
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ADVANCED AVIATION WEATHER RADAR DATA PROCESSING AND

REAL-TIME IMPLEMENTATIONS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

JINGXIAO CAI
Norman, Oklahoma

2017

ADVANCED AVIATION WEATHER RADAR DATA PROCESSING AND
REAL-TIME IMPLEMENTATIONS

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Yan Zhang, Chair

Dr. Ronald Barnes

Dr. Boon Leng Cheong

Dr. Changwook Kim

Dr. Tian-You Yu

c© Copyright by JINGXIAO CAI 2017
All Rights Reserved.

To my family...

Acknowledgments

Firstly, I would like to sincerely thank my research adviser Prof. Yan (Roc-

kee) Zhang. Without his insightful guidance, valuable opinions and meticulous

supports, my research career would be overwhelmed by difficulties faced along

the way and my work would have been unachievable.

Secondly, I would like to extend my thanks to all my committee members,

Prof. Tian-You Yu, Prof. Boon Leng Cheong, Prof. Ronald Barnes and Prof.

Changwook Kim, for their great helps, suggestions and encouragements. Also,

special thanks to Dr. Richard Doviak for his brilliant advices, enthusiastic

inspirations and tireless reviews for the latest and most important research

during my Ph.D career.

I would like to also express my deeply gratefulness to my outstanding col-

leagues for the invaluable supports and collaborations during my Ph.D career

at OU.

Finally, I would like to thank my family: My wife Xi, my son to be born, my

parents and my grandparents. They are the reason I get up everyday and work

through difficulties and obstacles to pursue my professional career. Words can

not express my gratitudes for their unconditional supports and sacrifices.

iv

Table of Contents

Acknowledgments iv

Abstract xvi

1 Introduction 1

1.1 Missions . 1

1.1.1 The Data Computing Challenge 1

1.1.2 The Intelligent Hazard Detection Challenge 5

1.2 General Background of This Dissertation 5

1.2.1 Aviation Satety and Aviation Hazards 6

1.2.2 Principles of Weather Radar 8

1.2.3 Artificial Intelligence 10

1.2.4 High Performance Computing 11

1.3 Selection of High Performance Computing (HPC) platform . . 11

2 Systems and Requirements 13

2.1 Aviation Weather Hazards and Radar Sensing 13

2.2 Examples of Radar Systems Used in Research 14

2.2.1 High Altitude Imaging Wind and Rain Airborne Profiler

(HIWRAP) . 15

v

2.2.2 Hong Kong Observatory - Terminal Doppler Weather

Radar (HKO-TDWR) 16

2.2.3 Ka Band Frequency-Modulated Continuous Wave (FMCW)

Radar Prototype for Airborne Remote Sensing 19

2.2.4 Atmospheric Imaging Radar (AIR) 23

2.3 Real-Time Requirement for Observing Weather Hazards . . . 24

2.3.1 Solutions to Acclerated Computing Using General Pur-

pose Graphic Processing Unit (GPGPU) 26

3 Machine Intelligence Algorithms 28

3.1 Introduction to Machine Intelligence 28

3.2 Artificial Neural Network (ANN) 31

3.3 An Example Application: Wind Farm Clutter Detection . . . 33

3.3.1 Introduction . 33

3.3.2 Previous Works . 35

3.3.3 Supervised Learning Approach 36

3.3.4 Unsupervised Learning Approach 43

4 Turbulence Detection and Classification using HKO-TDWR

with AI Algorithm 52

4.1 Introduction . 52

4.2 Concept of Operations . 56

4.3 Pre-Processing of TDWR Data 58

4.3.1 Background Information 58

4.3.2 Initial Radar Data Visualization 60

4.3.3 General Statistics of Turbulence Scenarios 62

vi

4.3.4 Signal-to-Noise Ratio (SNR) and Spectrum Width Mea-

surements . 62

4.3.5 Association of In-situ Measurements with Radar Mea-

surements . 66

4.4 Development of Feature Vectors 67

4.5 Training and Testing Algorithms 69

4.5.1 Objectives of Training and Testing Algorithms 69

4.5.2 Training Data Generation 71

4.5.3 Training of Artificial Neural Networks (ANN) 72

4.5.4 Classification and Decision Logic 73

4.6 Summary of Test Results . 75

4.6.1 Summary of All Flight Cases 75

4.6.2 Case Analysis for Flight CX 134 77

4.6.3 Case Analysis for Flight CX 383 83

4.7 Summary and Conclusions . 88

5 GPGPU-Based Implementation of Radar Processing Chain 90

5.1 Basic Signal Processing Chain for Surveillance Radar 90

5.1.1 Data Cube-Based Processing Chain 90

5.1.2 CUDA Implementation of The Signal Processing Chain:

Basic Concept . 92

5.2 Algorithms . 93

5.2.1 Matched Filter . 93

5.2.2 Reiterative Minimum Mean-Square Error (RMMSE) . 95

5.2.3 Matched Filter Based RMMSE (MF-RMMSE) 96

5.3 Graphic Processing Unit (GPU) Testbed 97

5.3.1 Hardware . 97

vii

5.3.2 Software . 98

5.4 Implementation and Optimization 99

5.4.1 Matched filter . 100

5.4.2 RMMSE and MF-RMMSE 101

5.4.3 Data Transfer . 102

5.4.4 Memory Space Usage 102

5.4.5 Statistical Kernel Optimization 103

5.5 Benchmark Results . 104

5.5.1 Matched Filter . 105

5.5.2 RMMSE . 107

5.5.3 MF-RMMSE . 110

5.6 Application to Real/Measured Data 113

5.7 AIR- OU/ARRC for Adaptive Beam-Forming 116

5.8 Artificial Intelligence (AI) Implementation Based on GPGPU

Platform . 119

5.8.1 Nvidia Jetson . 119

5.8.2 CuDNN . 121

5.8.3 Caffe . 121

5.8.4 TensorFlow Framework 122

5.8.5 Benchmark Tests . 122

6 Conclusions and Future Work 127

6.1 Conclusions . 127

6.2 Future Work . 129

References 131

Appendix A Summary of Contributions 142

viii

List of Tables

1.1 Some of the Hazardous Weather Conditions for Aviation . . . 7

1.2 Basic Weather Radar Measurements 9

2.1 Comparison Between Lidar and Radar 14

2.2 Specifications of HIWRAP . 16

2.3 Specifications of HKO-TDWR 17

2.4 Specifications of AIR . 25

2.5 Comparison CPU, GPU and TPU 27

3.1 Types of AI . 29

3.2 Types of Machine Learning Algorithms 30

3.3 Components of ANN . 31

3.4 Simulation Parameters for Airborne Radar 37

4.1 HKO Brothers Point TDWR Radar Specs 59

4.2 Number of Detections by Classifier on Altitude vs Turbulence

Category . 63

4.3 Structure of Training Vector of Features 68

4.4 Relation between EDR1/3 and Turbulence Categories 71

4.5 Number of Measurements vs Altitude and in situ EDR1/3 . . 72

ix

4.6 Number of Resampled Measurement vs Altitude and EDR1/3

for A Training Data Set After Resampling of the Measurement

Datasets . 72

5.1 Computational Complexity per Range Cell for Different Algo-

rithms . 97

5.2 The GPUs Used in the Current Studies 99

5.3 Generations of Nvidia Jetson Boards 120

5.4 Comparison between Jetson TX2 and TITAN Xp 123

5.5 Benchmarks of Deep Learning Networks on GPUs and CPUs . 124

x

List of Figures

1.1 Sample image of hurricane reflectivity data from high-altitude

radar flight campaign. Courtesy of NASA Goddard Space Flight

Center, MD. 2

1.2 examples of radar products of HKO-TDWR 9

2.1 HIWRAP Measurement Concept. Courtesy of NASA Goddard

Space Flight Center, MD. 15

2.2 An example of the difference in reflectivity output between

NEXRAD (bottom) and TDWR (top). Courtesy of NOAA [50]. 18

2.3 Block diagram of Ka band FMCW radar 20

2.4 Prototype of Ka band FMCW radar 20

2.5 Link budget analysis of Ka band FMCW radar 21

2.6 In-door test environment . 22

2.7 Example range profile . 22

2.8 Photo of AIR. Courtesy of OU-ARRC. 23

3.1 Typical structure of a Neuron. a1 an are inputs, b is the offset,

w1 wn are weights of respective Synapse, f is the activation

function and t is the output. 32

3.2 Typical structure of a back-propagation artificial neural network

(BP-ANN) . 34

xi

3.3 Time-Doppler spectrum of a range cell which contains ground

clutter, wind turbine and a target 35

3.4 Time-Doppler spectrum of a range cell which contains a wind

turbine. 38

3.5 Time-Doppler spectrum of a range cell which contains ground

clutter, target spectrum will also look the same but different

radial velocity . 39

3.6 Structure of ANN used for WTC identification example 40

3.7 Cross-validation error against Iterations 41

3.8 Simulated airborne radar PPI scan of a wind farm - power return

[55] . 42

3.9 Simulated airborne radar WTC recognition output from the ANN 43

3.10 The structure of autoencoder 44

3.11 An example of EM algorithm outputs ”trapped” into a local

maximum. x and y axles are first and second dimension of the

simulated data points. 46

3.12 An example of EM algorithm with more distributions assumed

than the truth. 47

3.13 Classification result using 4 distributions. Each color represents

a category obtained from EM algorithm. 50

3.14 Classification result using 7 distributions. Each color represents

a category obtained from EM algorithm. 51

4.1 Overall concept of operation for aviation hazard detection. . . 56

4.2 Photographic image of the HK airport and the location of the

TDWR radar. 58

xii

4.3 The elevation angles of the conical scans vs time, and a span of

time embraced by red vertical lines within which radar data was

used to construct Vertical Profiles of Radar Variables (VPRVs)

shown in Figure 4.6. 60

4.4 Example measurement data product from a PPI scan of the

TDWR, Reflectivity (Z), Radial velocity (V), Spectrum width

(W) and Signal-to-Noise Radar (SNR). 61

4.5 Scatterplots of all 560,000 collected data. 65

4.6 Vertical profiles of radar variables along with the flight path of

CX 134 at 0, -5 and -10 minutes before the flight time. 70

4.7 Decision and classification algorithm for turbulence detection. 74

4.8 Classification performance results for all the collected flight data

cases with unanimous classification votes. 76

4.9 Detection with 0min data and prediction without 0min data for

CX 134. 78

4.10 Turbulence along with the path of CX 134. 80

4.11 Confusion matrix of unanimous output of CX 134. 83

4.12 Vertical profiles of radar variables along with the flight path of

CX 383 at 0, -5 and -10 minutes before the flight time. 84

4.13 Detection with 0min data and prediction without 0min data for

CX 383. 85

4.14 Turbulence along with the path of CX 383. 85

4.15 Confusion matrix of unanimous output of CX 383. 87

xiii

5.1 The basic “data cube” processing chain of pulsed-Doppler radar.

In this figure, np is number of pulses per Coherent Processing

Interval (CPI), nc is number of digital channels, and ng is num-

ber of range gates. 91

5.2 The basic processing chain of pulsed-Doppler radar. 93

5.3 The hierarchy of CUDA abstract architecture and related Radar

PPI Scan. 100

5.4 The configuration of processing power for matched filter. . . . 100

5.5 The configuration of processing power for RMMSE/MF-RMMSE.101

5.6 The hierarchy of CUDA abstract architecture and related GPU

physical architecture. 103

5.7 The performance of matched filter computing based on various

libraries and processor usage. 105

5.8 The performance comparison of Matched Filter based on GPU

and CPU platforms. 106

5.9 The performance comparison of RMMSE based on GPU and

CPU platforms. 107

5.10 The performance comparison of RMMSE based on GPU and

CPU platforms. 108

5.11 The performance comparison of RMMSE between GPU and

CPU implementations with various CUDA configurations and

length of waveforms when the length of ground truth is fixed

to 100 sample points. Lengths of waveforms are from 32 to 51.

The black circle represents the configuration when maximum

speed-up is achieved under current data format. 108

xiv

5.12 The performance comparison of MF-RMMSE based on GPU

and CPU platforms. 110

5.13 The performance comparison of MF-RMMSE based on GPU

and CPU platforms. 111

5.14 The performance comparison of MF-RMMSE between GPU

and CPU implementations with various CUDA configurations

and length of waveforms when length of ground truth is fixed

to 100 sample points. Lengths of waveforms are from 40 to 64.

The black circle represents the configuration when maximum

speed-up is achieved under current data format. 112

5.15 Output results of pulse compression implementation using NASA’s

HIWRAP radar data . 113

5.16 Averaged output results of pulse compression implementation

using NASA’s HIWRAP radar data 113

5.17 Error results of pulse compression implementation using NASA’s

HIWRAP radar data . 114

5.18 Coherence results of pulse compression implementation using

NASA’s HIWRAP radar data 114

5.19 Time consumption of CPU and GPU versus number of range

profiles handling in HIWRAP data, while GPU time consump-

tion without data transfer is demonstrated separately 115

5.20 Atmospheric Imaging Radar (AIR) 116

5.21 Power estimate comparison: the offset is added intentionally to

distinguish the two. [102] . 117

xv

5.22 Time consumption of the GPU and CPU versus the number of

beams in AIR signal processing. The red line marks the data

cube acquisition time. Note that only the low-end products are

tested out as the GTX-750 Ti has already met the real-time

requirement. 118

5.23 the Jetson TX2 development kit. 119

xvi

Abstract

The objectives of this dissertation work are developing an enhanced intelligent

radar signal and data processing framework for aviation hazard detection, clas-

sification and monitoring, and real-time implementation on massive parallel

platforms. Variety of radar sensor platforms are used to prove the concept

including airborne precipitation radar and different ground weather radars.

As a focused example of the proposed approach, this research applies evolu-

tionary machine learning technology to turbulence level classification for civil

aviation. An artificial neural network (ANN) machine learning approach based

on radar observation is developed for classifying the cubed root of the Eddy

Dissipation Rate (EDR), a widely-accepted measure of turbulence intensity

[1], [2]. The approach is validated using typhoon weather data collected by

Hong Kong Observatory’s (HKO) Terminal Doppler Weather Radar (TDWR)

located near Hong Kong International Airport (HKIA) and comparing HKO-

TDWR EDR1/3 detections and predictions with in situ EDR1/3 measured by

commercial aircrafts. The testing results verified that machine learning ap-

proach performs reasonably well for both detecting and predicting tasks.

As the preliminary step to explore the possibility of acceleration by in-

tegrating General Purpose Graphic Processing Unit (GPGPU), this research

xvii

introduces a practical approach to implement real-time processing algorithms

for general surveillance radar based on NVIDIA graphical processing units

(GPUs). The pulse compression algorithms are implemented using compute

unified device architecture (CUDA) libraries such as CUDA basic linear alge-

bra subroutines and CUDA fast Fourier transform library, which are adopted

from open source libraries and optimized for the NVIDIA GPUs. For more

advanced, adaptive processing algorithms such as adaptive pulse compression,

customized kernel optimization is investigated. A statistical optimization ap-

proach is developed for this purpose without needing much knowledge of the

physical configurations of the kernels. It was found that the kernel optimiza-

tion approach can significantly improve the performance. Benchmark perfor-

mance is compared with the CPU performance in terms of processing acceler-

ations. The proposed implementation framework can be used in various radar

systems including ground-based phased array radar, airborne sense and avoid

radar, and aerospace surveillance radar. After the investigation of the GPGPU

on radar signal processing chain, the benchmark of applying machine learning

approach on embedded GPU platform was performed. According to the per-

formance, real-time requirement of the machine learning method of turbulence

detection developed in this research could be met as well as Size, Weight and

Power (SWaP) restrictions on embedded GPGPU platforms.

xviii

Chapter 1

Introduction

1.1 Missions

The scope of this dissertation is data processing of weather radars for measur-

ing, detecting and classifying specific kinds of aviation weather hazards. The

mission is to solve two problems in the weather radar systems: (1) Using par-

allel computing to accelerate Doppler weather radar signal processing chain

processing with constraint of Space, Weight and Power (SWaP). (2) Using

machine intelligence (MI) to build data modeling of the massive amount of

weather radar data, and use such data modeling to detect (and classify) the

hazards or clutters. The main focus of the targets is aviation-related hazards.

1.1.1 The Data Computing Challenge

As an example we developed an initial parallel computing framework that ac-

celerate the reflectivity data product generation from NASA’s high-altitude

precipitation radars [3] as well as OU-ARRC’s AIR radar processing. NASA-

Goddard Space Flight Center, for example, has been operating multiple high

altitude airborne radars. Figure 1.1 shows an example reflectivity mapping

1

Figure 1.1: Sample image of hurricane reflectivity data from high-altitude
radar flight campaign. Courtesy of NASA Goddard Space Flight Center, MD.

of a hurricane from 20 km altitude using one channel from one of the Ku-

band (13 GHz) radars. For the radar records like in Figure 1.1, there are a

few issues that need to be addressed. First, the radar used in Figure 1.1 was

facing downward and was about 20 km above the sea. Second, the attenua-

tion of radar singal at Ku band is substantial as it could be observed by the

radar recordings around 21:39 and there should be a strong return around

20km range as it should be the sea level. Therefore, the attenuation of EM

wave should be taken into consideration especially for shorter wavelength ap-

plication, such as Ka-band based radar system, which will be introduced in

this research. Currently, the computation of the data product is done offline

and non-real-time. As a solid-state pulsed-Doppler radar, the computation

procedure involves pulse compression, Doppler filtering (including pulse-pair

processing), pulse averaging/smoothing, and reflectivity calculation. More de-

tails for this sensor and data are provided in [4]. The estimated raw data rate

2

with current configuration is more than 10 Giga-Byte for each hour of flight

data collection. The upgrade plans of these high-altitude precipitation radars

involve multiple channels and multiple frequencies, which will dramatically

increase (> 10 times) the amount and rate of data. Meanwhile, the need for

being able to form the data product/image from onboard platforms is urgent,

since it will greatly enhance the observation capability and forecasting capa-

bility of severe storms and reduce processing workload on the ground.

For this example, we suggested to develop an initial demonstration of real-

time processing of these high-altitude radar data based on General Purpose

Graphic Processing Unit (GPGPU). GPU processor has been used in previous

airborne radar imaging product generation, such as the Synthetic Aperture

Radar (SAR) [5]–[9]. However, it has not been used onboard for high-altitude

precipitation radars before. Prior work in the area mainly focused on sim-

ple data parallelism scheme (i.e., dividing the radar scan image into GPU

blocks). However, there are intrinsic parallelisms deep in each signal process-

ing algorithm along the processing chain that have not been exploited. The

optimal radar data redistribution between different stages of processing has not

been studied (e.g., corner-turn), and an integrated, end-to-end multi-channel

surveillance radar processing chain/function on a GPU platform has not been

demonstrated for operating phased array radars. Furthermore, software tools

to explore the parallel computing performance (such as CUDA/OpenCL) have

been updating in unprecedented speed. New capabilities (such as nested paral-

lelism and Basic Linear Algebra Subprograms (BLAS) libraries) in these tools

provide foundations to break-through the current performance limitations and

release the power of embedded parallel computing to radar processing, and

3

was not been applied in prior R&D work.

On the other hand, the existing processing algorithms in these airborne

radars are not optimized, or may not be carefully designed to be suitable for

parallel processors. One of the challenging issues is the antenna and range side-

lobes, which contaminates the radar measurement and distorts the measure-

ment of ground truth [10]. In prior projects, our team has already developed

a novel algorithm, called 2D-RMMSE (Two-dimensional Recursive Minimal

Mean-Square Estimation) [11], which has successfully demonstrated the effec-

tiveness of removing challenging antenna and waveform distortions with both

ground radar data and simulated airborne radar data. Naturally, the next step

is to apply this algorithm to actual measured airborne radar data from flight

campaigns and deploy them to the onboard processors.

The computational load of these newly developed processing algorithms has

been a hurdle for their application to real-time meteorological product gener-

ation. For example, the computation load for RMMSE algorithm is O(N3),

where N is the length of waveform, compared to the magnitude of O(N) for

the traditional matched filtering [12]. Enhanced computing power (without

significant increasing the size and weight of the processor system) is necessary

to make the data product generation feasible for NASA, NSF or other agen-

cies’ missions.

4

1.1.2 The Intelligent Hazard Detection Challenge

The second challenge of the missions in this dissertation is the development

of more advanced algorithms for detection, classification, diagnosis and mon-

itoring different types of aviation hazards, especially for the weather-related

hazards and electromagnetic (EM) interferences. For example, turbulence has

been a major threat for aviation safety, and detecting turbulence reliably and

in real-time using different sensors has been a significant challenge since 1960s

[13], [14]. After the front-end signal processing and data quality control, the

important step is to detect, classify and retrieve the information in the data.

The challenge is balancing physical model complexity, computational load,

accuracy, and algorithm performance with limited data quality and various

types of hazards. This work uses aviation turbulence detection and wind farm

clutter detections as examples, while the similar approach can be applied to

other aviation hazards.

1.2 General Background of This Dissertation

In modern civil aviation, weather is one of the biggest causes of flight de-

lays/cancellations and accidents, which is accounted for billions of dollars loss

in the economy every year [15]. As for accidents, especially air crashes, the

lives of people on board are on the string every single time. Those incidents

are typical “Low-Probability, High-Impact” events, especially impact on the

public faith on civil aviation industry which is the blood and veins in modern

global economy. Preventing those incidents from happening would require,

first, a method to detect such hazardous weather and, second, a practical ap-

proach to apply those method. Weather radar, as the primary measure to

5

monitor weather, is the equipment to rely on for such task.

Airborne radar and ground radar have different purposes and architectures.

Airborne weather radar is typically installed inside of the nose area of an air-

craft. It is usually designed to serve the purpose of monitoring the weather

of immediate front of the aircraft. Due to the size and power limitations, the

range and resolution are limited. A ground weather radar, on the other hand,

usually has higher power levels and better resolutions. Generally, the two most

critical stages of a flight in aviation safety are taking-off and landing phases.

Therefore, monitoring the weather condition near the runway would be most

beneficial to the aviation safety. Terminal Doppler Weather Radar (TDWR)

was developed and usually deployed near the airport to serve the purpose of

weather surveillance near the airport terminal areas. TDWR provides rapid

weather data updates, such as reflectivity, radial velocity and spectrum width,

of the volume of atmosphere within the vicinity of the runway. Those data

combined with coordinate information would be used to generate a detection

and/or prediction of intensity of aviation related-weather hazards. .

1.2.1 Aviation Satety and Aviation Hazards

After human beings’ first flight in 1903, following the footsteps of Wright broth-

ers [16], aviation becomes one of the most important technological development

in recent human history. From propeller biplanes, such as P-51 Mustang [17]

to super-sonic fighter jets, such as F-22 Raptor [18], aerospace technologies

advance with the time. In civil uses, aviation is one of the catalysts of the

modern society. From four-seat Cessna 172 Skyhawk [19] to Jumbo-Jet Boeing

6

747 [20], civil aviation reshapes the modern life of the human beings in many

ways. With modern passenger airplanes, it shrinks the spatial and temporal

distance between any two points on the globe. The research and development

on aviation, especially on engine and aerodynamic, also inspired the develop-

ment of many other industries, such as spaceflight and automobile.

Table 1.1: Some of the Hazardous Weather Conditions for Aviation

Type Notes Incident Detection Strategy

Turbulence turbulent movement
of air masses

UA826
(1997) [21]

Radar
(with precipitation)

Microburst small down draft DL191
(1985) [22]

Low Level Windshear
Alert System(LLWAS) [23]

Windshear
a difference in wind speed

and/or direction over a
relatively short distance

USAir1016
(1994) [24]

Airborne Windshear
Detection and Avoidance
Program (AWDAP) [25]

Table 1.1 lists some of the most impactful hazardous weather conditions

for aviation today. As shown in Table 1.1, several tragedies occurred because

of those hazardous weather conditions and the lacking of understanding and

detecting method of those weather conditions back then. Today, several sys-

tematic methods are developed to monitor those hazardous weather conditions,

such as LLWAS for microburst and AWDAP for windshear. However, as for

the turbulence, because of its chaotic nature (which could come from multiple

sources) and its difficulty to be described [26], as it’s named as “the chief out-

standing difficulty” in hydrodynamics [27], it is difficult to find a systematic

way to detect such weather conditions. Although there have been made some

progresses in this area [26], none of those method works well enough to provide

accurate prediction and detection under all conditions. As we will describe in

latter part of this chapter, utilizing artificial intelligence technologies might

7

give us a better approach to detect and predict.

1.2.2 Principles of Weather Radar

Initially Radar was the acronym of Radio Detection and Ranging [28]. The

concept of radar was first documented by Nikola Tesla in 1900 [29] after radio

waves have been discovered by Heinrich Hertz in 1886 [30] which was pre-

dicted by James Maxwell from his famous equations in 1865 [31]. However,

the development of radar was rapidly expedited during the war. During the

World War II, radar was primarily used for detecting flight objects, such as

aircrafts, in the air beyond human’s eyesight [32]. This functionality is still

used in today’s military and civil aviation. During the war, radar operators

found that not only the flying object but also weathers could produce echoes

on their screen, which makes the radar operation for detecting flying objects

more difficult in bad weathers. After the war, the phenomenon of weather-

caused echoes was investigated and the first operational weather radar was

developed by Davis Atlas from MIT [33]. Since then, radar was regularly used

for weather surveillance purposes and weather radar itself was evolved from

conventional parabolic dish radar [34] to dual-pol Doppler phase array radar

[35], [36] to provide more information in terms of contents and speed. Nowa-

days, a completed S-band weather radar network WSR-88D (NEXRAD) was

established in the US [37] and many TDWRs [38] are developed and deployed

near many major airports to specifically serve the purpose of aviation safety

[39]. In this research, the measurements from HKO-TDWR, a TDWR located

near the Hong Kong International Airport (HKIA), will be used. It serves the

same purpose for aviation safety as the US based TDWRs do.

8

(a) Z (b) V

(c) W (d) SNR

Figure 1.2: examples of radar products of HKO-TDWR

Table 1.2: Basic Weather Radar Measurements

Radar Products Unit Notes
Reflectivity

(Z) dBZ
Represents the return power
level of transmitted EM wave

Radial Velocity
(V) m/s

Indicates the mean velocity of targets
within a radar pixel with respect to
the TDWR, based on Doppler effect

Spectrum Width
(W) m/s

Represents the distribution of
velocities within a single radar pixel

Signal-to-Noise Ratio
(SNR) dB

Represents the power ratio of
the peak returned signal and noise floor

For the example of TDWR radar manufactured by Misushibi, Figure 1.2

9

shows sample data in Table 1.2 in a Plan Position Indicator (PPI) scan. As

we can see, after data quality control processing, radar data products are not

available in some areas due to low-SNR, interference or blockages. Table 1.2

lists some of the radar products which will be beneficial to turbulence detec-

tions in this research. The clear relation between turbulence and the spectrum

width of radar measurements has been derived before [40]. However, as it will

be discovered in this research, Eddy Dissipation Rate (EDR), a value to quan-

tify the intensity of turbulence, is solely derived from radar spectrum width

measurements and not sufficient to provide reliable detection or prediction.

Therefore, finding a better way to exploit radar data is critical to improve the

detection and prediction performance.

1.2.3 Artificial Intelligence

Artificial Intelligence (AI) has always been attractive to researchers in many

fields ever since the invention of the computers. Although, there was a pe-

riod of time, that the field of AI had slowed down, but after the discovery of

Back Propagation (BP) algorithm [41], the neural network-based AI approach

resurged as a promising tool to solve many real-world problems. Especially

after the “Deep Learning” approach appeared with the booming of GPU su-

percomputing in recently years, the field of AI has been pushed into a much

higher level, and evolving faster than ever before. More detailed history of AI

will be given in Chapter 3.1.

10

1.2.4 High Performance Computing

The desire to a faster computing device has never been satisfied after the

first electronic computer ENIAC [42]. Supercomputers are usually utilized on

those tasks which need large amount of calculations, such as weather fore-

cast, climate research, computational chemistry, astrophysics simulation and

cryptanalysis. In the early days and most of the cases nowadays, High Perfor-

mance Computer (HPC) refers to those huge clustered supercomputers, such

as CRAY computers [43] and Sunway TaihuLight (The fastest supercomputer

in the world) [44]. However, with the development of the heterogeneous com-

puting [45], especially the parallel computing utilizing GPGPU [46], HPC has

become more versatile, accessible and affordable for variety of studies. Today,

Sunway TaihuLight comes with a whopping 93 PFLOPS of computational ca-

pability [44], but not all research needs or could gain access to such facilities.

On the other hand, a single GPU card, Titan Xp (Pascal), released by NVIDIA

comes with 12 TFLOPS, which is reasonably powerful and affordable ($1200

at release) [47] for many studies.

1.3 Selection of High Performance Computing (HPC)

platform

To achieve real-time processing, there are two parts of acceleration need to

be done, the acceleration of the AI/MI process itself and the front-end signal

processing chain for improving the data quality. There are a few different

hardware platforms that may be used for this real-time implementation sce-

nario. Xining Yu’s work [48], [49] provided a Digital Signal Processor (DSP)

based embedded HPC platform. DSP is a specialized component that would

11

provide HPC performance (160GFLOPS - TI C6678) in a relatively low power

consumption. However, with the current stage of this AI/MI turbulence detec-

tion application, power consumption is not a critical constraint. In addition,

the difficulty of implementing the algorithms in DSP, which will require heavy

modifications, makes DSP a less ideal option for this research. In this study,

a GPGPU based HPC approach is implemented. As mentioned in early part

of this section, GPGPU approach would provide a sufficient high computa-

tional capability (12TFLOPS - Titan Xp Pascal) at a relatively affordable

cost ($1200 - Titan Xp Pascal). In addition, with the utilization of NVIDIA’s

CUDA, most of the existing algorithms would not need extensive modifications

and still achieve desirable acceleration performance.

12

Chapter 2

Systems and Requirements

2.1 Aviation Weather Hazards and Radar Sensing

As mentioned in Chapter 1, there are numerous weather hazards which could

impact aviation safety, such as icing, microburst, windshear and turbulence.

Some of these hazards could be detected by radar sensing method and avoided

if an appropriate precaution maneuverer is taken by the pilot. Turbulence is

the main hazard that is focused in this work.

As modern aviation advances as of today, turbulence would rarely do the

damage on the structure of modern jet-planes. However, turbulence remains

a major threat to the crew, passenger and cargo on-board. Moreover, severe

turbulence could cause the airplane changing its direction dramatically and

losing altitude quickly, which is extremely dangerous especially when the air-

plane is close to the terrain during takeoff and landing phase of a flight. In

addition to the threat to aviation safety caused by turbulence, passenger ex-

perience would be certainly worse when turbulence is experienced. Therefore,

having a reliable method to detecting and predicting turbulence on and off the

flying track would not only improve the aviation safety but also the passenger

13

experience.

Table 2.1: Comparison Between Lidar and Radar

Lidar Radar
Wavelength µm range cm range

Range 30km and more 150km and more
Attenuation high low
Environment Clear Air With Precipitation
Beam Width Narrow Wide

As for turbulence, there are several different kinds of turbulence, such as

clear air turbulence and turbulence associated with precipitations. For clear

air turbulence, due to limitation of radar, it would be better to utilize lidar, an

alternative of radar utilizing light (high frequency EM wave), instead of radar

for observations. But for the turbulence with precipitation, it is plausible to

use existing radar technology and measurement for detection and prediction.

Table 2.1 lists comparisons between lidar and radar.

2.2 Examples of Radar Systems Used in Research

Data from the following radars are used as part of this research. They are

HIWRAP, TDWR, a Ka-band radar prototype and AIR. In this section, they

will be introduced respectively.

14

Figure 2.1: HIWRAP Measurement Concept. Courtesy of NASA Goddard
Space Flight Center, MD.

2.2.1 High Altitude Imaging Wind and Rain Airborne

Profiler (HIWRAP)

HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400

degs incidence angles), conical scan, solid-state transmitter-based Doppler

radar system [4]. It is designed to operate on the Global Hawk UAV on a

high-altitude assignment. Figure 2.1 depicts the concept of HIWRAP [4].

HIWRAP utilizes the solid state transmitter and advance pulse compression

schemes, which allows HIWRAP to use significantly less power than typical

radar used for cloud and precipitation measurements. In addition to Global

Hawk, HIWRAP has been deployed on NASA ER-2. However, when mounted

on NASA ER-2, the HIWRAP was in the fixed nadir pointing configuration.

The specifications of HIWRAP is described in Table 2.2 [4]. Because the

utilization of advanced pulse compression scheme, it requires more computa-

15

Table 2.2: Specifications of HIWRAP

Parameters Specification
Ku-band Ka-band

RF Frequency
(GHz)

Inner Beam: 13.910
Outer Beam: 13.470

Inner Beam: 35.560
Outer Beam: 33.720

Transmitter Peak Power
(W) 25 8

3 dB Beam Width
(◦) 2.9 1.2

Polarization Vertical (outer beam), Horizontal (inner beam)
Minimum Detect

Reflectivity
(dBZe, 60 m resolution,

10 km range and
3 km chirp pulse)

0.0 -5.0

Dynamic Range
(dB) > 65

Doppler Velocity
(m/s) 0-150 (Accuracy < 1.5 m/s for SNR > 10 dB)

Scanning Conical Scan, 10-30 rpm

tion power to process the data than regular pulsed radarsr to achieve similar

if not better performance.

2.2.2 Hong Kong Observatory - Terminal Doppler Weather

Radar (HKO-TDWR)

TDWR is a radar designed to serve the purpose of weather surveillance within

the vicinity of an airport. Therefore, TDWR operates on C-band and has a

shorter range and higher resolution than NEXRAD which operates on X-band.

The difference in reflectivity output between NEXRAD and TDWR is demon-

strated in Figure 2.2. However, due to the resolution and range difference

between NEXRAD and TDWR, it is difficult to perform side-by-side compar-

16

isons. They complement each other with overlapping coverage, designed to

optimally cover different airspace regions.

Table 2.3: Specifications of HKO-TDWR

Parameters Values
Frequency 5.625 GHz

Antenna systems

7.9 m Metal Parabolic Reflector.
Linear polarized.

Beamwidth θ1 ≤ 0.55◦, gain 50.54 dBi.
Sidelobes are ≤ 27 dB within 5◦

and ≤ 40 dB beyond 5◦.

Scanning

Hazardous weather and monitor modes
with different elevation coverages;

5 mins per volume scan, azimuth scan
speed 24◦ per second.

Transmitter

250 KW peak power Klystron,
500 watts average,

transmitted signal phase is
uncorrelated from pulse to pulse.

Waveform

Pulse width 1 µs,
Dual PRF 1.104 KHz and 1.38 KHz.
±60 m/s non-ambiguous velocities,

occupies 4 MHz bandwidth.

Receiver and
processor

Receiver noise power: - 111 dBm at 1 MHz bandwidth;
Dynamic range is 100 dB;

3 dB noise figure;
ground clutter suppression > 50 dB

and velocity accuracy ± 0.5 m/s.

Display properties

0 to 90 km,
150m range bin spacing,

600 range bins per radial,
0.70◦ azimuth spacing.

Specifications for a typical TDWR (in particular, the Mitsubishi TDWR

located near Hong Kong International Airport) are listed in Table 2.3 [38]. As

we can see in Table 2.3, the TDWR operates with a narrower beamwidth and

17

Figure 2.2: An example of the difference in reflectivity output between
NEXRAD (bottom) and TDWR (top). Courtesy of NOAA [50].

18

much higher rotation speed at lower power level comparing with NEXRAD.

Because the power level of TDWR is high enough compared with solid-state-

based radar system like HIWRAP, pulse compression scheme is not necessary

and is not implemented in TDWR.

2.2.3 Ka Band Frequency-Modulated Continuous Wave

(FMCW) Radar Prototype for Airborne Remote

Sensing

A small, low-cost FMCW radar at Ka band was built at Radar Innovations

Laboratory of the University of Oklahoma to verify the hardware performance

of FMCW radar and the potential of using such radar for icing hazard detec-

tion. A block diagram of this FMCW radar is demonstrated in Figure 2.3 and

a photo of this prototype built is shown in Figure 2.4.

As seen in Figure 2.3, the Ka band FMCW prototype radar is based on a

2.4 GHz FMCW radar, and the Intermediate Frequency (IF) signal is gener-

ated by a Digital Phase Lock Loop (DPLL). After 1 to 2 stages of multiplier

depending on the channel, the stage 2 IF wave will be mixed with 2.4 GHz

signal to generate 35.2 GHz Ka band transmitted wave in the transmitting

channel and with 35.2 GHz Ka band received wave to generate 2.4 GHz signal

in the receiving channel. Therefore, the Ka band signal works as the carrier

and the actual FMCW signal process and radar function is operated at the

2.4 GHz baseband. There are two antennas used in the system, one used for

transmitting and the other one used for receiving. Both the antennas are to

be aligned straight and in the same position so as to reduce the errors.

19

PLL HMC765
8.2GHz@13dBm

HMC561
x2 Freq

Multiplier

HMC561
x2 Freq

Multiplier
Splitter

Mixer

Amp1

Attenuator

Amp2

FMCW
Board

HMC578
x2 Freq

Multiplier
Mixer

8.2GHz
@4.5dBm

16.4GHz@14dBm

8.2GHz
@4.5dBm

16.4GHz@14dBm

16.4GHz
@3dBm

32.8GHz
@3dBm

2.4GHz
A=-10.3dBm
B=-1.8dBm

35.2GHz
A=0dBm
B=10dBm

2.4GHz
@8.5dBm

35.2GHz
@-13.8dBm

35.2GHz
@-8dBm

TX

RX

LO

LO

RF

RF

IF

IF

Figure 2.3: Block diagram of Ka band FMCW radar

Figure 2.4: Prototype of Ka band FMCW radar

Detailed link budget analysis regarding the different types of targets is pro-

vided at the initial stage. It could be used as a guideline for system design and

20

the baseline of performance expectations. As seen in Figure 2.5, it was shown

that if the airborne radar antenna has a beamwidth of 4.6/15 degrees (Hori-

zontal/Vertical) and a gain at 30 dB, and the FMCW transceiver operates at

35 GHz with 50 MHz ramping bandwidth, 20 MHz LPF cutoff frequency and

1 ms ramping time, 50 m range resolution is achievable at 1km range, with a

minimum detectable reflectivity at 0 dBZ and 10 Watt transmitted power. It

is sufficient to detect hazards large particles in cloud (i.e., ice) and hydrome-

teors which are larger than 0.1 mm.

Figure 2.5: Link budget analysis of Ka band FMCW radar

The initial field test of this prototype radar was done indoor with a rect-

angular aluminum board and aluminum sphere targets in a relatively short

range (since transmit power is only 0 dBm). The size of rectangular board

is 20 inches by 15 inches and the diameter of the sphere was 39 inches. The

21

(a) Sphere target (b) Rectangular target

Figure 2.6: In-door test environment

setup of this initial indoor test is shown in Figure 2.6 and the background

reflection in Figure 2.7. It should be noted that there are two antennas used

in the system, one used for transmitting and the other one used for receiving.

Both antennas are to be aligned straight and in the same position to reduce

the errors.

Figure 2.7: Example range profile

22

2.2.4 Atmospheric Imaging Radar (AIR)

Figure 2.8: Photo of AIR. Courtesy of OU-ARRC.

AIR is one of the systems developed by OU-ARRC [51]. AIR is an X-band

imaging radar with beamforming capability in elevation by using a linear ar-

rays with 36 elements and operating mainly in Range-Height-Indicator (RHI)

mode. However, with the antenna installed on a mechanical rotation pedestal,

AIR also supports in Plan Position Indicator (PPI) mode. As seen in Figure

2.8, the antenna is a planar array with 37 separate units and the transmit ele-

ment is mounted at the top of 36 different receiving elements. And the whole

system is mounted on a truck bed which allows the system to be transported

to close to the place of interest, which increases the resolution and reduces the

EM attenuation and power requirement. In addition, the capability of using

pulse compression techniques improves its resolution and reduces the power

requirement.

23

For the back-end components, each receiving antenna element is connected

to a down conversion unit with the capability to down-convert RF signal at

9.55 GHz to IF signal at 50 MHz. Then the IF signal is passed to 1 of 5 eight-

channel digital receivers at a sampling rate of 40 MHz. Such sampled signal

is then used to produce 14-bit IQ data streams to be stored on hard disk for

future analysis [51]. For the transmitter and up-converter part of the back-end

system, AIR utilized a 3.5kW traveling wave tube (TWT) amplifier to gener-

ate output transmitting signal. An arbitrary waveform generator is utilized to

provide waveform flexibility at 50 MHz. Then such a signal is up-converted to

RF frequency at 9.55 GHz. The RF signal is amplified by the TWT amplifier

and then radiates through transmit antenna, which as a fan-beam shape and

1 deg azimuth, 20 deg elevation beamwidth.

The specifications of AIR are listed in Table 2.4 [51]. As indicated in the

specifications, AIR would benefit from incorporating pulse compression algo-

rithm, which will increase the sensitivity and range resolution. As will be

discussed later, adaptive beamforming and pulse compression processing are

being considered for AIR. These algorithms are computation intense but highly

capable to be parallelized. Therefore, applying an acceleration scheme based

on GPGPU platform developed in this research would be highly beneficial.

2.3 Real-Time Requirement for Observing Weather Haz-

ards

Intense and transient weather hazards, such as microbursts, turbulence and

sometimes tornado, require real-time detection and prediction. It would be

24

Table 2.4: Specifications of AIR

Parameters Values
Peak Power 3.5 kW
Frequency 9550 MHz

Pulse Length 1-15µs
Pulse Repetition Frequency 1-2000 Hz

Maximum Duty cycle 2%
Maximum Pulse Bandwidth 5 MHz

Fan Beamwidth Vertical : 20◦
Horizontal : 1◦

Number of Beams Infinite number of 1◦ vertical beams
Beamforming Techniques Fourier, Capon, Robust Capon, etc.

Array Aperture 1.2×1.8 m
Sampling Rate 40 MHz
Rotation Rate up to 20◦s−1

Rotation Angle -80.0◦ to +100.0◦
(180.0◦ by 20.0◦ coverage)

Sensitivity
Better than 10 dBZ at 10km
Gain with Pulse compression:

Approximately 10 dB

Range Resolution Short Pulse : 150 m
with Pulse Compression : 30m

Polarization Horizontal

25

critical to know the location and intensity of those weather hazards for air-

controller and pilots to take pre-cautious measures to avoid damages. There-

fore, a proper acceleration scheme must be taken into consideration. Gener-

ally, if the radar data are gained as batches, data processing should be done

between two consecutive batches. As for NEXRAD and TDWR, a typical

Volume Coverage Pattern (VCP) takes about 5 minutes. Thus the real-time

requirement should be easily met. However, the area of interest and resolution

varies depending on applications, which would lead to a large number of points

of interest needing to be processed. The adjacent points of interest may or

may not be treated as independent in different algorithms.

2.3.1 Solutions to Acclerated Computing Using General

Purpose Graphic Processing Unit (GPGPU)

There are two ways to accelerate an algorithm. First is to reduce the compu-

tational complexity category of the algorithm by optimizing the computation

scheme of the algorithm itself. Second is to adopt a parallel computation

scheme for the algorithm to be accelerated, and then to implement the modi-

fied paralleled algorithm on a parallel computing platform, such as Multi-Core

CPU and GPGPU. In this research, a GPGPU approach is utilized. As for

machine learning based algorithms, a specified machine learning ASIC would

further expedite the training and implementing process, such as Tensor Press-

ing Unit (TPU). Table 2.5 demonstrates a comparison among specific CPU,

GPU and TPU.

In this research, GPGPU was selected as the platform for algorithm imple-

26

Table 2.5: Comparison CPU, GPU and TPU

CPU
i9-7980X

GPU
TITAN Xp TPU

Cores 18 3840 4
Speed (TFLOPS) 3.08 12.15 180

Bandwidth (GBps) 85.332 547.7 600
TDP (Watt) 165 250 160

Suitable Tasks General More Strict Application Specific

mentation, because of its moderate easiness to be programmed and relatively

good performance compared with CPU counterpart. Also, with the support

of cuDNN, GPU could be used as acceleration device for various deep learning

frameworks, including TensorFlow, Caffe, Torch, etc., with little or no major

modification on existing deep learning algorithms. This will further expand

the usage of GPU devices in the field of this research focusing on.

27

Chapter 3

Machine Intelligence Algorithms

3.1 Introduction to Machine Intelligence

Machine Intelligence (MI), also known as Artificial Intelligence (AI), is the

intelligence expressed by the machine built by human beings. Generally, ma-

chine intelligence is the intelligence expressed through an ordinary computer.

It’s also a research field related to the possibility of such intelligence system be-

ing reality and how to implement such a system if it is possible. In text books,

such research field is defined as “research and design on intelligent agent”, and

an intelligent agent is a system that can observe the surroundings and act

appropriately to achieve a pre-set goal. Machine Intelligence is also defined by

John McCarthy [52] as the science and engineering of making such intelligence

machine. The research on Machine Intelligence could be divided into several

technical problems and is mainly focusing on solving practical problems.

There are two types of definition of machine intelligence, known as “strong

AI” and “weak AI”, see Table 3.1. “Strong AI” is defined as a machine with the

capability of reasoning and solving problems and with self-consciousness. On

the other hand, “weak AI” is defined as a machine that only looks “intelligent”

28

Table 3.1: Types of AI

AI Types Notes

Strong AI a machine with capability of reasoning
and solving problem and self-conscious

Weak AI a machine being only look “intelligent”
but without self-conscious

but without self-conscious. At current stage, the research and applications

on AI are mostly applied on the definition of “weak AI”. However, with the

emergence of artificial neural network, the AI has become stronger and more

capable solving real world problems which are improbable if not impossible to

solve before, thank to the growth of computation power that supports such AI

applications.

The main focus of this research is on Machine Learning (ML), which is an

important branch of AI. Focus of the research on AI begins from reasoning

via knowledge to learning, and obviously, machine learning is one viable way

to achieve AI by solving the problem using learning approach of machines.

During the past 30 years, ML has been developed into an interdisciplinary

field including but not limited to probability theory, statistics, approximation

theory and computational complexity. The theory of ML is to design and an-

alyze a kind of algorithm which would make computer “learn” automatically.

The algorithm of ML is a kind of algorithm that would automatically analyze

data and extract principles of such dataset to make predictions on unknown

dataset based on the concluded principles from the “learning stage”. Because

of the involvement of large amount of statistical theories in developing ML

algorithms, ML theory is also called statistically learning theory. Nowadays,

ML is applied on numerous fields including but not limited to data mining,

29

computer vision, natural language processing, biometrics and search engine.

Table 3.2: Types of Machine Learning Algorithms

Types Notes Examples
Supervised
Learning

Training with
pre-labeled dataset Regression

Unsupervised
Learning

Training with
unlabeled dataset Clustering

Semi-Supervised
Learning

Hybrid of Supervised and
Unsupervised Learning PU learning

Reinforcement
Learning

Maximize reward
by evaluation Q-learning

Generally, there are 4 types (as listed in Table 3.2) of machine learning: su-

pervised learning, unsupervised learning, semi-supervised learning, reinforce-

ment learning. Supervised learning approach is utilized in this research to

develop the AI for turbulence detection/prediction. Also, there are several

different popular ML algorithms with the Artificial Neural Network (ANN) be-

ing the most popular one, which is also the approach utilized in this research.

Other than traditional Back-Propagation ANN, several variants of ANN also

exist, such as Convolution Neural Network (CNN) which is the fundamental

model for deep learning. Decision Tree (DT), Support Vector Machine (SVM)

and Bayesian Classifier are also ML algorithms, compared with ANN, those

algorithms may not perform as well on a large variety of applications as ANN,

but those algorithms have the advantage of being easy to understand as a

“white box” process compared with “black box” process of ANN.

30

3.2 Artificial Neural Network (ANN)

In the field of ML and Cognitive Science, ANN is a mathematical and com-

putational model which mimics the structure and functionality of biological

neural network. The capability of ANN comes from a large amount of in-

terconnection between neurons. In most cases, ANN could alter its internal

structure based on the change of external information. Therefore, it is an

adaptive system.

Table 3.3: Components of ANN

Components Notes Examples

Architecture

Architecture defines
the variables and the

topological relation among
them in the network.

Weights of the interconnections
between neurons and

activities of the neurons.

Activity Rule

Most ANN models have
motivation rules of short

time period. They defines the
way neurons changing their
values based on the changes

on other neurons.

Activity Rule depends
on the weights in the network.

Learning Rule

It’s the motivation rule
of long time period of ANN.
It defines the way of weights

changing in the network along
with time progressing.

Learning Rule depends
on the activities of neuron,

target value and current weights.

A typical ANN consists of 3 parts: Architecture, Activity Rule and Learn-

ing Rule, which are listed in Table 3.3.

Generally, an ANN consists of multi-layers of neurons. Every layer of neu-

rons has inputs (outputs of neurons from the former layer) and outputs. Layer

31

i has Ni neurons and every Ni neuron takes the outputs of respective Nn−1

neurons as inputs. The interconnection between neurons is called Synapse in

biology. In mathematical model, every synapse has a value called weight. To

calculate the “potential” of a neuron in i-th layer, multiply the weight and out-

put from respective neurons from i− 1-th layer and calculate the summation

of those results. Then the “potential” value passes through an activation func-

tion, which is used to control the range of value, to get output of the neuron.

Typical activation functions include Sigmoid Function, which is continuous

and differentiable that makes Delta Rule processing easier. The output of the

neuron is non-linear, but it’s acceptable as long as the final output is mean-

ingful.

SUM

1

𝒂𝟏

𝒂𝟐

𝒂𝒏

f t

b

𝒘𝟏

𝒘𝟐

𝒘𝒏

Figure 3.1: Typical structure of a Neuron. a1 an are inputs, b is the offset,
w1 wn are weights of respective Synapse, f is the activation function and t is
the output.

32

t = f(−→W ′−→A + b) (3.1a)

−→
W ′−→p + b = 0 (3.1b)

Figure 3.1 depicts the structure of a neuron and the function of this neu-

ron is described by Equation 3.1a, where −→W is the weight vector and −→W ′ is

the transpose of −→W , −→A is input vector, b is the offset and f is the activation

function. From Equation 3.1a and Figure 3.1, it could be concluded that the

function of a neuron is to first calculate the inner product of input vector and

weight vector, then get a scaler result through the nonlinear activation func-

tion. In formal words, a neuron divides an n-dimensional vector space into

two parts by a hyperplane, called decision boundary, and for a given input

vector, neuron could determine which side of the hyperplane the vector is in.

The equation of this hyperplane is described in Equation 3.1b, where −→p is

the vector on the hyperplane. Figure 3.2 demonstrates a typical structure of

a back-propagation artificial neural network (BP-ANN) with 3 layers.

3.3 An Example Application: Wind Farm Clutter De-

tection

3.3.1 Introduction

In recent years, there has been a proliferation of wind farms across the coun-

try. The wind turbines in wind farms appear as a clutter not only in airborne

33

.

.

.

Input Layer

.

.

.

.

.

.

Middle (hidden) Layer Output Layer

Figure 3.2: Typical structure of a back-propagation artificial neural network
(BP-ANN)

radars but also in ground-based radars that scan at lower elevation. The wind

turbine clutter obscures the visibility of ground and airborne targets, espe-

cially for an airborne platform. For some radars, wind turbines’ sidelobes

(flashes of energy in neighboring cells) contaminate the data while for others,

the turbine itself is present at the range cell of interest. The metallic tower

and ceramic blades of wind turbines generate a significant radar return. Even

the sidelobes’ power is comparable to ground targets. The rotational motion

of the blades contaminate the frequency domain of the return. Any target in

the vicinity of a wind turbine will be obscured in terms of power and Doppler

frequency shift. In this paper we attempt to recognize the range cells that

have wind turbine clutter. After recognition, a demodulating signal can be

added to the original signal to mitigate the effect of wind turbine returns but

that will be outside the scope of this paper. We will focus on the first part,

to correctly determine the wind turbine presence in a given range-azimuth cell.

34

3.3.2 Previous Works

Wind Turbine Clutter (WTC) is a relatively new problem in the field of remote

sensing. This problem especially affects an airborne platform. The attempt to

using machine learning algorithms to solve this problem is a novel idea. There

are papers on other methods of wind turbine detection, e.g., using a transpon-

der on the wind turbine itself [53]. Another work [54] used signal processing

techniques and proper radar parameters setup to detect wind turbines. In

both cases, the wind turbines are viewed as targets, not as clutter. By treat-

ing wind turbines as clutters, this paper assumes that the return signals are

sporadic, partial, and uncorrelated.

Figure 3.3: Time-Doppler spectrum of a range cell which contains ground
clutter, wind turbine and a target

35

3.3.3 Supervised Learning Approach

All of the modern radars transmit multiple pulses, and with the return from

each pulse, a time-Doppler signature of a range-azimuth patch can be created.

The radial speed of a target is modeled as constant because the looking angle1

to a target remains constant for each CPI2. This produces a straight line in

the time-doppler plot3. Doppler signatures from a wind turbine is more com-

plicated. The metallic tower produces a return with doppler-shift equaling to

that of the radar platform velocity. The blades are constantly rotating and

thus produce a periodic pattern that has high and low Doppler frequency shift

which is seen as “flashes” in the time-Doppler plot. The radial speed of the

blades fluctuates periodically because the looking angle to each blade changes

during the rotation. Wind turbines are operated to face the incoming wind, so

the direction of a wind turbine may be unpredictable. The Doppler spectrum

changes with a periodicity. This periodicity produces a pattern, which can be

recognized using MI algorithm such as ANN.

The sample data is generated from an airborne radar simulation software

[55] (with simulated parameter listed in Table 3.4) and is organized into a ma-

trix of size 600×128×60, where there are 600 different range cells, 60 different

azimuth cells, and 128 pulses in each azimuth (here 1 CPI has 128 pulses).

For each range-azimuth cell (there are 600×60 = 36000 cells), the 128 pulses

are taken and used to generate its time-Doppler spectra. This time-Doppler

spectra is the input to the ANN. Supervised learning method is used. The
1azimuth and elevation
2Coherent Pulse Interval, the time for which a train of coherent pulses are transmitted,

usually tens of milliseconds
3The doppler-shift value is created by the combined motion of radar platform and the

target

36

Table 3.4: Simulation Parameters for Airborne Radar

Parameters Notes
transmit power 40W

frequency 9.486 GHz
PRF 10 kHz

bandwidth 4.6875 MHz
waveform phase coded

sampling frequency 12 MHz

antenna
64 × 64 planar AESA array antenna in Y-Z plane,

about 2◦ beamwidth in AZ/EL, -60◦ - 60◦ (0◦ is
X-axis) 2◦ step azimuth coverage

number of pulses 64 in each azimuth

training examples are created from the radar return itself but with the range-

azimuth cell containing ground truth. This can be done by using other sources

of information and is needs to be done only once to create a set of training

data. Once the network is trained, the network weights can be applied to the

new radar returns for classifications.

Structure of ANN

The neural network structure is 1024-80-3 (the number of nodes in each layer)

as shown in Figure 3.6, which uses Sigmoid function as the activation function.

The use of 80 hidden nodes is based on empirical experiment results. Other

number of hidden nodes were also used but having 80 hidden nodes, leads to

optimal balance between performance and speed. The use of 1024 input nodes

is dictated by the data itself. The data-size is kept constant because reducing

input data will also reduce the number of features. The output data is a 3

element vector with each element value ranging between 0 and 1. The element

position where the value is closest to 1 serves as the identification of the entity.

37

Figure 3.4: Time-Doppler spectrum of a range cell which contains a wind
turbine.

Numbers 1, 2, and 3 are assigned to ”Noise”, ”Ground Clutter”, and ”Wind

Turbine” respectively4.

Learning and Cross Validation

After extracting the returns from the correct range-azimuth cell and identi-

fying them to be Noise, Ground Clutter, or Wind Turbine, those data was

fed into the ANN and the training process iterated 5000 times. A scheme of

cross validation was applied where, for each iteration, 30 validation and 40

testing examples were extracted randomly from the original training data set.
4For example, output of [0.012, 0.986, 0.005] meant the pattern is recognized to be entity

2 which is ”Ground Clutter”

38

Figure 3.5: Time-Doppler spectrum of a range cell which contains ground
clutter, target spectrum will also look the same but different radial velocity

Training was done in the remainder of the original training data set. The

validation and testing examples could, in theory, have some overlapping sam-

ples because of the random extraction. This particular scheme was applied

because it allows for arbitrary number of iterations to be performed. The

cross-validation results are in Figure 3.7 and it can be seen that the ANN con-

verges after 2500 iterations. Here, the Mean Square Error (MSE) is calculated

as ∑I
i

∑J
j (outputi,j − truthi,j)2/IJ , where I is the total number of pixels in a

PPI scan and J is the total number of nodes in the output layer of the neural

network.

39

Figure 3.6: Structure of ANN used for WTC identification example

Results and Discussion

Figure 3.8 shows the original radar return which is the input to the ANN.

In Figures 3.8 and 3.9, both X and Y axises are in unit of meters. The red

spots are the wind turbine returns, the yellow smear around the positions of

the wind turbines are the range sidelobes whose power is comparable to the

40

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Mean Square Error Vs Iterations

Iterations

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

Validation Error

Testing Error

Figure 3.7: Cross-validation error against Iterations

Ground Clutter which is the yellow band around the middle of the figure5.

The light blue area is just noise and the dark blue area represents the area

where the noise is even lower.

Figure 3.9 is the output from the ANN. As can be seen in Figure 3.8 and

3.9, the network correctly identifies most of the Ground Clutter and the Wind

Turbines. There are a lot of false alarms as well. In many instances, the side-

lobe return from wind turbine is recognized as Ground Clutter.

5The red ”smear” exactly in the middle is also Ground Clutter return, Ground Clutter
return is highest in 0 degree Azimuth and is present mostly where the main beam (of
antenna) illuminates the ground

41

Figure 3.8: Simulated airborne radar PPI scan of a wind farm - power return
[55]

At this point, the ANN can not recognize Noise, Ground Clutter and Wind

Turbine with a very good precision. There are many false alarms in the recog-

nition of WTC, which is mainly due to WTC sidelobes (they appear like WTC

as well). Sidelobe reduction processing, such as the adaptive pulse compres-

sion algorithm (APC) discussed in a later chapter, could potentially yield a

reduction of those false alarms. The main advantage of this ANN agent is

its speed. The training, which is done beforehand, takes about 155 seconds

(∼2.5 minutes). There are 2500 iterations of 196 training examples with cross-

validation scheme applied. The testing takes around 0.5 seconds for 36000

different testing examples. This ANN can act as an initial detector/recognizer

42

that outputs the possible range-azimuth cell where wind turbine is present. It

is the authors’ thought that more sophisticated algorithms can be used only

after initially using an ANN.

Figure 3.9: Simulated airborne radar WTC recognition output from the ANN

3.3.4 Unsupervised Learning Approach

The supervised learning approach used in Section 3.3.3 required priori knowl-

edge of truths at each patch in the PPI scan as can be seen in Figure 3.8,

which is difficult to obtain in some situations. In this section, we develop a

new unsupervised learning approach based on ANN autoencoder, EM algo-

rithm and Bayes classifier.

43

Figure 3.10: The structure of autoencoder

Autoencoder

Autoencoder, also called autoassociator or Diabolo network, is a method pro-

posed in deep learning [56]. It trains the ANN by using the input as the output

reference, applies the network to the data set and gets the values of neurons

in one of hidden layers as output code. The structure of antoencoder is shown

44

in Figure 3.10 [57]. In Figure 3.10, there is only one layer and the structure is

symmetric. But in practice, the network may contain more than one hidden

layer to tackle more complex data set and the whole structure does not have

to be symmetric. In this chapter, we use five-layer symmetric ANN as the

autoencoder.

EM Algorithm

EM algorithm was proposed in [58] as an iterative method for maximum like-

lihood estimates of parameters as used in statistical models. In this work,

we use this algorithm to estimate the distribution of codes from autoencoder

by assuming the codes follow independent multivarious Gaussian distributions.

Local maximum Problem There is a well-known problem associated with

EM algorithm, i.e., the algorithm could fall into a local maximum, which pre-

vents itself from finding the global maximum [59], [60]. Figure 3.11 is an

example of EM algorithm trapped into a local maximum6. There are four 2D-

Gaussian distributions centered at (10, 10), (10,−10), (−10,−10), (−10, 10),

where the standard deviations is 1. It is noticeable that, after applying EM

algorithm, there is one distribution located near (−10, 10), two distributions

located near (−10,−10), and one distribution located near (10, 0) with a big

standard derivation. It is not the set of distributions we used to generate those

data points.

6Black circles represent data points generated by four 2D-Gaussian distributions. Stars
represent the estimated µ of each distributions from EM. Dash lines and dash-dot lines
represent the estimated σ of each distributions along with X and Y axle from EM

45

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Figure 3.11: An example of EM algorithm outputs ”trapped” into a local
maximum. x and y axles are first and second dimension of the simulated data
points.

Solution There is a simple way to mitigate the local trapping effect by

running EM many times with random starting points, then taking the highest

likelihood one among them as the global maximum. But it is computation-

ally expensive, especially when the number of starting points is large while the

EM converges slowly [60]. Some researchers proposed a method called multiple

restart strategy to reduce the computation load while taking multiple starts

[61].

In this chapter, we propose a simple method to avoid the local maximum

trap by training EM with more distributions than there really are and choos-

46

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Figure 3.12: An example of EM algorithm with more distributions assumed
than the truth.

ing some of them to form the global maximum result based on the rank of

utilizing factor among them. Figure 3.12 illustrates how this method works.

Notice that there are more than one distributions centered in some of clusters,

but there is at least one distribution centered in one cluster. In fact, the dis-

tributions with highest four utilizing factors are centered in different clusters.

Bayes Classifier

Bayes classifier is a Bayesian approach of classifier to minimize the probability

of misclassification [62]. In this chapter, we use this approach to classify the

code from autoencoder by the maximum posterior probability using the dis-

47

tribution derived from EM algorithm.

Applying Process

Get Autoencoder We used five-layer symmetric ANN network as our au-

toencoder. The input data we used are the vector of magnitude values of

discrete Fourier transform of radar signal return time series at a specific range

and azimuth angle7. The whole PPI scan of data used is shown in Figure 3.8.

The size of input at each range cell is 128 and the numbers of nodes inside

ANN from input layer to output layer are 128, 24, 4, 24and128.

Get Distributions We assumed the distributions of codes from autoencoder

along with each dimensions are multi-dimensional independent joint Gaussian

distributions. We used seven distributions to train the EM algorithm, and the

algorithm stops when the difference of distribution utilization factor between

two consecutive iterations is less than 10−6 or the times of iteration reaches 500.

Apply Bayes Classifier Through the EM algorithm in Section 3.3.4, we

got seven groups of µ and σ values where each group consists of four µ − σ

pairs along with four code dimensions. Then, we pick some of distributions

with highest utilization factor as reference. Finally, we apply equation 3.2 to

get a MAP8 classification of each point in data set.

7radar resolution cell
8Maximum a Posteriori Estimation

48

CBayes(x) = arg max
r∈{1,2,...,K}

P(Y = r|X = x)

where C : Rd → {1, 2, . . . , K}
(3.2)

Results

The classification results when 4 and 7 distributions are used are shown in

Figures 3.13 and 3.14. In Figure 3.13, the agent successfully classified wind

turbines, colored in cyan, ground clutters, colored in green, and nothing, col-

ored in blue. And the red ones should be the sidelobes of ground clutters.

In this configuration, it is impossible for the agent to distinguish wind tur-

bines from their sidelobes. In Figure 3.14, the agent successfully classified the

categories mentioned above and gave us more information. Black, cyan and

yellow green, green and magenta ones represent wind turbines, sidelobes of

wind turbines, ground clutters, respectively. In this configuration, the agent

could classify more precisely and even distinguish some of the wind turbines

from their sidelobes successfully. But, the results are much more ”noisy”9 with

more distributions used.

Discussion

Using unsupervised learning approach, we avoided the difficult part of machine

learning approach of classification in some cases, which is obtaining the priori

knowledge of training data. In addition, this approach could even provide us

better performance and more information than what we expected. But, as a

drawback, the agent could only classify instances from data set into different
9More ”false alarms” or misclassifications

49

Figure 3.13: Classification result using 4 distributions. Each color represents
a category obtained from EM algorithm.

groups without giving any information about the labels of each group, which

is understandable since it is an unsupervised learning approach and we have

never trained the agent with labeled information.

50

Figure 3.14: Classification result using 7 distributions. Each color represents
a category obtained from EM algorithm.

51

Chapter 4

Turbulence Detection and Classification using

HKO-TDWR with AI Algorithm

4.1 Introduction

Turbulence has been a major threat to aviation safety, and detecting turbu-

lence reliably and in real time using different sensors has been a significant

challenge since 1960s [13], [14]. There have been many developments in mea-

suring turbulence affecting safety of flight with the support of onboard in-

situ sensors, remote turbulence sensors such as LIDAR, airborne and terminal

Doppler radar, and a large body of theories based on physical knowledge to de-

velop algorithms that relate radar measurements to the strength of turbulence

[63]–[66]. Compared to Doppler LIDAR, radar is less sensitive to the adverse

weather conditions such as snow, fog and rain [67]–[69]. Compared to airborne

radar, ground-based radar such as Terminal Doppler Weather Radar (TDWR)

is less subject to ground clutter, able to provide fast coverage of larger regions

remotely, and provides data sharing among networked users. The challenges

of using ground radar, however, have been largely limited by the data qual-

ity of the Doppler spectrum width (SW), which is well-documented in prior

studies [40], [70]–[72]. For example, SW data is often affected by noise as it

52

requires an order of magnitude higher SNR for acceptable accuracies compared

to Doppler velocities [70]. Moreover, windshear of steady wind biases turbu-

lence measurements as well as multiple-trip echo does [70], [71], [73]. Even

through the TDWR has used some mitigation algorithms [72], it is still very

difficult to physically model and correct all the error factors. Error modeling

needs precise correlation between the radar data and on-board in-situ mea-

surement, which is usually difficult to achieve. As an additional challenge,

both high-altitude EDR and low-altitude EDR estimation and turbulence de-

tections are important for aviation. Turbulence near-ground is more frequent

and complicated due to the impacts from terrain and surrounding ground fea-

tures that can cause severe turbulence [74]. It is desirable for radar to be

capable of accurately monitoring turbulence under precipitation conditions,

at different altitudes, and possibly incorporating other radar measured vari-

ables, such as reflectivity and radial velocity, besides spectrum width.

The US National Weather Service’s WSR-88D had used a turbulence de-

tection algorithm (TDA), and now it uses the NCAR Turbulence Detection

Algorithm (NTDA) [72]. The data quality of the turbulence monitoring prod-

ucts from these algorithms has been limited by the challenges mentioned above.

Furthermore, these algorithms were mainly developed for en route turbulence

detection, whereas the 5-cm wavelength TDWR provides higher angular res-

olution and low-altitude rapid-scan coverage of the airspace in the approach

and departure lanes into and out of the airport, as well as better resolution in

the complete air space surrounding the airport.

Because of data quality issues and limitations of physical models, EDR

53

estimations based on radar measurements have not been reliable. Thus appli-

cation of Machine Intelligence (MI) or Artificial Intelligence (AI) approaches

for radar turbulence detection has received increasing attention recently [75],

[76]. In NTDA for example, Fuzzy Logic algorithm is used for SW data quality

control by adding “confidence” in measured data. Simple Bayesian detection

method was used in [77]. More exploration of using random forest algorithm

by combining multiple sensor data was discussed in [75]. These pioneering

works show some promise. However, they are limited by either the specific

training and test cases, or availability of truth data. Similar to other MI/AI

algorithm applications, there are many ways for parameterization, training

and testing. As one of the motivations of this work, the stability, reliability

and risk for “over-training” of these algorithms needs to be further under-

stood. Also, there is the challenge of selecting appropriate “feature vectors”

for MI/AI algorithms, and there are many different ways to combine them;

there has been no systematic method for optimizing them. One of the aims of

the current research is to address these challenges by using a carefully designed

training and verification approach based on Artificial Neural Network (ANN).

The MI algorithm is the core of the turbulence estimation process. The in-

novation of this work is combining the existing physical models of the aviation

turbulence and the “data modeling” approach in machine intelligence algo-

rithms. Massive amount of measurement data is provided by HK Observatory

(HKO), which contains both TDWR measurements and in-situ measurements

provided by airlines which serves as the basis for training database. In spite

of the amount of data available, challenges of data quality control and lack of

“balanced” training data sets (e.g., the training data representing each specific

54

turbulence class) for MI/AI algorithms remains. The “radar feature vectors”

are selected based on their physical meaning, mutual correlation, and resul-

tant classification performance. A training algorithm is also developed based

on pre-processed and pre-selected sample groups. The training data sam-

ples are not only the raw-measurement, but also “processed” samples based

on physical models. With this unique approach, the algorithms are trained

strategically using resampled data sets, and then used to classify or predict

EDR levels.

There are significant benefits to this approach. First, all the uncertainties

of data quality are “built in” training data [78]. Second, physical knowledge

(related to turbulence process and radar observation) provides a way to “tune”

the training data that emphasize the fundamental common physics for train-

ing and testing cases, and reduces the differences of variables between training

and testing. This approach is essentially a novel way of improving data qual-

ity which allows for full-incorporation of uncertainties in the data. Third, this

approach is more robust and less subject to the mismatch between radar mea-

surement and in-situ measurements, and finally the algorithm training process

is usually able to discover the underlying pattern of the data automatically.

The trained algorithm is then verified using the HKO data sets, and a series

of promising results are obtained.

This chapter is organized as follows. Section 4.2 provides an overview of

the turbulence detection system. Section 4.3 discusses the radar data quality

control and pre-processing of radar data. The development of feature vectors

used in MI algorithms is discussed in Section 4.4. The details of training and

55

testing algorithms for turbulence detection are discussed in Section 4.5. Test

results from MI algorithms are presented in Section 4.6, and the conclusion

remarks are given in Section 4.7.

4.2 Concept of Operations

Figure 4.1 depicts the overall concept of operation for aviation hazard detec-

tion system based on radar observations. This is a general framework that can

be extended to different radar platforms, and the application to HK-TDWR

radar is an example. For the envisioned field operations, recorded data are

used mainly for training, and the real-time measurements are used for testing.

In lieu of real-time data we use other archived data (i.e., archived radar data II)

Figure 4.1: Overall concept of operation for aviation hazard detection.

Processing is an important step for both training and testing. The first step

of processing is data editing, which monitors the data quality metrics (such

as SNR) before the next step of processing. Because all out-of-trip echoes are

56

incoherent, the SNR in this article is an effective SNR in which noise power is

the sum of out-of-trip echo powers in each resolution volume (V6s [40]), and re-

ceiver noise power. The second step of Processing is computing the turbulence

hazard index (EDR1/3) using physical models. The third step is correlating

in-situ measurements of EDR1/3 with those deduced from radar. In this step,

the detailed computing and selecting V6s for turbulence classifications are per-

formed.

Processed radar measurements are combined with in-situ EDR1/3 sensor

data for generation of training data for MI algorithms. Another step is extract-

ing feature vectors for the MI algorithms. Feature extraction is challenging

because we need the feature vector to be sufficient while avoiding over-training.

Supervised training [79] is used for this study, in which the training data con-

tains both radar measurements and in-situ “truth” data.

The key for the training algorithm is how to optimally combine and utilize

training data and feature vectors. For the Artificial Neural Network (ANN)

used in this work, training outcome is a set of networks with different weights.

The trained ANNs are ready for receiving real-time incoming radar data for

these possible functions: (1) EDR1/3 classifier for turbulence hazard detec-

tion, (2) EDR1/3 estimator, which can be used to “track” the turbulence level

changes, and (3) EDR1/3 predictor, which uses the current radar measure-

ments to “forecast” the turbulence status 5-10 minutes later. The current

work focuses mainly on the EDR1/3 classification and prediction functions.

57

4.3 Pre-Processing of TDWR Data

4.3.1 Background Information

The data source of this study is the TDWR radar about 10 km northeast of

the Hong Kong International Airport [80]. A photographic image of the air-

port and the location of TDWR radar is shown in Figure 4.2. Note there are

two main runways (07R/25R and 07R/25L) on the airport, which are marked

as red lines. The period of data collection is from Oct 04 2015 to Oct 05 2015

during the Typhoon Mujigae event. During processing, we interpolate GPS

recordings (at 1Hz rate) to the same time that EDR1/3 data are recorded (at

4Hz rate). More details on how the onboard EDR1/3 is computed is elaborated

in [2].

Figure 4.2: Photographic image of the HK airport and the location of the
TDWR radar.

The key parameters of the TDWR radar are listed in Table 4.1 [38].

58

Table 4.1: HKO Brothers Point TDWR Radar Specs

Parameters Values
Location 22◦21’31”N, 114◦1’16”E

Frequency 5.625 GHz

Antenna systems

7.9 m Metal Parabolic Reflector.
Linear polarized.

Beamwidth θ1 ≤ 0.55◦, gain 50.54 dBi.
Sidelobes are ≤ 27 dB within 5◦

and ≤ 40 dB beyond 5◦.

Scanning

Hazardous weather and monitor modes
with different elevation coverages;

5 mins per volume scan, azimuth scan
speed 24◦ per second.

Transmitter

250 KW peak power Klystron,
500 watts average,

transmitted signal phase is
uncorrelated from pulse to pulse.

Waveform

Pulse width 1 µs,
Dual PRF 1.104 KHz and 1.38 KHz.
±60 m/s non-ambiguous velocities,

occupies 4 MHz bandwidth.

Receiver and
processor

Receiver noise power: - 111 dBm at 1 MHz bandwidth;
Dynamic range is 100 dB;

3 dB noise figure;
ground clutter suppression > 50 dB

and velocity accuracy ± 0.5 m/s

Display properties

0 to 90 km,
150m range bin spacing,

600 range bins per radial,
0.70◦ azimuth spacing

The HKO-TDWR was operated under a hazardous weather mode, whose

Volume Coverage Pattern (VCP) contains 15 elevation angles. Figure 4.3

shows an example of the reconstructed elevation scan profile of VCPs. The

red text in Figure 4.3 is discussed in Section 4.3.5. It can be observed that the

59

VCP takes about 4 minutes and 50 seconds to complete and there are multiple

measurements at the lowest elevation, which is about 0.5 degree.

10:01:55 10:04:48 10:07:40 10:10:33 10:13:26 10:16:19 10:19:12

Time

0

2

4

6

8

10

12

14

16

18

E
le

v
a
ti
o
n
 a

n
g
le

s
 (

d
e
g
re

e
)

TDWR elevation vs time

4m50s

Effective

VCP

EDR

recording

time

Figure 4.3: The elevation angles of the conical scans vs time, and a span
of time embraced by red vertical lines within which radar data was used to
construct Vertical Profiles of Radar Variables (VPRVs) shown in Figure 4.6.

4.3.2 Initial Radar Data Visualization

Figure 4.4 shows the initial “readout” of the TDWR scans and overlap plotting

with runway and radar locations. In these figures, black cross represents the

location of TDWR and black solid lines represent north and south runways of

HKIA, respectively. The four key data parameters are: reflectivity (Z), radial

velocity (V), spectrum width (W) and signal-to-noise ratio (SNR). As the first

60

step of data quality control, some of the data points have been removed (the

white blank spots) mostly due to out-of-trip echoes that bias Z and increase

the Standard Deviation (SD) of V and W. In spite of missing data, most likely

due to overlaid out-of-trip echoes, we found that even when data voids were

over the airport, the trained neural network, because of its robustness for clas-

sification [76], [77], is still able to produce outputs.

(a) Z (b) V

(c) W (d) SNR

Figure 4.4: Example measurement data product from a PPI scan of the
TDWR, Reflectivity (Z), Radial velocity (V), Spectrum width (W) and Signal-
to-Noise Radar (SNR).

61

4.3.3 General Statistics of Turbulence Scenarios

The first result of data analysis is that the actual occurrence of turbulence is

a small fraction of the measurement cases, which is consistent with actual op-

erational conditions and previous discussions in Section 4.5. Even in an event

of typhoon, such as the cases studied in this experiment, negligible turbulence

would be expected in the majority of the flying time. Table 4.2 summarizes

the overall classification results (using the classifier developed later in this

Chapter) for all the data sets available. Obviously, the majority of the detec-

tion outputs from the classifier are for low-altitude and negligible turbulence

cases, which reflects the nature of turbulence distribution according to dif-

ferent altitude levels. Also, since the low-altitude turbulence may have more

catastrophic impacts, it is reasonable to have accurate detection results for the

low-altitude scenarios.

4.3.4 Signal-to-Noise Ratio (SNR) and Spectrum Width

Measurements

The spectrum width σv (or W) estimates are computed using the HKO-

TDWR’s signal processor (manufactured by Misushibi) and an equation equiv-

alent to Eq.(6.27) of [40], which is shown in Equation 4.1,

σ̂v = λ

2πPRT
√

2
| ln ŝ

|R̂1|
|1/2 (4.1)

62

Table 4.2: Number of Detections by Classifier on Altitude vs Turbulence Cat-
egory

Alt(m)
Category Negligible Slight Moderate & Above

0-500 241532 133446 1292
500-1000 380768 114962 1328
1000-1500 257396 85321 1152
1500-2000 281940 55909 856
2000-2500 278126 35058 612
2500-3000 250450 20533 360
3000-3500 270882 14260 232
3500-4000 262581 11856 164
4000-4500 259528 5556 124
4500-5000 279996 13064 92
5000-5500 246448 2380 72
5500-6000 254661 3028 68
6000-6500 258045 6524 68
6500-7000 224046 648 36
7000-7500 220897 1340 20
7500-8000 202460 2016 16
8000-8500 174776 1580 8
8500-9000 180244 2800 0
9000-9500 140712 704 0
9500-10000 138172 588 0
>10000 1888952 44 0

However, because noise power in the Doppler spectrum of HKO’s TDWR is

an unknown variable related to unknown out-of-trip echo power plus receiver

noise power, the signal power estimate is computed by the TDWR processor

using lag zero estimates (R̂0) of the autocorrelation of echo samples multiplied

by SNR(SNR+1)−1 [40]. The SNR is obtained from estimates of the autocor-

relation magnitudes at lags zero (R̂0), one (R̂1), and two (R̂2) as suggested by

[81].

63

The fundamental physical model for describing the relationship between

radar-measured spectrum width σv ≡ W (m · s−1) and ε(m2s−3), i.e., EDR, is

given by Equation 4.2 (Section 10.3 of [40]).

ε ≈

0.72σ3
v

rσθA
3
2
, when

σr 6 rσθ

r > 17188m

(σ3
v

σr(1.35A) 3
2

)(11
15 +

4
5r

2σ2
θ

σ2
r

)− 3
2 , when

rσθ 6 σr

r 6 17188m

(4.2)

In Equation 4.2, σr is range resolution in meters, σθ is angular resolution

in rad (values of σr and σθ are from Table 4.1), r is the range of a particular

radar resolution volume in meters, A is a universal dimensionless constant

between 1.53 and 1.68, and 1.53 is used in this study. Equation 4.2 only

provides an estimate of EDR1/3 since biases due to steady wind shear etc. are

not included. However, it can be further “calibrated” using in-situ measured

EDR1/3 using the approach described below, which is then sufficient for the

MI/AI algorithms in this study.

Two of the four available radar measurements from HKO’s TDWR are

SNR and spectrum width (W), and they are not independent of each other.

As shown in Figure 4.5a, when the SNR is low, W tends to be high, and vice

versa. The possible reason for this is that the spectrum width computation

assumes Gaussian shaped spectra and unbiased SNR estimates. It can be seen

that if SNR is over-estimated at low SNR, W measurements at location of low

SNR will be higher. In addition, when SNR is low (below about 15 dB), W

estimates have larger variance as also seen in Figure 4.5a.

64

According to the Equation 4.2 which assumes V6 is uniformly filled with

isotropic turbulence, W is the single parameter (other than the range r) that

determines the EDR value. Therefore, to get most benefit of W values, a

correction process must be applied to the calculated EDR based on Equation

4.2, a correction that depends on the corresponding SNR measurement. This

correction is based upon comparisons of EDR1/3 calculated from Equation 4.2

and EDR1/3 obtained from in situ measurements.

(a) Estimated SNR vs estimated W.

-10 -5 0 5 10 15 20 25 30 35 40

SNR (dB)

-1

-0.5

0

0.5

1

1.5

E
D

R
1

/3

EDR
1/3

 vs SNR

 EDR

Corrected EDR

fitted curve

(b) Calculated ∆EDR1/3 (blue dots)
and the corrected ∆EDR1/3 vs esti-
mated SNR (black dots).

Figure 4.5: Scatterplots of all 560,000 collected data.

Figure 4.5b shows the EDR estimation errors as ∆EDR1/3 = EDR
1/3
Calculated−

EDR
1/3
insitu before (blue dots) and after (black dots) bias correction. EDR1/3

Calculated

is obtained from W estimates and Equation 4.2. From the plot before correc-

tion, a clear trend of bias (solid red line) of ∆EDR1/3 at various SNRs is

observed. In this work, we choose an exponential fitting to estimate bias

caused by different estimated SNRs, and then offset the bias in the correction

procedure.

65

4.3.5 Association of In-situ Measurements with Radar

Measurements

Because of potential mismatch of the aircraft’s onboard GPS location record-

ing and TDRW radar’s resolution cell location, as well as the possible location

errors due to radar resolution limitation, it is important to appropriately as-

sociate the onboard in-situ measurements from the aircraft and remote radar

measurements from the TDWR before further processing. The goal is to min-

imize the temporal and spatial difference between the two sources of mea-

surements. We illustrate the algorithm used here as an example and part of

training algorithm. First, using GPS data from the onboard flight recording,

time and location information of the aircraft for every EDR measurement can

be derived. In addition, using range, azimuth, elevation and time informa-

tion from the radar measurement and the GPS coordinates of the TDWR, the

correspondence between EDR and the location and time of radar measure-

ments can be established. However, the time and altitude difference between

EDR and radar measurements is inevitable. To mitigate the impact of those

differences on the performance of the classifier under training, and to obtain

predictive estimates of turbulence, along about 100 km aircraft path approach-

ing and departing HKIA, the radar measurements within the whole Volume

Coverage Pattern (VCP) are used.

Because each of the VCPs used in this study took about 4 minutes and

50 seconds to complete and consisted of 15 different scanning cones, all radar

measurements, that fall into ± 2 minutes 25 seconds span of the time dur-

66

ing which the in situ EDR data was obtained, are used to construct vertical

profiles of averaged TDWR measurements above and below the path of the

aircraft. The data that are averaged are those 9 within plus minus one resolu-

tion volume in range and azimuth closest to the vertical at the flight location.

We label these profiles as VPRVs (Vertical Profiles of Radar Variables). The

constructed VPRVs are shown in Figure 4.6. Therefore, the maximum tempo-

ral offset between the time of measured EDRs and the time of averaged radar

measurements is 2 minutes 25 seconds. Because the aircraft is in the VPRV,

effects of descending high Z regions associated with strong downdrafts that

create wind shear and turbulence that affect safety of flight can also be part

of the detection and prediction of turbulence used by the AI algorithm.

4.4 Development of Feature Vectors

Large amount of tests were performed in order to determine optimal feature

vectors for turbulence detection or classification. As a common guideline, the

feature selection needs to minimize redundancy information while containing

useful characteristics. The tests start with using all possible features to train

and then test gradually down-select them to the combination that provide the

best end-results for turbulence detections. The vertical profiles of averaged

radar data were found to contain most useful feature information for turbu-

lence. In Figure 4.6 we display one of the examples (CX134-1 case) showing

vertical profiles of radar variables at different times. The radar variables are

overlaid with recorded aircraft altitude along the flight path, the aircraft’s

distance to the radar, and the in-situ measured EDR1/3. It is interesting to

observe that high EDR1/3 values correlate with certain patterns of the vertical

67

profiles of radar data.

Radar measurement data from the entire vertical profile can be used as

part of feature vectors. Also as observed in Figure 4.6, it is useful to show

radar measurements not only from the VCP around the flight time but also

earlier VCPs, because they could provide information about the evolution of

weather features such as intense reflectivity cores descending, which often are

associated with microbursts and downdrafts that can generate dangerous low

altitude wind shear and turbulence [82].

Table 4.3: Structure of Training Vector of Features

Feature
Names

Feature
Numbers Notes

Calculated
EDR value 1 After correction

Altitude of
the aircraft 2 From GPS recording

Altitudes of
radar scans 3-4 The lowest and highest points of

a given vertical profile
Vertical profiles of

reflectivity 5-49 15 measurements in a profile,
3 profiles for 3 different times.

Vertical profiles of
radial velocity 50-94 15 measurements in a profile,

3 profiles for 3 different times.
Vertical profiles of

spectrum width 95-139 15 measurements in a profile,
3 profiles for 3 different times.

Vertical profiles of
SNR 140-184 15 measurements in a profile,

3 profiles for 3 different times.

Another observation from Figure 4.6 is that the altitudes and azimuths

of the aircraft need to be used to specify the portion of data from the VCPs

to be used for training and testing. Since the spacing of altitudes is linearly

determined in each VCP, only the lowest and highest altitudes are needed to

68

construct the vertical profiles of radar data. Based on these observations and

after extensive experiments, 184 features are extracted for training and test-

ing. For every VPVR, the features include four types of radar products (Z, V,

W, and SNR) at 0, 5 and 10 mins before the flight time at the aircraft GPS

location. Thus, there are 180 features directly from radar measurements. In

addition, the four “derived” features including calculated EDR1/3 from radar

measured spectrum width (with SNR-dependent bias correction), flight alti-

tude from flight data record and the lowest and highest altitudes for radar

measurements. (Again, these altitudes are included as features to specify the

airspace being monitored, and only these two are needed since the scanning

altitudes linearly span from lowest to highest.) Details of the 184 feature vec-

tor element are summarized in Table 4.3.

4.5 Training and Testing Algorithms

4.5.1 Objectives of Training and Testing Algorithms

The goal of training and testing in this work is to classify the level of severeness

of turbulence based on radar measurements. The turbulence categories used

in this study are based on associated EDR1/3 value shown in Table 4.4. The

EDR1/3-Turbulence Intensity Category relation is based on a medium-sized

transport aircraft under typical en-route conditions [1], [83]. The supervised

training process uses part of the measured radar data and truth data (onboard

turbulence sensor) to generate the classifier. Because of its robustness to data

quality degradation and popularity in MI community, ANNs are used as a clas-

sifier in this study. The testing process simply compares the classifier output

69

(a) Z, 0 min (b) Z, -5 min (c) Z, -10 min

(d) V, 0 min (e) V, -5 min (f) V, -10 min

(g) W, 0 min (h) W, -5 min (i) W, -10 min

(j) SNR, 0 min (k) SNR, -5 min (l) SNR, -10 min

Figure 4.6: Vertical profiles of radar variables along with the flight path of CX
134 at 0, -5 and -10 minutes before the flight time.

according to Table 4.4 with the onboard EDR1/3 measurements to determine

the confusion matrices.

70

Table 4.4: Relation between EDR1/3 and Turbulence Categories

EDR1/3 <0.1 0.1-0.4 0.4-0.7 >0.7
Turbulence

Levels Negligible Slight Moderate Severe

Turbulence Categories
for Classification 1 2 3 3

4.5.2 Training Data Generation

After extracting radar variables for each GPS recording (after interpolation),

the final size of entire data set is 567, 225 data entries. Each data entry (data

point) in the dataset contains 184 radar-measured features. As shown in Ta-

ble 4.5, the majority of data points are collected when the aircraft experiences

little to no turbulence. Moreover, when severe turbulence is experienced, the

altitude of the aircraft is usually low. These unbalanced data distributions will

introduce a bias to the ANN toward low EDR1/3 classification, except for those

low altitude cases if these data are used directly for training. Furthermore, it

is undesirable to let our classifier to heavily rely on the altitude to make the

detection decision, because that will affect the capability to detect turbulence

at higher altitude which is also important. Therefore, the data recordings are

resampled during the training process based on the value of EDR1/3 and the

altitude of the airplane to make the training data set more evenly distributed

in terms of EDR1/3 value and aircraft altitude. As an example, Table 4.6 shows

the number of data points within specific EDR1/3 and altitude ranges of one

of the training data sets generated (which contains about 10,000 data samples

in total, 5,000 of them are used for actual training).

71

Table 4.5: Number of Measurements vs Altitude and in situ EDR1/3

Alt(m)
EDR1/3

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6

0-1000 45208 58534 26718 5371 526 20
1000-2000 94548 6659 1073 80 0 0
2000-3000 104784 2457 575 232 0 0
3000-4000 81555 407 154 8 0 0
4000-5000 51943 538 83 97 39 0
5000-6000 39258 259 67 28 0 0
6000-7000 23851 228 13 0 0 0
7000-8000 14584 4 0 0 0 0
8000-9000 4277 63 0 0 0 0
9000-10000 2148 0 0 0 0 0
10000-11000 660 0 0 0 0 0

Table 4.6: Number of Resampled Measurement vs Altitude and EDR1/3 for A
Training Data Set After Resampling of the Measurement Datasets

Alt(m)
EDR1/3

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6

0-1000 303 208 208 370 370 370
1000-2000 303 208 208 370 0 0
2000-3000 303 208 208 370 0 0
3000-4000 303 208 208 370 0 0
4000-5000 303 208 208 370 39 0
5000-6000 303 208 208 370 0 0
6000-7000 303 208 208 0 0 0
7000-8000 303 208 0 0 0 0
8000-9000 303 208 0 0 0 0
9000-10000 303 0 0 0 0 0
10000-11000 303 0 0 0 0 0

4.5.3 Training of Artificial Neural Networks (ANN)

ANN is one of the most widely used MI/AI algorithms [84]. In this study,

training data is randomly selected from the total amount of radar measure-

ments. In this study, a simple three-layer ANN is used. 10,000 of the 560,000

72

measured data points (which contains more than two hundred flight cases in

total, where each flight has 3,000 to 5,000 data points) are used for training

dataset. This training dataset is divided as follows: 50% is used for actual

training, 25% as internal validation set and 25% as internal testing set. The

actual training set is the data set used for training the ANN classifiers. The

validation set is the set used to test the performance of ANN at each training

iteration to avoid over-training issue. The testing set is used for performance

evaluation after the training process been terminated. These three data sets

are randomly divided and independent with each other with no overlapping

among each other. The reason for choosing the division of 50-25-25 is that

the over training (over fitting) issue could be effectively mitigated, although

the accuracy will be inevitably sacrificed. However, the reduction in accu-

racy is compensated by applying the method described in Section 4.5.4. Ten

ANNs are trained during the training process, each of them has different ini-

tial weighting values in the network nodes and each is trained with different

subsets from the training data set. Although these trained ANNs have slightly

different performance, they can be combined during classification process in

the next step to reduce the false alarm rate for Category 3 classification.

4.5.4 Classification and Decision Logic

The classification algorithm processes the radar measurement data (testing

data set) and estimates turbulence severeness levels according to Table 4.4.

For turbulence detection (Category 3 and above), the trained classifier re-

quires all the available data be used, including the features which represent

the radar measurements at the current time. For turbulence prediction, the

73

data of current radar measurements should not be used to determine the tur-

bulence category. To implement the prediction operation, we set the features

which represent the radar measurements of the current VCP (i.e., the radar

measurements with 0-minute time shift) as unavailable, which is equivalent to

setting the current radar measurements to zero. As such, the classifiers are

solely based on radar measurements of previous time without changing the

structure of the trained neural networks, which simplifies the implementations.

Figure 4.7 depicts the key elements of the classification algorithm used in

this study. First, feature vectors are extracted from test measurement data

for a given time and location. Second, the features are sent to all the trained

ANNs in the cluster. The outputs from each ANN contains confidence values

(i.e., if a category has the largest confidence value, the ANN will classify the

turbulence level to that category). The third step is voting among all the 10

ANN outputs to obtain “global” classification results. A vote means that one

ANN in the cluster classifies the radar measurement features at a specific time

and location as belonging to one specific EDR1/3 category.

Figure 4.7: Decision and classification algorithm for turbulence detection.

74

The performance of the classification algorithm is measured by comparing

its output to the onboard truth data measurements and the resultant con-

fusion matrix [85], [86]. The performance is mainly manifested by the false

alarm rate of turbulence Category 3 (moderate & above), since this category

is most important regarding to aviation safety and passenger experience, and

it is more prone to get false alarms since the training data sets only have

limited cases for this category, as mentioned in Section 4.5.2. In Section 4.6,

the detection and prediction results and performance analysis for two cases

are presented, they are the flight CX134 (containing 4,488 data points) and

flight CX383 (containing 3,860 data points). These two cases represent more

than 200 flight cases contained in the entire radar measurement data collection.

4.6 Summary of Test Results

4.6.1 Summary of All Flight Cases

The overall classification results for all the 200 flights (or 567,225 data sample

cases) are collected. Majority of the testing data in the collected datasets

produces unanimous voting results (i.e., all ten ANNs in the cluster agree

on classifying the data to the same EDR1/3 category). Among all the cases,

there are 29% of cases in detection and 44% of the cases in prediction that

do not have unanimous voting results (i.e., different ANNs in clusters vote

for different turbulence categories). A simple majority voting rule was tested

first, and the average results show the distinct difference between the cases

having unanimous votes and the cases not having unanimous votes. For cases

that do not have unanimous votes, the results are more complicated. The

75

overall correct detection (or classification rate) is close to 70% and the overall

false positive rate is near 50%. The main reason for these results is the false

classification of the Category 1 cases into Categories 2 and 3, which is a result

of the training data distribution. More sophisticated algorithms beyond simple

majority vote are needed to improve the performance of these cases, such as

using ANNs with more layers, and better “weighting” of the confidence levels

based on actual vote numbers and prior knowledge. For most of the cases that

have unanimous votes, however, the detection performance is good, and the

results for these cases are summarized as confusion matrices in Figure 4.8. The

fraction number (e.g., 404,999/567,225) in the title of each matrix of Figure

4.8 indicates the number of cases which receive unanimous votes versus the

total number of test cases. Since our current goal is using the simple ANN

and minimizing computational load, we only record the classification results

for the cases that have unanimous votes in this study.

(a) Detection (b) Prediction

Figure 4.8: Classification performance results for all the collected flight data
cases with unanimous classification votes.

It is more useful to focus on the individual flight data and confusion ma-

76

trices associated with particular flights, as it is a better way to connect the

turbulence classification results with the flight trajectories. Again, we only

plot the classification results with unanimous votes, and do not provide classi-

fication outputs for cases with less than unanimous voting results. As shown

in the flight examples in the following sections, those cases with less than

unanimous votes are simply shown as “no output” in the plots.

4.6.2 Case Analysis for Flight CX 134

For the test results for the case of CX 134, whose radar and in-flight mea-

surements data are presented in Figure 4.6, the turbulence detections and

predictions of vertical profiles along with the flight path are presented in Fig-

ure 4.9. In Figure 4.9, the black dash-dot line represents the distances between

the CX 134 aircraft and the TDWR, the black solid line represents the alti-

tudes of the CX 134 aircraft and the magenta dash line represents the onboard

measurements of EDR1/3 values. The green, orange and red color filled spaces

are detections/predictions made by the trained classifier of negligible, slight

and moderate & above turbulence respectively (i.e., categories 1, 2, and 3; Ta-

ble 4.4), plotted above and below the flight path of the CX 134 aircraft. Note

there are blank (white areas) representing no radar data available because

if the aircraft is close to TDWR, available data is limited to lower altitudes

for given elevation scan angle. From the detection result of Figure 4.9a, it is

observed that the ANN classifier successfully detects turbulences with good

accuracy after the time mark 07:45:32, which was at the final stage of landing.

Because the aircraft was so close to the ground for this case, getting ac-

curate moderate and severe turbulence detections is helpful for safe landing.

77

Although there are apparently some false alarms near time mark 07:38:03 and

07:30:35, the aircraft was at high altitudes for these cases, therefore the accu-

racy of detection for these cases is not as critical as it is closer to the ground.

As for the prediction result in Figure 4.9b, the performance is not as good

as the detection results, since less information (due to lacking current radar

measurements) was used by the classifier. However, the prediction still indi-

cates that turbulence will occur at the final stage of the landing phase between

time mark 07:45:32 and 07:49:17, although these predictions over-estimate the

intensity of turbulence.

(a) Detection (b) Prediction

Figure 4.9: Detection with 0min data and prediction without 0min data for
CX 134.

To have better visualization of the turbulence detection performance along

flight tracks, the turbulence measurements, detections and predictions for

flight CX 134 along its path are presented in Figure 4.10. The on-board

measured turbulence categories are converted from onboard EDR measure-

ments following the rule described in Table 4.4. In Figure 4.10, the black cross

represents the location of TDWR, black circles and solid lines represent the

north and south runways of HKIA, and green, orange and red dots represent

78

the negligible, slight and moderate & above turbulences (i.e., Categories 1,2

3) measured, detected or predicted, respectively. The detection and predic-

tion results are the outputs from the classifier trained in this study. From the

flight track shown in Figure 4.10a, it can be observed that the flight CX 134

was at the final stage of landing when it encountered intense turbulence. The

detection results in Figure 4.10b agree reasonably well with the truths shown

in Figure 4.10a despite that there are only 3,416 out of 4,488 detection results

receiving unanimous votes from the neural network cluster trained in the clas-

sifier. Furthermore, there are small amount of the missing data points, which

are the detection results that do not receive unanimous votes, and they are

associated with the landing stage of the flight. For those points, the category

of the turbulence could be inferred from the detections made earlier or later,

so they do not have significant effect on the detection performance.

For the prediction results demonstrated in Figure 4.10c, available predic-

tion outputs are sparse compared with detections shown in Figure 4.10b. Only

1,836 out of 4,488 prediction results received unanimous votes. The reason for

it is that there is less information (i.e., missing current radar measurements)

provided to the classifier for the predictor mode. Therefore, it is more difficult

for the classifier to give a result with unanimous votes especially in the severe

weather situation as the case tested on, which is during the event of Typhoon

Mujigae. However, the prediction results still provide useful information dur-

ing majority of the flight as well as the level of turbulence being expected near

the runways, which is useful because degradation of aircraft performance due

to turbulence is more important during landing and taking off.

79

-3 -2 -1 0 1 2 3 4 5

m 104

-8

-7

-6

-5

-4

-3

-2

-1

0

m

104 CX134-1 Turbulence Truths
4488/4488

HKIA

TDWR

Negligible

Slight

Moderate

(a) Truths

-3 -2 -1 0 1 2 3 4 5

m 104

-8

-7

-6

-5

-4

-3

-2

-1

0

m

104 CX134-1 Turbulence Detections
3416/4488

HKIA

TDWR

Negligible

Slight

Moderate

(b) Detection

-3 -2 -1 0 1 2 3 4 5

m 104

-8

-7

-6

-5

-4

-3

-2

-1

0

m

104 CX134-1 Turbulence Predictions
1836/4488

HKIA

TDWR

Negligible

Slight

(c) Prediction

Figure 4.10: Turbulence along with the path of CX 134.

The confusion matrix of detection and prediction testing results for this

case are shown in Figure 4.11 using “plotconfusion” function in MATLAB. The

green and red colored boxes indicate that the cases being categorized correctly

or falsely. The green and red percentage numbers in the last row or column of

Figure 4.11 represent the percentage of correctly and falsely categorized cases

of all cases in respective output or truth categories. The “overall accuracy”

at bottom-right corner is computed by taking the ratio of all correctly classi-

fied cases (sum the numbers in diagonal boxes) over the total number of test

cases. For example, the 95.7% (green) and 4.3% (red) indicate that among the

categorized cases the accuracy of detection is 95.7% while the false rate is 4.3%.

Again, Categories 1, 2 and 3 correspond to negligible, slight and moderate

& stronger turbulence, respectively. In these matrices, the number entries in

every row are the number of cases that have been categorized by the trained MI

classifier and every column represents the number of cases belonging to “true”

categories as indicated by the onboard recorded EDR1/3 measurements. For

example, the number 12 in the first row and second column in the matrix

means that there are 12 cases being falsely categorized as Category 1, but

should belong to Category 2 according to the truth data. The percentage un-

80

der the number, 0.4% in this example, represents the percentage of all cases

(i.e., 3,416 for Category 2), which are falsely categorized to Category 1 by the

MI classifier.

For the error statics associated with each category, the 72.6% (green) and

27.4% (red) in the 3rd row and 4th column of Figure 4.11a indicate that 72.6%

of cases being categorized as Category 3 are indeed Category 3 as determined

by the recorded onboard EDR value, and 27.4% of the cases being categorized

as Category 3 cases are falsely categorized as Category 3. Therefore, the red

percentage numbers in gray boxes of the 4th column represent the false alarm

rates or false positive rates of respective categories. As another example, the

92.8% (green) and 7.2% (red) in the 4th row and 2nd column of Figure 4.11a

indicate that there are 92.8% of Category 2 cases being successfully catego-

rized as Category 2 and 7.2% of Category 2 cases being falsely categorized as

other categories. Therefore, the red percentage numbers in gray boxes of 4th

row represent the false negative rates for this category.

It can be observed from Figure 4.11a that for the detection task regard-

ing the case of CX 134, the classifier performed well. The overall accuracy is

95.7%. The false negative rate of Category 3 in this test is 0%, which means

all the cases which should be categorized as Category 3 are not missed by the

classifier. And the false positive rate or false alarm rate of Category 3 in this

test is only 27.4%, which means only about 1 in 4 cases which categorized as

Category 3 is not actual Category 3. For the aviation safety, the accuracy of

detecting high intensity turbulence (i.e., Category 3) is more crucial than that

of detecting low intensity turbulence, and reasonable levels of false-alarm are

81

usually acceptable. Moreover, as demonstrated in Figure 4.11a, all the cases

that are falsely categorized as Category 3 belong to Category 2 and none of

them belongs to Category 1. Since Categories 2 and 3 are generally not quite

distinguishable from each other, the false positive of Category 2 being 3 is more

acceptable than that of Category 1 being 3. As for prediction task evaluation

demonstrated in Figure 10 4.11b, worse performance is expected compared to

the detection task. The reason for this is that the current radar measurements

are not available for the prediction task. Therefore, less information is utilized

by the classifier, which leads to potentially less accurate prediction results.

However, turbulence associated with Category 3 is the most important hazard

for aviation safety, and although none of the MI classified cases belonging to

Category 3 is predicted correctly, all those cases are predicted as Category 2

(instead of Category 1). This might not be unacceptable because a certain

level of turbulence is expected for the Category 2 to generate some alerts.

Furthermore, the overall accuracy of prediction is surprisingly better than the

detection task, with 96.9% cases being predicted correctly, even though fewer

cases received unanimous votes (i.e., 1,836 out of 4,488), compared to the de-

tection task, which has 3,416 unanimous votes out of 4,488 total cases.

In Figure 4.11, the reason there is a 27% false positive rate is because there

are very small number of Cat 3 cases in the overall dataset, there are only 61

cases for Cat 3, but there are 486 Cat 2 cases according to onboard EDR1/3

measurement. Therefore, even only 0.7% (23) of the Cat 2 cases were misclas-

sified to Cat 3, it appears to be a big portion in overall Cat 3. Therefore, this

number is “not very fair” for Cat 3 classification performance, and should not

be interpreted as traditional “false alarm” rate.

82

1 2 3

Target Class

1

2

3O
u

tp
u

t
C

la
s
s

Detection CX134
Unanimous

3416/4488
 Confusion Matrix

2756

80.7%

113

3.3%

0

0.0%

96.1%

3.9%

12

0.4%

451

13.2%

23

0.7%

92.8%

7.2%

0

0.0%

0

0.0%

61

1.8%

100%

0.0%

99.6%

0.4%

80.0%

20.0%

72.6%

27.4%

95.7%

4.3%

(a) Detection

1 2 3

Target Class

1

2

3O
u

tp
u

t
C

la
s
s

Prediction CX134
Unanimous

1836/4488
 Confusion Matrix

1513

82.4%

12

0.7%

0

0.0%

99.2%

0.8%

19

1.0%

267

14.5%

0

0.0%

93.4%

6.6%

0

0.0%

25

1.4%

0

0.0%

0.0%

100%

98.8%

1.2%

87.8%

12.2%

NaN%

NaN%

96.9%

3.1%

(b) Prediction

Figure 4.11: Confusion matrix of unanimous output of CX 134.

4.6.3 Case Analysis for Flight CX 383

Another representative case selected as an example is the flight CX 383, whose

related radar product measurements are presented in Figure 4.12. It is evident

that there are a lot of areas in which radar measurements are not available.

The reason for this is that there is a mountain (not shown in the figures)

between the aircraft path (Figure 4.14) and the TDWR. Therefore, radar

measurements at some low altitudes are not available. However, as shown

in the following test results, thanks to the robustness of the MI algorithms,

the trained classifier still could make reasonable detections/predictions along

flight paths without a full suite of radar measurements.

Figure 4.13 shows the detection and prediction results of the case of flight

CX 383. The representation of colors and line types are the same as in Figure

83

(a) Z, 0 min (b) Z, -5 min (c) Z, -10 min

(d) V, 0 min (e) V, -5 min (f) V, -10 min

(g) W, 0 min (h) W, -5 min (i) W, -10 min

(j) SNR, 0 min (k) SNR, -5 min (l) SNR, -10 min

Figure 4.12: Vertical profiles of radar variables along with the flight path of
CX 383 at 0, -5 and -10 minutes before the flight time.

4.9. From the detection results shown in Figure 4.13a, it is observed that

the detections match the EDR measurements well, especially around time

20:01:24, 19:54:59 and 20:04:37. For the turbulence detected around 20:01:24,

in Figure 4.13a, it is observed there are very few radar measurements available

84

(a) Detection (b) Prediction

Figure 4.13: Detection with 0min data and prediction without 0min data for
CX 383.

around the aircraft at that time and altitude. However, the trained classifier

still manages to give the accurate result even under those conditions. Also,

similar performances are achieved at 19:54:59, the taking off stage, and be-

tween 20:01:24 and 20:04:37 at mid-altitudes.

-8 -6 -4 -2 0 2 4 6

m 104

-2

-1

0

1

2

3

4

5

6

m

104 CX383-1 Turbulence Truths
3860/3860

HKIA

TDWR

Negligible

Slight

Moderate

(a) Truths

-8 -6 -4 -2 0 2 4 6

m 104

-2

-1

0

1

2

3

4

5

6

m

104 CX383-1 Turbulence Detections
2824/3860

HKIA

TDWR

Negligible

Slight

Moderate

(b) Detection

-8 -6 -4 -2 0 2 4 6

m 104

-2

-1

0

1

2

3

4

5

6

m

104 CX383-1 Turbulence Predictions
2324/3860

HKIA

TDWR

Negligible

Slight

(c) Prediction

Figure 4.14: Turbulence along with the path of CX 383.

Figure 4.14 demonstrates the truth, detections and predictions of turbu-

lence categories along with the path of flight CX 383. The latter two sets of

categories (detections and predictions) are generated by the trained classifier.

As shown in Figure 4.14, the aircraft was taking off from the south runway

of HKIA towards northeast. After taking off, the aircraft made a right turn

85

near the TDWR and flew over the Victoria Harbor and the city center of Hong

Kong and then made a left turn to fly around mountains. Therefore, when

the aircraft was flying around the mountains, the mountains were between the

aircraft and the TDWR. Hence, the radar signal was heavily blocked at around

20:01:24 by the ground. Again, although very few radar measurements were

available around those areas, turbulence was reasonablywell detected along the

flight path while the aircraft was experiencing some slight and moderate tur-

bulence at that time. Interestingly, there are also good amount turbulence de-

tections “around” the flight path in this case. Comparing the detection results

in Figure 4.14b with the truths in Figure 4.14a, it can be again observed that

the classifier performed well along most portion of the flight paths, although

it still has a tendency to overestimate the EDR1/3 levels. This tendency may

be observed near the runway at early stage of takeoff and around coordinate

(40000, 0) in the middle altitude in Figure 4.14b. In both areas, the classifier

tends to falsely categorize the category from 1-negligible to 2-slight. However,

when the turbulence was strong enough to be categorized as 3-moderate &

above, the classifier correctly made the detections.

As for the prediction results demonstrated in Figure 4.14c, it performed

well around the runway when the aircraft was at early stage of takeoff, but

it fails to make a prediction when the turbulence should be categorized as

3-moderate & above when the aircraft was in the middle altitude levels. Also,

compared with the detection results shown in Figure 4.14b, fewer outputs are

given by the classifier since the trained networks could give unanimous votes

for fewer inputs cases

86

1 2 3

Target Class

1

2

3O
u

tp
u

t
C

la
s
s

Detection CX383
Unanimous

2824/3860
 Confusion Matrix

2244

79.5%

178

6.3%

4

0.1%

92.5%

7.5%

0

0.0%

352

12.5%

7

0.2%

98.1%

1.9%

0

0.0%

2

0.1%

37

1.3%

94.9%

5.1%

100%

0.0%

66.2%

33.8%

77.1%

22.9%

93.2%

6.8%

(a) Detection

1 2 3

Target Class

1

2

3O
u

tp
u

t
C

la
s
s

Prediction CX383
Unanimous

2324/3860
 Confusion Matrix

2076

89.3%

114

4.9%

0

0.0%

94.8%

5.2%

24

1.0%

110

4.7%

0

0.0%

82.1%

17.9%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

98.9%

1.1%

49.1%

50.9%

NaN%

NaN%

94.1%

5.9%

(b) Prediction

Figure 4.15: Confusion matrix of unanimous output of CX 383.

The confusion matrices of detection and prediction for flight CX 383 are

presented in Figure 4.15. The overall accuracies for detection and prediction

for the flight CX 383 are 93.2% and 94.1%, respectively. The accuracy of

prediction looks higher than that of detection, but the classifier makes less

overall outputs in prediction task than it is in detection task, especially when

the true turbulence category is 3. From the detection results demonstrated

in Figure 4.15a, it could be observed that the true positive and false negative

rates for Category 3-moderate & above are 77.1% and 5.1%. As discussed in

the previous flight case (CX 134), these two rates are most critical for safety

and passenger experience. Also, there is no false categorization from Category

3 to Category 1. Therefore, the classifier correctly gives an alert for every

moderate & above turbulence situation, although this alert might not come

with correct strength values of the expected turbulence. As for the prediction

task results shown in Figure 4.15b, although the overall accuracy of prediction

seems adequate, the classifier cannot make any prediction about Category 3.

87

This is because the neural networks of the classifier cannot classify any case to

Category 3 with unanimous votes. Therefore, the 3rd row and 3rd column of

Figure 4.15b are all zeros and only 2,324 out of 3,860 data points were given

a classification output compared to the 2,824 of 3,860 in the detection task.

4.7 Summary and Conclusions

An machine intelligence (MI)-based algorithm is developed for diagnosing tur-

bulence using Doppler weather radar and providing aviation safety support.

The key elements include preprocessing, data association/correlation, radar

feature extraction, training data generation, training algorithms, and evalua-

tion methods. ANN is used as the specific MI algorithm and TDWR radar

at HKO is used as the specific radar data source, but the techniques may be

extended in the future to other weather radars and other MI algorithms. Two

flight cases are used for testing the classification performance to detect and

predict turbulence.

Performance for turbulence detection, classification and prediction are eval-

uated for the current available measurement data. Limited performance is

expected for the turbulence prediction function, because it is difficult to de-

pend only on “data modeling” to describe the evolution of turbulence and the

radar signatures, thus more in-depth physical modeling is required for this ca-

pability. Nevertheless, the test results of all the available data show promises.

Also, as the amount of data increases, more accurate “data models” will be

available for the training algorithms, and the training algorithm can be further

improved by better handling of the “non-unanimous” cases.

88

Since many of the system configuration and parameter selections in this

work are based on empirical “trial and error” approach, the future work would

naturally require a more systematic optimization approach, which may even-

tually reduce the time and effort to train the classifiers. The classification

algorithm can also extend beyond the unanimous voting requirements and use

“confidence levels” to further improve accuracy and robustness. The “confi-

dence levels” can be calculated by averaging the values of classification at the

output nodes (confidence values) among all the networks (unanimous scenario)

or among the networks with consensus outputs (consensus scenario).

89

Chapter 5

GPGPU-Based Implementation of Radar Processing

Chain

5.1 Basic Signal Processing Chain for Surveillance Radar

In this section, the GPU implementations of the advanced algorithms, such as

adaptive pulse compression and Doppler processing, and basic MI algorithms

are discussed. The performance benchmarks are obtained for illustration. Al-

though the final goal is to achieve a real-time intelligent processing for weather

hazard detections, this chapter only intends to provide basic examples and re-

sults for initial efforts.

5.1.1 Data Cube-Based Processing Chain

The generic signal processing chain for a pulsed-Doppler radar surveillance

mode includes the following modules in sequence order: pre-processing, dig-

ital beam-forming, pulse compression, Doppler spectrum estimate and post-

processing, as shown in Figure 5.1. Each stage involves intensive matrix ma-

nipulations, which are highly capable of being parallelized. Take, for instance,

the beam-forming, which has been widely applied in many operational radar

90

systems, is basically multiplication of the input data with a beam-forming ta-

ble pre-stored in the memory. Because the input data set is multi-dimensional,

where three-dimensional is most common, it is usually referred to as a “data

cube”. The computation along each dimension is usually independent, and

thus can be implemented in parallel as well.

The modern radar system tends to include more advanced signal processing

algorithms than the basic processing chain shown in Figure 5.1. For example,

adaptive pulse compression (APC) [12], [87]–[91] is an important new algo-

rithm to reduce the sidelobe level from traditional matched filtering. Adap-

tive beamforming and calibration [92]–[94] is another example of such kinds

of algorithms. The existing tools and libraries in CUDA may not be sufficient

for implementing these sophisticated algorithms. For such cases, customized

kernel development and optimization may be necessary. The following sections

discuss some of the solutions developed in this study.

Beamforming
Pulse

Compression

Post Processing
Spectrum
Processing

ns ns ng

ngng

n
c

n
b

n
b

n
b

n
b

Figure 5.1: The basic “data cube” processing chain of pulsed-Doppler radar.
In this figure, np is number of pulses per Coherent Processing Interval (CPI),
nc is number of digital channels, and ng is number of range gates.

91

5.1.2 CUDA Implementation of The Signal Processing

Chain: Basic Concept

For the basic processing chain as shown in Figure 5.1, although we can cus-

tomize our own “Kernels” for such matrix implementation on GPUs, it is

recommended to use a high-level CUDA library such as cuBLAS, which is

an accelerated Basic Linear Algebra Subprograms (BLAS) for CUDA-enabled

GPUs, as much as we can. Not only does it reduce development time, but

also, more importantly, such libraries are highly optimized by professionals

for maximum efficiency. Similarly, the cuFFT library can be used for pulse

compression. It is worth noting that the size of a data cube at each stage

is usually far larger than the number of cores available in GPUs, which indi-

cates that each node of the radar signal processing chain, which is shown in

Figure 5.1, may fully utilize all of the computational power of a GPU, poten-

tially maximizing the computational efficiency on each GPU. Therefore, we

can pipeline multiple GPUs, where only one node in the chain is implemented

on each single GPU, to further reduce processing time.

For general APC, there are scenarios where a large number of ranges and

Doppler cells are handled especially in 2D scanning, which have potentials for

parallelization. Traditionally, the APC algorithms are specific combinations

of various matrix manipulations and are implemented in CPU-based processor

architectures [12], [87]–[91]. For large scale APC, the nature of CPUs makes

the computation less efficient. In contrast, the original graphic rendering tasks

of GPUs require highly parallel architecture, which leads to better computing

capability of large data. It is possible and desirable to modify existing APC

algorithms to enhance parallelization, to implement such algorithms into em-

92

bedded GPU platforms and to achieve the acceleration given various types of

radar applications.

5.2 Algorithms

Pulse

Channel Range

Beamforming
Pulse

Compression

Surveillance Radar Scan Data

Doppler
Processing

Target
detection/Tracking

Basic Matched Filter
Reiterative Minimum Mean-Square Error (RMMSE) Filter
Matched-Filter-Based RMMSE (MF-RMMSE) Filter

Figure 5.2: The basic processing chain of pulsed-Doppler radar.

This study focuses on three algorithms in the “pulse compression” cate-

gory shown in Figure 5.2. They are basic matched filter, reiterative minimum

mean-square error (RMMSE) filter and Matched-Filer-Based RMMSE (MF-

RMMSE). These algorithms are key to the adaptive pulse compression (APC)

algorithm family and important to the resolutions and sidelobe levels of radar

range processing.

5.2.1 Matched Filter

The benchmark test procedure for basic matched filtering is as follows: first,

simulated ground truth, waveform, and returned signal are generated. Here,

93

LKP3 phase-coded waveform is used as the simulated surveillance radar wave-

form. Second, zero padding is applied to the waveform as well as the returned

signal, to reach the nearest length l = 2a3b5c7d, where a, b, c and d are integers,

in order to achieve the optimal FFT performance [95]. Third, a matched filter

is applied to the signals as described in equations (5.1) - (5.5), with different

implementations of FFT/inverse FFT (iFFT) and multiplication. Since the

first two steps are common to all the implementations of the matched filter,

time latencies are only measured from the third step.

wr(n) = w(−n) (5.1)

W (N) = FFT [wr(n)] (5.2)

S(N) = FFT [s(n)] (5.3)

M(N) = W (N)× S(N) (5.4)

m(n) = iFFT [M(N)] (5.5)

Where w, s and m represent waveform, returned signal and matched filter

output, respectively. Subscript r means reversed version of respective data.

Lower case letters represent data in time domain (before Fourier transform)

while upper case letters represent data in frequency domain (after Fourier

transform). FFT [·] and iFFT [·] represent FFT and iFFT computation. The

pseudo-code of matched filter is provided in Algorithm 1.

94

Algorithm 1: Matched Filter
1 function MF (s, wf)

Input : Two vectors of complex numbers s and wf .
// s and wf represent the returned signal and waveform

respectively
Output: One vector of complex numbers mf .
// mf represents the match filter output

2 if length(s) != length(wf) then
3 zero padding the shorter vector to make length(x) == length(wf)
4 end
5 wf = reverse(wf .conj()); // reverse and conjugate wf
6 s = circRightShift(s,1); // do a circular right shift on s

7 w̄f = fft(wf)
8 s̄ = fft(s)
9 m̄f =s̄× w̄f ; // the multiplication is element-wise

10 mf = ifft(m̄f)
11 return mf

// the red part of algorithm could be implemented with
EIGEN(CPU) or CUDA(GPU)

5.2.2 Reiterative Minimum Mean-Square Error (RMMSE)

RMMSE is one of the APC algorithms based on the Minimum Mean-Square

Error (MMSE) approach [88]. It performs significantly well in term of recov-

ering the truth data from the measurement. However, this outstanding per-

formance comes with a price, namely high computation load. The extremely

high computation load limits the application of this algorithm, making it im-

probable to be applied on the massive size of data from various high definition

and/or rapid updating observation tasks. The pseudo-code of RMMSE is pro-

vided in Algorithm 2.

95

Algorithm 2: RMMSE
1 function RMMSE (s, wf, numiter)

Input : Two vectors of complex numbers s and wf .
// s and wf represent the returned signal and waveform

respectively
// numiter represents the number of iterations in RMMSE
Output: One vector of complex numbers.

2 Do zero-padding at the head of s; // ŝ = [0 ...0 s]
3 Initialize noise matrix R; // R is a diagonal matrix with the

values of diagonal elements equal to noise power
4 initialize vector ρ; // ρ is a vector of ones
5 for idxiter = 1 to numiter do
6 numcell = (2× numiter − idxiter − 1)× (length(wf)− 1)+length(s)
7 for idxcell = 1 to numcell do
8 Initialize matrix C
9 for idxin cell = 1 to numin cell do

10 Update matrix C with zero padded shifted wf
11 end
12 CR = C +R
13 ŵ = CR\wf ; // solving linear equations
14 ŵ = ŵ × ρ[idxcell+length(wf)− 1]
15 outputtemp = ŵᵀŝ[subvector]

// sub vector starts at
idxcell + (idxiter − 1) ∗ (length(wf)− 1) with length of
wf

16 end
17 ρ = |outputtemp|2; // element-wise operation
18 end
19 return outputtemp

// the red part of algorithm could be implemented with
EIGEN(CPU) or CUDA(GPU)

5.2.3 Matched Filter Based RMMSE (MF-RMMSE)

MF-RMMSE is a modified version of RMMSE based on MF output, which is

proposed and derived in [12]. It successfully reduces the computational load

by processing MF outputs. The computational complexities of matched filter,

RMMSE and MF-RMMSE are listed in Table 5.1. The pseudo-code of MF-

96

Table 5.1: Computational Complexity per Range Cell for Different Algorithms

Algorithms Computation Cost Comments

Matched filter O(N) where N is the
length of waveform

RMMSE O(N3)

MF-RMMSE O(KN +K3)
where K is the

length of filter used,
and K << N

RMMSE is provided in Algorithm 3.

5.3 Graphic Processing Unit (GPU) Testbed

In this section, the hardware and software environments of the GPU Testbed

are described.

5.3.1 Hardware

The GPUs used in this study are TITAN Z and TITAN Xp, whose specifi-

cations are described in Table 5.2. In this study, only one of the two GK110

GPU cores of TITAN Z is used. Therefore, the TITAN Z used in this study

will have the effective computation resource equivalent to TITAN BLACK,

whose specification is also listed in Table 5.2. As a comparison, AMD FX

8150 is used as the reference CPU for this study and the CPU implementa-

tions utilize FFTW [96] and EIGEN [97] as the counterpart libraries of CUDA.

97

Algorithm 3: MF-RMMSE
1 function MF RMMSE (s,mf, numiter)

Input : Two vectors of complex numbers s and mf .
// s and wf represent the returned signal and matched

filter output respectively
// numiter represents the number of iterations in MF-RMMSE
Output: One vector of complex numbers.

2 ρ = getMatrixRho();
3 U = getMatrixU(s);
4 G = getMatrixG(s);
5 Sn = getMatrixSn(s);
6 for idxiter = 1 to numiter do
7 for idxl = 1 to length(mf) do
8 G2 = updateMatrixG(S,G,limwindow)

// limwindow is the size of processing window
9 D = getMatrixD(ρ, Sn, U)

10 ŵ = ρ ·D\G2; // solving linear equation
11 outputtemp[idxl] = ŵᵀmf ; // vector multiplication
12 end
13 ρ = |outputtemp|2; // element-wise operation
14 end
15 return outputtemp

// the red part of algorithm could be implemented with
EIGEN(CPU) or CUDA(GPU)

// definitions about functions of getMatrixs are referred
to the original article about MF-RMMSE[12]

5.3.2 Software

For the software environment configuration, Windows 10 is used as the oper-

ating system, NVIDIA driver version 382.05 and CUDA toolkit 8.0 (including

cuFFT and cuBLAS) are used as GPU computing support, MSVC++ 14.0

(Visual Studio 2015) and NVCC 8.0 are used for compiling and linking C++

and CUDA C code, Eigen 3.3.3 is used as fundamental linear algebra library

for CPU-based counterpart, and FFTW 3.3.5 is used as CPU-based FFT back-

end libraries for comparison.

98

Table 5.2: The GPUs Used in the Current Studies

Model TITAN Z TITAN BLACK TITAN Xp

Code Name 2×GK110 GK110 GP102
Die Size(mm2) 2×561 561 471

Fab(nm) 28 28 16
Compute Capability 3.5 3.5 6.1

Microarchitecture Kepler Kepler Pascal
CUDA Core Config1 2×2880:240:48 2880:240:48 3840:240:96
Memory Size (MB) 2×6144 6144 12288

Memory Bandwidth2 2×336 336 547.7
GFLOPS3 8121.6 5120.6 12150

Release Date 03-2014 02-2014 04-2017
TDP(Watts) 375 250 250

1Unified Shader Processors : Texture Mapping Units : Render Output Units
2Gigabyte per second
3Single precision

5.4 Implementation and Optimization

Because both radar PPI scan and CUDA architecture have the hierarchy of

three levels, it is reasonable to directly mapping those three layers as a guide-

line to distribute the computation resources. The initial mapping scheme

is described in Figure 5.3. However, after further investigations in particu-

lar algorithms, more realistic and efficient computation resource distribution

schemes are discovered. In this section, the implementation and optimization

schemes for particular algorithms will be discussed.

99

CUDA Grid

Scan

CUDA Block

Azimuth

CUDA Thread

Range Gates

Figure 5.3: The hierarchy of CUDA abstract architecture and related Radar
PPI Scan.

5.4.1 Matched filter

Cuda libraries
Thrust

A
zi

m
u

th
C

U
D

A
 B

lo
ck

Radar Scan

CUDA Achitecture

Figure 5.4: The configuration of processing power for matched filter.

The computation of Matched Filter only involves FFT and element-wise

multiplication, thus it is feasible to take advantage of CUDA FFT library and

100

THRUST to perform the computation without building customized CUDA

kernels. The GPU version of matched filter algorithm follows the structure

shown in Figure 5.4. In this way, the impact of different kernel configurations

on performance is less significant. As it will be mentioned later in Section

5.5, different configurations of the kernel, i.e., THREADS PER BLOCK and

BLOCKS PER GRID, will have a significant impact on the performance of

the GPU version of other APC algorithms.

5.4.2 RMMSE and MF-RMMSE

Range Gate

CUDA Grid

Cuda Libraries
CuBLAS
CuFFT

CUDA Kernel

N
es

te
d

P

ar
al

le
lis

m

Figure 5.5: The configuration of processing power for RMMSE/MF-RMMSE.

RMMSE and MF-RMMSE are adaptive, iterative and more complicated

algorithms, and it would be better to utilize a divide-and-conquer technique,

deploy the ability of nested parallelism of CUDA, and explore intrinsic par-

allelism of such algorithms, while it is applied on a small amount of data for

each individual process. In addition, the high level computation scheme of

RMMSE and MF-RMMSE is depicted in Figure 5.5. In this scheme, it is

101

inevitable to manually configure the computing resource on the GPU. So the

key to reaching the best acceleration performance is to adjust the processing

parameters optimally with respect to specific data size. This will be further

discussed in Section 5.5.3.

5.4.3 Data Transfer

One major issue of various GPGPU implementations is the bottleneck of data

transfer between CPU (or host memory) and GPU (or device memory) [98].

And it would not be a fair performance comparison between CPU and GPU

unless the cost of the data transfer has been treated appropriately. Because

optimizing data transfer is beyond the scope of this work, the cost of data

transfer is excluded from the GPU performance measurements in this disser-

tation, unless it states otherwise. A discussion on the overhead of data transfer

will be given with a real-world application in Section 5.6.

5.4.4 Memory Space Usage

Shared memory is a type of memory in GPU which is faster but also smaller

than global memory [95]. Utilizing shared memory on GPU would be bene-

ficial in terms of processing speed in some applications [99], [100]. However,

because of the size restriction of shared memory, it is not feasible to utilize

such memory in APC algorithms implementations. As described in Sections

5.2.2 and 5.2.3, RMMSE and MF-RMMSE consist several computations be-

tween fairly large size of matrices and the smallest object of such algorithms

is large matrix which could not be completely restored in the size-restricted

shared memory. Therefore, it would not benefit from utilizing shared memory

102

without heavily altering the definitions and structures of these algorithms.

GRID BLOCK THREAD

1 M N: :

GPU SM SP

Figure 5.6: The hierarchy of CUDA abstract architecture and related GPU
physical architecture.

5.4.5 Statistical Kernel Optimization

One key factor, which has a critical impact on performance, is the configu-

ration of CUDA kernel parameters. As shown in Figure 5.6, there are both

three layers of CUDA abstract architecture and GPU physical architecture [98].

The parameters BLOCKS PER GRID and THREADS PER BLOCK

are user definable but the ratio between the GPU, SMs (streaming multipro-

cessors) and SPs (streaming processors) is fixed for a specific GPU device.

In addition, the choice of BLOCKS PER GRID and THREADS PER

BLOCK to get optimal performance depends on the type of algorithm to

be implemented and the type of GPU to be used. There is another “layer”

between thread and grid existing for CUDA architecture called warp. A warp

103

consists of 32 fixed threads and it is the basic operation group for SM to exe-

cute [101]. However, since the warp is not configurable by users, the layer of

warp is omitted for seeking the optimal configuration in this research.

For our research, a statistical sampling and searching method is firstly

used to determine the optimal configuration of CUDA kernel parameters for

each algorithm implementation scenario (with variations in the size of data),

based on testing several combinations of parameters in a given range for each

scenario. Time latencies, aka the performance, for each set of parameters

chosen on every individual scenario were recorded. Next, we ran the CPU

counterpart of the algorithm on respective scenarios and recorded time laten-

cies. Last, we computed the GPU/CPU time latency ratios for each set of

parameters on every individual scenario. By running statistically large sam-

ples of the parameter combinations, we will have a “performance map” for

selecting the optimal kernel configuration. This technique will be illustrated

in Figure 5.11 and 5.14 for RMMSE and MF-RMMSE algorithms, respectively.

5.5 Benchmark Results

In this section, the APC algorithms implementations described in Section 5.4

will be tested. Benchmark results of various data configurations and CUDA

settings for each algorithm will be provided.

104

5.5.1 Matched Filter

According to the results shown in Figure 5.7, the GPU implementation based

on cuFFT is about 5-30 times faster than the CPU implementation based on

FFTW, as long as the dataset is sufficiently large. The performance of TITAN

Z and TITAN Xp are nearly the same with TITAN Xp holding a slight edge

over TITAN Z.

10 20 40 80 159 317 631 1259 2512 5012 10000

Number of Profiles

0.0126

0.0297

0.0700

0.1650

0.3892

0.9178

2.1646

5.1052

12.0403

C
o
m

p
u
ta

tt
io

n
 T

im
e
 (

s
)

GPU vs CPU on MF with LenGT=5162

EIGEN FX 8150

CUDA TITAN Z

CUDA TITAN Xp

(a) Time latency used vs number of pulses, while
length of data is fixed to 5162 sample points.

100 155 241 373 578 895 1387 2149 3331 5162 8001

Length of Ground Truth

0.1167

0.1576

0.2130

0.2878

0.3889

0.5255

0.7101

0.9596

1.2966

1.752

C
o

m
p

u
ta

tt
io

n
 T

im
e

 (
s
)

GPU vs CPU on MF with NumProf=1259

EIGEN FX 8150

CUDA TITAN Z

CUDA TITAN Xp

(b) Time latency used vs length of range profile, while
number of pulses is fixed to 1259.

Figure 5.7: The performance of matched filter computing based on various
libraries and processor usage.

Figure 5.8 provides another view on the performance comparison of the

matched filter. Comparing the performances of TITAN Xp and TITAN Z in

Figure 5.8, although TITAN Xp performs better than TITAN Z overall, trends

of the amount of acceleration achieved with regard to the number and length

of range profiles are the same for both of the GPUs used.

The white dash line in Figure 5.8 represents the equal performance between

CPU and GPU platforms. It shows that about 30 times speed-up is achiev-

able in several configurations of source profiles, as it could be seen that the

105

10 20 40 80 159 317 631 1259 2512 5012 10000

Number of Profiles

100

155

241

373

578

895

1387

2149

3331

5162

8001

L
e
n
g
th

 o
f
P

ro
fi
le

s

GPU
TITAN Xp

 vs CPU
FX 8150

 in Matched Filter

0.01

0.03

0.1

0.32

1

3.16

10

31.62

G
P

U
 S

p
e

e
d

 u
p

 v
s
 C

P
U

(a) TITAN Xp

10 20 40 80 159 317 631 1259 2512 5012 10000

Number of Profiles

100

155

241

373

578

895

1387

2149

3331

5162

8001

L
e
n
g
th

 o
f
P

ro
fi
le

s

GPU
TITAN Z

 vs CPU
FX 8150

 in Matched Filter

0.01

0.03

0.1

0.32

1

3.16

10

31.62

G
P

U
 S

p
e

e
d

 u
p

 v
s
 C

P
U

(b) TITAN Z

Figure 5.8: The performance comparison of Matched Filter based on GPU and
CPU platforms.

acceleration curve is not quite smooth. The main reason for this phenomenon

is that cuFFT library is optimized when the the length of processing time-

series is l = 2a3b5c7d, where a, b, c and d are integers, and in addition, the

smaller the prime factor is, the better the performance would be [95]. Thus,

along with the axis of “Number of Profiles”, the acceleration performance of

the GPU versus CPU monotonically increases. However, along with the axis

of “Length of Profiles”, the acceleration performance reaches its peak when

the length of the profile is close to 2a. It is obvious that the larger the size

of data, the larger acceleration ratio can be obtained. However, the size of

on-board memory limits further acceleration. When the memory size limit

is reached, multiple data transfers are required to circumvent such limit, and

the data transferring process could be the bottleneck of such implementation.

However, the cost of data transfer can be compensated by utilizing another

CUDA stream and a more sophisticated computing scheme by overlapping the

computing and data transfer stream. Further acceleration would be expected

and it will be exploited in future experiments.

106

5.5.2 RMMSE

10 20 30 40 50 60 70 80 90 100

Length of Ground Truth

0

0.5

1

1.5
C

o
m

p
u

ta
tt

io
n

 T
im

e
 (

s
)

GPU vs CPU on RMMSE with LenWF=51

EIGEN FX 8150

CUDA TITAN Z

CUDA TITAN Xp

(a) Length of Waveform = 51

8 10 13 16 20 25 32 40 51

Length of Waveform

10-1

100

C
o

m
p

u
ta

tt
io

n
 T

im
e

 (
s
)

GPU vs CPU on RMMSE with LenGT=100

EIGEN FX 8150

CUDA TITAN Z

CUDA TITAN Xp

(b) Length of Ground Truth = 100

Figure 5.9: The performance comparison of RMMSE based on GPU and CPU
platforms.

The performance comparison of RMMSE implementations based on GPU

and CPU platforms is demonstrated in Figure 5.9. The results indicate that

the length of the waveform (which is a transmitted pulse) has a larger impact

in processing time compared with the length of ground truth (which is the

impulse response of range profile), which is implied in the description of its

computation complexity listed in Table 5.1, and the GPU-based platform per-

forms better when the length of either parameters mentioned above is larger,

as it can be seen that about 10 times acceleration is expected when the data

size is sufficiently large.

Figure 5.10 provides another view on the performance comparison of RMMSE

implementations. The white dash line in Figure 5.10 represents the equal per-

formance between the CPU and GPU platforms. It shows that about 12 times

speed-up is achievable in several configurations of range profiles.

107

8 10 13 16 20 25 32 40 51

Length of Waveform

10

20

30

40

50

60

70

80

90

100

L
e

n
g

th
 o

f
G

ro
u

n
d

 T
ru

th

GPU
TITAN Xp

 vs CPU
FX 8150

 in RMMSE

2

4

6

8

10

12

G
P

U
 S

p
e
e
d
 u

p
 v

s
 C

P
U

(a) TITAN Xp

8 10 13 16 20 25 32 40 51

Length of Waveform

10

20

30

40

50

60

70

80

90

100

L
e

n
g

th
 o

f
G

ro
u

n
d

 T
ru

th

GPU
TITAN Z

 vs CPU
FX 8150

 in RMMSE

2

4

6

8

10

12

G
P

U
 S

p
e
e
d
 u

p
 v

s
 C

P
U

(b) TITAN Z

Figure 5.10: The performance comparison of RMMSE based on GPU and
CPU platforms.

2 4 8 16 32 64

Blocks Per Grid

4

8

16

32

64

128

T
h

re
a

d
s
 P

e
r

B
lo

c
k

GPU
TITAN Xp

 vs CPU
FX 8150

 in RMMSE len wf=32
gt=100

0

2

4

6

8

10

12

G
P

U
 S

p
e
e
d
 u

p
 v

s
 C

P
U

(a) TITAN Xp, Len wf = 32.

2 4 8 16 32 64

Blocks Per Grid

4

8

16

32

64

128

T
h

re
a

d
s
 P

e
r

B
lo

c
k

GPU
TITAN Xp

 vs CPU
FX 8150

 in RMMSE len wf=40
gt=100

0

2

4

6

8

10

12

G
P

U
 S

p
e
e
d
 u

p
 v

s
 C

P
U

(b) TITAN Xp, Len wf = 40.

2 4 8 16 32 64

Blocks Per Grid

4

8

16

32

64

128

T
h

re
a

d
s
 P

e
r

B
lo

c
k

GPU
TITAN Xp

 vs CPU
FX 8150

 in RMMSE len wf=51
gt=100

0

2

4

6

8

10

12

G
P

U
 S

p
e
e
d
 u

p
 v

s
 C

P
U

(c) TITAN Xp, Len wf = 51.

2 4 8 16 32 64

Blocks Per Grid

4

8

16

32

64

128

T
h

re
a

d
s
 P

e
r

B
lo

c
k

GPU
TITAN Z

 vs CPU
FX 8150

 in RMMSE len wf=32
gt=100

0

2

4

6

8

10

12

G
P

U
 S

p
e
e
d
 u

p
 v

s
 C

P
U

(d) TITAN Z, Len wf = 32.

2 4 8 16 32 64

Blocks Per Grid

4

8

16

32

64

128

T
h

re
a

d
s
 P

e
r

B
lo

c
k

GPU
TITAN Z

 vs CPU
FX 8150

 in RMMSE len wf=40
gt=100

0

2

4

6

8

10

12

G
P

U
 S

p
e
e
d
 u

p
 v

s
 C

P
U

(e) TITAN Z, Len wf = 40.

2 4 8 16 32 64

Blocks Per Grid

4

8

16

32

64

128

T
h

re
a

d
s
 P

e
r

B
lo

c
k

GPU
TITAN Z

 vs CPU
FX 8150

 in RMMSE len wf=51
gt=100

0

2

4

6

8

10

12

G
P

U
 S

p
e
e
d
 u

p
 v

s
 C

P
U

(f) TITAN Z, Len wf = 51.

Figure 5.11: The performance comparison of RMMSE between GPU and CPU
implementations with various CUDA configurations and length of waveforms
when the length of ground truth is fixed to 100 sample points. Lengths of
waveforms are from 32 to 51. The black circle represents the configuration
when maximum speed-up is achieved under current data format.

As mentioned in Section 5.4.1 and 5.4.5, the configuration of CUDA com-

puting resources, i.e., THREADS PER BLOCK and BLOCKS PER GRID,

108

has major impacts on the performance of the GPU version of algorithms. Plus,

for more sophisticated algorithms, such as RMMSE and MF-RMMSE, utiliz-

ing a customized kernel is necessary to perform matrix-wise and element-wise

manipulation as introduced in Section 5.2.2 and 5.2.3. Thus, properly dis-

tributing the GPU computing resources according to the problem data size is

the key to achieving the optimum performance of the GPU implementations

of these algorithms.

Figure 5.11 shows the impacts of different configurations of GPU comput-

ing resources on the acceleration performance of RMMSE algorithm imple-

mentations. The black circles in each figure represent the largest achievable

speed-up of the GPU compared with the CPU counterpart in specific lengths

of waveforms, while the length of ground truth is fixed at 100 sample points for

all the cases, since it has less impact on the processing time as discussed earlier.

It can be seen in Figure 5.11 that there exists an optimized computing re-

source configuration for each specific data size. For the application of RMMSE

investigated in this study, we can conclude that the best configuration of

CUDA are 4 or 8 for THREADS PER BLOCK and 16 or 32 for BLOCKS

PER GRID for different lengths of waveforms.

As for the performance of different generations of GPU platforms, com-

paring results in Figure 5.9, 5.10 and 5.11, TITAN Xp (Pascal) consistently

outperforms TITAN Z (Kepler) in this test. In general, TITAN Xp runs twice

faster than TITAN Z regardless of the size of dataset.

109

5.5.3 MF-RMMSE

10 20 30 40 50 60 70 80 90 100

Length of Ground Truth

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
C

o
m

p
u

ta
tt

io
n

 T
im

e
 (

s
)

GPU vs CPU on MF-RMMSE with LenWF=64

EIGEN FX 8150

CUDA TITAN Z

CUDA TITAN Xp

(a) Length of Waveform = 64

8 10 13 16 20 25 32 40 51 64

Length of Waveform

10-2

10-1

100

C
o
m

p
u
ta

tt
io

n
 T

im
e
 (

s
)

GPU vs CPU on MF-RMMSE with LenGT=100

EIGEN FX 8150

CUDA TITAN Z

CUDA TITAN Xp

(b) Length of Ground Truth = 100

Figure 5.12: The performance comparison of MF-RMMSE based on GPU and
CPU platforms.

The performance comparison of MF-RMMSE implementations based on

GPU and CPU platforms is demonstrated in Figure 5.12. As can be seen

in this Figure, the acceleration is not as significant as the implementation of

RMMSE, which is shown in Figure 5.9. As described in Section 5.2.3, one

reason for this phenomenon is that the way MF-RMMSE is designed is differ-

ent from that of RMMSE [12]. It utilizes a processing window that is much

smaller than the length of waveform, and it effectively reduces the impact of

the length of the waveform on processing time. In addition, as mentioned

in Section 5.5.2 and implied in Table 5.1, the advantage on the performance

of a GPU over a CPU is more significant when the length of the waveform

is large. Thus, GPU implementations may be less beneficial for MF-RMMSE

than original RMMSE. However, similar to the observation of the performance

result of RMMSE, GPU implementation of MF-RMMSE algorithm performs

better when the length of the waveform grows longer.

110

8 10 13 16 20 25 32 40 51 64

Length of Waveform

10

20

30

40

50

60

70

80

90

100

L
e

n
g

th
 o

f
G

ro
u

n
d

 T
ru

th

GPU
TITAN Xp

 vs CPU
FX 8150

 in MF-RMMSE

0.5

1

1.5

2

G
P

U
 S

p
e

e
d

 u
p

 v
s
 C

P
U

(a) TITAN Xp

8 10 13 16 20 25 32 40 51 64

Length of Waveform

10

20

30

40

50

60

70

80

90

100

L
e

n
g

th
 o

f
G

ro
u

n
d

 T
ru

th

GPU
TITAN Z

 vs CPU
FX 8150

 in MF-RMMSE

0.5

1

1.5

2

G
P

U
 S

p
e

e
d

 u
p

 v
s
 C

P
U

(b) TITAN Z

Figure 5.13: The performance comparison of MF-RMMSE based on GPU and
CPU platforms.

Figure 5.13 provides another view on the performance comparison of MF-

RMMSE. The white dash line in Figure 5.13 represents the equal performance

between the CPU and GPU implementations. It shows that about 2.5 times

speed-up is achievable in several configurations of source profiles. Although

MF-RMMSE algorithm utilizes matched filter outputs [12], the computation

cost of a matched filter is negligible compared to MF-RMMSE. Thus, com-

pared with Figure 5.8, the acceleration curve in Figure 5.13 is much smoother.

Similar to Figure 5.11, Figure 5.14 summaries the impacts of the GPU

kernel resources on the acceleration performance of MF-RMMSE implementa-

tions. The black circles in each figure represent the largest achievable speed-up

of the GPU compared with the CPU counterpart having specific lengths of

waveforms, while the length of ground truth is fixed at 100 sample points for

all the cases, since it has less impact on the processing time as discussed earlier.

It can be seen in Figure 5.14 that an optimized computing resource con-

111

4 8 16 32 64 128

Blocks Per Grid

2

4

8

16

32

64

T
h
re

a
d
s
 P

e
r

B
lo

c
k

GPU
TITAN Xp

 vs CPU
FX 8150

 in MFRMMSE len wf=40
gt=100

0

0.5

1

1.5

2

2.5

G
P

U
 S

p
e

e
d

 u
p

 v
s
 C

P
U

(a) TITAN Xp, Len wf = 40.

4 8 16 32 64 128

Blocks Per Grid

2

4

8

16

32

64

T
h
re

a
d
s
 P

e
r

B
lo

c
k

GPU
TITAN Xp

 vs CPU
FX 8150

 in MFRMMSE len wf=51
gt=100

0

0.5

1

1.5

2

2.5

G
P

U
 S

p
e

e
d

 u
p

 v
s
 C

P
U

(b) TITAN Xp, Len wf = 51.

4 8 16 32 64 128

Blocks Per Grid

2

4

8

16

32

64

T
h
re

a
d
s
 P

e
r

B
lo

c
k

GPU
TITAN Xp

 vs CPU
FX 8150

 in MFRMMSE len wf=64
gt=100

0

0.5

1

1.5

2

2.5

G
P

U
 S

p
e

e
d

 u
p

 v
s
 C

P
U

(c) TITAN Xp, Len wf = 64.

4 8 16 32 64 128

Blocks Per Grid

2

4

8

16

32

64

T
h
re

a
d
s
 P

e
r

B
lo

c
k

GPU
TITAN Z

 vs CPU
FX 8150

 in MFRMMSE len wf=40
gt=100

0

0.5

1

1.5

2

2.5

G
P

U
 S

p
e

e
d

 u
p

 v
s
 C

P
U

(d) TITAN Z, Len wf = 40.

4 8 16 32 64 128

Blocks Per Grid

2

4

8

16

32

64

T
h
re

a
d
s
 P

e
r

B
lo

c
k

GPU
TITAN Z

 vs CPU
FX 8150

 in MFRMMSE len wf=51
gt=100

0

0.5

1

1.5

2

2.5

G
P

U
 S

p
e

e
d

 u
p

 v
s
 C

P
U

(e) TITAN Z, Len wf = 51.

4 8 16 32 64 128

Blocks Per Grid

2

4

8

16

32

64

T
h
re

a
d
s
 P

e
r

B
lo

c
k

GPU
TITAN Z

 vs CPU
FX 8150

 in MFRMMSE len wf=64
gt=100

0

0.5

1

1.5

2

2.5

G
P

U
 S

p
e

e
d

 u
p

 v
s
 C

P
U

(f) TITAN Z, Len wf = 64.

Figure 5.14: The performance comparison of MF-RMMSE between GPU and
CPU implementations with various CUDA configurations and length of wave-
forms when length of ground truth is fixed to 100 sample points. Lengths of
waveforms are from 40 to 64. The black circle represents the configuration
when maximum speed-up is achieved under current data format.

figuration may be achieved for each specific data size. For the application of

MF-RMMSE investigated in this study, we can conclude that the best configu-

ration of CUDA is 4 for THREADS PER BLOCK and 64 or 128 for BLOCKS

PER GRID for different lengths of waveforms. The trend is similar to what

could be found in the testing results of RMMSE in Section 5.5.2.

As for the performance of different generations of GPU platforms, compar-

ing results in Figure 5.12, 5.13 and 5.14, TITAN Xp (Pascal) consistently out-

performs TITAN Z (Kepler) in this test. For general comparison, algorithms

implemented on TITAN Xp execute twice faster than TITAN Z regardless of

the sizes of the datasets.

112

5.6 Application to Real/Measured Data

(a) Matched Filter output of EIGEN (b) Matched Filter output of CUDA

Figure 5.15: Output results of pulse compression implementation using
NASA’s HIWRAP radar data

0 100 200 300 400 500 600

Range points

50

60

70

80

90

100

110

120

130

140

d
B

 Matched Filter output of EIGEN

EIGEN

(a) Averaged Matched Filter output of EIGEN

0 100 200 300 400 500 600

Range points

50

60

70

80

90

100

110

120

130

140

d
B

 Matched Filter output of CUDA

CUDA

(b) Averaged Matched Filter output of CUDA

Figure 5.16: Averaged output results of pulse compression implementation
using NASA’s HIWRAP radar data

Matched filter is implemented on NASA’s HIWRAP radar measurement

data [12] with both the CPU-based method (EIGEN) and GPU-based method

(CUDA). From the matched filter outputs shown in Figure 5.15, the two results

are almost identical except for those positions (range points from 400 to 570)

113

0 100 200 300 400 500 600

Range points

0

0.5

1

1.5

2

2.5

3

L
in

e
a
r

×107 Linear error performance : ABS

ABS

(a) Absolute linear error performance

0 100 200 300 400 500 600

Range points

0

100

200

300

400

500

600

700

800

900

P
e
rc

e
n
ta

g
e
 W

.R
.T

 E
IG

E
N

 o
u
tp

u
t

Linear error performance : RELATIVE

RELATIVE

(b) Relative linear error performance

Figure 5.17: Error results of pulse compression implementation using NASA’s
HIWRAP radar data

(a) Magnitude-square coherence estimate between
EIGEN and CUDA outputs

0 50 100 150 200 250

FFT points

1-1.4*10-11

1-1.2*10-11

1-1*10-11

1-8*10-12

1-6*10-12

1-4*10-12

1-2*10-12

C
o

h
e

re
n

c
e

Coherence on averaged output

(b) Magnitude-square coherence estimate between
averaged EIGEN and CUDA output

Figure 5.18: Coherence results of pulse compression implementation using
NASA’s HIWRAP radar data

with low signal power levels. Figure 5.16 is averaged matched filter outputs of

EIGEN and CUDA among 10, 000 range profiles, respectively. From these two

figures, it is more clear that the only noticeable difference between EIGEN

and CUDA results is located within the low signal return region. Figure 5.17

is the absolute and relative errors of CUDA output comparing with EIGEN

output. The errors are calculated in linear scale, not dB. Although there is

no way to determine whether EIGEN or CUDA output is more “correct”, the

114

two outputs are similar to each other, thus they are able to validate each

other. It could be observed in Figure 5.17 left that the errors are consistent

in the same level. However, Figure 5.17 right shows that the errors are more

noticeable when the Signal-to-Noise Ratio (SNR) is lower. Magnitude-square

coherence between CUDA and EIGEN outputs is also demonstrated in Figure

5.18. From the coherence results in these figures, it can be concluded that the

results from CUDA and EIGEN outputs are identical.

101 102 103 104 105

Number of Profiles

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

s
)

HIWRAP Data Computation Time

EIGEN-CPU

CUDA-GPU
total

CUDA-GPU
core

Figure 5.19: Time consumption of CPU and GPU versus number of range
profiles handling in HIWRAP data, while GPU time consumption without
data transfer is demonstrated separately

For the computation time evaluation, since the matched filter is a rela-

tively simple algorithm, it is expected that data transferring process between

CPU and GPU would be the bottleneck for such application as the result

demonstrated in Figure 5.19. In this experiment, to fully utilize the parallel

computing ability of the GPU, data transfer from host (CPU) memory to de-

115

vice (GPU) memory is done by a burst of all the data included (to be specific,

copy all data from “THRUST host vector” to “THRUST device vector” in

one command). It could be observed that, taking account of the overhead of

data transfer between the CPU and GPU, the time consumption of the GPU-

based approach is nearly comparable to the CPU-based approach. However,

if the time of the GPU computing part is recorded separately from the data

transferring part, the “true” GPU time consumption is far less than the CPU

counterpart. To implement this evaluation specifically for the GPU computing

part, a timer based on CUDA events is used around the GPU computing part

as recommended by an official document from NVIDIA [98]. In this experi-

ment, where only Matched filter is implemented, the time consumption of the

CPU-based approach is as much as 3466 times larger than the “true” GPU-

based approach computing time consumption. Here, in this section, AMD

FX-8150 and NVIDIA TITAN Z are used as CPU and GPU devices, respec-

tively.

5.7 AIR- OU/ARRC for Adaptive Beam-Forming

Figure 5.20: Atmospheric Imaging Radar (AIR)

116

0 100 200 300 400 500 600 700

Range gate index

-80

-60

-40

-20

0

20

40

60

80

P
o
w

e
r

e
s
ti
m

a
te

s
 (

d
B

)

MATLAB-CPU

CUDA-GPU

Figure 5.21: Power estimate comparison: the offset is added intentionally to
distinguish the two. [102]

The very first step is to compare the data products rigorously to ensure

that the GPU reproduces exactly the same results as the MATLAB scripts.

This is shown in Figure 5.21. The power estimate is an intermediate data

product, which can be used to derive reflectivity in weather radar. The reflec-

tivity range profiles look the same, where as minor differences can be found

due to precision differences. MATLAB uses double precision, while we used

single precision on the GPU. It is worth noting that most GPUs are capable

of double precision computation. However, the number of double precision

cores on an SMX is much less than single precision cores in most products of

the GeForce product line with exceptions of TITAN Black and TITAN Z [103].

Next, in order to test real-time capability, we tuned up the PRF to the

maximum, 3185 Hz in this case, which will result in the highest data rate.

The number of rage gates is 785. Because the pedestal rotates at 16◦/sec, and

117

0 5 10 15 20 25 30 35 40
0

50

100

150

Number of beams formed (n
b
)

T
im

e
 c

o
m

s
u
m

p
ti
o
n
 (

m
s
)

GTX 750 Ti

Core i5 4590

Acquisition time

Figure 5.22: Time consumption of the GPU and CPU versus the number of
beams in AIR signal processing. The red line marks the data cube acquisition
time. Note that only the low-end products are tested out as the GTX-750 Ti
has already met the real-time requirement.

the antenna has a horizontal beamwidth of 1◦, the data acquisition time for

each degree is 1/16 sec, or 63 ms. In this period, approximately 200 pulses

need to be processed. Therefore, the total time to process an input data cube

of nc = 36, ns = 785 and np = 200 needs to be less than 63 ms. Figure

5.22 shows the time consumption comparison as the number of formed beams

increases. First and foremost, it is obvious that the GPU meets real-time re-

quirements for all cases, while CPU only satisfies this theoretical requirement

when the number of formed beams is no greater than 13. In practice, at least

all beams without oversampling are needed, i.e., nb ≥ nc. In addition, the es-

timated processing time needs to be within a safe range to tolerant any jitters.

Therefore, a GPU is unequivocally the better choice for real-time processing

in this application over a CPU. We also found an interesting fact through

118

the experiment that CPU implementation is susceptible to other applications

running at the same time. In a few occasions, even a mouse move event may

affect the performance as it is up to the operating system to schedule the pri-

ority of each running process. When running on a GPU, the estimated time

consumption is more stable as it is more isolated and does not share resources

with other processes, which can be considered another advantage of GPUs

over CPUs from a different perspective, although this could be circumvented

by implementing an application-oriented operating system.

5.8 Artificial Intelligence (AI) Implementation Based

on GPGPU Platform

5.8.1 Nvidia Jetson

Figure 5.23: the Jetson TX2 development kit.

119

Nvidia Jetson is a series of embedded GPU computing development boards

from Nvidia. Every generation of Jetson board comes with a respective genera-

tion Nvidia Tegra processor on board. Till 2017, there have been 3 generations

of Jetson board developed by Nvidia and they are listed in Table 5.3 and the

Jetson TX2 board is shown in Figure 5.23.

Table 5.3: Generations of Nvidia Jetson Boards

Jetson Model TK1 TX1 TX2
Tegra Processor K1 X1 X2

CPU Core
Quad cores

ARM Cortex A15
@2.32GHz

Quad cores
ARM Cortex A57

@1.73GHz

Quad cores
Cortex A57

@2GHz
+

Dual cores
Nvidia Denver2

@2GHz

GPU Core

Kepler
GK20a

192 cores
@951MHz

Maxwell
GM20B

256 cores
@998MHz

Pascal
GP10B

256 cores
@1300 MHz

Ram
2GB 64bits

DDR3L
@933MHz

4GB 64bits
LPDDR4

@1600MHz

8GB 128bits
LPDDR4

@1866MHz
Bandwidth 15GB/s 25.6GB/s 58.3GB/s
API Level 3.2 5.3 6.2

TDP 5W 10W 7.5W
Release Date Q3 2014 Q4 2015 Q1 2017

GFLOPS 365 1024 1500

In addition, various deep learning frameworks are supported via the inte-

gration of CUDA cuDNN package, including Caffe, Torch, TensorFlow, etc.

This will largely reduce the difficulty of migrating current machine learning

algorithms to this embedded system to take advantage of the low power con-

120

sumption to broaden the scenarios of applications, such as mounting a low-

powered embedded machine learning system onto an aircraft to get the real-

time on-site capability of turbulence detection.

5.8.2 CuDNN

The NVIDIA CUDA Deep Neural Network Library (cuDNN) is a GPU-accelerated

library of primitives for deep neural networks. cuDNN provides highly tuned

implementations for standard routines such as forward and backward convo-

lution, pooling, normalization and activation layers [104]. cuDNN provides a

flexible, easy-to-use C-language API as well as the support for various widely

used deep learning framework, including Caffe2, MATLAB, Microsoft Cogni-

tive Toolkit, TensorFlow, Theano and PyTorth. And according the the docu-

ment provided by Nvidia [104], by utilizing cuDNN on Nvidia GPU platform,

36% overall acceleration could be achieved by integrating cuDNN into caffe

comparing to use caffe alone for a deep learning task.

5.8.3 Caffe

Caffe is an open source deep learning framework originally developed by Yan-

qing Jia at UC Berkeley under BSD license written in C++ with a python

interface [105]. It supports various deep learning architectures focusing on im-

age classification and image segmentation. Also, as an acceleration measure,

it supports the integration of cuDNN from Nvidia to utilize GPU computing

resources if available. As a more flexible and modular evolution, Caffe2 is

developed by Facebook providing easier interfaces and higher performances.

121

5.8.4 TensorFlow Framework

TensorFlow is a open source software library in the field of machine learning

for varieties of perception and language comprehension tasks. It was devel-

oped by Google Brain team for the research and production in Google, and

was made open source under Apache 2.0 license on Nov 9, 2015. TensorFlow

is the second generation of machine learning platform for Google Brain. Al-

though the reference implementation on Nov 9, 2015 was running on single

device, TensorFlow is capable of running on multiple CPUs and GPUs with

optional CUDA extensions. It could run on 64 bit desktop or server oper-

ating systems as well as mobile computing platforms like Android and iOS.

The computation of TensorFlow is presented by data flow map with states.

The name TensorFlow comes from the operation on multi-dimensional arrays

on such neural network-like systems. Those multi-dimensional array is called

“Tensor”. However, this “Tensor” is not the same as the “Tensor” in mathe-

matics. As for compatibility, TensorFlow provides a Python API, as well as

C++, Haskell, Java, Rust APIs and C#, Julia, R and Scala APIs via third

party packages.

5.8.5 Benchmark Tests

The benchmarks across PC and embedded system are performed with Caffe

framework. As was explained in Section 5.8.3, parallel computing on GPGPU

is supported via CUDA cuDNN library. Therefore, the benchmark perfor-

mances would give us the idea of differences in time between PC and embedded

122

system. The GPU devices for PC and embedded system in this benchmark

testing are listed in Table 5.4. As can be seen in Table 5.4, the embedded

system (Jetson TX2) only comes with about 1/10 of the computation capabil-

ity comparing with PC counterpart (TITAN Xp), it consumes much less than

1/10 of power. Furthermore, the embedded system also comes with a ARM

CPU core, which will let the system operate independently, while the GPU

counterpart on PC will need an additional host machine to operate.

Table 5.4: Comparison between Jetson TX2 and TITAN Xp

TITAN Xp Jetson TX2

GPU Core

Pascal
GP102-450-A1

30 SM - 3480 cores
@1405MHz

Pascal
GP10B

2 SM - 256 cores
@1300 MHz

Ram
12GB 384bits

GDDR5X
@1425MHz

8GB 128bits
LPDDR4

@1866MHz
Bandwidth 547.7GB/s 58.3GB/s
API Level 6.1 6.2

TDP 250W 7.5W
Release Date Q2 2017 Q1 2017

GFLOPS 10790 1500

The environments of this benchmark are Windows 10, CUDA 8.0 and

cuDNN 5.1 for PC and JetPack 3.1 for Jetson TX2 SoC. The benchmark pro-

grams are AlexNet [106] and GoogleNet [107]. AlexNet is an 8-layer deep learn-

ing network with 5 convolution layers and drop-out features. And GoogleNet

is a 22-layer deep learning network with 9 inception modules. These two net-

works are widely used as the benchmark of performance when they are under

training and/or after deployment.

123

Table 5.5: Benchmarks of Deep Learning Networks on GPUs and CPUs

Time(ms) AMD
Ryzen 7 1700

Jetson TX2
CPU

Nvidia
TITAN Xp

Jetson TX2
GPU

AlexNet Ave
Forward Pass 427.552 6367.5 4.48479 54.8356

AlexNet Ave
Backward Pass 289.067 6260.26 5.36093 78.7918

AlexNet Ave
Forward-Backward 716.72 12627.9 10.1594 133.781

AlexNet Total
50 Iterations 35836 631394 507.97 6689.05

GoogleNet Ave
Forward Pass 1143.88 14124.9 20.7222 139.969

GoogleNet Ave
Backward Pass 594.508 13096 19.9822 172.066

GoogleNet Ave
Forward-Backward 1738.84 27221.1 41.2649 312.27

GoogleNet Total
50 Iterations 86942 1361055 2063.245 15613.5

The results of benchmarks across different systems are presented in Table

5.5. Jetson TX2 is performed on Max-P mode during benchmark procedure,

which will have a TDP of 15W. The benchmarks are performed with com-

mand “caffe time”. From Table 5.5, it could be observed that the TITAN Xp

performs about 10 times faster than Jetson TX2 GPU while Jetson TX2 GPU

outperforms AMD Ryzen 7 1700 CPU about 10 times as well. The performance

gap between TITAN Xp and Jetxon TX2 agrees the difference in computa-

tion power listed in Table 5.4. Considering the power consumption of Jetson

TX2 SoC, this embedded platform shows a great potential as the platform of

implementing the turbulence detection algorithm developed in this research,

and makes such system available on board in the aircraft. Furthermore, the

124

embedded system is scalable, which will have the ability to achieve a higher

performance when needed by building a cluster.

The Neural Network profiled in this section is AlexNet (2012) and GoogleNet

(2015). AlexNet consists of 5 conv layers, max-pooling layers, dropout layers,

and 3 fully connected layers, which is much more complicated than the neu-

ral network developed in Chapter 4. The neural network developed in this

research to detect and predict turbulence is a simple 3 fully-connected layers

network. The reason for this is that it is mathematically proved that a neural

network with three fully connected layers is capable to approximate any func-

tions with arbitrary precision. As for the computation load, the three fully

connected layers in AlexNet have 1000-4096 nodes which is more much than

the number of nodes in the network developed in this research, i.e., about 184

nodes maximum in all three layers. Therefore, it is reasonable to assume the

computation load for AlexNet is at least 1000 times higher (three layers with

at least 10 times more nodes ignoring the additional load from other AlexNet

layers) than the network developed in this research.

In practice, when a network is well trained and taken into operation, the

only operation the network will need to perform is one run of forward pass. As

seen in Table 5.5, a forward pass for AlexNet takes about 55ms in average on

Jetson TX2 platform. Therefore, the forward passing time for the network de-

veloped in this research would be less than 55µs on Jetson TX2, which is way

below the threshold to be considered as a “Real-Time” algorithm. Therefore, a

single Jetson TX2 embedded system would provide enough computation power

to support the approach developed in this research for turbulence detection

125

and prediction task in real-time.

126

Chapter 6

Conclusions and Future Work

6.1 Conclusions

As for the GPGPU implementation for the radar processing chain, the feasi-

bility of GPGPU-based implmementation of advanced pulse compression algo-

rithms is explored, which is a key element and usually a bottleneck of an end-

to-end radar data processing chain. For Adaptive Pulse Compression (APC),

GPGPU-based solutions show great potentials of accelerating such resource-

demanding algorithms without introducing additional processing error. During

the investigation of algorithm execution acceleration of the GPGPU, a rela-

tionship is discovered between the computing resource configuration on GPU

hardware and acceleration performance compared with CPU-based platforms

under different sizes and structures of data being handled. For future ref-

erence, an optimal way is proposed to allocate resource on GPUs for better

performance based on empirical data. In addition, as a major obstacle of vari-

ous GPGPU implementations, the overhead of the data transfer between CPU

(host) and GPU (device) might be enormous for some demanding applications.

One instance of such applications is analyzed, and the result indicates that a

more sophisticated and efficient memory management scheme is required to

127

unleash the parallel computing capability of GPU.

For hazard detection and classification challenge, both theoretical and prac-

tical aspects are investigated. For the theoretical part, the difficulty remains

in the lack of adequate understanding and investigation of the physical model

of weather hazards to develop an accurate and quantifiable relation between

the radar measurements and natural hazards. For the turbulence detection

example, it seems unlikely to gain adequate knowledge of the nature of tur-

bulence to derive an accurate theoretical relation between measurements and

turbulence intensity in the near future, unless there were unforeseen revolution-

ary breakthroughs coming. However, with the rapid development of machine

learning technology, to get an adequately accurate estimation of turbulence

intensity from measurements without accurate physical models, becomes a

possibility. An approximated relation between measurements and turbulence

intensity could be derived and developed through the training process of the

machine learning approach. Although the training principle is simple and

straightforward, the results after training process are inexplainable, i.e., there

is no way to explain the reasoning behind the values, a.k.a. network weights,

after training. Therefore, the machine learning approach could be considered

a “black box” process. For the practical part, the difficulty remains in meet-

ing time and power consumption requirements for certain applications. As for

time requirement, a solution would be less useful if the results could not been

generated in real time. Similar to the application of radar signal processing

chain, the neural network contains a lot of operations capable of being paral-

lelized both in the training and inferencing stages. Therefore, GPGPU offers

advantages on accelerated algorithm implementations.

128

For the theoretical part of solution, as shown in Chapter 3, a machine

learning based approach for the problem of turbulence detection is developed

and tested. The ANN shows a potential of handling this kind of tasks, which

have enormous measured data available but lack of physical models.

For the practical part of solution, GPU is considered as the accelerator to

ensure that such solution meets real time requirement. As desctibed in Section

5.8.5, the Jetson TX2-embedded platform shows potential for implementing

ANN on CUDA cores. In addition, as for the low power consumption, with

a regular TDW of 7.5W, it is well suited for the Space Weight and Power

(SWaP) restricted applications, and that will make the turbulence detection

develop in this research a viable candidate to be implemented on-board.

6.2 Future Work

For the theories and algorithms, first, a further investigation is needed in

those detection results which the ANN could not produce outputs because

of the non-unanimous votes. However, the number of vote received and the

decimal outputs of networks before being converted to classification could be

easily obtained. Therefore, it may be beneficial to incorporate those inter-

mediate outputs into the final detection decision process. Second, a deeper

neural network could be utilized with the convolution layers plus the exist-

ing connected layers. The task under investigating in this research is similar

to image recognition tasks, which is currently successfully tackled by deeper

neural network frameworks [106], [107]. Therefore, it is reasonable to expect

129

a performance enhancement after those methods have been explored. Third,

the feature selection process as used in this research is a trial and error process

with the combination of pre-knowledge of turbulence and limitation of radar

measurements. However, features picked from such process may not be opti-

mal, which may lead to the redundancy and over-fitting. In addition, there

might be some other unused radar measurements and their derivatives better

suited as input features. Those problems might be resolved by an automated

feature selection process while and before the network being trained.

For the practical part, the highest priority is to migrate the networks

trained in the current and future stages to the GPU-based platform and even-

tually to the embedded Jetson Platform to meet SWaP requirements. Second,

a cluster of multiple embedded systems should be considered as the algorithms

become more complicated and time-consuming. A balance between the SWaP

and the sophistication of the algorithm developed should be considered. Last

but not least, field tests are needed after the design and implementation have

been finalized as part of the validations.

130

References

[1] I. Annex et al., “3, meteorological service for international air naviga-
tion”, International Civil, 2010.

[2] S.-H. Kim, H.-Y. Chun, and P. W. Chan, “Comparison of turbulence
indicators obtained from in situ flight data”, Journal of Applied Mete-
orology and Climatology, no. 2017, 2017.

[3] L. Li, G. M. Heymsfield, P. E. Racette, L. Tian, and E. Zenker, “A 94-
ghz cloud radar system on a nasa high-altitude er-2 aircraft”, Journal
of Atmospheric and Oceanic Technology, vol. 21, no. 9, pp. 1378–1388,
2004.

[4] L. Li, G. Heymsfield, J. Carswell, D. Schaubert, J. Creticos, and M.
Vega, “High-altitude imaging wind and rain airborne radar (hiwrap)”,
in Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008.
IEEE International, IEEE, vol. 3, 2008, pp. III–354.

[5] T. Balz and U. Stilla, “Hybrid gpu-based single-and double-bounce sar
simulation”, IEEE Transactions on Geoscience and Remote Sensing,
vol. 47, no. 10, pp. 3519–3529, 2009.

[6] W. Chapman, S. Ranka, S. Sahni, M. Schmalz, U. Majumder, L. Moore,
and B. Elton, “Parallel processing techniques for the processing of syn-
thetic aperture radar data on gpus”, in IEEE International Symposium
on Signal Processing and Information Technology, Bilbao, Spain, IEEE,
Bilbao, Spain, 2011, pp. 573–580.

[7] M. Lambers, A. Kolb, H. Nies, and M. Kalkuhl, “Gpu-based frame-
work for interactive visualization of sar data”, in IEEE International
Geoscience and Remote Sensing Symposium, IEEE, Barcelona, Spain,
2007, pp. 4076–4079.

131

[8] F. Zhang, G. Li, W. Li, W. Hu, and Y. Hu, “Accelerating spaceborne sar
imaging using multiple cpu/gpu deep collaborative computing”, Sen-
sors, vol. 16, no. 4, p. 494, 2016.

[9] O. Ponce, P. Prats-Iraola, M. Pinheiro, M. Rodriguez-Cassola, R. Scheiber,
A. Reigber, and A. Moreira, “Fully polarimetric high-resolution 3-d
imaging with circular sar at l-band”, IEEE Transactions on Geoscience
and Remote Sensing, vol. 52, no. 6, pp. 3074–3090, 2014.

[10] Introduction to Radar Systems. Tata McGraw Hill, 2001, isbn: 9780070445338.
[Online]. Available: https://books.google.com/books?id=zlZom9QkjCkC.

[11] S. Wang, Z. Li, and Y. Zhang, “Application of optimized filters to two-
dimensional sidelobe mitigation in meteorological radar sensing”, IEEE
Geoscience and Remote Sensing Letters, vol. 9, no. 4, pp. 778–782, 2012.

[12] Z. Li, Y. Zhang, S. Wang, L. Li, and M. Mclinden, “Fast adaptive pulse
compression based on matched filter outputs”, IEEE Transactions on
Aerospace and Electronic Systems, vol. 51, no. 1, pp. 548–564, 2015.

[13] D. Atlas, K. R. Hardy, and K. Naito, “Optimizing the radar detection
of clear air turbulence”, Journal of Applied Meteorology, vol. 5, no. 4,
pp. 450–460, 1966.

[14] D. Atlas and R. Srivastava, “A method for radar turbulence detec-
tion”, IEEE Transactions on Aerospace and Electronic Systems, no. 1,
pp. 179–187, 1971.

[15] A. B. Smith and R. W. Katz, “Us billion-dollar weather and climate
disasters: Data sources, trends, accuracy and biases”, Natural hazards,
vol. 67, no. 2, pp. 387–410, 2013.

[16] O. Wright and F. C. Kelly, How we invented the airplane. McKay
Philadelphia, 1953.

[17] R. W. Gruenhagen, Mustang: The Story of the P-51 Fighter. Arco,
1976.

[18] B. Sweetman, f-22 raptor. Zenith Imprint, 1998.

[19] R. Goyer, “Cessna 172: Still relevant?”, Flying, vol. 139, 2012.

132

[20] D. J. Ingells, 747: story of the Boeing super jet. TA B-Aero, 1970.

[21] Wikipedia, United airlines flight 826 — wikipedia, the free encyclopedia,
[Online; accessed 20-August-2017], 2017. [Online]. Available: https:
/ / en . wikipedia . org / w / index . php ? title = United _ Airlines _
Flight_826&oldid=793683548.

[22] ——, Delta air lines flight 191 — wikipedia, the free encyclopedia, [On-
line; accessed 20-August-2017], 2017. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=Delta_Air_Lines_Flight_
191&oldid=783551411.

[23] ——, Low level windshear alert system — wikipedia, the free encyclo-
pedia, [Online; accessed 20-August-2017], 2017. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Low_level_
windshear_alert_system&oldid=780676014.

[24] ——, Usair flight 1016 — wikipedia, the free encyclopedia, [Online;
accessed 20-August-2017], 2017. [Online]. Available: https : / / en .
wikipedia.org/w/index.php?title=USAir_Flight_1016&oldid=
795392396.

[25] ——, Airborne wind shear detection and alert system — wikipedia, the
free encyclopedia, [Online; accessed 20-August-2017], 2016. [Online].
Available: https : / / en . wikipedia . org / w / index . php ? title =
Airborne _ wind _ shear _ detection _ and _ alert _ system & oldid =
725472079.

[26] R. Sharman and T. Lane, Aviation Turbulence: Processes, Detection,
Prediction. Springer International Publishing, 2016, isbn: 9783319236308.
[Online]. Available: https://books.google.com/books?id=jv6ODAAAQBAJ.

[27] H. Lamb, Hydrodynamics, ser. Dover Books on Physics. Dover publica-
tions, 1945, isbn: 9780486602561. [Online]. Available: https://books.
google.com/books?id=237xDg7T0RkC.

[28] M. I. Skolnik, “Introduction to radar”, Radar Handbook, vol. 2, 1962.

[29] M. G. C. Clark, Deflating British Radar Myths of World War II. Pickle
Partners Publishing, 2014.

133

[30] J. D. Kraus, “Heinrich hertz-theorist and experimenter”, IEEE Trans-
actions on Microwave Theory and Techniques, vol. 36, no. 5, pp. 824–
829, 1988.

[31] J. C. Maxwell, “A dynamical theory of the electromagnetic field”, Philo-
sophical transactions of the Royal Society of London, vol. 155, pp. 459–
512, 1865.

[32] L. Brown, “A radar history of world war ii”, Institute of, 1999.

[33] D. Atlas, “Advances in radar meteorology”, Advances in geophysics,
vol. 10, pp. 317–478, 1964.

[34] R. C. Whiton, P. L. Smith, S. G. Bigler, K. E. Wilk, and A. C. Harbuck,
“History of operational use of weather radar by us weather services.
part i: The pre-nexrad era”, Weather and Forecasting, vol. 13, no. 2,
pp. 219–243, 1998.

[35] S. D. Perera, Y. Pan, Q. Zhao, Y. R. Zhang, D. Zmic, and R. J. Doviak,
“A fully reconfigurable polarimetric phased array testbed: Antenna in-
tegration and initial measurements”, in Phased Array Systems & Tech-
nology, 2013 IEEE International Symposium on, IEEE, 2013, pp. 799–
806.

[36] S. Perera, Y. Pan, Y. Zhang, X. Yu, D. Zrnic, and R. Doviak, “A fully re-
configurable polarimetric phased array antenna testbed”, International
Journal of Antennas and Propagation, vol. 2014, 2014.

[37] R. C. Whiton, P. L. Smith, S. G. Bigler, K. E. Wilk, and A. C. Harbuck,
“History of operational use of weather radar by us weather services. part
ii: Development of operational doppler weather radars”, Weather and
forecasting, vol. 13, no. 2, pp. 244–252, 1998.

[38] D. Turnbull and J. MCCARTHY, “The faa terminal doppler weather
radar(tdwr) program”, in International Conference on the Aviation
Weather System, 3 rd, Anaheim, CA, 1989, pp. 414–419.

[39] J. E. Evans and D. M. Bernella, “Supporting the deployment of the
terminal doppler weather radar (tdwr)”, LINCOLN LABORATORY
JOURNAL, vol. 7, no. 2.1994, 1994.

134

[40] R. J. Doviak and D. S. Zrnic, Doppler radar and weather observations.
Courier Corporation, 1993.

[41] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. Harvard University, 1975. [Online]. Avail-
able: https://books.google.com/books?id=z81XmgEACAAJ.

[42] S. McCartney, ENIAC: The triumphs and tragedies of the world’s first
computer. Walker & Company, 1999.

[43] R. M. Russell, “The cray-1 computer system”, Commun. ACM, vol. 21,
no. 1, pp. 63–72, Jan. 1978, issn: 0001-0782. doi: 10.1145/359327.
359336. [Online]. Available: http://doi.acm.org/10.1145/359327.
359336.

[44] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue,
F. Liu, F. Qiao, et al., “The sunway taihulight supercomputer: System
and applications”, Science China Information Sciences, vol. 59, no. 7,
p. 072 001, 2016.

[45] A. Shan, “Heterogeneous processing: A strategy for augmenting moore’s
law”, Linux Journal, vol. 2006, no. 142, p. 7, 2006.

[46] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics pro-
cessors using cuda”, Journal of parallel and distributed computing, vol. 68,
no. 10, pp. 1370–1380, 2008.

[47] Wikipedia, Geforce 10 series — wikipedia, the free encyclopedia, [On-
line; accessed 30-July-2017], 2017. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=GeForce_10_series&oldid=
791417070.

[48] X. Yu, Y. Zhang, A. Patel, A. Zahrai, and M. Weber, “An implemen-
tation of real-time phased array radar fundamental functions on a dsp-
focused, high-performance, embedded computing platform”, Aerospace,
vol. 3, no. 3, p. 28, 2016.

[49] X. Yu, “Digital signal processor based real-time phased array radar
backend system and optimization algorithms”, 2017.

135

[50] Wikipedia, Terminal doppler weather radar — wikipedia, the free en-
cyclopedia, [Online; accessed 13-November-2017], 2017. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Terminal_
Doppler_Weather_Radar&oldid=803108141.

[51] B. Isom, R. Palmer, R. Kelley, J. Meier, D. Bodine, M. Yeary, B.-L.
Cheong, Y. Zhang, T.-Y. Yu, and M. I. Biggerstaff, “The atmospheric
imaging radar: Simultaneous volumetric observations using a phased
array weather radar”, Journal of Atmospheric and Oceanic Technology,
vol. 30, no. 4, pp. 655–675, 2013.

[52] J. McCarthy, “Ascribing mental qualities to machines.”, STANFORD
UNIV CALIF DEPT OF COMPUTER SCIENCE, Tech. Rep., 1979.

[53] W.-Q. Wang, “Detecting and mitigating wind turbine clutter for airspace
radar systems”, The Scientific World Journal, vol. 2013, p. 8, 2013.

[54] J. Perry and A. Biss, “Wind farm clutter mitigation in air surveillance
radar”, Aerospace and Electronic Systems Magazine, IEEE, vol. 22,
no. 7, pp. 35–40, 2007, issn: 0885-8985. doi: 10.1109/MAES.2007.
4285990.

[55] R. Nepal, J. Cai, and Z. Yan, “Micro-doppler radar signature identi-
fication within wind turbine clutter based on short-cpi airborne radar
observations”, IET Radar, Sonar & Navigation, vol. 9, no. 9, pp. 1268–
1275, 2015.

[56] Y. Bengio, Learning Deep Architectures for AI, ser. Foundations and
Trends(r) in Machine Learning. Now Publishers, 2009, isbn: 9781601982940.
[Online]. Available: http://books.google.com/books?id=cq5ewg7FniMC.

[57] A. Ng, “Sparse autoencoder”, CS294A Lecture notes, p. 72, 2011.

[58] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm”, Journal of the Royal Sta-
tistical Society. Series B (Methodological), pp. 1–38, 1977.

[59] C. J. Wu, “On the convergence properties of the em algorithm”, The
Annals of statistics, pp. 95–103, 1983.

136

[60] Y. Wang and N. L. Zhang, “Severity of local maxima for the em al-
gorithm: Experiences with hierarchical latent class models.”, in Proba-
bilistic Graphical Models, Citeseer, 2006, pp. 301–308.

[61] D. M. Chickering and D. Heckerman, “Efficient approximations for the
marginal likelihood of bayesian networks with hidden variables”, Ma-
chine Learning, vol. 29, no. 2-3, pp. 181–212, 1997.

[62] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern
Recognition, ser. Applications of mathematics : stochastic modelling
and applied probability. Springer, 1996, isbn: 9780387946184. [Online].
Available: http://books.google.com/books?id=uDgXoRkyWqQC.

[63] F. Kabeche, Y. Lemâıtre, A. Protat, S. Kemkemian, and J.-P. Artis,
“Development and evaluation of a new real-time detection method of
atmospheric turbulent structures by an airborne x-band doppler radar”,
in Radar Conference-Surveillance for a Safer World, 2009. RADAR.
International, IEEE, 2009, pp. 1–6.

[64] A. Monakov and Y. Monakov, “Detection of turbulence with airborne
weather radars using space-time filtering”, IEEE Transactions on Aerospace
and Electronic Systems, vol. 46, no. 4, pp. 2131–2137, 2010.

[65] L. B. Cornman and R. K. Goodrich, “Doppler radar measurements of
turbulence”, in Aviation Turbulence, Springer, 2016, pp. 121–148.

[66] Y. Averyanova, “Statistical algorithm for turbulence detection using po-
larization features of radar reflections from rain”, in Radar Symposium
(IRS), 2015 16th International, IEEE, 2015, pp. 593–596.

[67] G. R. Widmann, M. K. Daniels, L. Hamilton, L. Humm, B. Riley, J. K.
Schiffmann, D. E. Schnelker, and W. H. Wishon, “Comparison of lidar-
based and radar-based adaptive cruise control systems”, SAE Technical
Paper, Tech. Rep., 2000.

[68] S. Franke, X Chu, A. Liu, and W. Hocking, “Comparison of meteor
radar and na doppler lidar measurements of winds in the mesopause
region above maui, hawaii”, Journal of Geophysical Research: Atmo-
spheres, vol. 110, no. D9, 2005.

[69] J. Delanoë, A. Protat, O. Jourdan, J. Pelon, M. Papazzoni, R. Dupuy,
J.-F. Gayet, and C. Jouan, “Comparison of airborne in situ, airborne

137

radar–lidar, and spaceborne radar–lidar retrievals of polar ice cloud
properties sampled during the polarcat campaign”, Journal of Atmo-
spheric and Oceanic Technology, vol. 30, no. 1, pp. 57–73, 2013.

[70] M. Fang, R. J. Doviak, and V. Melnikov, “Spectrum width measured by
wsr-88d: Error sources and statistics of various weather phenomena”,
Journal of Atmospheric and Oceanic Technology, vol. 21, no. 6, pp. 888–
904, 2004.

[71] D. Zrnic, “Spectrum width estimtes for weather echoes”, IEEE Trans-
actions on Aerospace and Electronic Systems, no. 5, pp. 613–619, 1979.

[72] J. K. Williams and G. Meymaris, “Remote turbulence detection using
ground-based doppler weather radar”, in Aviation Turbulence, Springer,
2016, pp. 149–177.

[73] V. M. Melnikov and R. J. Doviak, “Turbulence and wind shear in layers
of large doppler spectrum width in stratiform precipitation”, Journal
of Atmospheric and Oceanic Technology, vol. 26, no. 3, pp. 430–443,
2009.

[74] K. Hon and P. Chan, “Application of lidar-derived eddy dissipation rate
profiles in low-level wind shear and turbulence alerts at hong kong in-
ternational airport”, Meteorological Applications, vol. 21, no. 1, pp. 74–
85, 2014.

[75] J. K. Williams, “Using random forests to diagnose aviation turbulence”,
Machine learning, vol. 95, no. 1, pp. 51–70, 2014.

[76] C. Rudin and K. L. Wagstaff, Machine learning for science and society,
2014.

[77] Y. P. Ostrovsky, F. Yanovsky, and H Rohling, “Turbulence and pre-
cipitation classification based on doppler-polarimetric radar data”, in
Radar Symposium, 2006. IRS 2006. International, IEEE, 2006, pp. 1–4.

[78] E. B. Tchernev, R. G. Mulvaney, and D. S. Phatak, “Investigating the
fault tolerance of neural networks”, Neural Computation, vol. 17, no. 7,
pp. 1646–1664, 2005.

[79] T. M. Mitchell, “Machine learning. 1997”, Burr Ridge, IL: McGraw
Hill, vol. 45, no. 37, pp. 870–877, 1997.

138

[80] C. M. Shun and S. Lau, “Terminal doppler weather radar(tdwr) ob-
servation of atmospheric flow over complex terrain during tropical cy-
clone passages”, in PROC SPIE INT SOC OPT ENG, vol. 4152, 2000,
pp. 42–53.

[81] R. Srivastava, A. Jameson, and P. Hildebrand, “Time-domain compu-
tation of mean and variance of doppler spectra”, Journal of Applied
Meteorology, vol. 18, no. 2, pp. 189–194, 1979.

[82] W. P. Mahoney III and K. L. Elmore, “The evolution and finc-scale
structure of a microburst-producing cell”, Monthly weather review, vol. 119,
no. 1, pp. 176–192, 1991.

[83] P. Chan, P Zhang, and R Doviak, “Calculation and application of eddy
dissipation rate map based on spectrum width data of a s-band radar
in hong kong”, MAUSAM, vol. 67, no. 2, pp. 411–422, 2016.

[84] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning:
An artificial intelligence approach. Springer Science & Business Media,
2013.

[85] C. Sammut and G. I. Webb, Encyclopedia of machine learning. Springer
Science & Business Media, 2011.

[86] Wikipedia, Confusion matrix — wikipedia, the free encyclopedia, [On-
line; accessed 28-September-2017], 2017. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Confusion_matrix&
oldid=794367294.

[87] S. D. Blunt and K. Gerlach, “Adaptive pulse compression”, in IEEE
Radar Conference, IEEE, Philadelphia, PA, USA, 2004, pp. 271–276.

[88] ——, “Adaptive pulse compression via MMSE estimation”, IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 42, no. 2, pp. 572–
584, 2006.

[89] S. D. Blunt and T. Higgins, “Dimensionality reduction techniques for
efficient adaptive pulse compression”, IEEE Transactions on Aerospace
and Electronic Systems, vol. 46, no. 1, pp. 349–362, 2010.

[90] Z. Li, R. Nepal, Y. Zhang, and W. Blake, “Efficient pulse compres-
sion for lpi waveforms based on a nonparametric iterative adaptive ap-

139

proach”, in SPIE Defense+ Security Radar Sensor Technology XIX and
Active and Passive Signatures VI, SPIE, Baltimore, MD, USA, 2015,
pp. 94610X–94610X.

[91] R. Nepal, Y. Zhang, Z. Li, and W. Blake, “Matched filter based it-
erative adaptive approach”, in SPIE Defense+ Security Radar Sensor
Technology XX, SPIE, Baltimore, MD, USA, 2016, pp. 982 912–982 912.

[92] D. D. Feldman and L. J. Griffiths, “A projection approach for ro-
bust adaptive beamforming”, IEEE Transactions on Signal Processing,
vol. 42, no. 4, pp. 867–876, 1994.

[93] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, “Robust adaptive
beamforming using worst-case performance optimization: A solution to
the signal mismatch problem”, IEEE Transactions on Signal Process-
ing, vol. 51, no. 2, pp. 313–324, 2003.

[94] L. Lei, J. P. Lie, A. B. Gershman, and C. M. S. See, “Robust adaptive
beamforming in partly calibrated sparse sensor arrays”, IEEE Trans-
actions on Signal Processing, vol. 58, no. 3, pp. 1661–1667, 2010.

[95] Nvidia, CUDA C Programming Guide, (2017, accessed 31 May 2017).
[Online]. Available: https : / / docs . nvidia . com / cuda / cuda - c -
programming-guide/.

[96] M. Frigo and S. G. Johnson, “FFTW: Fastest Fourier transform in the
west”, Astrophysics Source Code Library, 2012.

[97] G. Guennebaud, B. Jacob, et al., EIGEN v3, http://eigen.tuxfamily.org,
2010.

[98] Nvidia, CUDA C best practices guide, (2016, accessed 22 November
2016). [Online]. Available: http://docs.nvidia.com/cuda/cuda-c-
best-practices-guide/.

[99] L. Ma, R. D. Chamberlain, and K. Agrawal, “Analysis of classic al-
gorithms on GPUs”, in High Performance Computing & Simulation
(HPCS), 2014 International Conference on, IEEE, 2014, pp. 65–73.

[100] L. Ma, “Modeling Algorithm Performance on Highly-threaded Many-
core Architectures”, PhD thesis, Washington University in St. Louis,
2014.

140

[101] M. Wolfe and P. C. Engineer, “Understanding the cuda data parallel
threading model a primer”, PGI Insider, February, 2010.

[102] F. Kong, Y. R. Zhang, J. Cai, and R. D. Palmer, “Real-time radar sig-
nal processing using gpgpu (general-purpose graphic processing unit)”,
in SPIE Defense+ Security, International Society for Optics and Pho-
tonics, 2016, pp. 982 914–982 914.

[103] Wikipedia, Geforce 700 series, (2016, accessed 13 September 2016).
[Online]. Available: https : / / en . wikipedia . org / w / index . php ?
title=GeForce_700_series&oldid=749513806.

[104] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer, “Cudnn: Efficient primitives for deep learning”,
arXiv preprint arXiv:1410.0759, 2014.

[105] Wikipedia, Caffe (software) — wikipedia, the free encyclopedia, [Online;
accessed 10-October-2017], 2017. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=Caffe_(software)&oldid=
798557658.

[106] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks”, in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[107] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convo-
lutions”, in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 1–9.

141

Appendix A

Summary of Contributions

Journal Papers:
[1] J. Cai and Y. Zhang, ”General purpose graphic processing unit imple-

mentation of adaptive pulse compression algorithms”, Journal of Applied
Remote Sensing, Vol. 11, No. 3, pp. 035009, Aug. 2017.

[2] R. Nepal, J. Cai, and Y. Zhang, ”Micro-Doppler radar signature identi-
fication within wind turbine clutter based on short-CPI airborne radar
observations”, IET Radar, Sonar & Navigation, Vol. 9, No. 9, pp. 1268-
1275, Dec. 2015.

[3] J. Cai, Y. Zhang, R. Doviak and P.W. Chan, ”Diagnosis and Classi-
fication of Typhoon-Associated Low-Altitude Turbulence Using HKO-
TDWR Radar Observations and Machine Intelligence”, IEEE Transac-
tions on Geoscience and Remote Sensing, Submitted and under revising,
Nov 2017

Conference Papers:
[1] J. Cai, Y. Zhang, F. Kong and L. Li, ”Acceleration of advanced radar

processing chain and adaptive pulse compression using gpgpu”, in Pro-
ceedings of the 24th High Performance Computing Symposiumm, Society
for Computer Simulation International, 2016, pp. 7:1-7:6.

[2] J. Cai and Y. Zhang, ”Acceleration of generalized adaptive pulse com-
pression with parallel GPUs”, in SPIE Defense+ Security, International
Society for Optics and Photonics, 2015, pp. 946107–946107.

[3] F. Kong, Y. Zhang, J. Cai and R. Palmer, ”Real-time radar signal process-
ing using GPGPU (general-purpose graphic processing unit)”, in SPIE

142

Defense+ Security, International Society for Optics and Photonics, 2016,
pp. 982914–982914.

[4] J. Cai, R. Mirza, Y. Zhang and J. Tilley, ”Concept Design and Feasibility
Studies for a Ka-band, UAS-based Cloud Sensing Radar”, in 37th Con-
ference on Radar Meteorology, AMS, 2015

[5] Z. Li, Y. Zhang, S. Wang and J. Cai, ”Superresolution processing for mul-
tifunctional LPI waveforms”, in Proc. SPIE Defense, Security, Sens.—Radar
Sensor Technol. XVIII, 2014, pp. 90770M

[6] Y. Zhang, Z. Li, B. Cheong, J. Cai, R. Nepal, H. Suarez, W. Blake, J.
Andrews and T. Yong, ”Optimized radar signal processing for a low-cost,
solid-state airborne radar”, in 36th Conference on Radar Meteorology,
AMS, 2013

143

