 

 

4.3.2 Coarse Sand 

Throughout these investigations, it was very clear to see the coarse sand gives a 

fresh concrete mixture stiffness and cohesive properties.  The importance of coarse 

sand property has pushed the creation rules of thumb from the field.  These rules of 

thumb try to ensure a mixture will have enough coarse sand to help prevent edge 

slumping and segregation in pavements and slab on grade (ACI 302, Harrison 11, 

Richardson 2005).  However, the sieve sizes creating these properties have never been 

clearly defined and therefore could not be adequately proportioned.  Another publication 

(Cook et. al. 2013) shows the #8, #16, and #30 sieve sizes form the coarse sand. Below 

are subsections into the investigations of these coarse sand sieve sizes.  



Final Report  

79 
 

4.3.2.1 Investigating #8 

To investigate the #8 sieve size, gradations were created with the 0% of #16 

sieve size and 0% to 20% of #8 as shown in Figure 4-12.  Gradations containing low 

amounts (0% and 4%) of #8 had poor cohesion.  Figure 4-13 was a picture of the 

mixture 39 being discharged into a wheel barrow. The segregation of the mixture can be 

observed through the lack of bonding between the coarse aggregate and the rest of the 

mixture. Also, the gradation of mixture 52 contained 20% of #8 sieve size and had poor 

finishability as shown in Figure 4-14. A maximum sieve limit could be recommended at 

20%. 
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Figure 4-12: The overall workability of mixtures with various amounts of #8. *note: 

this mixture had surface finishability or cohesion issues. 

 

 

Figure 4-13: Mixture with poor cohesion of mixture 39 without #8 and #16. 
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Figure 4-14: Mixture with poor finishability of mixture 52 with high amounts of #8. 

 

4.3.2.2 Investigating #16 

To investigate the #16 sieve size, the #8 sieve size was removed and various 

amounts of #16 were varied from 0% to 16% as shown in Figure 4-15.  Like previously 

discussed, mixture 39 with 0% of #16 had poor cohesion as shown in Figure 4-13.  

However, adding 4% of #16 allowed the mixture to have good workability.  When the 

gradation of mixture 47 had 16% of #16, it created poor finishability as shown in Figure 

4-16. This was a picture after 30 passes. A maximum sieve limit could be recommended 

at 16%. 
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Figure 4-15: The overall workability of mixtures with various amounts of #16. 

*note: this mixture had surface finishability or cohesion issues 

 

 

Figure 4-16: Mixture 47 shows poor finishability with high amounts of #16. 

 

4.3.2.3 Investigating the Combination of #8 and #16 

To investigate the #8 and #16 sieve size, these sieves were removed from the gradation 

and various amounts of both sieve sizes were slowly added from 0% to 14% as shown 
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in Figure 4-17.  Like previously discussed, mixture 39 with 0% of #8 and #16 had poor 

cohesion as shown in Figure 4-13.  However, adding 2% of #8 and #16 allowed the 

mixture to improve the workability.  Poor finishability was created with a gradation using 

14% of #8 and #16. Even after 30 passes, the surface could not be adequately floated. 

A lower maximum sieve limit amount of 12% should be recommended. This 

recommendation also matches the slip formed pavement recommendations in another 

report (Cook et. al. 2013). 

 
Figure 4-17: The overall workability with various amounts of #8 and #16. *note: this 

mixture had surface finishability or cohesion issues. 

 

4.3.3 Recommended Combined Gradation Limits 

Throughout this research, a common trend of coarse aggregate sieve sizes 

retaining over 20% could have a decrease in workability. However, a gradation with low 

amounts on one or two sieve sizes does not necessarily affect the performance of the 

concrete.  Yet, it becomes difficult to stay within the maximum boundary limits if a 
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gradation was missing or having a small amount on an adjacent sieve sizes. Figure 4-

18 shows the recommended individual sieve size and proportioning limits of a combined 

gradation. 

 

Figure 4-18: Developed limits with coarse sand and fine sand ranges 

 

4.3.3.1 Coarse Sand Limits 

Coarse sand was proven to effect the cohesion and surface finishability of the 

mixture.  These workability issues can be very problematic.  A minimum volume of 

coarse sand and individual sieve sizes limits were developed to help prevent these 

issues. 
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4.3.3.1.1 Surface Finishability Issues 

If the mixture was high on a coarse sand sieve size, surface finishability issues 

occurred.  Finishability issues were created at 20% of #8, 16% of #16, and 12% of both 

#8 and #16.  Since #8 and #16 commonly have similar percentage amounts retained, a 

conservative maximum sieve size boundary at 12% for the #8 and #16.  Also, a 

maximum limit of 20% was set for the #30 sieve size. 

4.3.3.1.2 Cohesion 

If low amounts of coarse sand (#8 to #30) were present, the mixture tended to 

segregate. Similar findings were found in the slip formed pavement report (Cook et. al. 

2013) and also other publications (Richardson 2005, ACI 302, Harrison 2004). For this 

investigation, minimal amounts of coarse sand could create adequate cohesion from the 

following: 4% on the #16 with 15% of #30, 12% on the #8 with 15% of #30, or 2% on the 

#8 and #16 with 15% of #30.  A reasonable minimal volume limit of 20% was 

recommended for coarse sand value using a natural sand. 

4.3.3.2 Fine Sand Limits 

Fine sand proportioning was shown to be fairly consistent in Figure 4-7. The 

practical volume ranges of fine sand (#30 to #200) for flowable concrete was 

recommended from 25% to 40%.  These proportioning trends of fine sand (#30 to #200) 

from 24% to 34% were similar to the proportioning trends in the slip formed pavement 

report (Cook et. al. 2013). This wider range for the flowable concrete could be from 

either the increased paste content or broader workability range of flowable concrete.   
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4.3.4 Practical Applications 

This work was able to develop some basic and simple guidelines for 

proportioning the coarse aggregate sieve sizes in a combined gradation.  These 

gradation guidelines can be extremely beneficial to improve the construction 

specifications and practices. Furthermore, the guidelines give the ability of a mixture to 

reduce the total cementitious material content and thus decreasing the cost of the 

mixture, improving durability of the concrete, and reducing CO2 emissions (Shilstone 

1990). 
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4.4 SUMMARY 

Various fine aggregate concepts were investigated for a better understanding of the 

workability of flowable concrete.  The research showed gradations significantly 

impacted the workability of concrete mixtures. Also, proportioning of aggregate can be a 

very complex issues, but could be simplified using coarse sand and fine sand volume 

ranges. Based on the data collected using these specific aggregate sources, the 

following have been found: 

• Coarse sand (#8 through #30) impact the cohesion of the mixture.  

• A minimum value of 20% was suggested to be retained on the coarse sand (#8 

through #30).  

• Surface finishability issues could be created with gradations retaining over 12% 

on the #16 and #8 and also 20% of #30. 

• Fine sand (#30 through #200) volume was recommend to range from 25% to 

40% of the combined gradation.  

These recommendations are helpful to trouble shoot and help design flowable concrete 

mixtures for a wide range of materials and applications. 
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CHAPTER 5 – LABORATORY EVALUATIONS OF PUMPING 

CONCRETE MIXTURES 
 

5.0 INTRODUCTION 

Since the 1930s, concrete pumps have been used to move the concrete from the 

ready-mix truck to the final destination on the jobsite (Kosmatka 2011, Neville 2012). 

Modern day concrete pumps have horizontal hydraulic pistons to push the concrete 

through rigid and/or flexible piping (Kosmatka 2011, Neville 2012).  Since these 

concrete mixtures can be required to travel long distances through these pipes, this has 

required special concrete mixtures.  These mixtures are required to be cohesive, 

flowable, and still able to be finished.  While admixtures, secondary cementitious 

materials, and paste volume contribute to these pumpable concrete mixtures, a major 

focus has been placed on aggregate gradation. It would be helpful to develop a 

gradation specifically for pumping concrete.  If the gradation is designed incorrectly then 

this will cause segregation, higher chance pipe jams, problems with surface finishability 

(Collins et. al. 2006 and The Contractor’s Guide 2005).   

In the last two chapters extensive testing was conducted into the effects of gradation 

on the workability of flowable concrete. The objective of this chapter is to further 

investigate these developed gradation limits using a concrete pump.   While concrete 

pumps are amazing machines that are capable of handling a lot of different materials, it 

is important that the concrete mixtures do not require the machines to work excessively 

where they require a greater amount of repair or increase the likelihood for pipe jams.  

This means a desirable performance of a mixture should have minimal pressures, low 

segregation, and meet other performance requirements. 
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5.1 EXPERIMENTAL METHODS 

5.1.1 Materials 

5.1.1.1 Concrete Mixture Design 

All the concrete mixtures described in this work were prepared using a Type I 

cement that meets the requirements of ASTM C150 with 20% ASTM C618 class C fly 

ash replacement by weight. To investigate the impact of the aggregate gradation, all of 

the mixtures were designed with the same paste properties: a water-to-cementitious 

material ratio (w/cm) of 0.45, 611 lbs./cy of cement, 20% class C fly ash replacement, 

and a paste content of 28.4% for the mixture volume. A citric acid was used at a dosage 

of 0.25% by weight of cementitious materials.  When added to the concrete mixture the 

citric acid acted as a setting retarder and also a water reducer.  In each mixture the 

sand came from a single natural sand (sand A) source and the course and intermediate 

aggregates came from a single dolomitic limestone (limestone A) . The aggregate 

proportions were purposely varied between each pump session and the paste 

parameters were held constant, this allowed comparisons between the workability of the 

mixtures of different combined gradations. 

5.1.1.2 Grout Mix Design 

The most common method of starting to pump concrete through the line is to 

start with a grout mixture (Neville 2012 and The Contractor’s Guide 2005) 

The grout is used to line the walls of the pipe and reduce the amount of 

segregation that occurs in the concrete from pumping (Neville 2012 and The 

Contractor’s Guide 2005).  Using a Type I cement that meets the requirements of ASTM 

C150, the grout mixture was designed with a w/cm of 0.40, 1006 lbs/cy of cement, 2514 
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lbs/cy of sand. A citric acid dosage of 0.25% by weight of cementitious materials was 

added to the grout mixture to help retard the hydration.  The sand used in the grout 

mixture also came from Sand A. 

 

5.1.2 Equipment 

5.1.2.1 Concrete Pump and Pipe Network 

A Putzmeister TK50 concrete pump was used for this research and is shown in 

Figure 5-1.  This pump has a 96 HP diesel engine and 5 ft3 hopper. The pump has two 

cylinders that draw in concrete from the hopper and then force it through the pipeline via 

a shifting cylinder in the hopper.   

 

Figure 5-1: The concrete pump used in this work (Putzmeister TK 50). 

 
An instrumented 52.5 ft. pipe network with three 90o bends, and a 9.8 ft. rubber 

hose was used to evaluate each concrete mixture.  An overview of the pipe network is 

shown in Figure 5-2. The output diameter of the pump is 5 in. while the pipe network 
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has a diameter of 4 in.  A 3.3 ft. long reducer pipe was attached at the pump to make 

this transition in diameter. Sensor 1 is immediately after the reducer and measures 

pressures in the line most directly related to the output pressure. Sensor 2 measures 

pressure in the line 13.1 ft. away from Sensor 1 and is also directly in front of the first 

90o bend. Sensor 3 is right after the first bend and thus using the pressure from Sensor 

2 and 3, the loss in pressure caused by the bend can be measured. Sensor 4 is placed 

after the second 90o bend and can be used with Sensor 3 to measure pressure changes 

between the second bend. The pump loops on itself in order to recirculate material while 

testing.  This also allows the change in material over time to be measured.  At the end 

of the pipeline a 9.8 ft. rubber hose is attached. This hose repositions the flow of 

concrete either to large waste barrels or back into the hopper to recirculate the concrete 

through the pipe network. 

 

Figure 5-2: Plan view of the pump layout (units in feet). 

 

 

Concrete 
Pump 

Reducer Sensor 1 
Sensor 2 

Sensor 3 

Sensor 4 
Rubber Hose 
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The TK 50 pump has two major pump settings, engine revolutions per minutes 

(rpm) and piston volume. The rpm of the engine can range from 900 to 2200 rpm and 

the maximum piston volume is 0.57 ft3.  The volume of the piston was measured by 

filling the pump’s hopper with water and then pumping out a single piston stroke into a 

bucket that was then weighed. The volume of the piston was calculated by using the 

unit weight of water.  This was done 30 times and the average was taken. The 

coefficient of variation was 6%.  

The TK 50 pump has dual pistons that force concrete into the line. As one piston 

pushes material into the pipeline, the other piston is pulling concrete from the hopper 

into a cylinder. Then a sealed, rotating coupling with a diameter of 5 in. switches 

between the pistons allowing the piston full of material to force it into the line and the 

recently empty piston to pull more material from the hopper. 

In some preliminary testing it was found that 1500 rpm gave enough power and 

time between piston strokes to accurately measure the pressure in the line.  In order to 

maintain consistency between investigations it was easiest to use the full capacity of the 

piston.  This gave us the pump settings used in this work, 1500 rpm and 0.57 ft3.   

The total volume of the pipe network, including the reducer, 90o, and rubber 

hose, is 6.0 ft3. Since the average piston stroke moves 0.57 ft3 of material, it would 

require 10.5 piston strokes to move concrete through the entire line and have it 

discharge again into the pump. 

5.1.2.2 Pressure Sensor Assembly 

Four pressure sensor assemblies were used along the pipeline to measure 

pressure in the concrete while pumping.  A typical assembly can be seen in Figure 5-3.  
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The GE 5000 pressure sensor is capable of measuring pressures between -14.5 to 507 

psi with 0.5 psi accuracy by converting pressures into a voltage that ranges between 0 

and 5000 mV. 

 

Figure 5-3: An overview of the pressure sensor is shown.  Oil fills the buffer 

chamber and as the rubber membrane moves the pressure can be read by the 

pressure sensor. 

 

These pressure sensors would be damaged if they were directly subjected to the 

concrete. Because of this, a buffer chamber was created and filled with an 

incompressible oil.  While a flexible membrane was made at one end of the chamber, 

the sensor was used at the other end of the chamber.  As the concrete pressure in the 

line increased it would move the membrane, and then in turn would cause the oil 

pressure to increase the GE 5000 pressure sensor.  The sensor would then read these 
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changes in the pressure of the oil and convert them to a voltage. 

To attach the sensor to the pipe, 1.125 in. diameter hole was drilled in the pipe.  

Next, a nut was welded to the outside of the pipe and the end of the buffer chamber was 

threaded and then screwed into the nut until the flexible membrane was adjacent to the 

walls of the pipe. The pipe was rotated so that the sensors were 30o away from pointing 

directly downward. This kept aggregate, paste, and water from collecting on top of the 

flexible membrane which might reduce the sensitivity and accuracy of the sensor. 

Pressure in the pipeline is taken over the entire data collection period at 0.05 second 

intervals. 

To ensure each sensor was performing correctly and repeatable, the sensor 

assemblies were calibrated by hooking them to a water filled pipe where the pressure 

was systematically changed.  Typical results of this calibration curve is shown in Figure 

5-4.    
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Figure 5-4:The sensors were calibrated using a pressure chamber filled with 

water and then calculating a best fit line. 

 

It should be noted the y-intercepts values slightly shift over time but the slope of 

the calibration lines remains constant. Because of this a “zero pressure” sensor reading 

was determined by first filling the pipe network with concrete and turning the pump off.  

The sensor values were recorded while the concrete filled the line but did not move.  

This gauge reading was set equal to the zero pressure value.  This ensured all four 

sensors only recorded the pressures caused by the movement of the concrete and not 

the weight of the concrete or any drift in the calibration of the sensor.  Measured 

increases in pressure were then added to these initial values.  These increases were 

developed based on the water pressure calibration curves for each sensor. 
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5.1.3 Testing Methods 

5.1.3.1 Pumping Procedure 

Every pumping session consists of three parts: mixing, data collection, and clean 

up. Mixing consists of one 4 ft3 grout mixture and three identical 5 ft3 optimized graded 

concrete mixtures. All of the aggregate proportions for each mixture can be seen in 

Table 5-1. 

Table 5-1 The concrete mixtures that were used during testing. 

Mixture 
Design 

Cement 
(lbs./cy) 

Fly Ash 
(lbs./cy) 

Water 
(lbs./cy) 

Coarse 
limestone A 

(SSD 
lbs./cy) 

Intermediate 
limestone A 
(SSD lbs./cy) 

Sand A (SSD 
lbs./cy) 

C-01 489 122 275 1150 539 1450 
C-01 6S 451 113 253 1447 530 1183 

C-01 5.5S 414 103 233 1464 531 1263 
C-02 489 122 275 1610 58.8 1470 
C-03 489 122 275 1460 210 1460 
C-04 489 122 275 882 813 1440 
C-05 489 122 275 964 728 1440 
C-06 489 122 275 1550 753 864 
C-07 489 122 275 1450 698 1010 
C-08 489 122 275 1330 638 1180 
C-09 489 122 275 1240 589 1310 
C-10 489 122 275 1020 474 1630 
C-11 489 122 275 760 941 1440 
C-12 489 122 275 1820 52.2 1280 
C-13 489 122 275 723 313 2070 

 

5.1.3.2 Mixing 

Aggregates were collected from outside stockpiles and brought into a 

temperature-controlled room at 72°F for at least 24 hours before mixing. Aggregates 

were placed in a mixing drum and spun and a representative sample was taken to 

determine the moisture content to apply the correction.  At the time of mixing all 
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aggregates were loaded into the mixer along with approximately two-thirds of the mixing 

water. This combination was mixed for three minutes to allow the aggregate surface to 

saturate and ensure the aggregates were evenly distributed. Next, the cement material 

and the remaining water with the citric acid was added and mixed for three minutes. The 

resulting mixture rested for two minutes while the sides of the mixing drum were 

scraped.  After the rest period, the mixer was turned on and mixed for three minutes. 

The grout mixture had a typical slump of 8.25 in. and a unit weight of 137 lbs/ft3.  

Again, the grout was used to create an initial mortar layer around the pipes to reduce 

friction in the line and reduce segregation as is typical in the concrete pumping industry. 

To charge the pump, the grout was added first and a few strokes were used to lower the 

hopper and fill the lines.  Next, the concrete was added.  The end of the flexible hose 

was placed in a waste container as the pump was run.  The waste container first filled 

with grout, and then as soon as concrete started exiting through the hose the pump was 

stopped and the flexible hose was moved to discharge back into the hopper.  The pump 

continued to run for at least 10 piston strokes to remove any air gaps that may have 

occurred while adding concrete to the hopper.  After the air was removed the material 

testing was started and the time is marked at 0 minutes. 

Each concrete mixture was tested with the Slump Test, Unit Weight, and the 

ICAR Rheometer. For the Stress Growth Test, the first three values were taken and 

then averaged. The Rheometer’s Flow Curve Test was conducted until three test values 

with an r2 value higher than 0.75. If less than three values were able to be acquired, the 

average of the values was still recorded but marked as “undesirable” as the mixture was 

close to the lower range of workability able to be measured by the rheometer. If no 
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values with an r-squared value above 0.75 were acquired, the mixture was considered 

failed and no value was recorded. 

5.1.3.3 Data Collection 

In order to sample concrete from the pump line, the concrete pump is stopped 

and the rubber hose is disconnected from the hopper. Concrete from the flexible line is 

then collected by holding the rubber hose over a large plastic bin and pumping for 

approximately two piston strokes. Concrete falls from the hose into the bin and then 

slump and unit weight tests are completed from that material.  This same method is 

used to fill up the bucket used for rheometer testing. Conducting the rheometer tests 

requires approximately 45 seconds per test and the test must be done multiple times to 

ensure accurate measurements. To accommodate this, the time intervals are spaced at 

approximately 15 min. intervals to allow for this. After these tests are completed then 

the material is returned to the hopper to recirculate.   

After the material is gathered for testing at its respective time interval, the pump 

is ran at 1500 rpm for 30 piston strokes and then 1200 rpm for 30 piston strokes. After 

that, the rpms are returned to 1500 until the next testing interval to ensure that the pump 

has enough energy to keep from seizing if the mixture stiffens. See Figure 5-5 for the 

pumping testing procedure over time. 
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Figure 5-5: A typical pump cycle over time and the tests completed at different 

intervals.   

If the pump needed more than 1500 rpm to keep pumping, then the mixture is 

considered too stiff. When a mixture becomes too stiff, the rpms of the pump will 

decrease and the piston will stop until the rpms of the engine are increased high enough 

to resume pumping. This rarely happens, and only occurs when the workability is very 

low. Throughout testing, a slump ranging from 3 in. to 1.5 in. corresponded to poor 

pumping performance.  Also, if it is noticed that only aggregates are coming out of the 

rubber hose with no paste, then the concrete is segregating. When a mixture 

segregates, the line will block and the flow loop must be taken apart to clean the pipes. 

This would not be acceptable in industry and so is deemed a failure in the testing. Since 

we are interested in not causing premature failure of the pump, concrete pressures that 

are higher than the average would be reasons to call the mixture “undesirable” for 

pumping, though not considered failing in most cases. 
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5.1.3.4 Pressure Sensor Output 

The data from each pressure sensor is retrieved and then processed. A typical 

pressure curve, showing values from all four sensors, is shown in Figure 5-6. 

 

Figure 5-6: A typical pumping pressure curve has a primary and secondary curve. 

 

One piston stroke consists of a primary curve and a secondary curve. The 

primary curve is the initial pressure when the piston begins to move in the cylinder. The 

secondary curve is typically a smaller pressure that occurs while the piston is moving in 

the cylinder. In other words, the primary curve is the pressure required to initiate the 

movement of the concrete and the secondary curve is the pressure required to keep the 

concrete moving. 
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5.2 RESULTS AND DISCUSSION 

In all cases the pressure in the line decreased with distance away from the 

pump.  Recall that both Sensor 1 and Sensor 2 were measured in straight pipe that are 

13.1 ft apart.  Next, there is a 90o bend and then Sensor 3.  Then there was another 90o 

bend and then Sensor 4.  This decrease in pressure is caused by friction of the pipe 

walls and losses from the change in direction caused by the 90o bend.  In some cases, 

when the line contained air gaps, segregation, or concrete that was too stiff, then the 

pressure curves looked erratic. Figure 5-7 shows examples of erratic curves from 

different observed phenomenon.  

 

Figure 5-7: Air gaps, low workability and segregation can be seen on the pump 

curves. 
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5.2.1.1 Mixture Repeatability 

One mixture was repeated three times.  Their secondary pressure curves were 

tabulated in Table 5-2 to analyze the pressure variability for a single mixture. 

Table 5-2 Sensor 1 values at 1500 rpm taken over three tests of the same mixture. 

 
C-01_01 C-01_02 C-01_04 

 
 

1 min 0.1 min 1.5 min 
 

 
      

 
 

41.0 50.5 45.5 
 

 
41.5 50.0 45.5 

 
 

41.5 50.0 46.0 
 

 
41.5 49.0 42.0 

 
 

42.0 49.5 45.5 
 

 
46.0 48.5 44.5 

 
 

42.0 49.5 45.0 
 

 
41.0 49.5 43.5 

 
 

39.0 49.0 44.5 
 

 
41.0 49.5 45.5 

 
 

42.0 50.5 44.5 
 

 
41.0 50.0 43.0 

 
 

40.0 51.5 45.5 
 

 
  51.0 45.5 

 
       Total 

AVG 41.5 49.9 44.7 45.4 
ST. DEV 1.59 0.82 1.16 4.22 

cv 3.8% 1.6% 2.6% 9.3% 
 

Only a section of the secondary curve is averaged to ensure that only the part 

where concrete is steadily flowing is analyzed. These results show that within a given 

measurement of a mixture that the variance is very small with the largest coefficient of 

variation of 3.8%.  However, between measurements the coefficient variation was larger 

at 9.3%.  This data suggests that there is more variation in replicating a concrete 

mixture than making a repeated measurement with the pipe loop.  This data also 

suggests that two mixtures can vary by about 8.5 psi (this is twice the standard 

deviation between the three mixtures) and the performance can be considered similar. 
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5.2.1.2 Average Pressure of the Secondary Curves 

The pressure curves were variable depending on the concrete mixture but in 

most of the concrete mixtures a primary and secondary curve could be identified. To 

analyze these curves, the average pressures were evaluated between 40% and 90% of 

the secondary curve interval. An example of the pump curve section that was averaged 

can be seen on Figure 5-8. This section of the secondary curve was the most consistent 

in all cases and represents where the concrete is moving through the pipe. Here, the 

pressure line is flat. Typically, this was done over 15 to 20 pressure curves depending 

on the quality of the curves being analyzed. On occasion, when the concrete mixture 

was exhibiting low workability and thus less desirable pressure curves, analysis was 

done on as low as five consecutive curves because each curve had to be analyzed 

manually to find the proper interval to average. Also, at very low workability it became 

extremely difficult to locate consecutive curves that were able to be analyzed. In all 

cases, these measurements were typically made at 0, 15, and 30 minutes after pumping 

began.  The averages of the individual pump curves were then averaged together and 

the total value was recorded as the required pressure to move concrete through the 

pump.  The coefficient of variation was never greater than 4% in a pressure average. 

Table 5-3 shows the recorded pressure data at 1500 rpm for each mixture at each time 

interval. 

When all results were compiled, 65 psi was a conservative estimate for when a 

concrete mixture became undesirable to pump.  This is about a 20% increase from the 

initial pumping pressure for well performing mixes.  Also, coincidentally the mixture’s 

slump was typically less than or equal to 3 in. and acquiring values from the ICAR 
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Rheometer became difficult. All testing time intervals that yield a pressure greater than 

65 psi for Sensor 1 are highlighted. Events that caused the mixture to become unusable 

are highlighted in red to signify an unacceptable mixture.   

 

Figure 5-8: The average pressure was taken between 40% and 90% of the 

secondary curve. 
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Table 5-3 Sensor values at 1500 rpm. Mixture is undesirable if above 65 psi and is 

marked in orange. Events that entirely stopped pumping are marked in red. 

  

Time 
(min) 

Sensor 1 
(psi) 

Sensor 2 
(psi) 

Sensor 3 
(psi) 

Sensor 4 
(psi) Comments 

Coarse 
Agg 

Bounds 

1/2" - 15.7% 
0 45.0 39.5 26.5 23.0  

35 57.0 51.5 37.0 31.5  
45 64.5 56.5 42.0 35.5  

1/2" = 20% 
0 55.5 39.0 38.0 32.0  

15 75.5 59.5 53.5 45.5  

1/2" = 22% 
0 52.5 43.5 35.5 30.5  

15 74.0 62.0 53.0 45.5 Air Gaps 

1/2" = 25% 

0 37.5 30.0 24.0 13.0 

Segregation  
15 39.0 32.0 25.0 9.0 
30 51.0 43.0 33.5 16.0 
40 64.0 55.0 43.0 23.0 

Int Agg 
Bounds 

#4 = 15.6% 
0 45.0 39.5 26.5 23.0  

35 57.0 51.5 37.0 31.5  
45 64.5 56.5 42.0 35.5  

#4 = 20% 
0 58.0 45.5 38.5 30.5  

15 71.5 56.5 49.0 33.5  

#4 = 22% 
0 48.0 38.0 31.5 24.5  

15 65.5 53.0 45.5 36.0 Air Gaps 

#4 = 25% 

0 51.0 41.5 33.0 18.5  
15 51.5 43.5 34.0 19.0  
30 73.5 62.5 49.0 30.5  
40 92.0 80.0 65.0 43.5  

Fine 
Sand 

Bounds 

FS = 24% 0 Pipe Jam  

FS = 28% 
0 59.0 46.5 38.0 23.5  

15 66.5 52.5 43.5 27.0  
30 82.0 68.5 59.0 37.0  

FS = 32.5% 
0 67.5 53.5 45.0 24.0  

15 73.5 58.5 50.5 28.5  
30 86.0 70.5 62.0 36.5  

FS = 36.1% 
0 

Sensor 
Error 

41.5 35.0 16.0  
15 47.10 40.5 19.5  
30 59.0 51.0 26.0  

FS = 39.8% 
0 45.0 39.5 26.5 23.0  

35 57.0 51.5 37.0 31.5  
45 64.5 56.5 42.0 35.5  

FS = 44.6% 
0 Sensor 

Error 
54.5 49.0 27.0  

10 52.5 45.0 24.5  
FS = 56.5% 0 86.5 71.5 58.5 48.5 Unworkable 
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5.2.1.3 Changing Pump Settings 

As discussed previously, during testing the rpms of the engine were changed. 

This would vary the pressure from the initial piston stroke and the secondary pressure 

caused by the advancement of the piston.  At the 1200 rpm two mixtures caused the 

pump to form air gaps. This was determined by examining their pressure curves.  These 

were mixtures with high intermediate aggregate (22% retained on the #4) and one 

mixture with high coarse aggregate (22% retained on the ½”). These are noted above in 

Table 5-3. When the rpms were increased to 1500 rpm, the air gaps disappeared.  It is 

interesting that both of these occurred when a significant amount of a certain aggregate 

size was used. 

5.2.1.4 Workability Measurements 

Rheometer data was taken using the ICAR Rheometer.  These measurements 

are typically taken at 0, 15, and 30 minutes.  The results are shown below in Table 5-5 

with the respective performance ratings in Table 5-4 from the previous chapter, shown 

below. In Table 5-5 and Table 5-6, an asterisk by a value means less than three 

measurements were able to be attained. If no acceptable data was able to be collected, 

n/c will be reported in the table.  
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Table 5-4 Classification of the workability of mixtures based on various tests in 
this report.   

 

Workability 
Performance  

Scale for Each 
Test 

Slump 
Test (in) 

Visual 
Observation 

ICAR Rheometer  

Static Yield 
Stress (Pa) 

Dynamic 
Yield 

Stress 
(Pa) 

Plastic 
Viscosity 
(Pa/sec) 

Excellent (1) 8 to 6 A or 1 <1000 <250 <10 
Good (2) 6 to 4 B or 2 1000-1500 250-500 10 to 15 
Moderate (3) 4 to 2 C or 3 1500-2000 500-1000 15 to 20 
Poor (4) 2 to 0 D or 4 >2000 >1000 >25 
Unusable (5) 0 F or 5 Too stiff Too Stiff Too Stiff 
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Table 5-5 A summary of the rheometer, slump and pump rating for the mixtures 
investigated. The workability rating based on table 5-4 is also given. 

 

Time 
(min) Static (Pa) Dynamic 

(Pa) 
Plastic 

Viscosity 
(Pa/s) 

Slump 
(in.) Pump Rating 

1/2" = 
15.7% 

0 1210 B 382 B 12 B 7.25   
35 1270 B 529 C 6 A 6.75   
45 1500 C 701 C 4 A 4.25   

1/2" = 20% 0 2410 D 53.6 A 20 C 5.50   
15 4250 D 484 B 38 D 2.50   

1/2" = 22% 0 880 A 177 A 16 C 8.00   
15 1610 C 518 C 16 C 6.50 Air Gaps 

1/2" = 25% 
0 455 A 144 A 14 B 9.00 

Segregation 15 515 A 186 A 12 B 8.50 
30 1070 B 408 C 9 A 6.50 

#4 = 15.6% 
0 1206 B 382 B 12 B 7.25   
35 1270 B 529 C 6 A 6.75   
45 1500 C 702 C 4 A 4.25   

#4 = 20% 0 1200 B 229 A 28 D 5.50   
15 3120 D         2.50   

#4 = 22% 0 1180 B 241 A 23 D 7.25   
15 1640 C 551 C 14 B 4.50 Air Gaps 

#4 = 25% 
0 795 A 237 A 16 C 7.50   
15 1100 B 369 B 11 B 4.00   
30 4350 D 1070 D 9* A 2.50   

FS = 24% 0 830 A 157 A 15 B 8.50 Segregation 

FS = 28% 
0 716 A 407 B 24 D 5.00   
15 2850 D 734 C 15 B 3.75   
30 4500 D         2.00   

FS = 32.5% 
0 2750 D 485 B 33 D 4.50   
15 3140 D 839 C 17* C 3.50   
30 4240 D 1130 D 25* D 1.50   

FS = 36.1% 
0 834 A 258 B 21 D 5.00   
15 1420 B 540 C 15 C 4.50   
30 3270 D 836 C 8* A 2.50   

FS = 39.8% 
0 1210 B 382 B 12 B 7.25   
35 1270 B 529 C 6 A 6.75   
45 1500 C 702 C 4 A 4.25   

FS = 44.6% 0 2440 D 628 C 21 D 4.00   
10 3270 D 935 C 24* D 2.00   

FS = 56.5% 0 4120 D 684 C 20 C 1.50 Unworkable 
Times where pressure exceeded 65 psi are highlighted in orange. Events that stopped 

pumping are highlighted in red. 
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Table 5-6: A summary of the rheometer, slump and pump rating for the different 

sack contents using a gradation well within the bounds of the tarantula curve. 

 Time 
(min) Static (Pa) Dynamic 

(Pa) 
Plastic 

Viscosity 
(Pa/s) 

Slump 
(in.) Pump Rating 

6.5 Sacks 

0 384 A 148 A 15 C 8.75  
15 772 A 215 A 14 B 9.00  
30 1120 B 404 B 9 A 6.50  
45 2703 D 878 C 11 B 2.50  

6.0 Sacks 
0 1482 B 363 B 25 D 5.25  
15 1804 C 563 C 19 C 4.75  
30 4308 D 1111 D 18 C 2.00  

5.5 Sacks 0 2279 D 389 B 68 D 3.00 Unworkable 
Times where pressure exceeded 65 psi are highlighted in orange. Events that stopped 

pumping are highlighted in red. 
 

The 6.5 sack concrete mixtures produced acceptable values during pumping.  

This matches the paste content as the other mixtures in this report.  A 6 sack concrete 

mixture of the same gradation also able to be pumped for about 15 minutes.  The 5.5 

sack mixture failed immediately. 

 In practice it seems feasible that a 6 sack mixture could be used as long as the 

gradation is within the bounds specified in the Tarantula Curve.  In fact, there are many 

tools that could be used improve the pumping time of the mixture.  These include: 

increasing the rpm of the pump, increasing the water reducer dosage, increasing the fly 

ash content.  A 6 sack mixture is the lowest paste content recommended in the previous 

chapters based on the other workability tests.  The pumping work confirmed this finding.   

It should be noted that when more paste is added to the concrete mixture then this 

would provide more room for error with gradation as well as increase pumping times.  

Ideally the performances of concrete mixtures with low paste contents that must be 

pumped would be evaluated in the field. 
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5.2.2 Pressure versus Slump Data 

Slump was taken at each time interval during pumping. The slump was plotted 

against the measured pressure with a best fit line and is shown in Figure 5-9.  

 

 

Figure 5-9: Pumping pressure versus slump. 
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scattered data and a best fit line with a slightly lesser slope but still shows a correlation 

between slump and pressure in the line.  As the slump increased then the resistance to 

flow decreased and so the measured pressures also decreased.  The unique slope of 

each of the lines suggests that regardless of the amount of pipe or bends before a 

location there is a linear change in the pumping pressures with a change in slump.  The 

larger scatter observed at Sensor 4 may be caused by the very shallow slope of the 

slump versus pressure response.  This data shows that slump provides a good indicator 

of pumping pressures as long as segregation is not occurring.  

  

5.2.2 Pressure versus Rheometer Data 
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Figure 5-10, 5-11, 5-12, and 5-13 show the rheometer values for both static and 

dynamic stresses plotted against the pressure in each sensor along with lines of best fit. 

 

Figure 5-10: Pressure from Sensor 1 at 1500 rpm versus yield stress. 
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Figure 5-11: Pressure from Sensor 2 at 1500 rpm versus yield stress. 

 

 

 

Figure 5-12: Pressure from Sensor 3 at 1500 rpm versus yield stress 
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Figure 5-13: Pressure from Sensor 4 at 1500 rpm versus yield stress. 
 

As the static and dynamic yield stresses increased, the measured pressure in the 

lines also increased.  These results are expected because as yield stresses in the 

concrete increase then so will the cohesion between the pipe walls and the mixture.  

This will require higher pressures to move the concrete forward in the pipe.  These 

graphs show a good correlation between pressure and static and dynamic yield stress.  

The data from Sensor 4 is more scattered than the other three sensors.  This could be 

because the friction losses are so large that the correlation between the mixture 

rheology and pump pressure is masked.  It could also be caused by something else not 

yet understood.  
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pressure of the secondary curve from Sensor 2 at the start of pumping.  This is done to 

display how the pressures change as the gradations reach and surpass the bounds of 

the Tarantula Curve. 

Table 5-3 shows the Sensor 2 data for each mixture at 0 minutes and 1500 rpm 

with the corresponding percent retained curves. As shown in Figures 5-10, 5-11, 5-12, 

and 5-13, Both Sensors 1 and 2 have similar correlations between pressure, yield 

stresses, and slump.  Even though the pressures from Sensor 2 are lower than Sensor 

1, the results are expected to be comparable between the mixtures.  

In this section the mixtures are divided into three sections: Coarse Aggregate, 

Intermediate Aggregate, and Fine Sands. The mixtures are separated like this to 

highlight the portion of the gradation that is being varied.  Unacceptable performance 

are shown in red, mixtures with undesirable performance are shown in yellow, and 

mixtures with acceptable performance are shown in black. 

5.2.3.1 Examining the Coarse Limits  

The 1/2” sieve size was adjusted to meet and then breach the bounds of the 

Tarantula Curve for the suggested maximum percentage. Each gradation is plotted in 

Figure 5-14 with their average pressure values from Sensor 2 at 0 minutes. In order for 

one of the mixes to reach 25% retained, the sand content had to be slightly adjusted to 

keep the gradation curve from breaking the bound in other areas. Gradations that 

exceeded 65 psi at any time during pumping are shown in yellow as this is not 

desirable. 
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Figure 5-14 Sensor 2 pressures at 1500 rpm at 0 minutes per coarse gradation. 

Desirable gradations are in black, undesirable are in yellow, and unacceptable are 

in red. 

 

 

None of the coarse aggregate gradations had a substantially high initial pressure 

value.  In fact, the concrete mixture with the lowest pressure has the highest percent 

retained value. While this mixture had a low pumping pressure it was observed to 

segregate as highlighted in red in Figure 5-14.  An image of the mixture segregating is 

shown in Figure 5-15.  The aggregate discharging from the line can be seen sitting on 

top of the concrete in the hopper.  Because of this segregation this mixture was deemed 

to not be acceptable.  This observation of segregation matches those in previous 

chapters for this limit of the Tarantula Curve. 
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Figure 5-15 Coarse aggregate exiting the pipeline and showing segregation.  

 

5.2.3.2 Examining the Intermediate Limits  

The #4 sieve size was adjusted to meet the bounds of the Percent Retained 

Chart and then breach the suggested maximum percentage. Each gradation is plotted 

in Figure 5-16 as well as their respective average pressure values from Sensor 2 at 0 

minutes at 1500 rpm.  
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Figure 5-16 Sensor 2 pressures at 1500 rpm at 0 minutes per intermediate 

gradation. Desirable gradations are in black, undesirable are in yellow, and 

unacceptable are in red. 
 

The greatest difference in pressure is 7.5 psi between the higher pressure at 

20% of #4 and the lower pressure gradation at 22% of #4. This difference is very close-

to the variation that can be expected between mixtures.  The range of intermediate 

aggregates doesn’t seem to affect the pump pressure in any noteworthy way with 1500 

rpm. But when the rpm is dropped to 1200, air gaps form in the line at 22% retained. 

Even so, these mixtures remained pumpable over time with no dramatic effects except 

that gradations highlighted in yellow broke 65 psi at some point during pumping, 

rendering them undesirable, but no segregation was observed in these mixtures. 

0%

5%

10%

15%

20%

25%

30%

1.5"1"3/4"1/2"3/8"#4#8#16#30#50#100#200

%
 R

et
ai

ne
d

Sieve Size

38.0 psi

39.5 psi

45.5 psi

41.5 psi



Final Report  

119 
 

5.2.3.3 Examining Fine Sand Limits 

Recall that Percent Fine Sands are a sum of retained #30, #50, #100, and #200 

sieves.  Using a 6 sack mixture, the total amount of fine sand volume was 

recommended to be between 25% and 40%. The amount of Fine Sand was adjusted for 

this data set to try to determine how this impacts pumping.  A collection of the 

gradations and their respective Sensor 2 pressures at the 0 minutes and 1500 rpm is 

shown in Figure 5-17 below.  

 

Figure 5-17 Sensor 2 pressures at 1500 rpm at 0 minutes per fine sand gradation.  

Desirable gradations are in black, undesirable are in yellow, and unacceptable are 

in red. 
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Two concrete mixtures are of major importance in these figures. The first is the 

24% Fine Sand mixture. It segregated in the pipeline causing the pump to seize and 

thus it provides a lower fine sand boundary for required sands in a certain gradation. 

The mixture design with 44.6% fine sands brings the gradation right below the upper 

boundary. Here the concrete can still flow through pipe network but requires a higher 

pressure to do so. While this works, it is not recommended because the mixture cannot 

be pumped for long, only about 10 minutes. The mixture with a Fine Sand content of 

56.5% breaks the fine sand volume and has a higher Fine Sand content than the upper 

limit of the curve. This mixture had a pumping pressure that was 81% higher than the 

mix that has a 39.5 psi average value. During pumping this mixture was so stiff it would 

not flow in between the grate and into the hopper. Rather, it was forced into the hopper 

with a shovel. Both the static and dynamic yield stresses received unacceptable values 

immediately after the pumping started  

5.2.3.3.1 24% Fine Sand Mixture Design 

In Table 5-5, the rheometer data gives the 24% Fine Sand concrete mixture an A 

rating for static and dynamic stress. Even so, the mixture jammed the pipe. Initially, the 

mixture was observed to have very poor cohesion and during pumping the mixture 

segregated causing the coarse rock to get jammed in the reducer. Figure 5-19 shows 

the slump test conducted on the 24% Fine Sands concrete mixture with a comparison of 

a slump test ran on 39.4% Fine Sands concrete.  As can be seen the slump with the low 

Fine Sand will have a high slump measurement but the mixture breaks apart in the 

slump test and not stayed cohesive.  This is an example where the rheology tests did 

not correlate with the performance.  These observations match those in other chapters 
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and further support the importance of the lower Fine Sand limits.  Once the reducer was 

detached some aggregate fell out but the majority of the jamming rock remained until it 

was manually cleared out. See Figure 5-20 to see the jam in the pipeline. 

 

 

Figure 5-18 Concrete with 24% fine sands breaks apart when the Slump Test is 

conducted. 
 

24% Fine Sands 

39.4% Fine Sands 
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Figure 5-19: Concrete with 24% fine sands has insufficient mortar to move the 

aggregate, thus jamming the reducer. 

 

After 14 piston cycles the rock had backed up all the way to the pistons, seizing 

the pump. See Figure 5-20 for an example of the pressure data while segregation 

occurred. 
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Figure 5-20: Segregation in the line causes erratic, unpredictable pressure 

curves. 
The piston strokes don’t follow the typical pressure curve. Rather, it’s noisy and 

jagged with large pressure spikes throughout the stroke. No other tested concrete 

mixture had pressure curves similar to this and thus is considered a non-pumpable 

concrete mixture. 

 

5.2.4 Pumping Pressures for Percent Fine Sand Mixtures with Time 

Each mixture was pumped for at least 30 minutes or until it was deemed 

unacceptable based on the standards stated previously. As shown in Figure 5-17 and 

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7

Pr
es

su
re

 (p
si)

Time (sec)

Piston Stroke



Final Report  

124 
 

Figure 5-17, the percent of fine sands seemed to play the biggest role in the pumpability 

of concrete. Below, the range of fine sands are compared to pressure, yield stresses, 

and slump for the period of their testable time plotted on Figures 5-21, 5-22, 5-23, and 

5-24. Again for pressure, note that the data points are from Sensor 2. If a mixture failed 

a data point was not plotted. In almost all cases, pressure and yield stress increase over 

time with slump decreasing as well.  Also these values form a curve that remains similar 

through each figure. 

 

Figure 5-21 Pressure from Sensor 2 over time at 1500 rpm. 
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Figure 5-22 Static yield stress change over time at 1500 rpm. 

 

Figure 5-23 Dynamic yield stress change over time at 1500 rpm. 
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Figure 5-24 Slump decreases over time at 1500 rpm. 
 

In general, the pumping pressure, slump, and rheometer values increased with 

pumping time.  Also mixtures that had a Fine Sand content between 32% and 40% 

showed the best performance.  This suggests that mixtures with Fine Sand contents in 

this range are more robust and should be able to be pumped for longer periods and 

therefore longer distances than mixtures with other Fine Sand contents.   

5.2.4.1 Discussion of Fine Sand Range 

Figure 5-25 shows the percent fine sands and their respective pressures. Note 

how reducing your fine sands to about 24% causes crippling segregation and increasing 

to over 55% creates very low, unusable workability. 
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Figure 5-25: Sensor 2 pressures at 1500 rpm at 0 minutes with fine sand content 

show a range of pumpability. Desirable contents are in black, undesirable are in 

yellow, and unacceptable are in red. 
 

Note that this curve looks extremely similar to Figure 4-7 in the previous chapter 

and has been shown again below in Figure 5-26. Recall that Sand A was used in the 
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follows closely with Moderate Overall Performance shown in figure 5-26.  This remains 
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differences in performance it makes it challenging to pick one set of recommendations 

for the fine sand limits.  In order to be conservative the limits from 25% to 40% will be 

used as they worked for the three sands investigated.  Ideally additional research 

should be completed to continue to look at why different sands performed differently in 

this testing.  It may have to do with the shape of the individual sand particles. 

 

Figure 5-26: The Overall Performance of concrete mixtures with three different 

sands versus the amount of fine sand in the mixture. Sand A is slightly shifted to 

the right. The results from Sand in the pumping test gives a similar result. 
 

From this it is seen that the bounds of both the Tarantula Curve coupled with the 

bounds of the Fine Sand chart provide a conservative gradation range for pumpable 

concretes. These recommendations are similar to the results for the Fine Sand 

boundaries discussed earlier. The reader should be reminded that the sack content for 
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each mixture is 6.5 sacks, not 6 sacks as was previously used in other parts of this 

document. But with the 6.5 sack content similar limits were found.  Mixtures within the 

range from 28% to 44% Fine Sands for Sand A have a reasonable range of workability. 

As you increase the total sands past 44% the yield stress values and pump pressures 

greatly increase causing the mixture to become too stiff. Mixes with total fine sands less 

than 28% may have lower yield stresses and pressures but segregation within the 

concrete make it not usable. 
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5.3 Summary 

The grout part of concrete, the combination of paste and fine sands, helps to both 

reduce friction as concrete travels through the pipeline as well as hold the aggregate 

together so it is not left behind in the pipeline. There is a wide range of acceptable 

coarse and intermediate aggregates volumes that can be used but the gradation limits 

for the coarse aggregate still served as a useful limit for these mixtures.  The following 

conclusions were made:   

• The concrete pump and instrumented pipe loop system provided a useful tool to 

evaluate the impact of different aggregate gradations on the ability to pump 

concrete mixtures.   

• There is a relationship between slump, static yield stress, and dynamic yield 

stress and the pumping pressures for the constant part of the pressure versus 

time curve and sensors located immediately after the pump and after a 90o bend.  

• The pumping pressures after the second 90o bend (sensor 4) did not show a 

good relationship, likely from the higher pressure losses at this point.   

• The Tarantula Curve provides a useful limit for coarse, intermediate, and fine 

aggregates where the concrete mixture becomes undesirable and may also 

cause failure. 

• A percent Fine Sand content of 24% caused segregation and jammed the 

pipeline and a percent Fine Sands content greater than 44% creates a mix that 

would be too stiff to pump, especially for long periods of time.   

 

While more investigations on different aggregate sources and shapes of aggregates 
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is necessary, this study still provides useful limits that can have positive impacts on the 

concrete industry. 
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CHAPTER 6 – RECOMMENDED AGGREGATE GRADATIONS FOR 
FLOWABLE CONCRETE 

 

By using a combination of performance during pumping, rheometer 

measurements, visual observations, finishability tests, and Slump the desirable 

gradations for flowable concrete was determined for the materials and mixtures 

investigated.  The culmination of these efforts suggest that the bounds of the Tarantula 

Curve provide a practical range for coarse, and intermediate aggregates and coarse 

and fine sand create a flowable concrete that is also pumpable.  This is summarized in 

Figure 6-1.

 

Figure 6-1: An overview of the recommended aggregate gradation limits known 

as the Tarantula Curve. 
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In addition to the gradation, it is recommended that the slump of the concrete 

mixture should be at least 4 in.  The authors feel that it is necessary to propose these 

gradation limits because the workability tests were not able to examine all important 

aspects of the performance of the mixture design.  For example, the Slump Test does 

not measure the surface finishability of the mixture, or the amount of segregation that 

occurs.  While tests and measurement methods were found in this study that can 

observe these phenomenon, they are not practical to regularly run in the field. 

It also should be noted that as these proposed boundaries are met or broken, the 

potential for either an undesirable or failing concrete mixture greatly increases. The 

Tarantula Curve and the fine sand and coarse sand limits provide a conservative range 

for proportioning the aggregate for flowable concrete.  By using these criteria then it can 

allow reductions in cement, water, admixtures, or all three of these in a mixture. This will 

help improve sustainability, economy, and long term durability of flowable concrete. 

It should be noted, that three different sand sources were investigated in this study and 

Sand A had a different performance than the other two.  This could be caused by the 

shape or texture of the sand.  However, the suggested bounds were chosen to still 

provide a safe recommendation regardless of the aggregate sources investigated.   

The researchers suggest that ODOT consider dropping the total cementitious 

content of concrete mixtures for structural concrete to 6 sacks.  In cases where the 

concrete does not need to be pumped then it may be further dropped to 5.5 sacks.  

These changes have the ability to create significant savings. Personal communications 

from ODOT suggest that approximately based on a three year average that 676,000 CY 

of structural concrete is placed in each year.  If a 0.5 sack of cement is reduced for each 
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of these mixtures, then the savings would be $1.5 million each year.  Additional cost 

savings will also be realized through reduced maintenance and longer performance of 

these structures. In addition there will be significant energy savings from the reduction 

in cement usage. The estimated energy savings each year is 59 billion BTUs each year.  

This is enough to power approximately 440 homes in Oklahoma each year. 
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CHAPTER 7 – CONCLUSION 
 
This report has provided a summary of the work completed to date on ODOT project 

2160 “Investigation of Optimize Graded Concrete for Oklahoma Phase II”.  Based on 

the data collected using four different workability evaluation techniques, the following 

have been found: 

• If a single sieve size of the coarse aggregate (#4 and larger) retained more than 

20%, the workability performance of the concrete would tend to decrease and 

segregation would increase.   

• Unless a sieve size retains more than 20%, a large range of gradations can be 

used without drastically impacting the workability of the concrete.  

• Deficient amounts of a single sieve size or consecutively adjacent sieve sieves 

did not affect the workability of the concrete until a sieve size retained above 

20%.  

• Ideal bell shaped curve created surface finishability issues and is not 

recommended in practice.  

• The maximum aggregate size did not have a major effect on the workability.  

However, the maximum aggregate size can help reduce the high amounts on a 

single sieve size by increasing the number of sieves used. 

• Coarse sand (#8 through #30) was shown to impact the cohesion of the mixture.  

• A minimum value of 20% was suggested to be retained on the coarse sand (#8 

through #30).  

• Surface finishability issues could be created with gradations retaining over 12% 

on the #16 and #8 and also 20% of #30. 
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• Fine sand (#30 through #200) volume was recommend to range from 25% to 

40% of the combined gradation. 

• The concrete pump and instrumented pipe loop system provided a useful tool to 

evaluate the impact of different aggregate gradations on the ability to pump 

concrete mixtures.   

• There is a correlation between slump, static yield stress, and dynamic yield 

stress and the pumping pressures for the constant part of the pressure versus 

time curve and sensors located immediately after the pump and after a 90o bend.  

• The Tarantula Curve provides a useful limit for coarse, intermediate, and fine 

aggregates where the concrete mixture becomes undesirable and may also 

cause failure. 

• A percent Fine Sand content of 24% caused segregation and jammed the 

pipeline and a percent Fine Sands content greater than 44% creates a mixture 

that would be too stiff to pump, especially for long periods of time.   

• Implementing the recommendations in this report has the potential to save the 

state of Oklahoma over $1.5 million and enough energy to power 440 Oklahoma 

homes each year that it is implemented. 
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APPENDIX 
 

PROPOSED OKLAHOMA DEPARTMENT OF TRANSPORTATION 
SPECIAL PROVISIONS 

FOR 
OPTIMIZED GRADED CONCRETE IN STRUCTURAL APPLICATIONS 

 
MIX DESIGN AND PROPORTIONING 
If the contractor provides a concrete mixture meeting the specifications of optimized 
graded concrete for structural applications (OGCSA) such as a bridge deck, the 
minimum cementitious content may be reduced to 564 lbs./yd3 [335 kg/m3]. 
  
Specification 
To meet the optimized graded concrete pavement provision criteria, the batch weights, 
individual aggregate sieve analysis, SSD specific gravities of the aggregates, and other 
material information will be inputted into the OGCSA spreadsheet.  This spreadsheet 
can be found here. The OGCSA spreadsheet will evaluate the following requirements: 

• The combined gradation must be within the boundary limits for each sieve size. 
• The total volume of fine sand (#30-200) must be within 25% and 40% of the 

aggregate content used. 
• The total volume of coarse sand (#8-#30) must be 20% or greater. 
• Limit the flat or elongated coarse aggregate to 15% or less at a ratio of 1:3 

according to ASTM D4791. 
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Figure A1 The limits for the minimum and maximum boundary limits.  
 
Gradation Tolerance 
Make necessary adjustments to individual aggregate stockpile proportions during the 
concrete production to ensure the gradation stays within ODOT requirements.  If this is 
not possible then the minimum cementitious content in the mixture shall be increased to 
611 lbs./yd3 (363 kg/m3).
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